Preprint

Comparing prefaced questions across activity types : journalists and financial analysts as argumentative questioners

  • Lucchini, Costanza Istituto di argomentazione, linguistica e semiotica (IALS), Facoltà di comunicazione, cultura e società, Università della Svizzera italiana, Svizzera
  • Rocci, Andrea ORCID Istituto di argomentazione, linguistica e semiotica (IALS), Facoltà di comunicazione, cultura e società, Università della Svizzera italiana, Svizzera
  • Yaskorska-Shah, Olena Istituto di argomentazione, linguistica e semiotica (IALS), Facoltà di comunicazione, cultura e società, Università della Svizzera italiana, Svizzera
  • 2024
Submitted to:
  • De l'argumentativité à l'argumentation. - Peter Lang. - 2024
English Prefaced questions, i.e., question utterances that are combined with assertive statements that provide background information concerning the questions themselves, are conventionalized discourse patterns that arise in both earnings conference calls (ECCs) and political press conferences (PPCs). As prefaces present “some sort of argumentation that legitimizes the question”, prefaced questions need to be analyzed as argumentative structures. ECCs and PPCs share the same interaction scheme but pertain to two different interaction fields, respectively finance and politics. In this work, we observe how the different characteristics of the two interaction fields affect the argumentative structure of prefaced questions, verifying the hypotheses that (1) financial analysts are more cooperative than journalists; and (2) journalists make more extensive use of reported speech in their arguments. We adopt a mixed-methods approach, combining corpus-based quantitative observations with an in-depth qualitative analysis of the argumentative structure of prefaced questions. To do so, we introduce a novel framework that combines Inference Anchoring Theory to represent the dialogical discourse structure with Argumentum Model of Topics to disentangle the enthymematic inferential structure.
Collections
Language
  • English
Classification
Language, linguistics
License
License undefined
Open access status
green
Identifiers
  • ARK ark:/12658/srd1329461
Persistent URL
https://n2t.net/ark:/12658/srd1329461
Statistics

Document views: 26 File downloads:
  • Lucchini_Rocci_Yaskorska-Shah_2024_Peter Lang_De l'arg.pdf: 17