Rubric-based learner modelling via noisy gates Bayesian networks for computational thinking skills assessment
      
      
        
      
      
      
      
        
          
          - 
            
Adorni, Giorgia
  
  
    
    
  
    
      ORCID
    
  
  Istituto Dalle Molle di studi sull'intelligenza artificiale (IDSIA), Facoltà di scienze informatiche, Università della Svizzera italiana, Svizzera
          
 
          
          - 
            
Mangili, Francesca
  
  
    
    
  
    
      ORCID
    
  
  Istituto Dalle Molle di studi sull'intelligenza artificiale (IDSIA), Facoltà di scienze informatiche, Università della Svizzera italiana, Svizzera
          
 
          
          - 
            
Piatti, Alberto
  
  
    
    
  
    
      ORCID
    
  
  Department of Education and Learning (DFA), SUPSI, Lugano, Switzerland
          
 
          
          - 
            
Bonesana, Claudio
  
  
    
    
  
    
      ORCID
    
  
  Istituto Dalle Molle di studi sull'intelligenza artificiale (IDSIA), Facoltà di scienze informatiche, Università della Svizzera italiana, Svizzera
          
 
          
          - 
            
Antonucci, Alessandro
  
  
    
    
  
    
      ORCID
    
  
  Istituto Dalle Molle di studi sull'intelligenza artificiale (IDSIA), Facoltà di scienze informatiche, Università della Svizzera italiana, Svizzera
          
 
          
        
        
       
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
        
        Published in:
        
          
            
            - Journal of communications software and systems. - 2023, vol. 19, no. 1, p. 52-64
 
            
          
         
       
      
      
      
      
      
       
      
      
      
        
        English
        
        
        
          In modern and personalised education, there is a growing interest in developing learners’ competencies and accurately assessing them. In a previous work, we proposed a procedure for deriving a learner model for automatic skill assessment from a task-specific competence rubric, thus simplifying the implementation of automated assessment tools. The previous approach, however, suffered two main limitations: (i) the ordering between competencies defined by the assessment rubric was only indirectly modelled; (ii) supplementary skills, not under assessment but necessary for accomplishing the task, were not included in the model. In this work, we address issue (i) by introducing dummy observed nodes, strictly enforcing the skills ordering without changing the network’s structure. In contrast, for point (ii), we design a network with two layers of gates, one performing disjunctive operations by noisy-OR gates and the other conjunctive operations through logical ANDs. Such changes improve the model outcomes’ coherence and the modelling tool’s flexibility without compromising the model’s compact parametrisation, interpretability and simple experts’ elicitation. We used this approach to develop a learner model for Computational Thinking (CT) skills assessment. The CT-cube skills assessment framework and the Cross Array Task (CAT) are used to exemplify it and demonstrate its feasibility.
        
        
       
      
      
      
        
        
        
        
        - 
          Collections
        
 
        - 
          
        
 
        
        
        
        
        
        
        
        
        
        
        
        - 
          Language
        
 
        - 
          
        
 
        
        
        
        
        
        
        
        
        - 
          Classification
        
 
        - 
          
              
                
                  Computer science and technology
                
              
            
          
        
 
        
        
        
          
        
        
        
          
        
        
        
        
        
        
        
        
        
        
        
        - 
          License
        
 
        - 
          
        
 
        
        
        
        - 
          Open access status
        
 
        - 
          gold
        
 
        
        
        
        - 
          Identifiers
        
 
        - 
          
        
 
        
        
        
        - 
          Persistent URL
        
 
        - 
          https://n2t.net/ark:/12658/srd1326776
        
 
      
     
   
  
  
  Statistics
  
  
    
      Document views: 79
      
File downloads: