Conference paper (in proceedings)
Intelligent tutoring systems by Bayesian nets with noisy gates
-
Antonucci, Alessandro
ORCID
Istituto Dalle Molle di studi sull'intelligenza artificiale (IDSIA), Facoltà di scienze informatiche, Università della Svizzera italiana, Svizzera
-
Mangili, Francesca
ORCID
Istituto Dalle Molle di studi sull'intelligenza artificiale (IDSIA), Facoltà di scienze informatiche, Università della Svizzera italiana, Svizzera
-
Bonesana, Claudio
ORCID
Istituto Dalle Molle di studi sull'intelligenza artificiale (IDSIA), Facoltà di scienze informatiche, Università della Svizzera italiana, Svizzera
-
Adorni, Giorgia
ORCID
Istituto Dalle Molle di studi sull'intelligenza artificiale (IDSIA), Facoltà di scienze informatiche, Università della Svizzera italiana, Svizzera
Show more…
Published in:
- Proceedings of FLAIRS-35. - 2021, vol. 35, no. 2022
English
Directed graphical models such as Bayesian nets are often used to implement intelligent tutoring systems able to interact in real-time with learners in a purely automatic way. When coping with such models, keeping a bound on the number of parameters might be important for multiple reasons. First, as these models are typically based on expert knowledge, a huge number of parameters to elicit might discourage practitioners from adopting them. Moreover, the number of model parameters affects the complexity of the inferences, while a fast computation of the queries is needed for real-time feedback. We advocate logical gates with uncertainty for a compact parametrization of the conditional probability tables in the underlying Bayesian net used by tutoring systems. We discuss the semantics of the model parameters to elicit and the assumptions required to apply such approach in this domain. We also derive a dedicated inference scheme to speed up computations.
-
Collections
-
-
Language
-
-
Classification
-
Computer science and technology
-
License
-
CC BY-NC
-
Open access status
-
gold
-
Identifiers
-
-
Persistent URL
-
https://n2t.net/ark:/12658/srd1326771
Statistics
Document views: 18
File downloads:
- Antonucci_2021_flairs.pdf: 41