A LAIR-1 insertion creates broadly reactive antibodies against malaria variant antigens
-
Tan, Joshua
Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland - KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya - Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, UK
-
Pieper, Kathrin
Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland
-
Piccoli, Luca
Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland
-
Abdi, Abdirahman
KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya
-
Tully, Claire Maria
KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya
-
Foglierini Perez, Mathilde
Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland
-
Geiger, Roger
Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland - Institute for Microbiology, ETH Zurich, Switzerland
-
Jarrossay, David
Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland
-
Maina Ndungu, Francis
KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya
-
Wambua, Juliana
KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya
-
Bejon, Philip
KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya - Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, UK
-
Silacci Fregni, Chiara : Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland
-
Fernandez-Rodriguez, Blanca
Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland
-
Barbieri, Sonia
Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland
-
Bianchi, Siro
Humabs BioMed SA, Bellinzona, Switzerland
-
Marsh, Kevin
KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya - Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, UK
-
Thathy, Vandana
KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya
-
Corti, Davide
Humabs BioMed SA, Bellinzona, Switzerland
-
Sallusto, Federica
Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland
-
Bull, Peter
KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya - Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, UK
-
Lanzavecchia, Antonio
Institute for Research in Biomedicine (IRB), Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland - Institute for Microbiology, ETH Zurich, Switzerland
Show more…
Published in:
- Nature. - 2016, vol. 529, p. 25 p
English
Plasmodium falciparum antigens expressed on the surface of infected erythrocytes are important targets of naturally acquired immunity against malaria, but their high number and variability provide the pathogen with a powerful means of escape from host antibodies1,2,3,4. Although broadly reactive antibodies against these antigens could be useful as therapeutics and in vaccine design, their identification has proven elusive. Here we report the isolation of human monoclonal antibodies that recognize erythrocytes infected by different P. falciparum isolates and opsonize these cells by binding to members of the RIFIN family. These antibodies acquired broad reactivity through a novel mechanism of insertion of a large DNA fragment between the V and DJ segments. The insert, which is both necessary and sufficient for binding to RIFINs, encodes the entire 98 amino acid collagen-binding domain of LAIR1, an immunoglobulin superfamily inhibitory receptor encoded on chromosome 19. In each of the two donors studied, the antibodies are produced by a single expanded B-cell clone and carry distinct somatic mutations in the LAIR1 domain that abolish binding to collagen and increase binding to infected erythrocytes. These findings illustrate, with a biologically relevant example, a novel mechanism of antibody diversification by interchromosomal DNA transposition and demonstrate the existence of conserved epitopes that may be suitable candidates for the development of a malaria vaccine.
-
Language
-
-
Classification
-
Medicine
-
License
-
License undefined
-
Open access status
-
green
-
Identifiers
-
-
Persistent URL
-
https://n2t.net/ark:/12658/srd1319353
Statistics
Document views: 74
File downloads: