
Geometric Deep Learning:
from grid to graph structured data

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Federico Monti

under the supervision of

Prof. Michael M. Bronstein

January 2025

Dissertation Committee

Prof. Cesare Alippi Università della Svizzera italiana, Lugano, Switzerland
Prof. Andrea-Emilio Rizzoli Università della Svizzera italiana, Lugano, Switzerland

Prof. Xavier Bresson National University of Singapore, Singapore

Dissertation accepted on 23 January 2025

Prof. Michael M. Bronstein
Research Advisor

Università della Svizzera italiana, Lugano, Switzerland

The PhD program Director
Prof. Walter Binder

i

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Federico Monti
Lugano, 23 January 2025

ii

To my entire family.

iii

iv

Abstract

The success of Deep Learning architectures (e.g. Convolutional Neural Networks, Recurrent
Neural Networks, Transformers, . . .) and the increasing availability of graph/manifold struc-
tured data (e.g. social networks, sensor networks, molecules, 3D shapes, . . .) motivated, in
recent years, the development of a new class of Geometric Deep Learning (GDL) approaches
aimed at extending traditional DL solutions to non-Euclidean domains.

In this thesis, we explore the realm of Graph Convolutional Neural Networks (GCNNs), a
popular class of GDL architectures that rely on generalizations of the convolution operation to
process the provided input data. Our contributions are organized in two main different parts.

In the first part of this manuscript, we focus on methodologies. We introduce in particular
novel generalizations of convolution that are defined either in space or in the spectral domain.
We present an attention mechanism able to generalize convolution through a generalization of
the notion of pixel (MoNet), spectral filters able to process signals defined over multiple graphs
(MGCNN), spectral filters with spectral zoom properties (CayleyNet), and a scalable inception-
based architecture able to efficiently process graphs with millions of nodes and billions of edges
(SIGN).

In the second part of our work, we direct our attention towards applications of GCNNs. First,
we show how GCNNs allow to detect high-energy neutrinos by processing signals retrieved by
the IceCube detector. Second, we introduce VeritasZero, a GCNN-based approach able to detect
fake news based on the spreading patterns this forms on social media. Third, we present BP-
IIG, a GCNN-based profiling attack that exploits the stability of people’s interaction behavior to
identify individuals in anonymous datasets.

v

vi

Acknowledgements

Throughout my PhD studies I met a large amount of incredible people (both from the academic
and industrial world), I had the opportunity to live in fabulous places and I consistently worked
on cutting edge exciting projects that allowed me to grow beyond my most optimistic expecta-
tions. If there is one person that I have to thank for all of this is without a doubt my advisor.
Michael has been a consistent source of inspiration during my days at USI. He provided me the
opportunities that any student dreams of, and constantly pushed me to strive for excellence in
every project we decided to face. I am a better scientist and a better engineer thanks to Michael,
and for that, I will always be grateful.

Next in line, I would like to call out and thank all the amazing collaborators that I had
the opportunity to work with in the past years: Davide Boscaini, Davide Eynard, Jan Svoboda,
Jonathan Masci, Emanuele Rodolá, Or Litany, Xavier Bresson, Ron Levie, Karl Otness, Emanuele
Rossi, Fabrizio Frasca, Ben Simpson, Damon Mannion, Ernesto Schmitt, Pablo Gainza, Freyr
Sverrisson, Bruno Correia, Nicholas Choma, Lisa Gerhardt, Tomasz Palczewski, Zahra Ronaghi,
Prabhat Prabhat, Wahid Bhimji, Spencer R Klein, Joan Bruna, Ana-Maria Crȩtu, Xiaowen Dong,
Yan Leng and Yves-Alexandre de Montjoye. It was a true pleasure working with and learning
from each one of you.

Among the above, a special thanks goes in particular to all the people that I had the honor to
work with at Fabula. Working at Fabula has been the most exciting and fulfilling experience of
my life, and it would have not been so special if I didn’t have such an amazing group of people
around me.

Last but not least, I want to thank my entire family, and in particular my parents and my
grandparents, for assisting me in my studies and pushing me to reach such an important mile-
stone in my life. I would have not got to this if I didn’t have the support of all of you.

vii

viii

Contents

Contents ix

List of Figures xiii

List of Tables xix

1 Introduction 1
1.1 Contributions . 2
1.2 Publications . 4

I Convolution on non-Euclidean domains 7

2 Background 9
2.1 Convolutional Neural Networks on Euclidean domains 9
2.2 Convolution and graph-structured data . 13

2.2.1 Definitions . 13
2.2.2 Signal Processing on Graphs . 15

3 Mixture Model Neural Networks 23
3.1 Methodology . 23
3.2 Results . 26
3.3 Discussion . 29

4 Recurrent Multi-Graph Convolutional Neural Networks 33
4.1 Introduction . 33
4.2 Methodology . 34
4.3 Results . 38
4.4 Discussion . 40

5 Graph Convolutional Neural Networks with Complex Rational Spectral Filters 45
5.1 Methodology . 45
5.2 Results . 48
5.3 Exponential decay of Cayley filters (proof) . 54
5.4 Discussion . 56

5.4.1 Cayley filters as real rational functions . 61
5.4.2 Eigenvalues and eigenvectors of the magnetic Laplacian 61

ix

x Contents

6 Scalable Inception Graph Neural Networks 65
6.1 Introduction . 65
6.2 Methodology . 66
6.3 Results . 69
6.4 Discussion . 73

II Applications of GCNNs 77

7 Neutrino detection via IceCube Signal Classification 79
7.1 Introduction . 79
7.2 Methodology . 82

7.2.1 Physics Baseline . 82
7.2.2 3D Convolution Neural Networks . 82
7.2.3 Graph Convolutional Neural Networks . 82

7.3 Results . 84
7.4 Discussion . 86

8 Fake News Detection on Social Media 89
8.1 Introduction . 89
8.2 Dataset . 90
8.3 Methodology . 94

8.3.1 Architecture and training settings . 94
8.3.2 Input generation . 95

8.4 Results . 95
8.4.1 Model performance . 95
8.4.2 News spreading over time . 98
8.4.3 Model aging . 99

8.5 Discussion . 101

9 User identification in datasets of pseudonymized interaction networks 103
9.1 Introduction . 103
9.2 Experimental setup . 105

9.2.1 Overview of the attack . 105
9.2.2 Preprocessing of a k-IIG . 106

9.3 Methodology . 107
9.3.1 Model . 107
9.3.2 Training setup . 108

9.4 Results . 110
9.4.1 Mobile phone metadata dataset . 110
9.4.2 Bluetooth close-proximity dataset . 117

9.5 Discussion . 118

10 Conclusions and future works 123
10.1 Future works . 124

xi Contents

Bibliography 127

xii Contents

Figures

2.1 Top: multiple shifted version of input signal f . Bottom: the result of processing
f with the convolution operation and a gaussian kernel (g[.] was here cropped
to have same size as f [.] for clarity). 11

2.2 Top: Effect of max pooling over a portion of an image with windows of size 2×2
and stride equal to 2. Pixels with same color belong to the same neighborhood
and are aggregated together. Bottom: Same pooling applied on a shifted version
of the above image (shifted of 1 pixel to the left), only 1/4 of the pixel values
are changed after aggregation. 14

2.3 The first four eigenvectors of the graph Laplacian (visualized via a heat map) in
increasing order of associated eigenvalue for the provided graph. The higher the
value of λ, the lower the smoothness of the eigenvector (picture from [43]). . . 17

2.4 Pictorial representation of a directed path graph describing a 1D grid, with each
node represented by its coordinate value. Walking to the left/right in the graph
corresponds with moving towards the left/right in the grid. 19

3.1 Left: intrinsic local polar coordinatesρ,θ . Right: patch operator weighting func-
tions wi(ρ,θ) used in different generalizations of convolution on manifolds. . . 24

3.2 (Left) Shape correspondence quality obtained by different methods on the FAUST
humans dataset. (Right) Shape correspondence quality obtained by different
methods on FAUST range maps. The raw performance is shown as dotted curve
in both plots. 27

3.3 Pointwise error (geodesic distance from groundtruth) of MoNet on the FAUST
humans dataset. For visualization clarity, the error values are saturated at 7.5%
of the geodesic diameter, which corresponds to approximately 15 cm. Hot colors
represent large errors. 27

3.4 Examples of correspondence on the FAUST humans dataset obtained by the pro-
posed MoNet method. Shown is the texture transferred from the leftmost ref-
erence shape to different subjects in different poses by means of our correspon-
dence. 27

3.5 Pointwise error (geodesic distance from groundtruth) of MoNet on FAUST range
maps. For visualization clarity, the error values are saturated at 7.5% of the
geodesic diameter, which corresponds to approximately 15 cm. Hot colors rep-
resent large errors. 28

xiii

xiv Figures

3.6 Visualization of correspondence on FAUST range maps as color code (correspond-
ing points are shown in the same color). Full reference shape is shown on the
left. Bottom row show examples of additional shapes from SCAPE and TOSCA
datasets. 28

4.1 Recurrent MGCNN (RMGCNN) architecture using the full matrix completion
model and operating simultaneously on the rows and columns of the matrix X.
Learning complexity is O(|Vr ||Vc |). 35

4.2 Separable Recurrent MGCNN (sRMGCNN) architecture using the factorized ma-
trix completion model and operating separately on the rows and columns of the
factors W, HT . Learning complexity is O(|Vr |+ |Vc |). 35

4.3 Absolute value |τ(λ̃c , λ̃r)| of the first ten spectral filters learnt by our MGCNN
model. In each matrix, rows and columns represent frequencies λ̃r and λ̃c of the
row and column graphs, respectively. 37

4.4 Absolute values |τ(λ̃c)| and |τ(λ̃r)| of the first four column (solid) and row
(dashed) spectral filters learned by our sMGCNN model. 37

4.5 Evolution of the matrix X(t) with our architecture using full matrix completion
model RGCNN (top 2 rows) and factorized matrix completion model sRGCNN
(bottom 2 rows). The diffusion time associated to each matrix is placed on top
of the relative matrix, the RMSE with respect to the ground truth is instead on
the bottom. 41

5.1 Eigenvalues of the scaled Laplacian h∆ of a connected 15-communities graph
(Appendix A, Figure 5.5 left) mapped on the complex unit half-circle with Cayley
transform (h = 0.1, 1, and 10 left-to-right). The first 15 frequencies carrying
information about the communities are marked in red. 475.2 Filters (spatial domain, top and spectral domain, bottom) learned by CayleyNet
(top) and ChebNet (center, bottom) on the MNIST dataset. Cayley filters are able
to realize larger supports for the same order r. 49

5.3 Community detection test accuracy as function of filter order r. Shown are ex-
act matrix inversion (dashed) and approximate Jacobi with different number of
iterations (colored). For reference, ChebNet is shown (dotted). 50

5.4 ChebNet (blue) and CayleyNet (orange) test accuracies obtained on the CORA
dataset for different polynomial orders. Polynomials with complex coefficients
(top two) and real coefficients (bottom two) have been exploited with CayleyNet
in the two analysis. Orders 1 to 6 have been used in both comparisons. 51

5.5 Top: synthetic 15-communities graph. Second to the top: community detection
accuracy of ChebNet and CayleyNet. Bottom two: normalized responses of four
different filters learned by ChebNet (top) and CayleyNet (bottom), each response
is in a different color. Grey vertical lines represent the frequencies of the normal-
ized Laplacian (λ̃= 2λ−1

n λ−1 for ChebNet and C(λ) = (hλ− i)/(hλ+ i) unrolled
to a real line for CayleyNet). Note how, thanks to spectral zoom property, Cayley
filters can focus on the band of low frequencies (dark grey lines) containing most
of the information about communities. 63

5.6 Test (above) and training (below) times with corresponding ratios (using Cheb-
Net as reference) as function of filter order r and graph size n on our community
detection dataset. 64

xv Figures

6.1 The SIGN architecture for r generic graph filtering operators. Θk represents the
k-th dense layer transforming node-wise features downstream the application of
operator k, | is the concatenation operation and Ω refers to the dense layer used
to compute final predictions. 66

6.2 The thirteen connected 3-vertex graph motifs that can appear in directed graphs.
In undirected graphs there are only two possible motifs of three nodes: a wedge
(i.e. a length-two path) and a triangle (a length-three cycle). 686.3 Convergence of different methods on ogbn-products. 71

7.1 The IceCube Neutrino Observatory with the in-ice array, its sub-array DeepCore,
and the cosmic-ray air shower array IceTop. The string color scheme represents
different deployment seasons. The top-right insert presents the top view of the
IceCube detector. The DeepCore sub-array is represented by open circles. 80

7.2 The characteristic pattern of light deposition for muon bundles (left) and a high-
energy single muon with visible stochastic light emission along the track (right).
The red line shows the muons track, while each colored bubble represents a DOM
that saw light in the event. The colors indicate the relative light arrival time, from
red (earliest) to blue (latest), while the size of the bubbles indicates the number
of observed photons. 81

7.3 Receiver operating characteristic curve for various methods considered. The
green square and blue X indicate the evaluation point for the GCNN and CNN,
respectively. 85

8.1 Example of a single news story spreading on a subset of the Twitter social net-
work. Social connections between users are visualized as light-blue edges. A
news URL is tweeted by multiple users (cascade roots denotes in red), each pro-
ducing a cascade propagating over a subset of the social graph (red edges). Cir-
cle size represents the number of followers. Note that some cascades are small,
containing only the root (the tweeting user) or just a few retweets. 91

8.2 Distribution of cascade sizes (number of tweets per cascade) in our dataset. . . 92

8.3 Distribution of cascades over the 930 URLs available in our dataset with at least
six tweets per cascade, sorted by the number cascades in descending order. The
first 15 URLs (∼ 1.5% of the entire dataset) correspond to 20% of all the cascades. 92

8.4 Subset of the Twitter network used in our study with estimated user credibility.
Vertices represent users, gray edges the social connections. Vertex color and size
encode the user credibility (blue = reliable, red = unreliable) and number of
followers of each user, respectively. Numbers 1 to 9 represent the nine users
with most followers. 938.5 The architecture of our neural network model. Top row: GC = Graph Convolu-
tion, MP = Mean Pooling, FC = Fully Connected, SM = SoftMax layer. Bottom
row: input/output tensors received/produced by each layer. 94

8.6 Performance of URL-wise (blue) and cascade-wise (red) fake news detection us-
ing 24hr-long diffusion time. Shown are ROC curves averaged on five folds (the
shaded areas represent the standard deviations). ROC AUC is 92.70 ± 1.80%
for URL-wise classification and 88.30 ± 2.74% for cascade-wise classification,
respectively. Only cascades with at least 6 tweets were considered for cascade-
wise classification. 96

xvi Figures

8.7 T-SNE embedding of the vertex-wise features produced by our neural network at
the last convolutional layer representing all the users in our study, color-coded
according to their credibility (blue = reliable, red = unreliable). Clusters of
users with different credibility clearly emerge, indicative that the neural network
learns features useful for fake news detection. 97

8.8 Performance of cascade-wise fake news detection (mean ROC AUC, averaged on
five folds) using minimum cascade size threshold. Best performance is obtained
by filtering out cascades smaller than 6 tweets. 98

8.9 Ablation study result on URL-wise (top) / cascade-wise (bottom) fake news de-
tection, using backward feature selection. Shown is performance (ROC AUC)
for our model trained on subsets of features, grouped into four categories: user
profile, network and spreading, content, and user activity. Groups are sorted for
importance from left to right. 99

8.10 Performance of URL-wise (top) and cascade-wise (bottom) fake news detection
(mean ROC AUC, averaged on five folds) as function of cascade diffusion time. . 100

8.11 Effects of training set aging on the performance of URL-wise (top) and cascade-
wise (bottom) fake news detection. Horizontal axis shows difference in days be-
tween average date of the training and test sets. Shown is the test performance
obtained by our model with 24hrs diffusion (solid blue), test performance ob-
tained with same model just using the first tweet of each piece of news (0hrs
diffusion, dashed orange), and test performance obtained training on our orig-
inal uniformly sampled five folds (veracity predictions are computed for each
URL/cascade when this appears as a test sample in our 24hrs five fold cross-
validation, dashed green). 101

9.1 Setup of the behavioral profiling attack. (a) An example of a 2-IIG highlighted
in the larger graph it comes from. The vertices of the 2-IIG (inside the dashed
green circle) are respectively the originating individual (in yellow), 1-hop neigh-
bors (in gray), and the 2-hop neighbors (in purple). In solid lines are the edges
that are part of the 2-IIG. Edges are shown as a single directed edge of thick-
ness proportional to the total number of interactions. (b) The data available to
the attacker consist of (left) 2-IIGs coming from time period [tD, t ′D), usually as
part of an anonymized dataset, and (right) auxiliary 2-IIG data about a target
individual (G2

i0,[tA,t ′A)
). (c) An example of mobile phone interaction data. 104

9.2 An example of a simplified 2-IIG. On the left, a 2-IIG G2
i,W , with vertex set con-

sisting of originating individual i (yellow), and its 1-hop (a, b, c and d, gray)
and 2-hop (e, f , g, h and j, purple) neighbors. Edges between nodes are dis-
played as arrows with thickness proportional to the number of interactions. The
nodes marked with + (d, e and f) can be considered as out-of-network, as they
only have incoming edges in the 2-IIG. On the right, the simplified 2-IIG Ḡ2

i,W ,
consisting of the originating individual i and the 1-hop neighbors, with one edge
between any two nodes if there was at least one edge in 2-IIG. In the simplified
2-IIG, all nodes are equipped with behavioral features. 106

9.3 pk, the probability of identification within rank R when the time gap is one
week, R ∈ {1, . . . , N}. For each k ∈ {1, 2,3}, our method outperforms all the
other approaches. 109

xvii Figures

9.4 Cumulative distribution functions of the normalized entropy (a) and range (b)
of the attention weights used to aggregate the features available on neighbors of
each originating individual in the dataset. Two propagation layers are used in
our model, each column showing the corresponding distributions. 111

9.5 Attack’s performance with increasing population size. We show pk(N ′), the prob-
ability of identification within rank 1 for k ∈ {1, 2,3} in a population of size N ′.
The 95% confidence interval is shown in light blue. (Inset) shows the negative
difference quotient −∆pk(N ′) = −(pk(N ′) − pk(N ′ −∆(N))/∆N ′. The proba-
bility of identification decreases with the population size N ′, but at increasingly
slower rates. 113

9.6 Probability of identification when the time delay increases. We plot pk, the
probability of identification within rank 1 for k ∈ {1, 2,3} when the time de-
lay between the dataset and the attacker’s auxiliary information is equal to D
weeks. The auxiliary information is one week long. The 95% confidence inter-
val is shown in light blue. The vertical grey lines correspond to holidays. 114

9.7 Probability of identification for increasing time period length of auxiliary data.
For each k ∈ {1,2, 3}, we plot pk, the probability of correct identification (R =
1) when the attacker’s auxiliary data TA consist of LW weeks, 1 ≤ LW ≤ 20
(the largest value for each k is marked with an ’x’ for each model). The 95%
confidence interval is shown in light blue. (Inset) shows the difference quotient
∆pk(LW) = pk(LW)− pk(LW − 1) for 2≤ L ≤ 20. 116

9.8 The various evaluation scenarios. Testing, validation and training are performed
on sets disjoint in the time periods (a and b), the identities of the originating
individuals of the k-IIGs (c) or the time periods and the identities of the origi-
nating individuals of the k-IIGs (d). The green, blue and yellow dataset parts are
used for training, validation and testing, respectively. In the validation and test
parts, the first week is used as reference week and the second one as target week.117

9.9 Probability of identification in a bluetooth close proximity network. We plot
pk=1, the probability of identification within rank R for k = 1. The 95% con-
fidence interval is shown in light blue for BP-IIG. Our method correctly identi-
fies people pk=1 = 26.4% of the time based on their 1-IIGs. Out of 10 people
(R= 10), it is able to identify the right person pk=1 = 60.1% of the time. 119

xviii Figures

Tables

2.1 Various GCNNs implemented with the message passing mechanism. We focused
on layers receiving 1D signal as input and producing a 1D signal as output for
simplicity. σ(.) is a non-linearity and N (K)i is the K-hop neighborhood of node i.
For GraphSAGE we use summation to implement the AGGREGATE(.) function. . 21

3.1 Several GDL methods as a particular setting of the MoNet framework. x denotes
the reference point (center of the patch) and y a point within the patch. e de-
notes Euclidean coordinates on a regular grid. ᾱ, σ̄ρ, σ̄θ and ū j , θ̄ j , j = 1, . . . , J
denote fixed parameters of the weight functions. r(x , y) = (cos(θ (x , y)), sin(θ (x , y)).
Rθ̄ j

is a rotation matrix defined by angle θ̄ j . w is a vector of learnable weights. 25

3.2 Vertex classification accuracy on the Cora and PubMed datasets following the
split suggested in [270]. GCNNs are listed at the bottom of the table. In black /
red / blue performance of the 1st / 2nd / 3rd best model on a given dataset. . . 28

3.3 Performance of multiple methods on the Planetoid split [270] of Cora and PubMed.
Results taken from [88], and complemented with the ones reported in Table 3.2,
Table 5.2 and in [54, 32, 35, 84, 95, 152]. Methods are sorted in ascending order
of average performance on Cora. In black / red / blue performance of the 1st /
2nd / 3rd best model on a given dataset. 30

4.1 Reconstruction errors for the synthetic dataset between multiple convolutional
layers architectures and the proposed architecture. Chebyshev polynomials of
order 4 have been used for both users and movies graphs (q′MGCq denotes a
multi-graph convolutional layer with q′ input features and q output features). In
black / red / blue performance of the 1st / 2nd / 3rd best model. 39

4.2 Comparison of different matrix completion methods using users+items graphs
in terms of number of parameters (optimization variables) and computational
complexity order (operations per iteration). Big-O notation is avoided for clarity
reasons. Rightmost column shows the RMS error on Synthetic dataset. In black
/ red / blue performance of the 1st / 2nd / 3rd best model on a given dataset. 39

4.3 Comparison of different matrix completion methods using users graph only in
terms of number of parameters (optimization variables) and computational com-
plexity order (operations per iteration). Big-O notation is avoided for clarity
reasons. Rightmost column shows the RMS error on Synthetic dataset. In black
performance of the best model. 39

xix

xx Tables

4.4 Performance (RMS error) of different matrix completion methods on the Movie-
Lens dataset. In black / red / blue performance of the 1st / 2nd / 3rd best
model . 40

4.5 Performance (RMS error) on several datasets. For Douban and YahooMusic, a
single graph (of users and items respectively) was used. For Flixster, two settings
are shown: users+items graphs / only users graph. In black performance of the
best model. 40

5.1 Test accuracy obtained with different methods on the MNIST dataset. In black
/ red / blue performance of the 1st / 2nd / 3rd best model. 50

5.2 Test accuracy of different methods on the planetoid split [270] of the CORA
dataset. GCNNs are listed at the bottom of the table. In black / red / blue
performance of the 1st / 2nd / 3rd best model. 53

5.3 Performance (RMSE) of different matrix completion methods on the MovieLens
dataset. In black / red / blue performance of the 1st / 2nd / 3rd best model. . 54

6.1 Theoretical time complexity where Lc, Lff is the number of graph convolutional
and feed-forward layers, r is the filter size, |V| the number of nodes (in training or
inference), |E | the number of edges, and d the feature dimensionality (assumed
fixed for all layers). For GraphSAGE, S is the number of neighbors sampled at
each layer per node. For ClusterGCN and GraphSAINT, the cost of clustering and
sampling (respectively) is ignored in the pre-processing phase as this depends
on the chosen approach. Both pre-processing and forward pass complexities
correspond to an entire epoch where all nodes are seen. 67

6.2 Summary of (s)ingle and (m)ulti-label dataset statistics. Wikipedia is used, with
random features, for timing purposes only. 70

6.3 Micro-averaged F1 score average and standard deviation over inductive datasets.
For SIGN, we show the best performing configurations. The top three perfor-
mance scores are highlighted as: First, Second, Third. 70

6.4 Results on ogbn-papers100M. SIGN(p,d,f) refers to a configuration using p, d,
and f powers of simple undirected, directed and directed-transposed adjacency
matrices. The top three performance scores are highlighted as: First, Second,
Third. 72

6.5 Performance on ogbn-products. SIGN(p,s,t) refers to a configuration using p, s,
and t powers of simple, PPR-based, and triangle-based adjacency matrices. The
top three performance scores are highlighted as: First, Second, Third. 73

6.6 Impact of various operator combinations on inductive datasets. Best results are
in black. 73

6.7 Mean and standard deviation of preprocessing, training (one epoch) and infer-
ence times, in seconds, on OGBN-Product and Wikipedia datasets, computed
over 10 runs. SIGN-r denotes architecture with r precomputed operators. Pre-
processing and training times for ClusterGCN on Wikipedia are not reported due
to the clustering algorithm failing to complete. 74

7.1 Unweighted and weighted number of signal and background events within each
dataset . 84

xxi Tables

7.2 Performance of several methods in terms of expected number of signal and back-
ground events returned in a year. Our GCNN outperforms both the 3D CNN
and the physics baseline both in terms of SNR and overall number of retrieved
positive events. 84

9.1 Examples of attention weight vectors for various intervals of the normalized en-
tropy. The examples are sampled uniformly at random from the given interval
for the first propagation step (l = 1). In each example, the weights are sorted
decreasingly. In all cases, one or two neighbors have an attention weight at least
twice as large as the lowest attention weight. 110

9.2 The probability of identification pk within rank 1 computed for individuals in the
test set when compared with users from the reference week, when the time delay
is one week for the three scenarios comparison, k ∈ {1, 2,3}. By design, the test
set is common across the three scenarios. 118

9.3 The list of the 23 features used for the mobile phone interaction data. The bandi-
coot toolbox methods for computing the features are provided. A dash symbol
(-) indicates that the feature was not computed using bandicoot. 120

9.4 The list of the 16 features used for the Bluetooth close-proximity interaction data.
A dash symbol (-) indicates that the feature was not computed using bandicoot. 121

xxii Tables

Chapter 1

Introduction

Over the past decade, we witnessed the explosion of Deep Artificial Neural Networks (DNNs) as
an effective paradigm for solving prediction and generation tasks in a variety of different areas.
Image classification [144], image super-resolution [47], text / image generation [102, 45],
speech recognition [264], and candidate generation / ranking [65, 56] are just few of the many
examples of successful applications that this specific class of techniques found in recent times. In
the Computer Vision field, Convolutional Neural Networks (CNNs) received in particular a lot of
attention for the ground-breaking results that they allowed to achieve on popular benchmarks
(e.g. the ImageNet challenge). As a provided motif (e.g. an edge, a corner, a blob) has the
same chance of appearing in every position of a provided input image [151], in CNNs the
same feature detector (same artificial neuron) is applied indiscriminately throughout the entire
domain by simply sliding the window of operation of said detector. This "sliding window"
behavior is implemented in CNNs, and in particular in convolutional layers, through the so-
called convolution operation, which gives the name to this class of approaches as it represents
their fundamental building block. The ultimate effect of processing a provided input with a
convolutional layer is that each single neuron gets to process a significantly larger amount of
data with respect to what a classic dense layer would allow (as it is applied multiple times over
the same domain), thus reducing the chances of overfitting and in turn boosting performance.

While CNNs found large success in the processing of images (as well as videos [47, 132,
250], and audio signals [235, 103, 169] - i.e. signals defined over regular grids), in many
situations, one might need to process signals that are defined over graphs or manifolds (i.e. non-
Euclidean domains). Typical examples of this class of data are for instance citation networks
(where nodes are documents typically decorated with their text, [270]), social networks (which
describe users and the way they connect among each other, [187]) or 3D shapes (discretized as
triangular meshes [38, 174, 184]). Unfortunately, due to the irregularity and lack of a global
reference system of these domains, the very same definition of convolution is not well defined
on network / manifold data. As a result, classic CNNs cannot be directly applied with the same
construction we use for processing signals defined over grids, and new mechanisms are required
for analyzing the provided information.

Motivated by the lack of techniques capable of processing non-Euclidean structured data,
in a similar manner as classic CNNs do for regular grids, Graph Convolutional Neural Networks
(GCNNs) appeared on the scene in the last years [43]. GCNNs are a particular class of Geometric
Deep Learning approaches, a broader movement that appeared in the literature in recent time,

1

2 1.1 Contributions

which aims at extending classic Deep Learning approaches to non-Euclidean domains1. In order
to analyze the provided input, GCNNs leverage generalizations of the convolution operation that
replicate somehow the way in which convolution works over grids. Spectral GCNNs resort to
Graph Fourier Transform and a generalization of Fourier Convolution Theorem for extending
convolution, while spatial GCNNs generalize convolution by means of message passing schemes
that operate directly in space (e.g. along the edges of the provided graph). While the field of
GCNNs has been a niche area of research until even a few years ago, the popularity of these
architectures has been significantly increasing in recent times thanks to the broad applicability
they present [11]. Today, GCNNs find application in traffic prediction on Google Maps [74],
item recommendation in e-commerce [272, 7], link prediction on social media [51], molecular
property prediction [99], fraud detection [79], and many other areas, as we shall see.

1.1 Contributions

In this thesis, we present some of the contributions of the author to the Geometric Deep Learn-
ing research field. In the first part of this manuscript, we introduce a series of possible general-
izations of the convolution operation for non-Euclidean domains (MoNet, MGCNN, CayleyNet
and SIGN) with particular emphasis on graph structured data. We highlight the benefits of each
proposed generalization, and we compare it to previously presented approaches. For each ar-
chitecture, we also provide a commentary section highlighting how the literature evolved from
our own work.

MoNet. The Mixture Model Neural Network [184] is the first unified framework for general-
izing convolution on both graph and manifold structured data. The main contribution of our
MoNet architecture is a patch operator that generalizes the notion of pixel to non-Euclidean
domains, by using local pseudo coordinates that define the relationship between neighboring
nodes. It is also the first attention based GCNN that was ever introduced in the literature.

MGCNN. The Multi-Graph Convolutional Neural Network [185] is a generalization of the spec-
tral approach proposed in [72] for signals defined over multiple graphs. Thanks to a suitable
polynomial parametrization of spectral coefficients, in [185] we showed how multi-graph spec-
tral filters, which enjoy a linear complexity in the number of entries of the provided input signal,
could be realized. Our MGCNN was the cornerstone for solving matrix-completion problems
in [185]. Coupling MGCNN with a Recurrent Neural Network (e.g. LSTM [119]), we showed
in particular how an architecture (RMGCNN) able to learn a diffusion process aimed at re-
constructing the missing information could be constructed. A single graph simplification (with
better complexity) of RMGCNN was additionally presented in the paper.

CayleyNet. In [153] we introduced CayleyNet, a spectral GCNN that is able to detect at train-
ing time a frequency band of interest and to realize filters that specialize on that. The core
ingredient of our model is a new class of parametric rational complex functions (Cayley poly-
nomials), which allow to efficiently compute spectral filters that enjoy some form of "spectral
zoom" property. Thanks to this specific construction, CayleyNet outperformed in experimental

1Other examples of GDL architectures are for instance neural networks aimed at processing point clouds or sets
[276, 207, 208].

3 1.1 Contributions

evaluation previously presented approaches [72] in community detection, document classifica-
tion, and matrix completion tasks.

SIGN. In Scalable Inception Graph Neural Networks [90] we propose a scalable GCNN able to
deal with extremely large graphs (in the order of million of nodes and billion of edges). Instead
of doing diffusion on a graph on the fly, in SIGN we pre-compute aggregated descriptors at pre-
processing time using a predefined set of diffusion operators. The obtained descriptors are then
fed in input to a multi-layer perceptron reproducing an inception like architecture, in order to
produce the final predictions. Despite the simplicity of our architecture, in our experiments we
showed how SIGN was able to achieve competitive performance with respect to previously pre-
sented solutions designed with scalability in mind, while requiring smaller training / inference
times.

In the second part of the manuscript, we introduce instead some applications of GCNNs in
the realms of High-Energy Physics, Social Network Data Analysis, and Data Privacy. Similarly
to what done for the methodologies discussed in Part I, each chapter is decorated with a com-
mentary section, where we discuss relevant methods that have been proposed following our
work.

Neutrino detection. A neutrino is a lepton (a type of elementary particle) with extremely
small mass and no charge. As a result of these properties, neutrinos do not participate in elec-
tromagnetic interactions, they are only weakly affected by gravity (the weakest force in nature),
and they participate in nuclear interactions only through the so-called weak nuclear force (the
second weakest force in nature) [3]. Because of this, neutrinos can travel across matter with-
out having their trajectory largely affected, appearing as such as the ideal cosmic messenger to
pinpoint the source of interesting astrophysical phenomena (e.g. supernova explosions). In
[60], we studied how GCNNs can be used to detect the passage of high energy neutrinos by
processing signals retrieved by the IceCube detector. Using a GCNN implemented with our
MoNet convolutional layer, we were able to show how GCNNs can significantly achieve higher
detection rates with respect to both classic CNNs and a physics baseline realized by the IceCube
collaboration.

Fake-news detection. The proliferation of social media in the last years lead always more
people to access news online. While social media offer on one hand an easy-access low cost
method for news consumption, they also expose their audience to potentially fabricated in-
formation, which can be crafted with the idea of manipulating the public opinion to achieve
a specific political agenda. In [255], it was shown how false and true information spread in
different ways on Twitter, and in particular how misinformation appears to spread faster and
deeper compared to reliable information. Inspired by this work, in [187] we constructed a
fake news detection model (VeritasZero) capable of directly learning propagation patterns that
could allow to distinguish fake news from true news. In our experiments, VeritasZero achieves
significantly high accuracy (nearly 93% ROC AUC), it requires very short news spread times
(just a few hours of propagation) to approach maximum performance, and performs well even
when the model is trained on data distant in time from the testing data.

4 1.2 Publications

User identification. Fine-grained records of people’s interactions, both offline and online,
are collected at large scale everyday. These data contain sensitive information about whom we
meet, talk to, and when. In [66], we showed how GCNNs can be used to identify individuals
in datasets of psuedonymized interaction networks based on the weekly behavior of their k-
hop neighborhood. On a mobile phone metadata dataset of more than 40,000 people, our
behavioral profiling attack (BP-IIG) correctly identifies 52% of individuals based on fingerprints
extracted from their 2-hop interaction graph, and 15% of the them using only their 1-hop graph.
The profiles learned by our method are additionally stable over long periods of time, and 24%
of people can still be identified after 20 weeks. On a Bluetooth close-proximity dataset of 587
students, our approach correctly identifies more than 26% of the individuals using only their 1-
hop interaction graph. Our results provide evidence that the disconnected and even frequently
re-pseudonymized interaction data of an individual can be linked together, raising the question
of whether they satisfy the anonymization standard set forth in GDPR.

1.2 Publications

The content of this thesis is based on the following publications (∗ denotes equal contribution):

• Federico Monti∗, Davide Boscaini∗, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture
model cnns. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 5115–5124, 2017

• Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion
with recurrent multi-graph neural networks. Advances in neural information processing
systems, 30, 2017

• Ron Levie*, Federico Monti*, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph
convolutional neural networks with complex rational spectral filters. IEEE Transactions
on Signal Processing, 67(1):97–109, 2018

• Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph
convolutional network for directed graphs. In 2018 IEEE Data Science Workshop (DSW),
pages 225–228. IEEE, 2018

• Fabrizio Frasca∗, Emanuele Rossi∗, Davide Eynard, Ben Chamberlain, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. Graph Representa-
tion Learning and Beyond, ICML Workshop, 2020

• Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski, Zahra Ronaghi, Prab-
hat Prabhat, Wahid Bhimji, Michael M Bronstein, Spencer R Klein, and Joan Bruna. Graph
neural networks for icecube signal classification. In 2018 17th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA), pages 386–391. IEEE, 2018

• Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M Bron-
stein. Fake news detection on social media using geometric deep learning. Representation
Learning on Graphs and Manifolds workshop, 2019

5 1.2 Publications

• Ana-Maria Crȩtu, Federico Monti, Stefano Marrone, Xiaowen Dong, Michael Bronstein,
and Yves-Alexandre de Montjoye. Interaction data are identifiable even across long peri-
ods of time. Nature Communications, 13(1):313, 2022

On top of the above, the author additionally contributed to the following publications during
the course of his PhD studies:

• Jan Svoboda, Federico Monti, and Michael M Bronstein. Generative convolutional net-
works for latent fingerprint reconstruction. In 2017 IEEE International joint conference on
biometrics (IJCB), pages 429–436. IEEE, 2017

• Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan Günne-
mann, and Michael M Bronstein. Dual-primal graph convolutional networks. Euro-
pean Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, 2019

• Jan Svoboda, Jonathan Masci, Federico Monti, Michael M Bronstein, and Leonidas Guibas.
Peernets: Exploiting peer wisdom against adversarial attacks. 7th International Conference
on Learning Representations, ICLR, 2019

• Kevin McCloskey, Ankur Taly, Federico Monti, Michael P Brenner, and Lucy J Colwell.
Using attribution to decode binding mechanism in neural network models for chemistry.
Proceedings of the National Academy of Sciences, 116(24):11624–11629, 2019

• Pablo Gainza, Freyr Sverrisson, Federico Monti, Emanuele Rodola, D Boscaini, Michael M
Bronstein, and Bruno E Correia. Deciphering interaction fingerprints from protein molec-
ular surfaces using geometric deep learning. Nature Methods, 17(2):184–192, 2020

• Emanuele Rossi, Federico Monti, Michael Bronstein, and Pietro Liò. ncrna classification
with graph convolutional networks. arXiv preprint arXiv:1905.06515, 2019

• Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. Graph
Representation Learning and Beyond, ICML Workshop, 2020

• Emanuele Rossi, Federico Monti, Yan Leng, Michael Bronstein, and Xiaowen Dong. Learn-
ing to infer structures of network games. In International Conference on Machine Learning,
pages 18809–18827. PMLR, 2022

• Vanessa Cai, Pradeep Prabakar, Manuel Serrano Rebuelta, Lucas Rosen, Federico Monti,
Katarzyna Janocha, Tomo Lazovich, Jeetu Raj, Yedendra Shrinivasan, Hao Li, et al. Twerc:
High performance ensembled candidate generation for ads recommendation at twitter.
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, 2023

6 1.2 Publications

Part I

Convolution on non-Euclidean domains

7

Chapter 2

Background

In the first chapter of this part, we introduce the fundamental concepts needed for understand-
ing the contribution of the author. We will in particular review classic Convolutional Neural
Networks (CNNs), introduce the basics of Graph Theory and Signal Processing on Graphs, and
finally review some prior art that will be useful in the analysis of the proposed GCNNs as a term
of comparison. For the sake of clarity, throughout this document we will describe a scalar as
x , a vector as x, a matrix as X, functions / signals defined over a continuous Euclidean space
as f (.), functions / signals defined over a discrete grid as f [.] and functions defined over a
sequence of elements (e.g. nodes of a graph, feature maps produced by a convolutional layer,
. . .) as f..

2.1 Convolutional Neural Networks on Euclidean domains

Convolutional Neural Networks [151, 144, 110, 123] are a particular realization of Deep Neural
Networks, which received a lot of attention in the last years thanks to the groundbreaking per-
formance they were able to achieve on a variety of different tasks [144, 47, 133]. The success
of Convolutional Neural Networks is owed to their capacity of exploiting statistical properties
of the input signal - in particular stationarity and compositionality - to contain the number of
parameters without sacrificing the representation power of the model [43]. Stationarity and
compositionality are two statistical properties which can be easily found in natural images,
videos and speech signals [89, 196, 233]. In this context, compositionality refers to the hierar-
chical nature of features which can be built by a composition of other (more localized) features
at a lower level (e.g. in an image, a set of edges construct a border, a set of borders define
the shape of a person, . . .) and stationarity implies that same motifs have the same probability
of appearing in every location of the domain where the signal is defined. To exploit these two
fundamental properties to contain the number of parameters and limit overfitting, CNNs rely
on the convolution operation for extrapolating relevant patterns. Formally, provided a signal f
and a filter h, the convolution of f and h is defined as:

g(t) = (f ⋆ h)(t) =

∫ +∞

−∞
f (t −τ)h(τ)dτ. (2.1)

9

10 2.1 Convolutional Neural Networks on Euclidean domains

For functions defined over a discrete domain (e.g. digital images), this in turn corresponds to:

g[t] = (f ⋆ h)[t] =
⌊K/2⌋
∑

k=−⌊K/2⌋

f [t − k]h[k]; (2.2)

with h[.] showing non-zero values only in {−⌊K/2⌋, . . . , ⌊K/2⌋}1. From equation (2.2), it is easy
to see how, for any t, the output g[t] of the convolution between f [.] and h[.] corresponds to
nothing more than a linear combination of the values of the (input) signal f in a neighborhood
of t (i.e. a patch of f centered around t). The coefficients of the linear combination are
additionally independent on t and defined only by (filter) h. Considering the coefficients of h
as parameters of a Neural Network, it’s straightforward to see how a neural layer defined as
in equation (2.2) is well suited to extrapolate features from stationary input signals. The same
localized feature detector (here represented by filter h) is indeed applied throughout the entire
domain in a sliding window fashion, thus avoiding the need for the model to re-learn the same
feature in multiple different positions (weight sharing). To provide a pictorial example of this,
Figure 2.1 shows the result of filtering multiple Dirac deltas located at multiple positions in
space. Shifting the input in any direction simply corresponds in the same output but translated
in the same direction and of the same amount where the input was shifted. As translations of the
input result in equivalent translations of the output, we say that g[.] is the result of processing
f [.] with a Linear Shift Equivariant system defined by the convolution operation and h[.].

Convolution and Fourier Transform. Provided an absolutely integrable function f ∈ L1(R),
the Fourier Transorm (FT) f̂ (ξ) = F{ f }(ξ) and the Inverse Fourier Transform (IFT) f (t) =
F−1{ f̂ }(t) are defined as:

f̂ (ξ) = F{ f }(ξ) =
∫ +∞

−∞
f (t)e−i2πξt d t; (2.3)

f (t) = F−1{ f̂ }(t) =
∫ +∞

−∞
f̂ (ξ)ei2πξt dξ; (2.4)

where ξ corresponds to a given frequency value and i is the imaginary unit. For a discrete func-
tion f [.] defined over {0,1, . . . , T − 1}, the Discrete Fourier Transform (DFT) f̂ [k] = FD{ f }[k]
and Inverse Discrete Fourier Transform (IDFT) f [t] = F−1

D { f̂ }[t] are instead defined as:

f̂ [k] = FD{ f }[k] =
T−1
∑

t=0

f [t]e−i2π k
T t , k ∈ {0, 1, . . . , T − 1}; (2.5)

f [t] = F−1
D { f̂ }[t] =

1
T

T−1
∑

k=0

f̂ [k]ei2π k
T t , t ∈ {0,1, . . . , T − 1}; (2.6)

with k ∈ {0,1, . . . , T − 1} describing the index of a given frequency2. For the sake of this
manuscript, it is interesting to analyze the relationship that exists between the Fourier Trans-
form and the convolution of two signals. Provided two continuous signals f (.) and h(.), for the
Fourier Convolution Theorem we have:

1While we focus in our definition on 1D signals, a similar construction can be implemented for a generic n-
dimensional case simply expanding the convolution operation to include all the dimensions of the input domain.

2For functions defined over a generic interval {−⌊T/2⌋, . . . , ⌊T/2⌋}, with T odd, the two equations are just the same,
simply with the index of the summation in (2.5), and the domain of f [.] in (2.6), ranging from −⌊T/2⌋ to ⌊T/2⌋.

11 2.1 Convolutional Neural Networks on Euclidean domains

f

g

Figure 2.1. Top: multiple shifted version of input signal f . Bottom: the result of processing
f with the convolution operation and a gaussian kernel (g[.] was here cropped to have same
size as f [.] for clarity).

g(t) = (f ⋆ h)(t) = F−1{F{ f } ·F{h}}. (2.7)

Similarly, provided two discrete signals f [.] and h[.], with same length, and respectively defined
over {0, . . . , T − 1} and {−⌊K/2⌋, . . . , ⌊K/2⌋}:

g[t] = (f ⃝⋆ h)[t] = F−1
D {FD{ f } ·FD{h}}; (2.8)

where⃝⋆ is the circular convolution operator:

g[t] = (f ⃝⋆ h)[t] =
⌊K/2⌋
∑

k=−⌊K/2⌋

fT [t − k]h[k]. (2.9)

Here, fT [t] =
∑∞

m=−∞ f [t −mT] is the periodic summation of signal f [.] of length T , and we
assumed f [.] and h[.] to have equal number of values in order to guarantee same number of
frequencies, for both signals, in (2.8). From equation (2.9), it is possible to see how, if f [.] and
h[.] are two signals of size generically equal to T and K (with K odd, and not necessarily equal
to T), by appropriately zero padding f [.] and h[.] to make them of length T+K−1 and imposing
that g[.] has non zero value only in [−⌊K/2⌋, T + ⌊K/2⌋], the cropped circular convolution of
the padded f and h reproduces the output of the convolution of the two original signals. It
then follows from equation (2.8) (which provides a means for realizing circular convolution in
the spectral domain) that convolution can also be realized as a multiplication of the spectrums
obtained through DFT under analogous conditions.

12 2.1 Convolutional Neural Networks on Euclidean domains

The relationship between convolution and the Fourier Transform is typically of interest in
Digital Signal Processing (DSP) for two main reasons. First of all, it allows to understand the
behavior of a given filter (i.e. whether it is a low pass, band pass or high pass filter). Second of
all, it allows to realize efficient implementations of filtering operations. Thanks indeed to the
Fast Fourier Transform (FFT) algorithm, the DFT of a given signal f [.] of size equal to T can
be computed in just a O(T log2T) operations. As a result of this, deciding whether it is more
efficient to convolve two signals in the space or in the spectrum is a matter concerning the length
of the two signals. The complexity of filtering a signal f [.] of T values with a filter h[.] of size
equal to K is O(T ·K) in space and O((T+K−1) · log2(T+K−1)) in the frequency domain. For
filters of limited length (namely K << log2T) the spatial construction is the preferable solution
(as it is cheaper), while for filters showing a large size (K >> log2T) the spectral construction
is a more efficient choice.

Convolutional layers. A 1D convolutional layer is generally obtained in CNNs expanding
equations (2.2) / (2.8) with a learnable bias b and a non-linearity σ (e.g. ReLU, LeakyRelu,
sigmoid, tanh, . . .), to allow the detection of high level features via the combination of lower
level ones (compositionality of representation):

g(i)k [t] = σ(
∑

k′
(g(i−1)

k′ ⋆ h(i)k,k′)[t] + b(i)k); (2.10)

here h(i)k,k′ corresponds to the filter processing output signal k′ from the (i−1)-th layer to produce
feature k in layer i. As filters implemented in CNNs typically aim at extracting elementary motifs
(since these can be frequently used for describing the behavior of multiple parts of a provided
input, e.g. edges in an image), the support of filters implemented in convolutional layers is
generally small (e.g. 3× 3 / 5× 5 on images with hundreds of pixels per dimension). For this
reason, the spatial approach outlined in (2.2) is typically the solution of choice for implementing
convolution in CNNs.

Pooling Layers

While convolutional layers allow to extract local re-usable features from the input signal (which
can be effectively used for solving localized predictions problems such as image denoising
[127]), in many instances one needs to solve a prediction problem at a global scale (e.g. image
classification). In these situations, CNNs typically implement a second fundamental layer in
their architecture, i.e. a pooling layer, to achieve robust predictions. Pooling layers (which are
typically interleaved with convolutional layers) reduce the spatial resolution of each computed
feature map by sliding a window of operation over the provided input signal with a stride larger
than 1, and for each selected neighborhood compute an aggregated value:

g̃(i)k [t] =□x∈Nt
g(i)k [x]. (2.11)

Here, t is the center of each window of points and □ is the operation chosen for pooling (typi-
cally mean, sum or max). Figure 2.2 (top) provides an example of the result of applying max-
pooling over a generic grey-scale image. Through this mechanism, pooling layers achieve two
fundamental goals: (a) they build some level of invariance in the representation of the input
signal with respect to small translations of the input (as only an approximate representation of

13 2.2 Convolution and graph-structured data

the input signal is provided to the next layer, figure 2.2 (bottom)); (b) they reduce the com-
putational complexity of the entire architecture, as for each pooling layer that is introduced,
only a fraction of the computed features are pushed through the remaining part of the archi-
tecture. If robustness with respect to translations is key for good performance, global pooling
layers can additionally be introduced [157]. With global pooling layers, the features produced
by convolutional layers are aggregated together in a unique representation that is completely
independent on the absolute position of each computed feature:

g̃(I)k =□t g(I)k [t]. (2.12)

This, in turn, makes the output of a CNN invariant to translations of the input, as (unless posi-
tional embeddings are used to describe the location of different points) no matter the position
of a target in the domain, the final embedding g̃(I) will always be the same. Since a vectorized
representation with fixed length is computed no matter the support of the provided input sig-
nal, global pooling layers additionally make CNNs able to handle inputs of multiple sizes. As
we shall see, this last property will come particularly in handy with GCNNs, as it often happens
that graphs with variable number of vertices need to be processed with the same architecture.

2.2 Convolution and graph-structured data

In order to provide a full understanding to the reader of the topics discussed later in this thesis,
we review here some fundamental concepts of Graph Theory and Signal Processing on Graphs
(SGP).

2.2.1 Definitions

Undirected and directed graphs. A graph G = (V,E) can be defined as a tuple consisting of
the node / vertex set V and edge set E . The node set defines the set of "items" that build the graph
and the edges describe existing relations between pairs of nodes (edges in G can additionally
be weighted to describe the strength of the connection). An edge and a node are called incident
if the node is one of the end-points of the edge. Two edges are called incident if they share
at least one end-point. Edges can be undirected in case of symmetric relations ("undirected
edges" are simply referred to as edges) or directed if they are asymmetric ("directed edges" are
typically referred to as arcs). If undirected edges are used in the definition of G, the graph is
said undirected and pairs of nodes in E are unordered. If directed edges are used instead, the
graph is called directed and E is built by ordered pairs of nodes describing the direction of each
relation (i.e. pair (i, j) describes an arc going from node j to node i). An edge connecting a
node to itself is called a self-loop.

Neighborhoods on graphs. Two nodes are said adjacent / neighbors if there is at least one
edge connecting them. The neighborhood Ni of a node i is the set of neighbors of i. In di-
rected graphs, Ni can be divided between in-neighborhood N−i = { j ∈ V | (i, j) ∈ E} and out-
neighborhood N+i = { j ∈ V | (j, i) ∈ E}. Nodes that are reachable in k steps from node i define

the k-hop neighborhood N (k)i of i, said nodes are called k-hop neighbors of i.

14 2.2 Convolution and graph-structured data

0.1 0.9

0.60.4

0.2 0.3

0.7 0.6

0.1 0.4

0.50.4

0.5 0.8

0.2 0.3

0.9 0.7

0.5 0.8

0.9 0.2

0.70.6

0.3 0.5

0.6 0.2

0.4 0.5

0.20.5

0.8 0.7

0.3 0.4

0.9 0.6

0.5 0.8

Figure 2.2. Top: Effect of max pooling over a portion of an image with windows of size
2×2 and stride equal to 2. Pixels with same color belong to the same neighborhood and are
aggregated together. Bottom: Same pooling applied on a shifted version of the above image
(shifted of 1 pixel to the left), only 1/4 of the pixel values are changed after aggregation.

Connectivity. An undirected graph is called connected if from each node i ∈ V any other node
j ∈ V can be reached "walking" along the edges. A undirected graph is called disconnected
otherwise. A directed graph is called strongly connected if any node can be reached from any
other by walking in the direction specified by the arcs. A directed graph is weakly connected if
the associated undirected graph is connected. A directed graph is disconnected otherwise.

Adjacency matrix. A typical representation to describe the connectivity of a graph and the
strength of the connections between vertices is the so-called adjacency matrix A ∈ R|V|×|V|. The
adjacency matrix has a value ai, j ̸= 0 for entries (i, j) ∈ E and zero otherwise. For a given edge
/ arc (i, j), ai, j = 1 when the associated graph is unweighted, ai, j can instead assume any other
value in R\{0} for weighted graphs. For undirected graphs, since the relations between nodes
are symmetric, ai, j = a j,i , the adjacency matrix is symmetric as well (i.e. A= AT).

The adjacency matrix of a graph can be normalized to describe the relative weight of an
edge/arc with respect to its other incident edges (possibly computed considering only one
given end-point). Popular normalized adjacency matrices in the literature are the asymmet-

15 2.2 Convolution and graph-structured data

ric normalized adjacency matrix Ã(as ym) = D−1A, and the symmetric normalized adjacency matrix
Ã(s ym) = D−0.5AD−0.5 (unless specified otherwise, we describe with Ã the symmetric normalized
adjacency matrix). D= diag(d1, . . . , d|V|) is the so-called degree matrix and each diagonal entry
di =

∑

j∈V ai, j is the degree of node i.

Signals on graphs. The nodes and edges of a given graph can be decorated with features
in order to describe their respective properties. In social networks for instance, node-wise
embeddings can be introduced to describe the past behavior of users (e.g. the tweets they might
have liked or retweeted at some point); similarly, edge-wise features can be used to describe the
frequency of interactions between two users and thus define the strength of a bond. Whenever
a graph is equipped with this additional information, it is named attributed. Signals defined on
the nodes / edges of a given graph are typically collected in matrix X ∈ R|V|×F / E ∈ R|E|×F̃ ,
where each row i represent a vertex / edge and each column a feature. The order of the rows
of X is generally consistent with the one of A (or similar operators such as the graph Laplacian,
see next paragraph) to allow an easy processing of the information.

Laplace operator. A relevant matrix for Signal Processing on Graphs is the (combinatorial)
Graph Laplacian ∆ = D− A and its normalized version ∆̃ = D−0.5∆D−0.5 = I− Ã. The Lapla-
cian implements on graphs an equivalent version of the Laplace operator defined for Euclidean
domains. The Laplace operator ∆ is defined on grids as the diverge of the gradient of a scalar
function f :

∆ f (x) =∇ ·∇ f (x) =
∑

i

∂ 2 f
∂ x2

i

(x); (2.13)

and it can be interpreted as an operator measuring the difference between the value of f (.) in a
point x and the average value of f (.) in a neighborhood of x3. For a generic signal f defined over
the nodes of a graph, applying the Laplace operator on f simply corresponds with projecting f
over the Graph Laplacian ∆ (or ∆̃): f̃i = (∆f)i .

2.2.2 Signal Processing on Graphs

As illustrated in Section 2.1, in order to extract re-usable features across a given grid, CNNs
rely on the convolution operator for implementing filtering schemes. While the definition of
convolution appears quite natural on grids (as it simply corresponds to a linear combination
of signal values available on the neighbors of a target point), for signals defined over graphs
things are not so straightforward. As graphs are not equipped with a global reference system,
we don’t have indeed a canonical way for sorting the neighbors of a given node. On top of this,
the neighborhoods of different nodes are typically irregular, i.e. they generally show different
sizes. Due to these two properties, the definition of convolution can’t be directly applied for
graph-structured data, and generalizations of such operator need to be sought to realize filters
on these specific domains.

Broadly speaking, two main families of approaches can be identified in the literature, which
aim at generalizing convolution for signals defined over graphs:

3Approximating the Laplace operator through finite differences, it is indeed possible to observe how: ∆ f [x] =
∑

i
f [x+h·1i]−2 f [x]+ f [x−h·1i]

h2 ; where 1i is a unit vector with zeros everywhere but in position i.

16 2.2 Convolution and graph-structured data

• Spectral approaches, which resort to a generalization of the Fourier Transform (the Graph
Fourier Transform) and the Fourier Convolution Theorem.

• Spatial approaches, which generalize the notion of shift to graph structured data by means
of message passing mechanisms.

In this subsection, we will review some of the most classic approaches for generalizing convo-
lution on graphs both in the spectral and spatial domain. It should be noted that the separation
between spectral and spatial generalizations of convolution is not necessarily well marked and,
as we shall see, some approaches can be understood from both perspectives.

Spectral Graph Convolutional Neural Networks

Graph Fourier Transform. The first GCNN that made use of a spectral generalization of con-
volution for implementing filters over graph (at least that we are aware of) is the work of Bruna
et al. [46]. Provided an undirected graph G = (V,E) where V is the vertex-set and E the edge
set, A ∈ R|V|×|V| with Ai, j > 0 ⇐⇒ (i, j) ∈ E the (potentially weighted) adjacency matrix of G,

D = diag(
∑

j A1, j , . . . ,
∑

j A|V|, j) the diagonal degree matrix and ∆̃ = I−D−0.5AD−0.5 = Φ̃Λ̃Φ̃T

the corresponding normalized graph Laplacian4 (together with its orthogonal eigendecompo-
sition), the Graph Fourier Transform (GFT) and Inverse Graph Fourier Transform (IGFT) of a
generic signal x defined over V are defined as:

x̂= Φ̃T
x; x= Φ̃x̂. (2.14)

The eigenfunctions of the Laplace operator corresponds in this scenario to a generalization
of the Fourier basis used in spectral analsys and the eigenvalues λ̃i >= 0 for i ∈ {1, .., |V|}
describe the frequencies of the different functions building the basis. The eigenvectors of the
graph Laplacian are typically considered a generalization of the Fourier basis for graphs due
to the relationship that the complex exponential and the Laplace operator enjoy in Euclidean
domains. The complex exponential corresponds in this sense to an eigenfunction of the Laplace
operator on grids, and the corresponding eigenvalue provides a measure of frequency of the
eigenfunction. As an example, in the 1D case we have:

∆e−i2π f x =
∂ 2e−i2π f x

∂ x2
= (2π f)2e−i2π f x ; (2.15)

where (2π f)2 is the eigenvalue of eigenfunction e−i2π f x . On top of this, the eigenfunctions of
the graph Laplacian and the complex exponential share similar properties over the respective
domains. As the graph Laplacian is a symmetric operator, for the Courant-Fisher theorem we
have:

λ̃1 = min
u∈R|V|
||u||2=1

uT ∆̃u; (2.16)

λ̃k = min
u∈R|V|
||u||2=1

u⊥span{φ̃1,...,φ̃k−1}

uT ∆̃u;

4Here we use the normalized Laplacian for the definition of a Graph Fourier Transform as it simplifies introducing
follow up works. The combinatorial graph Laplacian could be used as well.

17 2.2 Convolution and graph-structured data

Figure 2.3. The first four eigenvectors of the graph Laplacian (visualized via a heat map)
in increasing order of associated eigenvalue for the provided graph. The higher the value
of λ, the lower the smoothness of the eigenvector (picture from [43]).

where uT ∆̃u=
∑

(i, j)∈E ai, j(
uip

di
− u jp

d j
)2 is the so-called Dirichlet energy5 and φ̃k is the minimizer

of the k-th problem. The eigenfunctions of ∆̃ thus correspond to the smoothest set of orthonor-
mal functions that we can define over V, where smoothness is defined in terms of Dirichlet
energy. Each eigenvalue λ̃k corresponds to the Dirichlet energy of the associated eigenvector
φ̃k and thus provides a measure of how rapidly φ̃k changes over V. In Euclidean domains,
two different complex exponential are orthogonal if associated to different frequencies6 and
the frequency f / the angular frequency 2π f provides a measure of how "variable" e−i2π f x is.
Figure 2.3 depicts the first four eigenfunctions of the graph Laplacian of the Minnesota road
network to provide an example of this set of functions.

Spectral convolution. Provided how to extend the Fourier Transform to graphs, convolution
on G can then be defined in the spectral domain per analogy with the Fourier Convolution
Theorem:

x̃= Φ̃diag(ĥ)Φ̃T
x; (2.17)

where ĥ is the vector of spectral coefficients of the filter we want to realize. Graph Convolutional
layers implemented with (2.17) suffer however of a series of issues. First of all, the number
of parameters required by the model is equal to the number of vertices of the provided graph,
which could lead to overfitting. To provide an example of this, consider for instance a situation
where one is trying to solve a node-wise prediction problem with labels provided only for some
nodes of a graph. Provided a generic signal x defined over V with full spectrum (i.e. | x̂ i | >
0∀i), the convolutional layer could simply learn a set of coefficients ĥ = ŷ/x̂, where ŷ is the
spectrum of any signal showing the correct value on the given set of target nodes. As there are
many signals y showing the correct value on the labeled vertices, it is easy to end up with poor
generalization over the remaining nodes, and thus with poor inference performance.

A second second issue that affects equation (2.17) concerns the computational complexity
of the approach. As matrix Φ̃ is a dense matrix and no FFT algorithm is available for graphs,
the computational complexity of the GFT (Φ̃

T
x) and IGFT (Φ̃x̂) is quadratic in the number of

vertices. This in turn limits the scalability of a GCNN with layers implemented as per (2.17),
thus making it hard to apply such approaches to large graphs.

5Please note, in the case of the combinatorial Laplacian, the Dirichlet energy simplifies to: uT∆u=
∑

(i, j)∈E ai, j(ui−
u j)2.

6In the discrete case for two signals of N values: < e−i2πn/N x , e−i2πm/N x >=
∑N−1

x=0 e−i2π(n−m)/N x which is equal to
0 for n ̸= m and equal to N for n= m (n ∈ Z, m ∈ Z).

18 2.2 Convolution and graph-structured data

Finally, filters implemented as defined in (2.17) do not generalize well across graphs, since
they depend on the specific eigendecomposition of the Laplace operator used for training. A
typical example that is generally brought forward to explain this issue is the one of a filter
trained on given graph G, which shows a Laplacian eigenvalue λ̄ with geometric multiplicity
larger than 1. At inference time, even if we were using the model to process signals defined
on the very same graph G, unless the same exact eigendecomposition of ∆̃ was provided, for
eigenvalue λ̄ we could easily end up with a different set of eigenvectors that span the same
eigenspace. This, in turn, could change the behavior of the GFT / IGFT, which would naturally
affect the behavior of the filter on the given domain [43].

Spectral filters with splines. In order to reduce the amount of parameters required by the
model, Bruna et al. [46] (and subsequently Henaff at al. [117]) proposed to parametrize
the spectral coefficients of ĥ via cubic splines defined over the eigenvalues of ∆̃. While this
potentially greatly reduces the number of parameters to learn and favors generalization across
graphs (as the response of a cubic spline can be approximated with a sufficiently high order
polynomial, which produces transferable filters across graphs - see next paragraph), such an
approach still requires O(|V|2) operations due to the explicit GFT and IGFT.

ChebNet. To overcome all the aforementioned problems, Defferrard et al. [72] proposed to
replace the cubic splines introduced in [46, 117] with Chebyshev polynomials applied over the
eigenvalues of the graph Laplacian. In formula:

x̃= Φ̃

�

K
∑

k=0

ωk Tk(Λ̃− I)

�

Φ̃
T
x; (2.18)

with Tk(.) the Chebyshev polynomial of degree k defined as T0(x) = 1, T1(x) = x and Tk(x) =
2x Tk−1(x)−Tk−2(x). Interestingly, as Φ̃Tk(Λ̃−I)Φ̃T = Tk(Φ̃(Λ̃−I)Φ̃T) = Tk(∆̃−I) = Tk(−D−0.5AD−0.5),
equation (2.18) can be written as:

x̃= Φ̃

�

K
∑

k=0

ωk Tk(Λ̃− I)

�

Φ̃
T
x=

K
∑

k=0

ωk Tk(−D−0.5AD−0.5)x; (2.19)

which doesn’t require any form of eigen-decomposition and boils down to a series of sparse-
dense matrix multiplications between the shifted graph Laplacian (i.e. the normalized ad-
jacency matrix) and the input signal. While the authors do not describe in their paper the
rationale behind shifting the Laplace operator with the identity matrix, a good reason for
using such shift is to avoid possible numerical instabilities that might derive from explod-
ing feature values, and exploding gradients7 [138]. Thanks to efficient routines, equation
(2.19) shows a complexity equal to just O(K |E |), which is significantly smaller than O(|V|2)
on sparse graphs. On top of this, filters are transferable across graphs. As it was shown in
[154, 134], polynomial filters g(∆̃) are stable stable under perturbations of the Laplace opera-
tor (i.e. ∥g(∆̃)− g(∆̃′)∥2 ≤O(∥∆̃− ∆̃′∥2)), and filters applied over similar graphs yield similar
responses.

19 2.2 Convolution and graph-structured data

0 1 2 3 4

Figure 2.4. Pictorial representation of a directed path graph describing a 1D grid, with each
node represented by its coordinate value. Walking to the left/right in the graph corresponds
with moving towards the left/right in the grid.

Spatial Graph Convolutional Neural Networks

An alternative way of defining convolution on graphs is to work directly on the nodes and
edges of a graph, generalizing the notion of shift that we naturally have in Euclidean domains.
In this direction, assuming a filter that is symmetric around the origin for the sake of generality,
equation (2.2) defining convolution (in space) over grids can be rewritten as:

g[t] =
⌊K/2⌋
∑

k=−⌊K/2⌋

(τk f)[t]h[k]; (2.20)

where τk(.) implements a shift operator (i.e. (τk f)[t] = f [t − k]). The convolution operation
can thus be interpreted as nothing more than a linear combination of shifted versions of input
f [.], where each (τk f)[.] receives a coefficient h[k] that depends on the magnitude and direc-
tion of the shift. Taking for simplicity a 1D signal defined over a grid and interpreting the domain
as a directed path graph (Figure 2.4) with adjacency matrix Ǎ defined as ǎi j = 1 ⇐⇒ j = i−1
and 0 otherwise (namely ǎi j = 1 if and only if i follows j in the grid), then equation (2.20) can
be rewritten as:

g[t] =
⌊K/2⌋
∑

k=0

(Ǎkf)[t]h[k] +
⌊K/2⌋
∑

k=0

�

(ǍT
�k

f)[t]h[−k]; (2.21)

where matrices Ǎ and ǍT operate in this scenario as two different shift operators (which shift the
signal towards the right and the left respectively) and their exponent defines the magnitude of
the shift. As this specific formulation is defined just in terms of powers of the adjacency matrix,
we can think to apply it to any form of directed graph, where the operators Ǎk and (ǍT)k shifts
to each node in the graph the values of the input signal that are available on nodes k steps
apart. More generally, if no specific direction is provided, i.e. if the provided signal is defined
on an undirected graph, equation (2.21) can be rewritten as:

g[t] =
K−1
∑

k=0

(Akf)[x]h[t]; (2.22)

where A is the undirected adjacency matrix, which operates in this case as a generalized shift
operator [197]. As (Akf)i =

∑

j∈N (k)
i

ak
i, j f j is a linear combination of signal values available in the

k-hop neighborhood of node i (where each neighbor j of i receives a weight equal to the number
of walks of length k connecting i to j), equation (2.22) can be understood as nothing more than
a function of neighborhood descriptors that depicts the behavior of f in the surroundings of i.
At a high level, this is the fundamental idea behind spatial GCNNs, where convolution can be

7As the eigenvalues of ∆̃ lies in the range [0, 2], Tk(∆̃)x can show large values when x aligns with some of the
eigenvectors of ∆̃ associated with eigenvalues larger than 1.

20 2.2 Convolution and graph-structured data

defined as a function of signals that are exchanged and aggregated among neighboring nodes
dependently on the relationship (e.g. distance between nodes, number of walks of a specific
length, . . .) that exists among them.

ChebNet as a spatial approach. From this perspective, it is interesting to re-analyze the
work proposed by Defferrard et al. [72]. While we described ChebNet in the previous sub-
section as a spectral solution (which is the style chosen by the authors for presenting their
work), equation (2.19) can also be interpreted from a spatial stand point. Indeed, a Chebyshev
polynomial Tk(∆̃− I) of degree k simply corresponds to a linear combination of powers of the
normalized adjacency matrix, which (as described above) shifts and aggregates signals from
nodes that are k steps apart. The approach proposed in [72] can thus be intended as a spatial
generalization of convolution for graph structured data that enjoys a spectral interpretation as
well (and viceversa).

GCN. Building on top of the spatial interpretation of equation (2.19), Kipf & Welling [138]
introduced a simplified version of ChebNet, which further limits the amount of parameters
required by the filters. In particular, the authors proposed to limit the Chebyshev expansion to
a degree d = 1, and to impose that the coefficients of the polynomials with degree 0 and 1 were
just the same but with opposite sign. The convolutional layer obtained in [138] thus had the
form:

x̃=ω+D−0.5AD−0.5xω=
�

I+D−0.5AD−0.5
�

xω. (2.23)

As it was the case for ChebNet, since matrix
�

I+D−0.5AD−0.5
�

has eigenvalues in [0,2], re-
peated applications of this convolutional layer could lead to features with very large absolute
values, which in turn could result in exploding gradients during training and numerical insta-
bilities. To avoid this issue, Kipf & Welling proposed to combine the identity matrix and the
adjacency matrix before the normalization took place. This re-normalization trick preserves the
eigenvalues of the shift operator in the range [−1, 1] as matrix Ā= I+A is nothing more than the
adjacency matrix of a new graph where a self-loop was added at each node. The convolutional
layer obtained using Ā for diffusion has now the form:

x̃= D̄−0.5ĀD̄−0.5xω; (2.24)

with D̄ = diag(
∑

j Ā1, j , . . . ,
∑

j Ā|V|, j). Thanks to the particularly small amount of parameters
required by this approach and the types of filters (2.24) can implement (i.e. low pass filters8),
the solution proposed in [138] is well suited for learning on homophilic domains (where similar
nodes tend to connect to each other and high frequencies are mostly associated with noise)
with low amount of labeled data. It appeared for this, as the first GCNN able to achieve good
success for transductive semi-supervised learning tasks on citation networks with extremely
small labelled sets.

8Wu et al. [263] observed how adding self-loops to the adjacency matrix shrinks its spectrum (Theorem 1 of their
paper) and makes only the eigenvalues associated with low frequencies to survive after several applications of the
operator.

21 2.2 Convolution and graph-structured data

Model name Message m j→i Update function

Spectral GCNN ([46])
�

Φdiag(h̃)ΦT
�

i j x j σ(
∑

j∈V m j→i)

ChebNet ([72])
∑K

k=0 Tk(∆− I)i j x jωk σ(
∑

j∈N (K)
i

m j→i)

GCN ([138])
�

Āi j/
q

d̄i d̄ j

�

x j σ(
∑

j∈Ni
m j→iω)

GraphSAGE ([109])
�

Āi j/d̄i

�

x j σ(x iω0 +
∑

j∈Ni
m j→iω1)

S-GCN ([263])
�

Āi j/
q

d̄i d̄ j

�

x j

∑

j∈Ni
m j→iω

Table 2.1. Various GCNNs implemented with the message passing mechanism. We focused
on layers receiving 1D signal as input and producing a 1D signal as output for simplicity.
σ(.) is a non-linearity and N (K)i is the K-hop neighborhood of node i. For GraphSAGE we
use summation to implement the AGGREGATE(.) function.

GraphSAGE. In a follow up work, Hamilton et al. [109] additionally showed how the con-
struction proposed by Kipf & Welling (and similar variations) could also be extended to pre-
diction problems defined on large graphs via the introduction of a sampling operation prior
aggregation. In short, by sampling the neighbors of a target node before convolution takes
place, one can limit the computational complexity of a graph convolutional layer to a fixed
O(|V|Sl) where Sl is the number of neighbors sampled for each node at layer l ∈ {1, . . . , L}. In
formula, a graph convolutional layer can be defined as:

x̃ i = x iω0 +AGGREGATE(x j | j ∈N
(S)
i)ω1; (2.25)

where N (S)i is the sampled 1-hop neighborhood of node i at the current layer and AGGRE-
GATE(.) is an aggregation operation such as mean, max or a Recurrent Neural Network such as
LSTM [119]. In the case of RNNs, as the model processes the provided input data in a sequen-
tial manner, the authors in [109] used random permutations of the neighbors of each node to
push the overall architecture to learn permutation invariant aggregation functions.

It should be noted that, while the sampling procedure introduced in [109] does allow to split
the processing of an entire graph in smaller independent batches that require lower computation
for a single forward pass, the overall number of operations required to process the entire domain
increases from O(|E |L) to a O(|V|

∏L
l=1 Sl) [57]. This is due to the exponential number of

neighbors that are required for producing the target nodes’ embeddings over L different layers,
and to the fact that, at each layer l, neighbors are sampled independently for each node whose
embedding is required at layer l+1. Possible solutions to this problem entail sampling vertices
from the whole graph in each Neural Network’s layer (rather than independently sampling
neighbors of previously selected nodes) [53], processing partitions of the input domain to avoid
sampling all together [57, 277], or realizing diffusion only at pre-processing time to reduce the
GCNN to a simple MLP (Chapter 6).

MPNNs. In the previous paragraphs we described how to generalize the convolution operator
from a signal processing perspective (i.e. in terms of generalizations of the shift operator). A
slightly different view was provided in [99], where the authors proposed a general formalism
for implementing GCNNs that is based on the idea of message passing. A general graph con-
volutional layer can be seen as the composition of two different functions: a message function

22 2.2 Convolution and graph-structured data

M(.) that determines the information that should be exchanged from one node to its neigh-
bors, and an update function U(.) that refines the feature of the target node once the exchange
of information took place. In formula:

m j→i = M(xi ,x j ,ei j); x̃i = U(xi ,□ j∈Ni
m j→i); (2.26)

where m j→i is the message sent from neighbor j to node i, ei j are features defined over the
(possibly directed) edge going from j to i and □ j∈Ni

is any permutation invariant operator9. As
equation (2.26) operates only on the 1-hop neighborhood of a target node, multiple message
passing layers are typically stacked on top of each other to allow information to spread in the
graph beyond 1-hop neighborhoods. Thanks to the very flexible nature of this particular frame-
work, many GCNNs can be seen as a special case of the work of [99] where suitable message,
aggregation and update functions were selected (Table 2.1). As a result of this generality, the
message passing formalism is probably today the most common way of thinking to GCNNs in
the GDL community10.

9In [99] the authors used summation to aggregate messages coming from the neighbors of the target node. For the
sake of generality, equation (2.26) lists the construction of [259] where summation is replaced with any permutation
invariant aggregation operator (e.g. mean, max, . . .).

10For the sake of clarity, we would like to point out that, because of the broad class of functions equation (2.26)
can realize, the message passing formalism as defined in this section actually admits implementations that, strictly
speaking, do not generalize the convolution operation if applied over a grid (e.g. in the case where □ j∈Ni

is the max
pooling operation). As a result of this, many architectures implementing a layer of the form (2.26) are often referred
to as Graph Neural Networks (GNNs) rather than GCNNs in the literature. In this document we will use the term graph
convolutional layer in a broad sense (i.e. with this including all variations of message passing), and as such we will also
use the terms GCNN and GNN interchangeably.

Chapter 3

Mixture Model Neural Networks

This chapter is based on "Federico Monti∗, Davide Boscaini∗, Jonathan Masci, Emanuele Rodola,
Jan Svoboda, and Michael M Bronstein. Geometric deep learning on graphs and manifolds using
mixture model cnns. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5115–5124, 2017" (∗ denotes equal contribution).

3.1 Methodology

Deep Learning on Manifolds. While in this document we focused so far on how convolution
can be generalized to graphs (which was the main focus of the author), a related line of work in
the GDL community concerns how convolution can be extended to signals defined on manifolds
(e.g. 3D shapes). Let X be a d-dimensional manifold, possibly with boundary ∂X . Around
point x ∈ X , the manifold is homeomorphic to a d-dimensional Euclidean space referred to as
the tangent space and denoted by TxX . An inner product 〈·, ·〉TxX : TxX × TxX → R depending
smoothly on x is called the Riemannian metric. In shape analysis, 3D shapes are modeled as 2-
dimensional manifolds (surfaces), representing the boundaries of 3D volumes. In [174], Masci
et al. introduced a generalization of CNNs (Geodesic CNN - herein referred to as GeoCNNs)
on 2-dimensional manifolds, based on the definition of a local charting procedure in geodesic
polar coordinates [142]. Such a construction, named the patch operator

(D(x) f)(ρ,θ) =

∫

X
wρ,θ (x , y) f (y)d y (3.1)

maps the values of the function f : X → RQ in a neighborhood of point x ∈ X into the local polar
coordinates ρ,θ via an aggregation procedure. Here d y denotes the area element induced by
the Riemannian metric, and wρ,θ (x , y) is the activation of a weighting function (here computed
for neighbor y of x) localized around ρ,θ (see examples in Figure 3.1). D(x) f can be regarded
as a patch on the manifold and the geodesic convolution operator introduced by the authors

(f ⋆ g)(x) = max
∆θ∈[0,2π)

∫ 2π

0

∫ ρmax

0

g(ρ,θ +∆θ)(D(x) f)(ρ,θ)dρdθ (3.2)

can be thought of as matching a (learnable) template g(ρ,θ) with the extracted patch at each
point, where the maximum is taken over all possible rotations of the template in order to resolve
the origin ambiguity in the angular coordinate.

23

24 3.1 Methodology

Figure 3.1. Left: intrinsic local polar coordinates ρ,θ . Right: patch operator weighting
functions wi(ρ,θ) used in different generalizations of convolution on manifolds.

In a subsequent work, Boscaini et al. [38] extended the work proposed in [174] using
anisotropic heat kernels hαθ t(x , y) (which describe the amount of heat that is transferred from
point x to point y at time t) as possible weighting functions that can be used for the construction
of the patch operator (ACNN, Figure 3.1). The main novelty of this work was to consider the
direction of maximum curvature of the manifold at x as a meaningful reference to orientate the
patch operator. θ in the anisotropic heat kernel is indeed an angle in the tangent plane w.r.t.
such direction, while α describes the elongation of the kernel (i.e. the degree of anisotropy
along the direction defined by θ). Defining a canonical orientation of the kernel removed the
need of max pooling the filter activations over all possible orientations of the filter, which in
turn produced patch operators that were more robust and more efficient to compute.

MoNet. The main contribution of our work is a generic spatial-domain framework for deep
learning on non-Euclidean domains which can be used for processing both signals defined on
graphs and manifolds. We use x to denote, depending on context, a point on a manifold or
a vertex of a graph, and consider points y ∈ Nx in the neighborhood of x . With each such
y , we associate a d-dimensional vector of pseudo-coordinates u(x , y). In these coordinates, we
define a weighting function (kernel) wΘ(u) = (w1(u), . . . , wJ (u)), which is parametrized by
some learnable parameters Θ. The patch operator can therefore be written in the following
general form:

Dj(x) f =
∑

y∈Nx

w j(u(x , y)) f y , j = 1, . . . , J ; (3.3)

where the summation should be interpreted as an integral in the case we deal with a continuous
manifold, and J represents the dimensionality of the extracted patch (namely the amount of
weighting functions that define kernel wΘ). A spatial generalization of convolution on non-
Euclidean domains is then given by:

(f ⋆ g)(x) =
J
∑

j=1

g j Dj(x) f . (3.4)

The two key choices in our construction are the pseudo-coordinates u and the weight func-
tions w(u). Table 3.1 shows that other deep learning methods (including classic CNNs on
Euclidean domains, GCN on graphs and GeoCNN/ACNN on manifolds) can be obtained as par-
ticular settings of our framework with appropriate definition of u and w(u). GeoCNN and ACNN
boil down in particular to using Gaussian kernels on local polar geodesic coordinates ρ,θ on

25 3.1 Methodology

Table 3.1. Several GDL methods as a particular setting of the MoNet framework. x denotes
the reference point (center of the patch) and y a point within the patch. e denotes Euclidean
coordinates on a regular grid. ᾱ, σ̄ρ, σ̄θ and ū j , θ̄ j , j = 1, . . . , J denote fixed parameters of
the weight functions. r(x , y) = (cos(θ (x , y)), sin(θ (x , y)). Rθ̄ j

is a rotation matrix defined
by angle θ̄ j . w is a vector of learnable weights.

Method Pseudo-coordinates u(x , y) Weight function w j(u)

CNN Euclidean e(y)− e(x) δ(u− ū j)

GeoCNN Polar geodesic ρ(x , y),θ (x , y) exp(− 1
2 (u− ū j)T

�

σ̄2
ρ

σ̄2
θ

�−1
(u− ū j))

ACNN Polar geodesic ρ(x , y) · r(x , y) exp(− 1
2 uT Rθ̄ j

�

ᾱ
1

�

RT
θ̄ j

u)

GCN Vertex degree deg(x), deg(y)
�

1− |1− 1p
u1
|
��

1− |1− 1p
u2
|
�

GAT Node Features x(y),x(x) exp
�

(x(y)||x(x))T w
�

a manifold, and GCN can be interpreted as applying a triangular kernel on pseudo-coordinates
given by the degree of the graph vertices. Differently from previous works, in MoNet rather
than using fixed handcrafted weight functions (see [39, 174]) we consider parametric kernels
with learnable parameters. In particular, a convenient choice is:

w j(u) = e−
1
2 (u−µ j)

TΣ−1
j (u−µ j); (3.5)

where Σ j and µ j are learnable d×d and d×1 covariance matrix and mean vector of a Gaussian
kernel, respectively. Equations (3.3)–(3.4) can in this case be interpreted as a gaussian mixture
model (GMM), where for a specific neighbor y a linear combination of J different gaussians
(evaluated in u(x , y)) is computed:

(f ⋆ g)(x) =
J
∑

j=1

g j Dj(x) f

=
J
∑

j=1

g j

∑

y∈Nx

w j(u(x , y)) f y

!

=
∑

y∈Nx

J
∑

j=1

g j e−
1
2 (u(x ,y)−µ j)

TΣ−1
j (u(x ,y)−µ j)

!

︸ ︷︷ ︸

Gaussian Mixture Model

f y .

(3.6)

From a different perspective, as our parametric kernel function allow the model to directly
learn which neighbors should be used in the implementation of the filters dependently on the
positions that these assume in the pseudo-coordinate space (thus effectively implementing a
form of attention), our work can also be interpreted as the first attention-based [251] Graph
Convolutional Neural Network that was ever introduced, and laid the foundations for subse-
quent works in this direction (Section 3.3). Veličković et al. [252] showed in particular how
using the features of the nodes as pseduo-coordinates and replacing the gaussian kernel with a
linear layer followed by a softmax activation function (Graph Attention Networks), even better

26 3.2 Results

performance than the ones we originally achieved in our paper could be obtained for document
classification tasks, while essentially retaining the same construction (Table 3.2).

3.2 Results

Shape correspondence. The first application of MoNet that we introduce is learning dense
intrinsic correspondence between collections of 3D shapes represented as discrete manifolds.
Correspondence between shapes can be casted as a labelling problem, where one tries to label
each vertex of a given query shape X with the index of a corresponding point on some reference
shape Y [217, 174, 38]. Let m denote the number of vertices in Y. For a point x on a query
shape, the last layer of a network produces an m-dimensional output that is interpreted as a
probability distribution on Y (the probability of x mapped to y). Learning is typically done
minimizing the standard log loss [38].

In our experiments, we reproduced verbatim the setting of [174, 38] on the FAUST hu-
mans dataset [37], comparing to the methods reported therein. The dataset consists of 100
meshes representing 10 different poses for 10 different subjects with exact ground-truth cor-
respondence. Each shape was represented as a mesh with 6890 vertices; the first subject in
first pose was used as the reference. For all the shapes, point-wise 544-dimensional SHOT de-
scriptors (local histogram of normal vectors [248]) were used as input data. As our goal is to
highlight the increased performance our new patch operator allows to achieve with respect to
prior art, we implemented a MoNet architecture with 3 convolutional layers, replicating the
architectures presented in [174] and [38]. First 80 subjects in all the poses were used for train-
ing (800 shapes in total); the remaining 20 subjects were used for testing. The output of the
network was refined using the intrinsic Bayesian filter [254] in order to remove some local
outliers. Correspondence quality was evaluated using the Princeton benchmark [135], plotting
the percentage of matches that are at most r-geodesically distant from the groundtruth cor-
respondence on the reference shape. For comparison, we report the performance of Geodesic
CNN [174], ACNN [38], as well as blended maps [135], random forests [217] and ADD [39].
Figure 3.2 (left) depicts the evaluation results, showing that MoNet significantly outperforms
the competing approaches. In particular, close to 90% of points have zero error, and for 99% of
the points the error is below 4cm. To get a better idea of the correspondence quality, Figure 3.3
shows the point-wise geodesic correspondence error of our method. Figure 3.4 visualizes the
obtained correspondence using texture transfer.

Range maps. On top of the above, we repeated the shape correspondence experiment on
range maps synthetically generated from FAUST meshes. For each subject and pose, we pro-
duced 10 rangemaps in 100×180 resolution, covering shape rotations around the z-axis with
increments of 36 degrees (total of 1,000 range maps), keeping the groundtruth correspondence.
We used MoNet architecture with 3 convolutional layers and local SHOT descriptors as input
data. Training and testing set splitting was done as previously. Figure 3.2 (right) shows the
quality of correspondence computed using the Princeton protocol. For comparison, we show
the performance of a standard Euclidean CNN in equivalent architecture (3 convolutional lay-
ers) applied on raw depth values and on SHOT descriptors. Our approach clearly shows a supe-
rior performance. Figure 3.5 shows the point-wise geodesic correspondence error. Figure 3.6
shows a qualitative visualization of correspondence using similar color code for corresponding
vertices.

27 3.2 Results

0 4 8 12 16 20

Geodesic error (cm)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Geodesic error (% diameter)

%
co

rr
es

po
nd

en
ce

s

BIM
RF
ADD
GeoCNN
ACNN
MoNet

0 10 20 30 40

Geodesic error (cm)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Geodesic error (% diameter)

%
co

rr
es

po
nd

en
ce

s

CNN on depth
CNN on SHOT
MoNet

Figure 3.2. (Left) Shape correspondence quality obtained by different methods on the
FAUST humans dataset. (Right) Shape correspondence quality obtained by different meth-
ods on FAUST range maps. The raw performance is shown as dotted curve in both plots.

0

7.5%

Figure 3.3. Pointwise error (geodesic distance from groundtruth) of MoNet on the FAUST
humans dataset. For visualization clarity, the error values are saturated at 7.5% of the
geodesic diameter, which corresponds to approximately 15 cm. Hot colors represent large
errors.

Figure 3.4. Examples of correspondence on the FAUST humans dataset obtained by the
proposed MoNet method. Shown is the texture transferred from the leftmost reference
shape to different subjects in different poses by means of our correspondence.

Document Classification. Moving our attention to graphs, one of the most classic applications
of GCNNs in the literature is the task of document classification in citation networks [270,
138, 184, 252]. Provided a graph G = (V,E) where vertices are documents and edges are
citations among them, the problem is to predict the category yi of a document i based on i’s
text and the text of i’s similar documents (which can be described as the documents that fall in a

28 3.2 Results

0

7.5%

Figure 3.5. Pointwise error (geodesic distance from groundtruth) of MoNet on FAUST
range maps. For visualization clarity, the error values are saturated at 7.5% of the geodesic
diameter, which corresponds to approximately 15 cm. Hot colors represent large errors.

Figure 3.6. Visualization of correspondence on FAUST range maps as color code (corre-
sponding points are shown in the same color). Full reference shape is shown on the left.
Bottom row show examples of additional shapes from SCAPE and TOSCA datasets.

Method Cora PubMed

ManiReg [25] 59.5% 70.7%
SemiEmb [261] 59.0% 71.1%
LP [283] 68.0% 63.0%
DeepWalk [202] 67.2% 65.3%
Planetoid [270] 75.7% 77.2%

GCN [138] 81.6 ± 0.4% 78.7 ± 0.3%
MoNet [184] 81.7 ± 0.5% 78.8 ± 0.4%
GAT [252] 83.0 ± 0.7% 79.0 ± 0.3%

Table 3.2. Vertex classification accuracy on the Cora and PubMed datasets following the
split suggested in [270]. GCNNs are listed at the bottom of the table. In black / red /
blue performance of the 1st / 2nd / 3rd best model on a given dataset.

neighborhood of i of radius r, N (r)i). To contain the complexity of the problem, the text of each
document is typically described with a fixed length representation xi , which can be interpreted

29 3.3 Discussion

as signals defined on the vertices of G. A typical choice for xi is a bag-of-words representation
[270], where each document is represented as a multi-set of its own words. Each entry k of xi

corresponds to a word and (excluding any possible normalization) the value x i,k matches the
number of times that word k appears in i.

Training a GCNN for document classification in citation networks works slightly differently
dependently on the setting of the problem. In the transductive learning setting (which has
historically been the most common scenario for evaluating GCNNs), all documents of G (with
their features) are available at training time but only a fraction of them have labels that we can
use for training. In the inductive learning setting, test samples are not available at training time
and are added (together with their features and edges) to G only when inference is performed
[109]. With our MoNet architecture we focused only on the transductive learning setting. Θ is
the set of parameters of the chosen GCNN and it is optimized by minimizing (through gradient
descent) a classic supervised loss (e.g. log loss) on the subset of labelled nodes available at
training time.

Table 3.2 shows performance (measured as accuracy on the test set) of the proposed MoNet
architecture when compared to previous approaches (plus the aforementioned Graph Attention
Network, which followed our work) on the CORA and PubMed citation networks, using the so-
called planetoid split of these datasets [270]. The training sets consisted of 20 samples per class
(i.e. 140 training samples for CORA and 60 for PubMed); the validation and test sets consisted
of 500 and 1000 disjoint vertices. For MoNet, we used the degrees of the nodes as the input
pseudo-coordinates u(x , y) = (1p

deg(x)
, 1p

deg(y)
)T ; these coordinates underwent an additional

transformation in the form of a fully-connected neural network layer ũ(x , y) = tanh(Wu(x , y)+
b) before being fed to the Gaussian kernel, where the r × 2 matrix W and r × 1 vector b were
also learned (we used r = 2 for Cora and r = 3 for PubMed). We trained MoNet with L2-
regularization to contain overfitting (regularization coefficient γ = 10−2 and γ = 5 × 10−2

for Cora and PubMed, respectively). Adam [137] was used for training the model on both
datasets, and the log loss was picked as our training objective. As we can see, our Mixture
Model Neural Network achieves comparable performance to the solution proposed by Kipf &
Welling on both datasets, learning to reproduce comparable filters from the provided pseudo-
coordinates. Additionally, using node-features in the attention mechanism (as highlighted in
[252]) appears beneficial for further increasing performance.

3.3 Discussion

The attentive reader might have noticed that the original paper describing our MoNet frame-
work was presented back in 2017, and the state of the art naturally evolved since then (e.g.
see Table 3.3 for the performance of a series of more recent methods on the Cora and PubMed
datasets). Following up from our own work, several other researchers dedicated their efforts
to develop new variants of attention-based models that could allow to maximize performance
on a given prediction task. In this direction, two main classes of architectures can be generally
identified in the literature today: attention-based local GCNNs (which propagate information
among different nodes following the connectivity of the provided domain, and use a form of
attention to condition the diffusion process) and Graph Transformer Networks (which decouple
the computational graph from the input one by using positional / structural encodings and a
global attention mechanism).

30 3.3 Discussion

Table 3.3. Performance of multiple methods on the Planetoid split [270] of Cora and
PubMed. Results taken from [88], and complemented with the ones reported in Table 3.2,
Table 5.2 and in [54, 32, 35, 84, 95, 152]. Methods are sorted in ascending order of average
performance on Cora. In black / red / blue performance of the 1st / 2nd / 3rd best model
on a given dataset.

Method Cora PubMed

GraphSAGE [109] 78.9 ± 0.8% 77.8 ± 0.6%
S-GCN [263] 81.0 ± 0.0% 78.9 ± 0.0%
FastGCN [53] 81.4 ± 0.5% 77.6 ± 0.5%
GCN [138] 81.6 ± 0.4% 78.7 ± 0.3%
MoNet [184] 81.7 ± 0.5% 78.8 ± 0.4%
CayleyNet [153] 81.9 ± 0.7% -
MixHop [16] 81.9 ± 0.4% 80.8 ± 0.6%
G3NN [166] 82.5 ± 0.2% 77.9 ± 0.4%
GAT [252] 83.0 ± 0.7% 79.0 ± 0.3%
JKNet [267] 83.3% 79.2%
ARMA [32] 83.4 ± 0.6% 78.9 ± 0.3%
VBAT [73] 83.6 ± 0.5% 79.9 ± 0.4%
GMNN [210] 83.7% 81.8%
APPNP [97] 83.8 ± 0.3% 79.7 ± 0.3%
GraphMix [253] 83.9 ± 0.6% 81.0 ± 0.6%
AEROGNN [152] 83.9 ± 0.5% 80.59 ± 0.5%
FAGCN [35] 84.1 ± 0.5% 79.4 ± 0.3%
GraphNAS [96] 84.2 ± 1.0% 79.6 ± 0.4%
Graph U-Net [95] 84.4 ± 0.6% 79.6 ± 0.2%
DAGNN [95] 84.4 ± 0.5% 80.5 ± 0.5%
ωGAT [84] 84.8% 81.8%
GRAND [88] 85.4 ± 0.4% 82.7 ± 0.6%
GCNII [54] 85.5 ± 0.5% 80.3 ± 0.4%
ωGCN [84] 85.9% 81.1%

Attention-based local GCNNs. Broadly speaking, attention-based local GCNNs leverage an
attention mechanism to achieve one of two different goals:

1. learning how to diffuse information on a given graph by inferring the relevance of neigh-
boring nodes [184, 252, 42, 35, 84];

2. learning how information that was harvested from neighborhoods of different sizes should
be combined together to produce meaningful descriptors [123, 267, 159].

In the first category of approaches, besides the MoNet framework and GATs that we mentioned
earlier in this chapter, we find approaches such as GATv2 [42] (which fixes an issue of the atten-
tion layer used in GAT that effectively made the ranking of attention scores to be independent
on the features of the query node), FAGCN [35] (which uses an attention mechanism capable of
producing scores in [−1, 1], in order to leverage both the information of similar and dissimilar
nodes in the construction of the filters), andωGAT [84] (which learns per-channel smoothing /

31 3.3 Discussion

sharpening operators, while requiring only one projection over a single attention matrix). The
second category of approaches addresses instead an orthogonal direction from what discussed
in the previous sections. More in detail, in [267] it was observed how the influence distribu-
tion1 of a given node i changes for the same number of diffusion steps dependently on the
structure of i’s neighborhood. For example, if i is a node situated at the core of a given com-
munity, only few diffusion steps could be needed to reach most of the nodes belonging to such
community. If on the other hand, i lies on the boundary of the community and it is connected
to it through a tree-like neighborhood with bounded (and small) tree-width, more iterations
could be required to reach a comparable number of community nodes [267]. With this idea in
mind, Xu et al. defined Jumping Knowledge Networks (JK-Nets) [267], a family of GCNNs with
convolutional layers that resembles the skip-connection module introduced in DenseNets [123].
The main intent of the paper was in this case to realize a GCNN with an adaptable radius of
operation, that could be directly inferred dependently on the target node. To do so, JK-Nets
extract a series of neighborhood descriptors with different levels of locality (via a sequence of
convolutional layers that are stacked on top of each other), and learn how to combine them
via a layer aggregation mechanism. An attention layer was, in this case, one of the aggregation
mechanisms used in [267] to combine representations extracted at different scales. In a follow
up work, Liu et al. further introduced Deep Adaptive Graph Neural Network (DAGNN) [159],
a particular version of the framework presented in [267] (and similar in spirit to GPR-GNN
[58] that we will discuss in Section 5.4), which decouples feature transformation from feature
propagation, and achieves (in virtue of its parameter efficiency) good performance even when
many diffusion steps are realized as part of the model.

Recently, there has also been some effort to unify in a single framework both the edge
attention mechanism introduced in [184, 252] and the hop attention approach used in [267,
159]. In [152], Lee at al. introduced AERO-GNN, an attention based GCNN that learns to
infer both the relevance of a given neighbor to a target node, as well as the importance of a
particular diffusion step, from the combined node embeddings of the previous layers. Thanks
to the combination of both approaches, AERO-GNN outperforms previously presented GCNNs,
in the authors’ experimental evaluation, on a variety of different datasets.

Graph Transformers. An alternative class of approaches that gained popularity in the last
years is represented by Graph Transformer Networks (GTs) [82, 271, 211, 175, 193]. Inspired
from the success that Transformers achieved in Natural Language Processing [251], Graph
Transformers use positional (or structural) encodings to describe the position of a node2 in
the graph (or the structure that surrounds this), and apply an attention mechanism between
each pair of nodes to let information flow in the domain. Inspired from Spectral Clustering,
eigenvectors of the graph Laplacian are for instance a popular choice of positional encodings;
the degree of nodes that we used in our MoNet framework can instead be understood as a form
of structural encoding. This specific construction decouples the computational graph of the
model from the one of the input graph, and allows to avoid issues such as under-reaching [23]
and (potentially) over-squashing [20] that affect traditional GCNNs.

Under-reaching is generally defined as the inability of a model to reach information that is
too far from a given target node. For GCNNs with 1-hop filters and L layers, the model can’t

1The influence distribution of a node i can be informally defined as a measure depicting how much a change in the
input features of neighbor j affects the final representation of i for a given model [267].

2Please note, for the sake of consistency with what described previously in this chapter, we consider as tokens in
input to the Transformer architectures only nodes. Edges and sub-graphs can however be used as tokens as well [193].

32 3.3 Discussion

for instance reach information which is further than L hops apart. Graph Tansformer Networks
do not suffer from such issue, as every node can attend to any other.

Over-squashing is defined instead as the collapse of information coming from exponentially
many nodes in a finite feature vector. This phenomenon generally affects GCNNs, as a model
with L layers and 1-hop filters aggregates information coming from up to O(d L

max) neighbors, in
order to make predictions (dmax is here the maximum node-degree in the given graph). While
Graph Transformers do not provide a solution that allows to effectively aggregate information
coming from large amounts of nodes in feature vectors of limited size, in problems exhibiting
long-range dependencies [20, 83] they allow the model to focus only on the (hopefully) few
distant neighbors that are relevant for a target node, and thus reduce the amount of information
that needs to be aggregated together [193].

Despite the nice theoretical properties showed by Graph Transformers, it should be noted
that such architectures are not necessarily the best choice for all prediction problems. Indeed,
while the global attention mechanism allows to access information located in any possible re-
gion of the graph, it also removes the local inductive bias of traditional GCNNs, which can prove
beneficial to achieve good generalization (e.g. in social networks, it is reasonable to assume that
only the information localized in a small neighborhood of a given user is relevant for predicting
their interests). On top of this, including edge features in the node refinement process requires
a materialization of the full attention matrix (as linear transformers such as the Performer [61]
cannot be used), which in turn forces a O(|V|2) time and space complexity. To overcome these
limitations and achieve a best of both world solution, hybrid (local) GCNN + GT architectures
appeared on the scene in the last few years [211, 175]. Thanks to the combination of both
approaches, such methods allow to efficiently exploit edge features in the computation of the
final node embeddings (via the local message-passing module), they provide a local inductive
bias (again thanks to the presence of local message-passing layers), and they allow to capture
long-range dependencies (via the transformer network).

Chapter 4

Recurrent Multi-Graph Convolutional
Neural Networks

This chapter is based on "Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix
completion with recurrent multi-graph neural networks. Advances in neural information process-
ing systems, 30, 2017".

4.1 Introduction

Being able to effectively recommend items of interests to users plays a major role for the suc-
cess of virtually any e-commerce (e.g. Amazon), media / entertainment provider (e.g. Netflix,
Spotify) and social media (e.g. Facebook, Twitter / X, LinkedIn). Mathematically, a recommen-
dation task can be posed as a matrix completion problem [49], where the columns and rows of
a sparse matrix X represent users and items, respectively, and matrix values represent scores
determining whether a user would like an item or not. Given a small set of known elements of
X, the goal is to fill in the rest.

In the past years, there have been several attempts to incorporate geometric structure into
matrix completion problems [164, 131, 212, 145] (e.g. in the form of regularizers aimed at
minimizing the Dirichlet energy that columns and rows of X show on users and items similarity
graphs [131]). In [185], we introduced a new multi-graph CNN architecture (MGCNN) that
generalizes the approach outlined in [72] to multiple graphs. This new architecture is able to
extract local stationary patterns from signals defined over multiple graphs (e.g. a matrix of
user-item scores defined over a user-user and an item-item similarity network) and, thanks to
the addition of a recurrent neural network, to fill in possible gaps in the input signal by learning
a suitable diffusion process.

Please note, while using GCNNs for matrix completion was a novel application of this class
of methods at the time our paper was presented, due to the core methodological innovation
of our work (i.e. the first GCNN able to process signals defined over multiple graphs, at least
to the best of our knowledge), we decided to illustrate both the method and the application
we targeted with it in this first part of the manuscript. This avoided spreading related content
over different chapters, and provides the required background for analyzing some of the results
illustrated in Chapter 5.

33

34 4.2 Methodology

4.2 Methodology

Multi-graph CNN. Provided a generic matrix X ∈ R|Vr |×|Vc |, which is defined over the vertices
of two different graphs Gr = (Vr ,Er) and Gc = (Vc ,Ec), each of these equipped with its respective
normalized Laplace operator ∆̃r = Φ̃rΛ̃rΦ̃

T
r and ∆̃c = Φ̃cΛ̃cΦ̃

T
c . Similarly to how a multi-

dimensional Fourier transform is defined in 2D (i.e. where we transform the rows of an image
first and then its columns), a bi-graph Fourier transform can be defined as:

X̂= Φ̃T
r XΦ̃c . (4.1)

As it is the case for signals defined over a single graph, convolution with a multi-graph
filter can be realized in the spectral domain simply multiplying the spectrum of matrix X with
a matrix of spectral coefficients Ŷ, and then projecting the signal back to its spatial domain:

X̃= X ⋆ Y= Φ̃r

�

X̂ ◦ Ŷ
�

Φ̃
T
c . (4.2)

As we have seen for signals defined over a single graph, parametrizing multi-graph filters
directly with spectral multipliers Ŷ yields however a number of parameters that is linear in the
number of entries of matrix X (i.e. a O(|Vr ||Vc |)), which in turn can lead to overfitting. Follow-
ing up on the work of Defferrard et al. [72], one possibility to overcome this issue is to impose
that the spectral response of our filters corresponds to a function of both the row and column
graph frequencies (i.e. Ŷk,k′ = τ(λ̃c,k, λ̃r,k′)). In particular, using Chebyshev polynomials of
degree up to p1, a spectral coefficient τΘ(λ̃c , λ̃r) can be defined as:

τΘ(λ̃c , λ̃r) =
p
∑

j, j′=0

θ j j′T j(λ̃c − 1)T j′(λ̃r − 1). (4.3)

Similarly to what it was the case for ChebNet, such filters are parametrized by a (p+1)×(p+1)
matrix of coefficients Θ = (θ j j′), which makes them independent on the size of the provided
domains. The application of a multi-graph filter of the form (4.3) to matrix X can then be
written as:

X̃=
p
∑

j, j′=0

θ j j′T j(∆̃r − I)XT j′(∆̃c − I); (4.4)

which incurs a O(|Vr ||Vc |) computational complexity. If a tensor of q′ input channels is provided
as input instead of a singular matrix, a multi-graph convolutional layer can be realized using
the parametrization of filters defined in (4.4), and applying one filter for each of the (q, q′)
output and input features of the layer:

X̃l = σ

q′
∑

l ′=1

Xl ′ ⋆ Yl l ′

!

= σ

q′
∑

l ′=1

p
∑

j, j′=0

θ j j′,l l ′T j(∆̃r − I)Xl ′T j′(∆̃c − I)

!

, l = 1, . . . , q; (4.5)

σ(.) is here a non-linearity (e.g. ReLU, tanh, sigmoid, . . .). We name such an architecture a
Multi-Graph Convolutional Neural Network (MGCNN).

1For simplicity, we use the same degree p for row- and column frequencies.

35 4.2 Methodology

X
X(t) X̃(t)

MGCNN RNN

dX(t)

X(t+1) = X(t) + dX(t)

row+column filtering

Figure 4.1. Recurrent MGCNN (RMGCNN) architecture using the full matrix completion
model and operating simultaneously on the rows and columns of the matrix X. Learning
complexity is O(|Vr ||Vc |).

W

HT
H(t) H̃(t)

W(t) W̃(t)

GCNN RNN

GCNN RNN

dH(t)

dW(t)

W(t+1) =W(t) + dW(t)

H(t+1) = H(t) + dH(t)

row filtering

column filtering

Figure 4.2. Separable Recurrent MGCNN (sRMGCNN) architecture using the factorized
matrix completion model and operating separately on the rows and columns of the factors
W, HT . Learning complexity is O(|Vr |+ |Vc |).

Separable convolution. As MGCNN layers require a O(|Vr ||Vc |) operations to implement a
convolutional filter, one may wonder whether a more efficient solution can be implemented to
more easily process significantly large matrices. A simplification of what we presented above
can be obtained considering a low-rank factorization of matrix X = WHT (which is a popular
assumption for matrix completion problems [236, 143, 164, 269, 212, 28]), and applying two
independent 1D convolutional layers on the respective graph of each factor:

w̃l =
p
∑

j=0

θ
(r)
j T j(∆̃r)wl , h̃l =

p
∑

j′=0

θ
(c)
j′ T j′(∆̃c)hl , l = 1, . . . , d. (4.6)

Here, wl ,hl denote the lth columns of factors W, H (which can be seen as signals defined
over the row and column graph of X), d ≪ min(|Vr |, |Vc |) is the number of columns of W and
H, and θ (r) = (θ (r)0 , . . . ,θ (r)p) and θ (c) = (θ (c)0 , . . . ,θ (c)p) are the parameters of the row- and
column- filters (a total of 2(p + 1) = O(1)). Application of such filters to W and H incurs only
a O(|Vr |+ |Vc |) operations, thus dramatically reducing the cost of processing the information
contained in X. As it was the case for ChebNet, convolutional layers implemented with (4.6)
take the form:

36 4.2 Methodology

Algorithm 1 (RMGCNN)

Input: matrix X(0) ∈ R|Vr |×|Vc | containing initial values

1: for t = 0 : T do
2: Apply the Multi-Graph CNN (4.5) on X(t) producing an |Vr | × |Vc | × q output X̃(t).
3: for all elements (i, j) do
4: Apply RNN to q-dim x̃(t)i j = (x̃

(t)
i j1, . . . , x̃ (t)i jq) producing incremental update d x (t)i j

5: end for
6: Update X(t+1) = X(t) + dX(t)

7: end for

Algorithm 2 (sRMGCNN)

Input: factor H(0) ∈ R|Vc |×d and factor W(0) ∈ R|Vr |×d of matrix X(0)

1: for t = 0 : T do
2: Apply the Graph CNN (4.7) on H(t) producing an |Vc | × q output H̃(t).
3: for j = 1 : |Vc | do
4: Apply RNN to q-dim h̃(t)j = (h̃

(t)
j1 , . . . , h̃(t)jq) producing incremental update dh(t)j

5: end for
6: Update H(t+1) = H(t) + dH(t)

7: Repeat steps 2-6 for W(t+1)

8: end for

w̃l = σ

q′
∑

l ′=1

p
∑

j=0

θ
(r)
j,l l ′T j(∆̃r)wl ′

!

, h̃l = σ

q′
∑

l ′=1

p
∑

j′=0

θ
(c)
j′,l l ′T j′(∆̃c)hl ′

!

, l = 1, . . . , q. (4.7)

We call such an architecture a separable MGCNN or sMGCNN.

Learnable diffusion. The last step of our approach to reconstruct missing information in X
is to feed the spatial features extracted by MGCNN or sMGCNN layers to a recurrent neural
network (RNN) implementing a diffusion process (Figure 4.1 and 4.2). Modelling matrix com-
pletion as a diffusion process appears particularly suitable for realizing an architecture that is
independent on the sparsity of the available information. In order to combine the few scores
available in a sparse input matrix, a multi-layer GCNN would require very large filters or many
layers to diffuse the score information across matrix domains. On the contrary, a diffusion-based
approach allows to reconstruct the missing information just by imposing the proper amount of
diffusion iterations. This gives the possibility to deal with extremely sparse data, without re-
quiring at the same time excessive amounts of model parameters (Table 4.1 in the experimental
section of this chapter shows some results in this direction).

For our experiments, we use the classic LSTM architecture [119], which has demonstrated
to be efficient to learn complex non-linear diffusion processes, due to its ability to keep long-
term internal states (limiting in particular the vanishing gradient problem that affects vanilla
RNNs). The input of the LSTM gate is given by the static features extracted from a cascade of
MGCNN/sMGCNN layers, which can be seen as a projection or dimensionality reduction of the
original matrix in the space of the most meaningful and representative information. The output

37 4.2 Methodology

Figure 4.3. Absolute value |τ(λ̃c , λ̃r)| of the first ten spectral filters learnt by our MGCNN
model. In each matrix, rows and columns represent frequencies λ̃r and λ̃c of the row and
column graphs, respectively.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

λ̃r , λ̃c

Fi
lt

er
R

es
po

ns
e

Figure 4.4. Absolute values |τ(λ̃c)| and |τ(λ̃r)| of the first four column (solid) and row
(dashed) spectral filters learned by our sMGCNN model.

of the LSTM module is instead a small change dX of matrix X (or dW, dH of factors W, H) that
is summed to the input matrix to reconstruct the missing information.

Algorithms 1 and 2 summarize the proposed matrix completion architectures. We refer to
the whole architecture combining MGCNN and RNN in the full matrix completion setting as Re-
current Multi-Graph CNN (RMGCNN). The factorized version with separable MGCNN and RNN
is referred to as separable RMGCNN (sRMGCNN). The complexity of Algorithm 1 scales quadrat-
ically as O(|Vr ||Vc |) due to the MGCNN layers. For large matrices, Algorithm 2 that processes
the rows and columns separately with standard GCNNs (and scales linearly as a O(|Vr |+ |Vc |))
is probably preferable, being a more efficient solution.

Training and testing. Training of the networks is performed by minimizing loss:

ℓ(Θ,σ) = ∥X(T)Θ,σ∥
2
Gr
+ ∥X(T)Θ,σ∥

2
Gc
+
µ

2
∥Ω ◦ (X(T)Θ,σ − Y)∥2F. (4.8)

Here, ∥X∥2Gr
= trace(X⊤∆̃rX) and ∥X∥2Gc

= trace(X∆̃cX
⊤) are the Dirichlet energies of X on Gr

and Gc respectively, Ω ∈ {0, 1}|Vr |×|Vc | is a matrix identifying which entries the model should
aim to infer at training time (target scores) out of the ones available in the training set (data
scores), and T denotes the number of diffusion iterations (applications of the RNN). Training

38 4.3 Results

scores have been uniformly split between data scores and target scores in our experiments to
provide a full coverage of the entire matrix to the model. At test time we initialize the input
matrix only with the considered data scores, to provide the network the same conditions it
observed at training time. We use the notation X(T)Θ,σ to emphasize that the matrix depends on
the parameters of the MGCNN (Chebyshev polynomial coefficients Θ) and those of the LSTM
(denoted by σ). In the factorized setting, we use loss:

ℓ(θ r ,θ c ,σ) = ∥W
(T)
θ r ,σ∥

2
Gr
+ ∥H(T)θ c ,σ

∥2Gc
+
µ

2
∥Ω ◦ (W(T)

θ r ,σ(H
(T)
θ c ,σ
)T − Y)∥2F; (4.9)

where θ c ,θ r are the parameters of the two GCNNs. In experiments where only one graph of
X is provided, only the Dirichlet energy of the provided graph is used in the loss function. For
the factorized model with only one graph available, the term defined over the missing graph is
simply considered as a learnable parameter of the model.

4.3 Results

Experimental setting. We closely followed the experimental setup of [212], using five stan-
dard datasets: Synthetic dataset from [131], MovieLens [180], Flixster [128], Douban [164],
and YahooMusic [81]. We used disjoint training and test sets, the presented results are reported
on test sets in all our experiments. As in [212], we evaluated MovieLens using only the first of
the 5 provided data splits. For Flixster, Douban and YahooMusic, we evaluated on a reduced
matrix of 3,000 users and items, considering 90% of the given scores as training set and the
remaining as test set. Classical Matrix Completion (MC) [49], Inductive Matrix Completion
(IMC) [126, 268], Geometric Matrix Completion (GMC) [131], and Graph Regularized Alter-
nating Least Squares (GRALS) [212] were used as baseline methods. In all the experiments,
we used the following settings for our RMGCNNs: Chebyshev polynomials of order p = 4,
outputting k = 32-dimensional features, LSTM cells with 32 features and T = 10 diffusion
steps (for both training and test). The number of diffusion steps T has been estimated on the
MovieLens validation set and used in all our experiments. A better estimate of T can be done
by cross-validation, and thus can potentially only improve the final results. Only one convolu-
tional layer was used in our experiments for producing features in input to LSTM. All the models
were implemented in Google TensorFlow, and trained using the Adam stochastic optimization
algorithm [136] with learning rate 10−3. In factorized models, ranks d = 15 and 10 were used
for the synthetic and real datasets, respectively. For all methods, hyperparameters were chosen
by cross-validation.

Synthetic data. We start the experimental evaluation showing the performance of our ap-
proach on a small synthetic dataset, in which the user and item graphs have strong communities
structure and scores are smooth over such communities. Though rather simple, such a dataset
allows to study the behavior of different algorithms in a controlled setting.

The performance of different matrix completion methods is reported in Table 4.2, along with
their theoretical complexity. Our RMGCNN and sRMGCNN models achieve better accuracy than
other methods with lower complexity. Different diffusion time steps of these two models are
visualized in Figure 4.5. Figures 4.3 and 4.4 depict the spectral filters learnt by MGCNN and
row- and column-GCNNs on such dataset.

To investigate the performance of our method in scenarios where only one graph might
be available, we repeated the same experiment assuming only the column (users) graph to

39 4.3 Results

Table 4.1. Reconstruction errors for the synthetic dataset between multiple convolutional
layers architectures and the proposed architecture. Chebyshev polynomials of order 4 have
been used for both users and movies graphs (q′MGCq denotes a multi-graph convolutional
layer with q′ input features and q output features). In black / red / blue performance of
the 1st / 2nd / 3rd best model.

Method Params Architecture RMSE
MGCNN3layers 9K 1MGC32, 32MGC10, 10MGC1 0.0116
MGCNN4layers 53K 1MGC32, 32MGC32 × 2, 32MGC1
MGCNN5layers 78K 1MGC32, 32MGC32 × 3, 32MGC1 0.0074
MGCNN6layers 104K 1MGC32, 32MGC32 × 4, 32MGC1 0.0064
RMGCNN 9K 1MGC32 + LSTM 0.0053

Table 4.2. Comparison of different ma-
trix completion methods using users+items
graphs in terms of number of parameters
(optimization variables) and computational
complexity order (operations per iteration).
Big-O notation is avoided for clarity rea-
sons. Rightmost column shows the RMS
error on Synthetic dataset. In black / red
/ blue performance of the 1st / 2nd / 3rd
best model on a given dataset.

METHOD PARAMS NO. OP. RMSE
GMC |Vr ||Vc | |Vr ||Vc | 0.3693
GRALS |Vr |+ |Vc | |Vr |+ |Vc | 0.0114
SRMGCNN 1 |Vr |+ |Vc | 0.0106
RMGCNN 1 |Vr ||Vc | 0.0053

Table 4.3. Comparison of different matrix
completion methods using users graph only
in terms of number of parameters (optimiza-
tion variables) and computational complex-
ity order (operations per iteration). Big-
O notation is avoided for clarity reasons.
Rightmost column shows the RMS error on
Synthetic dataset. In black performance of
the best model.

METHOD PARAMS NO. OP. RMSE
GRALS |Vr |+ |Vc | |Vr |+ |Vc | 0.0452
SRMGCNN |Vr | |Vr |+ |Vc | 0.0362

be given. In this setting, RMGCNN cannot be applied, while sRMGCNN has only one GCNN
applied on the factor H (the other factor W is free). Table 4.3 summarizes the results of this
experiment, again, showing that our approach performs the best.

Table 4.1 compares our RMGCNN with more classical multilayer MGCNNs. Our recurrent
solutions outperforms deeper and more complex architectures, requiring at the same time a
lower amount of parameters.

Real data. Following [212], we evaluated the proposed approach on the MovieLens, Flixster,
Douban and YahooMusic datasets. For the MovieLens dataset we constructed the user and item
(movie) graphs as unweighted 10-nearest neighbor graphs in the space of user and movie fea-
tures, respectively. For Flixster, the user and item graphs were constructed from the scores of the
original matrix. On this dataset, we also performed an experiment using only the users graph.
For the Douban dataset, we used only the user graph (provided in the form of a social net-
work). For the YahooMusic dataset, we used only the item graph, constructed with unweighted
10-nearest neighbors in the space of item features (artists, albums, and genres). For the latter

40 4.4 Discussion

Table 4.4. Performance (RMS
error) of different matrix comple-
tion methods on the MovieLens
dataset. In black / red / blue
performance of the 1st / 2nd /
3rd best model

METHOD RMSE
GLOBAL MEAN 1.154
USER MEAN 1.063
MOVIE MEAN 1.033
MC [49] 0.973
IMC [126, 268] 1.653
GMC [131] 0.996
GRALS [212] 0.945
SRMGCNN 0.929

Table 4.5. Performance (RMS error) on several
datasets. For Douban and YahooMusic, a single
graph (of users and items respectively) was used. For
Flixster, two settings are shown: users+items graphs
/ only users graph. In black performance of the best
model.

METHOD FLIXSTER DOUBAN YAHOOMUSIC

GRALS 1.3126 / 1.2447 0.8326 38.0423
SRMGCNN 1.1788 / 0.9258 0.8012 22.4149

three datasets, we used a sub-matrix of 3,000× 3,000 entries for evaluating the performance.
Tables 4.4 and 4.5 summarize the performance of different methods. sRMGCNN outperforms
the competitors in all the experiments.

4.4 Discussion

To the best of our knowledge, RMGCNN and sRMGCNN were the first methods that leveraged
GCNNs for addressing the recommendation problem in the literature. From the publication of
our work, there has been increasingly more interest in this class of techniques for implementing
recommender systems. Due to the scale at which the recommendation problem often needs to
be addressed (think for instance to social media that need to recommend relevant items to
billions of users on a daily basis), recommendation is often casted as a candidate generation
plus ranking problem, where a small set of candidate items (e.g. hundreds) is first retrieved for
a given user with efficient approaches, and a ranking of the returned candidates is constructed
at a later stage with rich (but heavier) solutions. Full matrices describing the relevance of
all items for all users are thus rarely computed in practice, and an encoder-decoder approach
is typically exploited to produce user / item embeddings that one might need to solve the
candidate generation / ranking phase2. While a complete overview of the application of GCNNs
to recommender systems is beyond the scope of this work (the interested reader can refer to
[94] for a comprehensive review), we provide here a few references to popular approaches that
have been proposed in the last few years, which highlight the general direction the community
took from the publication of our work3.

2Please note, sRMGCNN can in principle be understood as an encoder-decoder approach, where the embeddings of
user and items are obtained through diffusion on the similarity graphs, and the decoder is simply implemented with
dot product.

3For the sake of brevity, we focus here only on models designed for static graphs. It should be noted however, that
models designed for handling temporal networks (i.e. graphs with evolving node set, edge set and feature values)
have been proposed in the literature as well (e.g. see [62] for a recent work processing dynamic sequential graphs for

41 4.4 Discussion

t=0 1 2 3 4 5

6 7 8 9 10

RMSE=2.26 1.89 1.60 1.78 1.31 0.52

0.48 0.63 0.38 0.07 0.01

t=0 1 2 3 4 5

6 7 8 9 10

RMSE=1.15 1.04 0.94 0.89 0.84 0.76

0.69 0.49 0.27 0.11 0.01

Figure 4.5. Evolution of the matrix X(t) with our architecture using full matrix completion
model RGCNN (top 2 rows) and factorized matrix completion model sRGCNN (bottom 2
rows). The diffusion time associated to each matrix is placed on top of the relative matrix,
the RMSE with respect to the ground truth is instead on the bottom.

GCNNs on attributed graphs. In GCMC [29], van den Berg et al. proposed to predict the
relevance of a given item for a particular user, resorting to a GCNN-based auto-encoder. The
model receives as input a weighted bi-partite graph depicting the interactions between users
and items (here the weight of an edge describes for instance the score a user assigned to a
particular movie), it then embeds the nodes of the graph via a one-layer GCNN (diffusing infor-
mation via D−1/2AD−1/2 or D−1A), and finally predicts the score of each (user, item) through a
bilinear decoder. At training time, the model is trained to predict the weight of each observed
interaction (using a classic cross-entropy loss), while at test time it is used to reconstruct the
missing entries of the interaction matrix. As the matrix describing interactions between users

click-through rate prediction).

42 4.4 Discussion

and items corresponds with the adjacency matrix of the bipartite user-item graph, predicting the
relevance of each (user, item) corresponds to predict the weight of each possible edge. The rec-
ommendation problem is thus effectively cast as a link prediction task. As the features available
in the experimental evaluation of [29]were not particularly representative of the users interests
/ items properties (e.g. in the context of the MovieLens dataset: age, gender and occupation
were the only features available for the users; while the genre was the only property used to
describe items), a one-hot encoding was used as input to the convolutional layer in [29], and
the aforementioned information was injected in the model only in a dense layer afterwards. In
a more general setting, where meaningful embeddings are available to describe the different
nodes of the graph (e.g. as it was the case in [272] that we will see next), such information can
be directly used as input to the convolutional layer, in order to produce an architecture with a
number of parameters independent on the graph size.

Following from [29], to realize a solution able to efficiently produce embeddings for billions
of users / items, PinSAGE [272] introduced an encoder-decoder architecture based on a vari-
ation of GraphSAGE that relies on importance sampling / pooling for realizing convolution4.
Differently from what previously presented in this chapter, the goal in [272] was to retrieve
similar pins provided a query one, and to populate the home feed of Pinterest’s users via a
(approximate) nearest neighbor search. To ensure the construction of embeddings that allow
to return the few relevant items out of a catalog consisting of even billion of entries, a triplet
loss (see Chapter 9) combined with curriculum learning was used for training. Embeddings
describing the visual / textual content of pins were used as input features to the model, while
the input graph was defined as a bi-partite network connecting pins with boards defined by the
users. Dot product was used in [272] as decoding function. To achieve high GPU utilization in
the learning phase (and thus optimize the consumption of the available resources), a producer-
consumer mini-batch construction strategy was further implemented to sample the graph in
parallel to a forward/backward pass. An implementation of convolution based on MapReduce
was instead introduced to allow the model to scale to web-size graphs in production. To the
best of our knowledge, PinSAGE was the first GCNN deployed in a production recommender
system, and outperformed learnable content-based and non-learnable graph-based approaches
in experimental evaluation.

In a follow up work, Gurukar et al. further introduced MultiBiSAGE [107], an extension
of PinSAGE that processes heterogeneous networks describing multiple types of interactions
among different types of entities (e.g. user clicks product, user follows board, pin contained
in board, . . .). The main intuition of the paper is that the information contained in different
interactions is generally beneficial to provide an holistic view on the properties of the avail-
able pins, and it can thus be used to improve recommendations for a variety of engagements.
In [107], heterogeneous networks are first decomposed in k bi-partite graphs, in order to re-
utilize existing infrastructure developed for PinSAGE. For each extracted graph, a transformer
architectures is subsequently applied on the one-hop neighborhood of a target node to compute
k different node representations (a global token is used here to condition the behavior of the
transformer dependently on the type of interactions where it is applied). Finally, the different
embeddings are combined together through a second transformer architecture (the number of
parameters of the model is thus independent on the amount of bi-partite graphs provided as in-
put). Experimental evaluation on 8 different types of engagements highlight how embeddings

4Instead of resorting to a uniform sampling of the neighbors, the neighbors that are visited the most during a random
walk are retained for diffusion. The retained neighbors receive a weight in the sampled graph that is proportional to
the number of times these are visited by the walker.

43 4.4 Discussion

computed on an heterogeneous network, built with six different types of interactions, yield
better performance compared to the ones provided by PinSAGE on the sole pin-board graph.

Graph Collaborarive Filtering. One of the most classic methodologies for solving the rec-
ommendation problem in the literature is Collaborative Filtering (CF) [41]. The main intuition
at the core of a CF approach is that: if two users u1 and u2 generally rate items similarly (or,
more widely, have similar interests), then the items that are relevant for u2 should most likely
be relevant to u1, and can thus be recommended to them. Observing that, in bi-partite interac-
tion networks, nodes situated at a distance smaller or equal to k (with k > 1 but still relatively
small, e.g. k ∈ {2,3, 4, . . .}) from a target user u correspond either with users that share similar
interests with u (at least at some level), or items that such similar users interacted with5 (and
that an equivalent reasoning can be made taking a target item i), Wang et al. [256] proposed
to capture the collaborative signal available in the graph, by making the embeddings of users
/ items a function of their k-hop neighbors interactions. In [256], the authors thus introduced
Neural Graph Collaborative Filtering (NGCF), a GCNN-based approach for learning latent node
representations, where the embedding function simply corresponds with a series of message
passing layers that are applied on top of "raw" learnable node features (no additional infor-
mation is assumed available to the model besides the interaction network). The dot product
was used in the paper as a decoding function, and the Bayesan Personalized Ranking Loss [216]
was used for training. Experiments on three different real-world benchmarks showed better
performance of the proposed method with respect to a variety of baselines, including simple
matrix factorization (MF), GCMC, and PinSAGE (embeddings pre-computed with MF were used
as input features for the last two approaches). Better results were in particular achieved with
relatively deep architectures (three or four convolutional layers) in [256] (as reference, GC-MC
used only one convolutional layer in [29]), which emphasized the benefit of constructing user /
item embeddings that directly depend on the behavior of higher order neighbors (i.e. neighbors
situated at a distance larger than one) for the recommendation problem.

Due to the good performance shown in [256], NGCF spawned some level of interest in the
community in the last years, and a series of follow up works appeared in the literature as a result.
In [113], He et al. introduced LightGCN, a simplification of NGCF, where no non-linearities, nor
matrices of weights are actually used in the diffusion layers. The main result highlighted by He
et al. was that the good performance of NGCF mainly derived from the diffusion process that
favored smooth embeddings across nearby nodes, rather than the extra logic provided by the
aforementioned components. In [171], Mao et al. showed that in order to achieve a simple yet
effective solution based on collaborative filtering, message passing operations are not strictly
necessary, and a matrix factorization approach (UltraGCN), inspired from the properties of the
steady state of an infinitely deep LightGCN, can be used to achieve good performance in practice.
In [226], Shen et al. further introduced a general framework for collaborative filtering based
on graph-signal processing, which highlights how previous approaches (e.g. low-rank matrix
factorization, LightGCN, . . .) can be seen as some form of low-pass filtering on an item-item
similarity graphs. A CF approach (GF-CF) based on the combination of a linear and an ideal
low-pass filter was additioanlly introduced in [226].

5Recursively, we can see that nodes situated at distance equal to 2 from u (U (2)) are users that share some interactions
with u (and have, as such, somehow similar interests to u), nodes at distance equal to 3 from u are items (I(3)) that
U (2) interacted with (and are thus items that similar users to u interacted with), nodes at distance equal to 4 (U (4))
are users that share some interactions with U (2) (and are thus users that are similar to users that have similar interests
with u), etc.

44 4.4 Discussion

Chapter 5

Graph Convolutional Neural Networks
with Complex Rational Spectral Filters

This chapter is based on "Ron Levie*, Federico Monti*, Xavier Bresson, and Michael M Bronstein.
Cayleynets: Graph convolutional neural networks with complex rational spectral filters. IEEE
Transactions on Signal Processing, 67(1):97–109, 2018" (∗ denotes equal contribution).

5.1 Methodology

In [153], we construct GCNNs employing an efficient spectral filtering scheme based on a new
class of polynomials named Cayley polynomials. Filters implemented with Cayley polynomials
enjoy similar properties to the ones showed by Chebyshev filters [72] (localization and linear
complexity in the number of edges), while adding the capability of detecting narrow frequency
bands of importance during training and to specialize on them. We define a Cayley polynomial
of order r to be a real-valued function with complex coefficients:

gc,h(λ) = c0 + 2Re
¦

r
∑

j=1

c j(hλ− i) j(hλ+ i)− j
©

; (5.1)

where c= (c0, . . . , cr) is a vector of a real coefficient co and r complex coefficients ci∀i > 0, h> 0
is what we call a spectral zoom parameter, and λ is an eigenvalue of the (possibly normalized)
Laplace operator of the given graph. A Cayley filter G implemented with a Cayley polynomial
is a spectral filter defined on real signals x ∈ R|V| as:

Gx= gc,h(∆)x= c0x+ 2Re{
r
∑

j=1

c j(h∆− iI) j(h∆+ iI)− jx}, (5.2)

where the parameters c and h are learnable parameters of the filter and are optimized during
training. Similarly to Chebyshev filters, Cayley filters involve basic matrix operations such as
powers, additions, multiplications by scalars, and also inversions. This implies that applications
of the filter Gx can be performed without explicit expensive eigendecomposition of the Lapla-
cian, thus scaling well also on big graphs (the matrix inversion can additionally be avoided
resorting to an iterative process, paragraph "avoiding matrix inversion").

45

46 5.1 Methodology

Interpreting Cayley filters. The simplest way to understand Cayley filters is probably through
the so-called Cayley transform, from which their name derives. Denote by eiR = {eiθ : θ ∈
R} the unit complex circle, the Cayley transform C(x) = x−i

x+i of a real value x is a smooth
bijection between R and eiR \ {1}. Similarly, the Cayley transform of a matrix ∆ = ΦΛΦT is
C(∆) = (∆− iI)(∆+ iI)−1 and simply corresponds to the Cayley transform applied to each of
its eigenvalues: C(∆) = (∆− iI)(∆+ iI)−1 = Φ(Λ− iI)(Λ+ iI)−1ΦT . As z−1 = z for z ∈ eiR and
2Re{z}= z + z, we can write c jC j(h∆) = c jC− j(h∆) and subsequently:

G= c0I+ 2Re{
r
∑

j=1

c jC j(h∆)}= c0I+
r
∑

j=1

c jC j(h∆) + c jC− j(h∆)

= Φ

c0I+
r
∑

j=1

c jC j(hΛ) + c jC− j(hΛ)

!

ΦT .

(5.3)

Any Cayley filter can thus be written as a conjugate-even Laurent polynomial (coefficients for
equal but opposite powers are the conjugate of one another) with respect to C(h∆) (and C(hΛ)).
Since in equation (5.3) the Laurent polynomial used for interpolating over the eigenvalues of
the Laplacian corresponds to a trigonometric polynomial1 (which are are complete on the unit
circle), Cayley filters of sufficiently high order can implement any spectral filter on the provided
graph. On top of this, as low order trigonometric polynomials generate a response that is smooth
over the frequencies, filters implemented with small values of r will also enjoy some degree of
locality on the given graph. In Euclidean domains, smoothness in the spectrum is associated
with localization per Parseval’s identity:

∫ ∞

−∞
|
∂ n f̂
∂ ξn

(ξ)|dξ=
∫ ∞

−∞
(2πx)n| f (x)|d x; (5.4)

similar results also hold for graphs via the generalization of a shift operator in the spectral
domain (see [232], Section 4.4). Cayley filters can in particular be proved to have exponential
decay in L2, as we’ll see in paragraph "localization".

Spectral zoom. To understand the role of parameter h in Cayley filters, we need to look
at how this affects the spectrum of C(h∆). Since h∆ = Φ (hΛ)ΦT , muliplying h by ∆ just
corresponds to dilating the Laplacian spectrum. In turn, as applying C(.) on h∆ maps the
non-negative spectrum to the lower complex half-circle (and the larger/smaller the value of a
scaled eigenvalue hλi the closer it gets mapped to 1/-1), the value of h allows to control how
much low or high frequencies should be spread apart before being fed to the filter’s polynomial
(Figure 5.1). This allows to ‘zoom’ on different parts of the spectrum making it simpler for a
filter to specialize on some specific frequency bands.

Avoiding matrix inversion. Let y0, . . . ,yr denote the solutions of the following linear recur-
sive system:

y0 = x, (h∆+ iI)y j = (h∆− iI)y j−1, j = 1, . . . , r. (5.5)

1If c j ∈ R∀ j then equation (5.1) is an even cosine polynomial, if c j ∈ iR∀ j then equation (5.1) is an odd sine
polynomial, if c j ∈ C then equation (5.1) is a full trigonometric polynomial of both sine and cosine.

47 5.1 Methodology

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Im

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Figure 5.1. Eigenvalues of the scaled Laplacian h∆ of a connected 15-communities graph
(Appendix A, Figure 5.5 left) mapped on the complex unit half-circle with Cayley transform
(h = 0.1, 1, and 10 left-to-right). The first 15 frequencies carrying information about the
communities are marked in red.

A Cayley filter can be written as Gx = c0y0 + 2Re{
∑r

j=1 c jy j}. As the cost of inverting h∆+ iI
is O(|V|3), computing the exact value of each y j can be prohibitively expensive for sufficiently
large |V| and thus hinders the applicability of the entire approach to large graphs (the com-
plexity of computing an exact Cayley filter is O(|V|3 + r|V|2), where O(r|V|2) is due to the
r projections of x on C(h∆)). In order to avoid such an expensive operation, and allow the
approach to scale well, an alternative solution is to use the Jacobi method for computing ap-
proximate solutions ỹ j ≈ y j and subsequently constructing an approximate Cayley filter:

ÝGx= c0ỹ0 + 2 Re{
r
∑

j=1

c j ỹ j}. (5.6)

First of all, note that sequentially approximating y j in equation (5.5) using the approxi-
mation of y j−1 in the right hand side is stable, since C(h∆) is unitary2 and thus has condition
number equal to 1 (errors in y j−1 are not amplified in y j by the system of equations). Using the
Jacobi method for solving a generic system of linear equations Ax= b consists in decomposing
A= Diag(A) +Off(A) and obtaining the solution iteratively as

x(k+1) = −(Diag(A))−1Off(A)x(k) + (Diag(A))−1b, (5.7)

until convergence is reached. In our case, fixing J = −(Diag(h∆+ iI))−1Off(h∆+ iI) to be the
Jacobi iteration matrix, an iteration of the Jacobi method to approximate equation (5.5) for a
given j has the form:

ỹ(k+1)
j = Jỹ(k)j + b j;

b j = (Diag(h∆+ iI))−1(h∆− iI)ỹ j−1.
(5.8)

Here, ỹ(0)j is initialized as ỹ(0)j = b j . If the combinatorial Laplacian is used in the definition of
the filter, matrix h∆+ iI is strictly diagonally dominant and the Jacobi method is guaranteed to
converge. If the normalized Laplacian is used instead, convergence is guaranteed as the spectral
radius of J (ρ(J) = hp

h2+1
) is smaller than 1. It is worth noting how, since parameters c j are

learnable in the model, computing the exact values of y j is typically not required as the model
can learn to compensate potential noise in the representation and achieve good performance
even for a small number of iterations K . As the Laplace operator for a sparse graph has O(|V|)
non-zero entries, the complexity of the approximate approach is only O(rK |V|).

2(C(h∆))−1 = Φ(hΛ+ iI)(hΛ− iI)−1ΦT = (C(h∆))∗, with (C(h∆))∗ the conjugate transpose of C(h∆).

48 5.2 Results

Localization. Differently from filters implemented with Chebyshev polynomials (which are
localized by construction on the given graph, i.e. a filter implemented with a polynomial of
degree r will have a support of radius r), filters implemented with Cayley polynomials have
global support due to the inversion of matrix (h∆+ iI). Nonetheless, Cayley filters still show
an exponential decay on the provided domain and for sufficiently small values of h it can be
shown they are actually well localized (Theorem 5.1.1).

Definition 5.1.1. Let x ∈ R|V| be a signal on the vertices of graph G, 1 ≤ p ≤ ∞, and
0< ε < 1. Denote by S ⊆ {1, . . . , n} a subset of the vertices and by Sc its complement. We
say that the Lp-mass of x is supported in S up to ε if ∥x|Sc∥p ≤ ε∥x∥p, where x|Sc = (x l)l∈Sc

is the restriction of x to Sc . We say that x has (graph) exponential decay about vertex m, if
there exists some γ ∈ (0, 1) and c > 0 such that for any k, the Lp-mass of x is supported
in N (k)m up to cγk.

Remark 1. Note that Definition 5.1.1 is analogous to classical exponential decay on
Euclidean space: | f (x)| ≤ Rγ−x iff for every ball Bρ of radius ρ about 0, ∥ f |Bc

ρ
∥∞ ≤

cγ−ρ∥ f ∥∞ with c = R
∥ f ∥∞

.

Theorem 5.1.1. Let G be a Cayley filter of order r. Then, Gδm has exponential decay
about m in L2, with constants c = 4M 1

∥Gδm∥2
, M =

∑r
j=1 M j

�

�c j

�

� and γ = κ1/r . δm is
here an impulse localized on vertex m (i.e. δm,i = 0 ∀i ̸= m and δm,m = 1). For the
combinatorial Laplacian, M j = j

p
n and κ = ∥J∥∞ =

hdp
h2d2+1

< 1 (with d = max j d j the

maximum node degree). For the normalized Laplacian, M j = j and κ= ∥J∥2 =
hp

h2+1
< 1.

The proof of Theorem 5.1.1 is provided in Section 5.3

5.2 Results

Experimental settings We test the proposed CayleyNets reproducing the experiments of [72,
138, 184] and using ChebNet [72] as our main baseline method across all experiments. GCN
[138], MoNet [184] and GAT [72] are listed as well for document classification tasks, in line
with what reported in Chapter 3. Pooling and graph coarsening was performed identically to
[72] where required. The hyperparameters are identical to the original experiments, unless
specified otherwise. All the methods were implemented in TensorFlow. The experiments were
executed on a machine with a 3.5GHz Intel Core i7 CPU, 64GB of RAM, and NVIDIA Titan X
GPU with 12GB of RAM. SGD+Momentum and Adam [136] optimization methods were used
to train the models in MNIST and the rest of the experiments, respectively. Training and testing
were always done on disjoint sets.

MNIST. Following [72], we start our experimental evaluation with a toy experiment to vali-
date the performance of CayleyNet in a controlled setting. In this direction, we approached the
classical MNIST digits classification as a learning problem on graphs. Each pixel of an image is
a vertex of a graph (regular grid with 8-neighbor connectivity), and pixel color is a signal on

49 5.2 Results

Cayley r = 3

λmin λmax

0

1

|g
(λ
)|

Chebyshev r = 3

λmin λmax

0

1

|g
(λ
)|

Chebyshev r = 7

λmin λmax

0

1

|g
(λ
)|

Figure 5.2. Filters (spatial domain, top and spectral domain, bottom) learned by CayleyNet
(top) and ChebNet (center, bottom) on the MNIST dataset. Cayley filters are able to realize
larger supports for the same order r.

the graph. We used a graph CNN architecture with two spectral convolutional layers based on
Chebyshev and Cayley filters (producing 32 and 64 output features, respectively), interleaved
with pooling layers performing 4-times graph coarsening using the Graclus algorithm [76],
and finally a fully-connected layer (this architecture replicates the classical LeNet5 architecture
[151], whose performance is shown in the results for comparison). SGD+Momentum with
learning rate equal to 0.02, momentum m= 0.9, dropout probability p = 0.5 and weight decay
coefficient γ = 5 · 10−4 have been applied as described in [72]. MNIST classification results
are reported in Table 5.1. CayleyNet (11 Jacobi iterations) achieves the same (near perfect)
accuracy as ChebNet with filters of lower order (r = 12 vs 25). Examples of filters learned by

50 5.2 Results

1 3 5 7 9 11 13

30

40

50

60

70

80

90

100

1
5
9
13

Order r

A
cc

ur
ac

y
%

Figure 5.3. Community detection test accuracy as function of filter order r. Shown are
exact matrix inversion (dashed) and approximate Jacobi with different number of iterations
(colored). For reference, ChebNet is shown (dotted).

Table 5.1. Test accuracy obtained with different methods on the MNIST dataset. In black
/ red / blue performance of the 1st / 2nd / 3rd best model.

Model Order Accuracy #Params

ChebNet 25 99.14% 1.66M
CayleyNet11 Jacobi iter 12 99.18% 1.66M
LeNet5 - 99.33% 1.66M

ChebNet and CayleyNet are shown in Figure 5.2. 0.1776 +/- 0.06079 sec and 0.0268 +/-
0.00841 sec are respectively required by CayleyNet and ChebNet for analyzing a batch of 100
images at test time.

Community detection. To demonstrate the ability of CayleyNet to focus only on particular
frequency bands, we introduce here a second graph classification problem. Namely, a com-
munity detection task. We generated for this purpose a synthetic graph built by 15 different
communities, vertices belonging to the same community are strongly connected to each other,
and sparsely connected to other communities (Figure 5.5). On this graph, we generate noisy
step signals, defined as fi = 1+σi if i belongs to the community, and fi = σi otherwise, where
σi ∼N (0, 0.3) is Gaussian i.i.d. noise. The goal is to classify each signal according to the com-
munity it belongs to. The neural network architecture used for this task consisted of a spectral

51 5.2 Results

1 2 3 4 5 6

82

84

86

88

87.1 86.6 86.2 85.2 84.9 84.587.9 86.9 87.1 86.6 86.5 86.8

Order r

A
cc

ur
ac

y
%

Normalized Laplacian

1 2 3 4 5 6

75

80

85

90

78.0 85.7 86.6 87.5 87.7 87.487.7 86.0 86.8 85.7 85.2 85.1

Order r

A
cc

ur
ac

y
%

Scaled unnormalized Laplacian

46K 69K 92K 115K 138K 161K

82

84

86

88

87.1 86.6 86.2 85.2 84.9 84.587.3 86.9 86.2 86.4 85.3 85.3

#Params

A
cc

ur
ac

y
%

Normalized Laplacian

46K 69K 92K 115K 138K 161K

75

80

85

90

78.0 85.7 86.6 87.5 87.7 87.488.1 88.0 87.6 86.4 86.5 86.7

#Params

A
cc

ur
ac

y
%

Scaled unnormalized Laplacian

Figure 5.4. ChebNet (blue) and CayleyNet (orange) test accuracies obtained on the CORA
dataset for different polynomial orders. Polynomials with complex coefficients (top two)
and real coefficients (bottom two) have been exploited with CayleyNet in the two analysis.
Orders 1 to 6 have been used in both comparisons.

convolutional layer (based on Chebyshev or Cayley filters) with 32 output features, a mean
pooling layer, and a softmax classifier for producing the final classification into one of the 15
classes. No regularization has been exploited in this setting.

As the first 15 eigenfunctions of the Laplace operator are almost piece-wise constant over the
different communities, spectral filters able to produce different coefficients for such eigenfunc-
tions result in output signals with different behavior dependently on the community C where
the input is localized. To understand why this might be the case, consider a filter that produces
a null spectral response for all frequencies but frequency t ∈ {0, . . . , 15}. The behavior of such
filter can be described by matrix φ t g(λt)φ

T
t , and the output of a graph convolutional layer

receiving in input the noisy step function f equals:

52 5.2 Results

f̃= Gf= φ t g(λt)φ
T
t f. (5.9)

It is easy to see how f̃ simply correspond to a scaled version of φ t , whose L2 norm depends on
C (as φT

t f≃
∑

i∈VC
φt,i fi ≃ |VC |φ t,C with VC the vertex set of the community where f is almost

equal to 1, and φ t,C the average value of φ t on VC , we have f̃ ≃ φ t g(λt)|Vc |φ t,C). Feeding in
input f̃ to a ReLU layer and averaging the signal over the entire graph yields in turn a scalar
value that depends on the community C that supports f, thus providing a meaningful descriptor
for identifying which community is supporting f. It is worth noting how such a behavior could
not be possible with filters producing a similar spectral response for all the first 15 frequencies
of the graph, as the spectrum of noisy step functions is almost entirely localized on the first 15
eigenfunctions, and the output of the convolutional layer would equal in this scenario a scaled
version of f that depends only on the filter but not on the target community C (as g(λt) would
be almost constant for 0≤ t ≤ 15).

As a result of the above, filters implemented with Chebyshev polynomials struggle at pro-
ducing meaningful descriptors for the considered classification task (large polynomial orders
are indeed required to produce different coefficients for the first 15 frequencies), while Cayley
filters learn instead to specialize on the low-frequency band that discriminate well the com-
munities and achieve good results even for low polynomial orders (Figure 5.5, second to the
top). Figure 5.5 shows in the two bottom rows the spectral response of filters implemented with
both Chebyshev and Cayley polynomials to illustrate the different behavior of the two classes
of filters.

Finally, to evaluate the effect of the Jacobi method on the effectiveness of Cayley filters, we
further measured the classification performance of CayleyNet with various numbers of Jacobi
iterations on our community detection task (Figure 5.3). As it possible to see, CayleyNet consis-
tently ouperforms ChebNet for any number of Jacobi iterations and for any possible polynomial
order we considered (even just one Jacobi iteration is enough to consistently achieve better
performance).

Complexity. We experimentally validated the computational complexity of our model apply-
ing filters of different order r to synthetic 15-community graphs of different size n using exact
matrix inversion and approximation with different number of Jacobi iterations (Figure 5.6).
All times have been computed running 30 times the considered models and averaging the final
results. As expected, approximate inversion guarantees O(n) complexity.

Citation networks. To investigate the performance of CayleyNet on a more popular task in
the literature, we next addressed the problem of vertex classification on graphs using the CORA
citation graph that we introduced earlier for our MoNet architecture. As it was the case for
MoNet, the task is to classify each vertex into one of 7 groundtruth classes. Since the setting of
the problem is transductive learning, the features of all vertices are known, but labels are given
just for a subset of the nodes. The model is trained by minimizing the label error at the nodes
with known labels. After training, the model is tested over the nodes in which the labels were
unknown during training.

We analyze the performance of our model in two different settings in our experiments: the
classic semi-supervised problem presented in [138, 184, 252] with 140 training samples, 500
validation samples and 1,000 test samples and a relaxed version of this that exploits 1,708
vertices for training, 500 for validation and 500 for testing. We opted for a larger amount of

53 5.2 Results

Table 5.2. Test accuracy of different methods on the planetoid split [270] of the CORA
dataset. GCNNs are listed at the bottom of the table. In black / red / blue performance
of the 1st / 2nd / 3rd best model.

Method Accuracy #Params

ManiReg [25] 59.5% -
SemiEmb [261] 59.0% -
LP [283] 68.0% -
DeepWalk [202] 67.2% -
Planetoid [270] 75.7% -

CayleyNet64 features 81.0 ± 0.5 % 92K
GCN [138] 81.6 ± 0.4 % 23K
MoNet [184] 81.7 ± 0.5 % 23K
CayleyNet16 features 81.9 ± 0.7 % 23K
GAT [252] 83.0 ± 0.7 % 92K

training samples in our second experiment, in order to provide an estimate of the quality of
CayleyNet in a situation that is less prone to overfitting. Cayley operators with matrix inversion
have been considered in both settings for our solution.

For the sake of simplicity, on the standard split, two versions of CayleyNet that reproduce the
architectures used in [138, 184] and [252] have been implemented: a lightweight architecture
exploiting two convolutional layers with 16 and 7 output features, and a heavier solution pro-
ducing 64 and 7 output features from the two layers. The structure of our CayleyNets have thus
been fixed a priori in these experiments, and it is possible that even better performance could
be achieved tuning our architecture further. Normalized Laplacian has been used for building
our spectral filters. Adam with learning rate equal to 5 · 10−3, dropout probability p = 0.6 and
weight decay coefficient γ= 5 ·10−4 have been used for training. Table 5.2 presents the results
we obtained with our solution, average performance over 50 runs are reported to guarantee
accurate estimates. Our lighter version of CayleyNet achieves similar performance to GCN and
MoNet, while being defeated by GAT. Our heavier CayleyNet shows instead a drop in perfor-
mance, likely because of overfitting.

On our extended split, we analyze the behavior of CayleyNet and ChebNet for a variety of
different polynomial orders. Two spectral convolutional layers with 16 and 7 outputs features
have been used for implementing the two architectures. Adam with learning rate equal to 10−3,
dropout probability p = 0.5 and weight decay with coefficient γ = 5 · 10−4 have been used for
training. Figure 5.4 presents the results of our analysis. Since ChebNet requires Laplacians
with spectra bounded in [−1,1], we consider both the normalized Laplacian, and the scaled
combinatorial Laplacian (2∆/λmax − I), where ∆ is the combinatorial Laplacian and λmax is
its largest eigenvalue. For fair comparison, we fix the order of the filters (top two figures)
and the overall number of network parameters (bottom two figures). In the bottom figures, the
Cayley filters are restricted to even cosine polynomials by considering only real filter coefficients.
The best CayleyNets consistently outperform the best ChebNets requiring at the same time less
parameters (CayleyNet with order r and complex coefficients requires a number of parameters
equal to ChebNet with order 2r).

54 5.3 Exponential decay of Cayley filters (proof)

Table 5.3. Performance (RMSE) of different matrix completion methods on the MovieLens
dataset. In black / red / blue performance of the 1st / 2nd / 3rd best model.

Method RMSE

Global Mean 1.154
User Mean 1.063
Movie Mean 1.033
MC [49] 0.973
IMC [126, 268] 1.653
GMC [131] 0.996
GRALS [212] 0.945
sRGCNNCheby,r=4 [185] 0.929
sRGCNNCheby,r=8 [185] 0.925
sRGCNNCayley 0.922

Recommender systems. In our final experiment, we applied CayleyNet for solving the matrix
completion problem that we illustrated in Chapter 4. As before, given a sparsely sampled matrix
of scores assigned by users (columns) to items (rows), the task is to fill in the missing scores.
The similarities between users and items are given in the form of column and row graphs, re-
spectively. To evaluate the performance of CayleyNet, we repeated verbatim the previously
presented experiment on the MovieLens dataset [180], simply replacing Chebyshev filters with
Cayley filters. We used sRGCNN with Cayley filters of order r = 4 employing 15 Jacobi iter-
ations. Adam with learning rate equal to 10−3 and regularization coefficient γ = 10−10 have
been used for training. The results are reported in Table 5.3. To present a complete comparison,
we further extended the experiments reported Chapter 4 by training sRGCNN with ChebNets of
order 8. This provides an architecture with same number of parameters as the exploited Cay-
leyNet (23k coefficients). The version of sRGCNN based on Cayley polynomials outperforms
all the competing methods, including the previous result with Chebyshev filters. sRGCNNs
with Chebyshev polynomials of order 4 and 8 respectively require 0.0698 +/- 0.00275 sec and
0.0877 +/- 0.00362 sec at test time, sRGCNN with Cayley polynomials of order 4 and 15 jacobi
iterations requires 0.165 +/- 0.00332 sec.

5.3 Exponential decay of Cayley filters (proof)

In order to prove the exponential decay of Cayley filters over a generic vertex m, we will use a
bound on the approximation error obtained estimating Gδm with the Jacobi method, which we
show here first.

Approximation error bound. Note the following classical result for the approximation of
Ax = b using the Jacobi method: if the initial condition is x(0) = 0, then (x − x(k)) = Jkx. In
our case, note that if we start with initial condition ỹ(0)j = 0, the next iteration gives ỹ(1)j = b j ,
which is the initial condition from our construction. Therefore, since we are approximating
y j = C(h∆)ỹ j−1 by ỹ j = ỹ(K)j , we have:

C(h∆)ỹ j−1 − ỹ j = JK+1C(h∆)ỹ j−1; (5.10)

55 5.3 Exponential decay of Cayley filters (proof)

where JK+1 appears on the right hand side instead of JK as we impose ỹ(0)j = b j in our approach.
Define the (relative) approximation error in C(h∆) jx by:

e j =

C j(h∆)x− ỹ j

2

∥C j(h∆)x∥2
. (5.11)

By the triangle inequality, by the fact that C(h∆) is unitary (thus ∥C(h∆)x∥2 = ∥x∥2), and by
(5.10):

e j ≤

C j(h∆)x− C(h∆)ỹ j−1

2

∥C j(h∆)x∥2
+

C(h∆)ỹ j−1 − ỹ j

2

∥C j(h∆)x∥2

=

C j−1(h∆)x− ỹ j−1

2

∥C j−1(h∆)x∥2
+

JK+1C(h∆)ỹ j−1

2

∥x∥2

≤e j−1 +

JK+1

2

C(h∆)ỹ j−1

2

∥x∥2

=e j−1 +

JK+1

2

ỹ j−1

2

∥x∥2
≤e j−1 +

JK+1

2 (1+ e j−1)

=(1+ ∥JK+1∥2)e j−1 + ∥JK+1∥2;

(5.12)

where the last inequality is due to:

ỹ j−1

2 ≤

C j−1(h∆)x

2 +

C j−1(h∆)x− ỹ j−1

2

=∥x∥2 + ∥x∥2 e j−1.
(5.13)

If we use the normalized Laplacian for implementing Cayley filters, ∥J∥2 =
hp

h2+1
< 1. Since

∥JK+1∥2 ≤ ∥J∥K+1
2 , if we recursively unravel (5.12) and we fix κ= ∥J∥2, we obtain:

e j ≤ jκK+1 +O(κ2K+2). (5.14)

If we additionally impose ∥ỹ j∥2 = ∥x∥23, the error bound further reduces to e j ≤ e j−1+

JK+1

2,
which in turn yields:

e j ≤ jκK+1. (5.15)

If we use the combinatorial Laplacian for the implementation, using standard norm bounds (i.e.

JK+1

2 ≤
p

n

JK+1

∞) and fixing κ= ∥J∥∞ =
hdp

h2d2+1
< 1 (with d =max j d j), we obtain:

e j ≤e j−1 +
p

n∥J∥K+1
∞ (1+ e j−1)

=(1+
p

nκK+1)e j−1 +
p

nκK+1.
(5.16)

For sufficiently large values of K ,
p

nκK+1 < 1, and the solution of the recurrent sequence
becomes:

3As ỹ j is an approximation of C(h∆) jx (whose norm is equal to the one of x), one can impose ∥ỹ j∥2 = ∥x∥2 in order
to recreate more similar conditions to what we would have with matrix inversion.

56 5.4 Discussion

e j ≤ j
p

nκK+1 +O(nκ2K+2). (5.17)

As for the case of the normalized laplacian, if the normalized version of the algorithm is used,
this bound further reduces to:

e j ≤ j
p

nκK+1. (5.18)

Letting M j = j
p

n for the combinatorial Laplacian, M j = j for the normalized one, and imposing
∥ỹ j∥2 = ∥x∥2, by the triangle inequality we have:

Gx−ÝGx

2

∥x∥2
≤2

r
∑

j=1

�

�c j

�

�

C j(h∆)x− ỹ j

2

∥C j(h∆)x∥2

=2
r
∑

j=1

�

�c j

�

� e j ≤ 2
r
∑

j=1

M j

�

�c j

�

� κK+1;

(5.19)

which shows how convergence of the approximation algorithm is guaranteed for a sufficiently
large number of Jacobi iterations, and the role of parameter h in the convergence. The smaller
the value of h, the smaller κ we have and thus the smaller the approximation error we obtain.

Proof of Theorem 5.1.1. In this proof we approximate Gδm by ÝGδm. Note that the signal δm

is supported on one vertex, and in the calculation of ÝGδm, each Jacobi iteration increases the
support of the signal by 1-hop. Therefore, the support of ÝGδm is the r(K+1)-hop neighborhood
N (r(K+1))

m of m. Denoting l = r(K + 1), we get:

Gδm −Gδm|N (l)
m

2
≤

Gδm −ÝGδm

2
+

ÝGδm −Gδm|N (l)
m

2

≤

Gδm −ÝGδm

2
+

ÝGδm −Gδm

2

= 2

Gδm −ÝGδm

2
≤ 4MκK+1 ∥δm∥2 = 4M(κ1/r)l ; (5.20)

with M =
∑r

j=1 M j

�

�c j

�

�.

5.4 Discussion

As it was the case for the Mixture Model Neural Network and RMGCNN/sRMGCNN, our Cay-
leyNet was introduced back in 2017, and it represented one of the early works on spectral
GCNNs. Following from the publication of our original paper (and the one of Defferrard et al.
[72] before ours), several publications appeared in the literature proposing alternative rational
and polynomial parametrizations of spectral filters. In this section, we discuss some of the most
relevant methods that have recently been proposed in this direction. For a broader review of
spectral methods, the interested reader is invited to refer to [36].

57 5.4 Discussion

Rational spectral filters. At writing time, there are at least two recent works that use rational
spectral filters for processing signals defined on graphs: ARMA of Bianchi et al. [32], and
ResolvNet of Koke et al. [141].

ARMA is a spectral GCNN that uses approximations of ARMA filters to implement convo-
lution on the provided graph. ARMA filters correspond to a generic class of Infinite Impulse
Response (IIR) graph filters, whose spectral response can be defined as:

gr(λ) =

∑r−1
j=0 p jλ

j

1+
∑r

j=1 q jλ j
; (5.21)

where {p j ∈ R| j ∈ {0, . . . , r − 1}} and {q j ∈ R| j ∈ {1, . . . , r}} are parameters of the model. As
filters implemented with Cayley polynomials of order r can be written as the ratio of two real
polynomials of order 2r (Section 5.4.1):

gc,h(λ) =
2
∑r

j=0(h
2λ2 + 1)r− j

�

∑ j
t=0 Re{c j}

�2 j
2t

�

(hλ)2 j−2t i2t −
∑ j

t=1 Im{c j}
� 2 j

2t−1

�

(hλ)2 j−2t+1i2t
�

(h2λ2 + 1)r
;

(5.22)
ARMA filters of order 2r + 1 (and higher) generalize Cayley filters of order r, and they allow
to implement (at the cost of a larger amount of parameters) a broader family of functions. As
it emerges from (5.21), differently from Cayley polynomials, which are stable by construction
for undirected graphs (as the eigenvalues of the Laplace operator are real on such domains),
ARMA filters can show diverging behaviors if the poles of (5.21) match at least one eigenvalue
of ∆ (or ∆̃). At the same time (similarly to what discussed in Section 5.1), the matrix form of
(5.21) requires a matrix inversion to be implemented (equation (7) in [32]). To avoid such an
expensive operation and guarantee stable filters at the same time, Bianchi et al. proposed to
approximate the spectral response depicted in (5.21) using sequences of layers of the form:

X(k+1) = σ((I− ∆̃)X(k)W+XV); (5.23)

where W and V are two matrices of learnable weights, σ is a non-linearity (e.g. ReLU) and
X(k) corresponds with the output of the k-th layer. The output of multiple columns of layers
is averaged in [32] to achieve filters with a variety of different responses (low-pass, band-pass
or high-pass filters). As it appears from (5.23), differently from our approximation of Cayley
polynomials (which applies multiple Jacobi iterations, or diffusion steps, before multiplying
the output with a matrix of weights), ARMA mixes the input channels (through the weight
matrices W and V) and applies the non-linearity σ at each step of diffusion. Thanks to the
extra-richness this provides to the approximation process (and the fact that filters are produced
averaging sequences of layers of the form (5.23), and not stacking them on top of each other),
the solution proposed in [32] appears to require less consecutive projections on the diffusion
operator, compared to CayleyNet, to produce meaningful spectral responses, and achieves better
performance especially on graph classification tasks4.

4If large amounts of Jacobi iterations, or large values of r, are used to compute Cayley polynomials, the implemented
filters reduce to something akin a high-order polynomials of J [32]. As filters implemented with high-order polynomials
can be more unstable than low-order ones across similar graphs [32][134, Theorem 2], this can result in less robust
performance over unseen conditions.

58 5.4 Discussion

Turning our attention to ResolvNet, in [141] Koke et al. studied the behavior of GCNNs
on multi-scale domains5, and highlighted in particular how architectures able to: i) avoid
disconnected propagation graphs (which might appear if one uses, for instance, the symmet-
ric normalized adjacency matrix for diffusion on multi-scale domains [141]), and ii) realize
graph-wise embeddings that are similar for graphs denoting the same object at multiple res-
olutions; can be realized resorting to polynomials of the resolvent of the graph Laplacian (i.e.
Rz(∆) = (∆− zI)−1). The filters implemented in [141] thus take the form:

gz,θ (∆) =
K
∑

k=a

θk[(∆− zI)−1]k; (5.24)

where both z ∈ R<0 and a ∈ {0, 1} are hyperparameters of the model6. If different scales are
well separated in the input domain (i.e. λ(high)

1 >> λ(reg)
max), it can be shown that filters imple-

mented as in (5.24) are close to filters implemented (with the same set of weights, and for-
mulation) on a coarser version of the given graph that is obtained replacing clusters of densely
connected points with single nodes. In this situation, signals defined on nodes of strongly
connected clusters tend to be homogenized by gz,θ (∆), and diffusion is realized across such
subgraphs as if the domain had only one scale [141]. In the experimental evaluation of [141],
this specific inductive bias allowed ResolvNet to favorably perform in node classification tasks
defined on homophilic datasets (where similar, tightly connected, nodes are pushed to have
similar embeddings), as well as in molecular prediction problems that depend on long range
interactions (thanks to the ability of the model to propagate information across weakly con-
nected clusters of nodes).

Polynomial spectral filters. Moving away from rational functions (and approximations of
these), a variety of works appeared in the literature in the last few years that use some form
of polynomial to realize spectral filters [58, 111, 112, 257, 106]. In [58], Chien et al. intro-
duced GPR-GNN, a variation of APPNP [97] where a single polynomial filter of Ā (Chapter 2),
implemented with the monomial basis and with coefficients shared across feature channels, is
applied on top of node-wise descriptors obtained refining the input node features with a shared
MLP. As the number of parameters required by the diffusion process depends only on the num-
ber of propagation steps used in the model (as a single filter is applied on all feature channels
in [58]), large polynomial orders can be used to produce rich spectral responses in GPR-GNNs
without requiring a significant amount of coefficients. This, in turn, leads to an interesting bal-
ance between expressivity and robustness of the model, and allows GPR-GNN to achieve good
performance at inference time, even when very few labels are provided for training.

In [111], He et al. introduced BernNet, a spectral GCNN that resorts to Bernstein poly-
nomials for implementing spectral filters on graphs. Bernstein polynomials of order K can
be defined over the domain of the normalized graph Laplacian eigenvalues (i.e. the interval
[0,2]) as g(λ̃) =

∑K
k=0ωk bK

k (λ̃), with bK
k (λ̃) =

1
2K

�K
k

�

(2− λ̃)K−kλ̃k. As each bK
k (.) corresponds

to a "bump" centered around 2k
K , the value of each ωk directly affects the spectral response of

the filter in a neighborhood of said frequency, and the shape of the spectral response can thus
be controlled simply imposing some form of constraint on the value of ω. Filters with spectral

5A multi-scale graph can be informally defined as a domain with edges distributed over (at least) two scales: a large
scale representing strong connections within clusters, and a regular scale denoting weaker connections across clusters.
Two scale graphs are graphs whose Laplacian can be decomposed as ∆=∆high +∆reg , with λ(high)

1 >> λ
(reg)
max [141].

6As it was the case for Cayley filters, filters implemented in [141] are a particular setting of (5.21).

59 5.4 Discussion

response in [0, 1], which allow to produce signals optimizing a target energy function, were in
particular introduced in [111], simply imposingωk ≥ 0∀k ∈ {0, . . . , K} and applying a suitable
normalization step.

The additional level of control, Bernstein polynomials allow to achieve, unfortunately comes
at the cost of a quadratic complexity in K , as K projections over the Laplace operator need to be
carried out for each bK

k (.) (equation 3 in [111]). In a follow up work [112], He et al. showed
that filters enjoying a similar form of regularization, but better complexity (i.e. O(K2 + K |E |)),
can also be obtained with Chebyshev polynomials, simply fixing the spectral response of the
target filter h(.) in correspondence of Chebyshev nodes x j = cos(j+1/2

K+1 π) ∀ j = 0, . . . , K , and
resorting to Chebyshev interpolation for estimating the value of polynomial coefficients ω
(ChebNetII). Variations of GPR-GNN implemented with Chebyshev interpolation / Bernstein
polynomials, and using the regularization we discussed above for BernNet, outperformed the
original implementation based on monomials in [111, 112]. ChebNetII appeared in particular
as the better performing solution of the two, possibly because of better convergence proper-
ties (see [257, 106] next). A scalable implementation of spectral filters, based on the same
pre-processing step we leveraged a few years earlier in SIGN (Chapter 6), was additionally in-
troduced in [112] to solve prediction tasks on web-scale graphs involving millions of nodes and
billions of edges.

Finally, in [257]Wang et al. showed that polynomials that are orthonormal, w.r.t. a weight
function that is dependent on the spectrum of a provided input signal, can allow linear GCNNs
(i.e. GCNNs of the form Y = g(∆)XW, where g(.) is a real-valued polynomial) to maximize
the convergence rate of their filters’ coefficients in the proximity of a loss minimum. In line
with this, the authors introduced JacobiConv, a linear spectral GCNN with filters implemented
through Jacobi polynomials (which are a generalization of Chebyshev polynomials). As Jacobi
polynomials are orthogonal w.r.t. weight function (1 − λ)a(1 + λ)b in (−1, 1) (and they can
be made orthonormal via a suitable normalization [78]), they represent a flexible basis that
can be adapted for a variety of input signals (a ≥ −1 and b ≥ −1 are hyperparameters of the
model that can be suitably tuned here). It should be noted that, while Jacobi polynomials do
provide a versatile family of functions for implementing spectral filters, there exists (of course)
weight functions that they cannot adopt. In a follow up work [106], Guo et al. highlighted
how any orthonormal polynomial basis can be obtained defining the elements of the basis via
a three-term recurrence of the form:

Æ

βk+1pk+1(x) = (x − γk)pk(x)−
Æ

βk pk−1(x); (5.25)

with βk ∈ R+ and γk ∈ R. Additionally, any series {p0(.), p1(.), . . . , pK(.)} that satisfies the
above recurrence was shown to correspond with an orthonormal polynomial basis in [106]
(Favard’s theorem). As a result of this, the three-term relation highlighted above offers a con-
tinuous, and easily explorable, parameter space for implementing orthonormal polynomials,
and a more general version of the work of Wang et al. (which is not bounded to polynomials
that are orthonormal only to (1 − λ)a(1 + λ)b) can be obtained swapping Jacobi polynomi-
als with polynomials satisfying (5.25). In line with this, the authors introduced FavardGNN
and OptBasisGNN, two different GCNNs where the terms of the recurrence are either learned
at training time together with the coefficients of the filters (FavardGNN), or are set to opti-
mize the convergence rate, that a linear GCNN would have, in the proximity of a minimum
of the square loss (OptBasisGNN). As it was the case for JacobiConv before them, instances of
FavardGNN and OptBasisGNN achieved comparable or superior performance w.r.t. similar ar-

60 5.4 Discussion

chitectures implemented with other polynomial bases. OptBasisGNN appeared in particular as
the more scalable solution in [106], as (similarly to what was done in [112]) a pre-processing
step analogous to the one used in SIGN can be implemented with such approach, to reduce the
complexity of the model to the one of an MLP.

Spectral filters and directed graphs. So far in this document we addressed how spectral
filters can be implemented and applied to signals defined on undirected domains. However, in
many situations, one might actually need to process signals that are defined over directed do-
mains (e.g. the user-user follow networks of Twitter / X and Instagram). In Chapter 2, we high-
lighted the connection between the eigenfunctions (and eigenvalues) of the graph Laplacian for
undirected graphs and the modes (and their related frequencies) of the classic Fourier Trans-
form. Unfortunately, due to the asymmetry of the Laplace operator, generalizing the Fourier
Transform on directed domains is not as straightforward. The graph Laplacian (as we defined
it in Section 2.2) can indeed be defective, and thus not admit a valid eigendecomposition. Ad-
ditionally, even if ∆ is diagonalizable, the eigenvalues Λ are not necessarily real, and they do
not provide a notion of how variable the associated eigenfunctions are, as it was the case for
undirected graphs7. As a result of this, the connection between the eigendecomposition of the
graph Laplacian and the classic Fourier basis is generally lost for directed networks, and we
are left with the question on how to possibly generalize convolution in the spectrum on such
domains. To solve this issue, Zhang et al. [281] proposed to resort to the so-called magnetic
Laplacian [92], a generalized version of the combinatorial Laplacian for directed graphs (a nor-
malized version of such operator is available as well). The magnetic Laplacian∆(mag) is defined
as:

∆(mag) = D(s) −A(s) ⊙ exp(iΘ(q)); (5.26)

where D(s) is the diagonal degree matrix of the associated undirected graph, A(s) is its corre-
sponding adjacency matrix, and Θ(q) = 2πq(A−AT) (with A the directed adjacency matrix). It
corresponds with a complex hermitian positive semi-definite matrix, which encodes the direc-
tion of the edges via the phase of each entry. ∆(mag)

i, j is real if an edge exists from i to j and

viceversa, ∆(mag)
i, j has phase equal to 2πq if an edge exists from i to j but not from j to i, and

∆
(mag)
i, j has phase equal to −2πq if an edge exists from j to i but not from i to j. In virtue of

being hermitian, ∆(mag) always admits an eigendecomposition, the eigenvectors of ∆(mag) are
complex (and can be chosen to be orthogonal) and describe the direction of the edges, while the
eigenvalues are real and provide a measure of how much the eigenvectors change (in modulo
and phase) over the graph8. As a result of this, the constructions that we use for realizing spec-
tral filters on undirected graphs (e.g. Chebyshev polynomials, Cayley polynomials, Bernstein
polynomials, . . .) can be extended to directed domains, while maintaining similar interpreta-
tions, simply swapping the combinatorial Laplacian for the magnetic one. In a follow up work
[114], He et al. additionally showed how the magnetic Laplacian can be extended to signed

7Let ||φk||2 = 1, since ∆ ̸=∆T , λk =< φk ,∆φk >=
∑

(i, j)∈E ai, j(|φk,i |2 − φ̄k,iφk, j) cannot be reduced to a sum of
squared differences of the values of φk over the arcs of the graph. Additionally, the terms of the summation used to
define λk (which measure how φk varies over the graph) can point in different directions (the real or imaginary part
can have different signs), and can thus compensate each other in the calculation of the eigenvalue.

8With a few derivations (Section 5.4.2) it can be shown thatλk =< φk ,∆(mag)φk >=
1
2

∑|V|−1
i, j=0 a(s)i, j (|φk,i |2+|φk, j |2−

2|φk,i ||φk, j | cos(θ (q)i, j − (∠φk,i −∠φk, j))). An eigenvector φk thus shows a small λk if it assumes complex values with

similar magnitudes for adjacency nodes, and angles that reproduce the differences set in Θ(q).

61 5.4 Discussion

directed networks (i.e. directed graphs built by positive and negative relations), in order to
further generalize spectral approaches to this class of domains.

A generalization of spectral approaches to directed graphs, which use generalized Laplacian
matrices computed resorting to page rank scores, has additionally been proposed in [168]. It
should be noted however that the directional information of the edges is not preserved in the
diffusion operator in such construction.

5.4.1 Cayley filters as real rational functions

Let c̃0 =
c0
2 and c̃ j = c j ∀ j ∈ {1, . . . , r}, the spectral response of filters implemented with Cayley

polynomials can be rewritten as the ratio of two real valued polynomials:

gc,h(λ) = c0 + 2Re{
r
∑

j=1

c j(hλ− i) j(hλ+ i)− j}

= 2Re{
r
∑

j=0

c̃ j

�

hλ− i
hλ+ i

� j

}

= 2Re{
r
∑

j=0

c̃ j

�

(hλ− i)(hλ− i)
(hλ+ i)(hλ− i)

� j

} (5.27)

= 2Re{
r
∑

j=0

c̃ j
(hλ− i)2 j

(h2λ2 + 1) j
}

= 2Re{
r
∑

j=0

c̃ j
(hλ− i)2 j(h2λ2 + 1)r− j

(h2λ2 + 1)r
}

= 2Re{

∑r
j=0(h

2λ2 + 1)r− j
�

∑2 j
t=0 c̃ j

�2 j
t

�

(hλ)2 j−t(−i)t
�

(h2λ2 + 1)r
}

=
2
∑r

j=0(h
2λ2 + 1)r− j

�

∑ j
t=0 Re{c̃ j}

�2 j
2t

�

(hλ)2 j−2t(−i)2t +
∑ j

t=1 iIm{c̃ j}
� 2 j

2t−1

�

(hλ)2 j−2t+1(−i)2t−1
�

(h2λ2 + 1)r

=
2
∑r

j=0(h
2λ2 + 1)r− j

�

∑ j
t=0 Re{c̃ j}

�2 j
2t

�

(hλ)2 j−2t i2t −
∑ j

t=1 Im{c̃ j}
� 2 j

2t−1

�

(hλ)2 j−2t+1i2t
�

(h2λ2 + 1)r
.

5.4.2 Eigenvalues and eigenvectors of the magnetic Laplacian

Here we show how eigenvalues and eigenvectors of the magnetic Laplacian relate one to the
other. In the derivation we use the classic result cos(α−β) = cos(α) cos(β)+sin(α) sin(β), and
the fact that θ (q)i, j = −θ

(q)
j,i . The eigenvector φk is also assumed to have L2 norm equal to 1. For

the sake of clarity, the subscript of λk and φk is dropped in the proof.

λ=< φ,∆(mag)φ >=
|V|−1
∑

i, j=0

a(s)i, j

�

|φi |2 − φ̄iφ je
iθ (q)i, j

�

=
∑

i, j|i≤ j

a(s)i, j

�

|φi |2 + |φ j |2 − φ̄iφ je
iθ (q)i, j − φ̄ jφie

iθ (q)j,i

�

(5.28)

62 5.4 Discussion

=
∑

i, j|i≤ j

a(s)i, j

�

|φi |2 + |φ j |2 − |φi ||φ j |e−i(∠φi−∠φ j)eiθ (q)i, j − |φi ||φ j |ei(∠φi−∠φ j)e−iθ (q)i, j

�

=
∑

i, j|i≤ j

a(s)i, j

�

|φi |2 + |φ j |2 − |φi ||φ j |
�

cos(∠φi −∠φ j)− i sin(∠φi −∠φ j)
�

�

cos(θ (q)i, j) + i sin(θ (q)i, j)
�

+

− |φi ||φ j |
�

cos(∠φi −∠φ j) + i sin(∠φi −∠φ j)
�

�

cos(θ (q)i, j)− i sin(θ (q)i, j)
�

�

=
∑

i, j|i≤ j

a(s)i, j

�

(|φi |2 + |φ j |2 − 2|φi ||φ j |
�

cos(∠φi −∠φ j) cos(θ (q)i, j) + sin(∠φi −∠φ j) sin(θ
(q)
i, j)

�

�

=
∑

i, j|i≤ j

a(s)i, j

�

|φi |2 + |φ j |2 − 2|φi ||φ j | cos
�

θ
(q)
i, j − (∠φi −∠φ j)

�

�

=
1
2

∑

i, j

a(s)i, j

�

|φi |2 + |φ j |2 − 2|φi ||φ j | cos
�

θ
(q)
i, j − (∠φi −∠φ j)

�

�

.

63 5.4 Discussion

1 2 3 4 5 6 7 8 9 10 11 12 13

40

60

80

100

Order r

A
cc

ur
ac

y
%

λmin λmax

0

0.5

1

|g
(λ
)|

λmin λmax

0

0.5

1

|g
(λ
)|

Figure 5.5. Top: synthetic 15-communities graph. Second to the top: community detection
accuracy of ChebNet and CayleyNet. Bottom two: normalized responses of four different
filters learned by ChebNet (top) and CayleyNet (bottom), each response is in a different
color. Grey vertical lines represent the frequencies of the normalized Laplacian (λ̃= 2λ−1

n λ−
1 for ChebNet and C(λ) = (hλ− i)/(hλ+ i) unrolled to a real line for CayleyNet). Note how,
thanks to spectral zoom property, Cayley filters can focus on the band of low frequencies
(dark grey lines) containing most of the information about communities.

64 5.4 Discussion

ChebNet CayleyNet (1 iteration)
CayleyNet (5 iterations) CayleyNet (9 iterations)

CayleyNet (13 iterations) CayleyNet (inversion)

Testing

1 3 5 7 9 11 13

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Order r

Ti
m

es
(s

ec
)

1 3 5 7 9 11 13

0

5

10

15

20

25

30

35

Order r

Ti
m

e
R

at
io

s

200 400 600 800 1,000

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

#Vertices n

Ti
m

es
(s

ec
)

200 400 600 800 1,000

0

2

4

6

8

10

12

14

16

#Vertices n

Ti
m

e
R

at
io

s

Training

1 3 5 7 9 11 13

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Order r

Ti
m

es
(s

ec
)

1 3 5 7 9 11 13

0

3

6

9

12

15

18

21

24

Order r

Ti
m

e
R

at
io

s

200 400 600 800 1,000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

#Vertices n

Ti
m

es
(s

ec
)

200 400 600 800 1,000

0

2

4

6

8

10

12

14

16

#Vertices n

Ti
m

e
R

at
io

s

Figure 5.6. Test (above) and training (below) times with corresponding ratios (using Cheb-
Net as reference) as function of filter order r and graph size n on our community detection
dataset.

Chapter 6

Scalable Inception Graph Neural
Networks

This chapter is based on "Fabrizio Frasca∗, Emanuele Rossi∗, Davide Eynard, Ben Chamberlain,
Michael Bronstein, and Federico Monti. Sign: Scalable inception graph neural networks. Graph
Representation Learning and Beyond, ICML Workshop, 2020" and "Federico Monti, Karl Otness,
and Michael M Bronstein. Motifnet: a motif-based graph convolutional network for directed graphs.
In 2018 IEEE Data Science Workshop (DSW), pages 225–228. IEEE, 2018" (∗ denotes equal con-
tribution). In the case of SIGN, the author collaborated with Emanuele Rossi and Fabrizio Frasca
on the design of the architecture, and the design and review of the experiments.

6.1 Introduction

As we have seen thus far, many of the early works in the literature designed and evaluated
architectures on relatively small graphs (tens of thousands of vertices and edges). In many
practical situations however, one might need to apply GCNNs on web-scale graphs such as
Facebook’s or Twitter/X’s social networks. Since such networks can show even 109 nodes and
1011 edges, it can easily become computationally prohibitive to make predictions resorting to
architectures that process the entire graph in one go. To limit the number of nodes and edges
the model needs to process in a single forward / backward pass (and thus effectively apply
GCNNs to such large networks), sampling and batching approaches have often been used in
the literature [109, 272, 57, 277]. In [90], we took a different approach for scaling GCNNs.
We showed in particular how moving the computation of neighborhood descriptors at pre-
processing time, efficient GCNNs, that show the same complexity of MLPs, can be constructed
while maintaining competitive performance. Such an architecture appears especially well suited
for productionization in industrial settings, where heavy pre-processing steps can efficiently be
realized at scale with distributed frameworks (e.g. Apache Spark, BigQuery, . . .), and the model
is just left with the task of handling compact representations at inference time.

65

66 6.2 Methodology

Figure 6.1. The SIGN architecture for r generic graph filtering operators. Θk represents the
k-th dense layer transforming node-wise features downstream the application of operator
k, | is the concatenation operation and Ω refers to the dense layer used to compute final
predictions.

6.2 Methodology

The key building block of our architecture is a set of linear diffusion / shift operators rep-
resented as |V| × |V| matrices A1, . . . ,Ar , whose application to the node-wise features can be
pre-computed. For node-wise classification tasks, our architecture (that we named Scalable
Inception Graph Neural Network, or SIGN, as it shows convolutional layers that resemble the
Inception Module introduced in [245]) has the form:

Z = σ ([XΘ0,A1XΘ1, . . . ,ArXΘr]) , (6.1)

Y = ξ (ZΩ) ;

whereΘ0, . . . ,Θr andΩ are learnable matrices respectively of dimensions d×d ′ and d ′(r+1)×c
for c classes, and σ and ξ are non-linearities (the second one computing class probabilities, e.g.
softmax or sigmoid function). Figure 6.1 provides a pictorial representation of our architecture.

As mentioned in the preamble of this chapter, in order to realize scalable filters able to pro-
cess large graphs, we designed such architecture with the idea of being able to realize all the
matrix products concerning graph diffusion (i.e. A1X, . . . ,ArX,) at pre-processing time. In order
to do so, all the diffusion operators are constrained to the first layer of the model, so that there
is no dependency on the model parameters when exchanging information among neighboring
nodes. This effectively reduces the computational complexity of the overall model to the one
of a multi-layer perceptron (i.e. a O(L f f |V|d2), where d is the number of features, |V| the
number of nodes we need to process and L f f the number of feed-forward layers), as the only
information the model needs to process for a given node is the concatenation of the neighbor-
hood descriptors extracted by the available shift operators. Table 6.1 provides a comparison of
the complexity of SIGN with other architectures designed with scalability in mind (GraphSAGE,
ClusterGCN and GraphSaint)1.

1For an overview of GraphSAGE, please see Section 2.2.2. ClusterGCN [57] improves scalability of classic GCNNs by

67 6.2 Methodology

Table 6.1. Theoretical time complexity where Lc, Lff is the number of graph convolutional
and feed-forward layers, r is the filter size, |V| the number of nodes (in training or inference),
|E | the number of edges, and d the feature dimensionality (assumed fixed for all layers). For
GraphSAGE, S is the number of neighbors sampled at each layer per node. For ClusterGCN
and GraphSAINT, the cost of clustering and sampling (respectively) is ignored in the pre-
processing phase as this depends on the chosen approach. Both pre-processing and forward
pass complexities correspond to an entire epoch where all nodes are seen.

Method Pre-processing Forward Pass
GraphSAGE [109] O(SLc |V|) O(LcS

Lc |V|d2)
ClusterGCN [57] O(|E |) O(Lc|E |d + Lc|V|d2)
GraphSAINT [277] O(|E |) O(Lc|E |d + Lc|V|d2)
SIGN O(r|E |d) O(Lff|V|d2)

The different diffusion operators referenced in (6.1) can simply be powers of a given shift
operator (e.g. the shifted normalized Laplacian used by ChebNet), as well as operators that
diffuse in different ways information among neighboring nodes (and potentially combination
of these). Generally speaking, the choice of the diffusion / shift operators to use in a given
architecture to maximize performance likely depends on the task, the graph structure, and the
features at our disposal. In [104], it was shown for instance how operators induced by triangles
or cliques might help distinguishing edges representing weak or strong ties in social graphs, in
[260] the same operator appeared to help detect the role that users play within communities in
interaction networks, and in [140] diffusion operators based on personalized PageRank (PPR)
or heat kernel allowed to boost performance in graphs with noisy connectivity. As a result of
this, in [90] we decided to make the set of diffusion operators a hyperparameter of the model,
and we determined which operators the architecture should use for each single (dataset, task)
via a suitable grid search. For undirected graphs, we chose three specific types of operators
for shifting information on the domain: "simple" (normalized) adjacency matrix, personalized
PageRank-based adjacency matrix, and triangle-based adjacency matrices. As mentioned be-
fore, we also consider powers of each operator for accessing information available on neighbors
situated multiple steps apart. We denote by SIGN(p,s,t), with r = p+s+ t, the configuration us-
ing up to p, s, and t powers of simple, PPR-based, and triangle-based adjacency matrices [186],
respectively. In the case instead of directed graphs, we used the directed adjacency matrix A, its
transpose AT and the adjacency matrix of the associated undirected graph Au =

1
2 (A+ AT) for

diffusion. We denote by SIGN(p,d, f), with r = p+d+ f , the configuration using up to p, d, and
f powers of undirected, directed, and directed-transposed adjacency matrices, respectively.

In the following paragraphs we present a high level overview of PPR-based matrix and motif
adjacency matrices to provide the reader an understanding of all the operators used in this work.

Personalized Page Rank. Personalized Page Rank (PPR) is a variation of the Page Rank al-
gorithm [198] that allows to determine the importance of each node t with respect to a source
node s. The PPR algorithm produces a probability distribution πs that can be interpreted as

partitioning the provided domain with a clustering algorithm (e.g. Graclus [76]), and processing in a given forward pass
only the nodes and edges belonging to one or more clusters. GraphSAINT processes instead samples of the domain
obtained via a provided sampling mechanism, and resorts to a normalization step in order to avoid any bias in the
estimated neighborhood descriptors.

68 6.2 Methodology

1 2 3 4 5 6 7

8 9 10 11 12 13

Figure 6.2. The thirteen connected 3-vertex graph motifs that can appear in directed
graphs. In undirected graphs there are only two possible motifs of three nodes: a wedge
(i.e. a length-two path) and a triangle (a length-three cycle).

the likelihood that a random surfer starting from s ends up on t after an infinite number of
steps. The surfer at each step with probability 1− α moves to one of the out-neighbors of the
node where it currently stands, and with probability α tele-ports back to s (α is, for this reason,
often referred to as tele-port probability). As the behavior of such surfer can be described by a
Markov chain with transition probability equal to (1− α)AD−1 + αEs (with Es a matrix that is
zero everywhere but in row s where it is filled with ones), πs can be seen as the solution to the
following linear system of equations:

πs = (1−α)AD−1πs +α ∗ es. (6.2)

Here, es is a vector of all zeros except in position s where it assumes value equal to one, and πs

is the stationary distribution of the Markov chain2. A PPR matrix is simply obtained stacking
over multiple columns/rows the different πs computed for all nodes in the graph.

Motif adjacency matrix. To quantify the importance of the neighbors of a target node i that
are involved in triangular motifs with i, we resort to motif adjacency matrices following the
construction proposed by Benson et al. [27]. Let G = {V,E ,A} be a (possibly weighted and/or
directed) graph, and let M1, . . . ,MK denote a collection of graph motifs (Figure 6.2). For each
edge (i, j) ∈ E and each motif Mk, a motif adjacency matrix Ãk can be defined as ãk,i j = uk,i jai j

for undirected graphs, and as ãk,i j = uk,i j(ai j + a ji) for directed ones, where uk,i j denotes the
number of times node i and j participate in Mk. Each entry of Ãk defines the strength of a
connection between i and j, dependently on how frequently the two nodes engage in Mk.
While in principle it could be interesting to "anchor" a motif dependently on the role that i
and j play in the sub-network (i.e. different motif adjacency matrices could be constructed
dependently on which positions i and j assume in it), for efficiency reasons, in [90] we decided
to limit ourselves to the construction proposed in [27], and we defined motif adjacency matrices
only based on the number of times that two nodes appear in the given motif. For each motif
adjacency matrix, a corresponding (normalized) motif Laplacian ∆̃k = I− D̃−1/2

k ÃkD̃−1/2
k can be

defined as well.

2Such distribution always exists, is unique, and can be reached through multiple projections of an initial probability
distribution over matrix (1−α)AD−1 +αEs . These results directly follow from the fact that the Markov chain has only
one closed communication class (i.e. only one subset of nodes that can be reached by each other but can’t reach other
nodes outside the subset), and such class is aperiodic (there is no state i that can be visited, starting from i, only at
multiples of some k ∈ N+\{1}) [2]. The single communication class for (6.2) is the one consisting of the strongly
connected component including s [206].

69 6.3 Results

While in [90] we limited ourselves to only one type of motif adjacency matrix (i.e. the
one associated with triangles in undirected graphs), multiple different motif adjacency ma-
trices could be used as part of the same model. In our own MotifNet [186], we showed for
instance how anisotropic filters can be realized on graphs leveraging multi-variate polynomi-
als obtained multiplying together different motif adjacency matrices. Such polynomials can be
realized with (6.1), simply setting some of the shift operators to correspond with the aforemen-
tioned products. To limit the computational complexity of our experimental evaluation, we left
an exploration of this research direction to future work.

6.3 Results

Datasets. We evaluated the proposed method on node-wise classification tasks, both in trans-
ductive and inductive settings. Inductive experiments are performed using four datasets de-
scribing undirected graphs: Reddit [109], Flickr [277], Yelp [277], and PPI [284]. Related tasks
are multi-class node-wise classification (each node can be assigned only one of many possible
classes) for Reddit and Flickr, and multi-label classification for Yelp and PPI (each node can be
assigned zero or more labels). Transductive experiments were performed on the ogbn-products
(∼2.5 M nodes and ∼62 M undirected edges) and ogbn-papers100M datasets [122] (∼111 M
nodes and ∼1.6 B directed arcs). ogbn-products is an undirected network describing an Ama-
zon product co-purchasing network [31], where the task is to predict the category of a product
in a multi-class classification setup. ogbn-papers100M is a directed citation network where the
task is to infer the labels (subject areas) of a smaller subset of ArXiv papers. Due to its size,
ogbn-papers100M is an important test-bed for the scalability of SIGN and related methods. In
addition to this, we tested the scalability of our method on Wikipedia links [10], a large-scale
network of links between articles in the English version of Wikipedia. As no node features
or labels are available for this dataset, only pre-processing, training and inference times were
measured on such network (see next paragraph for more details on this). Statistics for all the
datasets are reported in Table 6.2.

Experimental setting. For undirected graphs (Reddit, Flickr, Yelp, PPI, ogbn-products and
Wikipedia), we tested several SIGN(p, s, t) configurations. PPR-based operators are computed
from a transition matrix in an approximated form (using the variation of the Andersen algorithm
[22] implemented in PyTorch Geometric3), with a restart probability of α = 0.01 for inductive
datasets and α= 0.05 in the transductive case. To allow for larger model capacity in the incep-
tion modules and in computing final model predictions, we replace the single-layer projections
performed by Θi and Ωmodules with multiple feedforward layers. Model parameters are found
by minimizing the cross-entropy loss via minibatch gradient descent with the Adam optimizer.
Early stopping is applied with a patience of 15. In order to limit overfitting, we apply weight de-
cay and dropout to our model. Additionally, batch-normalization [125] was used in every layer
to stabilize training and increase convergence speed. Architectural and optimization hyperpa-
rameters were estimated using Bayesian optimization with a tree Parzen estimator [30] over
all inductive datasets. As for the the transductive setting, we employed standard exhaustive
search on a predefined hyperparameter grid on ogbn-products. For the Wikipedia dataset, we
randomly generated 100-dimensional node feature vectors and scalar targets and considered

3https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.get_ppr

70 6.3 Results

Table 6.2. Summary of (s)ingle and (m)ulti-label dataset statistics. Wikipedia is used,
with random features, for timing purposes only.

Dataset n |E | Avg. Deg. d Classes Train / Val / Test
ogbn-papers100M 111,059,956 1,615,685,872 30 128 172(s) 78% / 8% / 14%
Wikipedia 12,150,976 378,142,420 62 100 2(s) 100% /— / 100%
ogbn-products 2,449,029 61,859,140 51 100 47(s) 10% / 2% / 88%
Reddit 232,965 11,606,919 50 602 41(s) 66% / 10% / 24%
Yelp 716,847 6,977,410 10 300 100(m) 75% / 10% / 15%
Flickr 89,250 899,756 10 500 7(s) 50% / 25% / 25%
PPI 14,755 225,270 15 50 121(m) 66% / 12% / 22%

Table 6.3. Micro-averaged F1 score average and standard deviation over inductive datasets.
For SIGN, we show the best performing configurations. The top three performance scores
are highlighted as: First, Second, Third.

Method Reddit Flickr PPI Yelp
GCN [138] 0.933±0.000 0.492±0.003 0.515±0.006 0.378±0.001
FastGCN [53] 0.924±0.001 0.504±0.001 0.513±0.032 0.265±0.053
Stochastic-GCN [52] 0.964±0.001 0.482±0.003 0.963±0.010 0.640±0.002
AS-GCN [124] 0.958±0.001 0.504±0.002 0.687±0.012 —
GraphSAGE [109] 0.953±0.001 0.501±0.013 0.637±0.006 0.634±0.006
ClusterGCN [57] 0.954±0.001 0.481±0.005 0.875±0.004 0.609±0.005
GraphSAINT [277] 0.966±0.001 0.511±0.001 0.981±0.004 0.653±0.003
S-GCN [263] 0.949±0.000 0.502±0.001 0.892±0.015 0.358±0.006
SIGN 0.968±0.000 0.514±0.001 0.970±0.003 0.631±0.003
(p, s, t) (4,2, 0) (4,0, 1) (2,0, 1) (2, 0,1)

the whole network for both training and inference (powers of the normalized adjacency have
been used as the only shift operator for implementing our approach).

On ogbn-papers100M (the only directed network of our analysis), due to its size, we fixed
the structure of the neural network a priori and evaluated only three choices of diffusion oper-
ators. Being ogbn-papers100M a directed network, we experimented with operators built via
asymmetric normalization of the original directed adjacency matrix and its transpose, as well
as their powers.

Implementation. All experiments, including timings, were run on an AWS p2.8xlarge in-
stance, with 8 NVIDIA K80 GPUs, 32 vCPUs, a processor Intel(R) Xeon(R) CPU E5-2686 v4 @
2.30GHz and 488GiB of RAM. SIGN is implemented using Pytorch.

Inductive. On the inductive datasets, we compare our method to GCN [138], FastGCN [53],
Stochastic-GCN [52], AS-GCN [124], GraphSAGE [109], S-GCN [263], ClusterGCN [57], and
GraphSAINT [277]. Table 6.3 presents the results of the various methods. In line with [277],
we report the micro-averaged F1 score means and standard deviations computed over 10 runs.
For each dataset we report the best performing SIGN configuration, specifying the maximum
powers for each of the three employed operators. SIGN outperforms other methods on Reddit

71 6.3 Results

0 50 100 150 200 250 300 350 400
Time (in seconds)

0.88

0.89

0.90

0.91

0.92

0.93
Va

lid
at

io
n

F1

GraphSAINT
ClusterGCN
SIGN (4-0-0)
SIGN (4-2-0)
SIGN (5-3-0)

Figure 6.3. Convergence of different methods on ogbn-products.

and Flickr, and performs competitively to GraphSAINT on PPI (the best performing model in
our analysis for that dataset). Our performance on Yelp is worse than in the other datasets; we
hypothesize that a more tailored operators choice is required to better suit the characteristics
of this dataset.

Transductive. On the massive ogbn-papers100M (Table 6.4), we report performance of a MLP
applied on node features (MLP), a MLP that processes the concatenation of the raw node fea-
tures and Node2Vec embeddings (Node2Vec), and S-GCN [263]. SIGN outperforms all other
sampling-free competitors by at least 1.8%. On ogbn-products (Table 6.5) we additionally com-
pare against the scalable ClusterGCN [57], and GraphSAINT [277], in line with what reported in
[122]. While SIGN outperforms all other sampling-free methods (MLP, Node2Vec and S-GCN),
sampling methods perform the best at test time (albeit being slower, see next paragraph) and
appear to generally be more suitable on this dataset. We hypothesise that, on this particular
task, sampling may implicitly act as a regularizer at training time, making these methods gener-
alize better to the held-out test set, which is sampled from a different distribution w.r.t. training
and validation nodes [122].

Run time. While performing competitively on most benchmarks w.r.t. previous methods, our
architecture has the advantage of being significantly faster for large graphs. To showcase the
efficiency of SIGN, we performed a timing evaluation on ogbn-products and Wikipedia datasets
and report average training, inference, and pre-processing times in Table 6.7. For these experi-
ments, we ran the implementations of ClusterGCN and GraphSAINT provided in the OGB code

72 6.3 Results

Table 6.4. Results on ogbn-papers100M. SIGN(p,d,f) refers to a configuration using p, d,
and f powers of simple undirected, directed and directed-transposed adjacency matrices.
The top three performance scores are highlighted as: First, Second, Third.

Method Training Validation Test
MLP 58.84±0.43 49.60±0.29 47.24±0.31
Node2Vec [105] — 55.60±0.23 58.07±0.28
S-GCN (L=3) [263] 67.54±0.43 66.48±0.20 63.29±0.19
SIGN(3,0,0) 70.18±0.37 67.57±0.14 64.28±0.14
SIGN(3,1,1) 72.24±0.32 67.76±0.09 64.39±0.18
SIGN(3,3,3) 73.94±0.72 68.60±0.04 65.11±0.14

repository4.
We used these datasets rather than ogbn-papers100M so we could compare to ClusterGCN

and GraphSAINT, which, to the best of our knwoledge, are not scaled yet to ogbn-papers100M.
For the sake of completeness, we report however that on ogbn-papers100M our best performing
SIGN(3,3,3) model completes one evaluation pass on the validation set in 1.99± 0.05 seconds
and on the test set in 3.34±0.04 seconds (statistics are estimated over 10 runs and include the
time required by device data transfers and by the computation of evalution metric).

On both ogbn-products and Wikipedia, our model is faster than ClusterGCN and of compara-
ble speed with respect to GraphSAINT in training5. At inference time, SIGN is by far the fastest
approach in our comparison, being always one order of magnitude faster than other methods
(our largest architecture, 8 operators, requires no more than 30 seconds to perform inference
on over 12M nodes). SIGN’s preprocessing is slightly longer than other methods, but we notice
that most of the calculations can be cast as sparse matrix multiplications and easily parallelized
with frameworks for distributed computing. Finally, in order to also study the convergence
behavior of our proposed model, in Figure 6.3 we plot the validation performance on ogbn-
products from the start of the training as a function of run time for ClusterGCN, GraphSaint
and several SIGN configurations. As it is possible to see, all methods exhibit comparable con-
vergence speed, with SIGN being slightly faster than ClusterGCN (after 50 seconds of training,
GraphSAINT appears to have converged, ClusterGCN is ∼ 1% away from peak performance,
while SIGN is ∼ 0.5% from convergence).

Ablation study. To understand how different operator combinations affect the performance
of SIGN, we report the results obtained for different values of p, s and t in Tables 6.5 and 6.6
for, respectively, the transductive ogbn-products and inductive datasets. We notice that best
performance is obtained on each benchmark by a specific combination of operators, remark-
ing the fact that each dataset features topological and content characteristics that can best be
processed with different filters. Interestingly, we also observe while the PPR operators do not
bring significant improvements in the inductive setting (being even harmful in certain cases),
they are beneficial on the transductive ogbn-products. This finding is in accordance with [140],
where the effectiveness of PPR diffusion operators in transductive settings has been extensively
studied. Finally, we notice promising results attained in Flickr and PPI inductive settings by

4https://github.com/snap-stanford/ogb/tree/master/examples/nodeproppred/products
5Traning time is measured as forward-backward time to complete one epoch.

https://github.com/snap-stanford/ogb/tree/master/examples/nodeproppred/products

73 6.4 Discussion

Table 6.5. Performance on ogbn-products. SIGN(p,s,t) refers to a configuration using p, s,
and t powers of simple, PPR-based, and triangle-based adjacency matrices. The top three
performance scores are highlighted as: First, Second, Third.

Method Training Validation Test
MLP 84.03±0.93 75.54±0.14 61.06±0.08
Node2Vec [105] 93.39±0.10 90.32±0.06 72.49±0.10
S-GCN (L=5) [263] 92.54±0.09 91.38±0.07 74.87±0.25
ClusterGCN [57] 93.75±0.13 92.12±0.09 78.97±0.33
GraphSAINT [277] 92.71±0.14 91.62±0.08 79.08±0.24
SIGN(3,0,0) 96.21±0.31 92.99±0.05 76.52±0.14
SIGN(3,0,1) 96.46±0.29 92.93±0.04 75.73±0.20
SIGN(3,3,0) 96.87±0.23 93.02±0.04 77.13±0.10
SIGN(5,0,0) 95.99±0.69 92.98±0.18 76.83±0.39
SIGN(5,3,0) 96.92±0.46 93.10±0.08 77.60±0.13

Table 6.6. Impact of various operator combinations on inductive datasets. Best results are
in black.

Method Reddit Flickr PPI Yelp
SIGN(2,0,0) 0.966±0.003 0.503±0.003 0.965±0.002 0.623±0.005
SIGN(2,0,1) 0.966±0.000 0.510±0.001 0.970±0.003 0.631±0.003
SIGN(2,2,0) 0.967±0.000 0.495±0.002 0.964±0.003 0.617±0.005
SIGN(4,0,0) 0.967±0.000 0.508±0.001 0.959±0.002 0.623±0.004
SIGN(4,0,1) 0.967±0.000 0.514±0.001 0.965±0.003 0.622±0.003
SIGN(4,2,0) 0.968±0.000 0.500±0.001 0.930±0.010 0.618±0.004
SIGN(4,2,1) 0.967±0.000 0.508±0.002 0.969±0.001 0.620±0.004

pairing standard adjacency matrices with a triangle-induced one.

6.4 Discussion

To the best of our knwoledge, SIGN was the first model that proposed combining multiple dif-
ferent neighborhood descriptors that were extracted at pre-processing time, in order to realize
scalable yet effective GCNNs6. Following up on our work, other better performing approaches
appeared however in the literature implementing similar architectural choices7.

The closest work to ours is probably Feature Selection Graph Neural Network (FSGNN) of
Maurya et al. [176]. As we have seen in Section 6.2, SIGN utilizes a variety of diffusion op-
erators in order to extract a rich set of descriptors depicting the behavior of the neighborhood
of each target node. As the set of diffusion operators {A1, . . . ,Ar} is fixed a priori, this gen-

6Please note, S-GCN [263] can be seen as a simplified version of our work where only one diffusion operator is used,
and the MLP defined by matrices Θ1, . . . ,Θr and Ω is replaced with a simple linear layer.

7The interested reader is invited to refer to https://ogb.stanford.edu/docs/leader_nodeprop/ for the live
leaderboards of ogbn-product and ogbn-papers100M, depicting the performance of the methods discussed in this sec-
tion and others.

https://ogb.stanford.edu/docs/leader_nodeprop/

74 6.4 Discussion

Table 6.7. Mean and standard deviation of preprocessing, training (one epoch) and inference
times, in seconds, on OGBN-Product and Wikipedia datasets, computed over 10 runs.
SIGN-r denotes architecture with r precomputed operators. Preprocessing and training
times for ClusterGCN on Wikipedia are not reported due to the clustering algorithm failing
to complete.

Method ogbn-products Wikipedia
Preprocessing Training Inference Preprocessing Training Inference

ClusterGCN [57] 36.93 ± 0.52 13.34 ± 0.16 93.00 ± 0.68 — — 183.76 ± 3.01
GraphSAINT [277] 52.06 ± 0.54 2.89 ± 0.05 94.76 ± 0.81 123.60 ± 1.60 135.73 ± 0.06 209.86 ± 4.73
SIGN-2 88.21 ± 1.33 1.04 ± 0.10 2.86 ± 0.10 192.88 ± 0.12 62.37 ± 0.17 13.40 ± 0.15
SIGN-4 160.16 ± 1.20 1.54 ± 0.04 3.79 ± 0.08 326.21 ± 1.14 93.84 ± 0.08 18.15 ± 0.05
SIGN-6 226.48 ± 1.43 2.05 ± 0.00 4.84 ± 0.08 459.24 ± 0.14 125.24 ± 0.03 22.94 ± 0.02
SIGN-8 297.92 ± 2.92 2.53 ± 0.04 5.88 ± 0.09 598.67 ± 0.82 154.73 ± 0.12 27.69 ± 0.11

erally requires some level of exploration, in the construction of the architecture, to identify a
good configuration. To alleviate this procedure, similarly to what we previously presented in
MotifNet [186], Maurya et al. proposed to introduce a soft feature selection step in the imple-
mentation of SIGN. Each neighborhood descriptor AkXΘk gets multiplied in FSGNN by a scalar
value αk, which can be interpreted as a particular form of attention. Each αk is constrained by
a softmax layer to be in [0,1] and

∑r
i=1αi = 1. Thanks to the addition of this "architectural at-

tention layer" (and an additional L2 normalization layer applied on top of each AkXΘk), FSGNN
managed to achieve with the same set of neighborhood descriptors (obtained with powers of
the symmetric normalized adjacency matrix and its version with added self-loops) consistently
good performance across both homophilic and heterophilic datasets. FSGNN additionally out-
performed SIGN on the large ogbn-papers100M dataset. While no ablation study is provided
in the paper to explain whether this is due to extra normalization step, the architectural atten-
tion layer, or simply better hyperparameters, we conjecture that the vectors of weights α could
have played a role in the performance improvement, as it introduces a form of regularization
provided that Ω doesn’t have scores (of potentially different magnitudes) that nullify the effect
of the attention mechanism.

Moving now in a slightly different direction, another work strongly related to SIGN is Scal-
able and Adaptive Graph Neural Network (SAGN) of Sun et al [238]. Drawing inspiration from
the Jumping Knowledge Networks we discussed in Section 3.3, SAGN introduces an attention
mechanism between the first and the second layer of SIGN to reduce the information collected
from multiple different hops to a single d-dimensional vector of features (powers of a unique
diffusion operator Ā are used in [238] to compute neighborhood descriptors, and the features
of the target node are used as key for computing the attention scores). Thanks to the intro-
duction of this attention layer, the number of parameters in the final classifier reduces from
O(d ′(r +1)× c) to O(d ′× c), thus hopefully limiting the chance of overfitting (especially when
many powers of Ā are used in the pre-processing phase and only a small labelled set is avail-
able8). In addition to this, a label propagation [228] and a self-training [156] strategy is intro-
duced in [238] to boost performance. In experimental evaluation, SAGN (especially when com-
bined with label propagation and self-training) outperformed SIGN on Reddit, Flickr, PPI, Yelp
and ogbn-product, and achieved slightly better performance than FSGNN on ogbn-papers100M.

The main intuition at the core of SIGN was to remove any dependency between model pa-

8A variation of SAGN that moves the attention layer at the beginning of the model, and thus admits a configuration
with a number of parameters that is completely independent on r, was additionally presented in [280].

75 6.4 Discussion

rameters and diffusion steps, in order to realize a GCNN with the same computational complex-
ity of a MLP. A more extreme version of our architecture can be achieved completely removing
any aggregated descriptor from the input to the model, and letting a MLP applied on the target
node features to do all the heavy lifting (thus completely removing the need of any diffusion
step on the input graph). While this might not always be feasible to achieve good performance
(think for instance to a heterophilic graph where the labels to predict depend only on the be-
havior of the neighbors, and there is no dependency across nodes), Zhang et al. showed that
performance close to the one of a teacher GCNN can be achieved in practice with a suitable
student MLP (which is applied only on a given node features) that is trained with Knowledge
Distillation (KD) [279]. In this setting, the teacher GCNN is trained first on the possibly small
labeled set, then predictions Y(U)obs are computed with the trained teacher for each observed but

unlabeled node in the graph, and finally Y(U)obs is used as soft labels for instructing the MLP in

addition to the provided hard training labels. Y(U)obs effectively operates here as a regularizer,
which aims at transferring the inductive bias of the teacher GCNN to the student MLP by train-
ing this on a much larger (and varied) labeled set, and hopefully limiting overfitting as a result.
In experimental evaluation, Zhang et al. observed how using Y(U)obs as part of the training set
consistently pushes the results of the MLP to match the ones of the teacher GCNN, while only
requiring a fraction of the computational complexity. On ogbn-products, the approach proposed
in [279] (named Graph-Less Neural Networks, GLNNs) achieved comparable performance to the
one of SIGN that we reported in our original paper9.

9At the time of writing, an implementation of SIGN outperforming the results showed by GLNNs in [279] is available
in the leaderboard of ogbn-products. It should not be excluded, however, that GLNNs could be able to achieve similar
(or better) results if trained using a more performing teacher model or a more suitable student architecture.

76 6.4 Discussion

Part II

Applications of GCNNs

77

Chapter 7

Neutrino detection via IceCube Signal
Classification

This chapter is based on "Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski, Zahra
Ronaghi, Prabhat Prabhat, Wahid Bhimji, Michael M Bronstein, Spencer R Klein, and Joan Bruna.
Graph neural networks for icecube signal classification. In 2018 17th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA), pages 386–391. IEEE, 2018". Here, the
author collaborated with Nicholas Choma on the design and implementation of the method, and
the design and execution of the experiments.

7.1 Introduction

In [60]we studied the application of GCNNs to the challenging problem of neutrino detection in
the IceCube observatory. IceCube is a 1 km3 neutrino observatory located at the South Pole [14].
Its primary purpose is to look for high-energy neutrinos (above 100 gigaelectronvolts (GeV))
that are produced by the same cosmic particle accelerators (e.g. supernovas) that produce ultra-
high energy cosmic-rays [108]. Its 5,160 sensors (digital optical modules, or DOMs) detect the
Cherenkov light that is produced by the relativistic charged particles (i.e. muons) resulting from
high-energy neutrinos interacting in the Antarctic ice1. The Cherenkov light is emitted at a fixed
angle [19] and may scatter before being observed by sensors that are typically 10 to 60 meters
away from the track. Sixty sensors are deployed on each of 86 strings placed in holes drilled
in the ice. Most of the strings are on a 125 m triangular grid, but 8 strings, forming the ’Deep
Core’ infill array, have much tighter spacing. On most strings, the DOMs are deployed every 17
m, from 1450 m to 2450 m below the surface; in Deep Core, most of the DOMs are deployed
with a 7 m spacing between 2100 and 2450 m. IceCube includes an array of 81 surface stations
called IceTop, designed to study cosmic ray interactions in the atmosphere. The schematic view
of the IceCube detector is shown in Figure 7.1. The sensors record the photon arrival times

1When a neutrino interacts with a molecule of ice, it creates a secondary charged particle named muon, which
travels nearly collinearly with the neutrino [19]. Electrically charged particles when they travel through a mean with
a phase velocity faster than the one of light produce a radiation named Cherenkov light. The goal of the detector is to
capture the Cherenkov light produced by the neutrino generated muons, and use this to infer the travelling direction,
arrival time, and energy of astrophysical neutrinos [19, 18].

79

80 7.1 Introduction

Figure 7.1. The IceCube Neutrino Observatory with the in-ice array, its sub-array Deep-
Core, and the cosmic-ray air shower array IceTop. The string color scheme represents
different deployment seasons. The top-right insert presents the top view of the IceCube
detector. The DeepCore sub-array is represented by open circles.

using waveform digitizers. Across the array, the relative arrival times are known to better than
3 ns [14].

IceCube observes two classes of events. Contained events occur when neutrinos interact with
the ice of the detector. Through-going events are instead long-lived muons which are produced
outside the detector and can travel many kilometers in the ice. They can be produced in neutrino
interactions, or in cosmic-ray air showers that occur when high-energy cosmic-rays interact with
molecules available in the upper atmosphere (producing down-going atmospheric muons).

In this work, we discuss methods to separate the signal (muons from neutrinos) from the
background (muons from cosmic-ray showers). For the present purposes, the main difference
between the signal and the background is the stochasticity of the energy deposition, which
translates into clumpiness in the light emission from the track. Muons from neutrinos are single
high-energy muons, which lose energy mainly through stochastic (random) processes [63, 15],
leading to a very uneven light emission2. In contrast, muons from cosmic-ray interactions come
in bundles containing from one (rarely) to hundreds of muons, and typically have relative low
energy. As low energy muons lose energy smoothly [12, 63] (the stochasticity of energy losses
for a given muon increases with its energy [63]), there is negligible fluctuation in their energy
deposition, which leads to smoother patterns on the sensor network (Figure 7.2).

We generated two Monte Carlo datasets for our experimentation, one for signal and one
for background, and used them for all three methods discussed in this section. In our signal

2The amount of energy lost can generally be considered proportional to the amount of emitted light [63].

81 7.1 Introduction

Figure 7.2. The characteristic pattern of light deposition for muon bundles (left) and a
high-energy single muon with visible stochastic light emission along the track (right). The
red line shows the muons track, while each colored bubble represents a DOM that saw light
in the event. The colors indicate the relative light arrival time, from red (earliest) to blue
(latest), while the size of the bubbles indicates the number of observed photons.

simulation set, neutrino energies range from 100 GeV to 108 GeV. The astrophysical neutrino
data set was assumed to follow a power law (∂ Nν/∂ Eν ∝ E−2

ν , with ∂ Nν(Eν) the number
of neutrinos ν between Eν and Eν + ∂ E), while the cosmic-ray air shower background was
generated with the CORSIKA simulation package [116]. The energy range of cosmic ray primary
particles entering the atmosphere in our background simulation set is 600 GeV to 105 GeV. No
other backgrounds have been taken into consideration in our experiments.

For both the signal and background classes, more energetic events are more likely to pass
the event selection process [100]. To efficiently generate our samples, we sampled the signal
and background events following a distribution that is more biased towards energetic events
with respect to their real one (this allowed a more efficient use of computational resources
as less samples were discarded by the filtering scheme). To maintain the real distribution of
background and signal events, each event received a weight at generation time, so that the
dataset’s weighted histogram reproduced the (unweighted) histogram we would have had if
the dataset was sampled from the original spectrum.

The particles produced by these simulations were then run through an IceCube-specific de-
tector simulation, which included the generation of Cherenkov light, light propagation through
the ice, and the detector response. The DeepCore array and IceTop stations were excluded
during the pre-selection process. The resulting simulated data were run through the standard
IceCube calibration and reconstruction packages.

To be usable by IceCube, the predictions of any detection model must have a reasonably high
signal-to-noise ratio (SNR) in a given year. To evaluate the performance of different methods,
we decided a priori to evaluate the methods on the basis of how many events they could find,
subject to maintaining a 1:1 SNR (i.e. the best model is the one that retrieves the largest amount
of positive events in a given year, while not retrieving more false positives than true positives).
Since the background is many orders of magnitude larger than the signal [18], this requires a
very high level of rejection.

82 7.2 Methodology

7.2 Methodology

To classify the simulated signals dependently on the event they describe, we evaluated three
different architectures: a physics baseline implemented by the IceCube collaboration, a clas-
sic 3D Convolutional Neural Network, and a GCNN implemented on the irregular grid of the
detector using the MoNet patch operator [184].

7.2.1 Physics Baseline

IceCube has developed two conventional (i. e. not machine learning based) criteria to measure
stochasticity and reject muon bundles. The first divides the muon track into 120 meter long
segments, and determines the light output from the track in each segment [15]. This light out-
put is then fit to a line, and a pseudo-χ2 as the sum of squared residuals is calculated (residuals
are defined in this case as the difference between the measured energy loss in a given segment
and the expected one). Events with large pseudo-χ2 are very stochastic (as they show strong
variations w.r.t. the mean energy loss) and thus likely represent single muons from neutrinos.
The second approach also reconstructs the light deposition along the track, by examining the
light output in 50 meter long segments, apportioning light from each DOM to the nearest seg-
ment. Then, the largest muon’s energy loss across all segments is divided by the median energy
loss, giving a peak/median ratio [12]. The results from these two methods are correlated, but
the correlation is low enough that there is value in using both. IceCube uses a combination of
hand-tuned selections on these two variables to select single muon events [199].

7.2.2 3D Convolution Neural Networks

Since the IceCube detector has an irregular hexagonal shape, classic CNNs cannot be directly
applied to signals defined over the sensor network. To evaluate the performance of this specific
class of models, we thus mapped the DOMs of the detectors to voxels in a discrete 10×20×60
3D grids (with the last dimension matching the number of DOMs in each string of sensors).
Deepcore strings were mapped on the 3D grid with strings {86, 81, 82} on one row and strings
{85, 79, 84, 83, 80} on a different one. Zero padding was used to fill the input signals for
voxels that were not associated with any DOM. To classify a provided input, we trained a ResNet
[110] with 18 residual convolutional layers, which was identified with a grid search as a good
architecture for classifying the input signals.

7.2.3 Graph Convolutional Neural Networks

Due to the irregular structure of the detector’s sensor network (which presents different densi-
ties of sensors in different regions of space), mapping the sensors to a 3D grid doesn’t necessarily
well describe the sensors position unless very fine grained (and thus large) grids are used to
describe the space. This, however, could require very large filters (or many convolutional lay-
ers) to learn meaningful local patterns with classic CNNs (due to the potentially large distance
that pairs of sensors could show in such 3D grids), which could easily lead to overfitting. On
top of this, as both background and target events are typically localized in the sensor network
(Figure 7.2), vast regions of the grid typically do not carry meaningful information about the
input signal. Resorting to classic CNNs to process the mapped information can thus lead to

83 7.2 Methodology

a waste of computational resources, as all areas of the grid are processed by the architecture
independently on whether they carry meaningful features or not.

Graph construction. An alternative approach to process the information retrieved by the
DOMs is to describe the sensor network as an attributed directed graph. Each DOM corre-
sponds in the graph with a node, and two nodes are connected by an arc if they fall within a
given distance. The relative position of two sensors (defined by the tuple (∆x ,∆y,∆z)) is de-
scribed via attributes defined over the arcs of the graph itself. As no discretization takes place
to describe the position of different sensors in this scenario, the size of the graph equals the
number of DOMs in the detector, and the exact relative position of two neighboring sensors can
be used to define accurate filters in space.

Graph convolutional layers. In our experiments, we constructed a GCNN resorting to the
MoNet patch operator defined in Chapter 3 for learning meaningful patterns on the provided
graph. To contain the computational complexity of the model, instead of processing for each
event the whole sensor network, only the DOMs that were activated in the given event were
considered for constructing the associated graph. Different events thus show graphs of different
sizes in input to the model, and no zero-padding is required to fill in the gaps as it was the case
for classic CNNs. Due to the small number of positive samples available for training, resorting
to a single Gaussian kernel with zero mean (and thus realizing isotropic filters) turned out to
be the architecture able to achieve best performance in our experiments. In our model, the
relevance ai j of a given neighbor j of a target node i was computed as:

ai j =
edi j

∑

k edik
; (7.1)

di j = −
1
2
∥xi − x j∥2/σ2; (7.2)

where xi and x j denotes the spatial coordinates of the ith and jth DOM respectively, and σ is
a learnable scalar parameter controlling the locality of the kernel and how fast information is
allowed to spread across distant nodes.

Differently from equation (3.4), since we just use one kernel for aggregating information
on the neighborhood of a target node i and no self-loops are used in the definition of our
graph, convolutional filters are implemented in our architecture via a linear combination of the
neighborhood features and the ones of i, to ensure that i’s features are processed by the filter:

GConv(l)(X(l)) = (AX(l)|| X(l))w(l) + b(l). (7.3)

Here w(l) is a 2d(l)-dimensional vector of learnable weights, b(l) is a bias, and σ is the scaling
parameter that is used in the definition of attention matrix A (which is shared across layers).
Please note that matrix A can (and most likely is) different for different events, in virtue of
the node sampling defined at the beginning of this paragraph. Each graph convolutional layer
is obtained concatenating the output of two different set of filters, which use two different
activation functions (ReLU and the identity function respectively):

X(l+1) = ReLU
�

GConv(l,1)(X(l))
�

||GConv(l,2)(X(l)). (7.4)

This was experimentally found beneficial to achieve better performance.

84 7.3 Results

Table 7.1. Unweighted and weighted number of signal and background events within each
dataset

Unweighted # Weighted

Dataset Signal Background Signal Background

Training 12624 54745 7.8 37275
Validation 6313 27373 3.9 18648
Test 6313 27373 3.9 18632
Final Evaluation 8487 366433 5.2 250982

Table 7.2. Performance of several methods in terms of expected number of signal and
background events returned in a year. Our GCNN outperforms both the 3D CNN and the
physics baseline both in terms of SNR and overall number of retrieved positive events.

events per year

Method Signal Background Signal:Noise

Physics Baseline 0.922 0.934 0.987
3D CNN 1.815 1.937 0.937
GCNN 5.772 1.937 2.980

Graph pooling. To predict the class of a given event, the output features of the last graph
convolutional layer L are pooled together by summing over the vertices of the associated graph:

x (pool)
k =

n
∑

i=1

x (L)ik , k = 1, . . . , d(T); (7.5)

here n is the number of vertices in the graph of the given event. This produces a d(L)-dimensional
vector x(pool), which is then fed in input to a logistic regression classifier to predict the class of
the given event:

ŷ = sigmoid((x(pool))⊤w(pool) + b(pool)); (7.6)

w(pool) is again a d(L)-dimensional vector of weights and b(pool) is the scalar bias parameter of
the output layer.

7.3 Results

Model training, validation, and testing were completed using a signal and a background dataset
containing 25,250 and 109,491 events, respectively. Each dataset was subdivided into 50%
training, 25% validation, and 25% test sets. We trained each model up to 100 epochs, perform-
ing early stopping once performance was maximized on the validation set. For each considered
architecture, the configuration that performed the best on the test set was selected for final
evaluation on an additional evaluation dataset. Final model evaluation was performed using
8,487 and 366,433 signal and background events respectively.

85 7.3 Results

Figure 7.3. Receiver operating characteristic curve for various methods considered. The
green square and blue X indicate the evaluation point for the GCNN and CNN, respectively.

As mentioned at the beginning of this work, each event is assigned a weight at data gen-
eration time that allows to reproduce the real distribution of both the positive and negative
class. Training and evaluation was performed on weighted samples, in order to take into ac-
count the discrepancy in size between the two classes. Table 7.1 displays the number of events
for both the signal (SG) and background (BG) classes within each dataset, with and without
event weighting. The number of weighted events for a given class within a given dataset is the
sum of all weights of events in the dataset which belong to that class. As it emerges from the
table, while the class imbalance is large for the unweighted samples, it is even larger once event
weighting is applied.

For each event, a 6-dimensional feature vector is associated to each DOM. Such vector con-
tains the x , y, z position of its corresponding DOM, the sum of charge in the first pulse within
the sensor, the sum of charge in all pulses within the sensor, and the time at which the first pulse
crosses the DOM activation threshold3. 6 graph convolutional layers were used to implement
our GCNN, while 18 layers were used in the implementation of ResNet as mentioned in Section
7.2.

Figure 7.3 displays receiver operating characteristic (ROC) curves for both the GCNN and

3Cherenkov photons are converted to electrons in DOMs through photomultiplier tubes (PMTs). When photons hit
the photocathode of a PMT they release electrons that are amplified in the DOM, resulting in a measurable current. The
current generated in the DOMs is then discretized in a series of pulses describing the time and amount of charge moved
by the photons, to allow processing of the retrieved information with digital systems. A DOM records and discretizes
the generated current only when this passes an activation threshold of 0.25 photoelectrons [100].

86 7.4 Discussion

CNN models as evaluated on the final evaluation set. As it is possible to see, the GCNN outper-
forms both the physics baseline and the 3D CNN in almost all conditions (the 3D CNN achieves
better performance for FPRs > 0.1, however such operative conditions are not interesting due
to the large amount of FPs the models would retrieve in practice).

Table 7.2 displays the number of weighted signal and background events each model is
expected to select per year. To determine the values displayed in the table we used the TPR and
FPR as assessed on the final evaluation dataset, and we estimated the number of TPs and FPs
the model is expected to return assuming that performance remain the same over a year (an
estimate of∼ 21 positive events and∼ 645,683 background events per year have been used for
calculation here). For our best model (i.e. the GCNN), we selected as evaluation point the one
that maximizes the number of retrieved events while maintaining a SNR> 1.0. For the 3D CNN,
we used as evaluation point the one showing the same FPR of the GCNN, in order to provide
a meaningful comparison on the expected number of retrieved signals the two models allow
to achieve for comparable number of FPs. Our GCNN outperforms both the physics baseline
and the 3D CNN by identifying 6.3x and 3.2x more signal events respectively. Signal-to-noise
ratio (SNR) is additionally 3x better for the GCNN with respect to both models at the selected
evaluation points. As reference, if we were to select as evaluation point the one where the 3D
CNN returns the same number of TPs as the GCNN, roughly 250x more FPs would be retrieved
by the model.

7.4 Discussion

Future research. Despite having small sample sizes (especially for the positive class), our
results shows the possibility of a marked improvement from application of GCNNs over the
physics baseline and demonstrates a huge potential of this approach for signal classification
within the IceCube detector. In future works, it would be interesting to analyze the performance
that different graph convolutional layers (or layers able to deal with sets, e.g. [276]) could allow
to achieve, as no other implementation besides the MoNet architecture was evaluated in this
work. Investigating richer pooling mechanisms (e.g. DiffPool [273]) could also allow to boost
performance further.

Related works. To the best of our knowledge, the work discussed in this chapter was the
first application of GCNNs to neutrino detection. In follow up works, GCNNs have additionally
been used for the classification of KM3NeT signals4 [214], as well as for the reconstruction
of events in IceCube5 [182, 13, 241] and TRIDENT6 [183]. It also should be noted that, as
particle detectors often retrieve sparse information that naturally does not fit over grids or
sequences (but rather appears as unordered sets of data possibly showing interesting pairwise
relations) [229], several other works have been proposed in the last years that more broadly
apply GCNNs in the realm of High Energy Physics. In this direction, GCNNs have been applied
for jet tagging [118, 209, 189, 190] (i.e. identifying the type of particle that originated a
jet7), pileup mitigation [172, 179] (i.e. identifying which particles belong to uninteresting

4KM3NeT is an alternative neutrino detector that is under construction at the bottom of the Mediterranean sea.
5The reconstruction of a neutrino event involves inferring the type of neutrino that caused the event as well as its

direction and energy [4].
6TRIDENT is a new neutrino observatory that is being built in the South China Sea.
7A jet is a cone-shaped spray of particles that derives from the hadronization of isolated quarks or gluons that are

created in high-energy proton-proton collisions.

87 7.4 Discussion

interactions deriving from the collision of high density beams), particle tracking [86, 130] (i.e.
identifying which hits in a detector correspond to which particles), and more. As a review of
the aforementioned methods is beyond the scope of this work, we refer the interested reader
to [229] for a more extensive revision of the literature, and to [75] for specific application of
GCNNs at the Large Hadron Collider.

88 7.4 Discussion

Chapter 8

Fake News Detection on Social Media

This chapter is based on "Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and
Michael M Bronstein. Fake news detection on social media using geometric deep learning. Repre-
sentation Learning on Graphs and Manifolds workshop, 2019".

8.1 Introduction

In the past decade, social media have become one of the main sources of information for peo-
ple around the world. Yet, using social media for news consumption is a double-edged sword.
On the one hand, it offers low cost, easy access, and rapid dissemination. On the other hand,
it comes with the danger of exposure to ‘fake news’ containing poorly checked or even inten-
tionally false information aimed at misleading and manipulating the readers to pursue certain
political or economic agendas.

The extensive spread of fake news has recently become a global problem and threat to mod-
ern democracies. The diffusion of fake news before the United States 2016 presidential elec-
tions [40] and the Brexit vote in United Kingdom has become for instance the centerpiece of the
controversy surrounding these political events and allegations of public opinion manipulation.
Due the very high societal and economic cost of the phenomenon [121], fake news detection in
social media has attracted enormous attention in the academic and industrial realms in recent
times [150].

Prior works. Broadly speaking, existing approaches for fake news detection can be catego-
rized into two main categories: content-based and context-based solutions1.

Content-based approaches can be classified in two main sub-categories: style-based and
knowledge-based. Style-based approaches rely on linguistic (lexical and syntactical) features
that can capture deceptive cues or writing styles in the content of an article [17, 221, 213, 204,
201]. Knowledge-based approaches make predictions by comparing the facts contained in a
given piece of news against a knowledge base / graph [85, 247, 227]. The main drawback
of style-based approaches is that they can be defied by sufficiently sophisticated fake news
that does not immediately appear as fake. Knowledge-based approaches might fail instead

1Please note, the two classes of approaches outlined in this section are not mutually exclusive, and hybrid solutions
that use features from both classes can be found in the literature [231].

89

90 8.2 Dataset

at processing news that contain new information that cannot be verified with the potentially
outdated ground truth. Additionally, linguistic features are generally language-dependent in
both cases, which limits the applicability of these approaches.

Context-based solutions, on the other hand, process the interactions that users might have
with pieces of news, together with information about the news authors / publishers, to infer
the veracity of a given article [222, 231]. An interesting class of context-based solutions is
represented in particular by propagation-based approaches [50, 147, 167]. As it was shown by
Vosoughi et al. in [255], false and true information appear to spread in different ways on social
media. In order to predict the veracity of a given piece of news, propagation-based approaches
thus leverage the patterns that form when the target news spread over time on a given social
network. As propagation-based features can be content-agnostic (e.g. statistics describing the
structure of trees of posts that respond to each other [255], or features capturing properties of
the induced social network of users that share a given article [282]), they have the potential to
generalize across different languages, and geographies, as opposed to content-based features
that must be developed separately for each language. Furthermore, controlling the news spread
patterns in a social network is generally beyond the capability of individual users. Propagation-
based models could thus be hard to tamper with by adversarial attacks.

Main contribution. In [187], we proposed learning fake news specific propagation patterns
exploiting GCNNs. Our model is trained in a supervised manner on a large set of annotated fake
and true stories spread on Twitter in the period 2013-2018. We performed extensive testing of
our model in different challenging settings, showing that it achieves significantly high accuracy
(nearly 93% ROC AUC), it requires very short news spread times (just a few hours of propa-
gation), and performs well when the model is trained on data distant in time from the testing
data. The architecture, insights and experiments presented in this chapter are all the results
of the work we did at Fabula AI (our own startup that was acquired by Twitter in 2019). The
approach discussed herein represents therefore a possible application of GCNNs in an industrial
setting.

8.2 Dataset

One of the key challenges in machine-learning based approaches is collecting a sufficiently large,
rich, and reliably labelled dataset on which the algorithms can be trained and tested. As the
notion of ‘fake news’ itself is rather vague and nuanced, an intuitive approach to gather a large
dataset would be to exploit the notion of reliable or unreliable sources as a proxy for true or
false stories. However, what constitute a "reliable source" may change dependently on the views
of people, and in general not all articles from a trusted / untrusted source are necessarily true
/ fake news [255]. In our study, we opted for a data collection process in which each ‘story’ has
an underlying article published on the web, and each such story is verified individually. In our
classification of true or false statements we rely on professional non-profit fact-checking organi-
zations such as Snopes,2 PolitiFact,3 and Buzzfeed.4 We note that our use of the term fake news,
though disliked in the social science research community for its abuse in the political discourse,

2https://www.snopes.com/
3https://www.politifact.com/
4https://www.buzzfeed.com/

https://www.snopes.com/
https://www.politifact.com/
https://www.buzzfeed.com/

91 8.2 Dataset

Figure 8.1. Example of a single news story spreading on a subset of the Twitter social
network. Social connections between users are visualized as light-blue edges. A news
URL is tweeted by multiple users (cascade roots denotes in red), each producing a cascade
propagating over a subset of the social graph (red edges). Circle size represents the number
of followers. Note that some cascades are small, containing only the root (the tweeting
user) or just a few retweets.

refers to both misinformation and disinformation, i.e. unintentional (misinformation) as well
as deliberate spread of misleading or wrong narrative or facts (disinformation).

Data collection protocol. Our data collection process was inspired by and largely followed
the pioneering work of Vosoughi et al. [255]. We used a collection of news verified by fact-
checking organizations with established reputation in debunking rumors; each source fact-
checking organization provides an archive of news with an associated short claim (e.g. ‘Ac-
tress Allison Mack confessed that she sold children to the Rothschilds and Clintons’) and a label
determining its veracity (‘false’ in the above example). First, we gathered the overall list of fact-
checking articles from such archives and, for simplicity, discarded claims with ambiguous labels,
such as ‘mixed’ or ‘partially true/false’. Second, for each of the filtered articles we identified
potentially related URLs referenced by the fact-checkers, filtering out all those not mentioned
at least once on Twitter. Third, trained human annotators were employed to ascertain whether
the web pages associated with the collected URLs were matching or denying the claim, or were
simply unrelated to that claim. This provided a simple method to propagate truth-labels from
fact-checking verdicts to URLs: if a URL matches a claim, then it directly inherits the verdict;
if it denies a claim, it inherits the opposite of the verdict (e.g. URLs matching a true claim are
labeled as true, URLs denying a true claim are labeled as false). URLs gathered from different
sources, with same veracity and date of first-appearance on Twitter, were additionally inspected
to ensure they referred to different articles.

The last part of the data collection process consisted of the retrieval of Twitter data related

92 8.2 Dataset

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000

100

101

102

103

104

105

Cascade size

N
um

be
r

of
ca

sc
ad

es

Figure 8.2. Distribution of cascade sizes (number of tweets per cascade) in our dataset.

0 100 200 300 400 500 600 700 800 900
10−4

10−3

10−2

URL ID

Fr
ac

ti
on

of
ca

sc
ad

es

Figure 8.3. Distribution of cascades over the 930 URLs available in our dataset with at
least six tweets per cascade, sorted by the number cascades in descending order. The first
15 URLs (∼ 1.5% of the entire dataset) correspond to 20% of all the cascades.

to the propagation of news associated with a particular URL. Following the nomenclature of
[255], we term as cascade the news diffusion tree produced by a source tweet referencing a URL
and all of its retweets. For each URL, we searched for all the related cascades and enriched
their Twitter-based characterization (i.e. users and tweet data) by drawing edges among users
according to Twitter’s social network (see example in Figure 8.1).

With regard to this last step of data collection, our approach is significantly different from
the protocol of [255], where tweets linking to a fact-checking website were collected, thus
essentially retrieving only cascades in which someone has posted a ‘proof-link’ with the veracity
of the news. Though significantly more laborious, we believe that our data collection protocol
produces a much cleaner dataset.

Statistics. Figures 8.2–8.3 depict the statistics of our dataset. Overall, our collection con-
sisted of 1,084 labeled claims, spread on Twitter in 158, 951 cascades covering the period from
May 2013 till January 2018. The total number of unique users involved in the spreading was
202,375 and their respective social graph comprised 2, 443,996 edges. As we gathered 1, 129

93 8.2 Dataset

Figure 8.4. Subset of the Twitter network used in our study with estimated user credibility.
Vertices represent users, gray edges the social connections. Vertex color and size encode
the user credibility (blue = reliable, red = unreliable) and number of followers of each user,
respectively. Numbers 1 to 9 represent the nine users with most followers.

URLs, the average number of article URLs per claim is around 1.04; as such, a URL can be
considered as a good proxy for a claim in our dataset and we will thus use the two terms syn-
onymously hereinafter. We also note that, similarly to [255], a large proportion of cascades
were of small size (the average number of tweets and users in a cascade is 2.79, see also Fig-
ure 8.2 depicting the distribution of cascade sizes), which required to use a threshold on a
minimum cascade size for classifying these independently in some experiments (see details in
Section 8.4.1).

Features. We extracted the following features describing news, users, and their activity, grouped
into four categories: User profile (geolocalization and profile settings, language, word embed-
ding of user profile self-description, date of account creation, and whether it has been verified),
User activity (number of favorites, lists, and statuses), Network and spreading (social connections
between the users, number of followers / friends, cascade spreading tree, retweet timestamps,
retweet source device, and number of replies / quotes / favorites / retweets for the source
tweet), and Content (word embedding of the tweet textual content and included hashtags).

Credibility and polarization. The social network collected in our study manifests notice-
able polarization depicted in Figure 8.4. Each user in this plot is assigned a credibility score
in the range [−1,+1] computed as the difference between the proportion of (re)tweeted true
and fake news (negative values representing fake are depicted in red; more credible users are

94 8.3 Methodology

Figure 8.5. The architecture of our neural network model. Top row: GC = Graph Convo-
lution, MP = Mean Pooling, FC = Fully Connected, SM = SoftMax layer. Bottom row:
input/output tensors received/produced by each layer.

represented in blue). The node positions of the graph are determined by topological embed-
ding computed via the Fruchterman-Reingold force-directed algorithm [91], grouping together
nodes of the graph that are more strongly connected and mapping apart nodes that have weak
connections. We observe that credible (blue) and non-credible (red) users tend to form two dis-
tinct communities, suggesting these two categories of tweeters prefer to have mostly homophilic
interactions (i.e. interactions with similar users). Similar polarization has been observed before
in social networks, e.g. in the context of political discourse [64] and might be related to ‘echo
chamber’5 theories that attempt to explain the reasons for the difference in fake and true news
propagation patterns.

8.3 Methodology

8.3.1 Architecture and training settings

To build our classifier (which we named VeritasZero), we used a four-layer GCNN with two
convolutional layers (64-dimensional output features map in each) and two fully connected
layers (producing 32- and 2-dimensional output features, respectively) to predict the fake/true
class probabilities. Figure 8.5 depicts a block diagram of our model. One head of graph atten-
tion [252] was used in every convolutional layer to implement the filters together with mean-
pooling for dimensionality reduction. We used Scaled Exponential Linear Unit (SELU) [139] as
non-linearity throughout the entire network. Hinge loss was employed to train the neural net-
work (we preferred hinge loss to the more commonly used cross entropy loss as it outperformed
the latter in early experiments). No regularization was used with our model.

5An echo chamber is a closed environment where people are exposed only to information that reinforces (over and
over) their beliefs, potentially resulting in polarization. Such a phenomenon is particularly prevalent on social media
where users tend to follow only people with opinions similar to their own [230].

95 8.4 Results

8.3.2 Input generation

Given a URL u (or a cascade c arising from u) with corresponding tweets Tu = {t1
u, t2

u, ..., tN
u }

mentioning it, we describe u in terms of graph Gu. Gu has tweets in Tu as nodes and estimated
news diffusion paths plus social relations as edges. In other words, given two nodes i and j,
edge (i, j) ∈ Gu iff at least one of the following holds: i follows j (i.e. the author of tweet i
follows the author of tweet j), j follows i, news spreading occurs from i to j, or from j to i.

News diffusion paths defining spreading trees were estimated as in [255] by jointly consid-
ering the timestamps of involved (re)tweets and the social connections between their authors.
In particular, given tn

u (the retweet of a cascade related to URL u) authored by user an
u , and

{t0
u . . . tn−1

u } the (re)tweets immediately preceding tn
u belonging to the same cascade and au-

thored by users {a0
u, . . . , an−1

u }, then:

1. if an
u follows at least one user in {a0

u, . . . , an−1
u }, we estimate news spreading to tn

u from
the very last tweet in {t0

u . . . tn−1
u } whose author is followed by an

u ;

2. if an
u does not follow any of the users in {a0

u, . . . , an−1
u }, we conservatively estimate news

spreading to tn
u from the user in {a0

u, . . . , an−1
u } having the largest number of followers

(i.e. the most popular one).

Finally, nodes and edges of graph Gu have features describing them. Nodes, representing
tweets and their authors, were characterized with all the features presented in Section 8.26.
As for edges, we used features representing the membership to each of the aforementioned
four relations (i.e. following and news spreading, both directions). Our approach to defining
graph connectivity and edge features allows, in graph convolution, to spread information inde-
pendently of the relation direction while potentially giving different importance to the types of
connections. Features of edge (i, j) are concatenated to those of nodes i and j in the attention
projection layer to achieve such behavior.

8.4 Results

We considered two different settings of fake news detection: URL-wise and cascade-wise, using
the same architecture for both settings. In the first setting, we attempted to predict the true/fake
label of a URL containing a news story from all the Twitter cascades it generated. On average,
each URL resulted in approximately 141 cascades. In the latter setting, which is significantly
more challenging, we assumed to be given only one cascade arising from a URL and attempted
to predict the label associated with that URL. Our assumption is that all the cascades associated
with a URL inherit the label of the latter. While we checked this assumption to be true in
most cases in our dataset, it is possible that an article is for example tweeted with a comment
denying its content. We left the analysis of comments accompanying tweets/retweets as a future
research direction.

8.4.1 Model performance

For URL-wise classification, we used five randomized training/test/validation splits. On av-
erage, the training, test, and validation sets contained 677, 226, and 226 URLs, respectively,

6For tweet content and user description embeddings we averaged together the embeddings of the constituent words
(GloVe [200] 200-dimensional vectors pre-trained on Twitter).

96 8.4 Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

ti
ve

R
at

e

Figure 8.6. Performance of URL-wise (blue) and cascade-wise (red) fake news detection
using 24hr-long diffusion time. Shown are ROC curves averaged on five folds (the shaded
areas represent the standard deviations). ROC AUC is 92.70 ± 1.80% for URL-wise classi-
fication and 88.30 ± 2.74% for cascade-wise classification, respectively. Only cascades with
at least 6 tweets were considered for cascade-wise classification.

with 83.26% true and 16.74% false labels (± 0.06% and 0.15% for training and validation/test
set respectively). For cascade-wise classification we used the same split initially realized for
URL-wise classification (i.e. all cascades originated by URL u are placed in the same fold as
u). Cascades containing less than 6 tweets were discarded; the reason for the choice of this
threshold is motivated below. Full cascade duration (24 hr) was used for both settings of this
experiment. The training, validation, and test sets contained on average 3586, 1195, 1195 cas-
cades, respectively, with 81.73% true and 18.27% false labels (± 3.25% and 6.50% for training
and validation/test set respectively).

Our neural network was trained for 25,000 and 50,000 iterations in the URL-wise and
cascade-wise settings, respectively, using AMSGrad [215] with learning rate of 5 × 10−4 and
mini-batch of size one.

Figure 8.6 depicts the performance of URL-wise (blue) and cascade-wise (red) fake news
classification represented as a tradeoff (ROC curve) between false positive rate (fraction of true
news wrongly classified as fake) and true positive rate (fraction of fake news correctly classified
as fake). We use area under the ROC curve (ROC AUC) as an aggregate measure of accuracy.
On the above splits, our method achieved mean ROC AUC of 92.70±1.80% and 88.30±2.74%
in the URL-wise and cascade-wise settings, respectively.

Figure 8.7 depicts a low-dimensional plot of the last graph convolutional layer vertex-wise
features obtained using t-SNE embedding. The vertices are colored using the credibility score
defined in Section 8.2. We observe clear clusters of reliable (blue) and unreliable (red) users,
which is indicative of the neural network learning features that are useful for fake news classi-
fication.

Influence of minimum cascade size. One of the characteristics of our dataset (as well as the
dataset in the study of [255]) is the abundance of small cascades containing just a few users
(see Figure 8.2). Since our approach relies on the spreading of news across the Twitter social
network, such examples may be hard to classify, as too small cascades may manifest no clear

97 8.4 Results

Figure 8.7. T-SNE embedding of the vertex-wise features produced by our neural network
at the last convolutional layer representing all the users in our study, color-coded according
to their credibility (blue = reliable, red = unreliable). Clusters of users with different
credibility clearly emerge, indicative that the neural network learns features useful for fake
news detection.

diffusion pattern. To identify the minimum useful cascade size, we investigated the performance
of our model in the cascade-wise classification setting using cascades of various minimum sizes
(Figure 8.8). As expected, the model performance increases with larger cascades, reaching
saturation for cascades of at least 6 tweets (leaving a total of 5,976 samples). This experiment
motivates our choice of using 6 tweets as the minimum cascade size in cascade-wise experiments
in our study.

Ablation study. To further highlight the importance of the different categories of features
provided as input to the model, we conducted an ablation study by means of backward-feature
selection. We considered for this the four groups of features defined in Section 8.2: user profile,
user activity, network and spreading, and content. The results of ablation experiment are shown
in Figure 8.9 for the URL-wise (top) and cascade-wise (bottom) settings. In both settings, user-
profile and network/spreading appear as the two most important feature groups, and allow
achieving satisfactory classification results (near 90% ROC AUC) with the proposed model.

Interestingly, in the cascade-wise setting, while all features were positively contributing to
the final predictions at URL-level, removing tweet content from the provided input improves
performance by 4%. This seemingly contradictory result can be explained by looking at the
distribution of cascades over all the available URLs (Figure 8.3): 20% of cascades are associ-
ated to the top 15 largest URLs in our dataset (∼ 1.5% out of a total of 930). Since tweets

98 8.4 Results

3 4 5 6 7 8 9 10

0.82

0.84

0.86

Min. cascade size threshold

M
ea

n
R

O
C

A
U

C

Figure 8.8. Performance of cascade-wise fake news detection (mean ROC AUC, averaged on
five folds) using minimum cascade size threshold. Best performance is obtained by filtering
out cascades smaller than 6 tweets.

citing the same URL typically present similar content, it is easy for the model to overfit on this
particular feature. Proper regularization (e.g. dropout or weight decay) should thus be in-
troduced to avoid overfitting and improve performance at test time (we left this further study
for future research). For simplicity, by leveraging the capabilities of our model to classify fake
news in a content-free scenario, we decided to completely ignore content-based descriptors
(tweet word embeddings) for cascade-wise classification and let the model exploit only user-
and propagation-related features.

8.4.2 News spreading over time

One of the key differentiators of propagation-based methods from their content-based counter-
parts, namely relying on the news spreading features, potentially raises the following question:
for how much time do the news have to spread before we can classify them reliably? We con-
ducted a series of experiments to study the extent to which this is the case with our approach.

For this purpose, we truncated the cascades after time t starting from the first tweet, with
t varying from 0 (effectively considering only the initial tweet, i.e. the ‘root’ of each cascade)
to 24 hours (the full cascade duration) with one hour increments. The model was trained
separately for each value of t. Five-fold cross validation was used to reduce the bias of the
estimations while containing the overall computational cost.

Figure 8.10 depicts the performance of the model (mean ROC AUC) as function of the
cascade duration, for the URL-wise (top) and cascade-wise (bottom) settings. As expected,
performance increases with the cascade duration, saturating roughly after 15 hours in the URL-
wise setting and after 7 hours in the cascade-wise one, respectively. This different behavior is
mainly due to the simpler topological patterns and shorter life of individual cascades. Seven
hours of spreading encompass on average around 91% of the cascade size; for the URL-wise
setting, the corresponding value is 68%. A similar level of coverage, 86%, is achieved after 15
hours of spreading in the URL-wise setting.

We also note that remarkably just a few (∼ 2) hours of news spread are sufficient to achieve
above 90% mean ROC AUC in URL-wise fake news classification. Furthermore, we observe a
significant jump in performance from the 0 hr setting (effectively using only user profile, user ac-

99 8.4 Results

user profile user profile
network/spreading

user profile
network/spreading

content

user profile
network/spreading

content
user activity

0.85

0.9

0.95
R

O
C

A
U

C

user profile user profile
network/spreading

user profile
network/spreading

user activity

user profile
network/spreading

user activity
content

0.82

0.84

0.86

0.88

0.9

R
O

C
A

U
C

Figure 8.9. Ablation study result on URL-wise (top) / cascade-wise (bottom) fake news
detection, using backward feature selection. Shown is performance (ROC AUC) for our
model trained on subsets of features, grouped into four categories: user profile, network
and spreading, content, and user activity. Groups are sorted for importance from left to
right.

tivity, and content features) to ≥ 1 hr settings (considering additionally the news propagation),
which we interpret as another indication of the importance of propagation-related features.

8.4.3 Model aging

We live in a dynamic world with constantly evolving political context. Since the social network,
user preferences and activity, news topics and potentially also spreading patterns evolve in time,
it is important to understand to what extent a model trained in the past can generalize to such
new circumstances. In the final set of experiments of this chapter, we study how the model
performance ages with time in the URL-wise and cascade-wise settings. These experiments aim
to emulate a real-world scenario in which a model trained on historical data is applied to new
tweets in real time.

For the URL-wise setting, we split our dataset into training/validation (80% of URLs) and
test (20% of URLs) sets; the training/validation and test sets were disjoint and subsequent in
time. We assessed the results of our model on subsets of the test set, designed as partially
overlapping (mean intersection over union equal to 0.56± 0.15) time windows. Partial over-

100 8.4 Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.8

0.85

0.9

0.95

Diffusion time (hours)

M
ea

n
R

O
C

A
U

C

1 78 117 147 171 192 212 229 244 258 272 285 296 306 316 325 336 345 353 361 369 376 382 389 395

Average tweets/URL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.85

0.9

Diffusion time (hours)

M
ea

n
R

O
C

A
U

C

1 26 31 34 37 38 39 41 42 43 44 44 45 46 47 47 48 48 49 49 50 50 51 51 52

Average tweets/cascade

Figure 8.10. Performance of URL-wise (top) and cascade-wise (bottom) fake news detection
(mean ROC AUC, averaged on five folds) as function of cascade diffusion time.

lap allowed us to work on larger subsets while preserving the ratio of positives vs negatives,
providing at the same time smoother results as with moving average. This way, each window
contained at least 24% of the test set (average number of URLs in a window was 73± 33.34)
and the average dates of two consecutive windows were at least 14 days apart, progressively
increasing.

Figure 8.11 (top) captures the variation in performance due to aging of the training set
in the URL-wise setting. Our model exhibits a slight deterioration in performance only after
180 days. We attribute this deterioration to the change in the spreading patterns and the user
activity profiles.

We repeated the same experiment in the cascade-wise setting. The split into training/vali-
dation and test sets and the generation of the time windows was done similarly to the URL-wise
experiment. Each time window in the test set has an average size of 314± 148 cascades, and
two consecutive windows had a mean overlap with intersection over union equal to 0.68±0.21.
Figure 8.11 (bottom) summarizes the performance of our model in the cascade-wise setting. In

101 8.5 Discussion

60 80 100 120 140 160 180 200 220 240 260

0.8

0.85

0.9

0.95

Time between training and test sets (days)

R
O

C
A

U
C

60 80 100 120 140 160 180 200 220 240 260

0.8

0.9

Time between training and test sets (days)

R
O

C
A

U
C

Figure 8.11. Effects of training set aging on the performance of URL-wise (top) and cascade-
wise (bottom) fake news detection. Horizontal axis shows difference in days between average
date of the training and test sets. Shown is the test performance obtained by our model
with 24hrs diffusion (solid blue), test performance obtained with same model just using
the first tweet of each piece of news (0hrs diffusion, dashed orange), and test performance
obtained training on our original uniformly sampled five folds (veracity predictions are
computed for each URL/cascade when this appears as a test sample in our 24hrs five fold
cross-validation, dashed green).

this case, it shows a more robust behavior compared to the URL-wise setting, losing only 4%
after 260 days.

This different behavior is likely due to the higher variability that characterizes cascades as
opposed to URLs. As individual cascades are represented by smaller and simpler graphs, the
likelihood of identifying recurrent rich structures between different training samples is lower
compared to the URL-wise setting and, also, cascades may more easily involve users coming
from different parts of the Twitter social network. In the cascade-wise setting, our propagation-
based model is thus forced to learn simpler features that on the one hand are less discriminative
(hence the lower overall performance), and on the other hand appear to be more robust to
aging.

8.5 Discussion

Future research. There are multiple intriguing phenomena and hypotheses left for future
research in this work. Of particular interest is the experimental validation of the conjecture
that content agnostic features extracted from the propagation of a given article could allow
to realize models that are geography-independent. The study of adversarial attacks is also of
great interest, both from theoretical and practical viewpoints. We conjecture that attacks on

102 8.5 Discussion

graph-based approaches require social network manipulations that are difficult to implement
in practice. Finally, while our entire model was designed with fake news detection in mind, the
proposed architecture is general and can be also applied to other applications in the realm of
social network data analysis. Topic classification and virality prediction could in this sense be
interesting research directions to explore with an architecture like ours.

Related work. As mentioned at the beginning of this chapter, the approach described herein
was the core technology of Fabula AI. Our own startup that was acquired by Twitter back in
2019. To the best of our knowledge, Fabula AI was the first GDL-based startup that was ever
acquired by a major technology company, and VeritasZero was one of the earliest solutions
based on GCNNs for the detection of fake news that appeared in the literature7. From the
publication of our original paper, several other researchers investigated how GCNNs can be
used to mitigate misinformation [203, 101]. Here, we follow the categorization set forth in
[101], and we briefly mention relevant publications that provide the general direction the field
took from the publication of our original paper (for a more complete overview of the listed
methods, as well as others, the reader is invited to refer to [203, 101]).

Generally speaking, two classes of approaches are mostly related to our work: propagation-
based methods, and global context-based methods8.

As previously described in this chapter, propagation-based solutions aim at classifying a
piece of news dependently on how this spreads on social media. In this direction, today we find
in the literature approaches that combine multiple types of interactions (e.g. retweets, likes
or replies) to fully capture the diffusion of a given article / post on the social network [246],
approaches that use contrastive learning to make a given architecture more robust to missing or
fake interactions [115, 240, 163, 165], approaches that leverage the users historical behavior
to better characterize their properties [80], and approaches that treat cascades as temporal
networks to capture the evolution of their properties through time [59, 239].

Global context-based solutions, on the other hand, make predictions based on both the
interactions that pieces of news receive, as well as how these relate to each other. In this
class of methods, an heterogeneous graph depicting how multiple entities (e.g. articles, users,
news sources, topics, . . .) connect one to the other is built at first, and then predictions are
made based on the behavior of a neighborhood of a target article [275, 195, 178]. The main
benefit of this class of approaches is that, differently from propagation-based approaches that
process articles "in a vacuum", global context-based solutions allow the exchange of information
across related articles at prediction time (e.g. articles that are shared by the same user, refer to
the same entities, or are authored by the same source). This in turn allows to exploit a larger
amount of information for inference, which in turn can be beneficial for improving performance.

7The only work prior to ours that we are aware of is [167], where a RNN is used to diffuse information over cascades
of posts for rumor detection.

8Please note, what we refer to as "global context-based methods" is what is described in [101] as "heterogenous
social context-based methods". We rename this class of approaches for the sake of consistency with the definitions
outlined at the beginning of this chapter (we also avoid the use of adjective "heterogenous", as heterogenous graphs
can be used to represent both the spreading of multiple articles, and the the diffusion a single piece of news [181]).

Chapter 9

User identification in datasets of
pseudonymized interaction networks

This chapter is based on "Ana-Maria Crȩtu, Federico Monti, Stefano Marrone, Xiaowen Dong,
Michael Bronstein, and Yves-Alexandre de Montjoye. Interaction data are identifiable even across
long periods of time. Nature Communications, 13(1):313, 2022". Here, the author collaborated
with Ana-Maria Crȩtu on the design of the method, and the design and review of the experiments.

9.1 Introduction

An increasing fraction of our online and offline interactions is now captured by technology
[149]. Large amounts of interaction data are collected everyday by messaging apps, mobile
phone carriers, social media companies, and other apps to operate their service or for research
purposes. Interaction data typically consist of the pseudonyms of the interaction parties, the
timestamp of the interaction, and possibly further information describing more in detail the
interaction (e.g. length or place of interaction). As such, interaction data are deeply personal
and sensitive data. They record with high precision who we talk to or meet, at what time, and
for how long or where. Sensitive information can furthermore be inferred from interaction data.
Previous research showed in this sense how algorithms can predict from interaction data who
a person’s significant other is [21], their wealth [162, 34], demographics [87] or propensity to
overspend [234].

Interaction data can be shared or sold to third parties without users’ consent, so long as they
are anonymized. According to data protection regulations, such as the European Union’s Gen-
eral Data Protection Regulation (GDPR) [9], anonymized (or de-identified) data are indeed no
longer considered as personal data. The European Data Protection Board (EDPB) predecessor
(the Article 29 Working Party) defined anonymization as resistance to singling out, linkability,
and inference attacks [8]. In particular, the linkability criterion refers to “the ability to link, at
least, two records concerning the same data subject.” While guidances are subject to the inter-
pretation of the courts, matching identities between two pseudonymous datasets would likely
mean that they are not anonymous under GDPR.

Matching attacks have long been used to identify individuals in datasets using matching
auxiliary information, calling into question their anonymity. In [244], it was shown for instance

103

104 9.1 Introduction

D D

D D

D D

A A

D D A A

Figure 9.1. Setup of the behavioral profiling attack. (a) An example of a 2-IIG highlighted
in the larger graph it comes from. The vertices of the 2-IIG (inside the dashed green
circle) are respectively the originating individual (in yellow), 1-hop neighbors (in gray),
and the 2-hop neighbors (in purple). In solid lines are the edges that are part of the 2-IIG.
Edges are shown as a single directed edge of thickness proportional to the total number
of interactions. (b) The data available to the attacker consist of (left) 2-IIGs coming from
time period [tD, t ′D), usually as part of an anonymized dataset, and (right) auxiliary 2-IIG
data about a target individual (G2

i0,[tA,t ′A)
). (c) An example of mobile phone interaction

data.

how the Governor of Massachusetts of 1997 (William Weld) could be identified in a medical
dataset just using his zip code, birth date and gender. In [194], the movies people had watched
were used to identify users in the famous Netflix Prize dataset [26]. In 2013, de Montjoye et
al. showed how four spatio-temporal points (describing approximate locations and times of
individuals) were enough to uniquely identify someone in location data 95% of the time [69].
In [66], we proposed a profiling attack for interaction data based on GCNNs. While matching
attacks rely on auxiliary information that is fairly stable over time (e.g. gender, zip code, etc.)
or from the same time period (e.g. movies watched), profiling attacks use auxiliary information
from one time period to profile and identify a person in another non-overlapping time period.
This makes them more broadly applicable (and thus potentially appealing to an attacker), as
the auxiliary data does not have to come from the same time period as the dataset.

Using a Graph Attention Network [252], we learn in particular an individual’s behavioral
profile by extracting a vector representation of their weekly k-hop interaction network. Our
weekly profiles use only behavioral features, aggregating both node features and topological
information typically present in interaction data, and are optimized for identification. In a
mobile phone dataset of more than 40,000 people, our model was able to correctly identify

105 9.2 Experimental setup

a person 52% of the time based on their 2-hop interaction network (k = 2). Using only a
person’s interactions with their direct contacts (k = 1), our model could still identify them
15% of the time. We further show that the accuracy of our model only decreases slowly as
time passes with 24% of the people still being correctly identified after 20 weeks (k = 2),
thus making identification a real risk in practice. In a Bluetooth close-proximity dataset of
more than 500 people [223], our model is able to link together 1-hop interaction networks
with 26% accuracy. Our results provide evidence that disconnected and even frequently re-
pseudonymized interaction data (i.e. where users pseudonyms are changed often over time)
remain identifiable even across long periods of time, and may thus not satisfy the anonymization
standard set forth by the EDPB in particular with regard to the linkability criteria.

9.2 Experimental setup

9.2.1 Overview of the attack

Our attack exploits the stability over time of people’s interaction patterns to identify individuals
using k-hop interaction data.

We consider a service S collecting data about the interactions it is mediating. We denote by
I the set of individuals taking part in the communications recorded by S. For example, I could
be the subscribers of a mobile phone carrier and their contacts, the set of users of a contact
tracing app, the users of a messaging application, etc. We call interaction data the record
describing the interaction between two individuals using S, consisting of the pseudonyms of
the two individuals, a timestamp, and potentially other information. We define a time period
T = [t, t ′) as the set of all timestamps between a start t (inclusive) and end t ′ (exclusive).
Given a time period T , we define the interaction graph GT as the directed multi-graph with
node set I and an edge between two nodes for each interaction between the corresponding
individuals at a timestamp in the time period T . Each edge between two nodes is equipped
with additional data e describing the interaction. For example: if S is a mobile operator, e
would be a tuple containing the timestamp, the type of interaction (call or text), its direction
(i.e. which party initiated it), and the duration for calls; if S is a close-proximity app, e would
be the timestamp and the strength of the signal; etc. Given a time period T , i ∈ I an individual
and k = 1, 2, . . ., we define the k-hop Individual Interaction Graph (k-IIG) Gk

i,T of user i as the
sub-graph induced in GT by the set of nodes situated on paths of length at most k starting at i,
excluding interactions between the k-hop neighbors themselves (Figure 9.1 shows an example
of a 2-IIG).

Our attack model assumes that a malicious agent / attacker has access to (1) an anonymous
dataset D = {Gk

i,[tD ,t ′D)
| i ∈ ID} consisting of the k-IIGs of people in ID ⊂ I from time period

TD = [tD, t ′D), as well as to (2) auxiliary data Gk
i0,TA

consisting in the k-IIG of a known target
individual i0 ∈ ID, coming from a disjoint time period TA = [tA, t ′A) (i.e. t ′D ≤ tA or t ′A ≤ tD,
we denote by time delay the quantity D = t ′A− t ′D). We further assume that the attacker knows,
for each k-IIG, which node is at the center of the k-IIG (i.e. the originating node), and that the
k-IIGs are pseudonymized, meaning that a node will have a different pseudonym in each graph
it appears in. The attacker’s goal is to find the target i0 in D, which in our setting translates in
finding the Gk

i,[tD ,t ′D)
∈ D such that i = i0. If successful, the attacker is said to have identified i0

and is able to retrieve all their pseudonymized interactions from time period [tD, t ′D).
To reproduce a realistic scenario, in our experiments we assumed that an attacker has only

106 9.2 Experimental setup

i i

b

g

a

c

h j

e f

a

b

c

ha
(0)

hc
(0)

hb
(0)

hi
(0)

originating individual

1-hop neighbor

vector of behavioral features

1-hop out-of-network neighbor

d

2-hop neighbor

2-hop out-of-network neighbor

G2
i , W G2

i , W

_

Figure 9.2. An example of a simplified 2-IIG. On the left, a 2-IIG G2
i,W , with vertex set

consisting of originating individual i (yellow), and its 1-hop (a, b, c and d, gray) and 2-hop
(e, f , g, h and j, purple) neighbors. Edges between nodes are displayed as arrows with
thickness proportional to the number of interactions. The nodes marked with + (d, e and
f) can be considered as out-of-network, as they only have incoming edges in the 2-IIG. On
the right, the simplified 2-IIG Ḡ2

i,W , consisting of the originating individual i and the 1-hop
neighbors, with one edge between any two nodes if there was at least one edge in 2-IIG. In
the simplified 2-IIG, all nodes are equipped with behavioral features.

access to weekly interactions in the auxiliary data (i.e. [tA, t ′A) equals one week). In line
with this, the attacker splits the k-IIGs from D by weeks to obtain multi-graphs describing time
periods with same length of the one available in the auxiliary data: {Gk

i,Wn
: i ∈ ID , n ∈

{1, . . . , T ′}}. Here TD = W1 ∪ . . . ∪WT ′ and Wn = [tn, tn+1) is the n-th week of the dataset
(Wn ∩Wn′ = ; if n ̸= n′). The attacker singles out the most recent week WT ′ in TD, and uses
this for identifying the target user. The remaining data in TD are used to train the profiles of
k-IIGs. We used the most recent week in TD for identification as in our experiments TA always
follows TD. Under the assumption that user behavior changes gradually over time, the most
recent week of interactions WT ′ is the one that, most likely, better describes the behavior of the
target user in TA.

9.2.2 Preprocessing of a k-IIG

To train a model for identification, the attacker extracts behavioral features of each node avail-
able in a k-IIG, using the Bandicoot toolbox [70]. Bandicoot is an open-source Python library
used to compute a set of behavioral features from an individual’s list of mobile phone inter-
actions. Bandicoot takes as input an individual’s list of interactions, consisting of the other
party’s unique identifier, the interaction timestamp, type (call or text), direction (in or out), and
duration (if a call). The features range from simple aggregated features (e.g. the number of
voice and text contacts), to more sophisticated statistics (e.g. the percentage of an individual’s
contacts that account for 80% of their interactions).

Using Bandicoot, the attacker extracts a set of features (Table 9.3 and 9.4) for all nodes
in a weekly k-IIG with out-degree ≥ 1 that are at most k − 1 hops away from the originating
individual. For Bluetooth close-proximity data, the behavior of Bandicoot is adapted by set-
ting the type of interaction to call, the direction to out, and the call duration to the negative

107 9.3 Methodology

RSSI recorded for the interaction1. The positive out-degree is here a proxy for a node being a
subscriber to service S, which is the service providing the data. Being a subscriber to S is of
relevance in our experiments as it determines whether we have all the interactions made by a
specific user or not (e.g. all the interactions of the subscribers to a mobile phone carrier can be
available in a dataset released by said carrier, however only interactions initiated / received by a
subscriber to the carrier are available for non-subscribers). To the behavioral features extracted
with Bandicoot, the attacker adds:

• for the mobile phone dataset, estimates2 of the percentage of out-of-network calls, texts,
call durations and contacts based on the information available in the k-IIG;

• for the Bluetooth-close proximity dataset, the number of empty device scans and percent-
age of out-of-network interactions3.

The attacker further removes the featureless nodes from the k-IIG and collapses all directed
edges between two remaining nodes into a single directed edge of the same direction. The at-
tacker thus "simplifies" the (multi-graph) k-IIG Gk

i,W = (V,E) to obtain the simplified k-IIG Ḡk
i,W =

(V̄, Ē); a simple graph with V̄ = {v ∈ V | v is on a path of length at most k− 1 from node i ∧
v’s out-degree ≥ 1} and Ē = {(v, w) | v ∈ V̄ ∧ w ∈ V̄ ∧ ∃(v, w,e) ∈ E}. Figure 9.2 shows an
example of our reduction step.

9.3 Methodology

9.3.1 Model

To match an individual over different intervals of time, our k-IIG-based Behavioral Profiling
attack (BP-IIG) first computes a time-dependent profile for each user in ID through a Neural
Network (NN) applied over their corresponding simplified k-IIG. The structure of the network
we use slightly changes dependently on the value of k. For k ∈ {2, 3}, a Graph Attention
Network (GAT) is used to compute embeddings that depend on the features of the IIG’s nodes,
and how these are connected. For k = 1, a multi-layer perceptron is used instead, as simplified
1-IIGs are graphs consisting of a single node and no edges, and a GAT would naturally reduce
to a MLP in this scenario. In the case of the Graph Attention Network, for each node v of a
provided simplified k-IIG Ḡk

i,W , a feature embedding is computed applying multiple layers of
the form:

h(l)v =MLP(l)







h(l−1)
v ,

∑

w∈Nv

α(l)v,wh(l−1)
w







 (9.1)

α(l)v,w =
eLeakyReLU((W(l)

a h(l−1)
v ∥W(l)

a h(l−1)
w)T c(l)α)

∑

k∈Nv

eLeakyReLU
�

(W(l)
a h(l−1)

v ∥W(l)
a h(l−1)

k)T c(l)α
� (9.2)

1RSSI (Received Signal Strength Indicator) is a measure of strength of the Bluetooth signal received by a device,
which could be viewed as a proxy for distance.

2We refer to these statistics as estimates, as we can only guess which users are non-subscribers to S from our data.
3Interactions with out-of-network devices are marked appropriately in the Bluetooth dataset (ID = -2), as a result

we do not refer to these statistics as estimates.

108 9.3 Methodology

where the output h(l−1)
v of layer l − 1 is passed as the input to layer l, with l ∈ {1, . . . , L} (h(0)v

are here the input features of node v). For each layer 1 ≤ l ≤ L, MLP(l) is a multi-layer per-
ceptron with one hidden layer, followed by L2-normalization (which was found experimentally
beneficial for maximizing performance). α(l)v,w denotes the attention weight computed as a non-
linear function of the features of node v and its neighbor w ∈ Nv . In the case of the MLP,
L2-normalization is used after each layer for consistency.

Independently on the neural network we use for inferring user embeddings, the output
features h(L)i = NNΘ(Ḡk

i,W)i of the model for target individual i are used as the embedding of i
for the attack (Θ denotes here the parameters of the model). The network is trained to optimize
the matching accuracy, using the triplet loss [224], which optimizes the profile embeddings of
the same individual at different time periods (positive pair) to be closer to each other than
to those of different individuals at any time period (negative pair). A triplet of simplified k-
IIGs (Ḡk

i,W , Ḡk
i,W ′ , Ḡ

k
i′,W ′′) contains data from two individuals i and i′ (with i ̸= i′), such that

there are two k-IIGs for i, coming from two different weeks W and W ′, and a k-IIG for i′

from a time period W ′′ not necessarily different from W or W ′. Let hi,W(Θ) = NNΘ(Ḡk
i,W),

hi,W ′(Θ) = NNΘ(Ḡk
i,W ′) and hi′,W ′′(Θ) = NNΘ(Ḡk

i′,W ′′) denote the respective embeddings, the
triplet loss for our prediction problem is defined as:

ℓ(Θ) =max(0,∥hi,W(Θ)− hi,W ′(Θ)∥2 − ∥hi,W(Θ)− hi′,W ′′(Θ)∥2 +λ). (9.3)

As it appears from equation 9.3, minimizing the triplet loss pushes embeddings extracted
for a given individual at different intervals of time to be close one to the other, and embeddings
of different individuals to be distant one from the other. Once the model is trained on the
simplified k-IIG of D, the attacker tries to identify the target user i0 by computing the Euclidean
distance di0, j = ∥NNΘ∗(Ḡk

i0,TA
)−NNΘ∗(Ḡk

j,WT ′
)∥2 between the profile of i0 from target time period

TA and the profiles of all the individuals j ∈ ID from reference time period WT ′ . If the candidate
with the smallest distance (or one of the R candidates with the smallest distance) is the target
individual i0, we say that the attacker has correctly identified the target.

9.3.2 Training setup

Mobile phone metadata dataset. For each possible value of k ∈ {1,2, 3}, the attacker selects
the best hyperparameters for our model using cross validation on the periods /weeks W1:T ′ that
build our training set. Each test fold is composed of two consecutive weeks: the first week of
the test fold is used as reference week, while the auxiliary data about target individuals comes
from the second week. With T ′ being odd, the (T ′ − 1)/2 disjoint test folds are defined as
{(W2i+1,W2i+2), 0≤ i < (T ′−1)/2}. For each test fold, the previous two periods (modulo T ′−1)
are used as validation weeks for early stopping, while the remaining weeks are used for training.
Given the best hyperparameter set, the attacker trains the model on data from W1:T ′−3, using
validation weeks (WT ′−2,WT ′−1) for early stopping. The probability of identification within
rank 1 (i.e. the percentage of identified individuals), herein named pk, is the metric used for
early stopping in our experiments.

Model parameters of our architecture are optimized with stochastic gradient descent with a
mini-batch size of 64 and a weight decay coefficient of 10−3. We use a margin value of λ= 0.25
for implementing the triplet loss. For a given mini-batch, triplets are built as follows:

1. one week t is sampled uniformly at random among the training weeks;

109 9.3 Methodology

100 101 102 103 104

Rank R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p k

k = 0
NG-BF + 2
Random

100 101 102 103 104

Rank R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p k

k = 1
BP-IIG
BF + 2
Random

100 101 102 103 104

Rank R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p k

k = 2
BP-IIG
BF + ShDa
ShDa
AIF + 2
DF + 2
BF-N + 2
Random

100 101 102 103 104

Rank R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p k

k = 3
BP-IIG
BF + ShDa
ShDa
AIF + 2
DF + 2
Random

Figure 9.3. pk, the probability of identification within rank R when the time gap is one week,
R ∈ {1, . . . , N}. For each k ∈ {1,2, 3}, our method outperforms all the other approaches.

2. B individuals are sampled from ID and their simplified k-IIGs in week t are used as
anchor examples, while their k-IIGs in weeks t − 1 and t + 1 (modulo the number of
training weeks) are used as positive examples (2 positive samples per anchor are thus
constructed at this step);

3. for each anchor selected at the previous step, a negative example is selected via mini-
batch hard negative mining [224]. The k-IIG in the mini-batch with an embedding that is
the closest to the one of the target anchor, but that is associated to a different individual,
it’s the one used for training.

We train for a maximum number of 100 epochs, decreasing the learning rate by a factor of 2
after 5 epochs of non-increasing probability of identification pk computed over the validation
weeks (an epoch is defined as a full pass over at least one anchor example of each individual
in the training set). We stop training if the learning rate decreases below 10−5. ReLU was
the non-linearity of choice for our approach. The architecture configurations we obtained for
k ∈ {1,2, 3} as a result of our grid search are detailed below:

110 9.4 Results

Table 9.1. Examples of attention weight vectors for various intervals of the normalized
entropy. The examples are sampled uniformly at random from the given interval for the
first propagation step (l = 1). In each example, the weights are sorted decreasingly. In all
cases, one or two neighbors have an attention weight at least twice as large as the lowest
attention weight.

Interval Normalized entropy Attention weight vector

[0.85,0.90) 0.8990 [0.26, 0.24,0.19, 0.17,0.06, 0.04,0.04]
[0.90,0.95) 0.9495 [0.26,0.19, 0.11,0.10, 0.09,0.09, 0.08,0.08]
[0.95,1.00] 0.9827 [0.24, 0.14,0.13, 0.13,0.12, 0.12,0.12]

• For k = 1, we use a MLP with input size F = 23, a hidden layer of size 128 and output
size of 50.

• For k ∈ {2,3}, we use L = 2 convolutional layers. MLP(1) has an input size of 46, one
hidden layer of size 128 and an output size of 50. MLP(2) has an input size of 100, one
hidden layer of size 128 and an output size of 50. For what concerns the parameters c(l)a
and W(l)

a (l ∈ {1, 2}) used to compute the attention weights, we use F ′ = 20 features for
dimensionality reduction.

Bluetooth close-proximity dataset. Due to the small size of the available dataset, only k = 1
IIGs were considered in our experiments with Bluetooth data. A MLP, with one hidden layer
of size 64 and output size of 25, was used for identification in this scenario. The remaining
architectural and training details are the same described above for the mobile phone dataset.

9.4 Results

9.4.1 Mobile phone metadata dataset

The mobile phone interaction dataset we used in our experiments is composed of the 3-IIGs of
N = 43,606 subscribers of a mobile carrier collected over a period of T = 35 consecutive weeks
(T =W1 ∪ . . .∪WT =W1:T). We here consider the auxiliary profiling information available to
the attacker to be the k-IIG of the target individual from a week TA ∈ {WT ′+1, . . . ,WT } and the
anonymous dataset to be the k-IIGs of all the N people from the first T ′ = 15 weeks of data
(TD = W1:T ′). Unless specified otherwise, interactions from week WT ′+1 are the ones used as
auxiliary data. We report the probability of identification within rank R, defined as the fraction
of people among the N subscribers who are correctly identified by one candidate in the first R
positions (averaged over 10 runs).

Baselines. We compare our method with what is, to the best of our knowledge, the only
attack designed for mobile call k-hop graphs that was proposed before our own approach [225].
The method (herein denoted as ShDa) uses a random forest binary classifier trained on hand-
engineered node pair features to predict whether a pair of users represent the same individual
or not. For a given node i, a feature vector h(1)i ∈ R

FH corresponding with the histogram of the

111 9.4 Results

0.850 0.875 0.900 0.925 0.950 0.975 1.000
Normalized entropy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

v
e
 d

is
tr

ib
u

ti
o
n

 f
u

n
ct

io
n

a
 l = 1

0.850 0.875 0.900 0.925 0.950 0.975 1.000
Normalized entropy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

v
e
 d

is
tr

ib
u

ti
o
n

 f
u

n
ct

io
n

l = 2

0 1 2 3 4 5 6 7 8
Normalized range

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

v
e
 d

is
tr

ib
u

ti
o
n

 f
u

n
ct

io
n

b
 l = 1

0 1 2 3 4 5
Normalized range

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

v
e
 d

is
tr

ib
u

ti
o
n

 f
u

n
ct

io
n

l = 2

Figure 9.4. Cumulative distribution functions of the normalized entropy (a) and range
(b) of the attention weights used to aggregate the features available on neighbors of each
originating individual in the dataset. Two propagation layers are used in our model, each
column showing the corresponding distributions.

degrees of i’s 1-hop contacts is computed at first. For a pair of nodes (i, j), a number of F2
H

features are then constructed from the available histograms and fed in input to the classifier.

Each feature assumes a value equal to
|h(1)i, f −h(1)

j, f ′ |

max(h(1)i, f ,h(1)
j, f ′ ,1)

for 1 ≤ f ≤ FH and 1 ≤ f ′ ≤ FH . In

our experiments, we used the out-degree (number of contacts) of a node’s neighbors in the
k-IIG for computing the feature vectors (this provided an indication on the behavior of the
neighboring subscribers of the target node as well as the amount of non-subscribers available
in the k-IIG), and FH = 21 bins to compute our histograms. For a fair comparison with our
approach, when the degrees of 2-hop neighbors are available (i.e. for a 3-IIG), we computed
an additional feature vector h(2)i (consisting of the histogram of the degrees of the node’s 2-

hop neighbors), and we concatenated this to h(1)i before computing a pair descriptor. As our
GCNN-based approach exploits behavioral features which were not considered in [225], to
provide a comparison with an alternative learnable (but non-message passing) solution that
relies on the same features used by BP-IIG, we additionally introduced in our experiments an

112 9.4 Results

evolution of ShDA (herein referred to as ShDa+ BF), which exploits our behavioral embeddings
for computation. Provided a pair of nodes (i, j), we concatenated to the pair descriptor defined
in [225] the vector: (|bi, f − b j, f |) defined for 1 ≤ f ≤ F . Here, bi and b j are the nodes’ tuples
of bandicoot features. Hyperparameter tuning was done for ShDA and ShDA+BF similarly to
our GCNN-based approach.

On top of the method presented in [225], to provide reference performance for simpler (and
more easily manageable) solutions, seven additional non-learning-based approaches have been
considered in our comparison:

• Two baselines using the histogram of degrees h(1)i for k = 2, and [h(1)i ,h(2)i] for k = 3,
with L2 distance for matching (denoted as Degree Features (DF) + L2).

• Two baselines using the histogram of degrees computed for k = 2 and k = 3 from the
number of interactions instead of the number of contacts, and L2 distance for matching
(denoted All Interaction Features (AIF) + L2).

• Three baselines using our behavioral features with L2 distance for matching:

– Non-Graph based Behavioural Features (NG-BF + L2), a baseline that works in a
non graph-based scenario (k = 0) where a node’s interaction list is available to the
attacker, but the contacts’ identities are not (an attacker knows for instance in this
scenario how many calls a user has made but not who has called). NG-BF + L2 uses
only the behavioral features that do not exploit the graph information (i.e. features
2, 4, 6, 9-13, and 18-19 in Table 9.3).

– Behavioural Features (BF + L2), a baseline that uses all our behavioral features for
the target node (to be compared with our BP-IIG, for k = 1).

– Neighborhood Behavioural Features (BF-N + L2), a baseline that concatenates the
behavioral features of a target node to those of its top 5 neighbors (valid only for
k = 2 as the neighbors interactions are needed as well). The neighbors are ordered
decreasingly by the number of interactions, with tie-breaks decided by the total call
duration.

Performance comparison. Figure 9.3 shows that our method (k ∈ {1,2, 3}) vastly outper-
forms all the other approaches in the identification scenario. When k = 2 and 3, all baselines
using only the graph structure (i.e. ShDa, AIF + L2 and DF + L2) perform very poorly, with a
probability of identification (pk=2 or pk=3) within rank 1 of less than 1%. When we augment
the random forest method with the bandicoot behavioral features, its performance increases to
8.3% for k = 2 and 9.6% for k = 3, suggesting that the behavioral features help in our predic-
tion task. When k = 1, the BF + L2 baseline achieves a probability of identification (pk=1) equal
to 7.9%, which in turn outperforms the non-graph behavioral features-based approach (NG-BF
+ L2, k = 0), which only achieves 2.7%. On the other hand, BP-IIG correctly identifies people
14.7% of the times when k = 1, 52.4% of the times when k = 2, and 56.7% when k = 3. Higher
ranks probabilities show similar behavior for different values of k. For k = 1, the probability of
identifying the correct person among the top 10 candidates (rank 10) is 34.7%, while the rank
100 probability is 61.9% respectively. For k = 2, our model is able to rank the correct person
among the top 10 candidates 77.2% of the time and among the top 100 candidates 92.4% of
the time. For k = 3, probability of identification is 81.7% and 94.6% , for the top 10 and top
100 candidates respectively.

113 9.4 Results

5K 10K 15K 20K 25K 30K 35K 40K
Population size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p k

k = 3
k = 2
k = 1

10K 20K 30K 40K

10 6

10 5

10 4

p k k = 3
k = 2
k = 1

Figure 9.5. Attack’s performance with increasing population size. We show pk(N ′), the
probability of identification within rank 1 for k ∈ {1, 2,3} in a population of size N ′. The
95% confidence interval is shown in light blue. (Inset) shows the negative difference quotient
−∆pk(N ′) = −(pk(N ′)−pk(N ′−∆(N))/∆N ′. The probability of identification decreases with
the population size N ′, but at increasingly slower rates.

Other GCNNs. As an alternative to our attention-based GCNN, we evaluated in early exper-
iments the performance that a Message Passing Neural Network (MPNN) [99] (implemented
with summation for message aggregation) could achieve on our identification task. For MPNN,
the message between a node and a neighbor is computed by applying a linear layer to the con-
catenation of their features followed by a ReLU non-linearity. After tuning, MPNN achieves
comparable performance to GAT (for k = 2, p(GAT)

k=2 = 53.5% vs p(MPNN)
k=2 = 53.0% on the valida-

tion set, p-value: 0.11, 95% confidence intervals: [52.6, 53.4] for MPNN and [53.0, 53.9] for
GAT using 10 runs). As GAT provides more easily interpretable filters than MPNN (i.e. the rel-
evance of a neighbor can be determined by simply inspecting its attention weight), we decided
to stick with this approach in our exploration.

Analysis of attention weights We perform an analysis of the attention weights to gain in-
sights into our GCNN’s capacity to assign different weights to different neighbors of a node in
the aggregation step, and thus learn their relative importance. Figure 9.4(a) shows the cu-

114 9.4 Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time delay D (weeks)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p k

k = 3
k = 2
k = 1

Figure 9.6. Probability of identification when the time delay increases. We plot pk, the
probability of identification within rank 1 for k ∈ {1, 2,3} when the time delay between
the dataset and the attacker’s auxiliary information is equal to D weeks. The auxiliary
information is one week long. The 95% confidence interval is shown in light blue. The
vertical grey lines correspond to holidays.

mulative distribution of the normalized entropy4 of the attention weight vectors for both our
convolutional layers. Table 9.1 shows instead three random samples for various entropy inter-
vals. While entropy values tend to be high for our approach, there appears to be sufficient and
meaningful variation in the attention weights, suggesting that the model is able to capture the
relative importance of neighbors. This is further supported by Figure 9.4(b) which shows the
cumulative distribution of the normalized range of the attention weights5. For both our layers,
in more than ∼ 90% of the cases, the normalized range is larger than 1, which means that the
largest attention weight is at least twice as large as the smallest one(s). This further shows how
attention weights help discriminate between the neighbors.

Increasing population size. The performance of a profiling attack like ours likely depends
on the size of the population where one might want to identify a given target. To better under-
stand how well the attack scales with the population size, we evaluated its performance when
identifying N ′ ≤ N(N = 43, 606) people among the same N ′ people. For this analysis, the final
model trained on data from the N people was used. Ten random subsets of size N ′ were sampled
uniformly without replacement and the average probability of identification pk(N ′) (defined as

4The normalized entropy of a vector (α1, . . . ,α|Ni |) is defined as the ratio between the entropy
∑

1≤q≤|Ni |−αq ln(αq)
of the vector and ln(|Ni |) (i.e. the maximum entropy for a discrete probability distribution with |Ni | possible values).

5We define the normalized range of a vector α as (max(α)−min(α))/min(α).

115 9.4 Results

the fraction of people among the N ′ that are correctly identified within rank 1) was computed.
The probability of identification pk(N ′) was computed for N ′ = 2, for N ′ ∈ [1,000; 43,000]
using increments of∆N = 1000, and finally for N ′ = N . The difference quotient was computed
as ∆pk(N ′) = (pk(N ′)− pk(N ′ −∆N ′))/∆N ′.

Figure 9.5 shows that the probability of identification decreases with the reference popula-
tion size, but that∆pk(N ′) decreases fast as N ′ grows. The difference quotient seems to be still
decreasing around N ′ = N , suggesting that the probability of identification would decrease at
an even slower rate for larger values of N ′.

Degradation through time. The accuracy of our behavioral model is likely to decrease as
time passes: people change behavior, make new friends and lose contact with others. Figure
9.6 shows that, despite this, the probability of correct identification only slowly decreases with
the time delay D = t ′A − t ′D. Even after 20 weeks, our model still correctly identifies people
pk=2 = 24.3% of the time for k = 2. This suggests that the profiles our model extracts from the
data capture key behavioral features of individuals. The probability of identification decreases
similarly slowly with time for k = 3 and k = 1.

Interestingly, Figure 9.6 also shows that the probability of identification (pk) visibly de-
creases when the time delay is of 8, 11, 12, and 17 weeks, respectively. In a post-hoc analysis,
we found that they all correspond to weeks containing a national holiday. This further sug-
gests that our model captures a person’s routine weekly behavior, both weekdays and weekend,
and consequently loses some accuracy when a user’s behavior changes in response to external
events.

More auxiliary data. We have so far assumed that the attacker has access to only a week
of a target individual’s data (i.e. their auxiliary information is the target individual’s k-IIG
from one week). In practice, an attacker might however have access to more weeks of data
from an individual. In the D4D challenge6 for instance, data were re-pseudonymized every two
weeks [33]. To simply evaluate the extent to which more auxiliary data increase accuracy, we
combine the predictions from growing sequences of target weeks used as auxiliary data. For
1≤ LW ≤ T−T ′ (LW denotes the number of weeks in the auxiliary data or TA), we combine the
predictions from the T ′+1, . . . , (T ′+ LW)-th target weeks using a majority vote: the candidate
that was ranked first most of the times is the final prediction. The tie-breaks are decided by
the lowest total Euclidean distance between the target individual embedding and the highest
ranked candidates embeddings.

Figure 9.7 shows how having auxiliary data over several weeks further improves the per-
formance of the attack. For k = 2, the probability of correct identification increases from
pk=2 = 52.4% with one week of auxiliary data to pk=2 = 66.0% with LW = 16 weeks. In-
terestingly, the probability of correct identification for all values of k increases fast and then
plateaus around LW = 8, even slightly decreasing after LW = 16 and LW = 15 for k = 2 and
k = 3, respectively. While this might seem surprising at first, we hypothesize this to be due to
small changes to people’s behavior over time. This makes auxiliary data that are more distant in
time less useful than closer one and sometimes slightly detrimental. The maximum probability

6Orange’s "Data for Development" challenge is an open data challenge consisting of four mobile phone datasets (one
of these describing a pseudonymized mobile interaction network of 5,000 customers in the Ivory Coast), which was
released with the intent of fostering scientific research and collaborations with African scientists.

116 9.4 Results

A

Figure 9.7. Probability of identification for increasing time period length of auxiliary data.
For each k ∈ {1,2, 3}, we plot pk, the probability of correct identification (R= 1) when the
attacker’s auxiliary data TA consist of LW weeks, 1≤ LW ≤ 20 (the largest value for each k
is marked with an ’x’ for each model). The 95% confidence interval is shown in light blue.
(Inset) shows the difference quotient ∆pk(LW) = pk(LW)− pk(LW − 1) for 2≤ L ≤ 20.

for k = 1 is at LW = 20 weeks (pk=1 = 19.4%), for k = 2 at LW = 16 weeks (pk=2 = 66.0%),
and for k = 3 at LW = 13 weeks (pk=3 = 69.3%).

Generalization over unseen users and periods of time. In our last set of experiments, we
validated that our attack generalizes by examining its performances when testing is performed
on a set disjoint from the training set in the identities of the individuals, time periods used,
or both. We use a dataset composed of weeks 1 to T ′ + 1 = 16 and all k-IIGs to design the
following three different scenarios (Figure 9.8):

1. the testing, validation and training sets are disjoint in the time periods but not in the
identities of the originating individuals of the k-IIGs (Figure 9.8(a) and 9.8(b)). This is
the scenario considered in the previous paragraphs, with the data split as in Figure 9.8(a).

2. the testing, validation and training sets are disjoint in the identities of the originating
individuals of the k-IIGs but not in time (Figure 9.8(c)). This scenario can be a transduc-
tive problem (dependently on the data used for testing) as some people’s features used
at inference time might have been seen during training. For example, Alice, the originat-
ing individual for a k-IIG in the training set, could be a neighbor of Bob, the originating
individual for a k-IIG in the test set.

117 9.4 Results

Figure 9.8. The various evaluation scenarios. Testing, validation and training are performed
on sets disjoint in the time periods (a and b), the identities of the originating individuals
of the k-IIGs (c) or the time periods and the identities of the originating individuals of the
k-IIGs (d). The green, blue and yellow dataset parts are used for training, validation and
testing, respectively. In the validation and test parts, the first week is used as reference
week and the second one as target week.

3. the testing, validation and training sets are disjoint in the time periods, and in the iden-
tities of the originating individual of the k-IIGs (Figure 9.8(d)).

For a fair comparison of the three different configurations, the first scenario (Figure 9.8(b))
uses the first T ′−3 weeks of data from half the k-IIGs for training, while the other two scenarios
are trained on the other half of the users and all weeks (Figure 9.8(c)), or weeks 1 to T ′ − 3
(Figure 9.8(d)), respectively. This ensures that the validation and test sets are always the same
in our analysis. Table 9.2 shows that our attack is robust, and performs similarly across all the
three scenarios.

9.4.2 Bluetooth close-proximity dataset

In the Bluetooth close-proximity dataset [223], only 4 weeks T = W1 ∪ . . . ∪W4 := W1:4 are
available for experimentation. The attacker uses the first two weeks of data for training, the
second and third week of data for validation, and results are reported on the third and fourth

118 9.5 Discussion

Table 9.2. The probability of identification pk within rank 1 computed for individuals in
the test set when compared with users from the reference week, when the time delay is one
week for the three scenarios comparison, k ∈ {1, 2,3}. By design, the test set is common
across the three scenarios.

Split by week (%) Split by individuals (%) Split by individuals and weeks (%)

k = 1 22.8 23.1 23.0
k = 2 61.5 62.2 60.5
k = 3 66.5 66.8 66.6

week of data (i.e. T ′ = W3 and TA = W4). To increase the number of training samples per
individual and limit the chances of overfitting, the attacker generates 8 overlapping weeks of
data from the considered two training weeks. Because the training data contain a total of 14
days of interactions d1∪ . . .∪ d14, the attacker generates 8 overlapping weeks W ′1, . . . ,W ′8, with
W ′i = di ∪ . . .∪ di+6, 1 ≤ i ≤ 8. As it was the case for mobile phone interactions, we report the
probability of identification within rank R as a measure of performance, defined as the fraction
of people among the N subscribers who are correctly identified by one candidate in the first
R positions (averaged over 10 runs). Figure 9.9 shows that for k = 1 our approach is able
to identify target individuals pk=1 = 26.4% of the time for R = 1, and pk=1 = 60.1% of the
time for R = 10. These results provide evidence that our attack is general, and can deal with
human-human interaction data that go beyond mobile phone interactions.

9.5 Discussion

Commentary. Our results provide evidence of the urgent need to consider profiling attacks
when evaluating whether systems, protocols, or datasets satisfy the Article 29 WP’s definition of
anonymization [8]. In particular, they show how people’s interaction patterns remain identifi-
able across long periods of time allowing an attacker to link together data coming from disjoint
time periods with high accuracy even in large datasets. From a methodological perspective,
in our study we evaluated the effectiveness of our method using only a MLP, a Graph Atten-
tion Network and a Message Passing Neural Network. Likely, even better performance could
be achieved extending our grid search to a variety of different GDL architectures (for k > 1),
which in turn would make an attack like ours to pose an even stronger threat.

For what concerns possible defenses against our attack, one may consider to add noise to
the data to be released to mitigate the risk of identification (e.g. dropping interactions among
users, adding fake interactions, changing features values, . . .). However, unless the amount
of noise introduced is significant (which likely makes any result derived from such a dataset
meaningless), this would not necessarily protect well against future attacks [194, 249]. On the
other hand, access control mechanisms and approaches that provide provable privacy guaran-
tees (e.g. differentially private question-and-answer systems [129]) appear today as valuable
solutions to enable data analysis on pseudonymized interaction data, while limiting the risk of
identification [71].

Related works. Our approach for user identification in datasets of interaction networks is the
most recent work listed in this manuscript (it was indeed published in Nature Communications

119 9.5 Discussion

100 101 102

Rank R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p k

BP-IIG k=1

Figure 9.9. Probability of identification in a bluetooth close proximity network. We plot
pk=1, the probability of identification within rank R for k = 1. The 95% confidence interval
is shown in light blue for BP-IIG. Our method correctly identifies people pk=1 = 26.4% of
the time based on their 1-IIGs. Out of 10 people (R = 10), it is able to identify the right
person pk=1 = 60.1% of the time.

in 2022). While, to the best of our knowledge, there are no other papers following our own
that use GCNNs for introducing new possible attacks for interaction data7, our work is cited in
various recent publications, which stress the danger that attacks like ours pose for user identi-
fication [1, 170, 161, 205, 68]. As the primary goal of our paper was to raise awareness in the
community on the risk posed by profiling attacks and the identifiability of interaction data, it
appears that our efforts are actually having the positive effect we were hoping to achieve in the
very first place.

7It should be noted that a non-GCNN based profiling attack, similar to ours, has been recently introduced in [67].

120 9.5 Discussion

Table 9.3. The list of the 23 features used for the mobile phone interaction data. The
bandicoot toolbox methods for computing the features are provided. A dash symbol (-)
indicates that the feature was not computed using bandicoot.

Feature description Bandicoot method

1 Percentage of call contacts that percent_pareto_durations

account for 80% of the total call
duration

2 Percentage of initiated calls percent_initiated_interactions

3 Entropy of call contacts entropy_of_contacts

4 Percentage of calls that occurred percent_nocturnal

between 7PM and 7AM
5 Percentage of contacts that account percent_pareto_interactions

for 80% of the user’s calls
6 Number of outgoing calls number_of_interactions

7 Number of call contacts number_of_contacts

8 Number of text contacts number_of_contacts

9 Number of incoming calls number_of_interactions

10 Number of incoming texts number_of_interactions

11 Number of days, between 1 and 7, active_days

when the user was active
12-13 Mean/standard deviation of the intervent_time

time between two consecutive calls
recorded for the user

14-15 Mean/standard deviation of the balance_of_contacts

balance of the user’s call contacts,
where the balance is the ratio
between the number of outgoing
calls with a contact and the
total number of calls

16-17 Mean/standard deviation of the interactions_per_contacts

number of calls with each contact
18-19 Mean/standard deviation of call call_duration

durations
20 Percentage of out-of-network calls -
21 Percentage of out-of-network -

contacts
22 Percentage of out-of-network call -

duration
23 Percentage of out-of-network texts -

121 9.5 Discussion

Table 9.4. The list of the 16 features used for the Bluetooth close-proximity interaction
data. A dash symbol (-) indicates that the feature was not computed using bandicoot.

Feature description Bandicoot method

1 Number of days, between 1 and 7, active_days

when the user was active
2 Number of contacts number_of_contacts

3-4 Mean/standard deviation of the call_duration

negative RSSI of the user’s interactions
5 Percentage of interactions that percent_nocturnal

occurred between 7PM and 7AM
6 Entropy of contacts entropy_of_contacts

7-8 Mean/standard deviation of the balance balance_of_contacts

of the user’s contacts, where the
balance is the ratio between the number
of outgoing interactions with a contact
and the total number of interactions.

9-10 Mean/standard deviation of the interevent_time

time between two consecutive interactions
recorded for the user

11-12 Mean/standard deviation of the interactions_per_contacts

number of interactions with each contact
13 Percent of contacts that account percent_pareto_interactions

for 80% of the user’s interactions
14 Number of interactions number_of_interactions

15 Number of empty scans (i.e. where -
the other node’s ID is -1)

16 Percentage of out-of-network calls -
(i.e. where the other node’s ID is -2)

122 9.5 Discussion

Chapter 10

Conclusions and future works

In this thesis we introduced several different contributions to the Geometric Deep Learning field,
involving both new methodologies and applications of Graph Convolutional Neural Networks.

In the first part of the manuscript, we discussed possible generalizations of convolution for
graphs structured data (with our MoNet approach being able to deal with manifolds as well).
In Chapter 3, we discussed how filters for graph-/manifold-structured data can be implemented
resorting to an attention mechanism. In Chapter 4, we introduced MGCNN, a generalization of
[72] for signals defined over multiple graphs. In the same chapter, we also dicussed how multi-
graph GCNNs can be used for solving matrix completion tasks, and we introduced an architec-
ture (RMGCNN) able to address this problem via a learnable diffusion process. In Chapter 5, we
introduced CayleyNet, a spectral GCNN that enjoys spectral zoom properties. Thanks to their
ability to learn filters that specialize on a particular frequency band, Cayleynets outperformed
previously presented approaches on community detection, node classification and matrix com-
pletion problems. Finally, in Chapter 6 we introduced SIGN, a simple yet scalable GCNN that
by moving the application of a given set of shift operators at pre-processing time, it is able to
achieve competitive performance to prior art on very large graphs (in the order of even millions
of nodes and billions of edges), while showing the same computational complexity of a MLP.

In the second part of the manuscript, we investigated instead possible applications that
GCNNs can have in the realms of High Energy Physics, Social Network Data Analysis, and Data
Privacy. In Chapter 7, we showed how GCNNs can be used to detect high-energy neutrinos by
classifying signals retrived by the IceCube detector. Our approach outperformed in our analysis
the performance achieved by both a physics-inspired baseline, and by classic CNNs. In Chapter
8, we discussed Fake News detection, and we showed in particular how GCNNs can be used to
detect misinformation by classifying cascades of tweets / retweets that form on Twitter / X’s
social network when news spread. The method we dicussed in Chapter 8 corresponds to the
main technology that was at the base of our start-up, Fabula AI, which was acquired by Twitter
in 2019. Finally, in Chapter 9 we showed how GCNNs can be used for user identification in
datasets of pseudonymized interaction networks. Our results highlight how people’s interaction
patterns are identifiable even over long periods of time, and how profiling attacks (like ours)
should be taken into consideration when evaluating whether a given dataset or system satisfies
the anonymization guidelines set forth in GDPR. Taken all together, the results we presented in
the second part of this thesis (together with what discussed in Chapter 4) provide a glimpse of
the wide applicability that GCNNs can have in a variety of different fields.

123

124 10.1 Future works

10.1 Future works

For what concerns areas of future research, there are two main directions that naturally emerge
from our own work.

New methodologies. The first direction concerns the design and analysis of increasingly more
effective approaches for processing graph-structured data. In this general area, there are in par-
ticular two recent lines of work that we would like to point out, as we believe can be a source
of inspiration for future research. The first one considers the design of provably more expressive
GCNNs. As it was shown by Morris et al. [191] and Xu et al. [266], message-passing neu-
ral networks have an expressivity that is bound by the 1-Weisfeiler Lehman (WL) isomorphism
test, and are thus limited in the class of functions they can implement on a provided graph (e.g.
MPNNs cannot count the number of induced subgraphs that are isomorphic to a pattern of size
equal to 3 or higher [55]). As a result of this, many researchers devoted their efforts in the
last years to develop new architectures that, by enriching the way in which message passing
is realized, are able to achieve an expressivity that goes beyond the 1-WL test. Despite the lit-
erature on this topic is extensive (please refer to [278, 155] for some recent review papers),
there are still challenges that need to be addressed in this area [192]. One research direction
that we find especially interesting concerns the design of efficient expressive GCNNs. GCNNs
with an expressive power beyond the 1-WL test generally come with a high computational cost
compared to MPNNs (e.g. k-GNN [191], a GCNN with an expressive power matching the one
of a k-WL test, requires a O(|V|k+1) operations per layer), which hinders their applicability on
sufficiently large domains. As of today, it is unclear however whether the GCNNs we have with
a given level of expressivity are as efficient as possible, and more scalable designs could be
feasible, especially for specific families of graphs [192]. In some recent efforts, Dimitrov et
al. [77] and Bause et al. [24] highlighted in this direction how maximally expressive GCNNs,
which show the same computational complexity of MPNNs, can actually be realized if we re-
strict the domain of application to planar and outer-planar graphs, respectively1. We believe
that further studies on the complexity of expressive GCNNs would be valuable for the commu-
nity, as they could unlock the design of more scalable architectures (for the whole family of
graphs, or for specific classes of interest), and ultimately improve the applicability of this class
of approaches in the real-world. The second line of work pertains instead to dynamic / temporal
graphs (i.e. graphs that show nodes, edges or attributes that evolve over time). In this direc-
tion, despite the vast majority of approaches for learning representation on graphs assume the
input domain to be static, several examples of real-world relational data actually show some
form of temporal behavior (e.g. users in social networks build and loose connections over time,
new user-item interactions constantly form on e-commerce websites, . . .). While in principle it
is possible to apply approaches designed for static graphs on dynamic graphs by ignoring the
temporal evolution of the network, this has been shown to be sub-optimal [265], as in many
cases it is the dynamics of the graph itself which carries meaningful information for solving the
considered prediction problem [219]. Recently, a variety of architectures (including our own
TGN [219]) have been proposed in the literature, which introduce different ways for producing
representations that capture the evolution of temporal networks [219, 265, 146, 258, 274].
However, if compared to solutions designed for "classic" static graphs, methodologies designed

1Please note, [77] requires a one-off pre-processing step with a complexity equal to a O(|V|2) to achieve, on planar
graphs, a maximally expressive linear time GCNN. [24] requires instead a O(|V|) amount of operations at pre-processing
time, and it is thus entirely linear in complexity w.r.t. the size of the vertex set.

125 10.1 Future works

for temporal graphs are still comparably few, and many problems appear under-explored in the
community (e.g. predicting the time of a future event, clustering nodes or groups of dynamic
graphs, characterizing the expressive power of different models, explaining the predictions of
a given architecture, . . .) [160]. The design and analysis of techniques able to effectively pro-
cess dynamic graphs represents today one of the fastest growing areas of research in the GDL
movement, for recent reviews on the matter we refer the reader to [6, 160].

GCNNs in the real-world. The second direction of research pertains instead to applications
of GCNNs on interesting real-world problems. When we started our journey into learning on
graphs, the GCNNs available in the literature were very few and they were predominantly ap-
plied on synthetic datasets, or citation networks, to showcase the performance they were able
to achieve. As highlighted at the beginning of this manuscript, today Geometric Deep Learning
is one of the most active topics in major machine learning conferences, and GCNNs are used for
a variety of relevant tasks that range from traffic prediction [74] to weather forecasting [148].
We believe that the methods discussed in Part II, (as well as our approach for matrix comple-
tion - Chapter 4 -, and our work on protein-protein interactions [93]) contributed to fostering
the popularity that GCNNs are enjoying today in numerous disciplines. Moving forward, we
find particularly fascinating the applications that GCNNs can have for natural sciences. Many
examples of "natural data" directly show in this sense a graph structure (e.g. molecules, protein-
protein interaction networks, signals retrieved by sensor networks, . . .) and are thus amenable
to be processed (or possibly generated [120, 173]) with graph-based approaches. In this direc-
tion, besides the applications in High Energy Physics that we discussed in Chapter 7, several
works recently appeared in the literature that apply GCNNs in the realm of Structural Biology.
In this area, one problem that has been receiving special attention is in particular the task of
drug discovery. As the space of synthesisable small molecules is extremely large (estimated to
be ∼ 1060), the search of effective and safe to use drugs cannot be done experimentally, and
scalable cost-efficient solutions are required to limit the time and money required for identifying
promising candidates [44]. Graph machine learning models have recently been playing an in-
creasingly more important role for the screening of promising molecules, thanks to their ability
of rapidly exploring vast molecular spaces in silico. In [237] GCNNs have been used for in-
stance to predict whether a molecule inhibits the growth of bacterium Escherichia coli, in [158]
GCNNs were used to discover an antibacterial compound (abaucin) that targets a pathogen that
shows resistence to multiple drugs (Acinetobacter baumannii), and in [262] GCNNs were used
to identify a new structural class of antibiotics. As a deep overview of applications of GCNNs in
Structural Biology, High Energy Physics, and other fields is beyond the scope of this work, we
refer the interested reader to [5, 75, 98] for further details on the subject.

126 10.1 Future works

Bibliography

[1] What anonymization techniques can you trust? https://desfontain.es/privacy/

trustworthy-anonymization.html.

[2] Mathematical models of social systems. https://users.ssc.wisc.edu/~jmontgom/

376textbook.htm.

[3] Britannica, the editors of encyclopaedia. "neutrino". https://www.britannica.com/

science/neutrino, .

[4] Machine learning method improves reconstruction and classification of low-energy
icecube events. https://icecube.wisc.edu/news/research/2022/11/machine-

learning-method-improves-reconstruction-and-classification-of-low-

energy-icecube-events/, .

[5] Graph geometric ml in 2024: Where we are and what’s next (part ii - applica-
tions). https://towardsdatascience.com/graph-geometric-ml-in-2024-where-

we-are-and-whats-next-part-ii-applications-1ed786f7bf63, .

[6] Temporal graph learning in 2024. https://towardsdatascience.com/temporal-

graph-learning-in-2024-feaa9371b8e2, .

[7] Food discovery with uber eats: Using graph learning to power recommendations. https:
//www.uber.com/en-GB/blog/uber-eats-graph-learning/.

[8] Article 29 data protection working party. opinion 05/2014 on anonymisation tech-
niques. https://ec.europa.eu/justice/article-29/documentation/opinion-

recommendation/files/2014/wp216_en.pdf, 2014.

[9] General data protection regulation. https://gdpr-info.eu/, 2016.

[10] Wikipedia links, english network dataset – KONECT, April 2017. URL http://konect.

uni-koblenz.de/networks/wikipedia_link_en.

[11] What are graph neural networks?, 2022. URL https://blogs.nvidia.com/blog/

what-are-graph-neural-networks/.

[12] MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Alt-
mann, T Anderson, M Archinger, et al. Characterization of the atmospheric muon flux
in icecube. Astroparticle physics, 78:1–27, 2016.

127

https://desfontain.es/privacy/trustworthy-anonymization.html
https://desfontain.es/privacy/trustworthy-anonymization.html
https://users.ssc.wisc.edu/~jmontgom/376textbook.htm
https://users.ssc.wisc.edu/~jmontgom/376textbook.htm
https://www.britannica.com/science/neutrino
https://www.britannica.com/science/neutrino
https://icecube.wisc.edu/news/research/2022/11/machine-learning-method-improves-reconstruction-and-classification-of-low-energy-icecube-events/
https://icecube.wisc.edu/news/research/2022/11/machine-learning-method-improves-reconstruction-and-classification-of-low-energy-icecube-events/
https://icecube.wisc.edu/news/research/2022/11/machine-learning-method-improves-reconstruction-and-classification-of-low-energy-icecube-events/
https://towardsdatascience.com/graph-geometric-ml-in-2024-where-we-are-and-whats-next-part-ii-applications-1ed786f7bf63
https://towardsdatascience.com/graph-geometric-ml-in-2024-where-we-are-and-whats-next-part-ii-applications-1ed786f7bf63
https://towardsdatascience.com/temporal-graph-learning-in-2024-feaa9371b8e2
https://towardsdatascience.com/temporal-graph-learning-in-2024-feaa9371b8e2
https://www.uber.com/en-GB/blog/uber-eats-graph-learning/
https://www.uber.com/en-GB/blog/uber-eats-graph-learning/
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://gdpr-info.eu/
http://konect.uni-koblenz.de/networks/wikipedia_link_en
http://konect.uni-koblenz.de/networks/wikipedia_link_en
https://blogs.nvidia.com/blog/what-are-graph-neural-networks/
https://blogs.nvidia.com/blog/what-are-graph-neural-networks/

128 Bibliography

[13] R Abbasi, M Ackermann, J Adams, N Aggarwal, JA Aguilar, M Ahlers, M Ahrens,
JM Alameddine, AA Alves, NM Amin, et al. Graph neural networks for low-energy event
classification & reconstruction in icecube. Journal of Instrumentation, 17(11):P11003,
2022.

[14] Rasha Abbasi et al. The IceCube data acquisition system: Signal capture, digitization,
and timestamping. Nucl. Instrum. Meth. A, 601:294–316, 2009.

[15] Rasha Abbasi et al. An improved method for measuring muon energy using the truncated
mean of dE/dx. Nucl. Instrum. Meth. A, 703:190–198, 2013.

[16] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman,
Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph
convolutional architectures via sparsified neighborhood mixing. In international confer-
ence on machine learning, pages 21–29. PMLR, 2019.

[17] Sadia Afroz, Michael Brennan, and Rachel Greenstadt. Detecting hoaxes, frauds, and
deception in writing style online. In Proc. IEEE Symp. Security and Privacy (SP), pages
461–475, 2012.

[18] M. Ahlers, K. Helbing, and C. Pérez de los Heros. Probing particle physics with icecube.
arXiv:1806.05696, 2018.

[19] J Ahrens, X Bai, R Bay, SW Barwick, T Becka, JK Becker, K-H Becker, E Bernardini,
D Bertrand, A Biron, et al. Muon track reconstruction and data selection techniques
in amanda. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 524(1-3):169–194, 2004.

[20] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. arXiv preprint arXiv:2006.05205, 2020.

[21] Yaniv Altshuler, Nadav Aharony, Micky Fire, Yuval Elovici, and Alex Pentland. Incremen-
tal learning with accuracy prediction of social and individual properties from mobile-
phone data. In 2012 International Conference on Privacy, Security, Risk and Trust and
2012 International Conferenece on Social Computing, pages 969–974. IEEE, 2012.

[22] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank
vectors. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 475–486. IEEE, 2006.

[23] Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-
Pablo Silva. The logical expressiveness of graph neural networks. In 8th International
Conference on Learning Representations (ICLR 2020), 2020.

[24] Franka Bause, Fabian Jogl, Patrick Indri, Tamara Drucks, David Penz, Nils Kriege, Thomas
Gärtner, Pascal Welke, and Maximilian Thiessen. Maximally expressive gnns for outer-
planar graphs. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023.

[25] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geomet-
ric framework for learning from labeled and unlabeled examples. JMLR, 7:2399–2434,
2006.

129 Bibliography

[26] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35. New York, 2007.

[27] A. R. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex net-
works. Science, 353(6295):163–166, 2016.

[28] K. Benzi, V. Kalofolias, X. Bresson, and P. Vandergheynst. Song recommendation with
non-negative matrix factorization and graph total variation. In Proc. ICASSP, 2016.

[29] Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix
completion. arXiv preprint arXiv:1706.02263, 2017.

[30] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages
2546–2554. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/4443-
algorithms-for-hyper-parameter-optimization.pdf.

[31] K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. The extreme classifi-
cation repository: Multi-label datasets and code, 2016. URL http://manikvarma.org/

downloads/XC/XMLRepository.html.

[32] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neu-
ral networks with convolutional arma filters. IEEE transactions on pattern analysis and
machine intelligence, 44(7):3496–3507, 2021.

[33] Vincent D Blondel, Markus Esch, Connie Chan, Fabrice Clérot, Pierre Deville, Etienne
Huens, Frédéric Morlot, Zbigniew Smoreda, and Cezary Ziemlicki. Data for develop-
ment: the d4d challenge on mobile phone data. Preprint at https://arxiv.org/abs/
1210.0137, 2012.

[34] Joshua Blumenstock, Gabriel Cadamuro, and Robert On. Predicting poverty and wealth
from mobile phone metadata. Science, 350(6264):1073–1076, 2015.

[35] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency informa-
tion in graph convolutional networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 3950–3957, 2021.

[36] Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. A survey on spectral
graph neural networks. arXiv preprint arXiv:2302.05631, 2023.

[37] Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. FAUST: Dataset and
evaluation for 3D mesh registration. In Proc. CVPR, 2014.

[38] D. Boscaini, J. Masci, E. Rodolà, and M. M. Bronstein. Learning shape correspondence
with anisotropic convolutional neural networks. In Proc. NIPS, 2016.

[39] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Michael M Bronstein, and Daniel
Cremers. Anisotropic diffusion descriptors. In Computer Graphics Forum, volume 35,
pages 431–441. Wiley Online Library, 2016.

[40] Alexandre Bovet and Hernán A Makse. Influence of fake news in Twitter during the 2016
US presidential election. Nature Communications, 10(1):7, 2019.

http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://arxiv.org/abs/1210.0137
https://arxiv.org/abs/1210.0137

130 Bibliography

[41] J. Breese, D. Heckerman, and C. Kadie. Empirical Analysis of Predictive Algorithms for
Collaborative Filtering. In Proc. Uncertainty in Artificial Intelligence, 1998.

[42] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?
arXiv preprint arXiv:2105.14491, 2021.

[43] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

[44] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.

[45] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

[46] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected
networks on graphs. arXiv:1312.6203, 2013.

[47] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro Acosta, Johannes Totz, Zehan
Wang, and Wenzhe Shi. Real-time video super-resolution with spatio-temporal networks
and motion compensation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4778–4787, 2017.

[48] Vanessa Cai, Pradeep Prabakar, Manuel Serrano Rebuelta, Lucas Rosen, Federico Monti,
Katarzyna Janocha, Tomo Lazovich, Jeetu Raj, Yedendra Shrinivasan, Hao Li, et al.
Twerc: High performance ensembled candidate generation for ads recommendation at
twitter. 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD,
2023.

[49] E. Candes and B. Recht. Exact matrix completion via convex optimization. Comm. ACM,
55(6):111–119, 2012.

[50] Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. Information credibility on twit-
ter. In Proceedings of the 20th international conference on World wide web, pages 675–684,
2011.

[51] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca,
Thomas Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph
neural networks for link prediction with subgraph sketching. ICLR, 2023.

[52] Jianfei Chen and Jun Zhu. Stochastic training of graph convolutional networks, 2018.

[53] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolutional
networks via importance sampling. In ICLR, 2018.

[54] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In International conference on machine learning, pages
1725–1735. PMLR, 2020.

131 Bibliography

[55] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks
count substructures? Advances in neural information processing systems, 33:10383–
10395, 2020.

[56] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi
Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep
learning for recommender systems. In Proceedings of the 1st workshop on deep learning
for recommender systems, pages 7–10, 2016.

[57] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-
gcn: An efficient algorithm for training deep and large graph convolutional networks.
In KDD, 2019.

[58] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. arXiv preprint arXiv:2006.07988, 2020.

[59] Jiho Choi, Taewook Ko, Younhyuk Choi, Hyungho Byun, and Chong-kwon Kim. Dynamic
graph convolutional networks with attention mechanism for rumor detection on social
media. Plos one, 16(8):e0256039, 2021.

[60] Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski, Zahra Ronaghi,
Prabhat Prabhat, Wahid Bhimji, Michael M Bronstein, Spencer R Klein, and Joan Bruna.
Graph neural networks for icecube signal classification. In 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 386–391. IEEE, 2018.

[61] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[62] Yunfei Chu, Xiaofu Chang, Kunyang Jia, Jingzhen Zhou, and Hongxia Yang. Dy-
namic sequential graph learning for click-through rate prediction. arXiv preprint
arXiv:2109.12541, 2021.

[63] IceCube Collaboration et al. The icecube neutrino observatory iii: Cosmic rays. arXiv
preprint arXiv:1111.2735, 2011.

[64] Michael Conover, Jacob Ratkiewicz, Matthew R Francisco, Bruno Gonçalves, Filippo
Menczer, and Alessandro Flammini. Political polarization on twitter. In Proc. ICWSM,
2011.

[65] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recom-
mendations. In Proceedings of the 10th ACM conference on recommender systems, pages
191–198, 2016.

[66] Ana-Maria Crȩtu, Federico Monti, Stefano Marrone, Xiaowen Dong, Michael Bronstein,
and Yves-Alexandre de Montjoye. Interaction data are identifiable even across long pe-
riods of time. Nature Communications, 13(1):313, 2022.

[67] Ana-Maria Crȩtu, Miruna Rusu, and Yves-Alexandre de Montjoye. Re-pseudonymization
strategies for smart meter data are not robust to deep learning profiling attacks. In In
Proceedings of the Fourteenth ACM Conference on Data and Application Security and Privacy
(CODASPY â24), 2024.

132 Bibliography

[68] Danielle Movsowitz Davidow, Yacov Manevich, and Eran Toch. Privacy-preserving trans-
actions with verifiable local differential privacy. In 5th Conference on Advances in Finan-
cial Technologies, 2023.

[69] Yves-Alexandre de Montjoye, César A Hidalgo, Michel Verleysen, and Vincent D Blondel.
Unique in the crowd: The privacy bounds of human mobility. Scientific reports, 3:1376,
2013.

[70] Yves-Alexandre de Montjoye, Luc Rocher, and Alex Sandy Pentland. bandicoot: A python
toolbox for mobile phone metadata. The Journal of Machine Learning Research, 17(1):
6100–6104, 2016.

[71] Yves-Alexandre De Montjoye, Sébastien Gambs, Vincent Blondel, Geoffrey Canright,
Nicolas De Cordes, Sébastien Deletaille, Kenth Engø-Monsen, Manuel Garcia-Herranz,
Jake Kendall, Cameron Kerry, et al. On the privacy-conscientious use of mobile phone
data. Scientific data, 5(1):1–6, 2018.

[72] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Proc. NIPS, 2016.

[73] Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph
convolutional networks. AI Open, 4:73–79, 2023.

[74] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez,
Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with
graph neural networks in google maps. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pages 3767–3776, 2021.

[75] Gage DeZoort, Peter W Battaglia, Catherine Biscarat, and Jean-Roch Vlimant. Graph
neural networks at the large hadron collider. Nature Reviews Physics, pages 1–23, 2023.

[76] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvec-
tors a multilevel approach. IEEE transactions on pattern analysis and machine intelligence,
29(11):1944–1957, 2007.

[77] Radoslav Dimitrov, Zeyang Zhao, Ralph Abboud, and Ismail Ceylan. Plane: representa-
tion learning over planar graphs. Advances in Neural Information Processing Systems, 36:
16028–16054, 2023.

[78] Eid H Doha, Ali H Bhrawy, Dumitru Baleanu, Samer S Ezz-Eldien, and Ramy M Hafez.
An efficient numerical scheme based on the shifted orthonormal jacobi polynomials for
solving fractional optimal control problems. Advances in Difference Equations, 2015:1–
17, 2015.

[79] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing
graph neural network-based fraud detectors against camouflaged fraudsters. In Proceed-
ings of the 29th ACM international conference on information & knowledge management,
pages 315–324, 2020.

[80] Yingtong Dou, Kai Shu, Congying Xia, Philip S Yu, and Lichao Sun. User preference-
aware fake news detection. In Proceedings of the 44th international ACM SIGIR conference
on research and development in information retrieval, pages 2051–2055, 2021.

133 Bibliography

[81] G. Dror, N. Koenigstein, Y. Koren, and M Weimer. The Yahoo! music dataset and KDD-
Cup’11. In KDD Cup, 2012.

[82] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. arXiv preprint arXiv:2012.09699, 2020.

[83] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf,
Anh Tuan Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural
Information Processing Systems, 35:22326–22340, 2022.

[84] Moshe Eliasof, Lars Ruthotto, and Eran Treister. Improving graph neural networks with
learnable propagation operators. In International Conference on Machine Learning, pages
9224–9245. PMLR, 2023.

[85] Hugo Farinha and Joao P Carvalho. Towards computational fact-checking: Is the infor-
mation checkable? In 2018 IEEE international conference on fuzzy systems (fuzz-IEEE),
pages 1–7. IEEE, 2018.

[86] Steven Farrell, Paolo Calafiura, Mayur Mudigonda, Dustin Anderson, Jean-Roch Vlimant,
Stephan Zheng, Josh Bendavid, Maria Spiropulu, Giuseppe Cerati, Lindsey Gray, et al.
Novel deep learning methods for track reconstruction. arXiv preprint arXiv:1810.06111,
2018.

[87] Bjarke Felbo, PSundsøy, ’Sandy’ Alex Pentland, Sune Lehmann, and Yves-Alexandre
de Montjoye. Modeling the temporal nature of human behavior for demographics predic-
tion. Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2017. Lecture
Notes in Computer Science, vol 10536., 2017.

[88] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised
learning on graphs. Advances in neural information processing systems, 33:22092–22103,
2020.

[89] David J Field. What the statistics of natural images tell us about visual coding. In Human
Vision, Visual Processing, and Digital Display, volume 1077, pages 269–276. SPIE, 1989.

[90] Fabrizio Frasca∗, Emanuele Rossi∗, Davide Eynard, Ben Chamberlain, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. Graph Representa-
tion Learning and Beyond, ICML Workshop, 2020.

[91] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed
placement. Software: Practice and experience, 21(11):1129–1164, 1991.

[92] Satoshi Furutani, Toshiki Shibahara, Mitsuaki Akiyama, Kunio Hato, and Masaki Aida.
Graph signal processing for directed graphs based on the hermitian laplacian. In Ma-
chine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part I, pages 447–463.
Springer, 2020.

[93] Pablo Gainza, Freyr Sverrisson, Federico Monti, Emanuele Rodola, D Boscaini, Michael M
Bronstein, and Bruno E Correia. Deciphering interaction fingerprints from protein molec-
ular surfaces using geometric deep learning. Nature Methods, 17(2):184–192, 2020.

134 Bibliography

[94] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan Quan,
Jianxin Chang, Depeng Jin, Xiangnan He, et al. A survey of graph neural networks
for recommender systems: Challenges, methods, and directions. ACM Transactions on
Recommender Systems, 1(1):1–51, 2023.

[95] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine
learning, pages 2083–2092. PMLR, 2019.

[96] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural
architecture search with reinforcement learning. arXiv preprint arXiv:1904.09981, 2019.

[97] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then
propagate: Graph neural networks meet personalized pagerank. arXiv preprint
arXiv:1810.05997, 2018.

[98] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude
Liu, Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang, et al. Utilizing graph
machine learning within drug discovery and development. Briefings in bioinformatics, 22
(6):bbab159, 2021.

[99] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1263–1272, 2017.

[100] Theo Glauch. The Origin of High-Energy Cosmic Particles: IceCube Neutrinos and the Blazar
Case. PhD thesis, Technische Universität München, 2021.

[101] Shuzhi Gong, Richard O Sinnott, Jianzhong Qi, and Cecile Paris. Fake news detection
through graph-based neural networks: A survey. arXiv preprint arXiv:2307.12639, 2023.

[102] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020.

[103] Emad M Grais and Mark D Plumbley. Single channel audio source separation using
convolutional denoising autoencoders. In 2017 IEEE global conference on signal and in-
formation processing (GlobalSIP), pages 1265–1269. IEEE, 2017.

[104] Mark Granovetter. The strength of weak ties: A network theory revisited. In Sociological
Theory, pages 105–130, 1982.

[105] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864, 2016.

[106] Yuhe Guo and Zhewei Wei. Graph neural networks with learnable and optimal polyno-
mial bases. In International Conference on Machine Learning, pages 12077–12097. PMLR,
2023.

[107] Saket Gurukar, Nikil Pancha, Andrew Zhai, Eric Kim, Samson Hu, Srinivasan
Parthasarathy, Charles Rosenberg, and Jure Leskovec. Multibisage: A web-scale rec-
ommendation system using multiple bipartite graphs at pinterest. arXiv preprint
arXiv:2205.10666, 2022.

135 Bibliography

[108] Francis Halzen and Spencer R Klein. IceCube: an instrument for neutrino astronomy.
Rev. Sci. Instrum., 81:081–101, 2010.

[109] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Proc. NIPS, 2017.

[110] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[111] Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral
filters via bernstein approximation. Advances in Neural Information Processing Systems,
34:14239–14251, 2021.

[112] Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs
with chebyshev approximation, revisited. Advances in neural information processing sys-
tems, 35:7264–7276, 2022.

[113] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Light-
gcn: Simplifying and powering graph convolution network for recommendation. In Pro-
ceedings of the 43rd International ACM SIGIR conference on research and development in
Information Retrieval, pages 639–648, 2020.

[114] Yixuan He, Michael Perlmutter, Gesine Reinert, and Mihai Cucuringu. Msgnn: A spectral
graph neural network based on a novel magnetic signed laplacian. In Learning on Graphs
Conference, pages 40–1. PMLR, 2022.

[115] Zhenyu He, Ce Li, Fan Zhou, and Yi Yang. Rumor detection on social media with event
augmentations. In Proceedings of the 44th international ACM SIGIR conference on research
and development in information retrieval, pages 2020–2024, 2021.

[116] Dieter Heck, G Schatz, J Knapp, T Thouw, and JN Capdevielle. CORSIKA: A Monte Carlo
code to simulate extensive air showers. Technical Report FZKA-6019, 1998.

[117] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional networks on graph-structured
data. arXiv:1506.05163, 2015.

[118] Isaac Henrion, Johann Brehmer, Joan Bruna, Kyunghyun Cho, Kyle Cranmer, Gilles
Louppe, and Gaspar Rochette. Neural message passing for jet physics. 2017.

[119] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[120] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equiv-
ariant diffusion for molecule generation in 3d. In International conference on machine
learning, pages 8867–8887. PMLR, 2022.

[121] Lee Howell et al. Digital wildfires in a hyperconnected world. WEF Report, 3:15–94,
2013.

[122] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. CoRR, abs/2005.00687, 2020. URL https://arxiv.org/abs/2005.00687.

https://arxiv.org/abs/2005.00687

136 Bibliography

[123] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[124] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards
fast graph representation learning. In NIPS, 2018.

[125] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine learn-
ing, pages 448–456. pmlr, 2015.

[126] P. Jain and I. S. Dhillon. Provable inductive matrix completion. arXiv:1306.0626, 2013.

[127] Viren Jain and Sebastian Seung. Natural image denoising with convolutional networks.
Advances in neural information processing systems, 21, 2008.

[128] M. Jamali and M. Ester. A matrix factorization technique with trust propagation for
recommendation in social networks. In Proc. Recommender Systems, 2010.

[129] Noah Johnson, Joseph P Near, and Dawn Song. Towards practical differential privacy
for sql queries. Proceedings of the VLDB Endowment, 11(5):526–539, 2018.

[130] Xiangyang Ju, Steven Farrell, Paolo Calafiura, Daniel Murnane, Lindsey Gray, Thomas
Klijnsma, Kevin Pedro, Giuseppe Cerati, Jim Kowalkowski, Gabriel Perdue, et al. Graph
neural networks for particle reconstruction in high energy physics detectors. arXiv
preprint arXiv:2003.11603, 2020.

[131] V. Kalofolias, X. Bresson, M. M. Bronstein, and P. Vandergheynst. Matrix completion on
graphs. arXiv:1408.1717, 2014.

[132] Kai Kang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Object detection from
video tubelets with convolutional neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 817–825, 2016.

[133] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for gener-
ative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4401–4410, 2019.

[134] Henry Kenlay, Dorina Thanou, and Xiaowen Dong. On the stability of polynomial spectral
graph filters. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5350–5354. IEEE, 2020.

[135] Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser. Blended intrinsic maps. In
ACM Transactions on Graphics (TOG), volume 30, page 79. ACM, 2011.

[136] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. ICLR,
2015.

[137] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[138] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. 2017.

137 Bibliography

[139] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Proc. NIPS, 2017.

[140] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves
graph learning. In Conference on Neural Information Processing Systems (NeurIPS), 2019.

[141] Christian Koke, Abhishek Saroha, Yuesong Shen, Marvin Eisenberger, and Daniel Cre-
mers. Resolvnet: A graph convolutional network with multi-scale consistency. arXiv
preprint arXiv:2310.00431, 2023.

[142] I. Kokkinos, M. Bronstein, R. Litman, and A. Bronstein. Intrinsic shape context descrip-
tors for deformable shapes. In Proc. CVPR, 2012.

[143] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

[144] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems,
25, 2012.

[145] D. Kuang, Z. Shi, S. Osher, and A. Bertozzi. A harmonic extension approach for collabo-
rative ranking. arXiv:1602.05127, 2016.

[146] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 1269–1278, 2019.

[147] Sejeong Kwon, Meeyoung Cha, Kyomin Jung, Wei Chen, and Yajun Wang. Prominent
features of rumor propagation in online social media. In Proc. Conf. Data Mining, pages
1103–1108, 2013.

[148] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire For-
tunato, Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al.
Learning skillful medium-range global weather forecasting. Science, 382(6677):1416–
1421, 2023.

[149] David Lazer, Alex Pentland, Lada Adamic, Sinan Aral, Albert-László Barabási, Devon
Brewer, Nicholas Christakis, Noshir Contractor, James Fowler, Myron Gutmann, Tony
Jebara, Gary King, Michael Macy, Deb Roy, and Marshall Van Alstyne. Computational
social science. Science, 323(5915):721–723, 2009. ISSN 0036-8075. doi: 10.1126/
science.1167742.

[150] David MJ Lazer, Matthew A Baum, Yochai Benkler, Adam J Berinsky, Kelly M Greenhill,
Filippo Menczer, Miriam J Metzger, Brendan Nyhan, Gordon Pennycook, David Roth-
schild, et al. The science of fake news. Science, 359(6380):1094–1096, 2018.

[151] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[152] Soo Yong Lee, Fanchen Bu, Jaemin Yoo, and Kijung Shin. Towards deep attention in
graph neural networks: Problems and remedies. Proceedings of the 40th International
Conference on Machine Learning, 2023.

138 Bibliography

[153] Ron Levie*, Federico Monti*, Xavier Bresson, and Michael M Bronstein. Cayleynets:
Graph convolutional neural networks with complex rational spectral filters. IEEE Trans-
actions on Signal Processing, 67(1):97–109, 2018.

[154] Ron Levie, Elvin Isufi, and Gitta Kutyniok. On the transferability of spectral graph filters.
In 2019 13th International conference on Sampling Theory and Applications (SampTA),
pages 1–5. IEEE, 2019.

[155] Pan Li and Jure Leskovec. The expressive power of graph neural networks. In Lingfei
Wu, Peng Cui, Jian Pei, and Liang Zhao, editors, Graph Neural Networks: Foundations,
Frontiers, and Applications, pages 63–98. Springer Singapore, Singapore, 2022.

[156] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional
networks for semi-supervised learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[157] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[158] Gary Liu, Denise B Catacutan, Khushi Rathod, Kyle Swanson, Wengong Jin, Jody C Mo-
hammed, Anush Chiappino-Pepe, Saad A Syed, Meghan Fragis, Kenneth Rachwalski,
et al. Deep learning-guided discovery of an antibiotic targeting acinetobacter bauman-
nii. Nature Chemical Biology, 19(11):1342–1350, 2023.

[159] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 338–348, 2020.

[160] Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri, Pietro
Lio, Franco Scarselli, and Andrea Passerini. Graph neural networks for temporal graphs:
State of the art, open challenges, and opportunities. arXiv preprint arXiv:2302.01018,
2023.

[161] Antonio Longa, Giulia Cencetti, Sune Lehmann, Andrea Passerini, and Bruno Lepri. Gen-
erating fine-grained surrogate temporal networks. Communications Physics, 7(1):22,
2024.

[162] Shaojun Luo, Flaviano Morone, Carlos Sarraute, MatÃas Travizano, and HernÃ¡n A.
Makse. Inferring personal economic status from social network location. Nature Com-
munications, 8(1), May 2017. ISSN 2041-1723.

[163] Guanghui Ma, Chunming Hu, Ling Ge, Junfan Chen, Hong Zhang, and Richong Zhang.
Towards robust false information detection on social networks with contrastive learn-
ing. In Proceedings of the 31st ACM International Conference on Information & Knowledge
Management, pages 1441–1450, 2022.

[164] H. Ma, D. Zhou, C. Liu, M. Lyu, and I. King. Recommender systems with social regular-
ization. In Proc. Web Search and Data Mining, 2011.

[165] Jiachen Ma, Yong Liu, Meng Liu, and Meng Han. Curriculum contrastive learning for fake
news detection. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, pages 4309–4313, 2022.

139 Bibliography

[166] Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for
graph-based semi-supervised learning. Advances in Neural Information Processing Sys-
tems, 32, 2019.

[167] Jing Ma, Wei Gao, and Kam-Fai Wong. Rumor detection on twitter with tree-structured
recursive neural networks. Association for Computational Linguistics, 2018.

[168] Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. Spectral-
based graph convolutional network for directed graphs. arXiv preprint arXiv:1907.08990,
2019.

[169] Craig Macartney and Tillman Weyde. Improved speech enhancement with the wave-u-
net. arXiv preprint arXiv:1811.11307, 2018.

[170] Abdul Majeed, Safiullah Khan, and Seong Oun Hwang. A comprehensive analysis of
privacy-preserving solutions developed for online social networks. Electronics, 11(13):
1931, 2022.

[171] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He. Ultragcn:
ultra simplification of graph convolutional networks for recommendation. In Proceedings
of the 30th ACM International Conference on Information & Knowledge Management, pages
1253–1262, 2021.

[172] J Arjona Martínez, Olmo Cerri, Maria Spiropulu, JR Vlimant, and M Pierini. Pileup mit-
igation at the large hadron collider with graph neural networks. The European Physical
Journal Plus, 134(7):333, 2019.

[173] Karolis Martinkus, Jan Ludwiczak, WEI-CHING LIANG, Julien Lafrance-Vanasse, Isidro
Hotzel, Arvind Rajpal, Yan Wu, Kyunghyun Cho, Richard Bonneau, Vladimir Gligorijevic,
et al. Abdiffuser: full-atom generation of in-vitro functioning antibodies. Advances in
Neural Information Processing Systems, 36, 2024.

[174] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst. Geodesic convolutional neural
networks on riemannian manifolds. In Proc. 3dRR, 2015.

[175] Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander, Adam
Sanders, Hatem Helal, Deniz Beker, Ladislav Rampášek, and Dominique Beaini. Gps++:
An optimised hybrid mpnn/transformer for molecular property prediction. arXiv preprint
arXiv:2212.02229, 2022.

[176] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Improving graph neural networks
with simple architecture design. arXiv preprint arXiv:2105.07634, 2021.

[177] Kevin McCloskey, Ankur Taly, Federico Monti, Michael P Brenner, and Lucy J Colwell.
Using attribution to decode binding mechanism in neural network models for chemistry.
Proceedings of the National Academy of Sciences, 116(24):11624–11629, 2019.

[178] Nikhil Mehta, María Leonor Pacheco, and Dan Goldwasser. Tackling fake news detection
by continually improving social context representations using graph neural networks. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1363–1380, 2022.

140 Bibliography

[179] Vinicius Mikuni and Florencia Canelli. Abcnet: An attention-based method for particle
tagging. The European Physical Journal Plus, 135:1–11, 2020.

[180] B. N. Miller et al. MovieLens unplugged: experiences with an occasionally connected
recommender system. In Proc. Intelligent User Interfaces, 2003.

[181] Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin Zhao, Junzhou Huang, and Sophia
Ananiadou. Divide-and-conquer: Post-user interaction network for fake news detection
on social media. In Proceedings of the ACM web conference 2022, pages 1148–1158, 2022.

[182] Martin Ha Minh. Reconstruction of neutrino events in icecube using graph neural net-
works. arXiv preprint arXiv:2107.12187, 2021.

[183] Cen Mo, Fuyudi Zhang, and Liang Li. Neutrino reconstruction in trident based on graph
neural network. In BenchCouncil International Symposium on Intelligent Computers, Al-
gorithms, and Applications, pages 264–271. Springer, 2023.

[184] Federico Monti∗, Davide Boscaini∗, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture
model cnns. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 5115–5124, 2017.

[185] Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion
with recurrent multi-graph neural networks. Advances in neural information processing
systems, 30, 2017.

[186] Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph
convolutional network for directed graphs. In 2018 IEEE Data Science Workshop (DSW),
pages 225–228. IEEE, 2018.

[187] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M Bron-
stein. Fake news detection on social media using geometric deep learning. Representation
Learning on Graphs and Manifolds workshop, 2019.

[188] Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan Günne-
mann, and Michael M Bronstein. Dual-primal graph convolutional networks. European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, 2019.

[189] Eric A Moreno, Olmo Cerri, Javier M Duarte, Harvey B Newman, Thong Q Nguyen,
Avikar Periwal, Maurizio Pierini, Aidana Serikova, Maria Spiropulu, and Jean-Roch Vli-
mant. Jedi-net: a jet identification algorithm based on interaction networks. The Euro-
pean Physical Journal C, 80:1–15, 2020.

[190] Eric A Moreno, Thong Q Nguyen, Jean-Roch Vlimant, Olmo Cerri, Harvey B Newman,
Avikar Periwal, Maria Spiropulu, Javier M Duarte, and Maurizio Pierini. Interaction
networks for the identification of boosted hâ b b decays. Physical Review D, 102(1):
012010, 2020.

[191] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pages 4602–4609, 2019.

141 Bibliography

[192] Christopher Morris, Nadav Dym, Haggai Maron, İsmail İlkan Ceylan, Fabrizio Frasca,
Ron Levie, Derek Lim, Michael Bronstein, Martin Grohe, and Stefanie Jegelka. Future
directions in foundations of graph machine learning. arXiv preprint arXiv:2402.02287,
2024.

[193] Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to
graph transformers. arXiv preprint arXiv:2302.04181, 2023.

[194] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In 2008 IEEE Symposium on Security and Privacy, pages 111–125, 2008.

[195] Van-Hoang Nguyen, Kazunari Sugiyama, Preslav Nakov, and Min-Yen Kan. Fang: Lever-
aging social context for fake news detection using graph representation. In Proceedings
of the 29th ACM international conference on information & knowledge management, pages
1165–1174, 2020.

[196] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision research, 37(23):3311–3325, 1997.

[197] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Van-
dergheynst. Graph signal processing: Overview, challenges, and applications. Proceed-
ings of the IEEE, 106(5):808–828, 2018.

[198] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank ci-
tation ranking: Bring order to the web. Technical report, Technical report, stanford
University, 1998.

[199] T Palczewski for IceCube Collaboration. Icecube study of down-going neutrinos for the
spectral cutoff determination. In Proc. Neutrino, 2018.

[200] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proc. EMNLP, 2014.

[201] Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada Mihalcea. Auto-
matic detection of fake news. arXivarXiv:1708.07104, 2017.

[202] B. Perozzi, R. Al-Rfou, and S. Skiena. DeepWalk: Online learning of social representa-
tions. In Proc. KDD, 2014.

[203] Huyen Trang Phan, Ngoc Thanh Nguyen, and Dosam Hwang. Fake news detection: A
survey of graph neural network methods. Applied Soft Computing, page 110235, 2023.

[204] Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek Bevendorff, and Benno Stein. A
stylometric inquiry into hyperpartisan and fake news. arXiv:1702.05638, 2017.

[205] Jovan Powar and Alastair R Beresford. Sok: Managing risks of linkage attacks on data
privacy. Proceedings on Privacy Enhancing Technologies, 2023.

[206] Luca Pretto. A theoretical analysis of google’s pagerank. In String Processing and Infor-
mation Retrieval: 9th International Symposium, SPIRE 2002 Lisbon, Portugal, September
11–13, 2002 Proceedings 9, pages 131–144. Springer, 2002.

142 Bibliography

[207] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660, 2017.

[208] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hier-
archical feature learning on point sets in a metric space. Advances in neural information
processing systems, 30, 2017.

[209] Huilin Qu and Loukas Gouskos. Jet tagging via particle clouds. Physical Review D, 101
(5):056019, 2020.

[210] Meng Qu, Yoshua Bengio, and Jian Tang. Gmnn: Graph markov neural networks. In
International conference on machine learning, pages 5241–5250. PMLR, 2019.

[211] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf,
and Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Ad-
vances in Neural Information Processing Systems, 35:14501–14515, 2022.

[212] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon. Collaborative filtering with graph
information: Consistency and scalable methods. In Proc. NIPS, 2015.

[213] Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana Volkova, and Yejin Choi. Truth of
varying shades: Analyzing language in fake news and political fact-checking. In Proc.
Empirical Methods in Natural Language Processing, pages 2931–2937, 2017.

[214] S Reck, D Guderian, G Vermariën, A Domi, KM3NeT Collaboration, et al. Graph neural
networks for reconstruction and classification in km3net. Journal of Instrumentation, 16
(10):C10011, 2021.

[215] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of ADAM and
beyond. 2018.

[216] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618,
2012.

[217] Emanuele Rodolà, Samuel Rota Bulo, Thomas Windheuser, Matthias Vestner, and Daniel
Cremers. Dense non-rigid shape correspondence using random forests. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 4177–4184, 2014.

[218] Emanuele Rossi, Federico Monti, Michael Bronstein, and Pietro Liò. ncrna classification
with graph convolutional networks. arXiv preprint arXiv:1905.06515, 2019.

[219] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs.
Graph Representation Learning and Beyond, ICML Workshop, 2020.

[220] Emanuele Rossi, Federico Monti, Yan Leng, Michael Bronstein, and Xiaowen Dong.
Learning to infer structures of network games. In International Conference on Machine
Learning, pages 18809–18827. PMLR, 2022.

143 Bibliography

[221] Victoria Rubin, Niall Conroy, Yimin Chen, and Sarah Cornwell. Fake news or truth? using
satirical cues to detect potentially misleading news. In Proc. Computational Approaches
to Deception Detection, pages 7–17, 2016.

[222] Natali Ruchansky, Sungyong Seo, and Yan Liu. Csi: A hybrid deep model for fake news.
arXiv:1703.06959, 2017.

[223] Piotr Sapiezynski, Arkadiusz Stopczynski, David Dreyer Lassen, and Sune Lehmann. In-
teraction data from the copenhagen networks study. Scientific Data, 6(1):315, 2019.

[224] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015.

[225] Kumar Sharad and George Danezis. An automated social graph de-anonymization tech-
nique. In Proceedings of the 13th Workshop on Privacy in the Electronic Society, pages
47–58, 2014.

[226] Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, B Khaled Letaief, and Dong-
sheng Li. How powerful is graph convolution for recommendation? In Proceedings of
the 30th ACM international conference on information & knowledge management, pages
1619–1629, 2021.

[227] Baoxu Shi and Tim Weninger. Fact checking in heterogeneous information networks. In
Proceedings of the 25th International Conference Companion on World Wide Web, pages
101–102, 2016.

[228] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun.
Masked label prediction: Unified message passing model for semi-supervised classifica-
tion. arXiv preprint arXiv:2009.03509, 2020.

[229] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in
particle physics. Machine Learning: Science and Technology, 2(2):021001, 2020.

[230] Kai Shu, H Russell Bernard, and Huan Liu. Studying fake news via network analysis:
detection and mitigation. In Emerging Research Challenges and Opportunities in Compu-
tational Social Network Analysis and Mining, pages 43–65. Springer, 2019.

[231] Kai Shu, Suhang Wang, and Huan Liu. Beyond news contents: The role of social context
for fake news detection. In Proc. Web Search and Data Mining, 2019.

[232] David I Shuman, Benjamin Ricaud, and Pierre Vandergheynst. Vertex-frequency analysis
on graphs. Applied and Computational Harmonic Analysis, 40(2):260–291, 2016.

[233] Eero P Simoncelli and Bruno A Olshausen. Natural image statistics and neural represen-
tation. Annual review of neuroscience, 24(1):1193–1216, 2001.

[234] K. Singh, Vivek, Laura Freeman, Bruno Lepri, and Alex Sandy Pentland. Predicting spend-
ing behavior using socio-mobile features. IEEE International Conference on Social Com-
puting, 2013.

[235] Harsh Sinha, Vinayak Awasthi, and Pawan K Ajmera. Audio classification using braided
convolutional neural networks. IET Signal Processing, 14(7):448–454, 2020.

144 Bibliography

[236] N. Srebro, J. Rennie, and T. Jaakkola. Maximum-Margin Matrix Factorization. In Proc.
NIPS, 2004.

[237] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz,
Nina M Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-
Ackermann, et al. A deep learning approach to antibiotic discovery. Cell, 180(4):688–
702, 2020.

[238] Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and adaptive graph neural networks
with self-label-enhanced training. arXiv preprint arXiv:2104.09376, 2021.

[239] Mengzhu Sun, Xi Zhang, Jiaqi Zheng, and Guixiang Ma. Ddgcn: Dual dynamic graph
convolutional networks for rumor detection on social media. In Proceedings of the AAAI
conference on artificial intelligence, volume 36, pages 4611–4619, 2022.

[240] Tiening Sun, Zhong Qian, Sujun Dong, Peifeng Li, and Qiaoming Zhu. Rumor detection
on social media with graph adversarial contrastive learning. In Proceedings of the ACM
Web Conference 2022, pages 2789–2797, 2022.

[241] Yiming Sun, Song Zixing, and Irwin King. Score-based graph generative model for neu-
trino events classification and reconstruction. NeurIPS Machine Learning and the physical
sciences Workshop, 2021.

[242] Jan Svoboda, Federico Monti, and Michael M Bronstein. Generative convolutional net-
works for latent fingerprint reconstruction. In 2017 IEEE International joint conference
on biometrics (IJCB), pages 429–436. IEEE, 2017.

[243] Jan Svoboda, Jonathan Masci, Federico Monti, Michael M Bronstein, and Leonidas
Guibas. Peernets: Exploiting peer wisdom against adversarial attacks. 7th International
Conference on Learning Representations, ICLR, 2019.

[244] Latanya Sweeney. k-anonymity: A model for protecting privacy. International journal of
uncertainty, fuzziness and knowledge-based systems, 10(05):557–570, 2002.

[245] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In CVPR, 2015.

[246] Lin Tian, Xiuzhen Jenny Zhang, and Jey Han Lau. Duck: Rumour detection on social
media by modelling user and comment propagation networks. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4939–4949, 2022.

[247] Thanassis Tiropanis, Wendy Hall, Nigel Shadbolt, David De Roure, Noshir Contractor,
and Jim Hendler. Computational fact checking from knowledge networks. 2015.

[248] F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of histograms for local surface
description. In Proc. ECCV, 2010.

[249] Arnaud J Tournier and Yves-Alexandre De Montjoye. Expanding the attack surface: Ro-
bust profiling attacks threaten the privacy of sparse behavioral data. Science Advances, 8
(33):eabl6464, 2022.

145 Bibliography

[250] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri.
A closer look at spatiotemporal convolutions for action recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, pages 6450–6459, 2018.

[251] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[252] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. In Proc. ICLR, 2018.

[253] Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala,
and Jian Tang. Graphmix: Improved training of gnns for semi-supervised learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 10024–
10032, 2021.

[254] M. Vestner, R. Litman, A. Bronstein, E. Rodolà, and D. Cremers. Bayesian inference of
bijective non-rigid shape correspondence. arXiv:1607.03425, 2016.

[255] Soroush Vosoughi, Deb Roy, and Sinan Aral. The spread of true and false news online.
Science, 359(6380):1146–1151, 2018.

[256] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph
collaborative filtering. In Proceedings of the 42nd international ACM SIGIR conference on
Research and development in Information Retrieval, pages 165–174, 2019.

[257] Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In
International Conference on Machine Learning, pages 23341–23362. PMLR, 2022.

[258] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive repre-
sentation learning in temporal networks via causal anonymous walks. arXiv preprint
arXiv:2101.05974, 2021.

[259] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph CNN for learning on point clouds. arXiv:1801.07829, 2018.

[260] Howard T Welser, Eric Gleave, Danyel Fisher, and Marc Smith. Visualizing the signatures
of social roles in online discussion groups. Journal of social structure, 8(2):1–32, 2007.

[261] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via
semi-supervised embedding. In Neural Networks: Tricks of the Trade, pages 639–655.
2012.

[262] Felix Wong, Erica J Zheng, Jacqueline A Valeri, Nina M Donghia, Melis N Anahtar, Sato-
taka Omori, Alicia Li, Andres Cubillos-Ruiz, Aarti Krishnan, Wengong Jin, et al. Discovery
of a structural class of antibiotics with explainable deep learning. Nature, 626(7997):
177–185, 2024.

[263] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learn-
ing, pages 6861–6871. PMLR, 2019.

146 Bibliography

[264] Wayne Xiong, Lingfeng Wu, Fil Alleva, Jasha Droppo, Xuedong Huang, and Andreas
Stolcke. The microsoft 2017 conversational speech recognition system. In 2018 IEEE
international conference on acoustics, speech and signal processing (ICASSP), pages 5934–
5938. IEEE, 2018.

[265] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive
representation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

[266] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? arXiv preprint arXiv:1810.00826, 2018.

[267] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks.
In International conference on machine learning, pages 5453–5462. PMLR, 2018.

[268] M. Xu, R Jin, and Z.-H. Zhou. Speedup matrix completion with side information: Appli-
cation to multi-label learning. In Proc. NIPS, 2013.

[269] F. Yanez and F. Bach. Primal-dual algorithms for non-negative matrix factorization with
the kullback-leibler divergence. arXiv:1412.1788, 2012.

[270] Z. Yang, W. Cohen, and R. Salakhutdinov. Revisiting semi-supervised learning with graph
embeddings. In Proc. ICML, 2016.

[271] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming
Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation?
Advances in Neural Information Processing Systems, 34:28877–28888, 2021.

[272] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
KDD, 2018.

[273] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. arXiv
preprint arXiv:1806.08804, 2018.

[274] Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dy-
namic graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 2358–2366, 2022.

[275] Chunyuan Yuan, Qianwen Ma, Wei Zhou, Jizhong Han, and Songlin Hu. Jointly embed-
ding the local and global relations of heterogeneous graph for rumor detection. In 2019
IEEE international conference on data mining (ICDM), pages 796–805. IEEE, 2019.

[276] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhut-
dinov, and Alexander J Smola. Deep sets. Advances in neural information processing
systems, 30, 2017.

[277] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-
tor K. Prasanna. Graphsaint: Graph sampling based inductive learning method.
arXiv:1907.04931, 2019.

147 Bibliography

[278] Bingxu Zhang, Changjun Fan, Shixuan Liu, Kuihua Huang, Xiang Zhao, Jincai Huang,
and Zhong Liu. The expressive power of graph neural networks: A survey. arXiv preprint
arXiv:2308.08235, 2023.

[279] Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks:
Teaching old mlps new tricks via distillation. arXiv preprint arXiv:2110.08727, 2021.

[280] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi
Yang, and Bin Cui. Graph attention multi-layer perceptron. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 4560–4570,
2022.

[281] Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn.
Magnet: A neural network for directed graphs. Advances in neural information processing
systems, 34:27003–27015, 2021.

[282] Xinyi Zhou and Reza Zafarani. Network-based fake news detection: A pattern-driven
approach. ACM SIGKDD explorations newsletter, 21(2):48–60, 2019.

[283] Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised learning using
gaussian fields and harmonic functions. In Proc. ICML, 2003.

[284] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer
tissue networks. Bioinformatics, 33(14):i190–i198, Jul 2017. ISSN 1460-2059. doi: 10.
1093/bioinformatics/btx252. URL http://dx.doi.org/10.1093/bioinformatics/

btx252.

http://dx.doi.org/10.1093/bioinformatics/btx252
http://dx.doi.org/10.1093/bioinformatics/btx252

148 Bibliography

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Publications

	I Convolution on non-Euclidean domains
	Background
	Convolutional Neural Networks on Euclidean domains
	Convolution and graph-structured data
	Definitions
	Signal Processing on Graphs

	Mixture Model Neural Networks
	Methodology
	Results
	Discussion

	Recurrent Multi-Graph Convolutional Neural Networks
	Introduction
	Methodology
	Results
	Discussion

	Graph Convolutional Neural Networks with Complex Rational Spectral Filters
	Methodology
	Results
	Exponential decay of Cayley filters (proof)
	Discussion
	Cayley filters as real rational functions
	Eigenvalues and eigenvectors of the magnetic Laplacian

	Scalable Inception Graph Neural Networks
	Introduction
	Methodology
	Results
	Discussion

	II Applications of GCNNs
	Neutrino detection via IceCube Signal Classification
	Introduction
	Methodology
	Physics Baseline
	3D Convolution Neural Networks
	Graph Convolutional Neural Networks

	Results
	Discussion

	Fake News Detection on Social Media
	Introduction
	Dataset
	Methodology
	Architecture and training settings
	Input generation

	Results
	Model performance
	News spreading over time
	Model aging

	Discussion

	User identification in datasets of pseudonymized interaction networks
	Introduction
	Experimental setup
	Overview of the attack
	Preprocessing of a k-IIG

	Methodology
	Model
	Training setup

	Results
	Mobile phone metadata dataset
	Bluetooth close-proximity dataset

	Discussion

	Conclusions and future works
	Future works

	Bibliography

