
Numerical stability of barycentric
interpolation

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Chiara Fuda

under the supervision of

Prof. Kai Hormann

December 2024

Dissertation Committee

Prof. Kai Hormann Università della Svizzera italiana, Switzerland
Prof. Michael Multerer Università della Svizzera italiana, Switzerland
Prof. Stefan Wolf Università della Svizzera italiana, Switzerland

Prof. Annie Cuyt University of Antwerp, Belgium
Prof. Stefano De Marchi Università degli Studi di Padova, Italy

Dissertation accepted on 20 December 2024

Prof. Kai Hormann
Research Advisor

Università della Svizzera italiana, Switzerland

The PhD program Director
Prof. Walter Binder / Prof. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Chiara Fuda
Lugano, 20 December 2024

ii

“In mathematics, precision is key; even
the slightest error can lead to significant
consequences.”

Leonhard Euler (1707–1783)

iii

iv

Acknowledgements

My PhD journey is now coming to an end. It feels just like yesterday I arrived in Lugano as a
fresh master’s student, and now here I am, four years later as an almost PhD.

It has been an amazing experience, and for this, I cannot thank my supervisor, Prof. Kai
Hormann, enough. His guidance and support have been crucial throughout my PhD. He has
always been available for discussions and eager to share new insights to help me grow profes-
sionally. Thank you for the meticulous care and attention to every detail, I hope I have gathered
as much as possible from your mentorship.

I really would like to thank all the members of the committee, Prof. Michael Multerer, Prof.
Stefan Wolf, Prof. Annie Cuyt, and Prof. Stefano De Marchi, for agreeing to be part of it and
for having evaluated this thesis.

Once again, I would like to express my gratitude to my Master’s thesis supervisor, Prof.
Francesco Dell’Accio. He has always demonstrated his support and trust in me, even from afar.

This experience would not have been the same without my incredible office mates and col-
leagues from the 4th floor (and beyond). Whether you have been with me from the beginning or
have only shared a small part of these four years, each of you has left me with special memories.
Thank you for all the lunches, coffees, BBQs, and hikes.

L’USI mi ha dato tanto, non solo a livello professionale, ma anche personale. Mi ha ri-
avvicinato alla mia piú grande passione, il ballo, e grazie ad essa ho conosciuto tante persone
nuove. Oggi ho la fortuna di poter considerare alcune di loro delle vere amiche, e non posso
che ringraziarle per tutte le avventure, le serate e le chiacchierate. Grazie Sam e Giuli, avete
reso tutto molto piú memorabile!

Grazie alla mia amica Hele per le nostre interminabili chiacchierate al telefono. Nonostante
la distanza, sei sempre vicina con il cuore.

Grazie a te, Lore, per essermi stato vicino in ogni momento da quando ci siamo conosciuti.
Non sono veramente sicura che tu abbia sempre attivamente ascoltato i miei discorsi matemati-
ci, ma in qualche modo hai sempre avuto la parola giusta al momento giusto, in ogni circostanza.
Sei stato, e sei tutt’ora, il mio valore aggiunto.

Infine, non per importanza ovviamente, un ringraziamento speciale va alla mia famiglia.
Credo non sia stato facile vedermi andare sempre piú lontano negli anni, ma, nonostante ció,
avete sempre supportato le mie scelte, mettendo me e la mia felicitá al primo posto. Grazie di
cuore, niente di tutto questo sarebbe stato possibile senza di voi!

v

vi

Abstract

In the field of Numerical Analysis, it is common practice to solve an arbitrary mathematical
problem through the implementation of a numerical algorithm on a computer. Since not all
data of a problem can be represented exactly on a computer as floating-point numbers, it can
happen that the algorithm starts with rounding errors already from the initial set of input that
then propagate throughout the process. Consequently, it is important to study the numerical
stability of an algorithm, that is, its behaviour with respect to the propagation of the errors that
occur during the arithmetic operations executed by the computer. In this dissertation we focus
on the barycentric interpolation problem, both in the univariate and the bivariate setting. In
the first case, we theoretically discuss the numerical stability of all algorithms that implement a
barycentric rational interpolant, providing conditions under which it is possible to know a priori
whether they are stable. In the second case, we focus on the barycentric interpolant defined on
a planar polygon, and this leads to the study of the numerical stability of generalized barycentric
coordinates, particularly the mean value coordinates.

In the first part, we analyse the numerical stability of the algorithms that compute univariate
barycentric rational interpolants. We begin by showing more generally that the evaluation of
any function that can be expressed as r(x) =

∑n
i=0 ai(x) fi

�∑m
j=0 b j(x) in terms of data values

fi and some functions ai and b j for i = 0, . . . , n and j = 0, . . . , m is forward and backward
stable under certain assumptions. The proof considers the simplest and classical algorithm
that involves summing the terms in the numerator and denominator first, followed by a final
division. This result includes the two barycentric forms of rational interpolation as special
cases. Our analysis further reveals that the stability of the second barycentric form depends on
the Lebesgue constant associated with the interpolation nodes, which typically grows with n,
whereas the stability of the first barycentric form depends on a similar, but different quantity,
that can be bounded in terms of the mesh ratio, regardless of n. We support our theoretical
results with numerical experiments.

These findings contribute to the development of a new C++ class, named BRI (Barycentric
Rational Interpolation), which contains all variables and functions related to linear barycentric
rational interpolation. This class is designed to autonomously select the best method to use on
a case-by-case basis, as it takes into account our theoretical results regarding the efficiency and
numerical stability of barycentric rational interpolation. Moreover, we describe a new technique
that makes the code robust and less prone to overflow and underflow errors. In addition to the
standard C++ data types, the BRI template variables can also be defined with arbitrary precision,
because the BRI class is compatible with the Multiple Precision Floating-Point Reliable (MPFR)
library.

The second part of the thesis focuses on the numerical stability of algorithms that compute
generalized barycentric coordinates on polygons with more than three vertices. Among the

vii

viii

different constructions proposed, mean value coordinates have emerged as a popular choice,
particularly due to their suitability for the non-convex setting. Since their introduction, they
have found applications in numerous fields, and several equivalent formulas for their evaluation
have been presented in the literature. However, so far, there has been no study regarding their
numerical stability. We show that all the known methods exhibit instability in some regions of
the domain. To address this problem, we introduce a new formula for computing mean value
coordinates, explain how to implement it, and formally prove that our new algorithm provides a
stable evaluation of mean value coordinates. We finally validate our results through numerical
experiments.

Lastly, since the results of the first part can be applied to a broad range of numerical methods,
we examine several algorithms used for evaluating Bézier curves. The de Casteljau algorithm
is the first method introduced for evaluating polynomial Bézier curves, later also generalized to
the rational case and surfaces. Although it presents an elegant definition through convex com-
binations and generally yields stable results, it has quadratic time complexity. This represents
a significant limitation, especially when dealing with high-degree curves and real-time applica-
tions. For this reason, numerous studies have been conducted in order to provide alternative
approaches and more efficient algorithms. We present a collection of the most commonly used
algorithm in the state-of-the-art and provide a comparison of their numerical stability. Notably,
although some error analyses exist only for some specific algorithm, the literature lacks an in-
depth investigation into the numerical stability of all these methods, along with a corresponding
comparison. Therefore, this represents the first comprehensive study of its kind.

Contents

Contents viii

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of the thesis . 5

2 Preliminaries 7
2.1 Floating-point number system . 7

2.1.1 Overflow and underflow . 8
2.1.2 Floating-point arithmetic operations . 10
2.1.3 Floating-point elementary functions . 12

2.2 Conditioning of a problem . 13
2.3 Numerical stability of an algorithm . 15

3 The numerical stability of linear barycentric rational interpolation 17
3.1 State of the art . 17
3.2 Our contribution . 19
3.3 Forward stability . 20
3.4 Computing the weights γi and evaluating the functions λi 23
3.5 Backward stability . 25
3.6 Upper bound for Γd . 27
3.7 Numerical experiments . 30

3.7.1 Comparison of algorithms for the first barycentric form 31
3.7.2 Worst-case comparison of first and second barycentric form 33
3.7.3 Evaluation close to roots and nodes . 36

4 A C++ class for robust linear barycentric rational interpolation 39
4.1 Class overview . 40
4.2 Robust procedure for rescale operation . 42
4.3 Barycentric weights . 43
4.4 Evaluation of the barycentric rational interpolant 47

4.4.1 Evaluation close to a node . 52
4.5 Stability-related functions . 52

ix

x Contents

5 A new stable method to compute mean value coordinates 57
5.1 State of the art . 57
5.2 Our contribution . 59
5.3 Comparative empirical study on the numerical stability 59
5.4 A new stable formula for mean value coordinates 62
5.5 Theoretical analysis of the numerical stability . 64
5.6 Error analysis of all formulas . 65
5.7 Numerical experiments . 73

5.7.1 Stability comparison . 74
5.7.2 Efficiency comparison . 76

6 A comprehensive comparison on the numerical stability of algorithms for evaluat-
ing rational Bézier curves 79
6.1 Existing methods for computing rational Bézier curves 79

6.1.1 Rational de Casteljau algorithms . 79
6.1.2 Horner-like algorithms . 80
6.1.3 Geometric approach . 81
6.1.4 Wang–Ball algorithm . 81
6.1.5 Barycentric algorithm . 82

6.2 Numerical stability . 83
6.2.1 Convex combinations . 83
6.2.2 Horner schemes . 89
6.2.3 Geometric approach . 89
6.2.4 Barycentric approach . 91
6.2.5 Summary . 92

6.3 Numerical experiments . 93

7 Conclusion 97

A User manual for the BRI class 99

Bibliography 105

Figures

1.1 Plot of the functions f (x) = (1−cos(x)2)/x2 (red) and g(x) = sin(x)2/x2 (blue)
for x ∈ [−2, 2] (left) and x ∈ [−2× 10−7, 2× 10−7] (right). 1

1.2 Notations for mean value coordinates. 4

2.1 Density of floating-point numbers. 8

2.2 Overflow and (gradual) underflow regions with respect to the real line. 9

2.3 Comparison between the behaviors of a well-conditioned (left) and an ill-conditioned
(right) problem, g1 and g2 respectively. 13

2.4 Relation between forward and backward errors. 15

3.1 Distribution of the relative forward errors of the first barycentric form for equidis-
tant nodes at 50,000 random evaluation points (top) and overall running time in
seconds (bottom), both on a logarithmic scale, for different n and three choices of
d (left, middle, right), using the standard algorithm (blue), Camargo’s algorithm
(red), and our efficient variant of the standard algorithm (green). 31

3.2 Plots of κ(x; Xn, Yn) (top) and Γd(x; Xn) (bottom) for equidistant nodes and x ∈
[−1,1], both on a logarithmic scale, for n = 39 and three choices of d (left,
middle, right). 32

3.3 Plots of Λn(x; Xn) (left) and Γd(x; Xn) (right) for a non-regular distribution of
nodes and x ∈ [0,1], both on a logarithmic scale. 33

3.4 Plots of ln(x) (black) and the barycentric rational interpolant r(x) for d = 3
(red) for non-regularly distributed interpolation nodes over the whole interval
[0, 1] (top left) and a close-up view over [0.21, 0.31] (top right). Evaluating r(x)
at 10,000 equidistant evaluation points in [103ε, 1 − 103ε] with the standard
implementations of the first (blue dots) and the second (green dots) barycentric
form shows that the first form is stable, while the second form is not (bottom). . 34

3.5 Plot of relative forward errors of the first (blue) and second (green) barycentric
form for a non-regular distribution of nodes at 100 equidistant evaluation points
in [103ε, 1− 103ε] with data sampled from the n-th Lagrange basis polynomial
(left) and the constant one function (right). Since both plots are on a logarithmic
scale and the second form is exact in the latter case, the corresponding errors are
missing in the plot on the right. 35

xi

xii Figures

3.6 Even though the barycentric rational interpolant of the constant one function for
non-regularly distributed interpolation nodes is simply r(x) = 1, evaluating it at
10,000 equidistant evaluation points in [103ε, 1− 103ε] shows that the second
form (green dots) is stable, while the first form (blue dots) is not. 35

3.7 Plots of κ(x; Xn, Yn) (left) and relative forward errors (right) of the first (blue)
and second (green) barycentric form for 100 equidistant evaluation points in
[103ε, 1− 103ε] and data sampled from f (x), both on a logarithmic scale. . . . 36

3.8 Same as Figure 3.1, but for data sampled from f (x) (black). 36
3.9 Evaluation of r(x) in Figure 3.8 at the 2000 closest double floating-point num-

bers to the root x = 0.32349193443079 with the standard implementations of
the first (blue dots) and the second (green dots) barycentric form (left) and plots
of the relative (middle) and absolute (right) forward errors on a logarithmic scale. 37

3.10 Same as Figure 3.9, but for the node x15 = 0.393240720868598. 38

4.1 Plots of the barycentric rational interpolant obtained by using the same setting
as in Figure 3.8 with both the BOOST and BRI libraries (left) and close-up view
of the y-axis over the interval [−1,9] (right). 39

4.2 Maximal relative forward error of the first barycentric form for n+1 equidistant
nodes, n = 150, and d ∈ {1,2, . . . , n} at 1000 random evaluation points with
data sampled from the n-th Lagrange basis polynomial on a logarithmic scale
(left) and overall running time in seconds (right) using Algorithm 2 (asterisks)
and Algorithm 3 (circles). 48

4.3 Plots of Λn (top), Γd (middle), and κ (bottom) for n+ 1 equidistant nodes and
x ∈ [0,1], all on a logarithmic scale, for d = 3 and three choices of n (left,
middle, right). For the computation of the condition number κ, the data are
sampled from Runge’s function f (x) = 1/(1+ 25x2). 54

5.1 Expected instability regions when computing the mean value coordinates for
a pentagon using the formulas in (5.1), (5.5),(5.6) (red), (5.2)–(5.4) (blue),
and (5.7) (green). 60

5.2 Plots of the absolute and relative errors on a log10 scale made by the algorithms
that implement formulas (5.1)–(5.7) and (5.11) to evaluate the mean value co-
ordinate φk related to the vertex vk (magenta dot) for an arbitrary pentagon. . . 61

5.3 Plots of the absolute and relative errors on a log10 scale made by the original (5.1)
and the new formula (5.11) to evaluate the mean value coordinate φk related to
the vertex vk (magenta dot) for the polygon on the left with ε= 0.0001. 74

5.4 Comparison of the absolute errors on a log-log scale for computing φk with the
formulas (5.1)–(5.7) and (5.11) close to the points marked by the red cross (left)
and the blue cross (right) in Figure 5.3. The plots show Ea(v) for the different
algorithms for v at a horizontal distance of δ = 10−20, 10−19, . . . , 10−1 from the
considered points. Some values are not shown for very small δ, because the
algorithms return NAN as a result. 74

5.5 Same as Figure 5.2, but for a square spiral polygon. 75
5.6 Same as Figure 5.2, but for a star-shaped polygon. 76
5.7 Average time in seconds (right) needed by the implementations of the formulas

in (5.1)–(5.7) and (5.11) to evaluate all n mean value coordinates for a concave
test polygon (left) with n= 6i + 2 vertices for i = 1, . . . , 20. 76

xiii Figures

5.8 Average time in seconds (right) on a log-log scale for the implementations of the
formulas in (5.1)–(5.7) and (5.11) to evaluate all n mean value coordinates for
a test polygon (left) inscribed to an epitrochoid (red curve) with n = 2i vertices
for i = 3, . . . , 13. 77

6.1 Relative errors of all algorithms (top) for computing a rational Bézier curve and
their related conditioning function (bottom) on a logarithmic scale. We first
consider n= 50, Pi =

�x i
yi

�

for x i and yi in (6.35), and wi = i mod 2+1, and we
observe the results related to the x-coordinate (a) and y-coordinate (b). Then,
we set n = 4, P0 =

� 10
−100

�

, P1 =
� 20

200

�

, P2 =
� 30
−200

�

, P3 =
� 40

101

�

, P4 =
� 50

101

�

and wi =
1, i = 0, . . . , n, and we see the results for the x-coordinate (c) and y-coordinate
(d). The black line represents the machine epsilon in double precision. 94

xiv Figures

Tables

3.1 State of the art on the numerical stability of polynomial and rational barycentric
interpolation; if the forward or backward stability has not been covered for a
specific type of interpolant, then it is denoted by ✗, otherwise there is the corre-
sponding reference. 18

5.1 Expected instability regions for both weights and mean value coordinates for all
formulas and k ∈ {1, . . . , n}. 60

xv

xvi Tables

Chapter 1

Introduction

1.1 Motivation

Numerical stability is a favorable property of numerical algorithms that concerns how they be-
have with respect to the propagation of errors that occur during their execution. In general,
whenever we want to solve a problem with a numerical algorithm on a computer, we must be
aware of the fact that we cannot obtain its exact solution because of the errors introduced by
all the arithmetic operations performed. However, the study of the numerical stability provides
us with the tools to measure how far the result produced by the algorithm is from the exact
answer to the problem. This analysis is of great importance when several algorithms exist to
solve the same problem, because we can know a priori which one gives the most reliable answer
according to the data set.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

10
-7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 1.1. Plot of the functions f (x) = (1− cos(x)2)/x2 (red) and g(x) = sin(x)2/x2 (blue)
for x ∈ [−2, 2] (left) and x ∈ [−2× 10−7, 2× 10−7] (right).

To understand the importance of studying the numerical stability of algorithms, we present
a concrete example by considering the two mathematically equivalent functions f (x) = (1 −
cos(x)2)/x2 and g(x) = sin(x)2/x2. We compute and plot both functions for 1000 equidis-
tant points in the interval [−2, 2] on a machine that uses finite-precision arithmetic, and, as
expected, observe from Figure 1.1 that they overlap and approach 1 as x → 0 (left). How-

1

2 1.1 Motivation

ever, going very close to x = 0 (right) and repeating the same procedure for the interval
[−2× 10−7, 2× 10−7], we can see that they behave completely differently. In fact, g(x) gives
the expected result, while f (x) does not, because it is affected by rounding errors. This demon-
strates that theoretically equivalent formulas can give rise to different algorithms in terms of
numerical stability. Accordingly, if a problem can be solved with multiple algorithms, then it is
very important to study their numerical stability to determine a priori which is the most suitable
choice for each specific scenario.

The problem covered in this thesis is barycentric interpolation. Given a set of n+ 1 points
Xn = (x0, . . . , xn) in Rm with some associated weights w0, . . . , wn ∈ R, the barycenter of this
system is the unique point x ∈ Rm that satisfies

n
∑

i=0

wi(x − x i) = 0,

or, equivalently,

x =

∑n
i=0 wi x i
∑n

i=0 wi
. (1.1)

Barycentric interpolation approaches this problem from another point of view, that is, given a
fixed set of nodes Xn ∈ Rm×(n+1) and an arbitrary point x ∈ Rm, find the weights w0, . . . , wn ∈ R
such that (1.1) holds. These weights are called barycentric coordinates of x with respect to
x0, . . . , xn and Möbius [64] showed that they always exist as long as n ≥ m. Moreover, the
barycentric coordinates wi are homogeneous, meaning that they can be multiplied by a non-
zero constant and (1.1) is still true. Once we have these weights, we can focus our attention
on the normalized barycentric coordinates, which are the functions φi : Rm→ R defined as

φi(x) =
wi(x)
∑n

j=0 w j(x)
, i = 0, . . . , n. (1.2)

Because of (1.1), the functions φi , i = 0, . . . , n, satisfy the barycentric property,

n
∑

i=0

φi(x)x i = x , (1.3)

and they form a partition of unity,
n
∑

i=0

φi(x) = 1. (1.4)

An additional requirement for barycentric coordinates is that the functions φi should satisfy the
Lagrange property

φi(x j) = δi j , i, j = 0, . . . , n, (1.5)

meaning that they are 1 at the corresponding node and 0 at all other nodes. Because of these
three properties, the normalized barycentric coordinates can also be seen as a set of barycentric
basis functions and Möbius [64] showed that they are unique when n + 1 = m and linear. If
we now associate to the nodes Xn some data Yn = (y0, y1, . . . , yn) in R, then its barycentric
interpolant is defined as

r(x) =
n
∑

i=0

φi(x)yi . (1.6)

3 1.1 Motivation

It follows from (1.5) that r interpolates yi at x i , i = 0, . . . , n, and from (1.3) and (1.4) that
this kind of interpolation is exact for linear functions, that is, if yi = f (x i) and f is a linear
polynomial. We focus both on the univariate setting, where x0, . . . , xn ∈ R, and on the bivariate
setting, in particular for the special case where the nodes are the vertices of a polygon in R2.

In the univariate case, considering the set of nodes Xn ∈ Rn+1, one choice of barycentric
basis functions is given by the Lagrange polynomials

φi =
n
∏

j=0, j ̸=i

x − x j

x i − x j
, i = 0, . . . , n.

If we are given the nodes in ascending order x0 < x1 < · · · < xn, then it is known that these
functions can also be expressed as in (1.2) [8] with

wi(x) =
γi

x − x i
, i = 0, . . . , n (1.7)

and

γi =
n
∏

j=0, j ̸=i

1
x i − x j

, i = 0, . . . , n. (1.8)

Furthermore, expressing the barycentric coordinates as in (1.7), we can find other sets of
barycentric basis functions, such as the rational ones, by properly defining the non-zero weights
γ0, . . . ,γn. Consequently, associating to Xn some data Yn, we mainly focus on the barycentric
rational interpolant r : R→ R expressed in second barycentric form [74] as

r(x) =
n
∑

i=0

γi
x−x i
∑n

i=0
γi

x−x i

yi . (1.9)

We consider linear barycentric rational interpolation, meaning that the denominator does not
depend on the data Yn. The simplest expression for the weights γi is surely the one given by
Berrut [5] as

γi = (−1)i , i = 0,1, . . . , n, (1.10)

for which he proved that the resulting rational interpolant is free of poles. Note that, if we
choose the weights as in (1.10), then the functions φi in (1.2) satisfy the property (1.3) only
when n is odd [46]. Afterwards, Floater and Hormann [30] proposed a new linear barycentric
rational interpolant by considering a parameter d ∈ {0,1, . . . , n} and the barycentric weights

γi =
min(i,n−d)
∑

k=max(i−d,0)

(−1)k
k+d
∏

j=k, j ̸=i

1
x i − x j

, i = 0, 1, . . . , n, (1.11)

which again guarantee the absence of poles in the expression of the interpolant (1.6). Actually,
this method is a generalization of Berrut’s case since, for d = 0, the weights in (1.11) are exactly
the ones in (1.10), but now, for d ≥ 1, all properties (1.3)–(1.5) are satisfied. Furthermore,
also polynomial interpolation is covered by this method, since the weights in (1.8) are the ones
in (1.11) with d = n. The barycentric formula (1.9) is widely used to evaluate the interpolant
r as it can be implemented with an efficient O(n) algorithm and the γi can be rescaled by a
common factor to prevent overflow and underflow errors [8]. However, there exists another
mathematically equivalent formula to evaluate r, namely the first barycentric form

r(x) =
n
∑

i=0

γi
x−x i
∑n−d

i=0 λi(x)
yi , (1.12)

4 1.1 Motivation

x

xi−1

xi

xi+1
ri

ri−1

ri+1
αi−1

αi

Figure 1.2. Notations for mean value coordinates.

where

λi(x) =
(−1)i

(x − x i) · · · (x − x i+d)
, i = 0,1, . . . , n− d. (1.13)

This formula is slightly inferior in terms of efficiency, because it requires O(nd) operations to be
computed straightforwardly, but there exists a more efficient way of computing its denominator
in O(n) operations [34]. Therefore, the first part of this thesis focuses on the study of the
numerical stability of the algorithms that implement the two formulas (1.9) and (1.12), in
order to know a priori if there are cases in which one turns out to be better than the other.

In the bivariate case, our concern is to study the normalized barycentric coordinatesφi : P →
R defined as in (1.2) assuming to have some nodes x1, . . . , xn that are the vertices of a planar
polygon P ⊂ R2. Since they satisfy the barycentric property (1.3), these values allow each
interior point of P to be expressed as an affine combination of the vertices. In addition, they are
of particular interest in many applications, such as interpolation, curve and surface modelling in
computer graphics, the finite element method, and many others. In the case of a triangle, that
is, for n = 3, these coordinates are uniquely determined by (1.3) and (1.4) and positive [64].
Regarding instead an arbitrary polygon, the functions in (1.2) are no longer uniquely defined
and different constructions have been proposed during the years. For example, for convex
polygons, an attractive choice is represented by the Wachspress coordinates [79], which can
be expressed as rational functions and have many other nice properties, including positivity.
However, they are not defined for arbitrary simple polygons and, in that case, the mean value
coordinates [28] are the most popular option, though positivity is lost in general. Denoting by
αi(x) ∈ (−π,π) the angles at x in the triangle [x , x i+1, x i], i = 1, . . . , n− 1, and ri = ∥x − x i∥,
i = 1, . . . , n, (see Figure 1.2) they are defined by (1.2) and

wi(x) =
tan (αi−1/2) + tan (αi/2)

ri
, i = 1, . . . , n.

Since several other formulas that are mathematically equivalent to the previous one can be
found in the literature, the second part of this thesis regards the study of the numerical stability
of the algorithms that implement the mean value coordinates.

5 1.2 Outline of the thesis

1.2 Outline of the thesis

This thesis includes all the research I conducted during my period as PhD student at Università
della Svizzera italiana. Below, I present how it is organized throughout the dissertation.

In Chapter 2, we present the essential preliminary results needed for the study of the nu-
merical stability of the algorithms that compute the barycentric interpolation. We begin by
presenting the floating-point number system in Section 2.1, with focus on how floating-point
numbers are defined and the limitations of using this discrete set to approximate the infinite
set of real numbers. In Section 2.2, we introduce the concept of condition number. Although it
is not directly related to the algorithm itself, it is strictly related to its numerical stability as it
measures the sensitivity of the solution of a problem to small perturbations of the given data.
Finally, in Section 2.3, we mathematically define the numerical stability of an algorithm, that
is its behaviour with respect to the propagation of the errors that occur during the arithmetic
operations executed by the computer using floating-point numbers.

In Chapter 3, we first summarize the state of the art on the forward and backward stability
of barycentric rational interpolation in the univariate case in Section 3.1 and then present our
contributions in Section 3.2. Afterwards, we focus on a general rational function that includes
both the first and second barycentric forms of rational interpolation as special cases. In par-
ticular, we demonstrate that both are forward and backward stable under certain conditions
in Section 3.3 and 3.5, respectively. First, we need forward stable algorithms to compute the
weights γi and the functions λi , which is the case of both formulas in (1.11) and (1.13), as
proved in Section 3.4. Additionally, we present a new algorithm to compute the functions λi

that is more efficient than the existing methods, but comes at the cost of slightly reduced sta-
bility. Second, our analysis reveals that, on the one hand, the stability of the second barycentric
form depends on the Lebesgue constant associated with the interpolation nodes, which typically
grows with n and has been widely studied over the years. On the other hand, the stability of
the first barycentric form depends on a different quantity that has never been presented in the
literature before. We prove that the latter can be bounded in terms of the mesh ratio, regard-
less of n, in Section 3.6. We conclude with numerical experiments that support our theoretical
results in Section 3.7. This chapter is based on our published paper [34]

Fuda, C., Campagna, R. and Hormann, K. [2022]. On the numerical stability of linear
barycentric rational interpolation, Numerische Mathematik 152(4): 761–786.

In Chapter 4, we present our C++ class, named BRI (Barycentric Rational Interpolation),
which contains all the necessary functions for handling a barycentric rational interpolant with
all its features through a robust and efficient implementation. Furthermore, the BRI class sup-
ports not only the standard C++ data types, but also allows for arbitrary precision using the
Multiple Precision Floating-Point Reliable (MPFR) library [33]. While there already exist sev-
eral libraries [1, 11, 62, 77] that evaluate a barycentric rational interpolant using the second
form in (1.9) without any further considerations, the BRI class is designed to autonomously se-
lect the best method to use on a case-by-case basis. It does so by taking into account the results
regarding the efficiency and numerical stability of barycentric rational interpolation presented
in Chapter 3. Moreover, we describe a new technique that makes the code robust and less
prone to overflow and underflow errors. Therefore, after a brief overview of all the functions
contained in the BRI class in Section 4.1, we present some preliminary results needed to handle
overflow and underflow errors in Section 4.2. Then, in Section 4.3 and 4.4, we discuss the ro-
bust implementations of the barycentric weights γi and of the interpolant r. Finally, we discuss

6 1.2 Outline of the thesis

the algorithms used to compute the functions related to numerical stability in Section 4.5. This
part of the thesis is based on our published paper [35]

Fuda, C. and Hormann, K. [2024]. Algorithm 1048: A C++ Class for Robust Linear
Barycentric Rational Interpolation, ACM Transaction on Mathematical Software 50(3).

Chapter 5 investigates the numerical stability of the algorithms that implement the mean
value coordinates with a similar approach to that used in Chapter 3. In particular, we begin by
presenting all the formulas that has been introduced in the literature to compute mean value co-
ordinates in Section 5.1 and our contribution regarding their numerical stability in Section 5.2.
Afterwards, Section 5.3 shows empirically that all these methods can exhibit numerical insta-
bility in certain situations. Therefore, to address this issue, we introduce in Section 5.4 a new
formula for expressing the mean value coordinates and explain how to properly implement it,
so as to prevent potential numerical issues. Then, we adapt the mathematical definition of
numerical stability to the case of mean value coordinates in Section 5.5, and we prove in Sec-
tion 5.6 that our new formula provides a stable way to compute them, while all the others can
be unstable under certain circumstances. Finally, we validate our results with numerical exper-
iments and compare the various methods both in terms of numerical stability and efficiency in
Section 5.7. This part of the thesis is based on our published paper [36]

Fuda, C. and Hormann, K. [2024]. A new stable method to compute mean value coordi-
nates, Computer Aided Geometric Design 111: Article 102310, 16 pages. Proceedings of
GMP.

Chapter 6 is an application of the results presented in Chapter 3 to a different context. In
fact, these findings have broader implications that go beyond barycentric rational interpolation
and can be applied to a variety of computational methods. Specifically, we examine the nu-
merical stability of the most commonly used algorithms for computing rational Bézier curves.
Therefore, we first present all these methods in Section 6.1, also accurately describing how we
implement them. Afterward, we derive an upper bound on their relative errors in Section 6.2.
For most algorithms, these bounds are a direct consequence of a theorem presented in Chap-
ter 3, while, in some cases, new derivations are required. Finally, we present some numerical
experiments to support our results in Section 6.3. This chapter is based on our published pa-
per [37]

Fuda, C., Ramanantoanina, A. and Hormann, K. [2024]. A comprehensive comparison of
algorithms for evaluating rational Bézier curves, Dolomites Research Notes on Approxi-
mation, 17(3): 56-79.

Finally, Chapter 7 summarizes the thesis by focusing on the key findings and contributions
of the previous chapters and outlining potential directions for future research.

Chapter 2

Preliminaries

Numerical stability is a property of numerical algorithms that indicates how numerical errors
present in the initial data (input) propagate during the execution of all the arithmetic opera-
tions leading to the final result (output). In general, perturbations in the data can arise from
any source, but we only focus on the errors introduced by the floating-point number system.
Moreover, this property is totally independent of the problem that the algorithm wants to solve,
but is closely related to its conditioning, which estimates how a small variation in the data can
affect the final solution.

Below, we first introduce the floating-point numbers and their arithmetic, and we then de-
fine the conditioning of a general problem. Finally, we discuss how to evaluate the performance
of a numerical algorithm by studying its forward and backward stability.

2.1 Floating-point number system

The set F ⊂ R of floating-point numbers is the standard discrete set used to approximate real
numbers on a computer. Considering a fixed base β ∈ N with β ≥ 2 and a precision t ∈ N with
t ≥ 1, the set F is composed by the number 0 together with all numbers y that can be expressed
as [43, 65, 69, 78]

y = ±µ× β E , (2.1)

where the mantissa (or significand) µ ∈ N lies in the range [0, 1− β−t] and the exponent E is
an arbitrary integer. The latter can obviously vary only in a finite interval of Z, so we denote
the two extreme exponents by Emin and Emax and generally Emin < 0 < Emax. For the purpose
of obtaining a unique representation of any y ∈ F such that y ̸= 0, we can further suppose
µ≥ β−1 and, in this case, we say that the related y is a normal number.

In our analysis, we consider a binary floating-point number system [78], which is char-
acterized by the choice of β = 2. In such a system, every element of F has a mantissa µ ∈
[µmin,µmax] = [2−1, 1− 2−t] and an exponent E ∈ {Emin, Emin + 1, . . . , Emax}, and the smallest
and largest positive normal floating-point number are

Fmin = µmin2Emin and Fmax = µmax2Emax . (2.2)

Therefore, the floating-point number system is uniquely characterized by the triple (t, Emin,
Emax) and the free choice of this values may bring to the creation of many different sets. For

7

8 2.1 Floating-point number system

0 Fmin−Fmin Fmax−Fmax

Positive normal numbers
︷ ︸︸ ︷

Negative normal numbers
︷ ︸︸ ︷

Denormal
numbers
︷ ︸︸ ︷

Figure 2.1. Density of floating-point numbers.

example, the standard float type represents a single precision floating-point number with t =
23, Emin = −125, Emax = 128, while the standard double type represents a double precision
floating-point number with t = 52, Emin = −1021, Emax = 1024. Note that the IEEE standard
754 [52] specifies these numbers slightly differently in terms of the numbers of digits in the
significand p = t + 1, the maximum exponent emax = Emax − 1, and the minimum exponent
emin= 1−emax = Emin−1. It is still possible to extend F by adding the subnormal or denormal
numbers in (−Fmin, Fmin), which are defined as ±µ× 2Emin with 0< µ < 2t−1 and have reduced
precision.

The set F is not equally spaced, but it becomes denser toward zero, as shown in Figure 2.1.
In particular, the floating-point numbers are uniformly distributed in each interval

�

2E , 2E+1
�

and at a distance of hE = 2E−t . This means that, if we allow the presence of subnormal numbers
in F, then they are equidistant as they all have the same exponent. Consequently, we introduce
a different error for any x ∈ R that we approximate by fl(x) ∈ F, where fl(x) is the closest
floating-point number to x . In this regard, it was shown (see [43, Theorem 2.2], for example)
that, for any x ∈ R, x ̸= 0, the relative error (fl(x)− x)/x is bounded from above by the number
ε= 2−t , known as the machine epsilon or unit roundoff. This is equivalent to saying that we can
always find some δ ∈ R with |δ|< ε such that

fl(x) = x(1+δ). (2.3)

Thus, whenever we use real data as input for an algorithm, they are inevitably perturbed and
introduce rounding errors into the process that propagate through to the final result.

2.1.1 Overflow and underflow

Before delving into the details of overflow and underflow error, let us begin with a toy ex-
ample to show this situation. We consider x = 10,20, 40,80, 160,320, 640,1280 and compute
f (x) = ex on a machine that employs the double precision floating-point number system. Both
the C++ code and the related output are shown in Program 1. We note that, up to x = 640,
the code behaves as expected, while for x = 1280 the exponential function gives inf. This
occurs because the true result should be ≈ 7.8875×10555, which exceeds the maximum repre-
sentable floating-point number in double precision, that is Fmax = 1.79769313486232× 10308.
Consequently, e1280 cannot be represented and the code gives an overflow error.

In general, all x ∈ R that are not elements of the set F cannot be represented as floating-
point numbers and, in this case, we talk about overflow if |x |> Fmax and underflow if |x |< Fmin

(or gradual underflow if F includes the denormal numbers), as shown in Figure 2.2. On the
one hand, overflow typically produces ±∞, which makes the error easily detectable. On the
other hand, underflow can result in a number that lacks full precision if denormal numbers are

9 2.1 Floating-point number system

#include <iostream>

#include <vector>

#include <cmath>

using namespace std;

int main(){

cout.precision(20);

int n = 8;

double x = 10;

vector<double> f(n,1);

for (int i=0; i<n; i++){

f[i] = exp(x);

cout << "f(" << x << ") = " << f[i] << endl;

x *= 2;

}

}

f(10) = 22026.465794806717895

f(20) = 485165195.40979027748

f(40) = 235385266837020000

f(80) = 5.5406223843935098345e+034

f(160) = 3.069849640644242423e+069

f(320) = 9.4239768161635848851e+138

f(640) = 8.8811339031588737941e+277

f(1280) = inf

Program 1. C++ code to compute f (x) = ex for x = 10, 20,40, 80,160, 320,640,1280 in double
precision (left) and its output (right).

Fmin−Fmin Fmax−Fmax

(Gradual)

Underflow
︷ ︸︸ ︷

−∞ +∞

Overflow
︷ ︸︸ ︷

Overflow
︷ ︸︸ ︷

Figure 2.2. Overflow and (gradual) underflow regions with respect to the real line.

stored, or it can jump directly to zero otherwise. This makes underflow errors difficult to detect
since the results appear as ordinary numbers.

However, there exist certain techniques that try to prevent overflow and underflow errors
during computations with floating-point values. In particular, the approach that we use for
these circumstances involves performing some rescale operations to maintain the results within
safe bounds. Since it relies on knowing the interval in which each operation’s outcome lies, we
present the following proposition to estimate the range for the result of all the basic arithmetic
operations between two arbitrary positive floating-point numbers.

Proposition 2.1. Let a = +α× 2A ∈ F and b = +β × 2B ∈ F. Suppose we compute c = a ∗ b =
γ×2C ∈ F, where ∗ ∈ {+,−, ·,÷} is one of the standard arithmetic operations. Then, except in the
case where c = 0, the exponent C is guaranteed to be in the set {Cmin, Cmin + 1, . . . , Cmax}, where

(Cmin, Cmax) =

(A+ B − 1, A+ B), if c = a · b,

(A− B, A− B + 1), if c = a÷ b,

(max{A, B},max{A, B}+ 1), if c = a+ b,

(A− t + 1, A− 1), if c = a− b and A= B,

(max{A, B} − t,max{A, B}), if c = a− b and |A− B|= 1,

(max{A, B} − 1, max{A, B}), if c = a− b and |A− B|> 1.

(2.4)

10 2.1 Floating-point number system

Proof. In the case of multiplication, since α,β ∈ [µmin,µmax] with µmin = 1/2 and µmax =
1− 2−t < 1, we have

α · β ≥ µ2
min = 2−1µmin and α · β ≤ µ2

max < 20µmax,

so that α · β = γ × 2D for some γ ∈ [µmin,µmax] and D ∈ {−1,0}, and the statement follows
from the fact that c = α · β × 2A+B.

In the case of division, we have

α/β ≥ µmin/µmax > 20µmin and α/β ≤ µmax/µmin = 2µmax,

so that α/β = γ× 2D for some γ ∈ [µmin,µmax] and D ∈ {0,1}, and the statement follows from
the fact that c = α/β × 2A−B.

Without loss of generality, we assume A≥ B and we prove the statement for max{A, B}= A.
Furthermore, we recall that the smallest positive floating-point number is 2−t , meaning that
2−t ≤ 2B−A ≤ 1. In the case an addition, we have

α+ β2B−A ≥ µmin +µmin2−t > 20µmin and α+ β2B−A ≤ 2µmax,

so that α+β2B−A = γ× 2D for some γ ∈ [µmin,µmax] and D ∈ {0,1}, and the statement follows
from the fact that c = (α+ β2B−A)× 2A.

In the case a subtraction, if A= B, thenα ̸= β otherwise c = 0. Moreover, since the minimum
distance between two consecutive floating-point numbers is 2−t = 2−t+1µmin, we have

|α− β | ≥ 2−t+1µmin and |α− β | ≤ µmax −µmin = µmin − 2−t < 20µmin,

so that α−β = γ×2D for some γ ∈ [µmin,µmax] and D ∈ {−t+1,−t+2, . . . ,−1}, where D = 0 is
not included because |α− β | is always strictly less than µmin. Therefore, the statement follows
from the fact that c = (α− β)× 2A. If A= B + 1 we have

α− β2−1 ≥ µmin −µmax2−1 = 2−tµmin and

α− β2−1 ≤ µmax −µmin2−1 < 20µmax,

so that α − β2−1 = γ × 2D for some γ ∈ [µmin,µmax] and D ∈ {−t,−t + 1, . . . , 0}, and the
statement follows from the fact that c = (α− β2−1)× 2A. Finally, if A> B + 1 we have

α− β2B−A ≥ µmin −µmax2−2 > 2−1µmin and

α− β2B−A ≤ µmax −µmin2−t < 20µmax,

so that α−β2B−A = γ×2D for some γ ∈ [µmin,µmax] and D ∈ {−1,0}, and the statement follows
from the fact that c = (α− β2B−A)× 2A.

2.1.2 Floating-point arithmetic operations

In addition to the rounding errors introduced by mapping each x ∈ R to the closest floating-
point approximation fl(x) ∈ F, we must also consider the errors introduced by any arithmetic
operation performed between floating-point numbers. In this context, we denote by ⊛ the
floating-point analogue of ∗ ∈ {+,−,×,÷}, that is,

x ⊛ y = fl(x ∗ y),

11 2.1 Floating-point number system

for any x , y ∈ F, and recall [78, Lecture 13] that, as for the operator fl, also ⊛ introduces a
relative error of size at most ε. This is equivalent to saying that, for any x , y ∈ F there exists
some δ ∈ R with |δ|< ε, such that

x ⊛ y = (x ∗ y)(1+δ). (2.5)

We note that fl(−x) = −x for all x ∈ F, so that multiplying a floating-point number by (−1)i or
taking its absolute value does not entail any rounding error.

These are precisely the errors that we consider in our numerical stability analysis and, in
particular, we examine how they propagate through the algorithm to the final result. To address
this, we now present some fundamental facts that we frequently use in our studies, especially
when dealing with cases involving multiple operations, such as sums or products.

• By Taylor expansion,
1

1+ y
=
∞
∑

k=0

(−1)k yk

for any y ∈ R with |y|< 1. Consequently, if y = O(ε), then

1
1+ y

= 1− y +O(ε2). (2.6)

Moreover, for any δ ∈ R with |δ| ≤ ε, there exists some δ′ ∈ R with |δ′| ≤ ε+O(ε2), such
that

1
1+δ

= 1+δ′. (2.7)

This observation is useful for “moving” the perturbation (2.5) caused by a floating-point
operation from the denominator to the numerator.

• For any δ1, . . . ,δm ∈ R with |δi | ≤ Ciε for some Ci > 0, i = 0, . . . , n, there exists some
δ ∈ R with |δ| ≤ Cε+O(ε2), where C =

∑m
i=1 Ci , such that

m
∏

j=1

(1+δ j) = 1+δ. (2.8)

We use this observation to gather the perturbations caused by computing the product of
m terms into a single perturbation. Moreover, by its definition, we note that C depends
on the integer m.

• For any t0, . . . , tm ∈ F, there exist some ϕ0, . . . ,ϕm ∈ R with |ϕ0|, . . . , |ϕm| ≤ mε+O(ε2),
such that

fl

� m
∑

i=0

t i

�

= (· · · ((t0 ⊕ t1)⊕ t2) · · · ⊕ tm) =
m
∑

i=0

t i(1+ϕi). (2.9)

This follows from the previous observation, and we use it to estimate the rounding error
introduced by simple iterative summation of m + 1 floating-point numbers. It is worth
pointing out that, in the literature, many algorithms have been developed to compute
summations in a more stable way. Some of these methods yield smaller upper bounds
on the relative errors, even independent of m, as in the case of the Kahan’s summation
algorithm [42].

12 2.1 Floating-point number system

2.1.3 Floating-point elementary functions

Since some of the algorithms we consider involve not only basic operations, but also square root
and trigonometric functions, we must address how to manage and analyze the errors introduced
in these cases. In general, we do not have results on the numerical stability of the elementary
function implementations in standard libraries. However, some of them give information about
the maximum relative errors in their specific implementations, such as the CUDA programming
model [66] and the GNU library [60]. In our analysis, we always assume that we have stable
algorithms to evaluate the elementary functions that we need. In other words, we assume that,
for any x ∈ F, there exist some δsqrt,δsin,δarctan,δtan ∈ R, such that

fl(
p

x) =
p

x(1+δsqrt), |δsqrt| ≤ Dsqrtε+O(ε2), (2.10)

fl(sin x) = sin x(1+δsin), |δsin| ≤ Dsinε+O(ε2), (2.11)

fl(cos x) = cos x(1+δcos), |δcos| ≤ Dcosε+O(ε2), (2.12)

fl(arctan x) = arctan x(1+δarctan), |δarctan| ≤ Darctanε+O(ε2) (2.13)

fl(tan x) = tan x(1+δtan), |δtan| ≤ Dtanε+O(ε2) (2.14)

for some constants Dsqrt,Dsin,Dcos,Darctan, and Dtan. For example, for the IEEE standard 754
floating-point arithmetic [52], it is known [71] that |δsqrt| ≤ 1− 1/

p
1+ 2ε, hence, by Taylor

expansion, Dsqrt = 1.
While the bounds in (2.10)–(2.14) assume that the argument x is a floating-point number,

let us now derive these bounds for a perturbed data. Therefore, we now consider an arbitrary
argument y ∈ R, which is first rounded to a floating-point value z = fl(y) and then passed to
the elementary functions.

Lemma 2.2. Let z = y(1+ γ) ∈ F, where y ∈ R and γ ∈ R satisfies |γ| ≤ Cε, for some C > 0,
and f be a differentiable function at y. If f (y) ̸= 0, then there exists some γ′ ∈ R such that

f (z) = f (y)(1+ γ′), |γ′| ≤
| f ′(y)y|
| f (y)|

Cε+O(ε2).

Proof. The statement follows immediately from the Taylor expansion of f around y , that is,

f (z) = f (y) + f ′(y)yγ+O(ε2) = f (y)
�

1+
f ′(y)y
f (y)

γ+O(ε2)
�

.

Corollary 2.3. Let z = y(1+ γ) ∈ F, where y ∈ R and γ ∈ R satisfies |γ| ≤ Cε, for some C > 0.
If sin y ̸= 0, cos y ̸= 0, and arctan y ̸= 0, then there exist some δ′sin,δ′cos,δ

′
arctan ∈ R, such that

fl(sin z) = sin y(1+δ′sin), |δ′sin| ≤ (|cot y||y|C + Dsin)ε+O(ε2), (2.15)

fl(cos z) = cos y(1+δ′cos), |δ′cos| ≤ (|tan y||y|C + Dcos)ε+O(ε2), (2.16)

fl(arctan z) = arctan y(1+δ′arctan), |δ′arctan| ≤ (C + Darctan)ε+O(ε2). (2.17)

If y /∈ {(2k+ 1)π/2, k ∈ Z} and tan y ̸= 0, then there exists some δ′tan ∈ R, such that

fl(tan z) = tan y(1+δ′tan), |δ′tan| ≤ (2|y|/|sin 2y|C + Dtan)ε+O(ε2). (2.18)

If y > 0, then there exists some δ′sqrt ∈ R, such that

fl(
p

z) =
p

y(1+δ′sqrt), |δ′sqrt| ≤ (C/2+ Dsqrt)ε+O(ε2). (2.19)

13 2.2 Conditioning of a problem

� � ��

�̂ �̂

� �

�1 (�̂)

�1 (�)

�2 (�)

�2 (�̂)

Figure 2.3. Comparison between the behaviors of a well-conditioned (left) and an ill-
conditioned (right) problem, g1 and g2 respectively.

Proof. Equations (2.15), (2.16), (2.18) and (2.19) follow directly from (2.11), (2.12), (2.14)
and (2.10), respectively, and Lemma 2.2. Regarding (2.17), Lemma 2.2 and (2.13) give

fl(arctan z) = arctan y(1+δ′arctan), |δ′arctan| ≤
�

�

�

�

�

y
(1+ y2)arctan y

�

�

�

�

C + Darctan

�

ε+O(ε2).

We note that g(y) = y/[(1+ y2)arctan y] is always positive, because y and arctan y have the
same sign. So, to complete the proof, it remains to show that g(y) ≤ 1 for all y > 0. The first
derivative of g is given by

g ′(y) =
arctan y − y2 arctan y − y
[(1+ y2)arctan y]2

.

Since h(y) = arctan y − y is a decreasing function, we have h(y) < h(0) = 0 and therefore
g ′(y) < 0. This means that g is a strictly decreasing function. Additionally, we know that
limx→0 arctan x/x = 1 and conclude

g(y)< lim
x→0

g(x) = lim
x→0

x
(1+ x2)arctan x

= 1.

2.2 Conditioning of a problem

An important concept related to the numerical stability of an algorithm is the conditioning of
a problem, that is, the sensitivity of the solution to small perturbations of the data. Following
Trefethen and Bau [78], a problem can be viewed as a function g : U → V from a normed vector
space (U ,∥·∥U) of data to a normed vector space (V,∥·∥V) of solutions. Furthermore, we say
that g is well-conditioned if any small perturbation of the data u ∈ U leads to a small change of
the solution g(u) ∈ V , while it is ill-conditioned if some small perturbation of the data u leads
to a large change of the solution g(u). For instance, considering a well-conditioned and an ill-
conditioned problem, g1 and g2 respectively, we observe in Figure 2.3 their different behaviours
for an arbitrary data u ∈ U and one of its problematic perturbation û ∈ U for the problem g2.

The quantity that describes how the solution of g behaves with respect to a perturbation
of the data is called the condition number and it expresses the worst error that can affect the
solution of the problem due to a possible perturbation of the data. There are two different

14 2.2 Conditioning of a problem

ways to define the conditioning of a problem, depending on the type of changes in both data
and solution we are interested in. On the one hand, considering some data u ∈ U , u ̸= 0,
such that g(u) ̸= 0 and denoting by h ∈ U a possible small perturbation of u, then they can
be measured by their relative errors ∥h∥U/∥u∥U and ∥g(u+ h)− g(u)∥V/∥g(u)∥V , respectively,
and these are related by the relative normwise condition number [17, 38, 69, 78] as

c(u) = lim
δ→0

sup
∥h∥U≤δ

�∥g(u+ h)− g(u)∥V
∥g(u)∥V

Á∥h∥U
∥u∥U

�

.

On the other hand, supposing that u = 0 or g(u) = 0, then the right quantities to consider
are now the absolute errors ∥h∥U and ∥g(u+ h)− g(u)∥V , so we define the absolute normwise
condition number [17, 69, 78] as

c̃(u) = lim
δ→0

sup
∥h∥U≤δ

∥g(u+ h)− g(u)∥V
∥h∥U

.

The greater these values, the more ill-conditioned the problem. Regardless of the distinction
between relative and absolute normwise conditioning number, this is the most general definition
we can find in the literature for an arbitrary problem g. However, it may happen that we must
deal with some restriction on the perturbations in u and, in this case, it makes sense to define
the condition number in such a way to take this additional information into account.

Let us now consider a small positive value δ ∈ R and we define Hδ as the set of all possible
perturbations h ∈ U \ {0} of the data u satisfying the componentwise inequality

|hi |< δ|ui |, i = 1, . . . , n, (2.20)

where n is the dimension of the space U . If we consider again some data u ∈ U , u ̸= 0, such that
g(u) ̸= 0, then we can relate the relative error in the norm of the output with the componentwise
relative error of the input through the mixed relative condition number [38]

m(u) = lim
δ→0

sup
h∈Hδ

�

∥g(u+ h)− g(u)∥V
∥g(u)∥V

Á

max
i=1,...,n

ui ̸=0

|hi |
|ui |

�

.

Otherwise, we can use the componentwise relative error also for the output and this leads to
the definition of the componentwise relative condition number [38]

κ(u) = lim
δ→0

sup
h∈Hδ

�

max
i=1,...,m
gi(u)̸=0

|gi(u+ h)− gi(u)|
|gi(u)|

Á

max
i=1,...,n

ui ̸=0

|hi |
|ui |

�

, (2.21)

where m is the dimension of the space V .
Condition (2.20) is common when the perturbed data u + h ∈ U comes from the finite-

precision approximation of the real data u through an element of the set F, and this makes the
choice between κ(u), m(u), and c(u) crucial for some problem g. In fact, there are cases where
it is possible to find an arbitrary perturbation h that makes g ill-conditioned in u, while g is
well-conditioned with respect to all h ∈ Hδ.

Below, we will see how the conditioning of a problem is related to the numerical stability of
an algorithm designed to solve it.

15 2.3 Numerical stability of an algorithm

�̂

�

�̂(�) = �(�̂)

�(�)

Forward
errorBackward

error

�

�

�̂

Figure 2.4. Relation between forward and backward errors.

2.3 Numerical stability of an algorithm

Suppose we want to solve a general problem g : U → V with a numerical algorithm on a
computer, that, following again Trefethen and Bau [78], can be viewed as another function
ĝ : U → V between the same normed vector spaces of g. As seen previously, the floating-point
arithmetic leads to rounding errors during the computation, so we cannot expect to get the
exact solution of a problem by solving it with an algorithm. Then, beyond the concept of con-
ditioning, which is related to the behaviour of the solution of g independently of the algorithm
used, we also need to introduce the stability of an algorithm, which instead expresses how ac-
curate the answer of ĝ to the problem is. More precisely, there are two types of stability: the
forward stability, which states how far the computed solution is from the exact one, and the
backward stability, which instead quantifies how much we need to perturb the data in order to
produce the approximate solution.

Given some data u ∈ U at which we want to evaluate the problem g, the usual quantity
to consider is the difference between the computed solution ĝ(u) and the exact solution g(u),
which is captured by the absolute forward error ∥ ĝ(u)− g(u)∥V or the relative forward error
∥ ĝ(u)− g(u)∥V/∥g(u)∥V . Assuming g(u) ̸= 0, then the algorithm ĝ is called accurate or forward
stable, if

∥ ĝ(u)− g(u)∥V
∥g(u)∥V

= O(ε) (2.22)

for all u ∈ U , where the notation x = O(ε) means that there exists some positive constant C ,
such that |x | ≤ Cε as ε→ 0. On the other hand, if g(u) = 0, we can use the same definition,
but considering the absolute forward error on the left-hand side of (2.22). Furthermore, given
some nonzero data u ∈ U , the algorithm ĝ is called backward stable, if

ĝ(u) = g(û) for some û ∈ U with
∥û− u∥U
∥u∥U

= O(ε), (2.23)

where the quantity ∥û− u∥U/∥u∥U is known as the relative backward error and, in the case of
u = 0, it can be replaced by the absolute backward error ∥û− u∥U . We can also see graphically
how forward and backward errors relate to each other in Figure 2.4.

The forward stability of an algorithm is influenced by the condition number of the problem
that it is designed to solve. In some definitions, this dependence is made explicit. For instance,

16 2.3 Numerical stability of an algorithm

Harbrecht and Multerer [41] define an algorithm as relative forward stable if

∥ ĝ(u)− g(u)∥V
∥g(u)∥V

≤ Kc(u)ε,

for some moderately large positive constant K . This approach allows an algorithm to be consid-
ered forward stable even if the problem is ill-conditioned. Instead, the definition in (2.22) that
we adopt for our study is equivalent to the previous one, except that the condition number is
incorporated implicitly within the constant K . Consequently, under our definition, if a problem
is ill-conditioned, no algorithm developed to address it can be considered forward stable.

To conclude, the forward and backward stability are not independent of each other, but
they are joined by the conditioning of the problem. In fact, Trefethen and Bau [78, Theorem
15.1] proved that, supposing we have a backward stable algorithm ĝ to solve a well-conditioned
problem g on a computer satisfying (2.3) and (2.5), then ĝ is also forward stable, while it might
not be if g is ill-conditioned. Moreover, knowing the relative (absolute) backward error and
the relative (absolute) normwise condition number, their product gives an upper bound on the
relative (absolute) forward error [17], that is,

∥ ĝ(u)− g(u)∥V
∥g(u)∥V

≤ c(u)
∥û− u∥U
∥u∥U

.

Chapter 3

The numerical stability of linear
barycentric rational interpolation

3.1 State of the art

In this chapter, we focus on the barycentric interpolation problem in the univariate case. There-
fore, let us first recall the classical interpolation problem: given n+1 distinct interpolation nodes
Xn = (x0, . . . , xn) ∈ Rn+1 with associated data Yn = (y0, . . . , yn) ∈ Rn+1, we search for a function
r : R→ R that interpolates yi at x i , that is,

r(x i) = yi , i = 0, . . . , n. (3.1)

As mentioned in the introduction, in the literature there are many options for choosing this
function, including both polynomial and rational forms. Below, we examine all these methods
and report what is already known about their numerical stability.

In the case of polynomial interpolation of degree at most n, this problem has a unique solu-
tion, which can be expressed in Lagrange form as

r(x) =
n
∑

i=0

n
∏

j=0, j ̸=i

x − x j

x i − x j
yi .

While this form is advantageous for theoretical analysis, its evaluation requires O(n2) opera-
tions and can be numerically unstable. It is advisable to consider instead the first polynomial
barycentric form of r,

r(x) =
n
∏

j=0

(x − x j)
n
∑

i=0

γi

x − x i
yi , γi =

n
∏

j=0, j ̸=i

1
x i − x j

. (3.2)

The latter is more efficient than the Lagrange form, as it can be evaluated in O(n) operations,
after computing the γi , which are independent of x , in O(n2) operations in a preprocessing step.
Higham [44] shows that this evaluation is backward stable with respect to perturbations of the
data yi . Another means of evaluating r in polynomial form is given by the second barycentric
form

r(x) =

∑n
i=0

γi
x−x i

yi
∑n

i=0
γi

x−x i

(3.3)

17

18 3.1 State of the art

Type of interpolant Forward stability Backward stability

First barycentric polynomial ✗ Higham [44]
Second barycentric polynomial Higham [44] ✗

First barycentric rational ✗ de Camargo [18]
Second barycentric rational Salazar Celis [72] Mascarenhas and Camargo [63]

Table 3.1. State of the art on the numerical stability of polynomial and rational barycentric
interpolation; if the forward or backward stability has not been covered for a specific type of
interpolant, then it is denoted by ✗, otherwise there is the corresponding reference.

with Lagrange weights γi in (3.2). This formula can be derived from (3.2) by noticing that
the function that interpolates the constant one function with data yi = 1, i = 0, . . . , n, is given
by 1 = ℓ(x)
∑n

i=0
γi

x−x i
. Evaluating this formula also requires O(n) operations, but it comes

with the advantage that the γi can be rescaled by a common factor to avoid underflow and
overflow [8]. Moreover, the second barycentric form is forward stable, as long as the Lebesgue
constant associated with the interpolation nodes x i is small [44], which is the case, for example,
for Chebyshev nodes of the first and the second kind, but not for equidistant nodes [16].

In the rational case, the interpolation problem (3.1) no longer has a unique solution, but
Berrut and Mittelmann [7] show that every rational interpolant of degree at most n can be
expressed in the second barycentric form (3.3) for a specific choice of weights γi . Vice versa,
Schneider and Werner [74] note that for any set of non-zero weights γi , the function r in (3.3)
is a rational interpolant of degree at most n. An important subset of these barycentric rational
interpolants are those that do not have any poles in R. This is obviously true for the Lagrange
weights in (3.2), but also for the Berrut weights

γi = (−1)i , i = 0, . . . , n, (3.4)

and for the family of weights

γi =
min(i,n−d)
∑

k=max(i−d,0)

(−1)k
k+d
∏

j=k, j ̸=i

1
x i − x j

, d ∈ {0, . . . , n}, (3.5)

where the Berrut and the Lagrange weights are obtained for d = 0 and d = n, respectively.
Moreover, Floater and Hormann observe that this rational interpolant in (3.3) with weights
in (3.5) is mathematically equivalent to the first barycentric form

r(x) =
n
∑

i=0

γi
x−x i
∑n−d

i=0 λi(x)
yi , (3.6)

where

λi(x) =
(−1)i

(x − x i) · · · (x − x i+d)
, i = 0,1, . . . , n− d. (3.7)

The result of Higham [44] can be extended to show that the evaluation of the second barycentric
form (3.3) is forward stable, not only in the case of polynomial interpolation, but for general
barycentric rational interpolants, provided that the weights γi can be computed with a for-
ward stable algorithm and that the corresponding Lebesgue constant is small [72]. For Berrut’s

19 3.2 Our contribution

rational interpolant with weights in (3.4), this is the case for all well-spaced interpolation
nodes [14], including equidistant and Chebyshev nodes. For the family of barycentric ratio-
nal interpolants with weights in (3.5), the Lebesgue constant is known to grow logarithmically
in n, for any constant d > 0 and equidistant [13] as well as quasi-equidistant [48] nodes, and
the formula in (3.5) turns out to be a forward stable means of computing the weights γi [18].
Regarding backward stability, Mascarenhas and Camargo [63] show that the second barycen-
tric form is backward stable under the same assumptions, namely forward stable weights and
small Lebesgue constant. Moreover, Camargo [18] proves that the first barycentric form is back-
ward stable, as long as the denominator in (3.6) is computed with a special algorithm in O(nd)
operations.

We summarize the existing studies on the numerical stability of both polynomial and rational
barycentric interpolation in Table 3.1, also highlighting what was previously unknown. The next
section outlines instead our contributions, which address and fill all these gaps in the literature.

3.2 Our contribution

In this chapter, we conduct a comprehensive analysis of the error propagation that occurs in the
various barycentric interpolation methods introduced earlier. While our approach mostly aligns
with the existing research, it also introduces some key innovations. A primary difference is the
adoption of a new notation to express the upper bounds on the relative errors. In fact, all the
references cited in Table 3.1 use the Stewart’s error counter 〈k〉 to measure the amplification of
rounding errors in the various algorithms, that is,

〈k〉=
k
∏

i=1

(1+δi)
ρi , ρi = ±1, |δi | ≤ ε.

Then, assuming kε < 1, they use the fact that |〈k〉 − 1| ≤ kε/(1 − kε) [43] to determine the
corresponding upper bound on the relative error. In other words, if a quantity x ∈ R satisfies
fl(x) = x〈k〉, then it holds

|fl(x)− x |
|x |

= |〈k〉 − 1| ≤
kε

1− kε
.

In our study, we instead use the notation

fl(x) = x(1+δ), |δ| ≤ kε+O(ε2),

therefore the upper bound on |δ| also provides the upper bound on the relative error of x .
Regarding forward stability, we further generalize the proof of Salazar Celis [72], such that

it can also be used for proving the forward stability of the first barycentric form (3.6), with
two important changes. On the one hand, the result relies on the fact that not only the γi ,
but also the λi can be evaluated with a forward stable algorithm. This is indeed the case for
the formula in (3.7), which requires O(d(n− d)) operations for 0 < d < n, as well as a more
efficient, but slightly less stable formula that gets by with O(n) operations. On the other hand,
the Lebesgue constant must be replaced by a similar quantity that depends on the functions λi ,
for which we prove that it is at most on the order of O(µd), where µ is the mesh ratio of the
interpolation nodes. Moreover, we show that a more efficient formula [49] for computing the
weights in (3.5) is forward stable, too.

20 3.3 Forward stability

For backward stability, we present a novel approach that can be used for both barycentric
forms. For the second barycentric form, our result provides an upper bound on the perturbation
of the data yi that is smaller than the upper bound by Mascarenhas and Camargo [63]. For the
first barycentric form, our upper bound is larger than the one found by Camargo [18], but it
comes with the advantage of holding for a more efficient way of computing the denominator
in (3.6) in O(n) operations, which is based on our new O(n) algorithm for evaluating the λi .

Our numerical experiments confirm that our new method leads to a considerably faster
evaluation of the first barycentric form (3.6) of the rational interpolant with weights in (3.5)
than the algorithm proposed by Camargo, especially for larger d, at the price of only marginally
larger forward errors. Evaluating the interpolant using the second barycentric form (3.3) is even
faster and can be as stable, but may also result in significantly larger errors for certain choices of
interpolation nodes. However, we also report a case in which the second form is stable and the
first is not. Furthermore, we analyzed both methods in scenarios where the evaluation points
are near a root of the interpolant or an interpolation node.

Finally, it is important to note that our results hold under the assumption that the input
values to the algorithm, x i , yi , and x , are given as floating-point numbers, so they do not
introduce any additional error when we compute both forms (3.3) and (3.6). Consequently,
our stability analysis does not cover errors that result from initially rounding the given values
to floating-point numbers.

3.3 Forward stability

For analysing the relative forward error of barycentric rational interpolation, we first observe
that (3.3) and (3.6) can both be written in the common form

r(x) =

∑n
i=0 ai(x)yi
∑m

j=0 b j(x)
, (3.8)

where ai(x) = γi/(x − x i) for both forms, while m = n and b j(x) = a j(x) for the second form
and m= n− d and b j(x) = λ j(x) for the first form. Next, we define the functions

α(x; Yn) =

∑n
i=0 |ai(x)yi |
|
∑n

i=0 ai(x)yi |
(3.9)

and

β(x) =

∑m
j=0 |b j(x)|

|
∑m

j=0 b j(x)|
. (3.10)

Assuming now that we have forward stable algorithms for computing with the floating-point
arithmetic ai(x) as fl(ai(x)) and b j(x) as fl(b j(x)), we can derive a general bound on the relative
forward error for the function r in (3.8).

Theorem 3.1. Suppose that there exist α0, . . . ,αn ∈ R with

fl(ai(x)) = ai(x)(1+αi), |αi | ≤ Aε+O(ε2), i = 0, . . . , n

and β0, . . . ,βm ∈ R with

fl(b j(x)) = b j(x)(1+ β j), |β j | ≤ Bε+O(ε2), j = 0, . . . , m

21 3.3 Forward stability

for some constants A and B. Then, assuming Yn ∈ Fn+1, the relative forward error of r in (3.8)
satisfies

|fl(r(x))− r(x)|
|r(x)|

≤ (n+ 2+ A)α(x; Yn)ε+ (m+ B)β(x)ε+O(ε2), (3.11)

for ε small enough.

Proof. We first notice that fl(r) is given by

fl(r(x)) =

∑n
i=0 fl(ai(x))yi(1+δ×i)(1+ϕ

N
i)

∑m
j=0 fl(b j(x))(1+ϕD

j)
(1+δ÷)

=

∑n
i=0 ai(x)(1+αi)yi(1+δ×i)(1+ϕ

N
i)

∑m
j=0 b j(x)(1+ β j)(1+ϕD

j)
(1+δ÷),

where δ×i , ϕN
i , ϕD

j and δ÷ are the relative errors introduced by the product fl(ai(x))yi , the
sums in the numerator and the denominator, and the final division, respectively. It then follows
from (2.5) that |δ×i |, |δ

÷| ≤ ε, while from (2.9) we have |ϕN
i | ≤ nε+O(ε2) and |ϕD

j | ≤ mε+
O(ε2). By (2.8), there exist some ηi ,µ j ∈ R with

|ηi | ≤ (n+ 2+ A)ε+O(ε2), i = 0, . . . , n,

|µ j | ≤ (m+ B)ε+O(ε2), j = 0, . . . , m,
(3.12)

such that

fl(r(x)) =

∑n
i=0 ai(x)yi(1+ηi)
∑m

j=0 b j(x)(1+µ j)
. (3.13)

Therefore,

fl(r(x))
r(x)

=

∑n
i=0 ai(x)yi(1+ηi)
∑m

j=0 b j(x)(1+µ j)

Á

∑n
i=0 ai(x)yi
∑m

j=0 b j(x)

=

∑n
i=0 ai(x)yi(1+ηi)
∑m

j=0 ai(x)yi

∑m
j=0 b j(x)
∑m

j=0 b j(x)(1+µ j)

=
�

1+

∑n
i=0 ai(x)yiηi
∑m

j=0 ai(x)yi

�

1

1+

∑m
j=0 b j(x)µ j
∑m

j=0 b j(x)

.

Since, by the triangle inequality,

�

�

�

�

∑n
i=0 ai(x)ηi
∑n

i=0 ai(x)

�

�

�

�

≤ α(x) max
i=0,...,n

|ηi | ≤ α(x)(n+ 2+ A)ε+O(ε2) (3.14)

and
�

�

�

�

∑m
j=0 b j(x)µ j
∑m

j=0 b j(x)

�

�

�

�

≤ β(x) max
j=0,...,m

|µ j | ≤ β(x)(m+ B)ε+O(ε2), (3.15)

22 3.3 Forward stability

we can use (2.6) to express this ratio as

fl(r(x))
r(x)

=
�

1+

∑n
i=0 ai(x)yiηi
∑m

j=0 ai(x)yi

��

1−

∑m
j=0 b j(x)µ j
∑m

j=0 b j(x)
+O(ε2)
�

= 1+

∑n
i=0 ai(x)yiηi
∑m

j=0 ai(x)yi
−

∑m
j=0 b j(x)µ j
∑m

j=0 b j(x)
+O(ε2)

and obtain the relative forward error of r as

|fl(r(x))− r(x)|
|r(x)|

=

�

�

�

�

fl(r(x))
r(x)

− 1

�

�

�

�

=

�

�

�

�

∑n
i=0 ai(x)yiηi
∑m

j=0 ai(x)yi
−

∑m
j=0 b j(x)µ j
∑m

j=0 b j(x)
+O(ε2)

�

�

�

�

.

The upper bound in (3.11) then follows immediately by using again (3.14) and (3.15).

While Theorem 3.1 holds for any function r that can be expressed as in (3.8), we shall now
focus on the special cases of the two different forms of the barycentric rational interpolant.
For the second barycentric form, the only assumption we need is that the weights γi can be
computed with floating-point arithmetic as fl(γi) with a forward stable algorithm. Moreover,
we recall the definition of the Lebesgue function of the barycentric rational interpolant [13] as

Λn(x; Xn) =

∑n
i=0

�

�

γi
x−x i

�

�

�

�

∑n
i=0

γi
x−x i

�

�

.

Corollary 3.2. Assume that there exist ψ0, . . . ,ψn ∈ R with

fl(γi) = γi(1+ψi), |ψi | ≤Wε+O(ε2), i = 0, . . . , n (3.16)

for some constant W. Then, assuming Yn ∈ Fn+1, the relative forward error of the second barycen-
tric form in (3.3) satisfies

|fl(r(x))− r(x)|
|r(x)|

≤ (n+ 4+W)κ(x; Xn, Yn)ε+ (n+ 2+W)Λn(x; Xn)ε+O(ε2), (3.17)

for ε small enough.

Proof. We first notice that ai(x) = γi/(x − x i) can be computed with one subtraction and one
division, so that, by (2.5), (2.7), (2.8), and (3.16),

fl(ai(x)) = ai(x)(1+αi), i = 0, . . . , n

for some αi ∈ R with |αi | ≤ (2+W)ε+O(ε2). Hence, the constants in (3.11) are A= 2+W and
further B = 2+W , because b j(x) = a j(x) in case of the second barycentric form. From the latter,
it also follows immediately that β(x) in (3.10) is equal to Λn(x; Xn) in this case, and it only
remains to show that α(x; Yn) in (3.9) is equal to κ(x; Xn, Yn) in (2.21). To this end, we first use
the triangle inequality to see that for any δ > 0 and any Hn = (h0, . . . , hn) ∈ Rn+1 \ {(0, . . . , 0

︸ ︷︷ ︸

n+ 1 times

)}

with |hi | ≤ δ|yi |,
�

�

�

�

n
∑

i=0

ai(x)hi

�

�

�

�

=

�

�

�

�

n
∑

i=0

ai(x)yi
hi

yi

�

�

�

�

≤ M
n
∑

i=0

|ai(x)yi |, M = max
i=0,...,n

yi ̸=0

|hi |
|yi |

,

23 3.4 Computing the weights γi and evaluating the functions λi

where equality is attained for Hn with hi = δ sign(ai(x))|yi |, i = 0, . . . , n. Dividing both sides of
this inequality by M and

�

�

∑n
i=0 ai(x)yi

�

�, taking the supremum over all admissible Hn and the
limit δ→ 0, gives κ(x; Xn, Yn) = α(x; Yn).

For the first barycentric form, we additionally need to assume that the λi(x) can be com-
puted with a forward stable algorithm as fl(λi(x)), and we note that β(x) in (3.10) is equal
to

Γd(x; Xn) =

∑n−d
i=0 |λi(x)|
�

�

∑n−d
i=0 λi(x)
�

�

(3.18)

in this case.

Corollary 3.3. Assume that the weights γ0, . . . ,γn can be computed as in (3.16) and that there
exist ϕ0, . . . ,ϕn−d ∈ R with

fl(λi(x)) = λi(x)(1+ϕi), |ϕi | ≤ Cε+O(ε2), i = 0, . . . , n− d (3.19)

for some constant C. Then, assuming Yn ∈ Fn+1, the relative forward error of the first barycentric
form in (3.6) satisfies

|fl(r(x))− r(x)|
|r(x)|

≤ (n+ 4+W)κ(x; Xn, Yn)ε+ (n− d + C)Γd(x; Xn)ε+O(ε2), (3.20)

for ε small enough.

Proof. As the numerator of the first and second barycentric form are identical, the only dif-
ference to the proof of Corollary 3.2 is that B = C in (3.11), because b j(x) = λ j(x) and
m= n− d.

While upper bounds for the Lebesgue function Λn(x; Xn) can be found in the literature [13,
14], we are unaware of any previous work bounding the function Γd(x; Xn), and we derive such
an upper bound in Section 3.6.

3.4 Computing the weights γi and evaluating the functions λi

It remains to work out the constants W and C , related to the computation of the weights γi

in (3.3) and the evaluation of the functions λi in (3.6). In particular, we study the error prop-
agation that occurs in the implementation of different algorithms and further analyse them in
terms of computational cost.

Regarding the γi , it was shown by Higham [44] that the Lagrange weights in (3.2) can be
computed stably with W = 2n in (3.16), and the Berrut weights in (3.4) can be represented
exactly in F, so that W = 0. The same holds for the weights in (3.5) if the interpolation nodes
are equidistant, because they simplify to the integers

γi = (−1)i−d
min(i,n−d)
∑

j=max(i−d,0)

�

d
i − j

�

, i = 0, . . . , n

in this special case [30]. For the general case, Camargo [18, Lemma 1] shows that W = 3d,
if the γi are computed with a straightforward implementation of the formula in (3.5). While

24 3.4 Computing the weights γi and evaluating the functions λi

this construction requires O(nd2) operations, Hormann and Schaefer [49] suggest an improved
O(nd) pyramid algorithm, which turns out to have the same precision. Their algorithm starts
from the values

vd
i = 1, i = 0, . . . , n− d (3.21)

and iteratively computes

v l
i =

v l+1
i−1

x i+l − x i−1
+

v l+1
i

x i+l+1 − x i
, i = 0, . . . , n− l (3.22)

for l = d − 1, d − 2, . . . , 0, tacitly assuming v l
i = 0 for i < 0 and i > n− l. They show that the

resulting values v0
i are essentially the weights γi in (3.5), up to a factor of (−1)i−d .

Lemma 3.4. For any x0, . . . , xn ∈ F, there exist φ0
0 , . . . ,φ0

n ∈ R with |φ0
0 |, . . . , |φ0

n | ≤Wε+O(ε2)
for W = 3d, such that the v0

i in (3.22) satisfy

fl(v0
i) = v0

i (1+φ
0
i), i = 0, . . . , n.

Proof. The statement is a special case of the more general observation that there exists for any
l = d, d − 1, . . . , 0 and i = 0, . . . , n − l some φ l

i ∈ R with |φ l
i | ≤ 3(d − l)ε + O(ε2), such that

fl(v l
i) = v l

i (1+φ
l
i), which can be shown by induction over l. The base case l = d follows trivially

from (3.21). For the inductive step from l + 1 to l, we conclude from (2.5), (2.7), and (2.8),
that fl(v l

i), computed with the formula in (3.22), satisfies

fl(v l
i) =

fl(v l+1
i−1)

x i+l − x i−1
(1+ρ1) +

fl(v l+1
i)

x i+l+1 − x i
(1+ρ2)

for some ρ1,ρ2 ∈ R with |ρ1|, |ρ2| ≤ 3ε+O(ε2), since both terms are affected by one subtrac-
tion, one division, and one sum. By induction hypothesis and (2.8), we can then assume the
existence of some σ1,σ2 ∈ R with |σ1|, |σ2| ≤ 3(d − l)ε+O(ε2), such that

fl(v l
i) =

v l+1
i−1

x i+l − x i−1
(1+σ1) +

v l+1
i

x i+l+1 − x i
(1+σ2),

and the intermediate value theorem further guarantees that

fl(v l
i) =
� v l+1

i−1

x i+l − x i−1
+

v l+1
i

x i+l+1 − x i

�

(1+φ l
i)

for some φ l
i ∈ [min(σ1,σ2), max(σ1,σ2)] with |φ l

i | ≤ 3(d − l)ε+O(ε2).

Let us now focus on the functions λi that appear in the barycentric formula (3.6) and first
study the error propagation when computing them straightforwardly, following the formula
in (3.7).

Lemma 3.5. For any x ∈ F and x0, . . . , xn ∈ F, there exist θ0, . . . ,θn−d ∈ R with |θ0|, . . . , |θn−d | ≤
Cε+O(ε2) for C = 2d + 2, such that the λi(x) in (3.7) satisfy

fl(λi(x)) = λi(x)(1+ θi), i = 0, . . . , n− d.

Proof. Since computing fl(λi(x)) requires d +1 subtractions, d products, and one division, the
result follows directly from (2.5), (2.8), and (2.7).

25 3.5 Backward stability

Evaluating λi in this way clearly has a computational cost of O(d) for d > 0 and O(1) for
d = 0, so that computing all λi(x) requires O(d(n − d)) operations for 0 < d < n and O(n)
operations for d = 0 and d = n. However, for 0< d < n this can be improved by exploiting the
fact that λi(x) and λi+1(x) have d common factors in the denominator, which in turn suggests
to first compute the “central” λm(x) for m =

�

n−d
2

�

as above and then the remaining λi(x)
iteratively as

λi−1(x) = −λi(x)
(x − x i+d)
(x − x i−1)

, i = m, m− 1, . . . , 1,

λi+1(x) = −λi(x)
(x − x i)
(x − x i+1+d)

, i = m, m+ 1, . . . , n− d − 1.

(3.23)

Computing all λi(x) this way requires only O(n) operations, but it comes at the price of a likely
reduced precision.

Lemma 3.6. For any x ∈ F and x0, . . . , xn ∈ F, there exist ζ0, . . . ,ζn−d ∈ R with |ζ0|, . . . , |ζn−d | ≤
Cε+O(ε2) for C = 2n+ 4, such that the λi(x) in (3.23) satisfy

fl(λi(x)) = λi(x)(1+ ζi), i = 0, . . . , n− d.

Proof. By Lemma 3.5, we know that fl(λm(x)) = λm(x)(1+ζm) with |ζm| ≤ (2d +2)ε+O(ε2).
Each step in (3.23) involves two subtractions, one division, and one product, and therefore
introduces a perturbation of (1+δ) with |δ| ≤ 4ε+O(ε2), and these perturbations accumulate
during the iteration. Since the number of steps is at most (n−d+1)/2, the overall perturbation
for each λi(x) is at most (1+ ζi) with |ζi | ≤ [(2d + 2) + 4(n− d + 1)/2]ε+O(ε2).

3.5 Backward stability

Similar to how we established the forward stability of both barycentric forms in a unified way
in Section 3.3, we can prove the backward stability in general for the function r in (3.8) and
then derive upper bounds on the perturbation of the data for both forms as special cases.

Theorem 3.7. Suppose that there exist α0, . . . ,αn ∈ R with

fl(ai(x)) = ai(x)(1+αi), |αi | ≤ Aε+O(ε2), i = 0, . . . , n

and β0, . . . ,βm ∈ R with

fl(b j(x)) = b j(x)(1+ β j), |β j | ≤ Bε+O(ε2), j = 0, . . . , m

for some constants A and B. Then there exists for any Yn ∈ Fn+1 some perturbed Ŷn ∈ Fn+1 with

∥Ŷn − Yn∥∞
∥Yn∥∞

≤ (n+ 2+ A)ε+ (m+ B)max
x
β(x)ε+O(ε2),

for ε small enough, such that the numerical evaluation of r in (3.8) satisfies fl(r(x; Yn)) = r(x; Ŷn).

26 3.5 Backward stability

Proof. Starting from (3.13), with the ηi and µ j satisfying (3.12), we get, again with the help
of (2.6),

fl(r(x; Xn, Yn)) =

∑n
i=0 ai(x)yi(1+ηi)
∑m

j=0 b j(x) +
∑m

j=0 b j(x)µ j

=

∑n
i=0 ai(x)yi(1+ηi)
∑m

j=0 b j(x)
�

1+
∑m

j=0 b j(x)µ j
∑m

j=0 b j(x)

�

=

∑n
i=0 ai(x)yi(1+ηi)
∑m

j=0 b j(x)

�

1−

∑m
j=0 b j(x)µ j
∑m

j=0 b j(x)
+O(ε2)
�

=

∑n
i=0 ai(x) ŷi
∑m

j=0 b j(x)
= r(x; Xn, Ŷn),

where

ŷi = yi(1+ηi)
�

1−

∑m
j=0 b j(x)µ j
∑m

j=0 b j(x)
+O(ε2)
�

, i = 0, . . . , n.

By (3.15), this means that there exist some ξ0, . . . ,ξn ∈ Rwith |ξ0|, . . . , |ξn| ≤ (m+B)maxx β(x)ε+
O(ε2), such that

ŷi = yi(1+ηi)(1+ ξi), i = 0, . . . , n,

and by (2.8) and (3.12) we can further assume the existence of someϕ0, . . . ,ϕn with |ϕ0|, . . . , |ϕn| ≤
(n+ 2+ A)ε+ (m+ B)maxx β(x)ε+O(ε2), such that

ŷi = yi(1+ϕi), i = 0, . . . , n.

The statement then follows directly from

∥Ŷn − Yn∥∞ = max
i=0,...,n

| ŷi − yi |= max
i=0,...,n

|yiϕi |

≤ max
i=0,...,n

|yi | max
i=0,...,n

|ϕi |= ∥Yn∥∞ max
i=0,...,n

|ϕi |.

The special cases of Theorem 3.7 for the two different forms of the barycentric rational
interpolant then follow with the same reasoning as in Section 3.3.

Corollary 3.8. Assume that the weights γ0, . . . ,γn can be computed as in (3.16). Then there exists
for any Yn ∈ Fn+1 some perturbed Ŷn ∈ Fn+1 with

∥Ŷn − Yn∥∞
∥Yn∥∞

≤ (n+ 4+W)ε+ (n+ 2+W)max
x
Λn(x; Xn)ε+O(ε2),

for ε small enough, such that the second barycentric form in (3.3) satisfies fl(r(x; Xn, Yn)) =
r(x; Xn, Ŷn).

Corollary 3.9. Assume that the weights γ0, . . . ,γn can be computed as in (3.16) and the values
λ0(x), . . . ,λn−d(x) as in (3.19). Then there exists for any Yn ∈ Fn+1 some perturbed Ŷn ∈ Fn+1

with
∥Ŷn − Yn∥∞
∥Yn∥∞

≤ (n+ 4+W)ε+ (n− d + C)max
x
Γd(x; Xn)ε+O(ε2),

27 3.6 Upper bound for Γd

for ε small enough, such that the first barycentric form in (3.6) satisfies fl(r(x; Xn, Yn)) =
r(x; Xn, Ŷn).

3.6 Upper bound for Γd
In case of the first barycentric form, the bounds for the forward and backward stability depend
on the function Γd in (3.18), and we still need to show that this function is bounded from above.
Note that Γ0 = Λn, because γi = (−1)i and λi = (−1)i/(x−x i) if d = 0, so that the bound for the
Lebesgue constant of Berrut’s interpolant [14] also holds for Γd in this case. In the following,
we therefore assume d ≥ 1 and define

N(x) =
n−d
∑

i=0

|λi(x)| and D(x) =

�

�

�

�

n−d
∑

i=0

λi(x)

�

�

�

�

,

so that Γd(x; Xn) = N(x)/D(x). We further assume that x ∈ (xk, xk+1) for some k ∈ {0, . . . , n−
1}. It then follows from the definition in (3.7) that all λi with index in

I3 = I ∩ {k− d + 1, . . . , k},

where I = {0, . . . , n − d}, have the same sign as (−1)k+d and that the sign alternates for de-
creasing indices “to the left” and increasing indices “to the right” of I3. More precisely, the λi

with index in

I2 = I ∩ {k− d, k− d − 2, . . . } or I4 = I ∩ {k+ 1, k+ 3, . . . }

have the same sign as the ones with index in I3, while the sign is opposite, if the index is in

I1 = I ∩ {k− d − 1, k− d − 3, . . . } or I5 = I ∩ {k+ 2, k+ 4, . . . }.

Without loss of generality, we assume that the λi are positive for i ∈ I2, I3, I4 and negative for
i ∈ I1, I5, since multiplying all λi with a common constant does not change Γd . Letting

S j =
∑

i∈I j

λi(x), j = 1, . . . , 5,

we then find that

N(x) = −S1 + S2 + S3 + S4 − S5 and D(x) = S1 + S2 + S3 + S4 + S5. (3.24)

To bound Γd , we need to bound the sum of the negative λi with i ∈ I1, I5 as well as the λi with
i ∈ I3, which in turn requires to first bound the terms x − x i . To this end, let hi = x i+1 − x i for
i ∈ {0, . . . , n− 1} and define

hmin =min{h0, . . . , hn−1} and hmax =max{h0, . . . , hn−1}.

Proposition 3.10. For any i ∈ {0, . . . , n}, the distance between x ∈ (xk, xk+1) and x i is bounded
as

hmin

2
(1+ t + 2(k− i))≤ x − x i ≤

hmax

2
(1+ t + 2(k− i)), i ≤ k,

hmin

2
(1− t + 2(i − k− 1))≤ x i − x ≤

hmax

2
(1− t + 2(i − k− 1)), i ≥ k+ 1,

where t = 2(x − xk)/hk − 1 ∈ (−1, 1).

28 3.6 Upper bound for Γd

Proof. The statement follows directly by noting that

x = xk +
hk

2
(1+ t) = xk+1 +

hk

2
(1− t)

for the given t and because hmin ≤ hi ≤ hmax for any i ∈ {0, . . . , n− 1}.

For bounding the negative λi from above, it turns out to be useful to consider them in pairs,
with indices from I1 and I5 at the same “distance” from I3.

Lemma 3.11. For any j ∈ N and x ∈ (xk, xk+1),

−λk−d−2 j+1(x)−λk+2 j(x)≤
�

1
hmin

�d+1
�

1
∏d

m=0(2 j +m)
+

1
∏d

m=0(2 j − 1+m)

�

,

where we set λi(x) = 0 for any i /∈ I .

Proof. Since the denominator of λk−d−2 j+1(x), for k − d − 2 j + 1 ≥ 0, contains the terms x −
xk−2 j+1−m for m= 0, . . . , d, it follows from Proposition 3.10 that

−1
λk−d−2 j+1(x)

≥
�

hmin

2

�d+1 d
∏

m=0

(4 j + 2m− 1+ t),

with t ∈ (−1,1) and likewise

−1
λk+2 j(x)

≥
�

hmin

2

�d+1 d
∏

m=0

(4 j + 2m− 1− t),

for k+ 2 j ≤ n− d. Combining both bounds, we get

−λk−d−2 j+1(x)−λk+2 j(x)≤
�

2
hmin

�d+1

g(t),

where

g(t) =
1

∏d
m=0(4 j + 2m− 1+ t)

+
1

∏d
m=0(4 j + 2m− 1− t)

.

As g is clearly even and

g(1) =
1

2d+1

�

1
∏d

m=0(2 j +m)
+

1
∏d

m=0(2 j − 1+m)

�

,

it remains to show that g(t)≤ g(1) for t ∈ [0,1]. To this end, note that g(t) = p(t)/q(t) for

p(t) =
d
∏

m=0

(4 j + 2m− 1+ t) +
d
∏

m=0

(4 j + 2m− 1− t)

and

q(t) =
d
∏

m=0

�

(4 j + 2m− 1)2 − t2
�

.

29 3.6 Upper bound for Γd

By the product rule,

p′(t) =
d
∑

l=0

� d
∏

m=0, m̸=l

(4 j + 2m− 1+ t)−
d
∏

m=0, m̸=l

(4 j + 2m− 1− t)

�

and

q′(t) = −2t
d
∑

l=0

d
∏

m=0, m ̸=l

�

(4 j + 2m− 1)2 − t2
�

.

For t ∈ [0, 1], we observe that p(t)> 0, q(t)> 0, p′(t)≥ 0, and q′(t)≤ 0, hence

p′(t)q(t)≥ 0≥ p(t)q′(t),

and it follows from the quotient rule that g is monotonically increasing over [0, 1].

Next, let us bound the λi with indices in I3 from below.

Lemma 3.12. For any i ∈ I3 and x ∈ (xk, xk+1),

λi(x)≥
�

1
hmax

�d+1 4
d!

. (3.25)

Proof. Since the denominator of λi(x), for i ∈ I3, contains the factors x−xk−m for m= 0, . . . , k−
i and the factors xk+1+l − x for l = 0, . . . , i + d − k− 1, we conclude from Proposition 3.10 that

1
λi(x)

≤
�

hmax

2

�d+1 k−i
∏

m=0

(1+ t + 2m)
i+d−k−1
∏

l=0

(1− t + 2l)

=
�

hmax

2

�d+1

(1− t2)
k−i
∏

m=1

(1+ t + 2m)
i+d−k−1
∏

l=1

(1− t + 2l)

≤
�

hmax

2

�d+1 k−i
∏

m=1

(2+ 2m)
i+d−k−1
∏

l=1

(2+ 2l)

=
�

hmax

2

�d+1

2d−1(k− i + 1)!(i + d − k)!,

and the statement then follows, because a!b! ≤ (a + b − 1)! for any positive integers a and
b.

We are now ready to derive a general upper bound on the function Γd in (3.18), which turns
out to depend on d and the mesh ratio

µ=
hmax

hmin
.

Theorem 3.13. If d ≥ 1, then

Γd(x; Xn)≤ 1+
µd+1

2d
(3.26)

for any set of ascending interpolation nodes Xn = (x0, . . . , xn) ∈ Rn+1 and any x ∈ [x0, xn].

30 3.7 Numerical experiments

Proof. If x = xk for some k ∈ {0, . . . , n}, then, after multiplying both N(x) and D(x) by
∏n

i=0 |x − x i |, we find that Γd(x; Xn) = 1, which is clearly smaller than the upper bound in (3.26).
Otherwise, there exists some k ∈ {0, . . . , n − 1}, such that x ∈ (xk, xk+1), and it follows from
Lemma 3.11 that

−S1 − S5 ≤
∞
∑

j=1

�

1
hmin

�d+1
�

1
∏d

m=0(2 j +m)
+

1
∏d

m=0(2 j − 1+m)

�

=
�

1
hmin

�d+1 ∞∑

j=1

d
∏

m=0

1
j +m

=
�

1
hmin

�d+1 1
d · d!

,

where the sum of the series can be found in [15, p. 464]. Together with Lemma 3.12, this
implies

−2(S1 + S5)
λi(x)

≤
µd+1

2d

for any i ∈ I3. As λi(x)≤ S3 ≤ D(x) and N(x)− D(x) = −2(S1 + S5), we conclude that

N(x)− D(x)≤
µd+1

2d
D(x),

and the statement then follows immediately.

In the case of equidistant nodes, when the mesh ratio is µ = 1, the upper bound in (3.26)
is simply 1+ 1/(2d), so it becomes smaller as d grows. For other nodes, µ may depend on n,
which may result in very large upper bounds. For example, in the case of Chebyshev nodes, one
can show that µ grows asymptotically linear in n. However, our numerical experiments suggest
that the function Γd is always small, and we believe that the upper bound in Theorem 3.13 can
be improved significantly in future work.

3.7 Numerical experiments

We performed numerous experiments to verify the results proven in the previous sections nu-
merically and report some representative results below. In particular, we analyze the various
algorithms that implement the first barycentric form (3.6) both in terms of stability and com-
putational cost (Section 3.7.1) and focus on the comparison between the first and the second
form for some example where Λn≫ Γd (Section 3.7.2), as well as in scenarios where evaluation
points are close to a root of the interpolant or a node (Section 3.7.3).

Our experimental platform is a Windows 10 laptop with 1.8 GHz Intel Core i7-10510U pro-
cessor and 16 GB RAM, and we implemented all algorithms in C++. In what follows, the ‘exact’
values were computed in multiple-precision (1024 bit) floating-point arithmetic using the MPFR
library [33], while all other values were computed in standard double precision. Moreover, we
took care of providing all input data (interpolation nodes, data values, and evaluation points)
in double precision, so that they do not cause any additional error.

31 3.7 Numerical experiments

d = 1 d = 5 d = 25

39 79 159 319 639 1279
10-22

10-20

10-18

10-16

10-14

39 79 159 319 639 1279
10-24

10-22

10-20

10-18

10-16

10-14

10-12

39 79 159 319 639 1279
10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

39 79 159 319 639 1279
10-2

10-1

100

39 79 159 319 639 1279
10-2

10-1

100

39 79 159 319 639 1279
10-2

10-1

100

101

Figure 3.1. Distribution of the relative forward errors of the first barycentric form for equidistant
nodes at 50,000 random evaluation points (top) and overall running time in seconds (bottom),
both on a logarithmic scale, for different n and three choices of d (left, middle, right), using the
standard algorithm (blue), Camargo’s algorithm (red), and our efficient variant of the standard
algorithm (green).

3.7.1 Comparison of algorithms for the first barycentric form

For the first example, we consider the case of n + 1 interpolation nodes x i = fl(t i) ∈ [−1,1]
for i = 0, . . . , n, derived from the equidistant nodes t i = 2i/n− 1 by rounding them to double
precision, and associated (rounded) data yi = fl(f (t i)), sampled from the test function

f (x) = 3
4 e−

(9x−2)2

4 + 3
4 e−

(9x+1)2

49 + 1
2 e−

(9x−7)2

4 + 1
5 e−(9x−4)2 ,

and we compare three ways of evaluating the first barycentric form in (3.6), which differ in the
way the denominator is computed.

The first algorithm simply evaluates the functions λi as in (3.7), leading to the error men-
tioned in Lemma 3.5 and then sums up these values to get the denominator. The second al-
gorithm by Camargo [18, Section 4.1] instead increases the stability of the summation by first
computing sums of pairs of λi ’s such that all these sums have the same sign. The third algo-
rithm implements our iterative strategy in (3.23) before taking the sum, which is more efficient
than the first algorithm, but less precise (cf. Lemma 3.6). All three algorithms compute the
numerator of the first barycentric form in the same way, first dividing the weights γi by x − x i ,
then multiplying the results by yi , and finally summing up these values. The γi themselves
are precomputed with the pyramid algorithm in (3.21) and (3.22). Note that, although the
weights for equidistant nodes are integer multiples of each other in theory [30], they do not
have this property in this example, because the nodes x i are not exactly equidistant, because of
the rounding.

To compare these three algorithms, we used them to evaluate the barycentric rational in-
terpolant with weights in (3.5) for d ∈ {1, 5,25} and an increasing number of interpolation

32 3.7 Numerical experiments

d = 1 d = 5 d = 25

-1 -0.5 0 0.5 1
1

1.5

2

2.5

3

3.5

4

4.5

-1 -0.5 0 0.5 1
100

101

-1 -0.5 0 0.5 1
100

101

102

103

104

105

106

107

-1 -0.5 0 0.5 1
1

1.05

1.1

1.15

1.2

1.25

-1 -0.5 0 0.5 1
1

1.002

1.004

1.006

1.008

1.01

1.012

-1 -0.5 0 0.5 1
1

1.0001

1.0002

1.0003

1.0004

1.0005

1.0006

1.0007

Figure 3.2. Plots of κ(x; Xn, Yn) (top) and Γd(x; Xn) (bottom) for equidistant nodes and x ∈
[−1,1], both on a logarithmic scale, for n= 39 and three choices of d (left, middle, right).

nodes, n ∈ {39,79, 159,319, 639,1279}, at 50,000 random points from [−1+103ε, 1−103ε]\
{x0, . . . , xn}. Figure 3.1 shows the corresponding running times and the distribution of the rela-
tive forward error of the computed values. For the latter, we chose a box plot, where the bottom
and top of each box represent the interquartile range, from the first to the third quartile, and
the line in the middle shows the median of the relative forward errors. The whiskers range
from the minimum to the maximum, excluding those values that are more than 1.5 times the
interquartile range greater than the third quartile, which are instead considered outliers and
shown as isolated points.

On the one hand, we observe that Camargo’s algorithm beats the standard algorithm in
terms of running time, but that our efficient algorithm is the fastest, especially as d grows,
because its time complexity does not depend on d. On the other hand, our efficient algorithm
is less precise than the standard algorithm, as predicted by Lemma 3.6 and Camargo’s algorithm
gives the smallest errors, except for d = 5 and n ∈ {639, 1279}. Nevertheless, the computations
confirm the forward stability for all three algorithms. For Camargo’s algorithm, this follows from
the backward stability, which is proven in [18], and for the other two algorithms it is implied
by Corollary 3.3 and Lemmas 3.4–3.6.

The rather large errors of the outliers in the case d = 25 can be explained by the behaviour
of the componentwise relative condition number κ, shown in Figure 3.2. While κ is small for
all x ∈ [−1,1] in the case of d = 1, it starts to grow considerably close to the end points of
the interval as d grows, up to 106 for n = 39 and 108 for n = 1279 in the case of d = 25,
and so does the upper bound on the relative forward error in (3.20). While this upper bound
also depends on Γd , Figure 3.2 shows that this function is always small and its maximum even
decreases as d grows, independently of n. This is in agreement with Theorem 3.13, because
µ ≈ 1 in this example. The fact that the maximum error still seems to decrease for d = 25 as
n increases is simply due to the fact that the 50,000 sample points are not sufficiently many to
“catch” the worst case, because the region near the endpoints where κ grows rapidly actually

33 3.7 Numerical experiments

0 0.2 0.4 0.6 0.8 1
100

105

1010

1015

1020

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

Figure 3.3. Plots of Λn(x; Xn) (left) and Γd(x; Xn) (right) for a non-regular distribution of nodes
and x ∈ [0, 1], both on a logarithmic scale.

shrinks as n grows.
Of course, it is also possible to evaluate the rational interpolant using the second barycentric

form (3.3), which is actually the best choice for this example, giving relative forward errors that
are similar to the ones of the standard algorithm for the first barycentric form, but being roughly
twice as fast as the efficient algorithm, both of which is not surprising. Regarding the efficiency,
the second form is superior, because the denominator can be computed “on-the-fly” at almost
no extra cost during the evaluation of the numerator. As for the error, we note that Λn is much
smaller than κ for the nodes used in this example [48] and so the upper bound in (3.17) is
dominated by κ, exactly as the upper bound in (3.20). However, for non-uniform nodes, the
situation can be quite different, as the next example shows.

3.7.2 Worst-case comparison of first and second barycentric form

The aim of the second example is to compare the standard algorithm for the first barycentric
form in (3.6), as described in Section 3.7.1, with a straightforward implementation of the sec-
ond barycentric form, following the formula in (3.3). The weights γi are again precomputed
with the pyramid algorithm.

We consider n = 29, d = 3, and interpolation nodes x i = fl(t i) ∈ [0,1] for i = 0, . . . , n,
obtained by rounding to double precision the values t i = F(τi), where

F(t) =

¨

0, t = 0,

e1− 1
t , t ∈ (0, 1]

(3.27)

and τi = i/n. We choose these nodes, because the functions Λn and Γd behave completely
differently in this case, as shown in Figure 3.3. While Λn reaches huge values, up to 1017, Γd is
small (even though the latter is not guaranteed by Theorem 3.13). Hence, the upper bounds in
Corollaries 3.2 and 3.3 suggest that we may see a big difference in the forward stability of the
first and the second barycentric form, if we choose the data such that the condition number κ
is small.

One such choice, which is also presented by Higham for the case d = n with equidistant

34 3.7 Numerical experiments

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1

0.22 0.24 0.26 0.28 0.3

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1

0.22 0.24 0.26 0.28 0.3

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 3.4. Plots of ln(x) (black) and the barycentric rational interpolant r(x) for d = 3 (red)
for non-regularly distributed interpolation nodes over the whole interval [0,1] (top left) and a
close-up view over [0.21,0.31] (top right). Evaluating r(x) at 10, 000 equidistant evaluation
points in [103ε, 1 − 103ε] with the standard implementations of the first (blue dots) and the
second (green dots) barycentric form shows that the first form is stable, while the second form
is not (bottom).

nodes [44], is to take the data

yi =

¨

0, i = 0, . . . , n− 1,

1, i = n,

which can be interpreted as having been sampled from the n-th Lagrange basis polynomial
ln(x) =
∏n−1

i=0
x−x i
xn−x i

, that is, yi = fl(ln(t i)). For this data, we know that κ(x; Xn, Yn) = 1 for
all x ∈ [0,1], so the upper bounds on the relative forward errors in (3.17) and (3.20) are
dominated by Λn and Γd , respectively. Consequently, as shown in Figure 3.4, the barycentric
rational interpolant is reproduced faithfully by the first form, but not by the second, because
the relative forward error for the first form is on the order of ε, while it can be on the order of
1 for the second form; see Figure 3.5 (left).

However, the opposite may happen as well. If we consider the data

yi = 1, i = 0, . . . , n,

35 3.7 Numerical experiments

0 0.2 0.4 0.6 0.8 1
10

-20

10
-15

10
-10

10
-5

10
0

10
5

0 0.2 0.4 0.6 0.8 1
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Figure 3.5. Plot of relative forward errors of the first (blue) and second (green) barycentric form
for a non-regular distribution of nodes at 100 equidistant evaluation points in [103ε, 1−103ε]
with data sampled from the n-th Lagrange basis polynomial (left) and the constant one function
(right). Since both plots are on a logarithmic scale and the second form is exact in the latter
case, the corresponding errors are missing in the plot on the right.

0 0.2 0.4 0.6 0.8 1

-8

-6

-4

-2

0

2

4

6

8

0.22 0.24 0.26 0.28 0.3

-6

-4

-2

0

2

4

6

8

Figure 3.6. Even though the barycentric rational interpolant of the constant one function
for non-regularly distributed interpolation nodes is simply r(x) = 1, evaluating it at 10, 000
equidistant evaluation points in [103ε, 1 − 103ε] shows that the second form (green dots) is
stable, while the first form (blue dots) is not.

sampled from the constant one function, then κ= Λn, and the upper bounds in (3.17) and (3.20)
suggest that both forms can be unstable, even though the barycentric rational interpolant is sim-
ply r(x) = 1. Figure 3.5 (right) and Figure 3.6 confirm that this is indeed the case for the first
barycentric form. However, the second barycentric form is perfectly stable, because the nu-
merator and the denominator in (3.3) are identical and cancel out to always give the correct
function value 1.

36 3.7 Numerical experiments

0 0.2 0.4 0.6 0.8 1
100

101

102

103

104

0 0.2 0.4 0.6 0.8 1
10-20

10-15

10-10

10-5

100

105

Figure 3.7. Plots of κ(x; Xn, Yn) (left) and relative forward errors (right) of the first (blue) and
second (green) barycentric form for 100 equidistant evaluation points in [103ε, 1− 103ε] and
data sampled from f (x), both on a logarithmic scale.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

0

1

2

3

4

5

6

7

8

9

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

0

1

2

3

4

5

6

7

8

9

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 3.8. Same as Figure 3.1, but for data sampled from f (x) (black).

3.7.3 Evaluation close to roots and nodes

Let us consider another example similar to the first one discussed in Section 3.7.2. In this
case, we again have n = 29 and d = 3, using the same interpolation nodes generated by the

37 3.7 Numerical experiments

0.32349193443079

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
10

-13

0.32349193443079

10
-6

10
-4

10
-2

10
0

10
2

0.32349193443079

10
-20

10
-18

10
-16

10
-14

10
-12

Figure 3.9. Evaluation of r(x) in Figure 3.8 at the 2000 closest double floating-point numbers to
the root x = 0.32349193443079 with the standard implementations of the first (blue dots) and
the second (green dots) barycentric form (left) and plots of the relative (middle) and absolute
(right) forward errors on a logarithmic scale.

function F(t) in (3.27), but we now associate the data yi = fl(f (t i)) sampled from the normal
distribution

f (x) =
1

σ
p

2π
e−

1
2 (

x−µ
σ)

2
(3.28)

with µ = 0.5 and σ = 0.05. The componentwise relative condition number κ is rather well-
behaved for this example. In fact, Figure 3.7 shows that κ does not get bigger than 102 for
almost all the 100 equidistant evaluation points that we used, except for those that are too close
to the zeroes of the interpolant, where κ has poles, by definition. Thus, the condition number
cannot dominate the upper bounds on the relative forward error in (3.17) and (3.20) and we
expect that both algorithms will behave similarly to the case shown in Figure 3.4. Indeed, it
turns out that the first barycentric form is forward stable, while the second is not. The latter is
evident from the relative forward errors in Figure 3.7 and can also be seen in Figure 3.8, which
shows the actual function values of the interpolant computed with both algorithms. Note that
we clipped the bottom-left plot to the range [−1,9], since the minimal and maximal values
computed with the second form are approximately −3572.5 and 1457.2, respectively.

We now focus on another aspect of this example, that is the fact that the exact interpolant
r(x) has roots within the domain [0, 1]. Consequently, the condition number and the relative
forward error are undefined at those points and extremely large nearby. But does this imply that
the methods are unstable in these regions? Not necessarily. In fact, the appropriate measure
to consider in such cases is the absolute error rather than the relative error for more reliable
results. Figure 3.9 illustrates the difference between these two types of error by examining
the 2000 double-precision floating-point numbers closest to the root x = 0.32349193443079.
The relative error suggests that both the first and second barycentric forms are unstable. How-
ever, the absolute error indicates that the first form is perfectly stable, while the second form
is unstable, except when extremely close to the root. Additionally, Figure 3.9 (left) shows the
oscillatory behavior of the second barycentric form, which explains its unusual error patterns.
This analysis indicates that a large relative error near a root does not necessarily reflect an al-
gorithm’s instability and emphasizes the importance of choosing the appropriate error measure
for a reliable assessment.

Finally, we also investigate the behavior of both algorithms close to a node, as the divi-
sion by x − x i may lead to overflow or underflow errors. In general, this problem is addressed
by setting r(x) = yi whenever |x − x i | is below a certain threshold. Nevertheless, double-
precision floating-point arithmetic usually manages calculations near a node without signifi-

38 3.7 Numerical experiments

0.3932407208686

0.816510917312

0.816510917314

0.816510917316

0.816510917318

0.81651091732

0.816510917322

0.816510917324

0.816510917326

0.816510917328

0.81651091733

0.816510917332

0.3932407208686

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

0.3932407208686

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

Figure 3.10. Same as Figure 3.9, but for the node x15 = 0.393240720868598.

cant problems. In fact, Figure 3.10 shows the barycentric interpolants and the errors for the
2000 double-precision floating-point numbers closest to the node x15 = 0.393240720868598,
excluding the node itself where we know that fl(r(x15)) = y15. The results indicate that the
evaluations of r(x) are well-defined for both algorithms, as well as the relative and absolute
errors, which in this case give the same results as the exact interpolant is far from 0.

However, it is important to mention that, even if the divisions by x − x i are well-defined,
overflow and underflow can still occur due to other operations, such as the product by the
weights γi or by the interpolation data yi in the numerator. This issue can still be resolved by
rescaling the weights or shifting the values yi . We will explore these solutions in detail in the
next chapter (Section 4.4).

Chapter 4

A C++ class for robust linear
barycentric rational interpolation

Barycentric rational interpolation is an efficient and numerically robust interpolation method
that performs well even in the case of equidistant nodes where polynomial interpolation can fail
badly. Because of these favourable properties, barycentric rational interpolation has recently
become popular not only in mathematics, where it is used for the definition of quadrature
rules [55, 6] and for solving PDEs [61, 59], but also in more applied contexts. For example,
the method proposed by Floater and Hormann [30] is used in statistics [4], engineering [83],
as well as in the medical [25], aerospace [58, 53], and chemical sciences [57, 56].

0 0.2 0.4 0.6 0.8 1

-60

-40

-20

0

20

40

60

80

100

120

140

BOOST

BRI

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

3

4

5

6

7

8

9

BOOST

BRI

Figure 4.1. Plots of the barycentric rational interpolant obtained by using the same setting as
in Figure 3.8 with both the BOOST and BRI libraries (left) and close-up view of the y-axis over
the interval [−1, 9] (right).

For this reason, there are already many available libraries [11, 1, 62, 77] that implement
barycentric interpolation, but all of them simply use the second barycentric form in (3.3) with-
out further considerations. This led us to develop a new library, the BRI library, that incorpo-
rates the theoretical findings presented in Chapter 3. In fact, if for example we implement the
barycentric interpolant of Figure 3.8, that is, n = 29, d = 3, interpolation nodes generated by

39

40 4.1 Class overview

Algorithm 1 Second
barycentric form
1: function SECOND(x)
2: N := 0
3: D := 0
4: for i = 0,1, . . . , n do
5: if x = x i then
6: return yi

7: z := γi/(x − x i)
8: N := N + z yi

9: D := D+ z
10: return N/D

Algorithm 2 First barycentric
form (standard version)
1: function FIRST_DEF(x)
2: N := 0
3: D := 0
4: for i = 0,1, . . . , n do
5: if x = x i then
6: return yi

7: N := N + γi/(x − x i)yi

8: for i = 0,1, . . . , n− d do
9: λi := (−1)i

10: for j = i, i+1, . . . , i+d do
11: λi := λi/(x − x j)

12: D := D+λi

13: return N/D

Algorithm 3 First barycentric
form (efficient version)
1: function FIRST_EFF(x)
2: N := 0
3: for i = 0, 1, . . . , n do
4: if x = x i then
5: return yi

6: N := N + γi/(x − x i)yi

7: m := ⌊(n− d)/2⌋
8: λm := (−1)m

9: for j = m, m+ 1, . . . , m+ d do
10: λm := λm/(x − x j)

11: D := λm

12: for i = m, m− 1, . . . , 1 do
13: λi−1 := −λi(x−x i+d)/(x−x i−1)
14: D := D+λi−1

15: for i = m, m− 1, . . . , n− d − 1 do
16: λi+1 := −λi(x−x i)/(x−x i+1+d)
17: D := D+λi+1

18: return N/D

the function F(t) in (3.27), and associated data sampled from the normal distribution in (3.28),
with both the BOOST [1] and the BRI libraries, then Figure 4.1 clearly demonstrates that, while
the former produces an unstable result, the latter yields accurate outcomes. In the following
chapter, we present the BRI library, describing its features and explaining how it integrates the
theoretical insights related to numerical stability and efficiency.

4.1 Class overview

The BRI class arises from the idea of providing the user with a class that holds both variables
and functions related to barycentric rational interpolation, with a simple and intuitive interface
and in an efficient programming environment. This idea results in a C++ class template, which
comes with the advantage of having all input variables and function outputs defined as generic
types. In addition to the basic data types available in C++ , such as float or double, the
BRI class supports arbitrary precision thanks to the compatibility with the Multiple Precision
Floating-Point Reliable (MPFR) library [33]1 and the MPFR C++ interface [45] 2. The BRI class
does not have any dependencies other than the C++ standard libraries and, if arbitrary precision
is used, the MPFR library.

To initialize a new instance of this class, the user has to specify the integer d, the nodes
Xn, and the data Yn, and optionally their type and the type of the output results, which are
both considered to be double by default. The vectors Xn and Yn are stored internally as private
vectors, but the class provides the user with some functions to access or modify them. Moreover,
since they can be passed in different ways, the class includes different constructors. In particular,

1All information about installing the MPFR library can be found at https://www.mpfr.org.
2More information can be found at https://github.com/advanpix/mpreal.

https://www.mpfr.org
https://github.com/advanpix/mpreal

41 4.1 Class overview

the user can pass both nodes and data by reference or they can be read from external files by
specifying the filenames. Another constructor variant allows the user to pass one of the three
keywords UNIFORM, CHEBYSHEV, or EXTENDED_CHEBYSHEV, together with the values a, b, and n.
In this case, the class automatically generates Xn as a vector of uniform nodes

x i = a+ (b− a)
i
n

, i = 0, 1, . . . , n (4.1)

or Chebyshev nodes

x i =
a+ b

2
−

b− a
2

cos
(2i + 1)π

2n+ 2
, i = 0,1, . . . , n (4.2)

or extended Chebyshev nodes

x i =
a+ b

2
−

b− a
2

cos
(2i + 1)π

2n+ 2

Á

cos
π

2n+ 2
, i = 0,1, . . . , n

over the interval [a, b]. Of course, it would be possible to extend the class to allow for other
predefined sets of interpolation nodes. As for the data Yn, the user can also call the constructor
with a pointer to a procedure f, which implements some function f : R→ R, so that the data
is automatically generated as f (Xn) by the class. After having defined these initial parameters,
the class allows the user to modify them at any moment. Furthermore, the constructors create
the vector Wn = (γ0, . . . ,γn) of barycentric weights (3.5), which get updated automatically
whenever the nodes Xn are changed. Like nodes and data, the weights are private and can be
accessed using suitable functions.

The core of the BRI class is the evaluation of the barycentric rational interpolant r, defined
by the input Xn, Yn, and d, through the EVAL function. The latter takes x as input, which can be
either a single evaluation point or a vector of points, and outputs r(x), which in turn is a point
or a vector, respectively. If the user wants to specify explicitly which algorithm to use for the
evaluation, the EVAL function has an optional second parameter, which is one of the following
keywords: SECOND to evaluate r with the second barycentric form (Algorithm 1), FIRST_DEF to
use the standard implementation of the first barycentric form (Algorithm 2), or FIRST_EFF for
its more efficient variant (Algorithm 3). Without this second parameter, the code uses by default
the algorithm that best balances efficiency and numerical stability. Likewise, the user can call
the functions NUMERATOR and DENOMINATOR to evaluate the numerator and denominator of
r, respectively. In case of the denominator, one of the three aforementioned keywords can be
added to explicitly ask for the denominator to be computed by the corresponding algorithms.

The BRI class also provides three flags: the stability flag for controlling the numerical
stability of the result, the efficiency flag for indicating a preference for the fastest evaluation
routine whenever the first barycentric form is used, and the guard flag for activating additional
checks that prevent overflow and underflow. The user can turn these flags on or off at any
moment. In the following sections, we present in detail how the code decides which algorithm
guarantees the numerically most stable or most efficient result if the respective flag is acti-
vated and how the guarding mechanism avoids possible overflow or underflow errors, without
affecting the numerical accuracy of the result.

Finally, the class also allows to evaluate all the functions that are related to the numerical
stability of the barycentric rational interpolant, namely the condition number κ, the Lebesgue
function Λn, and the function Γd . They can be called either with an input x , which again can
be an evaluation point or a vector of evaluation points, or without any arguments, upon which
the algorithm searches for the maximum of the function using Newton’s method.

42 4.2 Robust procedure for rescale operation

Algorithm 4 Robust procedure to compute f̂ = 2E f
1: procedure RESCALE(f ,E)
2: f̂ := 0
3: for i = 0,1, . . . , M do
4: pi := 2Ri−Si+E

5: for j = 1, 2, . . . , J do
6: pi := pi ·αi, j

7: for k = 1, 2, . . . , K do
8: pi := pi/βi,k

9: f̂ := f̂ + pi

4.2 Robust procedure for rescale operation

Let M , J , K ∈ N and consider, for any i = 0, 1, . . . , M , the numbers ai, j = αi, j × 2Ai, j ∈ F for
j = 1,2, . . . , J and bi,k = βi,k × 2Bi,k ∈ F for k = 1,2, . . . , K . Denoting the products of these
numbers by

ri =
J
∏

j=1

ai, j and si =
K
∏

k=1

bi,k, (4.3)

which can be expressed in floating-point encoding as

ri = ρi × 2Ri , where ρi =
J
∏

j=1

αi, j and Ri =
J
∑

j=1

Ai, j , (4.4)

and

si = σi × 2Si , where σi =
K
∏

k=1

βi,k and Si =
K
∑

k=1

Bi,k, (4.5)

suppose we want to compute the quantity

f =
M
∑

i=0

ri

si
. (4.6)

Even if we know that f ∈ [Fmin, Fmax], it may happen that the algorithm that implements f
runs into overflow or underflow errors in some of its intermediate steps. However, we can try
to avoid this problem by appropriately rescaling the intermediate floating-point values by some
constant C , so that they are kept far from the overflow and underflow regions. Moreover, if
we use a rescale factor of the type 2E , for some E ∈ Z, then this operation modifies only the
exponent of each floating-point number without changing the mantissa, meaning that we are
not introducing any additional rounding error. Therefore, the goal now is to properly define
the exponent E so that we are sure that f̂ = 2E f can be safely computed, without any overflow
or underflow error.

Proposition 4.1. Let M , J , K ∈ N and consider ri and si as in (4.3), ρi and Ri as in (4.4), σi and
Si as in (4.5) for i = 0, 1, . . . , M, and f as in (4.6). Suppose that all pi = ri/si have the same sign
and define

L = min
0≤i≤M

(Ri − Si)− J + 1 and U = max
0≤i≤M

(Ri − Si) + K +M (4.7)

43 4.3 Barycentric weights

and

E =
¡

Emax + Emin − L − U
2

¤

. (4.8)

If U − L < Emax − Emin, then we can compute f̂ = 2E f without any overflow or underflow error
using Algorithm 4.

Proof. The goal is to show that all the operations in Algorithm 4 are performed in F. It follows
from (4.8) that

Emax + Emin − L − U
2

≤ E ≤
Emax + Emin − L − U

2
+

1
2

,

which, together with (4.7) and the hypothesis U − L < Emax − Emin, gives

Emin ≤ Emin + J − 1≤ Ri − Si + E ≤ Emax − K −M < Emax, (4.9)

meaning that the computation of pi in line 4 is always safe. By Proposition 2.1, we know that
the multiplications in the loop of lines 5–6 can decrease the exponent Ri − Si + E by at most
J − 1 and the divisions in the loop of lines 7–8 can increase it by at most K , but in both cases
(4.9) guarantees that pi ∈ F. Finally, Proposition 2.1 guarantees that every summation in line 9
increases the exponent Ri − Si + E by at most 1, for a maximum of M times. Again, by (4.9),
we can thus be sure that also f̂ ∈ F.

Corollary 4.2. Let M , J , K ∈ N and consider ri and si as in (4.3), ρi and Ri as in (4.4), σi and Si

as in (4.5) for i = 0, 1, . . . , M, and f as in (4.6). Suppose that all pi = ri/si have the same sign,
that there exist some Rmin, Rmax, Smin, Smax ∈ Z, such that Rmin ≤ Ri ≤ Rmax and Smin ≤ Si ≤ Smax

for i = 0, 1, . . . , M, and define

L = Rmin − Smax − J + 1 and U = Rmax − Smin + K +M (4.10)

and

E =
¡

Emax + Emin − L − U
2

¤

. (4.11)

If U − L < Emax − Emin, then we can compute f̂ = 2E f without any overflow or underflow error
using Algorithm 4.

Proof. Since L ≤min0≤i≤M (Ri − Si)− J +1 and U ≥max0≤i≤M (Ri − Si)+ K +M , the statement
follows with the same arguments as in the proof of Proposition 4.1.

4.3 Barycentric weights

As for the barycentric weights in (3.5), the simplest method to implement them is to follow their
definition, thus obtaining an algorithm that computes all γi in O(nd2) operations. However,
Hormann and Schaefer [49] proposed the pyramid algorithm in (3.21) and (3.22) to compute
the weights v l

i , l = d, d−1, . . . , 0 and i = 0, . . . , n− l, with only O(nd) operations and achieving
the same precision [34]. Finally, the barycentric weights are then given as

γi = (−1)i−d v0
i , i = 0,1, . . . , n.

To save memory, the BRI class uses the vector of weights also to store the intermediate val-
ues v l

i in γi , which requires the assignment in (3.22) to be performed in reverse order (see
Algorithm 5).

44 4.3 Barycentric weights

Algorithm 5 Computing the barycentric weights Wn for a given set of nodes Xn

1: procedure WEIGHTS

2: Wn = (γ0,γ1, . . . ,γn−d ,γn−d+1, . . . ,γn) := (1,1, . . . , 1, 0, . . . , 0)
3: for l = d − 1, d − 2, . . . , 0 do
4: γn−l := γn−l−1/(xn − xn−l−1)
5: for i = n− l − 1, n− l − 2, . . . , 1 do
6: γi := γi−1/(x i+l − x i−1) + γi/(x i+l+1 − x i)

7: γ0 := γ0/(x l+1 − x0)

8: Wn := (−1)d(γ0,−γ1, . . . , (−1)nγn)

After having initialized a new instance of the BRI class with the variables Xn, Yn, and d,
the vector Wn is automatically computed as described above, which is efficient and robust.
However, there are cases, albeit extreme, in which the WEIGHTS function runs into overflow or
underflow errors.

Example 4.1. If we consider 10 Chebyshev nodes (4.2) (that is, n = 9) over [0,10−12] and
d = 3, then

γ0 =
−1

(x3 − x0)(x2 − x0)(x1 − x0)
≈ −5.5257× 1038, (4.12)

and if the variable types are set to float for both input and output, then Algorithm 5 overflows
in line 7 in the last iteration, when l = 0, so that γ0 = −inf, because the smallest negative
floating-point number in single precision is −Fmax = −2127(2−2−23)≈ −3.4028×1038. In fact,
we get γi = (−1)i+1inf for all i = 0, . . . , 9 in this example.

Example 4.2. Let us consider 3333 equidistant nodes over [−1, 1] and d = 333. This choice
of n and d guarantees the best balance between the theoretical and the actual numerical error
of the barycentric rational interpolant, for example, if the data are sampled from the function
f (x) = log(1.2− x)/(x2+2) [40]. However, if we compute the weights with Algorithm 5, using
double for both input and output, we run into overflow problems and all weights turn out to
be γi = (−1)i+1inf.

Example 4.3. The BRI class also covers polynomial interpolation, that is, the case d = n, and in
this setting underflow and overflow errors are even more common. For example, Pachón [67]
shows that the weights can be computed safely for 500 Chebyshev nodes in [−2,2] in double
precision, while problems arise, if the interval is changed to [−0.2,0.2] or [−20,20], leading to
overflow in the former and underflow in the latter case. Furthermore, increasing the value of
n may result in similar issues. For example, for 1500 Chebyshev nodes in [−2, 2], Algorithm 5
causes the first and the last 51 weights to underflow.

It is precisely for situations like these that we provide the guard flag, which, if activated,
calls code that tries to prevent overflow and underflow errors. The basic idea is to rescale
intermediate floating-point values, so that they are kept far from the overflow and underflow
regions. To do this, we multiply the values v l

i in (3.22) for i = 0, 1, . . . , n − l in each step of
the pyramid algorithm with a suitable common constant 2Cl , with Cl ∈ Z. Of course, we need
to define these constants appropriately to make sure that these rescaling operations are safe
and do not in turn cause any overflow or underflow errors. To this end, we shall first work out
intervals Il =
�

µmin2Ll ,µmax2Ul
�

that are guaranteed to contain all v l
i . Before delving into these

details, it is worth recalling that such rescaling operations do not change the second barycentric
formula in (3.3).

45 4.3 Barycentric weights

Proposition 4.3. Let Ld = Ud = 0 and

Ll = Ll+1−Hmax−El−1 and Ul = Ul+1−Hmin−El+2, l = d−1, d−2, . . . , 0, (4.13)

where El = ⌊log2(l+1)⌋ and Hmin, Hmax ∈ Z are the exponents of the floating-point representation
of the minimal and the maximal distance between neighbouring nodes, that is,

hmin = min
1≤i≤n

(x j − x j−1) = η1 × 2Hmin and hmax = max
1≤i≤n

(x j − x j−1) = η2 × 2Hmax .

Then, v l
i ∈ Il =
�

µmin2Ll ,µmax2Ul
�

for i = 0,1, . . . , n− l and any l ∈ {0,1, . . . , d − 1}.

Proof. Assume that Bl+1
min ≤ v l+1

i ≤ Bl+1
max for i = 0,1, . . . , n− l − 1 and some l ∈ {0,1, . . . , d − 1}.

Then, letting

Bl
min =

Bl+1
min

(l + 1)hmax
and Bl

max =
2Bl+1

max

(l + 1)hmin
(4.14)

and noticing that
0< (k− j)hmin ≤ xk − x j ≤ (k− j)hmax, (4.15)

for any j < k, it follows from (3.22) that

Bl
min ≤

v l+1
i−1

(l + 1)hmax
+

v l+1
i

(l + 1)hmax
≤ v l

i ≤
v l+1

i−1

(l + 1)hmin
+

v l+1
i

(l + 1)hmin
≤ Bl

max (4.16)

for i = 0, 1, . . . , n − l. Consequently, defining Bd
min = Bd

max = 1 and Bl
min and Bl

max recursively
as in (4.14) for l = d − 1, d − 2, . . . , 0, it follows by induction that v l

i ∈
�

Bl
min, Bl

max

�

for i =
0,1, . . . , n− l and any l ∈ {0,1, . . . , d − 1}.

Denoting the exponents of the floating-point representation of Bl
min and Bl

max by P l
min, P l

max ∈
Z and noticing that

2El ≤ l + 1≤ 2El+1, (4.17)

it then follows from Proposition 2.1 and (4.14) that

Bl
min ≥ µmin2P l+1

min−Hmax−El−1 and Bl
max ≤ µmax2P l+1

max−Hmin−El+2,

and therefore v l
i ∈
�

Bl
min, Bl

max

�

⊂
�

µmin2Ll ,µmax2Ul
�

, where Ll and Ul are defined as in (4.13).

Considering the floating-point representation of each value v l+1
i = νi × 2Vi and the differ-

ences x i+l+1 − x i = ξi × 2X i , for some l ∈ {0, 1, . . . , d − 1} and i = 0,1, . . . , n − l, we know
from Proposition 4.3 that Ll+1 ≤ Vi ≤ Ul+1 and, from (4.15) and (4.17), that Hmin + El ≤ X i ≤
Hmax+El+1. Moreover, we can observe that the expression for the values v l

i in (3.22) fits into the
more general formula (4.6) for M = J = K = 1. This means that Ll and Ul in (4.13) are exactly
L and U in (4.10), where Rmin = Ll+1, Rmax = Ul+1, Smin = Hmin + El , and Smax = Hmax + El + 1.
Consequently, by Corollary 4.2, if Ul − Ll < Emax − Emin, then we can define

Cl =
¡

Emax + Emin − Ll − Ul

2

¤

and compute 2Cl v l
i for i = 0,1, . . . , n− l without any overflow or underflow error using Algo-

rithm 4.

46 4.3 Barycentric weights

Algorithm 6 Guarded version of the WEIGHTS procedure
1: procedure WEIGHTS

2: initialize Wn as in line 2 of Algorithm 5 and set L := 0 and U := 0
3: for l = d − 1, d − 2, . . . , 0 do
4: L := L −Hmax − El − 1 and U := U −Hmin − El + 2
5: if U − L < Emax − Emin then
6: Cl := ⌈(Emax + Emin − Ll − Ul)/2⌉
7: update Wn with Ŵn = 2Cl Wn as in lines 4–7 of Algo. 5, but using Algo. 4
8: L := L + Cl and U := U + Cl

9: else ▷ expo(x) returns e for x = ±m× 2e

10: L := expo(min0≤i≤n−l γi)− 1 and U := expo(max0≤i≤n−l γi)
11: L := L −Hmax − El − 1 and U := U −Hmin − El + 2
12: if U − L < Emax − Emin then
13: Cl := ⌈(Emax + Emin − Ll − Ul)/2⌉
14: update Wn with Ŵn = 2Cl Wn as in lines 4–7 of Algo. 5, but using Algo. 4
15: L := L + Cl and U := U + Cl

16: else
17: update Wn as in lines 4–7 of Algo. 5
18: if some overflow/underflow error happened then
19: report an error and exit
20: else
21: L := expo(min0≤i≤n−l γi)− 1 and U := expo(max0≤i≤n−l γi)

22: add the alternating signs to Wn as in line 8 of Algo. 5

Therefore, the “guarded” version of the pyramid algorithm (see Algorithm 6) rescales the
values v l

i by the constant 2Cl in each step l = d−1, d−2, . . . , 0. Therefore, if we first compute Ll

and Ul as in (4.13) and find that Ul − Ll < Emax− Emin, then we can be sure that computing the
values 2Cl v l

i with Algorithm 4 will not cause any overflow or underflow. If this latter condition
is not satisfied for some l̂ ∈ {0, 1, . . . , d − 1}, it means that we cannot be sure anymore that all
v l

i are normal floating-point numbers. Therefore, we try to repeat the same procedure by first
re-defining

L l̂ = min
0≤i≤n−l

Vi − 1 and Ul̂ = max
0≤i≤n−l

Vi . (4.18)

If it fails again, then the algorithm proceeds normally by updating the weights as in lines 3–7 of
Algorithm 5. If the calculations are successful for every i = 0, 1, . . . , n− l̂ without overflow nor
underflow errors, then we define L l̂ and Ul̂ as in (4.18), and we continue with the remaining
iterations. Otherwise, the code stops and reports an error message to the user. At the end, the
weights are rescaled with respect to the constant 2Cw , where

Cw =
d−1
∑

l=0

Cl . (4.19)

The next example illustrates how the guarded version can solve the overflow problem ob-
served in Example 4.1.

Example 4.4. We consider n = 9, d = 3, and n + 1 Chebyshev interpolation nodes x i ∈
[0, 10−12] with associated data yi = 1, for i = 0, . . . , n. We define all variables in input and
output as float and we see how to initialize this instance of the BRI class and its resulting

47 4.4 Evaluation of the barycentric rational interpolant

#include "BRI.h"

using namespace std;

int main(){

cout.precision(20);

int n = 9;

int d = 3;

vector<float> Yn(n+1,1);

BRI<float,float> r(CHEBYSHEV,0,1e-12,n,Yn,d);

r.guard_on();

int C;

vector<float> W = r.get_weights(C);

cout << "Cw = " << C << endl;

for (int i=0; i<=n; i++)

cout << "W[" << i << "] = " << W[i] << endl;

}

Cw = -127

W[0] = -3.2477385997772216797

W[1] = 6.8478851318359375

W[2] = -5.8251581192016601562

W[3] = 3.5328421592712402344

W[4] = -2.4203362464904785156

W[5] = 2.4203360080718994141

W[6] = -3.53284454345703125

W[7] = 5.8251657485961914062

W[8] = -6.8478937149047851562

W[9] = 3.2477431297302246094

Program 2. Code used to compute and display the guarded weights wi and the rescaling
exponent Cw for 10 Chebyshev nodes in [0,10−12] and d = 3 in single precision (left) and its
output (right).

weights in Program 2. We note that the weights do not overflow anymore as in (4.12) in
guarded mode, but they are now rescaled by the constant 2−127.

4.4 Evaluation of the barycentric rational interpolant

As already mentioned in Section 4.1, the evaluation of the barycentric rational interpolant r can
be realized by using the second rational barycentric form with Algorithm 1 or the first form with
either Algorithm 2 or 3. The BRI class allows the user to choose one of the three algorithms by
calling the EVAL function with two input parameters, the first is the evaluation point or vector x
and the second is one of the three keywords FIRST_DEF, FIRST_EFF, or SECOND. However, the
second parameter can be omitted, obtaining Algorithm 7 that autonomously chooses the best
algorithm to use. Let us now focus on the latter case.

By default, the class always calls Algorithm 1, because it is generally the one that best
combines numerical stability and efficiency of the method. On the other hand, if the user asks
for the most stable solution by turning on the stability flag, then the code first evaluates κ(x)
and Λn(x) and decides, based on these values, which is the best algorithm to use. In particular,
it is known that the condition number affects the upper bound on the relative forward error of
both the first and the second barycentric form [34], so if κ(x) > 103, then the class warns the
user about this and continues without interruption. It is further known that the stability of (3.3)
depends on the function Λn, which grows with n, whereas the stability of (3.6) depends on the
function Γd , whose upper bound is independent of n. However, numerical experiments show
that the estimated upper bound on Γd seems to be always much larger than Γd itself. For this
reason, if Λn(x) > 102, then the result is computed with Algorithm 2. If it happens that also

48 4.4 Evaluation of the barycentric rational interpolant

0 50 100 150

2

3

4

5

6

7
10

-15

0 50 100 150

0

0.5

1

1.5

2

2.5

3
10

-4

d d

Figure 4.2. Maximal relative forward error of the first barycentric form for n + 1 equidistant
nodes, n = 150, and d ∈ {1, 2, . . . , n} at 1000 random evaluation points with data sampled
from the n-th Lagrange basis polynomial on a logarithmic scale (left) and overall running time
in seconds (right) using Algorithm 2 (asterisks) and Algorithm 3 (circles).

Γd(x)> 102, then the user simply receives a warning without the code stopping. Finally, if both
the stability and the efficiency flags are active and it turns out that the most stable solution
is given by the first barycentric form, then it is computed with Algorithm 3, which computes
all the λi with a more efficient iterative strategy. From a computational point of view, we are
improving by switching from an O(nd) algorithm to an O(n) algorithm, therefore we know that
for small d there is no big gain, but, as d increases, the efficient implementation can result
in a lower execution time, without losing much in terms of stability. For example, Figure 4.2
compares the stability and the running time of the two algorithms considering n+1 equidistant
interpolation nodes x i ∈ [0, 1] for n= 150 with associated data yi = 0, for i = 0, . . . , n− 1 and
yn = 1. In particular, on the left we see the maximum of both relative forward errors evaluated
at 1000 random points in [0, 1] and on the right their execution times in seconds as a function
of d ∈ {1, 2, . . . , n}. We observe that Algorithm 2 is slightly more precise than Algorithm 3, as
expected, but the latter always wins in terms of efficiency, especially in the neighborhood of
d = n/2. It is worth noting that, if the stability flag is turned off, then the efficiency flag
does not play any role, because Algorithm 7 takes the second barycentric form by default.

As for the weights, also in this case the user can decide to turn on the guard flag to pre-
vent overflow and underflow errors. The basic idea is again the same as in Section 4.3 for the
weights, that is, rescaling the numerator and the denominator properly in order to perform all
floating-point operations far from the overflow and underflow regions and to avoid introduc-
ing any further rounding errors. In this case, we have to further take into account that the
summations in the numerator and denominator of (3.3) and (3.6) involve both subtractions
and additions that may lead to cancellation errors. Moreover, from Proposition 2.1, preventing
non-underflow subtractions could be tricky, especially if we are subtracting numbers of similar
magnitudes. However, we recall that cancellation errors are already taken into consideration
in the study of the numerical stability of the interpolant [34], so, if the method is stable, then
it is proven that they cannot happen. Otherwise, one option would be to split each summation
into one for the positive terms and one for the negative terms, which, in case the condition of

49 4.4 Evaluation of the barycentric rational interpolant

Algorithm 7 EVAL function
1: function EVAL(x)
2: if the stability flag is turned on then
3: if κ(x)> 103 then the user gets a warning

4: if Λn(x)> 102 then
5: if Γd(x)> 102 then the user gets a warning

6: if the efficiency flag is turned on then
7: return r, computed with Algo. 3
8: else
9: return r, computed with Algo. 2

10: else
11: return r, computed with Algo. 1

12: else
13: return r, computed with Algo. 1

Proposition 4.1 is satisfied, can be safely computed using Algorithm 4, and making only one fi-
nal subtraction. The problem with this procedure is that, from our experiments, it seems to lose
precision compared to the normal iterative algorithm when there are cancellation errors. Fur-
thermore, since the two summations consist only of additions, if the addends have high orders
of magnitude and n is large, then it is much more likely to run into overflow errors. For these
reasons, we decided to safely compute only the addends of the summations in (3.3) and (3.6)
using Proposition 4.1 (for the special case M = 0), and finally to calculate the sums with the
classic iterative algorithm. Therefore, no adjustment is considered that could prevent overflow
or underflow errors during the summations, but we check only afterwards if something like
this has happened. In particular, considering the floating-point representation of each weight
γi =ωi × 2Wi , data yi = υi × 2Yi , and difference x − x i = ξi × 2X i , we let

L1 = min
0≤i≤n

(Wi + Yi − X i)− 1, U1 = max
0≤i≤n

(Wi + Yi − X i) + 1,

L2 = min
0≤i≤n

(Wi − X i), U2 = max
0≤i≤n

(Wi − X i) + 1,

L3 = min
0≤i≤n−d

(−X i − · · · − X i+d), U3 = max
0≤i≤n−d

(−X i − · · · − X i+d) + d + 1,

and we define

C j =
¡ Emax + Emin − L j − U j

2

¤

, j = 1,2, 3. (4.20)

After that, denoting the common numerator of (3.3) and (3.6), the denominator of (3.3), and
the denominator of (3.6) by N , Ds, and Df , respectively, if U j − L j < Emax − Emin for all j ∈
{1,2, 3}, then we can compute

N̂ = 2C1 N , D̂s = 2C2 Ds, and D̂f = 2C3 Df

with Algorithm 4, but, since the exponents in (4.20) do not consider additions and subtractions,
at the end it is necessary to check whether overflow or underflow errors have happened. Finally,
if every operation was computed safely, then we get the result with the second barycentric form
as

r(x) = 2C2−C1
N̂(x)
D̂s(x)

50 4.4 Evaluation of the barycentric rational interpolant

Algorithm 8 Guarded evaluation of the second
barycentric form
1: function SECOND(x)
2: L1 :=min0≤i≤n expo(γi yi/(x − x i))
3: U1 :=max0≤i≤n expo(γi yi/(x − x i)) + 1
4: if U1 − L1 < Emax − Emin then
5: C1 := ⌈(Emax + Emin − L1 − U1)/2⌉
6: compute N̂ as N in Algo. 1, but using Algo. 4
7: if some overflow/underflow happened then
8: report an error and exit

9: else
10: compute N̂ as N in Algo. 1
11: if some overflow/underflow happened then
12: report an error and exit
13: else
14: C1 := 0

15: L2 :=min0≤i≤n expo(γi/(x − x i)) + 1
16: U2 :=max0≤i≤n expo(γi/(x − x i)) + 1
17: if U2 − L2 < Emax − Emin then
18: C2 := ⌈(Emax + Emin − L2 − U2)/2⌉
19: compute D̂s as D in Algo. 1, but using Algo. 4
20: if some overflow/underflow happened then
21: report an error and exit

22: else
23: compute D̂s as D in Algo. 1
24: if some overflow/underflow happened then
25: report an error and exit
26: else
27: C2 := 0

28: return r = 2C2−C1 N̂
D̂s

Algorithm 9 Guarded evaluation of the first barycentric
form
1: function FIRST(x)
2: L1 :=min0≤i≤n expo(γi yi/(x − x i))
3: U1 :=max0≤i≤n expo(γi yi/(x − x i)) + 1
4: if U1 − L1 < Emax − Emin then
5: C1 := ⌈(Emax + Emin − L1 − U1)/2⌉
6: compute N̂ as N in Algo. 1, but using Algo. 4
7: if overflow/underflow happened then
8: report an error and exit

9: else
10: compute N̂ as N in Algo. 1, but using Algo. 4
11: if some overflow/underflow happened then
12: report an error and exit
13: else
14: C1 := 0

15: L3 :=min0≤i≤n−d expo([(x − x i) . . . (x − x i+d)]−1) + 1
16: U3 :=max0≤i≤n−d expo([(x − x i) . . . (x − x i+d)]−1) + d + 1
17: if U3 − L3 < Emax − Emin then
18: C3 := ⌈(Emax + Emin − L3 − U3)/2⌉
19: compute D̂f as D in Algo. 2 or Algo. 3, but using Algo. 4
20: if some overflow/underflow happened then
21: report an error and exit

22: else
23: compute D̂f as D in Algo. 2 or Algo. 3
24: if some overflow/underflow happened then
25: report an error and exit
26: else
27: C3 := 0

28: return r = 2C3−C1−Cw N̂
D̂f

or with the first barycentric form as

r(x) = 2C3−C1−Cw
N̂(x)
D̂f (x)

.

Otherwise, the code stops and gives an error message to the user. Note that the guarded result
of the first form involves also the rescale factor Cw in (4.19), because its denominator does not
depend on the weights. If U j − L j ≥ Emax − Emin for some j ∈ {1, 2,3}, then the algorithm tries
to compute the corresponding summation as in Algorithm 1, 2, or 3. Again, if some overflow
or underflow error happens, then the code stops, otherwise the corresponding rescale factor C j

is set to 0 for j ∈ {1,2, 3} and the final result is computed as before.

Example 4.5. As in Example 4.1, we consider n = 9 and n+ 1 Chebyshev interpolation nodes
in [0,10−12], but we take d = 2 so that the weights do not overflow even in non-guarded mode.
We then define yi = f (x i) for i = 0,1, . . . , n, where

f (x) = 3
4 e−

(9x−2)2

4 + 3
4 e−

(9x+1)2

49 + 1
2 e−

(9x−7)2

4 + 1
5 e−(9x−4)2 , (4.21)

and we output r(x) using first Algorithms 1 and 2 and then Algorithms 8 and 9, with x =
10−12/2. We also use the functions NUMERATOR and DENOMINATOR to see the values of N , Ds,
and Df with their rescaling factors. All variables in input and output are set as float and

51 4.4 Evaluation of the barycentric rational interpolant

#include "BRI.h"

using namespace std;

float Franke(float x) {

return exp(-(9*x-2)*(9*x-2)/4)*3/4

+exp(-(9*x+1)*(9*x+1)/49)*3/4

+exp(-(9*x-7)*(9*x-7)/4)/2

+exp(-(9*x-4)*(9*x-4))/5;

}

int main(){

cout.precision(10);

int n = 9;

int d = 2;

BRI<float,float> r(CHEBYSHEV,0,1e-12,n,Franke,d);

float x = 1e-12/2;

//r.guard_on();

int C1;

int C2;

int C3;

float f_def = r.eval(x,FIRST_DEF);

float s = r.eval(x,SECOND);

float N = r.numerator(x,C1);

float Ds = r.denominator(x,C2,SECOND);

float Df = r.denominator(x,C3,FIRST_DEF);

cout << "FIRST FORM - DEF: r(x) = " << f_def <<

endl;

cout << "SECOND FORM: r(x) = " << s << endl;

cout << "N = " << N << " and C1 = " << C1 << endl

;

cout << "Ds = " << Ds << " and C2 = " << C2 <<

endl;

cout << "Df = " << Df << " and C3 = " << C3 <<

endl;

}

GUARD FLAG TURNED OFF

FIRST FORM - DEF: r(x) = -nan

SECOND FORM: r(x) = -nan

N = -nan and C1 = 0

Ds = -nan and C2 = 0

Df = inf and C3 = 0

GUARD FLAG TURNED ON

FIRST FORM - DEF: r(x) = 1.010761023

SECOND FORM: r(x) = 1.010760903

N = 5.134361744 and C1 = -44

Ds = 10.15939903 and C2 = -43

Df = 8.936301055e+13 and C3 = -84

Program 3. Code used to compute and display r(x), N(x), Ds(x), and Df with their rescaling
factors C1, C2, and C3 for 10 Chebyshev nodes x i in [0,10−12] with associated data yi sam-
pled from the function f in (4.21), x = 10−11/2, and d = 2 in single precision (left). The
output (right) is shown both in non-guarded and guarded mode, where the latter is obtained
by removing the comment in the line with the command r.guard_on();.

we present the input code and its output in Program 3. Note that, up to single precision, the
evaluation of the interpolant at x is the same for both algorithms, that is, r(x) = 1.01076, and
the values of numerator and denominators are

N(x) = 2445.13436, Ds(x) = 24310.1594, and Df (x) = 284+Cw8.93630e+ 13,

where Cw = −84 in this setting. Furthermore, using the efficient implementation of the first
form, we would get the same result.

52 4.5 Stability-related functions

Finally, we analysed how much the guard and the stability flags can affect the compu-
tational cost of the method. In particular, we conducted several tests to compare the running
times with these flags both turned on and off and also considering variations in the input, such
as d, the number of nodes and data n, and the number of evaluation points. Notably, if we
activate only the guard flag, then we observed a maximum increase in the execution time of
one order of magnitude. Instead, in the worst-case scenario where we enable both the guard

and the stability flag, the increase can reach at most two orders of magnitude.

4.4.1 Evaluation close to a node

One of the properties of the set F is that it is not equally spaced, but it becomes denser in the
proximity of Fmin. In particular, we recall that the floating-point numbers are equally spaced
in each interval

�

2E , 2E+1
�

and at a distance of hE = 2E−t . Hence, if we want to evaluate r
very close to a node x j ∈

�

2E , 2E+1
�

for some E ∈ N, then we cannot get any closer than hE .
Consequentially, if the evaluation point is x = x j + h and x j and h have different orders of
magnitude, then we can lose accuracy because too small increments are ignored. Similarly, if
we get too close to x j , in view of the continuity of the interpolant r, we have r(x j +h) = y j +u
and if u ∈ R is too small, then the code could round the final result to y j . However, we note
that

r(x j + h; Xn, Yn) =

∑n
i=0

γi
x j+h−x i

yi
∑n

i=0
γi

x j+h−x i

=

∑n
i=0

γi
h−(x i−x j)

(yi − y j)
∑n

i=0
γi

h−(x i−x j)

+ y j = r(h; Xn − x j , Yn − y j) + y j ,

so that shifting the domain and the range by x j and y j , respectively, we can compute u = r(h)
and get the final result as y j+u. The advantage of this procedure is that both h and u are more
accurate and reach up to a magnitude of 2Emin−1−t , that is, the distance between floating-point
numbers in
�

2Emin−1, 2Emin
�

. For this reason, the BRI class automatically uses this strategy if the
EVAL function receives as input the index j and the value h and it returns u.

Example 4.6. We consider n = 9, d = 2, and n+ 1 equidistant interpolation nodes x i ∈ [1,2]
with associated data yi = f (x i) for i = 0,1, . . . , n and f (x) = x . We want to evaluate the
interpolant r very close to the first node x0 = 1 at x = x0 + h for h = 10−20, and we set all
variables in input and output as double. We know that the closest double floating-point number
to x0 = 1 is 1+ ε, where ε = 2.2204× 10−16. So, using any of the three algorithms discussed
in Section 4.4, we expect to get r(x) = y0, since x is rounded to x0 in double precision. We
compare the result obtained by evaluating r(x) in the classical way with the strategy presented
above in Program 4. As expected, the classical method outputs r(x) = 1, but with the new
strategy we obtain u = r(h) = 9.9999999999999949376e− 21, meaning that r(x) = y0 + u =
1.00000000000000000001, which is also what we would get by computing r(x) in multiple-
precision (1024 bits).

4.5 Stability-related functions

As mentioned in Section 4.4, the BRI class uses the functions Λn, Γd , and κ internally to decide,
if needed, which method should be used for the computation of r(x). Moreover, it also allows
the user to evaluate them explicitly by using the functions LEB, GAMMA, and COND with the
evaluation point or vector x as input. However, for purposes of numerical stability, what really

53 4.5 Stability-related functions

#include "BRI.h"

#include "NODES.h"

using namespace std;

int main(){

cout.precision(20);

int n = 9;

int d = 2;

NODES<double> obj;

vector<double> Xn = obj.uniform(1,2,n);

double h = 1e-20;

double x = xn[0] + h;

BRI<> r(Xn,Xn,d);

double r1 = r.eval(x);

double r2 = r.eval(0,h);

cout << "eval(x) outputs:" << endl;

cout << "r(x) = " << r1 << endl;

cout << "eval(0,h) outputs:" << endl;

cout << "r(h) = " << r2 << endl;

}

eval(x) outputs:

r(x) = 1

eval(0,h) outputs:

r(h) = 9.9999999999999949376e-21

Program 4. Input used to compute and display r(x) for 10 equidistant nodes x i in [1,2] with
associated data yi = x i and d = 2 at x = x0 + h for h = 10−20 in double precision (left). The
output (right) shows the result of the eval function, both for x and the pair (0, h) as input.

matters is the maximum of these functions in the range [x0, xn] and this is what these functions
return when they have no argument as input. Let us see how they compute it.

First, we recall that Λn, Γd , and κ can all be written in the common form

g(x) =
n
∑

i=0

�

�

�

�

bi(x)
∑n

i=0 bi(x)

�

�

�

�

, (4.22)

where bi(x) = γi/(x− x i) for Λn, bi(x) = (−1)i/
∏i+d

j=i (x− x j) for Γd , and bi(x) = γi yi/(x− x i)
for κ. One possible way to compute their maxima is to sample these functions very densely on
the domain and search for the largest values, but, to be really accurate, we have to consider a
big number of samples, thus losing efficiency. However, it is clear from the triangle inequality
that a general function of the type (4.22) is greater than or equal to 1. Furthermore, in the
specific case of Λn, Γd , and κ, the minimum with value 1 is assumed exactly at the nodes x i

and, from numerical experiments (see Figure 4.3), it appears that they are all concave in every
sub-interval [x i , x i+1]. This means that, considering these functions locally in every open sub-
interval (x i , x i+1), the point where the first derivative vanishes is a local maximum. Therefore,
we apply Newton’s method to find the root of Λ′n, Γ ′d , and κ′ in each sub-interval (x i , x i+1) and we
finally search for the maximum point among them. In general, in order to find a root t ∈ R of
a function g : R→ R, Newton’s method starts with some t0 ∈ R and then generates a sequence

54 4.5 Stability-related functions

n= 9 n= 19 n= 39

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 0.2 0.4 0.6 0.8 1

1

1.005

1.01

1.015

1.02

1.025

1.03

0 0.2 0.4 0.6 0.8 1

1

1.005

1.01

1.015

1.02

1.025

1.03

0 0.2 0.4 0.6 0.8 1

1

1.005

1.01

1.015

1.02

1.025

1.03

0 0.2 0.4 0.6 0.8 1
10

0

10
1

0 0.2 0.4 0.6 0.8 1
10

0

10
1

0 0.2 0.4 0.6 0.8 1
10

0

10
1

Figure 4.3. Plots of Λn (top), Γd (middle), and κ (bottom) for n + 1 equidistant nodes and
x ∈ [0,1], all on a logarithmic scale, for d = 3 and three choices of n (left, middle, right).
For the computation of the condition number κ, the data are sampled from Runge’s function
f (x) = 1/(1+ 25x2).

of t1, t2, · · · ∈ R by applying the iterative formula

t j+1 = t j −
g(t j)

g ′(t j)
. (4.23)

Although this method usually converges quadratically, it may also fail, for example, if the initial
guess t0 is too far from the correct solution. Consequently, the choice of the initial value t0 is
an important step of Newton’s method. Figure 4.3 shows that Λn, Γd , and κ take their local
maxima approximately in the midpoint of every sub-interval [x i , x i+1], so that we consider
t0 = (x i + x i+1)/2 in each sub-interval (x i , x i+1). After that, by (4.22), it is easy to see that the
method can be implemented straightforwardly by computing at each iteration j first

g ′(t j) =
n
∑

i=0

sign
� bi(t j)
∑n

i=0 bi(t j)

� b′i(t j)
∑n

i=0 bi(t j)− bi(t j)
∑n

i=0 b′i(t j)

(
∑n

i=0 bi(t j))2

and

g ′′(t j) =
n
∑

i=0

sign
� bi(t j)
∑n

i=0 bi(t j)

� b′′i (t j)
∑n

i=0 bi(t j)− bi(t j)
∑n

i=0 b′′i (t j)

(
∑n

i=0 bi(t j))2
−2

g ′(t j)
∑n

i=0 bi(t j)

n
∑

i=0

b′i(t j),

55 4.5 Stability-related functions

#include "mpreal.h"

#include "BRI.h"

using namespace std;

using mpfr::mpreal;

double Runge(double x){

return 1/(1+25*x*x);

}

int main(){

int my_mpreal_precision = 1024;

mpreal::set_default_prec(my_mpreal_precision);

int n = 9;

int d = 3;

BRI<double,mpreal> r(UNIFORM,0,1,n,Runge,d);

cout.precision(20);

cout << "Maximum of the Lebesgue function:" << endl;

cout << r.leb() << endl;

cout << "Maximum of the function Gamma:" << endl;

cout << r.gamma() << endl;

cout << "Maximum of the condition number:" << endl;

cout << r.cond() << endl;

}

n = 9

Maximum of the Lebesgue function:

3.5886287189761606401

Maximum of the function Gamma:

1.0318045847764588507

Maximum of the condition number:

11.609466977862612706

n = 19

Maximum of the Lebesgue function:

4.6127100859322925745

Maximum of the function Gamma:

1.0322814978345268598

Maximum of the condition number:

13.210805972626199269

n = 39

Maximum of the Lebesgue function:

5.5370777898252804523

Maximum of the function Gamma:

1.0323229058478393483

Maximum of the condition number:

14.979125760718810308

and then using (4.23) to set t j+1 = t j − g ′(t j)/g ′′(t j), until the error |t j+1 − t j |< 10ε, where ε
is the machine epsilon.

Example 4.7. We consider the same setting as in Figure 4.3 for n = 9, that is, n + 1 = 10
equidistant interpolation nodes x i ∈ [0, 1] with associated data yi = f (x i) for i = 0, . . . , n and
f (x) = 1/(1+ 25x2) and d = 3. We create a new instance of the BRI class that takes double
input and returns multiple precision (1024 bits) output using the MPFR library, and we ask for
the maximum of the functions Λn, Γd , and κ.

56 4.5 Stability-related functions

Chapter 5

A new stable method to compute
mean value coordinates

5.1 State of the art

Mean value coordinates were initially introduced as a generalization of barycentric coordinates
to polygons and polyhedra [28, 32, 47, 54]. Since then, they have emerged as a valuable tool in
a wide range of domains, such as interpolation, curve and surface modeling in computer graph-
ics, mesh parameterization, the finite element method, and various other fields. Moreover, they
stand out for their capability to extend barycentric coordinates to the non-convex setting, unlike
other commonly used coordinates. For more details about generalized barycentric coordinates,
we refer to Hormann and Sukumar [50].

Let P ⊂ R2 be a simple planar polygon with n ≥ 3 vertices v1, . . . , vn arranged in anticlock-
wise ordering and v ∈ R2 be an arbitrary point in the interior of P. The mean value coordinates
of v with respect to P are initially defined by Floater [28] as

φi(v) =
wi(v)
∑n

j=1 w j(v)
, wi(v) =

1
ri

�

tan
αi−1

2
+ tan

αi

2

�

, i = 1, . . . , n, (5.1)

with αi ∈ (−π,π) denoting the signed angle at v in the triangle [v, vi , vi+1] and ri = ∥v − vi∥.
Note that indices are considered cyclically with respect to the range [1, 2, . . . , n]; for example,
vn+1 = v1 and α0 = αn. As already seen in Section 1.1, these coordinates satisfy the proper-
ties (1.3), (1.4), and (1.5). Moreover, they are actually well-defined for all v ∈ R2\∂ P, positive
inside the kernel of P, invariant to similarity transformations of P, and their extension is linear
along the edges of P and smooth except at the vertices vi , where it is only C0 [47].

Afterwards, Floater et al. [31] note that mean value coordinates are a particular member of
a family of three-point coordinates for convex polygons, which can be derived by normalizing a
set of weight functions wi that each depend on three consecutive vertices of P. In this context,
they show that mean value coordinates can be expressed as

φi(v) =
wi(v)
∑n

j=1 w j(v)
, wi(v) =

ri−1Ai,i+1 − riAi−1,i+1 + ri+1Ai−1,i

2Ai−1,iAi,i+1
, i = 1, . . . , n, (5.2)

where Ai, j = det(vi−v, v j−v)/2 denotes the signed area of the triangle [v, vi , v j]. The advantage

57

58 5.1 State of the art

of this formula over the original definition in (5.1) is that it avoids the computation of the angles
αi and that it gets by without the use of trigonometric functions.

While mean value coordinates were initially considered only for points inside the kernel
of star-shaped polygons [28], Hormann and Floater [47] prove that they are well-defined for
any v ∈ R and (sets of) arbitrary planar polygons without self-intersection. They also pro-
pose another way of evaluating mean value coordinates that avoids trigonometric functions. In
particular, they first use the half-angle formula for the tangent to get

φi(v) =
wi(v)
∑n

j=1 w j(v)
, wi(v) =

1
ri

�

1− cosαi−1

sinαi−1
+

1− cosαi

sinαi

�

, i = 1, . . . , n, (5.3)

and then, denoting the dot product of vi−v and v j−v by Di, j = (vi−v)·(v j−v) and recalling that
Di,i+1 = ri ri+1 cosαi and 2Ai,i+1 = ri ri+1 sinαi , they conclude that the mean value coordinates
in (5.1) can be written as

φi(v) =
wi(v)
∑n

j=1 w j(v)
, wi(v) =

1
ri

� ri−1ri − Di−1,i

2Ai−1,i
+

ri ri+1 − Di,i+1

2Ai,i+1

�

, i = 1, . . . , n. (5.4)

The advantage of implementing this formula over (5.2) is that it allows to easily “catch” the
case when v is on the boundary of P, say v = (1− µ)vk + µvk+1 for some µ ∈ [0,1] and some
k ∈ {1, . . . , n}, as this happens if and only if Ak,k+1 = 0 and Dk,k+1 ≤ 0. In this case, the mean
value coordinates of v are just φk(v) = 1−µ, φk+1(v) = µ, and φi(v) = 0 for i ̸= k, k+ 1.

One potential problem with the formulas in (5.2)–(5.4) is that the coordinates φi(v) are
not well-defined if v is on the line supporting the edge [vk, vk+1] of P. We can overcome this
problem by using the alternative half-angle formula for the tangent, that is,

φi(v) =
wi(v)
∑n

j=1 w j(v)
, wi(v) =

1
ri

�

sinαi−1

1+ cosαi−1
+

sinαi

1+ cosαi

�

, i = 1, . . . , n, (5.5)

to obtain

φi(v) =
wi(v)
∑n

j=1 w j(v)
, wi(v) =

1
ri

� 2Ai−1,i

ri−1ri + Di−1,i
+

2Ai,i+1

ri ri+1 + Di,i+1

�

, i = 1, . . . , n. (5.6)

This formula gives rise to an implementation that has the same advantages as the one derived
from (5.4), but is well-defined even if Ak,k+1 = 0 for some k.

All the formulas above have the limitation that they are not well-defined on the boundary
of the polygon P and, moreover, (5.2)–(5.4) can be used only if all Ai,i+1 ̸= 0. This motivated
Floater [29] to introduce yet another formula for mean value coordinates, which is also valid
on the boundary, namely

φi(v) =
ŵi(v)
∑n

j=1 ŵ j(v)
, ŵi(v) = σi

p

ri−1ri+1 − Di−1,i+1

∏

j ̸=i−1,i

p

r j r j+1 + Dj, j+1, i = 1, . . . , n,

(5.7)
where σi ∈ {+1,−1} is a sign related to the weight function ŵi . Initially, this formula was
presented without σi , which limits its applicability to points v inside convex polygons, but
Anisimov [2, Section 3.2.4] demonstrates how to define σi , such that it can be used for any v ∈
R2 and arbitrary simple polygons. The disadvantage of this formula is that its implementation
requires O(n2) operations, while the formulas (5.1)–(5.6) give rise to O(n) algorithms.

59 5.2 Our contribution

To the best of our knowledge, there is no study regarding the numerical stability of any
algorithm that implements normalized barycentric coordinates. However, Anisimov et al. [3]
noticed that both Wachspress and mean values coordinates become unstable close to the bound-
ary of the polygon P. In the case of the former, this problem can be overcome by multiplying
the barycentric coordinates by an appropriate constant, although this affects the computational
cost of the algorithm. For the latter, only the formula in (5.7) appears to be stable. In this the-
sis, we want to investigate more deeply the numerical stability of the mean value coordinates,
using a similar procedure to that used in case of barycentric rational interpolation.

5.2 Our contribution

The purpose of this chapter is to investigate the numerical stability of algorithms that implement
the mean value coordinates using the formulas in (5.1)–(5.7). First, we empirically compare
the behavior of these methods on a specific polygon by evaluating their absolute and relative
forward errors. This analysis reveals that each formulation suffers from numerical instability in
certain parts of the domain. Therefore, based on this observation, we develop a new method
that outperforms the others and explain its implementation to avoid potential numerical issues.
Next, we conduct a theoretical analysis on the numerical stability of these formulas with the
same approach used for the univariate barycentric interpolant in Chapter 3. Hence, we derive
upper bounds for the relative forward errors of all methods and mathematically demonstrate
that our new method is the only one that is stable across the entire domain. Finally, we validate
our theoretical findings with numerical experiments, comparing the different methods in terms
of both numerical stability and efficiency.

5.3 Comparative empirical study on the numerical stability

Let us now focus on understanding the circumstances under which the implementations of the
formulas above may exhibit stability problems. One potential problem is the fact that they are
rational, which can lead to the issue of vanishing denominators. This is actually not a problem
for theφi , since the sum of the weights wi in (5.1)–(5.6) never vanishes for any v ∈ R2\∂ P [47]
and likewise for the sum of the weights ŵi in (5.7). But what about the weights themselves?
Considering some fixed k ∈ {1, . . . , n}, the weight wk in (5.1), (5.5) or (5.6) is not well-defined,
if either αk−1 or αk is equal to ±π, or if v = vk, which happens only if v lies on the edges
[vk−1, vk] or [vk, vk+1]. On the other hand, when computing wk with (5.2), (5.3) or (5.4), we
could potentially have problems even inside the polygon. In fact, the areas Ak−1,k and Ak,k+1, as
well as the values sinαi−1 and sinαi , vanish not only on the edges [vk−1, vk] or [vk, vk+1], where
αk−1 or αk is±π or v = vk, but also on the entire lines supporting them, where αk−1 or αk equals
0. Based on this initial analysis, it is reasonable to expect that the computation of mean value
coordinates is sensitive to rounding errors near the regions where they are not well-defined
mathematically. Regarding instead the weight ŵk in (5.7), even though it is well-defined for
any v ∈ R2, problems can still arise, for example when subtracting two nearby numbers. This
may happen if Dk−1,k+1 is approximately equal to rk−1rk+1 or if Dj, j+1 is close to −r j r j+1, for
some j ̸= k − 1, k, that is, whenever αk−1 + αk is close to zero or some α j approaches ±π. In
other words, we expect the weights ŵk to be unstable when v approaches the set

Zk = {v ∈ R2 : ŵk(v) = φk(v) = 0}, (5.8)

60 5.3 Comparative empirical study on the numerical stability

Formula Instability regions of wk and ŵk Instability regions of φk

(5.1) Close to [vk−1, vk] and [vk, vk+1] Close to the boundary
(5.2) Close to lines supporting [vk−1, vk] and [vk, vk+1] Close to all lines supporting the edges
(5.3) Close to lines supporting [vk−1, vk] and [vk, vk+1] Close to all lines supporting the edges
(5.4) Close to lines supporting [vk−1, vk] and [vk, vk+1] Close to all lines supporting the edges
(5.5) Close to [vk−1, vk] and [vk, vk+1] Close to the boundary
(5.6) Close to [vk−1, vk] and [vk, vk+1] Close to the boundary
(5.7) Close to Zk = {v ∈ R2 : ŵk(v) = φk(v) = 0} Close to Zi , i = 1, . . . , n

Table 5.1. Expected instability regions for both weights and mean value coordinates for all
formulas and k ∈ {1, . . . , n}.

Figure 5.1. Expected instability regions when computing the mean value coordinates for a
pentagon using the formulas in (5.1), (5.5),(5.6) (red), (5.2)–(5.4) (blue), and (5.7) (green).

which consists of the edges that are not adjacent to vk and the line through vk−1 and vk+1, ex-
cept for the (open) segment (vk−1, vk+1) itself. Therefore, Table 5.1 summarizes this discussion
and provides a clear overview of the regions where we expect the weights to be unstable for
each formula. Additionally, it does the same for the mean value coordinates, which, as we re-
call, involve all the weights in their definition. We can also have a visual understanding from
Figure 5.1, which highlights the instability regions for each formula when computing the mean
value coordinates for a pentagon.

To determine if such scenarios can indeed occur in practice, we examine the behaviour of
the mean value coordinates for a specific polygon and visualize the numerical errors introduced
by each of the previously mentioned formulas. For a given index k ∈ {1, . . . , n}, we compute
the absolute error

Ea(v) = |fl(φk(v))−φk(v)|, (5.9)

where φk(v) is the “exact” value computed in multiple-precision (1024 bit) floating-point arith-
metic using the MPFR library [33] and fl(φk(v)) is the result of the standard double precision
implementation. Let us consider the pentagon in Figure 5.2, which is the same of Figure 5.1,
and the index k ∈ {1, 2,3, 4,5} of the vertex vk marked by the magenta dot. We examine the
values Ea(v) in (5.9) across a uniform grid of dimension 500×500 containing the polygon and
we compare the results with our expectations, shown in Figure 5.1. The results are obtained
for φk(v) computed with all the formulas (5.1)–(5.7) and with our new formula (5.11), which
will be introduced in Section 5.4. If Ea(v) is on the order of the machine epsilon, which is ap-

61 5.3 Comparative empirical study on the numerical stability

polygon absolute error Ea

φk relative error Er

(5.1) (5.2) (5.3) (5.4) (5.5) (5.6) (5.7) (5.11)

Figure 5.2. Plots of the absolute and relative errors on a log10 scale made by the algorithms that
implement formulas (5.1)–(5.7) and (5.11) to evaluate the mean value coordinate φk related
to the vertex vk (magenta dot) for an arbitrary pentagon.

proximately 10−16 in double precision, then it means that the method is stable for v, otherwise
it suggests a potential instability. The plots in Figure 5.2 show that the original formula in (5.1)
seems to be the only one among the already known formulas that is stable everywhere. This
outcome is particularly surprising, because it suggests that this method can effectively handle
the division by small numbers in the weights wi , i = 1, . . . , 5, contrary to our initial expecta-
tions. Instead, computing φk(v) with (5.2), (5.3) or (5.4), we observe numerical issues around
the lines supporting the edges, but not close to the edges themselves, especially in the first and
last cases. While this partially aligns with our prediction of encountering issues along the entire
lines, the theoretical analysis on the stability of these formulas explains why we do not have
any problems near the edges. In particular, it turns out that the numerical errors introduced
by (5.2) and (5.4) are bounded when v approaches the edges, that is, when some αi is close to
±π (see Corollaries 5.5 and 5.7). This is not the case for (5.3), but, in this specific example, it
appears that this method also handles division by small numbers in the weights wi , i = 1, . . . , 5,
relatively well. Then, as expected, the methods resulting from (5.5) and (5.6) have numerical
problems near the boundary of the polygon. Finally, formula (5.7) appears to be the least stable
as it exhibits a substantial absolute error close to all sets Zi , i = 1, . . . , 5, which also aligns with
our initial considerations.

We further extend the stability analysis and also consider the relative error

Er(v) =
|fl(φk(v))−φk(v)|

|φk(v)|
, (5.10)

which, although not mathematically defined on the set Zk, provides valuable insights into the
stability compared to the actual magnitude of |φk|. This metric offers a zoomed-in view of the
domain region where |φk| becomes notably small and indicates how close we can approach Zk

before encountering significant relative errors. In fact, examining the values of Er in Figure 5.2,
we observe that all methods exhibit relatively high errors in the vicinity of the set Zk, but with
different divergence rate. In particular, it appears that (5.1) and (5.3) may have potential
instability over a wider region near Zk compared to (5.2) and (5.4), while (5.5), (5.6) and (5.7)
confirm to be the worst also in relative terms. Additionally, we observe that the relative error
aligns with the information provided by the absolute error in the remaining part of the domain.

To summarize, the original formula (5.1) is the most robust in terms of numerical stability.
In fact, despite some suggestions of instability close to Zk given by the relative error plot, the

62 5.4 A new stable formula for mean value coordinates

formula yields absolutely stable results across the entire domain. However, there exist situations
where even the original formula (5.1) can be unstable, and we give an example in Section 5.7.

5.4 A new stable formula for mean value coordinates

After observing that all known methods for computing mean value coordinates have some flaw
in terms of numerical stability, the goal of our work is to derive a new formula that is potentially
stable everywhere. Like Floater [29], we aim to ensure that this new method is defined not only
in the interior, but also along the boundary of the polygon. To achieve this, we first employ a
similar trick and multiply both the numerator and denominator of the φi in (5.1) by a common
constant, which is then included into the redefined weights. In addition, we focus on minimizing
operations that are more likely to introduce instability in the results, such as square roots and
summations. We now present the new formula and explain how to implement it in a stable way.

Theorem 5.1. The mean value coordinates can be expressed as

φi(v) =
w̃i(v)
∑n

j=1 w̃ j(v)
, w̃i = sin

αi−1 +αi

2

∏

j ̸=i

r j

∏

j ̸=i−1,i

cos
α j

2
, i = 1, . . . , n, (5.11)

and this formula is well-defined for all v ∈ R2, as long as the signed angle αi is defined as π or −π
for v ∈ (vi , vi+1) and in some arbitrary way for v ∈ {vi , vi+1}.

Proof. Starting from (5.1), using the fact that tan(αi/2) = sin(αi/2)/ cos(αi/2), and applying
the angle sum identity for the sine function, we have

wi = sin
αi−1 +αi

2

Á�

ri cos
αi−1

2
cos
αi

2

�

.

We now eliminate the zeros in the denominator by multiplying all wi by F =
∏n

i=1 ri cos(αi/2)
and, denoting the result by w̃i , we obtain the new formula (5.11).

This formula is well-defined for any v ∈ R2 \ ∂ P, because both the sum of the wi and F
do not vanish, and the denominator of φi(v) in (5.11) is just

∑n
j=1 w̃ j(v) = F
∑n

j=1 w j(v) ̸= 0.
Moreover, the formula also works if v ∈ ∂ P. On the one hand, if v is a vertex of P, that is,
v = vk for some k ∈ {1, . . . , n}, then rk = 0 and r j ̸= 0 for j ̸= k, so the only non-vanishing
weight is w̃k and consequently φk(v) = 1 and φi(v) = 0 for i ̸= k. On the other hand, if v lies
on an (open) edge of P, say v = (1−µ)vk +µvk+1 for some µ ∈ (0, 1) and some k ∈ {1, . . . , n},
then αk = ±π, so that sin(αk/2) = ±1 as well as cos(αk/2) = 0 and cos(α j/2) ̸= 0 for j ̸= k.
Therefore, all w̃i vanish, except for w̃k and w̃k+1, which turn out to be

w̃k = rk+1S, w̃k+1 = rkS, S = sin
αk

2

∏

j ̸=k,k+1

r j

∏

j ̸=k

cos
α j

2
.

Since rk = µek and rk+1 = (1 − µ)ek, where ek = ∥vk+1 − vk∥, it follows that φk(v) = 1 − µ,
φk+1(v) = µ and φi(v) = 0 for i ̸= k, k+ 1.

Comparing our new formula in (5.11) to the one in (5.7), we observe that it also leads to
an O(n2) algorithm for computing mean value coordinates, but we successfully eliminated all
square roots, which can compromise the precision and the efficiency of the method, and we
minimized the use of sum operations, as they can introduce numerical cancellation errors. In

63 5.4 A new stable formula for mean value coordinates

Algorithm 10 Stable implementation of formula (5.11) for computing the mean value coordi-
nates φ1, . . . ,φn

1: function MVC(v, v1, . . . , vn)
2: W := 0
3: for i = 1, . . . , n do ▷ indices are defined cyclically over [1, . . . , n], e.g., vn+1 = v1

4: βi := ANGLE(vi+1 − vi , v − vi) ▷ ANGLE((a1, a2), (b1, b2)) returns ATAN2(a1 b2 − a2 b1, a1 b1 + a2 b2)
5: γi := ANGLE(vi − vi+1, v − vi+1)
6: si := βi + γi

7: ri := ∥vi − v∥
8: for i = 1, . . . , n do
9: αi−1,i+1 := ANGLE(vi−1 − v, vi+1 − v)

10: si−1,i+1 := π · [sign(si−1) + sign(si)]− si−1 − si ▷ si−1,i+1 = αi−1 +αi

11: if sign(αi−1,i+1) ̸= sign(si−1,i+1) then ▷ in this case, αi−1,i+1 = si−1,i+1 − 2π · sign(si−1,i+1)
12: αi−1,i+1 := −αi−1,i+1 ▷ sin((αi−1 +αi)/2) = sin(−αi−1,i+1/2)

13: wi := ri−1 · sin(αi−1,i+1/2)
14: for j = 1, . . . , n do
15: if j ̸= i − 1, i then
16: wi := wi · r j · sin(|s j |/2)

17: W :=W +wi

18: for i = 1, . . . , n do
19: φi := wi/W

20: return φ1, . . . ,φn

fact, the only sum in (5.11) is αi−1+αi ∈ [−2π, 2π], but we can actually avoid computing this
sum by noting that it is equal to the angle at v in the triangle [v, vi−1, vi+1], denoted by αi−1,i+1.

In our implementation (see Algorithm 10), we compute the signed angle θ between two
vectors a = (ax , ay) and b = (bx , by) using the ATAN2 function as θ = ATAN2(ax by−ay bx , ax bx+
ay by) ∈ [−π,π]. This is fine for all angles αi , but a bit more care is needed in the case of
αi−1,i+1. Indeed, if |αi−1 +αi | > π, then the ATAN2 function returns αi−1,i+1 = αi−1 + αi −
2π · sign(αi−1 + αi). However, this “mismatch” by ±2π is detected easily, because the signs of
αi−1+αi andαi−1,i+1 differ whenever it happens. And since sin((αi−1+αi)/2) = sin(−αi−1,i+1/2)
in this case, we can resolve this problem by changing the sign of αi−1,i+1 (cf. lines 11 and 12
in Algorithm 10). Note that the same problem can occur if |αi−1 +αi |= π, because ATAN2 may
return π or −π in this case, but it can be fixed in the same manner.

Yet, there might still be concerns related to the instability of the cosine function for ar-
guments near zero. To prevent this, denoting by βi and γi the signed angles at vi and vi+1,
respectively, in the triangle [v, vi , vi+1], we use the fact that

cos
αi

2
= sin

π− |αi |
2

= sin
|βi + γi |

2

(cf. line 16 in Algorithm 10) and recall that the sine function is stable for arguments near π/2.
Note that computing the sum si = βi +γi is not a problem, because both angles are guaranteed
to have the same sign, so that there is no risk of cancellation errors. The price for the improved
stability is that we have to compute the 2n angles βi and γi and their sums si . Note that we
still need the angles αi for determining whether it is necessary to change the sign of αi−1,i+1 or
not, but once we know βi and γi we can compute them as αi = π · sign(si)− si (cf. line 10 in
Algorithm 10).

64 5.5 Theoretical analysis of the numerical stability

The numerical stability of this algorithm can be observed in Figure 5.2, which confirms that
our new formula performs best, even if compared to the result using (5.1), especially close to
the region Zk.

So far, we have discussed the numerical stability of the different formulas and supported our
claims only with empirical evidence. In the next section, we conduct a mathematical analysis
on the numerical stability of mean value coordinates and provide a more formal explanation
for our observations.

5.5 Theoretical analysis of the numerical stability

As already seen in Chapter 3, a common procedure to theoretically analyse the numerical stabil-
ity of an algorithm is to establish an upper bound on the relative forward error and to examine
its magnitude. In the specific context of mean value coordinates, we need to study the error
Er in (5.10). It is worth noting that bounding Er from above also gives an upper bound on the
absolute error in (5.9), because

Ea(v) = Er(v)|φk(v)|. (5.12)

To this end, we can use Theorem 3.1 that establishes an upper bound on the relative error of
any function that can be expressed in the form (3.8), that is,

r(x) =

∑n
i=0 ai(x) fi
∑m

j=0 b j(x)

for some data values fi and functions ai and b j , i = 0, . . . , n and j = 0, . . . , m. Therefore, we
can use this result also for the mean value coordinates

φi(v) =
wi(v)
∑n

j=1 w j(v)
, i = 1, . . . , n, (5.13)

as their formula fits the expression in (3.8) for n= 0, a0 = wi , f0 = 1, m= n−1 and b j = wi+1.
Before proceeding, we note that this stability analysis does not account for any errors arising
from the initial rounding of the given values to floating-point numbers.

Corollary 5.2. Assume that there exist δ1, . . . ,δn ∈ R with

fl(wi(v)) = wi(v)(1+δi), |δi | ≤ Dε+O(ε2), i = 1, . . . , n (5.14)

for some constant D. Then, assuming that the input values vi and v are given as floating-point
numbers, the relative forward error of the mean value coordinates in (5.13) satisfies

|fl(φi(v))−φi(v)|
|φi(v)|

≤ (1+ D)ε+ (n− 1+ D)W (v)ε+O(ε2), (5.15)

where

W (v) =

∑n
i=1 |wi(v)|
|
∑n

i=1 wi(v)|
, (5.16)

for ε small enough.

65 5.6 Error analysis of all formulas

Hence, the numerical stability of the mean value coordinates depends on the constant D
and the function W . As the latter is the same for all the different formulas, what distinguishes
their performance in terms of numerical stability is the upper bound D on the relative error
associated with the weights wi . Considering the new formula, it can be proven that the constant
D related to the weights w̃i is always small, while, for all the other formulas, it can be large
(see Section 5.6), which agrees with what we observed in Section 5.3.

Finally, we consider two arbitrary vectors a = (ax , ay) and b = (bx , by) and present the
upper bounds on the relative forward errors of some quantities that we frequently use.

1. Considering the radius ri = ∥v − vi∥ for some i ∈ {1, . . . , n}, it follows from Theorem 3.1
and (2.19) that there exists some ρi ∈ R, such that fl(ri) = ri(1+ρi) with

|ρi | ≤ (2+ Dsqrt)ε+O(ε2), i = 1, . . . , n. (5.17)

2. Considering the dot product Da,b = ax bx + ay by between a and b, it follows from Theo-
rem 3.1 that there exists some δa,b ∈ R, such that fl(Da,b) = Da,b(1+δa,b) with

|δa,b| ≤ u(Da,b)ε+O(ε2), u(Da,b) = 4
|ax bx |+ |ay by |
|Da,b|

. (5.18)

It is important to note that the relative forward error becomes unreliable when the com-
puted quantity approaches zero, as dividing by a small value can result in a significantly
large error. In such cases, the right quantity to consider is the absolute forward error,
which is given by |Da,bδa,b| and, since |ax bx | + |ay by | ≤ 2∥a∥∥b∥, it is bounded from
above by 8∥a∥∥b∥ε + O(ε2). Hence, it is reasonable to expect that the computation of
Da,b is generally stable, although its upper bound on the forward error may increase when
the values ∥a∥ and ∥b∥ become large.

3. Considering the 2D cross product Ca,b = (ax by − ax by) between a and b, which is twice
the signed area of the triangle [0, a, b], it follows from Theorem 3.1 that there exists some
γa,b ∈ R, such that fl(Ca,b) = Ca,b(1+ γa,b) with

|γa,b| ≤ u(Ca,b)ε+O(ε2), u(Ca,b) = 4
|ax by |+ |ay bx |
|Ca,b|

. (5.19)

As in the case of the dot product, it may happen that this upper bound is big when the
values ∥a∥ and ∥b∥ are large, but in general we assume that the computation of Ca,b is
stable.

4. Considering the signed angle θa,b = arctan(Da,b/Ca,b) between a and b, it follows from
Theorem 3.1, the previous observations, and (2.17) that there exists some σa,b ∈ R, such
that fl(θa,b) = θa,b(1+σa,b) with

|σa,b| ≤ u(θa,b)ε+O(ε2), u(θa,b) = u(Da,b) + u(Ca,b) + 1+ Darctan. (5.20)

5.6 Error analysis of all formulas

We begin by observing that all the weights wi(v) in (5.1)–(5.6), ŵi(v) in (5.7) and w̃i(v)
in (5.11) can be written in the general form

w(v) =
J
∏

j=1

K
∑

k=1

x j,k(v), (5.21)

66 5.6 Error analysis of all formulas

for some J , K ∈ N. Thus, we first derive a general bound on the relative forward error for
the function w in (5.21) and then apply this result in the specific case of the all the weights
mentioned before.

Theorem 5.3. Suppose that there exist χ j,k ∈ R, j = 1, . . . , J and k = 1, . . . , K, with

fl(x j,k(v)) = x j,k(v)(1+χ j,k), |χ j,k| ≤ X j,kε+O(ε2),

for some positive constants X j,k, j = 1, . . . , J and k = 1, . . . , K. Then there exists some δ ∈ R, such
that w in (5.21) satisfies fl(w(v)) = w(v)(1+δ) and |δ| ≤ Dε+O(ε2), where

D =
J
∑

j=1

∑K
k=1 |x j,k(v)|(K − 1+ X j,k)
�

�

∑K
k=1 x j,k(v)
�

�

+ J − 1.

Proof. We first notice that fl(w(v)) is given by

fl(w(v)) =
J
∏

j=1

K
∑

k=1

[x j,k(v)(1+χ j,k)(1+δ
+
j,k)](1+δ

×),

where δ+j,k and δ× are the relative errors introduced by the K − 1 sums and the J − 1 products,
respectively, so they satisfy

|δ+j,k| ≤ (K − 1)ε+O(ε2) and |δ×| ≤ (J − 1)ε+O(ε2). (5.22)

Consequently, there exist some η j,k ∈ R with

|η j,k| ≤ (K − 1+ X j,k)ε+O(ε2), j = 1, . . . , J , k = 1, . . . , K ,

such that

fl(w(v)) =
J
∏

j=1

K
∑

k=1

[x j,k(v)(1+η j,k)](1+δ
×) =

J
∏

j=1

� K
∑

k=1

x j,k(v)
�

1+

∑K
k=1 x j,k(v)η j,k
∑K

k=1 x j,k(v)

�

�

(1+δ×)

= w(v)

�

1+
J
∑

j=1

∑K
k=1 x j,k(v)η j,k
∑K

k=1 x j,k(v)
+δ× +O(ε2)

�

.

Therefore, δ =
∑J

j=1

∑K
k=1 x j,k(v)η j,k/

∑K
k=1 x j,k(v) + δ× + O(ε2), and the statement follows

immediately by using the triangle inequality, (5.22), and (3.12).

Corollary 5.4. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the wi

in (5.1) satisfy fl(wi(v)) = wi(v)(1+δi) and |δi | ≤ Dε+O(ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

Fi(1+πu(αi) + Dtan) + 5+ Dsqrt (5.23)

and

Fi =max
v∈F2

�

�

�

�

sin
αi−1 +αi

2
cos
αi−1

2
cos
αi

2

�

�

�

�

−1

.

67 5.6 Error analysis of all formulas

Proof. We note that wi in (5.1) can be written as in (5.21) for J = K = 2 and

x1,1 = tan
αi−1

2
, x1,2 = tan

αi

2
,

x2,1 =
1
ri

, x2,2 = 0.

It then follows from (5.17), (5.20), and (2.18) that fl(x j,k) = x j,k(1+χ j,k) with |χ j,k| ≤ X j,kε+
O(ε2) and

X1,1 =
|αi−1|
|sinαi−1|

u(αi−1) + Dtan, X1,2 =
|αi |
|sinαi |

u(αi) + Dtan,

X2,1 = 3+ Dsqrt, X2,2 = 0.

Therefore, we can use Theorem 5.3 to obtain fl(wi(v)) = wi(v)(1+δi) with |δi | ≤ Diε+O(ε2)
and

Di =
|x1,1|(1+ X1,1) + |x1,2|(1+ X1,2)

|x1,1 + x1,2|
+ X2,1 + 2

=

∑

j=i−1,i

|tan(α j/2)|
�

1+
|α j |
|sinα j |

u(α j) + Dtan

�

|tan(αi−1/2) + tan(αi/2)|
+ 5+ Dsqrt

≤

∑

j=i−1,i

|tan(α j/2)|
|sinα j |

(1+ |α j |u(α j) + Dtan)

|tan(αi−1/2) + tan(αi/2)|
+ 5+ Dsqrt

≤

∑

j=i−1,i

|tan(α j/2)|
|sinα j |

|tan(αi−1/2) + tan(αi/2)|
(1+πmax{u(αi−1), u(αi)}+ Dtan) + 5+ Dsqrt.

Finally, we use the double-angle formula for the sine function and get

∑

j=i−1,i

|tan(α j/2)|
|sinα j |

|tan(αi−1/2) + tan(αi/2)|
=

1
2

cos2(αi−1/2) + cos2(αi/2)
|sin(αi−1 +αi)/2 cos(αi−1/2) cos(αi/2)|

≤ Fi ,

which gives Di ≤ D for D in (5.23).

For the following statements, let dk = vk − v, k = 1, . . . , n and let Ci, j denote the cross
product of di and d j , which we denoted by Cdi ,d j

before.

Corollary 5.5. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the wi

in (5.2) satisfy fl(wi(v)) = wi(v)(1+δi) and |δi | ≤ Dε+O(ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

3
4

Fi

�

5+Dsqrt+max{u(Ci,i+1), u(Ci−1,i+1), u(Ci−1,i)}
�

+u(Ci,i+1)+u(Ci−1,i)+8 (5.24)

and

Fi =max
v∈F2

�

�

�

�

sin
αi−1 +αi

2
sin
αi−1

2
sin
αi

2

�

�

�

�

−1

.

68 5.6 Error analysis of all formulas

Proof. We note that the wi in (5.2) can be written as in (5.21) for J = 3, K = 3 and

x1,1 = ri−1Ai,i+1, x1,2 = −riAi−1,i+1, x1,3 = ri+1Ai−1,i ,

x2,1 =
1

Ai−1,i
, x2,2 = 0, x2,3 = 0,

x3,1 =
1

Ai,i+1
, x3,2 = 0, x3,3 = 0.

It then follows from (5.17) and (5.19) that fl(x j,k) = x j,k(1+ χ j,k) with |χ j,k| ≤ X j,kε+O(ε2)
and

X1,1 = 3+ Dsqrt + u(Ci,i+1), X1,2 = 3+ Dsqrt + u(Ci−1,i+1), X1,3 = 3+ Dsqrt + u(Ci−1,i),

X2,1 = 1+ u(Ci−1,i), X2,2 = 0, X2,3 = 0,

X3,1 = 1+ u(Ci,i+1), X3,2 = 0, X3,3 = 0.

Therefore, we can use Theorem 5.3 to obtain fl(wi(v)) = wi(v)(1+δi) with |δi | ≤ Diε+O(ε2)
and

Di =
|x1,1|(2+ X1,1) + |x1,2|(2+ X1,2) + |x1,3|(2+ X1,3)

|x1,1 + x1,2 + x1,3|
+ X2,1 + X3,1 + 6

≤

∑

k=1,3 |x1,k|

|
∑

k=1,3 x1,k|
(5+ Dsqrt +max{u(Ci,i+1), u(Ci−1,i+1), u(Ci−1,i)}) + u(Ci,i+1) + u(Ci−1,i) + 8.

Finally, we use some trigonometric identities to obtain
∑

k=1,3 |x1,k|

|
∑

k=1,3 x1,k|
=
|sinαi−1|+ |sin(αi−1 +αi)|+ |sinαi |
|sinαi−1 − sin(αi−1 +αi) + sinαi |

≤
3

|sinαi−1 − sin(αi−1 +αi) + sinαi |

=
3

4|sin((αi +αi−1)/2) sin(αi−1/2) sin(αi/2)|
=

3
4

Fi ,

which gives Di ≤ D for D in (5.24).

Corollary 5.6. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the wi

in (5.3) and (5.5) satisfy fl(wi(v)) = wi(v)(1+δi) and |δi | ≤ Dε+O(ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

Fi

�

3+
3
2
πmax{u(αi−1), u(αi)}+

Dcos

2
+ Dsin

�

+ 5+ Dsqrt (5.25)

and

Fi =max
v∈F2

�

�

�sin
αi−1 +αi

2
sin
αi−1

2
sin
αi

2
sinαi−1 sinαi

�

�

�

−1
, for wi in (5.3),

4
�

�

�sin
αi−1 +αi

2
cos
αi−1

2
cos
αi

2
(1+ cosαi−1)(1+ cosαi)

�

�

�

−1
, for wi in (5.5).

69 5.6 Error analysis of all formulas

Proof. The proof is carried out for the computation of wi(v) with formula (5.3), but similar
arguments can be applied to the case of the weights wi(v) in (5.5).

We note that wi in (5.3) can be written as in (5.21) for J = K = 2 and

x1,1 =
1− cosαi−1

sinαi−1
, x1,2 =

1− cosαi

sinαi
,

x2,1 =
1
ri

, x2,2 = 0.

It then follows from Theorem 3.1 and (5.17), (5.20), (2.15) and (2.16) that fl(x j,k) = x j,k(1+
χ j,k) with |χ j,k| ≤ X j,kε+O(ε2) and

X1,1 =
2+ |cosαi−1|(|tanαi−1||αi−1|u(αi−1) + Dcos + 2)

|1− cosαi−1|
+ |cotαi−1||αi−1|u(αi−1) + Dsin,

X1,2 =
2+ |cosαi |(|tanαi ||αi |u(αi) + Dcos + 2)

|1− cosαi |
+ |cotαi ||αi |u(αi) + Dsin,

X2,1 = 3+ Dsqrt,

X2,2 = 0.

Therefore, we can use Theorem 5.3 to obtain fl(wi(v)) = wi(v)(1+δi) with |δi | ≤ Diε+O(ε2)
and

Di =
|x1,1|(1+ X1,1) + |x1,2|(1+ X1,2)

|x1,1 + x1,2|
+ X2,1 + 2

=

∑

j=i−1,i

�

�

�

�

1− cosα j

sinα j

�

�

�

�

�

1+
2+ |cosα j |(|tanα j ||α j |u(α j) + Dcos + 2)

|1− cosα j |
+ |cotα j ||α j |u(α j) + Dsin

�

|(1− cosαi−1)/ sinαi−1 + (1− cosαi)/ sinαi |
+ 5+ Dsqrt

≤

∑

j=i−1,i

�

�

�

�

1− cosα j

sinα j

�

�

�

�

6+πu(α j) + Dcos + 2/|sinα j |πu(α j) + 2Dsin

|1− cosα j |

|(1− cosαi−1)/ sinαi−1 + (1− cosαi)/ sinαi |
+ 5+ Dsqrt

≤

∑

j=i−1,i

�

�

�

�

1− cosα j

sinα j

�

�

�

�

6+ 3πu(α j) + Dcos + 2Dsin

|1− cosα j ||sinα j |

|(1− cosαi−1)/ sinαi−1 + (1− cosαi)/ sinαi |
+ 5+ Dsqrt

≤

∑

j=i−1,i

1

sin2α j

|(1− cosαi−1)/ sinαi−1 + (1− cosαi)/ sinαi |
(6+ 3πmax{u(αi−1), u(αi)}+ Dcos + 2Dsin)

+ 5+ Dsqrt.

70 5.6 Error analysis of all formulas

Finally, we note that

∑

j=i−1,i

1

sin2α j

|(1− cosαi−1)/ sinαi−1 + (1− cosαi)/ sinαi |
≤

2|sinαi−1 sinαi |
−1

|sinαi−1 + sinαi − sin(αi−1 +αi)|

=
|sinαi−1 sinαi |

−1

2
�

�sin
�αi+αi−1

2

�

sin
�αi−1

2

�

sin
�αi

2

��

�

,

which gives Di ≤ D for D in (5.25).

Corollary 5.7. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the wi

in (5.4) and (5.6) satisfy fl(wi(v)) = wi(v)(1+δi) and |δi | ≤ Dε+O(ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

Fi max
j=i−1,i

�

1+max{7+ 2Dsqrt, 2+ u(Dj, j+1)}+ u(C j, j+1)
�

+ 5+ Dsqrt (5.26)

with

Fi =max
v∈F2

�

�

�sin
αi−1 +αi

2
sin
αi−1

2
sin
αi

2

�

�

�

−1
, for wi in (5.4),

2
�

�

�sin
αi−1 +αi

2
cos
αi−1

2
cos
αi

2
(1+ cosαi−1)(1+ cosαi)

�

�

�

−1
, for wi in (5.6).

Proof. The proof is carried out for the computation of wi(v) with formula (5.4), but similar
arguments can be applied to the case of the weights wi(v) in (5.6).

We note that wi in (5.4) can be written as in (5.21) for J = K = 2 and

x1,1 =
ri−1ri − Di−1,i

2Ai−1,i
, x1,2 =

ri ri+1 − Di,i+1

2Ai,i+1
,

x2,1 =
1
ri

, x2,2 = 0.

It then follows from Theorem 3.1 and (5.17)–(5.19) that fl(x j,k) = x j,k(1+ χ j,k) with |χ j,k| ≤
X j,kε+O(ε2) and

X1,1 =
ri−1ri(7+ 2Dsqrt) + |Di−1,i |(2+ u(Di−1,i))

|ri−1ri − Di−1,i |
+ u(Ci−1,i),

X1,2 =
ri ri+1(7+ 2Dsqrt) + |Di,i+1|(2+ u(Di,i+1))

|ri ri+1 − Di,i+1|
+ u(Ci,i+1),

X2,1 = 3+ Dsqrt,

X2,2 = 0.

Therefore, we can use Theorem 5.3 to obtain fl(wi(v)) = wi(v)(1+δi) with |δi | ≤ Diε+O(ε2)

71 5.6 Error analysis of all formulas

and

Di =
|x1,1|(1+ X1,1) + |x1,2|(1+ X1,2)

|x1,1 + x1,2|
+ X2,1 + 2

=

∑

j=i−1,i

�

�

�

�

r j r j+1 − Dj, j+1

2A j, j+1

�

�

�

�

�

1+
|r j r j+1|(7+ 2Dsqrt) + |Dj, j+1|(2+ u(Dj, j+1))

|r j r j+1 − Dj, j+1|
+ u(C j, j+1)
�

|(ri−1ri − Di−1,i)/(2Ai−1,i) + (ri ri+1 − Di,i+1)/(2Ai,i+1)|
+ 5+ Dsqrt

≤

∑

j=i−1,i

r j r j+1 + |Dj, j+1|
2|A j, j+1|

�

1+max{7+ 2Dsqrt, 2+ u(Dj, j+1)}+ u(C j, j+1)
�

|(ri−1ri − Di−1,i)/(2Ai−1,i) + (ri ri+1 − Di,i+1)/(2Ai,i+1)|
+ 5+ Dsqrt

=

∑

j=i−1,i

1+ |cosα j |
|sinα j |

�

1+max{7+ 2Dsqrt, 2+ u(Dj, j+1)}+ u(C j, j+1)
�

|(1− cosαi−1)/ sinαi−1 + (1− cosαi)/ sinαi |
+ 5+ Dsqrt.

Finally, we use some trigonometric identities and observe that

∑

j=i−1,i

1+ |cosα j |
|sinα j |

|(1− cosαi−1)/ sinαi−1 + (1− cosαi)/ sinαi |
≤

4
|sinαi−1 + sinαi − sin(αi−1 +αi)|

=
1

|sin((αi +αi−1)/2) sin(αi−1/2) sin(αi/2)|
= Fi ,

which gives Di ≤ D for D in (5.26).

Corollary 5.8. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the ŵi

in (5.7) satisfy fl(ŵi(v)) = ŵi(v)(1+δi) and |δi | ≤ Dε+O(ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

Fi max{7+ 2Dsqrt, 2+ u(Di−1,i+1), 2+ max
j ̸=i−1,i

u(Dj, j+1)}+ (n− 1)Dsqrt + n− 2 (5.27)

and

Fi =max
v∈F2

�

|1− cos(αi−1 +αi)|
−1 +
∑

j ̸=i−1,i

|1+ cosα j |
−1
�

.

Proof. We note that the ŵi in (5.7), neglecting the signs δi , can be written as in (5.21) for
J = n− 1, K = 1 and

x j,1 =

p

ri−1ri+1 − Di−1,i+1, j = 1
p

r j−1r j + Dj−1, j , j = 2, . . . , i − 1,
p

r j r j+1 + Dj, j+1, j = i + 1, . . . , n.

72 5.6 Error analysis of all formulas

It then follows from Theorem 3.1 and (2.19)–(5.18) that fl(x j,1) = x j,1(1+ χ j,1) with |χ j,1| ≤
X j,1ε+O(ε2) and

X j,1 =

ri−1 ri+1(7+2Dsqrt)+|Di−1,i+1|(2+u(Di−1,i+1))
2|ri−1 ri+1−Di−1,i+1|

+ Dsqrt, j = 1,

r j−1 r j(7+2Dsqrt)+|Dj−1, j |(2+u(Dj−1, j))
2|r j−1 r j+Dj−1, j |

+ Dsqrt, j = 2, . . . , i − 1,

r j r j+1(7+2Dsqrt)+|Dj, j+1|(2+u(Dj, j+1))
2|r j r j+1+Dj, j+1|

+ Dsqrt, j = i + 1, . . . , n.

Therefore, we can use Theorem 5.3 to get fl(ŵi(v)) = ŵi(v)(1+δi) with |δi | ≤ Diε+O(ε2) and

Di =
n
∑

j=1

X j,1 + n− 2

≤
ri−1ri+1 + |Di−1,i+1|

2|ri−1ri+1 − Di−1,i+1|
max{7+ 2Dsqrt, 2+ u(Di−1,i+1)}

+
∑

j ̸=i−1,i

r j r j+1 + |Dj, j+1|
2|r j r j+1 + Dj, j+1|

max{7+ 2Dsqrt, 2+ u(Dj, j+1)}+ (n− 1)Dsqrt + n− 2

=
1+ |cos(αi−1 +αi)|

2|1− cos(αi−1 +αi)|
max{7+ 2Dsqrt, 2+ u(Di−1,i+1)}

+
∑

j ̸=i−1,i

1+ |cosα j |
2|1+ cosα j |

max{7+ 2Dsqrt, 2+ u(Dj, j+1)}+ (n− 1)Dsqrt + n− 2

≤
max{7+ 2Dsqrt, 2+ u(Di−1,i+1)}

|1− cos(αi−1 +αi)|
+
∑

j ̸=i−1,i

max{7+ 2Dsqrt, 2+ u(Dj, j+1)}
|1+ cosα j |

+ (n− 1)Dsqrt

+ n− 2,

which proves the statement.

Corollary 5.9. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the w̃i

in (5.11) satisfy fl(w̃i(v)) = w̃i(v)(1+δi) and |δi | ≤ Dε+O(ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

π

2

�

u(αi−1,i+1) +
∑

j ̸=i−1,i

(max{u(β j), u(γ j)}+ 1)
�

+ (n− 1)(2+ Dsqrt + Dsin) + 2n− 3.

Proof. We note that the w̃i in (5.11) can be written as in (5.21) for J = 2n− 2, K = 1 and

x j,1 =

sin
αi−1,i+1

2 , j = 1

r j−1, j = 2, . . . , i,

r j , j = i + 1, . . . , n,

sin
β j−n+γ j−n

2 , j = n+ 1, . . . , n+ i − 2,

sin
β j−n+2+γ j−n+2

2 , j = n+ i − 1, . . . , 2n− 2.

It then follows from (2.15), (5.17), and (5.20) that fl(x j,1) = x j,1(1+χ j,1) with |χ j,1| ≤ X j,1ε+

73 5.7 Numerical experiments

O(ε2) and

X j,1 =

�

�cot
αi−1,i+1

2

�

�

�

�

αi−1,i+1

2

�

�u(αi−1,i+1) + Dsin, j = 1,

2+ Dsqrt, j = 2, . . . , n,
�

�cot
β j−n+γ j−n

2

�

�

�

�

β j−n+γ j−n

2

�

�(max{u(β j−n), u(γ j−n)}+ 1) + Dsin, j = n+ 1, . . . , n+ i − 2
�

�cot
β j−n+2+γ j−n+2

2

�

�

�

�

β j−n+2+γ j−n+2

2

�

�(max{u(β j−n+2), u(γ j−n+2)}+ 1) + Dsin, j = n+ i − 1, . . . , 2n− 2.

Therefore, we can use Theorem 5.3 to get fl(w̃i(v)) = w̃i(v)(1+δi) with |δi | ≤ Diε+O(ε2) and

Di = X1,1 + (n− 1)(2+ Dsqrt) +
2n−2
∑

j=n+1

X j,1 + 2n− 3.

Since |x |/|sin x | ≤ π/2 for any x ∈ [−π/2,π/2] and αi−1,i+1,β j + γ j ∈ [−π/2,π/2], we get

Di ≤
π

2

�

u(αi−1,i+1) +
∑

j ̸=i−1,i

(max{u(β j), u(γ j)}+ 1)
�

+ (n− 1)Dsin + (n− 1)(2+ Dsqrt) + 2n− 3,

which proves the statement.

In summary, we proved that the constants D in the upper bounds of the relative forward
errors for the different weights in (5.1)–(5.7) are mainly influenced by the quantity

Fi =max
v∈F2

�

�

�sin
αi−1 +αi

2
cos
αi−1

2
cos
αi

2

�

�

�

−1
, for wi in (5.1),

�

�

�sin
αi−1 +αi

2
sin
αi−1

2
sin
αi

2

�

�

�

−1
, for wi in (5.2) and (5.4),

�

�

�sin
αi−1 +αi

2
sin
αi−1

2
sin
αi

2
sinαi−1 sinαi

�

�

�

−1
, for wi in (5.3),

�

�

�sin
αi−1 +αi

2
cos
αi−1

2
cos
αi

2
(1+ cosαi−1)(1+ cosαi)

�

�

�

−1
, for wi in (5.5) and (5.6),

|1− cos(αi−1 +αi)|
−1 +
∑

j ̸=i−1,i |1+ cosα j |
−1, for ŵi in (5.7),

while the w̃i in (5.11) are the only ones to be independent of it. Moreover, in all cases, Fi is the
maximum, over the finite set F2, of some function that diverges to infinity, either at the edges
of P, along the lines that support them, or at the sets Zi , which explains the big relative errors
of the mean value coordinates φi close to those regions. Surprisingly, for the original formula
in (5.1), the potentially big relative errors of the weights usually cancel out “magically” during
the normalization and do not affect the relative errors of the φi , except in some cases that we
will discuss in Section 5.7.

Regarding the absolute forward error of φi , i = 1, . . . , n, it follows from (5.12) and Corol-
lary 5.2 that it is bounded from above by (1+D)|φi |ε+(n−1+D)W (v)|φi |ε+O(ε2). Therefore,
in this case, the quantity that distinguishes the performance of the various methods in terms of
absolute error is D|φi |.

5.7 Numerical experiments

We investigated various examples to compare the different approaches for computing mean
value coordinates based on the formulas in (5.1)–(5.7) and (5.11). Overall, we found that

74 5.7 Numerical experiments

polygon φk absolute error Ea relative error Er

(5.1) (5.11) (5.1) (5.11)

Figure 5.3. Plots of the absolute and relative errors on a log10 scale made by the original (5.1)
and the new formula (5.11) to evaluate the mean value coordinate φk related to the vertex vk

(magenta dot) for the polygon on the left with ε= 0.0001.

10
-20

10
-15

10
-10

10
-5

10
0

10
-20

10
-15

10
-10

10
-5

10
0

E
a

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.11)

10
-20

10
-15

10
-10

10
-5

10
0

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

E
a

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.11)

Figure 5.4. Comparison of the absolute errors on a log-log scale for computing φk with the
formulas (5.1)–(5.7) and (5.11) close to the points marked by the red cross (left) and the blue
cross (right) in Figure 5.3. The plots show Ea(v) for the different algorithms for v at a horizontal
distance of δ = 10−20, 10−19, . . . , 10−1 from the considered points. Some values are not shown
for very small δ, because the algorithms return NaN as a result.

our new formula (5.11) consistently provides the most stable results, followed by the original
formula (5.1), which usually performs much better than the other formulas and is often almost
as stable as (5.11). However, as shown in Section 5.7.1, there are specific cases where our new
Algorithm 10 beats the implementation of the original formula by a considerable margin. In
Section 5.7.2, we further provide a comprehensive study of the efficiency of all methods. We
implemented all algorithms with double precision in C++ and computed the “exact” values of
φk in multiple-precision (1024 bit) floating-point arithmetic using the MPFR library [33] for
determining the relative and the absolute errors. All tests were run on a Windows 10 laptop
with 1.8 GHz Intel Core i7-10510U processor and 16 GB RAM.

5.7.1 Stability comparison

Let us begin by comparing the performance of the original and the new formula for the 8-
vertex polygon with vertices (1,1), (−1,1), (−1,−1), (−ε,−1), (−ε, 0), (ε, 0), (ε,−1), and
(1,−1), shown in Figure 5.3 (left), where ε indicates the distance between the two vertical
edges in the middle. Specifically, we investigate the case ε = 0.0001 and turn our focus on
the coordinate φk associated with the vertex marked by the magenta dot. In the plots of the

75 5.7 Numerical experiments

polygon absolute error Ea

φk relative error Er

(5.1) (5.2) (5.3) (5.4) (5.5) (5.6) (5.7) (5.11)

Figure 5.5. Same as Figure 5.2, but for a square spiral polygon.

absolute error Ea and the relative error Er , which were computed on a uniform 500× 500 grid
that contains the polygon, we observe that problematic regions with numerical instability exist
near the edges [vk−1, vk] and [vk, vk+1], but that Algorithm 10 handles them better. One reason
for the relatively big errors is the function W in (5.16), which influences the upper bound on
the relative error in (5.15) for both formulas and obtains values on the order of 103 in this
region. The other reason is the constant D, which is about two orders of magnitude bigger for
the formula in (5.1) than for our new formula in (5.11).

We also analysed the performance of the other formulas for this example, and Figure 5.4
(left) shows that the implementations of (5.2) and (5.4) are as stable as Algorithm 10 close to
the edge [vk, vk+1]. However, both formulas, together with (5.3), are very unstable close to the
extension of this line, where instead the implementations of (5.1), (5.5) and (5.6) are stable
(see Figure 5.4, right). Interestingly, the worst case for our new formula, in terms of stability,
does not occur extremely close to the edge [vk, vk+1], but at a distance of about 10−2 to 10−3,
which is again due to the behaviour of the function W in (5.16), and similar for the formulas
in (5.2) and (5.4). In contrast, the worst case for the formula in (5.7) happens at a distance of
10−8 to 10−9, that is, at roughly

p
ε.

Figure 5.5 compares the errors of the different evaluation procedures for a square spiral
polygon. As before, the plots show the absolute errors Ea and the relative errors Er sampled
on a uniform grid of 500× 500 points that contains the polygon. Note that the black pixels in
the lower left and the upper right of the relative error plots indicate points v for which Er(v)
is not well-defined, because φk(v) = 0. Otherwise, these plots confirm the behaviour that
we already observed in Figure 5.2: the new formula (5.11) achieves the best result and the
original one (5.1) is second-best, except close to the boundary of the polygon in relative terms.
However, since φk is very small in these regions, it makes more sense to focus on the absolute
errors. These indicate that (5.1) and (5.11) produce very similar results, but still the new
Algorithm 10 is better near the edges [vk−1, vk] and [vk, vk+1]. As in Figure 5.2, we further note
that (5.2), (5.3) and (5.4) exhibit numerical instability along the extensions of the polygon’s
edges, especially for those related to [vk−1, vk] and [vk, vk+1], while (5.5) and (5.6) behaves
similarly to (5.1), but with bigger errors close to the boundary. Finally, (5.7) is unstable in the
vicinity of all sets Zi . Figure 5.6 shows very similar results for a star-shaped polygon.

76 5.7 Numerical experiments

polygon absolute error Ea

φk relative error Er

(5.1) (5.2) (5.3) (5.4) (5.5) (5.6) (5.7) (5.11)

Figure 5.6. Same as Figure 5.2, but for a star-shaped polygon.

n= 8 n= 14

n= 20

0 20 40 60 80 100 120 140

n

0

0.5

1

1.5

2

2.5

s
e

c

10
-4

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.11)

Figure 5.7. Average time in seconds (right) needed by the implementations of the formulas
in (5.1)–(5.7) and (5.11) to evaluate all n mean value coordinates for a concave test polygon
(left) with n= 6i + 2 vertices for i = 1, . . . , 20.

5.7.2 Efficiency comparison

To compare the efficiency of the different implementations, we conducted a first experiment
using a set of 20 concave polygons, with an increasing number of vertices n, specifically with
n = 6i + 2 for i = 1, . . . , 20. The pattern of the polygons is shown in Figure 5.7 (left) for
i = 1, 2,3. The timings are obtained by evaluating the coordinates φ1, . . . ,φn at 90000 points
and taking the average. The plots in Figure 5.7 (right) clearly indicate the linear time complexity
of the algorithms derived from the formulas in (5.1)–(5.6) and the quadratic time complexity
of the one that implements formula (5.7) as well as the new Algorithm 10, with the latter being
roughly 25% faster. However, despite the unfavourable time complexity, the stable Algorithm 10
is at most twice as expensive as the linear-time algorithms for n≤ 30 and only about four times
slower for n= 100.

In a second experiment, we focus on comparing the efficiency of the different methods for
significantly larger values of n. Specifically, we construct the test polygons in Figure 5.8 (left) by
sampling an epitrochoid curve at n= 2i points, i = 3, . . . , 13, and then measure and plot (right)

77 5.7 Numerical experiments

n= 8 n= 16

n= 32 n= 64

10
1

10
2

10
3

10
4

n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

s
e

c

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.11)

n

n
2

Figure 5.8. Average time in seconds (right) on a log-log scale for the implementations of the
formulas in (5.1)–(5.7) and (5.11) to evaluate all n mean value coordinates for a test polygon
(left) inscribed to an epitrochoid (red curve) with n= 2i vertices for i = 3, . . . , 13.

the average running time of all algorithms for computing all n mean value coordinates at 100
evaluation points. In this setting, we gain a more comprehensive understanding of the asymp-
totic computational cost associated with the implementation of the various formulas, further
confirming our previous observations. In fact, formulas (5.1)–(5.6) demonstrate a computa-
tional complexity of O(n), while (5.7) and Algorithm 10 exhibit an asymptotic running time on
the order of O(n2). To conclude, although (5.7) and Algorithm 10 have similar behaviour, our
new implementation consistently proves to be faster in practice, especially for polygons with
less than a thousand vertices.

78 5.7 Numerical experiments

Chapter 6

A comprehensive comparison on the
numerical stability of algorithms for
evaluating rational Bézier curves

6.1 Existing methods for computing rational Bézier curves

Bézier curves were originally introduced in the context of car modeling for major automo-
tive manufacturers [9, 10, 19]. Nowadays, their utility extends across numerous fields, like
computer-aided design, simulation, approximation, robotics, artificial intelligence, etc. Many
applications in these domains require real-time interactions or live updates, thus necessitating
fast evaluation times. For this reason, over the years, there have been numerous studies dedi-
cated to developing efficient evaluation algorithms for Bézier curves. In this chapter, we aim to
present a comparison on the numerical stability of the most commonly used algorithms.

Given a set of n + 1 control points P0, . . . , Pn ∈ R2 with associated positive real weights
w0, . . . , wn, we define a rational Bézier curve P : [0, 1]→ R2 as

P(t) =

∑n
i=0 Bn

i (t)wi Pi
∑n

i=0 Bn
i (t)wi

, (6.1)

where

Bn
i (t) =
�

n
i

�

t i(1− t)n−i , i = 0, . . . , n, (6.2)

represents the Bernstein basis composed by polynomials of degree n and t ∈ [0,1] is the param-
eter along the curve. There exist numerous methods for computing rational Bézier curves, such
as adaptations of the classic de Casteljau algorithm for polynomials in the rational case, or more
efficient approaches employing Horner-like schemes or basis conversions. We now present the
most commonly used algorithms and, for each of them, we describe how it is implemented.

6.1.1 Rational de Casteljau algorithms

The most straightforward approach to compute P(t) is by using the classic quadratic time de
Casteljau algorithm for polynomials [12]. In the case of a rational Bézier curve of the type

79

80 6.1 Existing methods for computing rational Bézier curves

in (6.1), we recall that it can be considered as the central projection of the spatial polynomial
curve

P̂(t) =
n
∑

i=0

Bn
i (t)P̂i , P̂i =

�

wi Pi

wi

�

, (6.3)

under the projection

proj(x , y, z) =
�

x
z

,
y
z

�

. (6.4)

This implies that we can apply the classical de Casteljau algorithm to P̂(t) and then project the
final result according to (6.4). This process is equivalent to first computing the values of the
numerator and the denominator with the recursive formulas
¨

N0
i = wi Pi ,

N r
i = N r−1

i (1− t) + N r−1
i+1 t,

and

¨

D0
i = wi ,

Dr
i = Dr−1

i (1− t) + Dr−1
i+1 t,

(6.5)

i = 0, . . . , n and r = 1, . . . , n, respectively, and then the final result as P(t) = N n
0 /Dn

0 . We also
note that this method exhibits quadratic complexity.

Alternatively, Farin [26] adapts this approach into a more robust quadratic time algorithm
with additional geometric meaning, given by

w0
i = wi ,

P0
i = Pi ,

wr
i = wr−1

i (1− t) +wr−1
i+1 t,

P r
i =

P r−1
i wr−1

i
wr

i
(1− t) +

P r−1
i+1 wr−1

i+1
wr

i
t,

(6.6)

i = 0, . . . , n and r = 1, . . . , n, and P(t) = Pn
0 .

6.1.2 Horner-like algorithms

Volk and Schumaker [75] are the first to achieve an algorithm for computing polynomial Bézier
curves with linear time complexity. Their idea is to use nested multiplications for the compu-
tation, which results in a significant gain in terms of efficiency. We present a straightforward
extension of the VS algorithm by first applying it on the numerator and the denominator of
P(t), and then simplifying some common factors. In particular, we express the rational Bézier
curve in (6.1) equivalently as

P(t) =

∑n
i=0 xn−i
�n

i

�

wi Pi
∑n

i=0 xn−i
�n

i

�

wi

, x =

¨

(1− t)/t, t > 1/2

t/(1− t), t ≤ 1/2.
(6.7)

There are many methods for evaluating a polynomial; Goldman [39] highlights two approaches:
one using a Horner scheme, and the other employing a ladder pattern. However, Warren [81]
shows that these forms are equivalent for the monomial basis, so we consider the former. There-
fore, the VS algorithm evaluates the numerator and the denominator using a Horner scheme
as

P(t) =

�n
n

�

wnPn + x
�

� n
n−1

�

wn−1Pn−1 + x
�

� n
n−2

�

wn−2Pn−2 + · · ·+ x
�

�n
1

�

w1P1 + x
�n

0

�

w0P0

�

. . .
��

�n
n

�

wn + x
�

� n
n−1

�

wn−1 + x
�

� n
n−2

�

wn−2 + · · ·+ x
�

�n
1

�

w1 + x
�n

0

�

w0

�

. . .
�� , t > 1/2,

�n
0

�

w0P0 + x
�

�n
1

�

w1P1 + x
�

�n
2

�

w2P2 + · · ·+ x
�

� n
n−1

�

wn−1Pn−1 + x
�n

n

�

wnPn

�

. . .
��

�n
0

�

wn + x
�

�n
1

�

w1 + x
�

�n
2

�

w2 + · · ·+ x
�

� n
n−1

�

wn−1 + x
�n

n

�

wn

�

. . .
�� , t ≤ 1/2.

81 6.1 Existing methods for computing rational Bézier curves

With the same strategy, Farin [27] presents another Horner-like algorithm by setting s = 1−t
and computing P(t) in (6.1) as

P(t) =
∑n

i=0 t isn−i(ni)wi Pi
∑n

i=0 t isn−i(ni)wi
=

�

...

��

(n0)w0 P0s+(n1)w1 P1 t

�

s+(n2)w2 P2 t2

�

s+···+(n
n−1)wn−1 Pn−1 tn−1

�

s+(nn)wn Pn tn

�

...

��

(n0)w0s+(n1)w1 t

�

s+(n2)w2 t2

�

s+···+(n
n−1)wn−1 tn−1

�

s+(nn)wn tn
. (6.8)

6.1.3 Geometric approach

On the one hand, while the rational de Casteljau adaptation by Farin [26] has some nice geomet-
ric interpretation, it can only be done in quadratic time. On the other hand, the VS algorithm
has linear time complexity, but it lacks geometric interpretation and properties. For this rea-
son, Woźny and Chudy [82] introduce a new linear time algorithm that has a nice geometric
interpretation. In particular, P(t) can be computed recursively using a Horner-like scheme and
convex combinations as

h0 = 1, hi =
wihi−1 t(n− i + 1)

wi−1i(1− t) +wihi−1 t(n− i + 1)
,

T0 = P0, Ti = (1− hi)Ti−1 + hi Pi .
(6.9)

From these recursive formulas, this algorithm has an elegant geometric interpretation since
Ti ∈ [Ti−1, Pi].

6.1.4 Wang–Ball algorithm

Another approach to achieve an algorithm with linear time complexity is by converting the
Bernstein basis into a different basis. There exist several methods in this direction, such as
transforming the Bernstein into the Wang–Ball basis [22, 68, 80], the DP basis [20, 23, 24],
and other similar types of bases [21]; the former is proven to be the most efficient. The ra-
tional Wang–Ball curve, defined by the control points R0, . . . , Rn with their respective weights
v0, . . . , vn, is given by

P(t) =

∑n
i=0 An

i (t)viRi
∑n

i=0 An
i (t)vi

, (6.10)

where the Wang–Ball basis {An
i }i=0,...,n is defined as

An
i (t) =

(2t)i(1− t)i+2, 0≤ i ≤ ⌊n/2⌋ − 1,

(2t)⌊n/2⌋(1− t)⌈n/2⌉, i = ⌊n/2⌋ ,
(2(1− t))⌊n/2⌋ t⌈n/2⌉, i = ⌈n/2⌉ ,
An

n−i(1− t), ⌈n/2⌉+ 1≤ i ≤ n.

(6.11)

Actually, in order to achieve a linear time method, its implementation uses a recursive algorithm
similar to (6.6), but for the new set of control points and weights. Specifically, it starts by setting

n0 = n, v0
i = vi , and R0

i = Ri , i = 0, . . . , n0, (6.12)

and then, at each step r = 1, . . . , n of the recursion, it defines nr = n − r new weights and
control points. In particular, if nr is odd, they are given by

v r
i = v r−1

i , i = 0, . . . , nr−3
2 ,

v r
i = v r−1

i (1− t) + v r−1
i+1 t, i = nr−1

2 ,

v r
i = v r−1

i , i = nr+1
2 , . . . , nr ,

and

Rr
i = Rr−1

i , i = 0, . . . , nr−3
2 ,

Rr
i =

Rr−1
i v r−1

i
v r

i
(1− t) +

Rr−1
i+1 v r−1

i+1
v r

i
t, i = nr−1

2 ,

Rr
i = Rr−1

i , i = nr+1
2 , . . . , nr ,

(6.13)

82 6.1 Existing methods for computing rational Bézier curves

while, if nr is even, they are

v r
i = v r−1

i , i = 0, . . . , nr
2 − 2,

v r
i = v r−1

i (1− t) + v r−1
i+1 t, i = nr

2 − 1, nr
2 ,

v r
i = v r−1

i , i = nr
2 + 1, . . . , nr ,

and

Rr
i = Rr−1

i , i = 0, . . . , nr
2 − 2,

Rr
i =

Rr−1
i v r−1

i
v r

i
(1− t) +

Rr−1
i+1 v r−1

i+1
v r

i
t, i = nr

2 − 1, nr
2 ,

Rr
i = Rr−1

i , i = nr
2 + 1, . . . , nr ,

(6.14)

and the result is P(t) = Rn
0. Before proceeding with this algorithm, there is a prepossessing step

to get the values v0, . . . , vn and R0, . . . , Rn. In particular, the weights and control points of the
Bézier and Wang–Ball representations can be converted back-and-forth by means of a matrix
multiplication [51]. However, for the sake of numerical stability, Dejdumrong et al. [22] present
the explicit formulas to obtain the Wang–Ball control points and weights from the corresponding
Bézier ones, that are

v0 = w0,

vn = wn,

vi =
1
2i

�

�n
i

�

wi −
∑i−1

k=0 2k
�n−2−2k

i−k

�

vk −
∑n

k=n−i+1 2n−k
�2k−2−n

k−i

�

vk

�

, i < ⌊n/2⌋ ,

vi =
1

2n−i

�

�n
i

�

wi −
∑n−i

k=0 2k
�n−2−2k

i−k

�

vk −
∑n

k=i+1 2n−k
�2k−2−n

k−i

�

vk

�

, i > ⌈n/2⌉ ,

vi =
1
2i

�

�n
i

�

wi −
∑i−1

k=0 2k
�n−2−2k

i−k

�

vk −
∑n

k=i+2 2n−k
�2k−2−n

k−i

�

vk

�

, i = ⌊n/2⌋ ,

vi =
1

2n−i

�

�n
i

�

wi −
∑i−2

k=0 2k
�n−2−2k

i−k

�

vk −
∑n

k=i+1 2n−k
�2k−2−n

k−i

�

vk

�

, i = ⌈n/2⌉

(6.15)

and

R0 = P0,

Rn = Pn,

Ri =
1

2i vi

�

�n
i

�

wi Pi −
∑i−1

k=0 2k
�n−2−2k

i−k

�

vkRk −
∑n

k=n−i+1 2n−k
�2k−2−n

k−i

�

vkRk

�

, i < ⌊n/2⌋ ,

Ri =
1

2n−i vi

�

�n
i

�

wi Pi −
∑n−i

k=0 2k
�n−2−2k

i−k

�

vkRk −
∑n

k=i+1 2n−k
�2k−2−n

k−i

�

vkRk

�

, i > ⌈n/2⌉ ,

Ri =
1

2i vi

�

�n
i

�

wi Pi −
∑i−1

k=0 2k
�n−2−2k

i−k

�

vkRk −
∑n

k=i+2 2n−k
�2k−2−n

k−i

�

vkRk

�

, i = ⌊n/2⌋ ,

Ri =
1

2n−i vi

�

�n
i

�

wi Pi −
∑i−2

k=0 2k
�n−2−2k

i−k

�

vkRk −
∑n

k=i+1 2n−k
�2k−2−n

k−i

�

vkRk

�

, i = ⌈n/2⌉ .

(6.16)

We note that, before computing vk and Rk, k = 0, . . . , n, the weights vi and vn−i and the control
points Ri and Rn−i , i = 0, . . . , k− 1, must be computed.

6.1.5 Barycentric algorithm

Finally, Ramanantoanina and Hormann [70] propose another alternative to convert the rational
Bézier representation to a barycentric rational interpolating form. In particular, given a set of
interpolation points Q0, . . . ,Qn with their respective weights u0, . . . , un and nodes t0, . . . , tn, a
barycentric rational interpolant is defined as

P(t) =

∑n
i=0

ui
t−t i

Q i
∑n

i=0
ui

t−t i

. (6.17)

The barycentric interpolation points and weights are related with the corresponding Bézier ones
as

Q i = P(t i) and ui = z(t i)
∏

k ̸=i

1
t i − tk

, i = 0, . . . , n,

83 6.2 Numerical stability

where z(t) is the denominator of P(t) in (6.1). A common choice for the set of nodes is given by
the Chebyshev nodes of the second kind in [0,1], which are defined as tn−i = 1/2 cos(iπ/n) +
1/2, i = 0, . . . , n. In this case, the weights turn out to be computed in linear time as [73]

ui = (−1)iδiz(t i), δi =

¨

1/2, i = 0 or i = n,

1, i = 1, . . . , n− 1.

Alternatively, we can also use uniformly distributed nodes t i = i/n, i = 0, . . . , n, with weights
of the form

ui = (−1)i
�

n
i

�

z(t i).

For the sake of efficiency, we propose to compute the values Q i = P(t i) by evaluating the rational
Bézier curve P at t i through an adapted version of the rational VS algorithm. Doing so, we can
also obtain the values z(t i) within the same algorithm as

z(t i) =
n
∑

i=0

xn−i
�

n
i

�

wi ×

¨

tn, t > 1/2,

(1− t)n, t ≤ 1/2,
(6.18)

for x in (6.7).

6.2 Numerical stability

Let us now focus on analysing the numerical stability of the different algorithms that evaluate
a rational Bézier curve. In particular, we study the relative error E ∈ R2 defined as

E(t) =
|fl(P(t))− P(t)|
|P(t)|

=

�

|fl(Px(t))− Px(t)|
|Px(t)|

,
|fl(Py(t))− Py(t)|
|Py(t)|

�

(6.19)

for each algorithm, where P(t) is the exact result and fl(P(t)) that of its finite-precision im-
plementation. Finally, we always assume that the input data t, wi and Pi are floating-point
numbers, so they do not introduce any numerical error during the computation.

6.2.1 Convex combinations

We start by examining the numerical stability of algorithms that evaluate a rational Bézier curve
P at t through a recursive method defined by convex combinations. Specifically, we focus on
the rational de Casteljau algorithm and the Wang–Ball algorithm. Regarding the former defined
in (6.6), our analysis begins with a study of the error propagation in the weights wr

i , followed
by an investigation into the relative error of the values P r

i . These results lead to an upper bound
on the relative error E in (6.19) in the case of P(t) = Pn

0 .

Lemma 6.1. For any t, w0, . . . , wn ∈ F and r ∈ {1, . . . , n}, there exist ωr
0, . . . ,ωr

n ∈ R such that
the weights wr

i in (6.6) satisfy fl(wr
i) = wr

i (1+ω
r
i), i = 0, . . . , n, with |ωr

i | ≤ U(wr
i)ε+O(ε2) and

U(wr
i) = 3r.

Proof. First, we notice that

fl(wr
i) = wr−1

i (1+ωr−1
i)(1− t)(1+δ1) +wr−1

i+1 (1+ω
r−1
i+1)t(1+δ2)

= wr−1
i (1− t)(1+ωr−1

i +δ1 +O(ε2)) +wr−1
i+1 t(1+ωr−1

i+1 +δ2 +O(ε2)),

84 6.2 Numerical stability

where δ1 and δ2 are the errors introduced by the operations in the first and second addends,
respectively, that are one product and one sum in both cases, plus one subtraction for the first
addend only. Therefore, it follows from (2.5) that |δ1|, |δ2| ≤ 3ε+O(ε2). Moreover, the inter-
mediate value theorem further guarantees that

fl(wr
i) = (w

r−1
i (1− t) +wr−1

i+1 t)(1+ωr
i),

for some ωr
i ∈ [min(ωr−1

i +δ1+O(ε2),ωr−1
i+1 +δ2+O(ε2)), max(ωr−1

i +δ1+O(ε2),ωr−1
i+1 +δ2+

O(ε2))]. Now, we can prove the statement by induction over r. The base case follows by the
fact that w0

i = wi , therefore ω0
i = 0 for all i = 0, . . . , n. Finally, the inductive step from r − 1 to

r follows from the fact that |ωr
i | ≤ max j=i,i+1 |ωr−1

j |+ 3ε+O(ε2), together with the inductive
hypothesis, that is |ωr−1

i | ≤ 3(r − 1)ε+O(ε2), i = 0, . . . , n.

Proposition 6.2. For any t, w0, . . . , wn, P0, . . . , Pn ∈ F and r ∈ {1, . . . , n}, the relative errors of
the P r

i in (6.6) satisfy

|fl(P r
i (t))− P r

i (t)|
|P r

i |
≤

∑r
k=0 Br

k(t)|Pi+kwi+k|
�

�

∑r
k=0 Br

k(t)Pi+kwi+k

�

�

(3r2 + 5r)ε+O(ε2),

i = 0, . . . , n. Therefore, the relative error in (6.19) for P(t) = Pn
0 satisfies

E(t)≤

∑n
k=0 Bn

k (t)|Pkwk|
�

�

∑n
k=0 Bn

k (t)Pkwk

�

�

(3n2 + 5n)ε+O(ε2).

Proof. Denoting by ϕr
i the relative errors introduced by the computation of P r

i , i = 0, . . . , n and
r = 1, . . . , n, we first notice that

fl(P r
i) =

P r−1
i (1+ϕr−1

i)wr−1
i (1+ωr−1

i)(1−t)(1+δ1)+P r−1
i+1 (1+ϕ

r−1
i+1)w

r−1
i+1 (1+ω

r−1
i+1)t(1+δ2)

wr
i (1+ω

r
i)

,

where |ωm
j | ≤ 3mε + O(ε2), j = i, i + 1 and m = r − 1, r, by Lemma 6.1 and δ1 and δ2

are the errors introduced by the operations in the first and second addends of the numerator,
respectively, that are two products, one sum, and one division each, plus one subtraction for
the first addend only. Therefore, it follows from (2.5) that |δ1|, |δ2| ≤ 5ε + O(ε2). By Taylor
expansion, we know that

1
(1+ωr

i)
= 1−ωr

i +O(ε2),

hence

fl(P r
i) = P r

i +
P r−1

i wr−1
i (1−t)
wr

i
(ϕr−1

i +ωr−1
i −ω

r
i +δ1 +O(ε2)) +

P r−1
i+1 wr−1

i+1 t
wr

i
(ϕr−1

i+1 +ω
r−1
i+1 −ω

r
i +δ2 +O(ε2)).

Then, using the fact that fl(P r
i)− P r

i = P r
i ϕ

r
i , the triangle inequality, and the upper bounds on

the relative errors introduced by the weights and the operations, we obtain

|P r
i ϕ

r
i wr

i | ≤ |P
r−1
i ϕr−1

i wr−1
i (1− t) + P r−1

i+1 ϕ
r−1
i+1 wr−1

i+1 t|
+ |P r−1

i wr−1
i (1− t)(ωr−1

i −ω
r
i +δ1) + P r−1

i+1 wr−1
i+1 t(ωr−1

i+1 −ω
r
i +δ2)|+O(ε2)

≤ |P r−1
i ϕr−1

i wr−1
i |(1− t) + |P r−1

i+1 ϕ
r−1
i+1 wr−1

i+1 |t
+ (|P r−1

i wr−1
i |(1− t) + |P r−1

i+1 wr−1
i+1 |t)(6r + 2)ε+O(ε2).

(6.20)

85 6.2 Numerical stability

In general, we know that1 Pm
j wm

j =
∑m

k=0 Bm
k Pj+kw j+k, j = 0, . . . , n and m= 1, . . . , n, therefore,

by also using the relations Br−1
k (1− t) = (r−k)/rBr

k and Br−1
k t = (k+1)/rBr

k+1, k = 0, . . . , r−1,
we obtain

|P r−1
i wr−1

i |(1− t) + |P r−1
i+1 wr−1

i+1 |t =
r−1
∑

k=0

Br−1
k (1− t)|Pi+kwi+k|+

r−1
∑

k=0

Br−1
k t|Pi+1+kwi+1+k|

=
r−1
∑

k=0

r − k
r

Br
k|Pi+kwi+k|+

r−1
∑

k=0

k+ 1
r

Br
k+1|Pi+1+kwi+1+k|

= Br
0|Piwi |+

r−1
∑

k=1

�

r − k
r
+

k
r

�

Br
k|Pi+kwi+k|+ Br

r |Pi+r wi+r |

=
r
∑

k=0

Br
k|Pi+kwi+k|

(6.21)
and, by (6.20),

|P r
i ϕ

r
i wr

i | ≤ |P
r−1
i ϕr−1

i wr−1
i |(1−t)+|P r−1

i+1 ϕ
r−1
i+1 wr−1

i+1 |t+
r
∑

k=0

Br
k|Pi+kwi+k|(6r+2)ε+O(ε2). (6.22)

Now, we can prove the statement by induction over r. The base case follows by the fact that
P0

i = Pi , i = 0, . . . , n, hence ϕ0
i = 0. Finally, the inductive step from r − 1 to r follows from the

inductive hypothesis, that is

|P r−1
i ϕr−1

i wr−1
i | ≤

r−1
∑

k=0

Br−1
k |Pi+kwi+k|[3(r − 1)2 + 5(r − 1)]ε+O(ε2), i = 0, . . . , n,

together with (6.22) and the fact that, by (6.21),

r−1
∑

k=0

Br−1
k (1− t)|Pi+kwi+k|+

r−1
∑

k=0

Br−1
k t|Pi+1+kwi+1+k|=

r
∑

k=0

Br
k|Pi+kwi+k|.

We now turn our attention to the definition of the Wang–Ball algorithm in (6.12)–(6.14),
which is very similar to the rational de Casteljau method in (6.6), except for two differences.
Firstly, only the “central” Wang–Ball weights and control points are updated at each step r =
1, . . . , n. Secondly, we cannot assume that the input data vi and Ri are exact, as they are them-
selves the result of the conversion formulas in (6.15)–(6.16). On the one hand, although only a
few weights change at each iteration, the final error propagation is the same as for the recursive
formulas in (6.6), because some of the v r

i and Rr
i are modified at each step r. Consequently,

we can use the same proof technique of Lemma 6.1 to analyse the error propagation in the
weights v r

i and of Proposition 6.2 to get the upper bounds on the relative errors of the values
Rr

i and P(t) = Rn
0. On the other hand, in this scenario, we also have to consider the initial er-

rors in the weights vi and control points Ri , which are introduced in the preprocessing step that
converts the Bézier weights and control points into their corresponding Wang–Ball ones. There-
fore, we state below the equivalent of Lemma 6.1 and Proposition 6.2 in the case of Wang–Ball
algorithm.

1In the proof, we omit the dependence on the variable t of the basis functions, that is, Bn
i means Bn

i (t).

86 6.2 Numerical stability

Lemma 6.3. Suppose that there exist υ0
0, . . . ,υ0

n ∈ R with

fl(vi) = vi(1+υ
0
i), |υ0

i | ≤ U(vi)ε+O(ε2), i = 0, . . . , n,

for some constants U(vi). Then, for any r ∈ {1, . . . , n}, there exist υr
0, . . . ,υr

nr
∈ R such that the

weights v r
i in (6.13)–(6.14) satisfy fl(v r

i) = v r
i (1+υ

r
i), i = 0, . . . , nr , with |υr

i | ≤ U(v r
i)ε+O(ε2)

and
U(v r

i) = 3r + max
j=0,...,n

U(v j).

Proposition 6.4. Suppose that there exist υ0
0, . . . ,υ0

n ∈ R with

fl(vi) = vi(1+υ
0
i), |υ0

i | ≤ U(vi)ε+O(ε2), i = 0, . . . , n

and ρ0
0 , . . . ,ρ0

n ∈ R with

fl(Ri) = Ri(1+ρ
0
i), |ρ0

i | ≤ U(Ri)ε+O(ε2), i = 0, . . . , n,

for some constants U(vi) and U(Ri). Then, for any r ∈ {1, . . . , n}, the relative errors of the Rr
i

in (6.13)–(6.14) satisfy

|fl(Rr
i (t))− Rr

i (t)|
|Rr

i |
≤

∑r
k=0 Ar

k(t)|Ri+k vi+k|
�

�

∑r
k=0 Ar

k(t)Ri+k vi+k

�

�

�

3r2 + 5r + max
j=0,...,n

U(v j) + max
k=0,...,n

U(Rk)
�

ε+O(ε2),

i = 0, . . . , n. Therefore, the relative error in (6.19) for P(t) = Rn
0 satisfies

E(t)≤

∑n
k=0 An

k(t)|Rk vk|
�

�

∑n
k=0 An

k(t)Rk vk

�

�

�

3n2 + 5n+ max
j=0,...,n

U(v j) + max
k=0,...,n

U(Rk)
�

ε+O(ε2).

Finally, to provide a comprehensive understanding of the error propagation within the
Wang–Ball algorithm, we also present an analysis of the numerical stability of the conversion
formulas in (6.15)–(6.16), which provides an initial estimate of the constants U(vi) and U(Ri),
i = 0, . . . , n, of Lemma 6.3 and Proposition 6.4. Before delving into these details, we introduce
some notation to shorten the expressions of the vi and Ri . Considering i ∈ {0, . . . , n}, we define
e ∈ N as

e =

¨

i, i ≤ ⌊n/2⌋ ,
n− i, i ≥ ⌈n/2⌉

and the sets of indexes I1,i and I2,i as

I1,i =

{0,1, . . . , i − 1}, i ≤ ⌊n/2⌋ ,
{0,1, . . . , i − 2}, i = ⌈n/2⌉ ,
{0,1, . . . , n− i}, i > ⌈n/2⌉ ,

I2,i =

{n− i + 1, n− i + 2, . . . , n}, i < ⌊n/2⌋ ,
{i + 2, i + 3, . . . , n}, i = ⌊n/2⌋ ,
{i + 1, i + 2, . . . , n}, i ≥ ⌈n/2⌉ .

Then, we set

bi =
�

n
i

�

, ak = 2k
�

n− 2− 2k
i − k

�

, and ck = 2n−k
�

2k− 2− n
k− i

�

,

thus we can express the weights vi in (6.15) as

vi =
1
2e

�

biwi −
∑

k∈I1,i

ak vk −
∑

k∈I2,i

ck vk

�

, i = 0, . . . , n, (6.23)

87 6.2 Numerical stability

and the control points Ri in (6.16) as

Ri =
1

2e vi

�

biwi Pi −
∑

k∈I1,i

ak vkRk −
∑

k∈I2,i

ck vkRk

�

, i = 0, . . . , n. (6.24)

Moreover, we denote by Mi the maximum between the constants Ai = max{ak | k ∈ I1,i} and
Ci =max{ck | k ∈ I2,i}, i = 1, . . . , n− 1.

Lemma 6.5. For any t, w0, . . . , wn ∈ F, there existυ0, . . . ,υn ∈ R such that the Wang–Ball weights
vi in (6.23) satisfy fl(vi) = vi(1+υi), i = 0, . . . , n, with |υi | ≤ U(vi)ε+O(ε2) and

U(vi) =
max j=1,n−1,...,n−i,i

�

b jw j +
∑

k∈I1, j
ak vk +
∑

k∈I2, j
ck vk

�

�

�biwi −
∑

k∈I1,i
ak vk −
∑

k∈I2,i
ck vk

�

�

M1Mn−1 . . . Mn−i Mi

×

¨

(2i + 1)!, i < ⌈n/2⌉ ,
[2(n− i) + 2]!, i ≥ ⌈n/2⌉ .

(6.25)

Proof. First of all, we notice that the weights are computed in the order v0, vn, v1, vn−1, v2, vn−2,
. . . , vm−1, vm, for m = ⌈n/2⌉. Therefore, when computing vi , i = 1, . . . , n− 1, the number of vk,
k ∈ I1,i ∪ I2,i , involved in (6.23) are exactly 2i, if i < ⌈n/2⌉, and 2(n− i) + 1, otherwise. At the
end, they are at most n, which is the case of the “central” weight vm. The proof is carried out
assuming i < ⌈n/2⌉, but similar arguments can be applied to the case i ≥ ⌈n/2⌉.

We first notice that2

fl(vi) =
1
2e

�

biwi(1+δi)−
∑

k∈I1,i

ak vk(1+υk)(1+δk)−
∑

k∈I2,i

ck vk(1+υk)(1+δk)

�

= vi +
1
2e

�

biwiδi −
∑

k∈I1,i

ak vk(υk +δk +O(ε2))−
∑

k∈I2,i

ck vk(υk +δk +O(ε2))

�

,

where δ j , j = i or j ∈ I1,i ∪ I2,i , are the errors introduced by the operations in the addends. In
particular, these errors are affected at most3 by one product and 2i sums. Therefore, it follows
from (2.5) that |δ j | ≤ (2i+1)ε+O(ε2). Then, using the fact that fl(vi)− vi = viυi , the triangle
inequality, and the upper bounds on the relative errors introduced by the operations in the
addends, we obtain

|viυi | ≤
1
2e

��

biwi +
∑

k∈I1,i

ak vk +
∑

k∈I2,i

ck vk

�

(2i + 1)ε+
∑

k∈I1,i

ak|vkυk|+
∑

k∈I2,i

ck|vkυk|+O(ε2)

�

.

We know that in
∑

k∈I1,i
ak|vkυk|+
∑

k∈I2,i
ck|vkυk| are performed 2i−1 sums, therefore, it follows

that

|viυi | ≤
1
2e

��

biwi +
∑

k∈I1,i

ak vk +
∑

k∈I2,i

ck vk

�

(2i + 1)ε+ (2i − 1)Mi max
k∈I1,i∪I2,i

|vkυk|+O(ε2)

�

.

2Any operation with powers of 2 are exact in floating-point arithmetic, so they do not introduce any relative error.
3We assume that the computations of all binomial coefficients involve only integer operations, therefore they do not

introduce any floating-point relative error.

88 6.2 Numerical stability

Then, we can use this inequality recursively and, recalling that υ0 = υn = 0 and each time we
go one step back in the recursion the set I1,k ∪ I2,k decreases by one, we get

|viυi | ≤
1
2e

max
j=1,n−1,...,n−i,i

�

b jw j +
∑

k∈I1, j

ak vk +
∑

k∈I2, j

ck vk

�

(2i + 1)Mε+O(ε2),

where

M = 1+ (2i − 1)Mi + (2i − 1)(2i − 2)Mi Mn−i + · · ·+ (2i − 1)!Mi Mn−i . . . Mn−1M1

≤ (2i − 1)!Mi Mn−i . . . Mn−1M1 × 2i,

which gives the statement.

Lemma 6.6. For any t, w0, . . . , wn ∈ F, there exist ρ0, . . . ,ρn ∈ R such that the Wang–Ball control
points Ri in (6.24) satisfy fl(Ri) = Ri(1+ρi), i = 0, . . . , n, with |ρi | ≤ U(Ri)ε+O(ε2) and

U(Ri) = U(Ri vi) + U(vi) + 1,

for U(vi) in (6.25) and

U(Ri vi)≤
max j=1,n−1,...,n−i,i

�

b jw j |Pj |+
∑

k∈I1, j
ak vk|Rk|+
∑

k∈I2, j
ck vk|Rk|
�

�

�biwi Pi −
∑

k∈I1,i
ak vkRk −
∑

k∈I2,i
ck vkRk

�

�

M1Mn−1 . . . Mn−i Mi

×

¨

(2i + 2)!, i < ⌈n/2⌉ ,
[2(n− i) + 3]!, i ≥ ⌈n/2⌉ .

(6.26)

Proof. The study of the propagation of the error in Ri vi = 1/2e
�

biwi Pi −
∑

k∈I1,i
ak vkRk −

∑

k∈I2,i
ck vkRk

�

can be done with the same procedure used in Lemma 6.5, with the differences
that every addend is now affected by one more product by Pi or Rk, and we also have to con-
sider the relative errors υi introduced by the weights vi , i = 0, . . . , n. Therefore, denoting by
φi and δ the errors introduced by the computation of Ri vi and the division by vi , respectively,
we obtain by (2.5) and Lemma 6.5 that

fl(Ri) =
1

2e vi(1+υi)

�

biwi Pi −
∑

k∈I1,i

ak vkRk −
∑

k∈I2,i

ck vkRk

�

(1+φi)(1+δ), i = 0, . . . , n,

(6.27)
for |υi | ≤ U(vi)ε+O(ε2) with U(vi) in (6.25), |φi | ≤ U(Ri vi)ε+O(ε2) with U(Ri vi) in (6.26),
and |δ| ≤ ε. Therefore, we can use Taylor expansion in (6.27) to get

fl(Ri) = Ri(1+φi)(1+δ)(1−υi +O(ε2)) = Ri(1+φi −υi +δ+O(ε2))

and the statement follows for ρi = φi −υi +δ with

|ρi | ≤ |φi |+ |υi |+ |δ| ≤ (U(Ri vi) + U(vi) + 1)ε+O(ε2).

It is worth noting that the upper bounds on the relative errors derived for vi and Ri appear
to be large even for moderate values of n. However, in our experiments, we did not observe
instability in their implementations, even when considering n= 50. Therefore, we believe that
there is room for improvement in these bounds.

89 6.2 Numerical stability

6.2.2 Horner schemes

We continue our analysis by studying the error propagation that occurs in the algorithms that
evaluate a rational Bézier curve P at t through a Horner scheme, which is the case of the
implementations of the two formulas in (6.7) and (6.8). In these specific contexts, we can
use Theorem 3.1 as both formulas fit the expression in (3.8) for N = M = n, fk = Pk, and
ak = bk = xn−k
�n

k

�

wk or ak = bk = tksn−k
�n

k

�

wk, k = 0, . . . , n, respectively. Moreover, assuming
that the binomial coefficients are implemented without introducing any floating-point relative
error via integer arithmetic, the computations of the ak, k = 0, . . . , n, involve two products
plus at most n subtractions, n divisions, and n− 1 products for xn−k in (6.7) and two products
plus at most n subtractions and n − 1 products in case of tksn−k in (6.8). This implies that
A = B = 3n + 1 in case of formula in (6.7) and A = B = 2n + 1 in case of (6.8). Therefore,
it follows from Theorem 3.1 that the relative error E in (6.19) for P(t) computed with (6.7)
satisfies

E(t)≤

∑n
k=0 |B

n
k (t)wk Pk|

|
∑n

k=0 Bn
k (t)wk Pk|

(4n+ 3)ε+ (4n+ 1)ε+O(ε2), (6.28)

while with (6.8)

E(t)≤

∑n
k=0 |B

n
k (t)wk Pk|

|
∑n

k=0 Bn
k (t)wk Pk|

(3n+ 3)ε+ (3n+ 1)ε+O(ε2).

Notably, the difference 1 − t cannot be problematic, because we assume that t is an exact
floating-point number. However, if instead t is the floating-point approximation of a real num-
ber, then the formula in (6.8) may become unstable when t approaches 1. Conversely, the
formula in (6.7) represents a stable way to evaluate P thanks to the distinction of the two cases
in the definition of x .

6.2.3 Geometric approach

We proceed to analyse the error propagation of the recursive algorithm given by the formulas
in (6.9). In particular, we first study how the error propagates during the computation of the
values hi , i = 0, . . . , n, and then we examine the relative errors of the values Ti , i = 0, . . . , n.
This analysis finally leads to an upper bound on the relative error E in (6.19) in the case of
P(t) = Tn.

Lemma 6.7. For any t, w0, . . . , wn ∈ F, there exist η0, . . . ,ηn ∈ R such that the hi in (6.9) satisfy
fl(hi) = hi(1+ηi), i = 0, . . . , n, with |ηi | ≤ U(hi)ε+O(ε2) and

U(hi) = 23(2i − 1).

Proof. We first notice that

fl(hi) =
wihi−1(1+ηi−1)t(n− i + 1)(1+δ1)

wi−1i(1− t)(1+δ2) +wihi−1(1+ηi−1)t(n− i + 1)(1+δ3)

=
wihi−1 t(n− i + 1)(1+δ1 +ηi−1 +O(ε2))

wi−1i(1− t)(1+δ2) +wihi−1 t(n− i + 1)(1+δ3 +ηi−1 +O(ε2))
,

where δ1 is the error introduced by the floating-point operations in the numerator, that are three
products and one division, and δ2 and δ3 are those related to the first and second addends in

90 6.2 Numerical stability

the denominator, respectively, that are two products, one subtraction, and one sum for the
former and three products and one sum for the latter. Therefore, it follows from (2.5) that
|δ1|, |δ2|, |δ3| ≤ 4ε+O(ε2). Moreover, the intermediate value theorem further guarantees that

fl(hi) =
wihi−1 t(n− i + 1)(1+δ1 +ηi−1 +O(ε2))
[wi−1i(1− t) +wihi−1 t(n− i + 1)](1+δi−1)

,

for some δi−1 ∈ [min(δ2,δ3+ηi−1+O(ε2)), max(δ2,δ3+ηi−1+O(ε2))] = [δ2,δ3+ηi−1+O(ε2)],
and the Taylor expansion of 1/(1+δi−1) gives

fl(hi) =
wihi−1 t(n− i + 1)

wi−1i(1− t) +wihi−1 t(n− i + 1)
(1+δ1 +ηi−1 −δi−1 +O(ε2))

= hi(1+δ1 +ηi−1 −δi−1 +O(ε2)).

We define ηi = δ1 +ηi−1 −δi−1 +O(ε2), hence, by using the triangle inequality and the upper
bounds on the relative errors introduced by the operations, we have

|ηi | ≤ |δ1|+ |ηi−1|+ |δi−1|+O(ε2)≤ 8ε+ 2|ηi−1|+O(ε2), i = 1, . . . , n.

Now, we can prove the statement by induction over i. The base case follows by the fact that
h0 = 1, therefore η0 = 0. Finally, the inductive step from i − 1 to i follows immediately from
the inductive hypothesis, that is |ηi−1| ≤ 23(2i−1 − 1)ε+O(ε2).

Proposition 6.8. For any t, w0, . . . , wn, P0, . . . , Pn ∈ F and r ∈ {1, . . . , n}, the relative errors of
the Ti in (6.9) satisfy

|fl(Ti(t))− Ti(t)|
|Ti |

≤

∑i
k=0 Bn

k (t)|Pkwk|
�

�

∑i
k=0 Bn

k (t)Pkwk

�

�

�

max
k=1,...,i

1
1− hk

23i(2i − 1) + 3i

�

ε+O(ε2),

i = 1, . . . , n. Therefore, the relative error in (6.19) for P(t) = Tn satisfies

E(t)≤

∑n
k=0 Bn

k (t)|Pkwk|
�

�

∑n
k=0 Bn

k (t)Pkwk

�

�

�

max
k=1,...,n

1
1− hk

23n(2n − 1) + 3n

�

ε+O(ε2).

Proof. Denoting by τi the relative errors introduced by the computation of Ti , i = 0, . . . , n, we
first notice that

fl(Ti) = [1− hi(1+ηi)]Ti−1(1+τi−1)(1+δ1) + hi(1+ηi)Pi(1+δ2)

= (1− hi)Ti−1

�

1−
hiηi

1− hi
+τi−1 +δ1 +O(ε2)

�

+ hi Pi(1+ηi +δ2 +O(ε2))

= Ti + (1− hi)Ti−1

�

−
hiηi

1− hi
+τi−1 +δ1 +O(ε2)

�

+ hi Pi(ηi +δ2 +O(ε2)),

where |ηi | ≤ 23(2i −1)ε+O(ε2) by Lemma 6.7 and δ1 and δ2 are the errors introduced by the
operations in the first and second addends, respectively, that are one product and one sum each,
plus one subtraction for the first addend only. Therefore, it follows from (2.5) that |δ1|, |δ2| ≤
3ε+O(ε2). Then, using the fact that fl(Ti)− Ti = Tiτi , the triangle inequality, and the upper
bounds on the relative errors introduced by the values hi and the operations, we obtain

|Tiτi | ≤ (1− hi)|Ti−1|
�

hi |ηi |
1− hi

+ |δ1|
�

+ hi |Pi |(|ηi |+ |δ2|) + (1− hi)|Ti−1τi−1|+O(ε2)

≤ [(1− hi)|Ti−1|+ hi |Pi |]
�

1
1− hi

23(2i − 1) + 3
�

ε+ (1− hi)|Ti−1τi−1|+O(ε2).
(6.29)

91 6.2 Numerical stability

Recalling that h j = Bn
j w j

�∑ j
k=0(B

n
k wk) [82], we can use recursively the relation of Ti in (6.9)

to express

(1− hi)|Ti−1|=
i
∑

j=1

i− j
∏

k=0

(1− hi−k)h j−1|Pj−1|=
i
∑

j=1

i− j
∏

k=0

�

1−
Bn

i−kwi−k
∑i−k

l=0 Bn
l wl

�

Bn
j−1w j−1
∑ j−1

l=0 Bn
l wl

|Pj−1|

=
i
∑

j=1

i− j
∏

k=0

∑i−k−1
l=0 Bn

l wl
∑i−k

l=0 Bn
l wl

Bn
j−1w j−1
∑ j−1

l=0 Bn
l wl

|Pj−1|=

∑i
j=1 Bn

j−1|w j−1Pj−1|
∑i

l=0 Bn
l wl

,

and, by (6.29),

|Tiτi | ≤

∑i
k=0 Bn

k (t)|Pkwk|
∑i

k=0 Bn
k (t)wk

�

1
1− hi

23(2i − 1) + 3
�

ε+ (1− hi)|Ti−1τi−1|+O(ε2). (6.30)

Now, we can prove the statement by induction over i = 1, . . . , n and, to this end, we recall
Ti =
∑i

k=0 Bn
k wk Pk/
∑i

k=0(B
n
k wk) [82]. The base case follows by the fact that T0 = P0, therefore

τ0 = 0. Finally, the inductive step from i−1 to i follows from the inductive hypothesis, that is,

|Ti−1τi−1| ≤

∑i−1
k=0 Bn

k (t)|Pkwk|
∑i−1

k=0 Bn
k (t)wk

�

max
k=1,...,i−1

1
1− hk

23(i − 1)(2i−1 − 1) + 3

�

ε+O(ε2),

together with (6.30) and

(1− hi)

∑i−1
k=0 Bn

k (t)|Pkwk|
∑i−1

k=0 Bn
k (t)wk

=

∑i−1
k=0 Bn

k (t)|Pkwk|
∑i

k=0 Bn
k (t)wk

≤

∑i
k=0 Bn

k (t)|Pkwk|
∑i

k=0 Bn
k (t)wk

.

6.2.4 Barycentric approach

In this case, we observe that the barycentric form of P in (6.17) can be expressed as in (3.8)
with N = M = n, fi = Q i , and ai = bi = ui/(t − t i), i = 0, . . . , n, therefore we can use once
again Theorem 3.1. However, the latter assumes that the values fi are floating-point numbers,
while the Q i are the result of a prepossessing step that leads to a set of perturbed initial data.
Consequently, we derive an upper bound on the relative error E in (6.19) via Theorem 3.1,
while also considering this difference.

Corollary 6.9. Assuming that the values Q i = P(t i), i = 0, . . . , n, are computed by evaluating the
rational Bézier curve P at t i through the implementation of the VS formula in (6.7) and that the
z(t i) are defined as in (6.18), then the relative error in (6.19) for P(t) computed by implementing
the barycentric formula in (6.17) satisfies

E(t)≤
�

10n+ 5+ max
j=0,...,n

U(Q j)
�

∑n
i=0

�

�

uiQ i
t−t i

�

�

�

�

∑n
i=0

uiQ i
t−t i

�

�

ε+ (10n+ 3)

∑n
i=0

�

�

ui
t−t i

�

�

�

�

∑n
i=0

ui
t−t i

�

�

ε+O(ε2),

where

U(Q i) =

∑n
i=0 |B

n
i (t i)wi Pi |

|
∑n

i=0 Bn
i (t i)wi Pi |

(4n+ 3) + 4n+ 1, i = 0, . . . , n. (6.31)

92 6.2 Numerical stability

Proof. Since the values Q i are computed with (6.7), we know from (6.28) that there exist
θ0, . . . ,θn ∈ R such that they satisfy fl(Q i) =Q i(1+θi), i = 0, . . . , n, with |θi | ≤ U(Q i)ε+O(ε2)
and U(Q i) in (6.31). Moreover, in the computation of the z(t i) we first introduce at most 4n+1
floating-point relative errors in the VS algorithm to get the denominators

∑n
i=0 xn−i
�n

i

�

wi , and
then we perform at most other 2n−1 products, which happens in the case of (1−t)n. This means
that there exist ζ0, . . . ,ζn ∈ R such that the z(t i) satisfy fl(z(t i)) = z(t i)(1+ ζi), i = 0, . . . , n,
with |ζi | ≤ U(z(t i))ε+O(ε2) and

U(z(t i)) = 6n.

Also, we know that the computation of ui/z(t i) =
∏

k ̸=i
1

t i−tk
introduces at most 3n floating-

point operations [34, Lemma 1], which, together with the previous equation, leads to the
existence of µ0, . . . ,µn ∈ R such that the ui satisfy fl(ui) = ui(1 + µi), i = 0, . . . , n, with
|µi | ≤ U(ui)ε+O(ε2) and

U(ui) = U(z(t i)) + 3n+ 1= 9n+ 1.

Finally, the statement follows by Corollary 3.2 that, by also considering the initial errors in the
data Q i , gives

E(t)≤
�

n+ 4+ max
i=0,...,n

U(ui) + max
j=0,...,n

U(Q j)
�

∑n
i=0

�

�

uiQ i
t−t i

�

�

�

�

∑n
i=0

uiQ i
t−t i

�

�

ε

+
�

n+ 2+ max
i=0,...,n

U(ui)
�

∑n
i=0

�

�

ui
t−t i

�

�

�

�

∑n
i=0

ui
t−t i

�

�

ε+O(ε2).

6.2.5 Summary

By defining the conditioning functions

κP(t) =

∑n
k=0 Bn

k (t)|Pkwk|
�

�

∑n
k=0 Bn

k (t)Pkwk

�

�

, κR(t) =

∑n
k=0 An

k(t)|Rk vk|
�

�

∑n
k=0 An

k(t)Rk vk

�

�

, and κQ(t) =

∑n
i=0

�

�

uiQ i
t−t i

�

�

�

�

∑n
i=0

uiQ i
t−t i

�

�

,

(6.32)
and recalling that

Λn(t) =

∑n
i=0

�

�

ui
t−t i

�

�

�

�

∑n
i=0

ui
t−t i

�

�

(6.33)

represents the Lebesgue function, we proved that the relative error E in (6.19) can be bounded
as

E(t)≤

κP(t)(3n2 + 5n)ε+O(ε2), P(t) = Pn
0 in (6.6),

κP(t)(4n+ 3)ε+ (4n+ 1)ε+O(ε2), P(t) in (6.7),

κP(t)(3n+ 3)ε+ (3n+ 1)ε+O(ε2), P(t) in (6.8),

κP(t)
�

max
k=1,...,n

1
1− hk

23n(2n − 1) + 3n
�

ε+O(ε2), P(t) = Pn
0 in (6.9),

κR(t)
�

3n2 + 5n+ max
j=0,...,n

U(v j) + max
k=0,...,n

U(Rk)
�

ε+O(ε2), P(t) = Rn
0 in (6.12)–(6.14),

κQ(t)
�

10n+ 5+ max
j=0,...,n

U(Q j)
�

ε+Λn(t)(10n+ 3)ε+O(ε2), P(t) in (6.17).

93 6.3 Numerical experiments

Hence, we expect that all methods that use the Bernstein basis in (6.2), namely those defined by
the formulas in (6.6)–(6.9), behave similarly in terms of numerical stability. The only exception
might arise with the latter method if any of the hk, k = 1, . . . , n, is very close to 1. However,
Woźny and Chudy [82] have already addressed this issue by suggesting to use the relation

1− hk =
hk

hk−1

wk−1k(1− t)
wk t(n− k+ 1)

.

Regarding instead the methods that employ a different basis, such as the Wang–Ball and the
barycentric algorithms, even under the assumption that all the preprocessing steps are stable,
there are scenarios where κR or κQ are bigger than κP , or vice versa. As a consequence, these
algorithms may exhibit instability even when the formulas in (6.6)–(6.9) are stable. However,
for the barycentric form, instability is less likely to occur if Chebyshev nodes are chosen. In
fact, multiplying both numerator and denominator of the function κQ by

�

�

∑n
i=0 uiQ i/(t − t i)

�

�,
we can see that

κQ(t) =

∑n
i=0

�

�

uiQ i
t−t i

�

�

�

�

∑n
i=0

ui
t−t i

�

�

1
|P(t)|

≤ max
i=0,...,n

|Q i |Λn(t)
1
|P(t)|

≤ max
i=0,...,n

|Pi |Λn(t)κP(t)

∑n
k=0 Bn

k (t)|wk|
∑n

k=0 Bn
k (t)|Pkwk|

.

In particular, if mini=0,...,n |Pi | ̸= 0, then

κQ(t)≤ κP(t)Λn(t)
maxi=0,...,n |Pi |
mini=0,...,n |Pi |

. (6.34)

Moreover, it is well known [76] that the Lebesgue function grows only logarithmically in n for
Chebyshev nodes. Therefore, if κP has a good behaviour, then we can expect the method to be
always stable when the ratio between the biggest and the smallest control points is small. On
the contrary, the Lebesgue function related to equidistant nodes exhibits exponential growth in
n [76], hence we can have unstable results even for moderate values of n with uniformly dis-
tributed nodes. We will show that these scenarios can indeed occur in the next section through
numerical experiments.

6.3 Numerical experiments

We implemented all the methods in C++ and computed the exact value P(t) of the Bézier curve in
multiple-precision (1024 bit) floating-point arithmetic with the MPFR library [33]. The results
are obtained using a Ubuntu system on a Dell computer with 8 cores i7-10510U CPU 1.80GHz
and 16 GiB of RAM. The codes are compiled with CMake compiler optimisation flag -O3. Below,
we indicate the algorithms presented previously with the following abbreviations:

RDF= Rational de Casteljau algorithm implemented with formula in (6.5)

FDC= Farin de Casteljau algorithm implemented with formula in (6.6)

RVS= Rational VS algorithm implemented with formula in (6.7)

RHB= Rational Horner-Bézier algorithm implemented with formula in (6.8)

LTG= Linear time geometric algorithm implemented with formula in (6.9)

RWB= Rational Wang–Ball algorithm implemented with formula in (6.12)– (6.14)

CHE= Barycentric algorithm implemented with formula in (6.17) and Chebyshev nodes

UNI= Barycentric algorithm implemented with formula in (6.17) and uniform nodes.

94 6.3 Numerical experiments

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3
E(
t)

(a) (b)

10−16

10−15

10−14

10−13
(c) (d)

0.0 0.5 1.0
t

100

102

104

106

108

1010

1012

1014

co
nd
iti
on

 fu
nc
tio

n

0.0 0.5 1.0
t

0.0 0.5 1.0
t

100

101

102

103

104

0.0 0.5 1.0
t

RDC FDC RVS RHB LTG CHE UNI RWB

Figure 6.1. Relative errors of all algorithms (top) for computing a rational Bézier curve and
their related conditioning function (bottom) on a logarithmic scale. We first consider n = 50,
Pi =
�x i

yi

�

for x i and yi in (6.35), and wi = i mod 2+ 1, and we observe the results related to

the x -coordinate (a) and y-coordinate (b). Then, we set n = 4, P0 =
� 10
−100

�

, P1 =
� 20

200

�

, P2 =
� 30
−200

�

, P3 =
� 40

101

�

, P4 =
� 50

101

�

and wi = 1, i = 0, . . . , n, and we see the results for the x -coordinate
(c) and y-coordinate (d). The black line represents the machine epsilon in double precision.

To compare the numerical stability of all the algorithms, we evaluate the relative error E
in (6.19) for 1000 equidistant evaluation points in [0, 1] using the various implementations of
fl(P(t)) in double precision. If the results are on the order of the machine epsilon, approximately
10−16, then we can conclude that the method is stable, otherwise it suggests instability.

In the first experiment, we consider a rational Bézier curve of degree n = 50 with control
points Pi =
�x i

yi

�

, i = 0, . . . , n, for

x i =

¨

1, i = 0, . . . , 9 and i = 41, . . . , n

106, i = 10, . . . , 40
and yi = sin

iπ
n+ 1

, (6.35)

and weights wi = i mod 2+1. In Figure 6.1 (a,b), we observe that all the methods defined via
the Bernstein basis are stable, while the others exhibit numerical problems. In particular, the
CHE, UNI, and RWB algorithms are unstable with respect to the x-coordinate (a), as well as for
the y- coordinate (b), except for the CHE algorithm. Our theoretical results in Section 6.2 can
explain the causes of these instabilities. Indeed, we proved that the relative error of the RWB
algorithm depends on the conditioning functions κR, while those of CHE and UNI on κQ. In this
case, even though the initial data give a good conditioning function related to the Bernstein
basis, i.e. κP(t) = 1, the conversion to a different basis leads to unfavorable behaviour for both
κR and κQ, as shown in Figure 6.1 (bottom). Moreover, it is worth noting that, as expected, the
CHE algorithm exhibits instability with respect to the x-coordinate because the ratio between

95 6.3 Numerical experiments

the biggest and the smallest |x i | is 106. However, under circumstances where this ratio is not
big, the CHE algorithm is typically stable, even for large values of n.

Finally, we want to examine a more realistic experiment, thus we take a low degree curve
by setting n = 4. On the one hand, we observe in Figure 6.1 that the relative error related
to the x-coordinate (c) is perfectly stable, with all the conditioning functions small. On the
other hand, all the relative errors related to the y-coordinate (d) exhibit spikes in some parts
of the domain, reaching an order of 10−13. This behaviour is also reflected in the conditioning
functions. Yet, where these spikes occur, the values of Py(t) are very small because the curve
is crossing the t-axis, therefore this may not be a stability issue, but rather a consequence of
dividing by very small values in Ey(t) in (6.19). However, for our 1000 equidistant evaluation
points, the minimum absolute value of Py(t) is 0.13424 in the domain of the first spike and
0.3116 for the second, thus indicating that we are not so close to the values where Py(t) = 0.
Furthermore, plotting the absolute errors leads to a similar behaviour without these spikes, but
still with magnitudes between 10−14 and 10−13 for all methods except the barycentric form
with uniform nodes. This latter remains stable, as its conditioning function κQ is small, apart
from the initial spike, and its nodes are far from the instability regions of the RVS algorithm.
In contrast, Chebyshev nodes compromise the stability of the method due to the computation
of one interpolation point with the RVS algorithm where it is unstable, specifically for the node
in [0.1, 0.2]. Furthermore, while both uniform and Chebyshev nodes include t = 0.5, the RVS
is exact at this point with a relative error of 0, thus preserving the stability of the barycen-
tric method with uniform nodes. However, the computation of this node with the Chebyshev
formula is not exact, resulting in perturbed data.

96 6.3 Numerical experiments

Chapter 7

Conclusion

The focus of this dissertation is to study the numerical stability of the algorithms that implement
different types of barycentric interpolants. We begin with the univariate case, where barycen-
tric interpolation offers a fast and stable means of evaluating both polynomial and rational
interpolants using either the first or the second barycentric form. On the one hand, the first
polynomial form is always numerically stable, while the second form is stable only for interpola-
tion nodes with a small Lebesgue constant. On the other hand, evaluating a rational interpolant
via the second barycentric form comes with the same limitation, but for the special family of
barycentric rational interpolants with weights in (3.5) proposed by Floater and Hormann, a
computationally more attractive first barycentric form is available. Instead of depending on the
Lebesgue constant, both the forward and the backward stability of a straightforward implemen-
tation of this first barycentric form depend on the function Γd in (3.18).

Unlike the Lebesgue constant, Theorem 3.13 shows that the maximum of Γd is independent
of n. Moreover, it is guaranteed to be very small for equidistant nodes, regardless of d, while
the Lebesgue constant is known to grow logarithmically in n and exponentially in d in this
case. Based on our numerical experiments, the maximum of Γd seems to be small for other
distributions of interpolation nodes, too, even if the mesh ratio µ is big, as in the example in
Section 3.7.2, and we believe that the upper bound in (3.26) can be improved considerably in
future work. For example, if d = n, then Γd is just the constant one function, independent of µ.

Overall, in the case of a linear barycentric rational interpolant with weights in (3.5), we
cannot state that one form, whether the first or the second, is generally superior to the other,
as the optimal choice depends on the specific scenario. If we know a priori that the interpola-
tion nodes generate a small Legesgue constant, then the most efficient and stable algorithm is
undoubtedly the one based on the straightforward implementation of the second barycentric
form in (3.3), with weights precomputed with the pyramid algorithm in (3.21) and (3.22).
However, if the Lebesgue constant is not small or is unknown, then the first barycentric form
is much more likely to provide a stable solution. In such cases, the best approach is to imple-
ment first the weights as before in a preprocessing step, and then, for every evaluation point
x , to compute the values λi(x) with our iterative strategy in (3.23) and finally the value of the
interpolant using a straightforward implementation of the first barycentric form in (3.6). Al-
ternatively computing the sum of the λi(x) in the denominator with Camargo’s algorithm [18]
results in slightly smaller forward errors, but is significantly slower, especially for larger d.

To address these considerations, we develop the BRI (Barycentric Rational Interpolation)

97

98

class, designed to handle all aspects of barycentric rational interpolation in a stable, robust, and
efficient manner. The class provides a C++ interface and supports both standard data types and
arbitrary precision arithmetic via the Multiple Precision Floating-Point Reliable (MPFR) library.
Unlike existing libraries that evaluate barycentric rational interpolants exclusively using the
second form, the BRI class autonomously selects the most appropriate method based on the
specific scenario using the results discussed before and presented in Chapter 3. Furthermore,
we introduce a novel technique to improve robustness and reduce the risk of overflow and
underflow errors.

In the bivariate case, our investigations regard the numerical stability and efficiency of the
algorithms that evaluate mean value coordinates and they reveal the following, partially sur-
prising insights. First, among the six formulas in (5.1)–(5.6), which give rise to efficient O(n)
algorithms, the original expression in (5.1) generally performs best in terms of stability and is
as fast as the others. This is contrary to the common belief that using the ATAN2 function (for
computing the angles αi) and the TAN function (for evaluating tan(αi/2)) is slow. At least on
our platform, we did not notice any computational disadvantage.

Second, the implementation of the original formula works well, even if v is on one of the
edges of the polygon, say v = (1 − µ)vk + µvk+1 for some k and µ ∈ (0,1), despite the fact
that αk = ±π in this case, hence tan(αk/2) is mathematically not well-defined. Since common
floating-point implementations cannot represent±π/2 exactly, the TAN function does not return
NAN in this case, but rather a number that is extremely big in absolute value, and the mean
value coordinates λi happen to be correct, up to machine precision, in the end. However, we
observed major numerical problems for polygons with edges that are very close to each other
(see Figure 5.3). In the vicinity of such edges, two of the values tan(αi/2) are very big, which
eventually leads to a loss of precision.

Third, our new Algorithm 10 handles even such extreme cases and is generally the most
stable of all methods. It also works if v is a vertex of the polygon, a case that needs to be detected
in the linear-time algorithms by checking if some ri equals zero. The only other method that
does not require any exceptions for handling points on the boundary of the polygon is the one
based on (5.7), but it turns out to be slower and less stable than our approach, especially near
the sets Zk in (5.8).

Finally, since the findings of Chapter 3 are valid for a wide range of methods, we applied
them to conduct a comprehensive comparison of the most common algorithms used to evaluate
a rational Bézier curve in terms of numerical stability. We derived an upper bound on the relative
error of the different methods and showed, both theoretically and empirically, that it depends on
certain conditioning functions. Specifically, algorithms that use the Bernstein basis depend on
the same conditioning function, therefore they have consistent numerical behaviours. Instead,
conversion to another basis can lead to different relative errors. In fact, there are scenarios
where all algorithms are stable, except from those given by the Wang–Ball and the barycentric
basis. However, we proved that, if the Bernstein basis gives a good conditioning function,
then also the basis related to the barycentric algorithm with Chebyshev nodes behaves well,
as long as the ratio between the largest and smallest control points Pi is small. Lastly, even
classical algorithms based on the Bernstein basis may fail if the associated conditioning function
is large, particularly when control points have different signs. In such cases, it is possible that
the conversion to the barycentric form with nodes located away from instability areas can yield
better results.

Appendix A

User manual for the BRI class

This appendix explains how to use the functions of the BRI C++ class template for barycentric
rational interpolation presented in Chapter 4.

Installation

To use this class, include the header file BRI.h with the #include directive in all .cpp files that
require it and place them in the same folder. Since the BRI class is using templates, the user
can decide which types of input and output variables to use, and we denote them respectively
by inT and outT in the following. Other than the standard data types available in C++ , these
can also be defined in arbitrary precision, because the BRI class is compatible with the publicly
available MPFR library using the MPFR C++ interface.

The BRI class

The BRI class contains all variables and functions related to a barycentric rational interpolant.
Even though the variables are private, they still need to be defined by the user via constructors
and can also be modified via class member functions. For this reason, we first present the
parameters defined within the class and then its public functions.

Variables

int n

number of interpolation nodes minus 1

int d

integer parameter related to Floater–Hormann rational interpolation

vector<inT>& Xn

vector of dimension n+ 1 containing the interpolation nodes

vector<inT>& Yn

99

https://www.mpfr.org
https://github.com/advanpix/mpreal

100

vector of dimension n+ 1 containing the data associated with the corresponding node

vector<outT>& Wn

vector of dimension n+ 1 containing the barycentric weights associated with Xn and d

Constructors

BRI(const vector<inT>& Xn, const vector<inT>& Yn, int d)

takes as input both vectors Xn and Yn by reference and the integer d by value

BRI(string nodes, const vector<inT>& Yn, int d)

fills the vector Xn with the content of the file nodes, takes the vector Yn by reference and
the integer d by value

BRI(Nodes type, inT a, inT b, int n, const vector<inT>& Yn, int d)

generates the vector Xn by knowing the type of nodes (UNIFORM, CHEBYSHEV, CHEBY-
SHEV_EXTENDED) and the endpoints of the interval [a, b] in which they are defined, takes
the vector Yn by reference and the integers n and d by value, as well as a and b

BRI(const vector<inT>& Xn, string data, int d)

takes Xn by reference and the integer d by value and fills the vector Yn with the content
of the file data

BRI(string nodes, string data, int d)

fills both vectors Xn and Yn with the content of the files nodes and data, respectively and
takes the integer d by value

BRI(Nodes type, inT a, inT b, int n, string data, int d)

generates the vector Xn by knowing the type of nodes (UNIFORM, CHEBYSHEV, CHEBY-
SHEV_EXTENDED) and the endpoints of the interval [a, b] in which they are defined, fills
the vector Yn with the content of the file data, and takes the integers n and d by value,
as well as a and b

const BRI(vector<inT>& Xn, inT(*f)(inT x), int d)

takes Xn by reference and the integer d by value and generates the vector Yn = f (Xn)
using the pointer to an external function f

BRI(string nodes, inT(*f)(inT x), int d)

fills the vector Xn with the content of the file nodes, generates the vector Yn = f (Xn)
using the pointer to an external function f , and takes the integer d by value

BRI(Nodes type, inT a, inT b, int n, inT(*f)(inT x), int d)

generates the vector Xn by knowing the type of nodes (UNIFORM, CHEBYSHEV, CHEBY-
SHEV_EXTENDED) and the endpoints of the interval [a, b] in which they are defined, gen-
erates the vector Yn = f (Xn) using the pointer to an external function f , and takes the
integers n and d by value, as well as a and b

101

Functions to modify the input

void set_nodes(const vector<inT>& Xn)

changes the nodes taking the new vector Xn by reference

void set_nodes(string nodes)

changes the nodes filling the new vector Xn with the content of the file nodes

void set_nodes(Nodes type, inT a, inT b, int n)

changes the nodes generating the new vector Xn by knowing the type of nodes (UNIFORM,
CHEBYSHEV, CHEBYSHEV_EXTENDED), the endpoints of the interval [a, b] in which they
are defined, and the integer n, which are passed by value

void set_nodes(int j, inT xj)

changes only the j-th entry of the vector Xn with the value x j

void set_data(const vector<inT>& Yn)

changes the data taking the new vector Yn by reference

void set_data(string data)

changes the data filling the new vector Yn with the content of the file data

void set_data(inT(*f)(inT x))

changes the data generating the new vector Yn = f (Xn) having the pointer to the external
function f

void set_data(int j, inT yj)

changes only the j-th entry of the vector Yn with the value y j

void set_degree(int d)

changes the integer d taking the new one by value

void add_point(inT xj, inT yj)

adds x j and y j in the vectors Xn and Yn respectively

void remove_point(int j)

removes the j-th entry of the vectors Xn and Yn

Functions to get the input and the weights

const vector<inT>& get_nodes()

returns Xn

const inT& get_nodes(int j)

102

returns the j-th entry of the vector Xn

const vector<inT>& get_data()

returns Yn

const inT& get_data(int j)

returns the j-th entry of the vector Yn

const vector<outT>& get_weights()

returns Wn

const outT& get_weight(int j)

returns the jth entry of the vector Wn

const vector<outT>& get_weights(int& Cw)

returns Wn and the rescaling factor of the weights Cw.

Control flags

void guard_on()

void guard_off()

the guard flag can be turned on and off; if it is set, then the weights, the evaluation of
the barycentric rational interpolant, and the stability-related functions are computed in
guarded mode

void stability_on()

void stability_off()

the stability flag can be turned on and off; if it is set, then the code evaluates the barycen-
tric rational interpolant using the numerically most stable algorithm

void efficiency_on()

void efficiency_off()

the efficiency flag can be turned on and off; if it is set and the evaluation of the barycen-
tric rational interpolant is done with the first barycentric form, then the most efficient
algorithm is used

Evaluation of the barycentric rational interpolant

Hereafter, all the functions that take an evaluation point x as input can be also called with a
vector of evaluation points, returning a vector of values in this case. Moreover, apart from the
NUMERATOR function, all the others take also the parameter A of type Algo as input. By default,
it is set to SMART, so that, if omitted, the function autonomously decides which algorithm to use.
Otherwise, it can take one value among {FIRST_DEF, FIRST_EFF, SECOND} to use the standard
implementation of the first barycentric form, the efficient variant, or the second barycentric
form, respectively.
outT numerator(inT x)

vector<outT> numerator(vector<inT>& x)

103

computes the numerator N at the evaluation point x

outT numerator(inT x, int& CN)

vector<outT> numerator(vector<inT>& x, vector<int>& CN)

computes the numerator N at the evaluation point x keeping track of the rescaling factor
CN

outT denominator(inT x, Algo A = SMART)
vector<outT> denominator(vector<inT>& x, Algo A = SMART)

computes the denominator D at the evaluation point x

outT denominator(inT x, int& CD, Algo A = SMART)
vector<outT> denominator(vector<inT>& x, vector<int>& CD, Algo A = SMART)

computes the denominator D at the evaluation point x keeping track of the rescaling
factor CD

outT eval(inT x, Algo A = SMART)
vector<outT> eval(vector<inT>& x, Algo A = SMART)

evaluates the interpolant r at the evaluation point x

outT eval(int j, inT h, Algo A = SMART)

evaluates the interpolant r at the evaluation point x j + h

Stability-related functions

outT cond(inT x)

vector<outT> cond(vector<inT>& x)

computes the condition number κ(x) at the evaluation point x

outT leb(inT x)

vector<outT> leb(vector<inT>& x)

computes the Lebesgue function Λn(x) at the evaluation point x

outT gamma(inT x)

vector<outT> gamma(vector<inT>& x)

computes the function Γd(x) at the evaluation point x

outT cond()

computes the value maxx∈[x0,xn] κ(x)

outT leb()

computes the value maxx∈[x0,xn]Λn(x)

outT gamma()

computes the value maxx∈[x0,xn] Γd(x)

104

Bibliography

[1] Agrawal, N. et al. [2022]. BOOST 1.81.0 Library Documentation – math toolkit 3.3.0 – In-
terpolation – Barycentric Rational Interpolation, https://www.boost.org/doc/libs/1_

81_0/libs/math/doc/html/math_toolkit/barycentric.html. [Online; accessed 23-
February-2023].

[2] Anisimov, D. [2017]. Analysis and new constructions of generalized barycentric coordinates
in 2D, PhD thesis, Faculty of Informatics, Universitá della Svizzera italiana.

[3] Anisimov, D., Bommes, D., Hormann, K. and Alliez, P. [2015]. 2D generalized barycentric
coordinates, CGAL User and Reference Manual, 4.6 edn, CGAL Editorial Board.
URL: https://doc.cgal.org/4.6/Barycentric_coordinates_2/index.html#Chapter_2D_Genera
lized_Barycentric_Coordinates

[4] Baker, R. D. and McHale, I. G. [2015]. Time varying ratings in association football: the
all-time greatest team is..., Journal of the Royal Statistical Society: Series A 178(2): 481–
492.

[5] Berrut, J.-P. [1988]. Rational functions for guaranteed and experimentally well-
conditioned global interpolation, Computers & Mathematics with Applications 15(1): 1–16.

[6] Berrut, J.-P., Hosseini, S. A. and Klein, G. [2014]. The linear barycentric rational
quadrature method for Volterra integral equations, SIAM Journal on Scientific Computing
36(1): A105–A123.

[7] Berrut, J.-P. and Mittelmann, H. D. [1997]. Lebesgue constant minimizing linear rational
interpolation of continuous functions over the interval, Computers & Mathematics with
Applications 33(6): 77–86.

[8] Berrut, J.-P. and Trefethen, L. N. [2004]. Barycentric Lagrange interpolation, SIAM Review
46(3): 501–517.

[9] Bézier, P. [1966]. Définition numérique des courbes et surfaces, Automatisme 11: 625–632.

[10] Bézier, P. [1967]. Définition numérique des courbes et surfaces (ii), Automatisme 12: 17–
21.

[11] Bochkanov, S. [2022]. ALGLIB 3.20.0 User Guide – Interpolation and fitting – Ratio-
nal interpolation, http://www.alglib.net/interpolation/rational.php. [Online; ac-
cessed 23-February-2023].

105

https://www.boost.org/doc/libs/1_81_0/libs/math/doc/html/math_toolkit/barycentric.html
https://www.boost.org/doc/libs/1_81_0/libs/math/doc/html/math_toolkit/barycentric.html
http://www.alglib.net/interpolation/rational.php

106 Bibliography

[12] Boehm, W. and Müller, A. [1999]. On de Casteljau’s algorithm, Computer Aided Geometric
Design 16(7): 587–605.

[13] Bos, L., De Marchi, S., Hormann, K. and Klein, G. [2012]. On the Lebesgue con-
stant of barycentric rational interpolation at equidistant nodes, Numerische Mathematik
121(3): 461–471.

[14] Bos, L., De Marchi, S., Hormann, K. and Sidon, J. [2013]. Bounding the Lebesgue constant
for Berrut’s rational interpolant at general nodes, Journal of Approximation Theory 169: 7–
22.

[15] Bronshtein, I. N., Semendyayev, K. A., Musiol, G. and Mühlig, H. [2015]. Handbook of
Mathematics, 6th edn, Springer, Berlin, Heidelberg.

[16] Brutman, L. [1996]. Lebesgue functions for polynomial interpolation - a survey, Annals of
Numerical Mathematics 4: 111–128.

[17] Corless, R. M. and Fillion, N. [2013]. A Graduate Introduction to Numerical Methods, 1
edn, Springer, New York.

[18] de Camargo, A. P. [2016]. On the numerical stability of Floater–Hormann’s rational inter-
polant, Numerical Algorithms 72(1): 131–152.

[19] de Casteljau, P. [1959]. Outillages methodes calcul, Technical report, André Citroën Auto-
mobile SA.

[20] Dejdumrong, N. [2006]. Rational DP-Ball curves, International Conference on Computer
Graphics, Imaging and Visualisation, CGIV’06, pp. 478–483.

[21] Dejdumrong, N. [2008]. Efficient algorithms for non-rational and rational Bézier curves,
International Conference on Computer Graphics, Imaging and Visualisation, CGIV’08,
pp. 109–114.

[22] Dejdumrong, N., Phien, H., Tien, H. and Lay, K. [2001]. Rational Wang–Ball curves,
International Journal of Mathematical Education in Science and Technology 32(4): 565–
584.

[23] Delgado, J. and Peña, J. M. [2003]. A shape preserving representation with an evaluation
algorithm of linear complexity, Computer Aided Geometric Design 20(1): 1–10.

[24] Delgado, J. and Peña, J. M. [2004]. A shape preserving representation for rational curves
with efficient evaluation algorithm, in M. Sarfraz (ed.), Advances in Geometric Modeling,
John Wiley, Chichester, chapter 3, pp. 39–54.

[25] Ellingsrud, A. J., Boullé, N., Farrell, P. E. and Rognes, M. E. [2021]. Accurate numerical
simulation of electrodiffusion and water movement in brain tissue, Mathematical Medicine
and Biology: A Journal of the IMA 38(4): 516–551.

[26] Farin, G. [1983]. Algorithms for rational Bézier curves, Computer-Aided Design 15(2): 73–
77.

107 Bibliography

[27] Farin, G. [2001]. Curves and Surfaces for CAGD: A Practical Guide, The Morgan Kaufmann
Series in Computer Graphics and Geometric Modeling, 5th edn, Morgan Kaufmann, San
Francisco.

[28] Floater, M. S. [2003]. Mean value coordinates, Computer Aided Geometric Design
20(1): 19–27.

[29] Floater, M. S. [2014]. Wachspress and mean value coordinates, in G. E. Fasshauer and L. L.
Schumaker (eds), Approximation Theory XIV: San Antonio 2013, Springer International
Publishing, Cham, pp. 81–102.

[30] Floater, M. S. and Hormann, K. [2007]. Barycentric rational interpolation with no poles
and high rates of approximation, Numerische Mathematik 107(2): 315–331.

[31] Floater, M. S., Hormann, K. and Kós, G. [2006]. A general construction of barycentric
coordinates over convex polygons, Advances in Computational Mathematics 24(1–4): 311–
331.

[32] Floater, M. S., Kós, G. and Reimers, M. [2005]. Mean value coordinates in 3D, Computer
Aided Geometric Design 22(7): 623–631.

[33] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P. and Zimmermann, P. [2007]. MPFR: A
multiple-precision binary floating-point library with correct rounding, ACM Transactions
on Mathematical Software 33(2).

[34] Fuda, C., Campagna, R. and Hormann, K. [2022]. On the numerical stability of linear
barycentric rational interpolation, Numerische Mathematik 152(4): 761–786.

[35] Fuda, C. and Hormann, K. [2024a]. Algorithm 1048: A C++ Class for Robust Linear
Barycentric Rational Interpolation, ACM Transactions on Mathematical Software 50(3).

[36] Fuda, C. and Hormann, K. [2024b]. A new stable method to compute mean value coor-
dinates, Computer Aided Geometric Design 111: Article 102310, 16 pages. Proceedings of
GMP.

[37] Fuda, C., Ramanantoanina, A. and Hormann, K. [2024]. A comprehensive comparison of
algorithms for evaluating rational bézier curves, Dolomites Research Notes on Approxima-
tion 17(3): 56–79.

[38] Gohberg, I. and Koltracht, I. [1993]. Mixed, componentwise, and structured condition
numbers, SIAM Journal on Matrix Analysis and Applications 14(3): 688–704.

[39] Goldman, R. [2003]. Pyramid Algorithms, The Morgan Kaufmann Series in Computer
Graphics, Morgan Kaufmann, San Francisco, chapter 5, pp. 187–306.

[40] Güttel, S. and Klein, G. [2012]. Convergence of linear barycentric rational interpolation
for analytic functions, SIAM Journal on Numerical Analysis 50(5): 2560–2580.

[41] Harbrecht, H. and Multerer, M. [2022]. Algorithmische Mathematik, 1 edn, Springer Spek-
trum, Berlin Heidelberg.

[42] Higham, N. J. [1993]. The accuracy of floating point summation, SIAM Journal on Scien-
tific Computing 14(4): 783–799.

108 Bibliography

[43] Higham, N. J. [2002]. Accuracy and Stability of Numerical Algorithms, 2nd edn, SIAM,
Philadelphia.

[44] Higham, N. J. [2004]. The numerical stability of barycentric Lagrange interpolation, IMA
Journal of Numerical Analysis 24(4): 547–556.

[45] Holoborodko, P. [2008]. Multiple precision floating point arithmetic library for C++,
http://www.holoborodko.com/pavel/mpfr/. [Online; accessed 17-June-2024].

[46] Hormann, K. [2014]. Barycentric interpolation, Approximation Theory XIV: San Antonio
2013, Vol. 83 of Springer Proceedings in Mathematics & Statistics, Springer, New York,
pp. 197–218.

[47] Hormann, K. and Floater, M. S. [2006]. Mean value coordinates for arbitrary planar
polygons, ACM Transactions on Graphics 25(4): 1424–1441.

[48] Hormann, K., Klein, G. and De Marchi, S. [2012]. Barycentric rational interpolation at
quasi-equidistant nodes, Dolomites Research Notes on Approximation 5: 1–6.

[49] Hormann, K. and Schaefer, S. [2016]. Pyramid algorithms for barycentric rational inter-
polation, Computer Aided Geometric Design 42: 1–6.

[50] Hormann, K. and Sukumar, N. (eds) [2017]. Generalized Barycentric Coordinates in Com-
puter Graphics and Computational Mechanics, Taylor & Francis, CRC Press, Boca Raton.

[51] Hu, S.-M., Wang, G.-Z. and Jin, T.-G. [1996]. Properties of two types of generalized Ball
curves, Computer-Aided Design 28(2): 125–133.

[52] IEEE Standard for Floating-Point Arithmetic [2019]. New York. IEEE Std 754-2019 (Revi-
sion of IEEE Std 754-2008).

[53] Jianying, W., Haizhao, L., Zheng, Q. and Dong, Y. [2019]. Mapped Chebyshev pseu-
dospectral methods for optimal trajectory planning of differentially flat hypersonic vehicle
systems, Aerospace Science and Technology 89: 420–430.

[54] Ju, T., Schaefer, S. and Warren, J. [2005]. Mean value coordinates for closed triangular
meshes, ACM Transactions on Graphics 24(3): 561–566.

[55] Klein, G. and Berrut, J.-P. [2012]. Linear barycentric rational quadrature, BIT Numerical
Mathematics 52(2): 407–424.

[56] Lee, T.-S., Radak, B. K., Huang, M., Wong, K.-Y. and York, D. M. [2014]. Roadmaps through
free energy landscapes calculated using the multidimensional vFEP approach, Journal of
Chemical Theory and Computation 10(1): 24–34.

[57] Lee, T.-S., Radak, B. K., Pabis, A. and York, D. M. [2013]. A new maximum likelihood ap-
proach for free energy profile construction from molecular simulations, Journal of Chem-
ical Theory and Computation 9(1): 153–164.

[58] Leffell, J., Murman, S. and Pulliam, T. [2013]. An extension of the time-spectral method
to overset solvers, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum
and Aerospace Exposition, American Institute of Aeronautics and Astronautics, Reston, VA.

http://www.holoborodko.com/pavel/mpfr/

109 Bibliography

[59] Li, J. and Cheng, Y. [2021]. Linear barycentric rational collocation method for solving heat
conduction equation, Numerical Methods for Partial Differential Equations 37(1): 533–545.

[60] Loosemore, S., Stallman, R. M., McGrath, R., Oram, A. and Drepper, U. [2023]. Known
maximum errors in math functions, The GNU C Library Reference Manual, chapter 19.7,
pp. 561–601.
URL: https://www.gnu.org/s/libc/manual/pdf/libc.pdf

[61] Luo, W.-H., Huang, T.-Z., Gu, X.-M. and Liu, Y. [2017]. Barycentric rational collocation
methods for a class of nonlinear parabolic partial differential equations, Applied Mathe-
matics Letters 68: 13–19.

[62] MacMillen, D. [2021]. Baryrational, https://github.com/macd/BaryRational.jl.
[Online; accessed 23-February-2023].

[63] Mascarenhas, W. and Camargo, A. [2014]. The backward stability of the second barycen-
tric formula for interpolation, Dolomites Research Notes on Approximation 7(1): 1–12.

[64] Möbius, A. [1827]. Der barycentrische Calcül, Johann Ambrosius Barth Verlag, Leipzig.

[65] Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G.,
Revol, N., Stehlé, D. and Torres, S. [2010]. Handbook of Floating-Point Arithmetic, 1 edn,
Birkhäuser, Boston.

[66] NVIDIA [2024]. Mathematical functions, CUDA C++ Programming Guide, Release 12.4,
chapter 16, pp. 373–383.
URL: https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[67] Pachón, R. [2010]. Algorithms for Polynomial and Rational Approximation, PhD thesis,
University of Oxford.

[68] Phien, H. N. and Dejdumrong, N. [2000]. Efficient algorithms for Bézier curves, Computer
Aided Geometric Design 17(3): 247–250.

[69] Quarteroni, A., Sacco, R., Saleri, F. and Gervasio, P. [2014]. Matematica Numerica, 4 edn,
Springer-Verlag, Italia.

[70] Ramanantoanina, A. and Hormann, K. [2021]. New shape control tools for rational Bézier
curve design, Computer Aided Geometric Design 88: 102003.

[71] Rump, S. M. [2019]. Error bounds for computer arithmetics, 26th IEEE Symposium on
Computer Arithmetic, ARITH-26, Kyoto, pp. 1–14.

[72] Salazar Celis, O. [2008]. Practical Rational Interpolation of Exact and Inexact Data: Theory
and Algorithms, PhD thesis, Department of Computer Science, University of Antwerp.

[73] Salzer, H. E. [1972]. Lagrangian interpolation at the Chebyshev points xn,v ≡ cos(vπ/n),
v = 0(1)n; some unnoted advantages, The Computer Journal 15(2): 156–159.

[74] Schneider, C. and Werner, W. [1986]. Some new aspects of rational interpolation, Mathe-
matics of Computation 47(175): 285–299.

https://github.com/macd/BaryRational.jl

110 Bibliography

[75] Schumaker, L. L. and Volk, W. [1986]. Efficient evaluation of multivariate polynomials,
Computer Aided Geometric Design 3(2): 149–154.

[76] Smith, S. J. [2006]. Lebesgue constants in polynomial interpolation., Annales Mathemat-
icae et Informaticae 33: 109–123.

[77] Teukolsky, S., Flannery, B. P., Vetterling, W. T. and Press, W. H. [2007]. Numerical Recipes
in C: The Art of Scientific Computing, third edn, Cambridge University Press, New York,
chapter 3.4.1, pp. 127–129.

[78] Trefethen, L. N. and Bau, D. [1997]. Numerical Linear Algebra, SIAM, Philadelphia.

[79] Wachspress, E. L. [1975]. A rational finite element basis, Academic Press, New York.

[80] Wang, G. [1987]. Ball curve of high degree and its geometric properties, Applied Mathe-
matics: A Journal of Chinese Universities 2(1): 126–140.

[81] Warren, J. D. [1993]. An efficient algorithm for evaluating polynomials in the Pòlya basis,
in H. Hagen, G. E. Farin, H. Noltemeier and R. F. Albrecht (eds), Geometric Modelling,
Dagstuhl, Germany, 1993, Vol. 10 of Computing Supplementa, Springer, pp. 357–361.

[82] Woźny, P. and Chudy, F. [2020]. Linear-time geometric algorithm for evaluating Bézier
curves, Computer-Aided Design 118: 102760.

[83] Zhuo, Y., Wu, B., Yao, L., Xiao, G. and Shen, Q. [2022]. Numerical simulation of the
temperature in a train brake disc by barycentric rational interpolation collocation method,
SSRN preprint, 22 pages.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Outline of the thesis

	Preliminaries
	Floating-point number system
	Overflow and underflow
	Floating-point arithmetic operations
	Floating-point elementary functions

	Conditioning of a problem
	Numerical stability of an algorithm

	The numerical stability of linear barycentric rational interpolation
	State of the art
	Our contribution
	Forward stability
	Computing the weights i and evaluating the functions i
	Backward stability
	Upper bound for d
	Numerical experiments
	Comparison of algorithms for the first barycentric form
	Worst-case comparison of first and second barycentric form
	Evaluation close to roots and nodes

	A C++ class for robust linear barycentric rational interpolation
	Class overview
	Robust procedure for rescale operation
	Barycentric weights
	Evaluation of the barycentric rational interpolant
	Evaluation close to a node

	Stability-related functions

	A new stable method to compute mean value coordinates
	State of the art
	Our contribution
	Comparative empirical study on the numerical stability
	A new stable formula for mean value coordinates
	Theoretical analysis of the numerical stability
	Error analysis of all formulas
	Numerical experiments
	Stability comparison
	Efficiency comparison

	A comprehensive comparison on the numerical stability of algorithms for evaluating rational Bézier curves
	Existing methods for computing rational Bézier curves
	Rational de Casteljau algorithms
	Horner-like algorithms
	Geometric approach
	Wang–Ball algorithm
	Barycentric algorithm

	Numerical stability
	Convex combinations
	Horner schemes
	Geometric approach
	Barycentric approach
	Summary

	Numerical experiments

	Conclusion
	User manual for the BRI class
	Bibliography

