
UML is Back. Or is it?
Investigating the Past, Present, and Future of UML

in Open Source Software
Joseph Romeo, Marco Raglianti, Csaba Nagy, Michele Lanza

REVEAL @ Software Institute – USI, Lugano, Switzerland

Abstract—Since its inception, UML, the Unified Modeling
Language, has been touted as the way to go when it comes to
designing and documenting software systems. While being an
integral part of many university software engineering programs,
UML has found little consideration among developers, especially
in open source software. Reasons for this include that UML
shares some shortcomings with other forms of documentation
(e.g., limited availability, outdatedness, inadequate level of detail).

We present a study to investigate the evolution and the current
situation regarding the use of UML in open source projects. We
mined and analyzed ∼13k GitHub projects, developing strategies
and heuristics to identify UML files through their extensions and
contents, for a quantitative analysis of two decades of evolution of
the usage of UML. We explored the popularity of UML, derived
characteristics of projects leveraging UML, and analyzed the
authors, creators and maintainers, of UML artifacts.

Our study confirms that UML is indeed still under-utilized. At
the same time we found evidence of a resurgence coinciding with
the popularity of human-readable text-based formats, defined
and used by tools like PlantUML and Mermaid. We discuss how
identifying and addressing the new challenges implied by this
resurgence could impact the future of UML.

Index Terms—UML, human-readable text-based UML, soft-
ware design evolution, software documentation evolution

I. INTRODUCTION

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: in press.

Andrew Watson said that the history of visual modeling
can be divided cleanly into two eras, “Before UML” and
“After UML” [1]. The period before UML was a time of
division and strife, named the “Method Wars” era [2]. Booch,
Rumbaugh, and Jacobson, a.k.a. the “Three Amigos”, creators
of three popular object-oriented development approaches [3]–
[5], combined their efforts towards a single, Unified Modeling
Language (UML) [6]. The adoption of UML as a standard by
the Object Management Group in 1997 marked the end of the
method wars and the beginning of the “After UML” era.

UML is one of the most prominent modeling languages
used in software design and development [7]. It has been used
for automatic code generation for embedded systems [8], to
create workflow diagrams for business processes [9], [10], to
design [7], measure [11], maintain [12], comprehend [13], and
reuse [14], [15] software systems. We focus on UML usage
in designing and documenting software systems.

Despite the apparent popularity of UML in academic pub-
lications, its history hints at a progressive stagnation. Minor
revisions of the UML specification have been issued with an
average yearly pace between 1997 and 2003 [16]. UML 2.0
took over two years to be released, losing the momentum.

Last but not least, UML 2.5.1, the latest version of the spec-
ification, dates back to December 2017 without any updates
in more than six years.

One of the main shortcomings of UML from a practitioner’s
perspective is the availability and quality of its tool sup-
port [17]. UML’s decline in popularity since 20041 exacerbated
the problem. This decline culminated with the discontinuation
of language support in one of the major Integrated Develop-
ment Environments (IDEs): Microsoft Visual Studio removed
UML support in 2016 due to underutilization by clients, to
focus development efforts on features deemed more relevant
for a larger share of the user base.2

Given the benefits of UML diagrams for system comprehen-
sion, design, and documentation (e.g., UML studies with the
Lindholmen dataset [18]), we aim to understand why UML is
still underutilized, focusing on Open Source Software (OSS).

We investigated ∼13k OSS repositories to find those con-
taining UML, identifying commonalities and differences. After
tagging all UML files through their extensions and contents,
we found that only 4.2% of the repositories in our dataset
(552 out of 13,152) contained UML diagram files in the
last 20 years. In the same time-span, UML file formats
have significantly changed. Our findings show the progressive
abandonment of dedicated UML graphical tools first, and
changes in the role of IDE plugins later.

More importantly, we found empirical evidence of a resur-
gence of UML, after 2017, coinciding with the advent of
human-readable, versionable, and easily maintainable text-
based UML files (e.g., PlantUML, Mermaid). This resurgence
did not modify the natural tendency to neglect documentation
and its maintenance. We conclude by analyzing the relation-
ships among UML, repository activity, community, and human
factors, focusing on UML artifact authors and their commits.

UML’s decline in popularity and language stagnation are
now countered by a renewed interest in human-readable text-
based UML. Dropping special tools in favor of generic text
editors, these formats introduce new challenges. For example,
each tool uses a slightly different subset of UML, sometimes
with an ambiguous specification. Moreover, an effective and
consistent layout of visual elements is usually impossible with
these tools, severely impacting their effectiveness [19].

1See https://tinyurl.com/google-trends-uml
2See https://www.infoworld.com/article/3131600/

https://tinyurl.com/google-trends-uml
https://www.infoworld.com/article/3131600/

We argue that Watson’s split needs to be revised and that
a third era has already started. Only a convergence between
language specification evolution, UML human-readable text
file formats standardization, and improved tool support can
address these issues for a (new or real?) golden age of UML.

II. UML AND THE STATE OF THE ART

UML is a visual modeling language with a formal specifi-
cation, standardized in 1997 by the Object Modeling Group.
Touted as the de facto standard for modeling software systems,
UML allows developers to visually describe the system, what
it does, and how. Specialized software is used to create UML
diagrams [20], with an emphasis on their syntactic correctness.

Software engineering courses in university computer science
curricula teach UML to students as a tool to reason about
software, its design, and its documentation [21]. The relevance
of UML in teaching is not matched by its usage in practice,
though: In a survey with 80 software architects, Lange et al.
found that UML in industry only loosely adheres to the official
specification [22]. Nevertheless, UML is a valid instrument to
teach topics related to software architecture. Rukmono and
Chaudron found that peer feedback on UML diagrams can
improve students’ learning of software design [19].

High-quality documentation increases the success chances
of a software project [23]–[25]. This is especially true for
UML diagrams and documentation based on visual model-
ing. Software design diagrams promote active discussion in
homogeneous and cross-functional teams [26]. Developers
achieve better functional correctness when making changes
with accurate and up-to-date design diagrams [23], [27].

Although most results agree on the usefulness of UML,
some exceptions exist. Scanniello et al. found that UML mod-
els produced in the requirements analysis process influence
neither the comprehensibility nor the modifiability of source
code [28]. Gravino et al. found that the time to accomplish
comprehension tasks for less experienced participants is neg-
atively affected when UML design models are provided in
addition to source code [29]. There is a necessary trade-off
between correctness, quality, and time to complete software
maintenance tasks when leveraging UML diagrams [23].

UML drawing software tools leverage the visual nature of
the language, providing drawing capabilities similar to white-
board sketches, mixing pen and paper with digital means [30]–
[32]. Bergström et al. investigated the automated assessment
of UML class diagram layouts via machine learning, since el-
ement spacing and rectangle orthogonality play a fundamental
role in the perceived quality of a UML class diagram [33].
Human-readable text-based UML takes away control from the
diagram’s creator, for example, on how elements are laid out,
their spacing, and where connecting lines are drawn. This
impairs what Rukmono and Chaudron found to be key aspects
of UML diagrams’ understanding and usability [19].

Badreddin et al. investigated the underutilization of models
in OSS and a potential language-based solution: Umple [34].
Robles et al. and Hebig et al. already investigated UML
models in the lifespan of GitHub projects by focusing on

images and a limited subset of non-image file extensions (.uml
and .xmi) [35], [36]. While the classifier proposed by Ho-
Quang et al. [37] has been leveraged to identify class diagrams,
manual analysis was performed on the remaining images to
discriminate other types of diagrams. Our work focuses on
the evolution of text-based representations of UML as a more
reliably parsable and easily manageable format and the Umple
format is one of those we analyzed.

Previous studies used surveys with developers and soft-
ware practitioners to investigate their perception and usage of
software modeling [38]. Ho-Quang et al. analyzed the role
of modeling in OSS development [39]. Analyzing projects
containing UML files, they used a method similar to ours to
retrieve UML files for project selection, but our study aims to
address different research questions and to provide empirical
evidence based on the analysis of a large dataset of UML
artifacts spanning 20 years. Besides updating the analysis of
UML usage in OSS with the trends in the last 6 years, the
phenomenon emerging between 2017 and 2022 present new
and distinctive characteristics that warrant specific attention.

The resurgence of UML with human-readable text-based
formats, one of the main findings of the present study, is indeed
an emerging phenomenon that prompts for better approaches
and tools. For example, we need to address layout issues,
without giving back the ease of use and maintainability gained
by making the graphical representation almost a side-effect.

III. RESEARCH QUESTIONS

Given the advantages that the use of UML should provide,
according to the literature, and the fact that a great effort is
spent in teaching the language in universities, the fundamental
meta-question of our analysis is:

META-QUESTION

Why is UML still underutilized?

As any why question has no imminent answer, we focus in
the following on four distinct research questions pertaining to
the format, diffusion, demographic, and the designers of UML
diagrams, which we answer through an empirical study.

We define a strategy to semi-automatically capture UML
artifacts, based on file formats. This necessary step to collect
data on the use of UML leads to our first research question:

RQ1 FORMAT

What formats are UML diagrams found in?

With a dataset of 20 years of history of semi-automatically
gathered UML artifacts, we focus on the evolution of UML
usage trends at large, from the beginning to the current state:

RQ2 DIFFUSION

How widespread is UML in open source software?

UML / non-UML
Tagged Files

Extension-based
Heuristic Tagging

UML Files Tagging
for each UML extension file

29 Tagged UML
Extensions

Example/Counter-Example
for each UML candidate extension

Example

Counter-
Example

Example
Search

0

1+

Drop
non-UML and
non-Parsable

55 UML
Extensions

< / >

29 UML
Tools

Import/Export
Extensions

Extension Exploration

*.*uml*

…/*uml*/**/*.*

2+ Repositories

74 Candidate
UML Extensions

10 Not-in-Dataset
Extensions

27 Dropped
Extensions

.ht
ml .jpg ….cd

dz .mfj …

GitHub

Dataset
Creation

Repository
Information

Cloned
Repository

Extension
Exploration

UML Files
Tagging

Tagged Files

Author
Anti-Aliasing

Repository
Information+

Author
Analysis

Local

Example/
Counter-Example

RQ4

RQ1
RQ2
RQ3

Author
Analysis

RQs

Fig. 1. Approach Overview (left) and Detailed UML Extraction (right)

Different characteristics of the projects using UML, with
respect to activity (e.g., commits, releases), participation (e.g.,
pull requests, contributors), or community engagement (e.g.,
watchers, stars), could be used to advocate for the ubiquitous
adoption of UML. If UML would contribute positively to
certain metrics (e.g., participation), its use should be further
encouraged based on these benefits. Otherwise, the meta-
question might be dismissed by just saying that UML is
under-utilized because its practical usefulness is overestimated.
Which leads to:

RQ3 DEMOGRAPHIC

What types of projects include UML diagrams?

Finally, our focus shifts from repositories to contributors to
analyze the characteristics of key figures in the lifecycle of
UML artifacts. If no significant difference can be found in the
repositories, can human factors related to UML contributors
(those actively working with UML artifacts) motivate the
under-utilization of UML? Hence our final research question:

RQ4 DESIGNERS

Who is creating and maintaining UML diagrams?

IV. DATASET CREATION

We used the SEART GitHub Search3 (GHS) tool from
Dabic et al. [40] to gather an initial set of GitHub projects.
After excluding forks, to avoid “polluting” the dataset with
social forks [41], [42], we selected projects with at least
2,000 commits to eliminate toy repositories. We selected
projects with at least 10 contributors to ensure the need for
collaboration, which increases the utility of diagrams. We
selected projects with at least 100 stars to ensure projects are
considered useful by the OSS community.

Our final dataset consists of 13,152 repositories, which we
cloned locally on April 1, 2023. We performed a deep cloning
for each project to analyze their entire history. We extracted
with cloc [43] the number of lines of code (LOCs) for each
project and removed those with less than 10k LOCs.

3See https://seart-ghs.si.usi.ch/

cloc counts LOC in many different languages, we found
278 of them, for example C, C++, but also C/C++ Headers
and JSON. We used cloc mainly to remove from our dataset
emptied projects which kept the statistics we used as GHS
filtering criteria. We stored summary information about each
repository in a PostgreSQL database. Table I provides descrip-
tive statistics about the complete dataset.

TABLE I
STATISTICS OF THE DATASET WITH 13,152 PROJECTS

Metric Min Median Mean Max Total
Commits 2,000 4,214 9,506 841 K 125.0M
Contributors 10 63 112 13 K *1.5M
Files 7 849 2,330 128 K 30.6M
LOCs 10,014 127,785 485,026 46M 6.4 B
Stars 100 708 3,201 322 K 42.1M

*Non-unique total contributors.

V. MINING AND ANALYZING UML REPOSITORIES

In Figure 1, we show an overview of our approach to mining
and analyzing the repositories on which we base our study.

We split the meta-question into four research questions
(RQ1−4) on the usage and the nature of UML in OSS
repositories. For each research question we give an overview,
then we present our methodology, results, and findings.

A. RQ1: What Formats are UML Diagrams Found in?

File extensions are an efficient way to discriminate file
types, but they are not sufficient to uniquely identify UML
diagrams. Thus, to obtain a “handle” on UML artifacts useful
to address all the RQs, we implemented strategies to manually
find examples and counter-examples of UML diagrams for
different file extensions. For each potential UML file extension
(i.e., those with at least a UML example), we devised heuristics
to tag semi-automatically the files that contain UML. In the
following we describe each step of the UML extraction pro-
cedure. In Figure 1 (right), we show a “zoomed-in” overview.

Extension Exploration. We created a list of candidate UML
extensions using the following approach: We searched for
“top UML diagramming tools” on Google and identified 29
popular tools for creating UML diagrams. We downloaded and
installed each tool to determine the supported file extensions.
We checked their import, export, and save functionalities.

https://seart-ghs.si.usi.ch/

We could not install or run 5 programs, for example, due
to licensing issues. For those, we relied on the documentation
or YouTube videos to determine which file extensions were
supported. We complemented this approach by searching for
all extensions with “uml” in the name or in any part of
the file path and present in at least two repositories. After
generating the list of candidates, we removed any extensions
for which we found no examples in our dataset (i.e., a tool’s
unused import/export format), along with any extension used
by known non-UML file types (e.g., .java, .jar, .am).

Example and Counter-Example. For each file extension
we searched for an example and a counter-example. Extensions
for which we could find at least an example are valid UML
extensions. Those for which we could find at least one
counter-example are not UML-specific. We randomly selected,
retrieved, and manually inspected one file for each extension,
to confirm whether it was a UML diagram or not.

We were left either with an example or a counter-example.
If, for example, we had a counter-example for .txt files, we
then searched all .txt files to find an example of UML. In this
search we tried to reduce the number of files to be inspected
before finding an example. If we were looking for a UML
example, we first analyzed the files whose path contains the
string “/uml/”. Then we searched for the following keywords
in the file names (case insensitive): architecture, uml, diagram,

sequence, class, usecase, state, activity, component, deploy-
ment, object, communication, composite, interaction, collabo-
ration, package, profile, and timing (part of this keyword list
is comprised of the names of the 14 UML diagram types). We
inspected these files first. For extensions with more than 150
files, we explored a statistically significant sample (confidence
level = 95%, margin of error = 5%). Then, we removed
extensions that are too generic (e.g., .html, .md)4 and formats
whose content we cannot parse automatically (e.g., .jpg, .png).

To recap, the procedure has multiple steps with branches
(see Figure 1 right). If a randomly sampled file for an
extension is an example (UML file with that extension), we
mark the extension as UML (not yet exclusive). Then, we look
for counter-examples for the extension to see if this is a UML-
exclusive extension or if we can find both UML and non-UML
files with this extension. If we find a counter-example, this is
not a UML-exclusive extension. If the first randomly selected
file is a counter-example (not a UML file), with no examples
found in the second step, it corresponds to a format to discard
(no UML files found with that extension).

4The exclusion of these file extensions is a potential limitation of our study
but it is mitigated by the fact that, to the best of our knowledge, no tools except
EnterpriseArchitect can import HTML or MarkDown files to produce UML
diagrams, rendering the collaborative maintenance of such artifacts impractical
(see uml-tools-extensions.md in the replication package for a list of
extensions importable and exportable by each tool).

.zargo
.argo
.pgml
.zuml
.prj

.diagram
.dia
.uxf
.uml
.xmi

.ecore
.ucls

.umlclass
.mmd

.plantuml
.puml

E
xt

e
n
si

o
n

1999 2000 2001 2002 2003 2004

.zargo
.argo
.pgml
.zuml
.prj

.diagram
.dia
.uxf
.uml
.xmi

.ecore
.ucls

.umlclass
.mmd

.plantuml
.puml

E
xt

e
n
si

o
n

2005 2006 2007 2008 2009 2010

.zargo
.argo
.pgml
.zuml
.prj

.diagram
.dia
.uxf
.uml
.xmi

.ecore
.ucls

.umlclass
.mmd

.plantuml
.puml

E
xt

e
n
si

o
n

2011 2012 2013 2014 2015 2016

.zargo
.argo
.pgml
.zuml
.prj

.diagram
.dia
.uxf
.uml
.xmi

.ecore
.ucls

.umlclass
.mmd

.plantuml
.puml

E
xt

e
n
si

o
n

2017 2018 2019 2020 2021 2022

0 20 40 60
Number of Repositories

0 20 40 60
Number of Repositories

0 20 40 60
Number of Repositories

0 20 40 60
Number of Repositories

0 20 40 60
Number of Repositories

0 20 40 60
Number of Repositories

Fig. 2. Number of Repositories For Most Popular UML Files Modified Each Year. Top 5 Extensions for Each Year in Red.

UML Files Tagging. Some file extensions are not used for
UML purposes exclusively (e.g., .dia, .drawio, .graffle). We tag
each UML file in our dataset not only based on its extension,
but by semi-automatically parsing its content.

For each file with an extension coming from the previous
step, we detect UML content via extension-specific regular
expressions (after de-compressing files). For example, .ecore
files are UML files for the Eclipse Modeling Framework if they
contain either the word “EClass” or “EPackage”. By devising
such strategies we automatically tagged almost every UML file
in the dataset. Where an automatic approach was not feasible,
we checked the files manually. This was needed for 26 files
of 3 extensions (.asta, .cmof, .yuml). This step consisted in a
progressive refinement of the strategies until all files with all
extensions resulted in a UML or non-UML tag. Table II shows
the UML extensions considered in the rest of the study.

TABLE II
REPOSITORIES WITH TAGGED UML FILES

(OUT OF 552 REPOSITORIES WITH UML, SEE SECTION V-B)

Extension # Repos Extension # Repos
.puml 160 .diagram 8
.uml 100 .pgml 8
.dia 67 .prj 8
.xmi 60 .zuml 7
.plantuml 48 .asta 6
.ecore 43 .session 6
.ucls 33 .iuml 5
.zargo 32 .mdzip 5
.uxf 30 .yuml 5
.mmd 26 .gliffy 3
.mdj 18 .platuml 2
.vpp 14 .umlprofile 2
.pu 10 .cmof 1
.umlclass 9 .ump 1
.argo 8

There are two assumptions we made: (i) for each file we
examine only its first version, assuming that the nature of a
file does not change, only its content does; (ii) if multiple files
with the same name and extension exist in different paths, we
analyze only one of them, assuming that files with the same
name have the same type. This simplification for the manual
analysis impacts only identification of the tagging strategies.
The applied heuristics tag each file in the different paths as
UML or non-UML and each file is counted independently.

Results. Figure 2 shows the evolution of the most popular
UML extensions by number of repositories using them, since
1999. For each year, we plot the number of repositories
actively making changes (with at least one commit) to UML
files for each extension. The red bars represent the top 5
extensions found in the most repositories for that year.

The .xmi, .argo, .pgml, .zargo, and .dia are the only UML
extensions used from 2000 to 2003. The .zargo, .argo, and
.pgml extensions are used by ArgoUML, and .xmi is a standard
for many graphical UML tools.5 Dia is a diagramming tool.

5It is worth noting again in this context that extensions such as .xmi can
also be used for non-UML content. As described previously in this section,
we consider only the UML-tagged files for each extension. The regular
expressions we devised count only .xmi files with actual UML content. The
same applies to other generic extensions (e.g., .dia, .ecore).

2004 to 2007 is still dominated by .xmi and .zargo, but
.dia’s use increases and .ecore appears. The Eclipse Modeling
Framework (EMF), an Eclipse plugin for graphical modeling
and model-based automatic code generation, uses .ecore files.

From 2008 to 2015, .xmi, .dia, and .ecore remain popular
while .ucls, .uxf, and .uml start to become popular. The
.uml extension contains many types of UML files, including
Ecore/EMF, XMI, and PlantUML files. The .ucls extension is
used by the ObjectAid UML Explorer Eclipse plugin. The .uxf
extension is the UML eXchange Format (similar to XMI).

From 2016 to 2022, the previously popular extensions
are supplanted by .mmd (Mermaid), .plantuml, and .puml
(PlantUML). In 2022, the two text-based UML diagramming
tools (i.e., PlantUML and Mermaid) are the most used.

Given the above, we can see three main periods. Early
on, from 2000 to 2007, we see the usage of graphical UML
modeling tools and generic diagramming tools. From 2008 to
2016, Eclipse plugins took over as the most popular. Finally,
from 2016 to 2022, we see the rise of text-based UML.

Interestingly, PlantUML’s use did not rise until 2016, de-
spite being released in 2009. Similarly, Mermaid released in
2014, gained popularity in 2016, and made it into the top 5
extensions in 2020. One event that possibly contributed to this
shift is the release of Visual Studio Code (VSCode) in 2015.

Given how popular Eclipse plugins were from 2008 to 2016,
developers liked UML modeling tools to be integrated into
their IDE. Since its release in 2016, VSCode has become the
most popular IDE for developers.6 It has extensions (i.e., plug-
ins) for UML diagrams in PlantUML, Mermaid, and UMLet.

From 2016 to 2022, we see a huge uptick in the overall num-
ber of repositories actively working with UML, mainly due to
the rise of PlantUML. This could be due to the advantages that
text-based UML modeling tools offer. Compared to graphical
UML modeling tools, it is arguably easier to version control
text-based UML diagrams, for example, having meaningful
diffs that can be checked for correctness during code reviews.

Summarizing: RQ1 investigates how UML tools and for-
mats evolved in the last two decades. We present the trends,
highlighting the novel ones and the recent history. The under-
utilization of UML emerges from the number of repositories
containing UML artifacts. The Why of the meta-question is
related to the tools and formats themselves. For example, a
fragmented ecosystem of tools has maintainability and inter-
operability problems, leading to underutilization (Section VI).

RQ1 FINDINGS

F1 PlantUML has been the most popular UML dia-
gramming tool since 2016, UML’s resurgence year.

F2 Mermaid (i.e., .mmd) surpassed .uxf and .uml exten-
sions in 2022. The other human-readable text format
becomes the second most popular after PlantUML.

F3 Text-based UML diagramming, over the past few
years, has supplanted UML graphical editors.

6See https://survey.stackoverflow.co/2022

https://survey.stackoverflow.co/2022

B. RQ2: How Widespread is UML in Open Source Software?

For this RQ, we analyze the history of UML’s diffusion
to (re-)assess the current status of the practice, providing
insights on the evolution that brought UML to be an under-
utilized language. We look at the percentage of repositories
that contain at least one UML diagram since their creation.
We analyze the popularity and activity on UML files.

Method. After identifying candidate UML extensions and
tagging UML files for RQ1, we further restrict the dataset we
first introduced in Section IV to repositories containing UML
diagrams, resulting in 552 repositories. Table III summarizes
descriptive statistics about the dataset of UML repositories.

TABLE III
STATISTICS OF THE DATASET WITH 552 UML REPOSITORIES

Metric Min Median Mean Max Total
Commits 2,001 6,866 14,333 157 K 7.9M
Contributors 10 62 102 441 *56.3K
Files 60 2,038 4,254 60 K 2.3M
LOCs 10,179 302,268 838,141 13M 462.7M
Stars 100 533 2,427 80 K 1.3M

*Non-unique total contributors.

Results. The usage of UML in our dataset is not widespread.
We found only 4.2% of repositories (552 out of 13,152) that
contained at least one UML diagram at some point in time.

We investigated whether the usage of UML diagrams has
increased or decreased over time. Since the number of active
repositories changes over time, we normalize the number of
repositories with UML diagrams over the number of active
repositories per year (i.e., having at least one commit on the
main branch in that year).

Figure 3 shows the percentages of repositories with UML
diagrams and of repositories actively modifying UML files (at
least one UML file commit in the year) since the year 2000.

12,000

10,000

8,000

6,000

4,000

2,000

00.5%

1.0%

1.5%

2.0%

2.5%

3.0%

2000 2004 2008 2012 2016 2020

Re
po

sit
or

ies
 W

or
kin

g
W

ith
 U

M
L

(%
)

To
ta

l A
ct

ive
 R

ep
os

ito
rie

s

Year

Percentage Actively Modifying UML
Percentage With UML

Fig. 3. Percentage of Repositories With UML

At its peak, about 3.0% of active repositories contained a
UML diagram. The fraction of repositories actively modifying
UML is even lower (i.e., at a maximum of 2.3% of reposi-
tories modifying at least one UML file in 2006). The current
percentage of repositories actively using UML (blue, circles)
hovers around 1.0%, slightly above the latest local minimum
in 2015. Less than one third of the projects containing UML
saw activity in UML files in 2022.

The overall percentage of repositories with UML (red,
triangles) follows a similar trend before 2015, but it has been
increasing since 2017. The use of UML peaks around 2007,
but in the last five years the divergence between projects
merely containing UML and those actively modifying it has
been increasing.

Summarizing: RQ2 takes a step back and considers ag-
gregate UML usage and maintenance data. We imply, as
further discussed in Section VI, that if we do not take into
account the shortcomings of the new wave of UML tools
and formats, this resurgence wave might not bring UML out
of the underutilization condition (i.e., Why UML will remain
underutilized).

RQ2 FINDINGS

F1 UML in OSS is not widespread, with a peak of only
3.0% of active repositories having a UML diagram.

F2 UML hit peak diffusion in 2007, then it decreased
to below 2.0%, just to see a steady resurgence that
is still going on since 2017.

F3 Usage and active maintenance of UML follow dif-
ferent trends since 2016. The first is increasing
while the second stays almost stable in percentage.

C. RQ3: What Types of Projects Include UML Diagrams?
Assuming that UML’s presence should influence or be

influenced by the development process, we hypothesize that
a measurable effect should appear in some metrics related to
the repository activity or to the community of developers con-
tributing to the project. To confirm or refute this hypothesis,
we analyzed what types of projects contain UML diagrams,
comparing projects by their main language and 10 GitHub
metrics related to activity and community (e.g., commits,
issues, contributors).

Method. To analyze correlations between project metrics
and the presence of UML artifacts, we compared UML and
non-UML repositories with respect to the following metrics:
commits, contributors, forks, open issues, open pull requests,
releases, stars, total issues, total pull requests, and watchers.

For each metric, we performed a D’Agostino-Pearson nor-
mality test to verify if the data was normally distributed.
Since in both cases the data was not normally distributed, we
used the Mann-Whitney U test on each metric to determine
if there was any statistically significant difference. For those
metrics where we found a statistically significant difference
between the two samples, we used Cliff’s delta to determine
the magnitude of the difference.

We were also interested in possible correlations between
the main language of the repository and the usage of UML.
Therefore, we grouped UML repositories by main language,
as reported by GitHub’s language statistics.

Results. Given that UML diagrams are used to describe
various aspects of a system, we hypothesized that repositories
with higher activity and larger communities would be more
likely to have UML diagrams. This was not the case.

The two groups, of UML and non-UML repositories, have a
statistically significant difference on the number of commits,
open and total pull requests, stars, and open issues (Mann-
Whitney U test p ≤ 0.01), but only the number of commits
has a non-negligible effect (positive correlation with presence
of UML artifacts, Cliff’s delta δ = 0.30, small effect).

We investigated the potential effect of the choice of pro-
gramming language on the use of UML. In Figure 4, we
show the percentage of repositories with UML by main
programming language.

0 2 4 6 8 10 12
Percentage of Repositories with UML

Java
C++

Go
Dart

Groovy
Objective-C

Rust
PHP

C
Python

C#
Ruby

TypeScript
JavaScript

Kotlin
Shell
Swift

M
ai

n
Pr

og
ra

m
m

in
g

La
ng

ua
ge

Fig. 4. Percentage of Repositories with UML by Language

We see Java as absolute first by a large margin, followed
by C++ and the others with less than half its popularity. The
choice of programming language seems to affect how likely a
repository is to have UML. Java repositories are three times
more likely to have UML than repositories in other languages.

The lack of a clear separation between languages, except
for Java, makes it difficult to identify common distinguish-
ing characteristics among those more likely to have UML
diagrams. Java and C++, which support class-based object-
oriented programming (OOP), are in the top spots. Following
them, at number three, there is Go, which does not have
classes. Then, again, we find languages which support class-
based OOP near the bottom of the list, like Kotlin and Swift.
Since UML was built to support OOP methodologies, it is also
interesting to find C, which is not an OOP language, above
Python, C#, and Kotlin.

Although we see a clear difference in the likelihood of a
repository to have UML depending on its main language, we
do not see any patterns in the types of languages for which
this is more likely. As part of our future work, we plan to
further investigate the relationships between all the project’s
languages (i.e., not only the main one) and the use of UML.

Summarizing: RQ3 investigates if the Why of the meta-
question is connected to any significant improvement in rel-
evant metrics. Apart from a slightly increased number of
commits, the activity and community metrics we examined
were not affected by the presence of UML artifacts in the
repository, an argument in favor of the underutilization (i.e.,
UML is underutilized because it does not improve developers’
engagement with the project).

RQ3 FINDINGS

F1 Repositories with UML have a slightly but signifi-
cantly higher number of commits.

F2 Except for the number of commits, there is no dif-
ference in activity and community metrics between
UML and non-UML repositories.

F3 Java is the most likely programming language to use
UML, with 12% of repositories (4 times the average
of the other languages).

D. RQ4: Who is Creating and Maintaining UML Diagrams?

The use of UML diagrams does not seem to influence
the metrics of activity in the repository we considered, but
interesting relationships could be revealed considering the
project contributors. This question needs a thorough analysis
of proxies such as the contribution period (i.e., as a proxy for
involvement in the project).

We analyze creators and maintainers of UML diagrams
compared to developers. We investigate how these roles over-
lap and the characteristics of authors with dedicated project
management roles contributing to UML diagrams.

Method. To answer RQ4, we needed to integrate authors’
information with the list of tagged files, after removing author
aliases [44]–[47]. We expanded on the work of Gote and
Zingg [47] by tuning the algorithm to GitHub repositories.
We eliminated names and emails that we found were com-
mon placeholders in our dataset (e.g., anon@github.com).
We specifically ignored matches of the following names:
unknown, anonymous, anon, and none. We also excluded
emails containing the words unknown, anonymous, devnull,
noreply, none@none, and root@localhost. In addition, we
considered names in the domain of email addresses for those
who host their own email accounts (i.e., mail@jdoe.com).
When extracting the email, we compare the domain instead of
the base if the first or last name appears in the domain. The
PostgreSQL database is augmented with the resulting deriva-
tive information (e.g., author anti-aliasing, author analysis). A
complete dump of the final database is available for replication
and further exploration on figshare.7

Contribution Period of UML vs. non-UML Committers.
The first attribute we analyze is the average contribution
period: The period between the first and the last commit of
a contributor. In Figure 5, we show three box plots with the
distribution of the average contribution period of UML and
non-UML committers. The top box plot shows the distribution
without filtering, and the middle and the bottom ones are
obtained by removing contributors with less than 2 and 10
commits, respectively. The box plots of UML committers
are only slightly affected by filtering. On the contrary, the
median contribution period of the non-UML committer box
plots moves from 0 days with no filtering to 801 days when
filtering out contributors with less than 10 commits.

7See https://doi.org/10.6084/m9.figshare.28008434

https://doi.org/10.6084/m9.figshare.28008434

0 2,000 4,000 6,000

UML Committer

non-UML Committer

0 2,000 4,000 6,000

UML Committer

non-UML Committer

0 2,000 4,000 6,000
Average contribution period (in days)

UML Committer

non-UML Committer

Fig. 5. Average Contribution Periods of UML vs non-UML Committers.
All Contributors (top), Contributors With at Least 2 Commits (middle), and
Contributors With at Least 10 Commits (bottom).

This huge shift is due to the large number of occasional
contributors in terms of source code. This phenomenon is
almost non-existent for UML committers. For this reason,
in the following analyses, we show only the results after
removing contributors with less than 10 commits.

The median contribution period of UML committers is
1,735 days versus 801 days for non-UML committers. We
confirmed that this difference is statistically significant (Mann-
Whitney U test p ≤ 0.01, Cliff’s delta δ = 0.56, large
effect). UML committers contribute to the repository for a
significantly longer period (more than twice).

In Figure 6, we see a scatter plot of the same average
contribution where each point represents a repository. Any
point above the red line is a repository where the average
contribution period of the authors of UML commits is greater
than the average contribution period of the other authors.

0 500 1,000 1,500 2,000 2,500 3,000 3,500
Average contribution period

 of non-UML committers (in days)

0

2,000

4,000

6,000

8,000

Av
er

ag
e

co
nt

rib
ut

io
n

pe
rio

d
 o

f U
M

L
co

m
m

itt
er

s (
in

 d
ay

s)

alsa-project/alsa-lib

rolisteam/rolisteam

Slope = 1

Fig. 6. Average Contribution Periods of UML vs. non-UML Committers

We marked two outlier repositories in red in the scatter plot.
The first is the one with the lowest average contribution period
of non-UML committers while still having a high average
contribution period of UML committers, rolisteam/rolisteam.

The contributors for rolisteam/rolisteam can be seen in
Table IV, with the UML committers marked with the ú icon.

TABLE IV
CONTRIBUTORS FOR ROLISTEAM/ROLISTEAM

(ú UML COMMITTERS)

GitHub Profile Name Contribution Period Commits
Renaud Guezennec ú 2,682 5,558
Vladar4 56 2
Etienne 8 3
Tyler Schmidt 8 3
Tomaz Canabrava 5 35
Milan Irigoyen 3 4
Paul Brown 0 4
Gissu 0 5
Ben Cooksley 0 4
Yann Escarbassiere 0 3
Patrick José Pereira 0 3
Grégoire Barbier 0 1
IBPX 0 1

We can see the repository has a single maintainer, Renaud
Guezennec. Most of the remaining contributors had all of their
commits on the same day (author contribution period of 0).

The main maintainer is the only person who has also created
or modified any UML diagrams, which explains the high
average contribution period of UML committers.

The other marked repository has the highest average con-
tribution period of UML committers, alsa-project/alsa-lib.
Table V shows the top 5 authors by number of commits.

TABLE V
TOP 5 CONTRIBUTORS BY NUMBER OF COMMITS FOR

ALSA-PROJECT/ALSA-LIB (ú UML COMMITTERS)

GitHub Profile Name Contribution Period Commits
Jaroslav Kysela ú 8,962 1,967
Takashi Iwai 8,027 925
Clemens Ladisch 4,764 126
Takashi Sakamoto 2,870 151
Abramo Bagnara 1,227 355

This project is similar to rolisteam/rolisteam: Only one
contributor modified any UML diagrams. However, in the alsa-
project/alsa-lib repository, many other contributors have been
active for a long time, making numerous non-UML commits.

Number of UML Committers vs. non-UML Committers.
We investigate how many contributors in a repository are UML
committers. Figure 7 shows a scatter plot of the number of
UML versus non-UML committers.

0 100 101 102

Number of non-UML committers (log scale)

0

10

20

30

40

50

60

Nu
m

be
r o

f U
M

L
co

m
m

itt
er

s

embox/embox

iluwatar/java-design-patterns
kubernetes-sigs/cluster-api

umple/umple Slope = 1

Fig. 7. Number of UML vs. non-UML Committers

In almost every single case, the number of non-UML com-
mitters is significantly higher (Mann-Whitney U test p ≤ 0.01,
Cliff’s delta δ = −0.93, large effect) than the number of UML
committers (repositories under the red dashed line).

We investigated more in detail a few different cases:
iluwatar/java-design-patterns with a ratio close to 1.0,
umple/umple with more UML than non-UML committers,
kubernetes-sigs/cluster-api with more non-UML committers
(but still more than 20 UML committers), and embox/embox,
as representative of the typical case.

The iluwatar/java-design-patterns project consists of an
educational repository used to teach Java design patterns.

Every pattern follows this template: A Java example, a UML
diagram, and a readme with a description and the embedded
UML diagram. Any author wanting to add or update a design
pattern must do the same for the corresponding UML diagram.

The umple/umple project is the repository for the Umple
programming language.8 As a model-oriented programming
language, Umple heavily relies on UML diagrams, justifying
it being the perfect outlier.

kubernetes-sigs/cluster-api houses a set of APIs for manag-
ing Kubernetes clusters, and keeps a Markdown book which
documents the APIs9 (e.g., their implementation, usage, ex-
tension). The documentation and proposals for new features
contain a wealth of UML diagrams to support the text. The
diagramming work is uniformly spread among 28 contributors.
Each author makes an average of less than 2 UML commits.

The previous three repositories are in stark contrast with
the typical repository in our dataset, for which we consider
embox/embox as an example. This repository has 154 authors,
and only 2 have actively worked on UML diagrams. The
top 5 contributors by the number of commits in Table VI
include both UML committers. This is closer to what we
saw in the contribution periods of the alsa-project/alsa-lib and
rolisteam/rolisteam repositories.

TABLE VI
TOP 5 CONTRIBUTORS BY NUMBER OF COMMITS FOR EMBOX/EMBOX

(ú UML COMMITTERS)

GitHub Profile Name Commits UML Commits
Anton Bondarev 5,581 0
Anton Kozlov ú 3,154 28
Alex Kalmuk 2,811 0
Denis Deryugin 2,584 0
Eldar Abusalimov ú 2,252 41

Number of Commits by UML vs. non-UML Committers.
We wanted to see whether UML committers contribute more
to projects than non-UML committers. We hypothesized that
UML committers are more likely to be main contributors:
UML committers should be more familiar with the project and
more capable of making diagrams; they want developers to be
able to contribute easily, so they provide diagrams that help
onboard; they want users to use their project and diagrams are
a helpful tool to convey how it works.

8See https://cruise.umple.org/umple/
9See https://cluster-api.sigs.k8s.io/

In kubernetes-sigs/cluster-api, the main contributors were
not the main UML diagrammers, as in embox/embox. Previ-
ously, we analyzed outliers, but UML committers make almost
4 times more commits than non-UML committers (Mann-
Whitney U test p ≤ 0.01, Cliff’s delta δ = 0.69, large effect).

In Figure 8, we see a box plot of the average number of
commits by UML and non-UML committers.

Fig. 8. Average Number of Commits by UML vs. non-UML Committers

Note that we show the box plot without outliers to focus
on the general trend, but we found repositories where UML
committers make 534 times more commits. These repositories
are similar to rolisteam/rolisteam, with a single contributor
who makes most commits and is the sole UML committer.

Dedicated UML Diagrammers. How often are there ded-
icated UML diagrammers (i.e., those who modify UML di-
agrams but do not modify source code)? Looking back at
Table IV it seems unlikely that the 5.5k commits of Renaud
Guezennec are all UML-related. We analyze UML committers
who did not modify source code files.

In Table VII, we show the 13 repositories we found. Only
2.4% of repositories have dedicated diagrammers. Manually
analyzing the repositories in the list more in-depth, we see
that almost half of them contain little to no source code (D/).

TABLE VII
DEDICATED DIAGRAMMERS (D/ LITTLE OR NO SOURCE CODE).

Repository Name GitHub Profile Name Commits
adorsys/open-banking-gateway Dora Nziali 16

adorsys/xs2a Daria Lavrenova 50
Olga Levandovska 16

apache/isis Alexander Schwartz 21
deegree/deegree3 Danilo Bretschneider 26

D/ edmcouncil/fibo Mike Bennett 85

D/ hyperledger/aries-rfcs
Brent 52
ashcherbakov 41
Vinomaster 32

D/ kubernetes/enhancements Patrick Ohly 61
D/ openshift/enhancements Enxebre 17

D/ progit/progit
Igor Murzov 156
Anthony Gaudino 24

programmevitam/vitam
Clemence Boyer 64
edith 32

uportal-project/uportal Christian Cousquer 21
D/ w3f/polkadot-spec Fabio Lama 1378

wix/detox wixmobile 343

w3f/polkadot-spec is a specification repository, progit/progit
is a book, edmcount/fibo holds a specification for an on-
tology, and kubernetes/enhancements, hyperledger/aries-rfcs,
and openshift/enhancements are repositories used to discuss
enhancements or features for other repositories. wix/detox is a
source code repository but the author who modified only UML
diagrams is a bot account for publishing documentation.

https://cruise.umple.org/umple/
https://cluster-api.sigs.k8s.io/

One example of a dedicated diagrammer in a repository with
source code is Daria Lavrenova in the adorsys/xs2a repository.
Their GitHub profile shows that they are a program manager
(PM). Based on their commit history, which is related to
documentation and roadmap planning entirely, it looks like
they are doing program management work for adorsys/xs2a.
Olga Levandovska has a similar commit history in the same
repository and is indicated as PM in their GitHub profile, so
we can assume they also have a similar role.

Dora Nziali of adrosys/open-banking-gateway, a different
repository of the same owner, has a similar commit history
to Daria and Olga, but no reference to PM activities in the
GitHub profile. Still, given the similarity, it looks like adorsys
has PMs dedicated to updating roadmaps and documentation,
including UML diagrams.

In our dataset there are only few software systems where
people are dedicated to UML diagramming without contribut-
ing to source code, this is indeed a rare occurrence in OSS.

Summarizing: RQ4 focuses on developers who create and
maintain UML artifacts. There are very few UML committers,
which supports the idea that UML is not being used to its
full potential. If developers in a collaborative development
platform contribute almost exclusively to source code and not
to UML diagrams, it might imply that they do not perceive
UML diagrams as useful as the source code itself. This is just
one of the potential causes and it needs further investigation.

RQ4 FINDINGS

F1 UML committers tend to be among the longer-
standing members of their respective projects.

F2 UML committers make ∼4 times more commits.
F3 There are almost never dedicated UML diagram-

mers. Only 2.4% of repositories have contributors
who modify UML diagrams and not source code.

VI. DISCUSSION

The rise and fall of UML cannot be reconstructed by file
extensions alone, but through the extensions we could find a
reliable source to analyze UML’s long-term evolution. UML
has never been widely popular in open source software. Our
approach led to insights on how the nature of UML support
changed from standalone graphical tools, to IDE plugins, to
human-readable text. Despite its relative popularity, in this
latter form, the graphical quality of the rendered diagram (thus
its usability) is still subject to many compromises.

In terms of our considered activity metrics, UML repos-
itories are not significantly different from non-UML ones
(except for a slightly higher number of commits). What stands
out though is that the majority of them use Java as their
main language. We attempted to cluster languages of UML
repositories to find commonalities but to no avail. Further
research on how UML is used in repositories of different
languages might shed light on the features that make UML
so appealing for certain languages.

Contributors who modify UML files, on the other hand,
are longer-standing and more active members of a project.
Although only a small percentage of developers usually con-
tribute to UML, there are exceptions where UML is a collab-
orative effort (e.g., kubernetes-sigs/cluster-api). Nevertheless,
although commits are a coarse-grained unit of measure, the
number of UML commits per single author is still minimal
(less than 4 in kubernetes-sigs/cluster-api).

New tools and human-readable formats should consider
several aspects to keep this growing trend of UML adoption in
OSS development (e.g., layouts, reducing tool fragmentation,
separating presentation and content concerns). Focusing on
artifacts partially obscures the motivations behind some of the
highlighted phenomena. Nevertheless, making these phenom-
ena intelligible and more transparent for the software engi-
neering audience (especially beyond the modeling community)
could spark new studies on the Whys driving them.

Underutilization. Going back to our initial meta-question,
the underutilization of UML is, in our opinion, tied to the lack
of standard unified tools. The software market in the early
2000s generated so many alternatives that the fragmentation
created a Babel of UML realization dialects, competing with
the “official” XMI specification which, in the end, shared
XML’s fate. Most commercial tools have expensive licensing
options, making them unlikely choices for volunteers. A
textual representation created and modified in any text editor
increases the pool of potential contributors. The fact that this
potential does not result in an effective increase indicates that
some factors counterbalance this benefit. We argue that one of
them is the shortcomings of current tools for human-readable
formats (e.g., lack of layouting control).

Reinforcing the economic explanation, there is a focus on
simple representations without dedicated tooling, where the
serialization of the model is the text itself. This agrees with the
surveys indicating that UML is more often used with a loose
syntax. The goal is not model-driven development, but rather
having a “satisficing” (i.e., satisfactory and sufficing) model
to support the design phase or to become part of the system’s
documentation for program comprehension. Nevertheless, in
most repositories, only few contributors deal with UML arti-
facts and those who are not developers are even fewer.

If we do not take into account the shortcomings of the new
wave of UML tools and formats, the resurgence wave might
not bring UML out of the underutilization condition.

Textual vs. Visual Model. What is given up in the current
implementations of text-based UML is the visual power tied
to element positioning and layout. We highlighted how core
developers usually cover UML creator and maintainer roles.
Familiarity with source code may influence their tendency to
prefer a textual representation for graphics. Human-readable
UML formats do not need to be complicated to be usable
for complex systems, but some original features of the visual
language must be re-incorporated to maximize effectiveness.

Implicit validation of the model with a non-ambiguous
grammar for the language can guarantee syntactically correct
models, reducing the burden of correctness for the creator.

Appropriate layout strategies could give back the visual
expressiveness and clarity that separates functional from dys-
functional UML diagrams. Finally, we argue that one of the
advantages of tools like PlantUML and Mermaid is that they
provide a subset of the UML specification in a digestible
format. The most useful features are the easiest to use. For
example, a class diagram with a few entities is just a few
lines of text, moving back the focus on the design and the
relationships of composing elements. Automatic layout of
elements in a consistent and controlled way will probably be
the make or break feature of such tools.

Finally, a reflection on teaching UML in academic courses.
Our study informs and justifies the presentation of currently
trending tools (e.g., PlantUML, Mermaid) and encourages
shifting the emphasis from the graphical to the conceptual
model, distilling it into human-readable textual formats.

VII. THREATS TO VALIDITY

Construct Validity. In RQ1 we investigate UML extensions
as a way to capture UML files. The list of UML extensions
cannot be exhaustive. Since the resulting list is used through-
out our analyses, we mitigate this risk by integrating multiple
strategies to obtain the final dataset of repositories and their
UML files: We search for popular UML tools and include their
supported input and output formats; we search for examples
and counter-examples of UML diagrams by analyzing all UML
file extensions in our dataset; we apply progressive refinement
of our file tagging strategies for each extension until saturation,
to be able to capture all UML files.

In our initial dataset, we filter projects based on criteria that
are not directly related to the project’s level of documentation.
While the attitude towards documentation in general can
indicate the possibility to find UML, filtering based on such
criteria (e.g., a minimum amount of documentation) would
misrepresent the actual popularity of UML.

While developers may use temporary diagrams (e.g.,
sketches for live discussion), they usually do not persist them.
We focus on UML artifacts intended for long-term project
support, transient ones are out of the scope of our study.

Internal Validity. Discriminating UML and non-UML con-
tent in files can be subjective. The first author collected
examples and counter-examples of UML files. Dubious cases
were discussed among the other authors until a consensus
was reached. To further mitigate this risk, we restricted our
analysis to the files that could be described non-ambiguously
by automatic UML tagging strategies (e.g., regular expressions
for file content to identify specific UML “signatures”) or
exhaustively manually annotated.

External Validity. We extract our dataset from open source
projects hosted on GitHub. This is a threat to the gener-
alizability of our results to other types of projects (e.g.,
closed source developed in a company). When creating our
dataset, we perform a trade-off to have a large enough sample
while mitigating the risk of underestimating the presence of
UML due to simple projects. On the other hand, this filtering
strengthens our conclusions on the underutilization of UML.

VIII. CONCLUSION

UML has been taught as the “be-all and end-all” of software
design and modeling to generations of students. On the other
hand we find practitioners using small subsets of UML at
best, often in an informal, imprecise declination. Only a tiny
fraction of relevant GitHub projects include any form of
UML diagrams. Something in the chain fell apart between
academia and practice. The new wave of interest about UML,
represented by the recent resurgence of human-readable text-
based formats, should be met with prompt reaction. We need to
address the shortcomings we foresee, like the diminished value
of a diagram with an uncontrollable layout, to leverage the
advantages that textual representations bring, for example, ease
of parsability, reviewability, and comparability. The timeliness
with which the community will increase its awareness of the
implications of the recent evolution will hopefully make a
difference in the survivability of UML in its new incarnation.

UML is back and popular again but still underutilized. The
lack of maintenance that new formats of UML diagrams seem
to experience is nothing new for the research community. What
is different is that for these types of artifacts we could find
better ways to support design and documentation efforts. UML
is a precious resource for large software systems and tool
support cannot ignore some of the trends we highlighted, first
and foremost, the widening gap between repositories merely
containing and those actively modifying UML files. In this
regard, standalone tools disconnected from the evolving source
code can become more of a hindrance than a help.

Finally, projects with and without UML are almost indistin-
guishable from the surface, but there is a large gap between
contributors who work on UML artifacts and those who do not.
The lack of dedicated figures responsible of creating, main-
taining, and evolving UML diagrams should make us rethink
the role of UML closer to developers than to the mythical
figure of the software architect. The alternative is to embrace
a no-code philosophy augmented by large language models,
dreaming again the 2000s dream of round-trip engineering,
and using phone pictures of whiteboard sketches as GPT-Xy
prompts asking to produce a text-based UML diagram.

ACKNOWLEDGMENTS

This work is supported by the Swiss National Science Foun-
dation (SNSF) through the project “FORCE” (SNF Project
Number 232141).

B REPLICATION PACKAGE

The replication package, including the list of repositories,
the list of importable, exportable, and excluded extensions, the
strategies to tag UML files for each extension, the final dataset,
and a Jupyter Notebook with the analyses, is available at:
B https://doi.org/10.6084/m9.figshare.28008434

https://doi.org/10.6084/m9.figshare.28008434

REFERENCES

[1] A. Watson, “Visual modelling: Past, present and future,” White Paper
UML Object Modeling Group, pp. 1–6, 2008. [Online]. Available:
https://www.omg.org/UML/Visual Modeling.pdf

[2] S. S. Alhir, UML in a Nutshell: A Desktop Quick Reference. O’Reilly,
1998.

[3] G. Booch, Object-Oriented Analysis and Design with Applications,
2nd ed. Benjamin-Cummings Publishing Co., Inc., 1993.

[4] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison Wesley, 1992.

[5] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. E. Lorensen,
Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[6] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Addison-Wesley, 2018.

[7] M. Ozkaya and F. Erata, “A survey on the practical use of UML for
different software architecture viewpoints,” Information and Software
Technology, vol. 121, p. 106275, 2020.

[8] T. G. Moreira, M. A. Wehrmeister, C. E. Pereira, J.-F. Petin, and
E. Levrat, “Automatic code generation for embedded systems: From
UML specifications to VHDL code,” in Proceedings of INDIN 2010
(International Conference on Industrial Informatics). IEEE, 2010, pp.
1085–1090.

[9] P. Hruby, “Specification of workflow management systems with UML,”
in Proceedings of OOPSLA 1998 (Workshop on Implementation and
Application of Object-oriented Workflow Management Systems), vol. 2.
ACM, 1998, pp. 1–11.

[10] A. Kalnins and V. Vitolins. (2006) Use of UML and model transforma-
tions for workflow process definitions. arXiv preprint cs/0607044.

[11] G. De Vito, F. Ferrucci, and C. Gravino, “Design and automation of
a COSMIC measurement procedure based on UML models,” Software
and Systems Modeling, vol. 19, no. 1, pp. 171–198, 2020.

[12] A. M. Fernández-Sáez, D. Caivano, M. Genero, and M. R. V. Chau-
dron, “On the use of UML documentation in software maintenance:
Results from a survey in industry,” in Proceedings of MODELS 2015
(International Conference on Model Driven Engineering Languages and
Systems). IEEE, 2015, pp. 292–301.

[13] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus, G. Tortora,
M. Risi, and G. Dodero, “Do software models based on the UML
aid in source-code comprehensibility? Aggregating evidence from 12
controlled experiments,” Empirical Software Engineering, vol. 23, no. 5,
pp. 2695–2733, 2018.

[14] W. K. G. Assunção, S. R. Vergilio, and R. E. Lopez-Herrejon, Mod-
elVars2SPL: From UML Class Diagram Variants to Software Product
Line Core Assets. Springer, 2023, ch. in Handbook of Re-Engineering
Software Intensive Systems into Software Product Lines, pp. 221–250.

[15] ——, Reengineering UML Class Diagram Variants into a Product Line
Architecture. Springer, 2023, ch. in UML-Based Software Product Line
Engineering with SMarty, pp. 393–414.

[16] Object Modeling Group. (2024) Unified Modeling Language Specifica-
tion. OMG. [Online]. Available: https://www.omg.org/spec/UML

[17] M. Ozkaya, “Are the UML modelling tools powerful enough for
practitioners? A literature review,” IET Software, vol. 13, no. 5, pp.
338–354, 2019.

[18] G. Robles, M. R. V. Chaudron, R. Jolak, and R. Hebig, “A reflection on
the impact of model mining from GitHub,” Information and Software
Technology, vol. 164, p. 107317, 2023.

[19] S. A. Rukmono and M. R. V. Chaudron, “Guiding peer-feedback in
learning software design using UML,” in Proceedings of ICSE-SEET
2022 (International Conference on Software Engineering: Software
Engineering Education and Training). ACM, 2022, pp. 122–133.

[20] F. Huber and G. Hagel, “Tool-supported teaching of UML diagrams
in software engineering education — A systematic literature review,”
in Proceedings of MIPRO 2022 (Jubilee International Convention on
Information, Communication and Electronic Technology). IEEE, 2022,
pp. 1404–1409.

[21] G. Engels, J. H. Hausmann, M. Lohmann, and S. Sauer, “Teaching UML
is teaching software engineering is teaching abstraction,” in Proceed-
ings of MODELS-Satellite Events 2005 (Educator’s Symposium at the
International Conference on Model Driven Engineering Languages and
Systems). Springer, 2006, pp. 306–319.

[22] C. F. J. Lange, M. R. V. Chaudron, and J. Muskens, “In practice: UML
software architecture and design description,” IEEE Software, vol. 23,
no. 2, pp. 40–46, 2006.

[23] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of UML in software maintenance,”
IEEE Transactions on Software Engineering, vol. 34, no. 3, pp. 407–432,
2008.

[24] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE Software, vol. 20,
no. 6, pp. 35–39, 2003.

[25] E. Tryggeseth, “Report from an experiment: Impact of documentation
on maintenance,” Empirical Software Engineering, vol. 2, no. 2, pp.
201–207, 1997.

[26] R. Jolak, M. Savary-Leblanc, M. Dalibor, J. Vincur, R. Hebig, X. L.
Pallec, M. Chaudron, S. Gérard, I. Polasek, and A. Wortmann, “The
influence of software design representation on the design communication
of teams with diverse personalities,” in Proceedings of MODELS 2022
(International Conference on Model Driven Engineering Languages and
Systems). ACM, 2022, pp. 255–265.

[27] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, “The impact
of UML documentation on software maintenance: An experimental
evaluation,” IEEE Transactions on Software Engineering, vol. 32, no. 6,
pp. 365–381, 2006.

[28] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus, and G. Tortora,
“On the impact of UML analysis models on source-code comprehen-
sibility and modifiability,” ACM Transactions on Software Engineering
and Methodology, vol. 23, no. 2, pp. 1–26, 2014.

[29] C. Gravino, G. Scanniello, and G. Tortora, “Source-code comprehension
tasks supported by UML design models: Results from a controlled
experiment and a differentiated replication,” Journal of Visual Languages
and Computing, vol. 28, pp. 23–38, 2015.

[30] Q. Chen, J. Grundy, and J. Hosking, “An e-whiteboard application to
support early design-stage sketching of UML diagrams,” in Proceedings
of HCC 2003 (Symposium on Human Centric Computing Languages and
Environments). IEEE, 2003, pp. 219–226.

[31] R. Dachselt, M. Frisch, and E. Decker, “Enhancing UML sketch tools
with digital pens and paper,” in Proceedings of SoftVis 2008 (Symposium
on Software Visualization). ACM, 2008, pp. 203–204.

[32] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in Proceed-
ings of FSE 2014 (International Symposium on Foundations of Software
Engineering). ACM, 2014, pp. 530–541.

[33] G. Bergström, F. Hujainah, T. Ho-Quang, R. Jolak, S. A. Rukmono,
A. Nurwidyantoro, and M. R. V. Chaudron, “Evaluating the layout
quality of UML class diagrams using machine learning,” Journal of
Systems and Software, vol. 192, p. 111413, 2022.

[34] O. Badreddin, T. C. Lethbridge, and M. Elassar, “Modeling practices
in open source software,” in Proceedings of OSS 2013 (Open Source
Software: Quality Verification). Springer, 2013, pp. 127–139.

[35] R. Hebig, T. Ho-Quang, M. R. V. Chaudron, G. Robles, and M. A.
Fernandez, “The quest for open source projects that use UML: Mining
GitHub,” in Proceedings of MODELS 2016 (International Conference
on Model Driven Engineering Languages and Systems). ACM, 2016,
pp. 173–183.

[36] G. Robles, T. Ho-Quang, R. Hebig, M. R. V. Chaudron, and M. A.
Fernandez, “An extensive dataset of UML models in GitHub,” in
Proceedings of MSR 2017 (International Conference on Mining Software
Repositories). IEEE, 2017, pp. 519–522.

[37] T. Ho-Quang, M. R. V. Chaudron, I. Samúelsson, J. Hjaltason, B. Karas-
neh, and H. Osman, “Automatic classification of UML class diagrams
from images,” in Proceedings of APSEC 2014 (Asia-Pacific Software
Engineering Conference), vol. 1. IEEE, 2014, pp. 399–406.

[38] A. Forward, O. Badreddin, and T. C. Lethbridge, “Perceptions of
software modeling: A survey of software practitioners,” in Proceedings
of C2M: EEMDD 2010 (Workshop from Code Centric to Model Centric:
Evaluating the Effectiveness of Model Driven Development), 2010.

[39] T. Ho-Quang, R. Hebig, G. Robles, M. R. V. Chaudron, and M. A.
Fernandez, “Practices and perceptions of UML use in open source
projects,” in Proceedings of ICSE-SEIP 2017 (International Conference
on Software Engineering: Software Engineering in Practice Track).
IEEE, 2017, pp. 203–212.

[40] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in GitHub for
MSR studies,” in Proceedings of MSR 2021 (International Conference
on Mining Software Repositories). IEEE/ACM, 2021, pp. 560–564.

[41] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining GitHub,” in Proceedings
of MSR 2014 (Working Conference on Mining Software Repositories).
ACM, 2014, pp. 92–101.

https://www.omg.org/UML/Visual_Modeling.pdf
https://www.omg.org/spec/UML

[42] S. Zhou, B. Vasilescu, and C. Kästner, “How has forking changed in
the last 20 years? A study of hard forks on GitHub,” in Proceedings of
ICSE 2020 (International Conference on Software Engineering). ACM,
2020, pp. 445–456.

[43] A. Danial. (2021) cloc: v1.92. Zenodo. [Online]. Available: https:
//doi.org/10.5281/zenodo.5760077

[44] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Min-
ing email social networks,” in Proceedings of MSR 2006 (International
Workshop on Mining Software Repositories). ACM, 2006, pp. 137–143.

[45] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. J. Van Den Brand,
“Who’s who in Gnome: Using LSA to merge software repository
identities,” in Proceedings of ICSM 2012 (International Conference on
Software Maintenance). IEEE, 2012, pp. 592–595.

[46] M. Goeminne and T. Mens, “A comparison of identity merge algorithms
for software repositories,” Science of Computer Programming, vol. 78,
no. 8, pp. 971–986, 2013.

[47] C. Gote and C. Zingg, “gambit — An open source name disambiguation
tool for version control systems,” in Proceedings of MSR 2021 (Inter-
national Conference on Mining Software Repositories). IEEE, 2021,
pp. 80–84.

https://doi.org/10.5281/zenodo.5760077
https://doi.org/10.5281/zenodo.5760077

	Introduction
	UML and the State of the Art
	Research Questions
	Dataset Creation
	Mining and Analyzing UML repositories
	RQ1: What Formats are UML Diagrams Found in?
	RQ2: How Widespread is UML in Open Source Software?
	RQ3: What Types of Projects Include UML Diagrams?
	RQ4: Who is Creating and Maintaining UML Diagrams?

	Discussion
	Threats to Validity
	Conclusion
	References

