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Lugano, 26 September 2024

ii



To my beloved family

iii



iv



Abstract

State machine replication (SMR) and consensus are fundamental concepts in
distributed systems, providing consistency, reliability, and fault tolerance. This
thesis examines these problems in the context of modern decentralized systems,
particularly blockchains. Specifically, it explores the integration of gossip com-
munication with consensus protocols and investigates synchronous Byzantine
fault-tolerant (BFT) consensus protocols.

We first explore the impact of gossip-based communication on consensus pro-
tocols, using the Paxos algorithm as a case study. We introduce Semantic Gossip,
which optimizes gossip communication through semantic filtering and aggrega-
tion. Experimental results demonstrate that Semantic Gossip reduces message
overhead and improves performance while maintaining reliability.

Next, we evaluate how synchrony violations impact the correctness of syn-
chronous BFT consensus protocols, both with and without Byzantine attacks.
We outline an experimental approach to determining a synchrony bound that,
with high probability, prevents correctness violations. Applying this approach
to a new protocol, BoundBFT, we find that communication diversity and redun-
dancy enable BoundBFT to tolerate synchrony violations without compromising
correctness, resulting in lower synchrony bounds and improved performance.

Finally, motivated by experimental data on message delays, we present a hy-
brid synchronous system model that distinguishes between small and large mes-
sages. Within this model, we develop AlterBFT, a BFT consensus protocol that re-
lies on the timely delivery of small messages for agreement while requiring large
messages to be eventually timely to ensure progress. Our evaluation shows that
AlterBFT achieves significantly lower latency than state-of-the-art synchronous
protocols and offers comparable performance and higher resilience than state-
of-the-art partially synchronous protocols.

This thesis advances the understanding of consensus in partially connected
and synchronous environments, providing practical solutions to improve the per-
formance and fault tolerance of distributed systems.
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Chapter 1

Introduction

State machine replication and consensus, as its core component, are crucial for
the consistency, reliability, and fault tolerance of distributed systems. These
problems have been extensively studied under various conditions, such as differ-
ent synchrony assumptions, failure models, and roles assigned to processes. Most
studies assume direct communication between processes in partially synchronous
systems. Specifically, the network graph, where vertices represent processes ex-
ecuting consensus and edges represent the possibility of direct communication
between two processes, is typically fully connected. The partially synchronous
model enables the solution of the consensus problem that is otherwise unsolvable
in a fully asynchronous system with failures, as stated by the FLP impossibility
result [43]. In a partially synchronous system [37], the system is initially asyn-
chronous but eventually becomes synchronous.

A new breed of decentralized systems, notably blockchain systems, has intro-
duced a new environment. In decentralized systems, no single entity owns the
infrastructure; instead, multiple entities from different administrative domains
collaborate. In such environments, it is not always feasible for each process in
one domain to communicate directly with all processes in another domain. For
example, some processes may be behind firewalls, preventing direct connections
to processes in other domains. Moreover, partially synchronous consensus proto-
cols can tolerate fewer Byzantine processes compared to synchronous protocols.
Synchronous consensus protocols can tolerate f < n/2 Byzantine or malicious
processes out of n processes [42; 44; 64], an improvement over partially syn-
chronous consensus protocols, which require f < n/3 [37]. This is particularly
important for blockchain systems since higher fault tolerance enhances system
security, as the adversary must possess more resources to harm the system.

Reaching consensus without full connectivity is challenging [6]. Some blockchain

1
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consensus protocols address the partially connected network graph challenge by
relying on gossip communication [9; 20; 21; 106]. Gossip protocols, which rely
on rounds of message exchanges among neighboring processes, offer high com-
munication reliability even in partially connected networks. However, it remains
unclear to what extent consensus and gossip communication fit together. On the
one hand, gossip communication has been shown to scale to large settings and
efficiently handle participant failures and message losses. On the other hand,
gossip may slow down consensus. Moreover, gossip’s inherent redundancy may
be unnecessary since consensus naturally accounts for participant failures and
message losses.

As a result, the first research question we aim to answer in this thesis is: Do
consensus protocols and gossip-based communication indeed fit together?

Synchronous Byzantine fault-tolerant (BFT) protocols have long been a real-
ity in an academic setting, yet their practicality remains debated [3]. The pri-
mary concern is their dependency on a predefined synchronous bound,∆, which
is crucial for ensuring protocol correctness. This dependency creates a tradeoff
between correctness and performance, as ∆ directly impacts both. Moreover,
most synchronous protocols require lock-step execution, where replicas must be-
gin and complete each round together, hampering practical deployment due to
potential delays and difficulties in maintaining perfect synchrony. Lastly, adver-
saries can exploit the dependence on synchrony through denial-of-service (DoS)
attacks, hindering progress and potentially disrupting the system.

Modern synchronous protocols have successfully removed the impact of con-
servative time bounds on throughput and do not require lock-step execution
[3; 58], boosting performance to levels comparable to partially synchronous pro-
tocols. Additionally, in blockchain applications, replicas are operated by indepen-
dent entities, and there are strong system incentives for replicas to stay up and
timely connected with the rest of the network.1 Furthermore, replicas are often
placed behind proxy nodes and thereby not directly exposed to DoS attacks.2

These improvements have opened up new perspectives for synchronous pro-
tocols. However, the community remains concerned that a single message ex-
ceeding the synchronous ∆ bound could compromise protocol correctness. This
leads us to our second research question: How can we assess the impact of syn-
chrony violations on the correctness of synchronous BFT consensus protocols, and

1In most blockchain systems, protocol rewards depend on active and timely participation of
nodes, and in some cases, there are built-in slashing mechanisms for nodes that miss consensus
instances - https://tangem.com/en/blog/post/what-is-slashing/.

2Sentry node design for DDOS prevention - https://functionx.gitbook.io/home/fxcore-
tutorials/sentry-nodes.
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how can we further improve their performance?

1.1 Research contributions

In this section, we outline the main contributions of this dissertation and provide
a short description of each one. We defer detailed discussions to the following
chapters.

Gossip-based consensus communication (Chapter 3). We explore the de-
ployment of consensus protocols in partially connected networks utilizing gos-
sip communication. We use the Paxos consensus algorithm and investigate the
impact of gossip-based communication on its performance, revealing significant
latency and throughput overheads. To address these challenges, we introduce
Semantic Gossip, a communication substrate optimized with two techniques:
semantic filtering and semantic aggregation. Semantic filtering discards redun-
dant messages based on consensus logic, while semantic aggregation combines
multiple messages into a single message. Our experimental evaluation demon-
strates that Semantic Gossip substantially reduces message overhead, improves
performance, and maintains the reliability of gossip communication, even in the
presence of message loss. These findings suggest that other agreement protocols
could also benefit from similar optimizations.

Robustness of synchronous BFT consensus (Chapter 4). We propose a new
approach to evaluating the resilience of synchronous BFT consensus protocols
against synchrony violations, examining their behavior both in the presence and
absence of Byzantine attacks. This approach is applied to BoundBFT, a novel syn-
chronous BFT consensus protocol. Our experimental evaluation shows that, with
communication diversity and redundancy, BoundBFT can tolerate synchrony vi-
olations while maintaining correctness. As a result, BoundBFT can operate with
lower synchrony bounds and achieve enhanced performance compared to exist-
ing protocols, demonstrating the effectiveness of our proposed approach.

Hybrid synchronous system model and AlterBFT(Chapter 5). Based on the
insights collected in a three-month experimental study on communication delays
in a geographically distributed system, we propose a new hybrid synchronous sys-
tem model. This model reflects our observed data better than the classical syn-
chronous model. The new model distinguishes between small messages, which



4 1.2 Thesis outline

adhere to strict timing bounds, and large messages that may exceed these bounds
but are eventually delivered.

Assuming this model, we designed AlterBFT, a new BFT consensus protocol.
AlterBFT relies on the timely delivery of small messages for agreement while al-
lowing progress based on the eventual delivery of large messages. AlterBFT tol-
erates the same number of failures as synchronous protocols while achieving up
to 15× lower latency and similar throughput. In addition to higher resilience, Al-
terBFT offers higher throughput and comparable latency to partially synchronous
protocols.

1.2 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 provides the foundations
for the thesis, outlining the system model and definitions used throughout the
text. Chapter 3 investigates the deployment and optimization of gossip-based
communication for the Paxos consensus protocol, introducing Semantic Gossip
to enhance its performance and maintain its reliability. Chapter 4 presents a
new approach to assessing the resilience of synchronous BFT consensus proto-
cols to synchrony violations and demonstrates its application through an evalu-
ation of BoundBFT, a novel consensus protocol. Chapter 5 presents the hybrid
synchronous system model and AlterBFT, the first BFT consensus protocol for the
hybrid model. Chapter 6 surveys related work on the topics discussed in this the-
sis. Finally, Chapter 7 concludes the thesis by presenting our main findings and
directions for future research.



Chapter 2

System model and definitions

In this chapter, we introduce the foundational concepts crucial for the thesis. We
discuss the system models used, and define the consensus problem and blockchain.

2.1 System model

We consider a geographically distributed system consisting of a fixed set of pro-
cesses, also called replicas. Processes communicate by exchanging messages
without access to a shared memory or a global clock. Each process has its own
local (hardware) clock, and while these clocks are not synchronized, they all run
at the same speed [3]. We assume different failure models and timing models
within this context.

2.1.1 Failure models

In this subsection, we explore the failure models considered in this thesis. We
account for the possibility that a certain number of processes can be faulty and,
depending on the types of failures, distinguish between two failure models. Pro-
cesses that are not faulty are referred to as correct or honest.

Crash fault-tolerant model

In the crash fault-tolerant (CFT) model [57], a faulty process is one that even-
tually fails by crashing and, as a result, ceases to participate in the distributed
algorithm without prior notice. Before crashing processes behave strictly accord-
ing to the distributed algorithm.

5
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Byzantine fault-tolerant model

In the Byzantine fault-tolerant (BFT) model [74], a faulty process can exhibit
arbitrary (i.e., Byzantine) behavior, and adversaries can coordinate Byzantine
processes.

We use digital signatures and a public-key infrastructure (PKI) to validate
messages and detect Byzantine behavior (e.g., double-signing). A message m
sent by process p is signed with p’s private key and denoted as 〈m〉p. Addition-
ally, id(v) represents the invocation of a random oracle that returns the unique
hash of value v. Adversaries (and Byzantine processes under their control) are
assumed computationally bound so that they are unable to subvert the crypto-
graphic techniques used.

2.1.2 Timing models

Timing models define the assumptions about the bounds on relative process ex-
ecution speeds and message transmission delays. The absence of such bounds
characterizes an asynchronous system model, which does not permit solutions to
important problems such as consensus [43]. Consequently, in this thesis, we con-
sider models that assume some form of synchrony. Additionally, we assume that
message transmission delays encompass execution time because in geographi-
cally distributed systems, process execution speeds are usually orders of magni-
tude smaller than message transmission delays.

Synchronous model

In the synchronous system model, there exists a known bound∆ on the maximal
network transmission delay in communication between correct processes. We
define a synchrony violation as a message taking more than∆ to be transmitted.
We do not assume lock-step execution (e.g., [36; 74]); instead, we assume that
all honest replicas start execution within∆ time [3; 5].1 Processes communicate
using point-to-point reliable links: every message an honest sender sends to an
honest receiver is received.

1This can be implemented in a real system by having each replica broadcast a Star t message
upon the beginning of the execution. A replica starts either upon receiving a Star t message from
another replica or at a specific point in time.
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Partially synchronous model

The partially synchronous system model [37] lies between a synchronous sys-
tem and an asynchronous system. It relaxes the assumptions of the synchronous
system by requiring that the timing bounds hold only eventually. We consider
a variant of partial synchrony where the bounds are known but hold only after
an unknown time called Global Stabilization Time (GST). Additionally, commu-
nication links between correct processes are reliable only after GST. Before GST,
messages can be dropped, duplicated, or reordered, but we assume they cannot
be corrupted.

2.2 Consensus

The consensus problem is one of the most fundamental problems in distributed
computing [57]. It is most known for its role in state machine replication [99].
It defines a problem where a set of processes must reach a decision on a common
value while a certain number of processes may be faulty. In this thesis, we con-
sider the consensus problem in the context of both crash and Byzantine failures.
The consensus definitions are slightly different in these two cases.

In the CFT model, consensus satisfies the following properties:

• Uniform Agreement: If a process decides on value v, then all correct pro-
cesses eventually decide on v.

• Uniform Integrity: If a process decides on value v, then v was previously
proposed by some process.

• Progress: Every correct process eventually decides on exactly one value.

In the BFT model, the consensus properties cannot be uniform because a
Byzantine process can decide on an arbitrary value:

• Agreement: If a correct process decides on value v, then all correct pro-
cesses eventually decide on v.

• Integrity: If all processes are correct and a process decides on value v, then
v was previously proposed by some process.

• Progress: Every correct process eventually decides on exactly one value.
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2.3 Blockchain

A blockchain is a distributed append-only log of transactions implemented by
geographically distributed processes [91]. Unlike traditional consensus protocols
that decide on a single value, a blockchain protocol forms a chain of values. A
value in a blockchain is a block, and a block’s position in the chain is referred to
as the block’s height. A block Bk at height k has the following format:

Bk := (bk, H(Bk−1))

where bk denotes a proposed value (i.e., a set of transactions) and H(Bk−1) is
a hash digest of the predecessor block. The first block, B1 = (b1,⊥), has no
predecessor. Every subsequent block Bk must specify a predecessor block Bk−1 by
including a hash of it.

A block is considered valid if (i) its predecessor is valid or ⊥, and (ii) its
proposed value meets application-level validity conditions and is consistent with
its chain of ancestors (e.g., there are no double-spending transactions). If block
Bk is an ancestor of block Bl (i.e., l ≥ k), we say Bl extends Bk. We say blocks Bl

and B′l ′ equivocate each other if they do not extend one another.
We assume that a blockchain (consensus) protocol must satisfy the following

properties [3]:

• Agreement: No two honest replicas commit different blocks at the same
height.

• Progress: All honest replicas keep committing new blocks.

• External validity: Every committed block satisfies the predefined valid()
predicate.

This variant of the consensus problem has an application-specific valid()
predicate to indicate whether a block is valid [20; 23]. For instance, in blockchain
systems, a block is considered invalid if it lacks the correct hash of the preceding
block.



Chapter 3

Gossip Consensus

3.1 Introduction

Gossip-based consensus protocols have been proposed to address the challenges
faced by state machine replication in large, geographically distributed systems.
In this chapter, we investigate the suitability of gossip as a communication build-
ing block for consensus. We aim to answer three questions: How much overhead
does classic gossip introduce in consensus? Can we design consensus-friendly
gossip protocols? Would efficient gossip protocols maintain the same reliability
properties as classic gossip?

We examine gossip-based consensus from a systems perspective. Since gos-
sip provides high communication reliability and some consensus algorithms can
handle message losses (e.g., Paxos [70]), one could naturally layer a consensus
protocol on top of a gossip communication protocol (see Figure 3.1) without
designing a consensus protocol from scratch for a partially connected network
graph. Consequently, we consider a particular consensus protocol, Paxos [70],
and experimentally study its behavior when relying on gossip communication
(Section 3.4).

Our choice of Paxos is justified as follows: (a) Paxos is sufficiently known in
the distributed systems community and needs no lengthy explanation; (b) while
Paxos is not simple, it is simpler than many other consensus protocols (e.g.,
[24; 72; 75; 90]); (c) process interactions in Paxos include all communication
patterns of interest (i.e., one-to-one, one-to-many, many-to-one, and many-to-
many), which renders our study of general interest; and (d) Paxos is a viable
option for decentralized systems that tolerate crash failures only (e.g., [9]).

We start by considering the impact of gossip communication on the perfor-
mance of consensus (i.e., throughput and latency). Unsurprisingly, Paxos atop

9
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Figure 3.1. Gossip-based consensus.

gossip performs poorly in terms of throughput and latency when compared to a
baseline Paxos deployment where processes can communicate directly with the
Paxos coordinator.

The adoption of gossip causes a latency degradation of up to 52% in our
experiments, while the maximum achieved throughput can be reduced by up
to 74%, depending on the system size. Although the comparison is not fair, as
Paxos atop gossip can run in a partially connected network, while baseline Paxos
assumes a fully connected network, it provides a reference.

We then consider designing and implementing a “consensus-friendly” gossip
communication substrate. The idea is to reduce the overhead of gossip by ex-
ploiting consensus semantics. We introduce Semantic Gossip, which optimizes
classic gossip with two techniques, semantic filtering and semantic aggregation.
Semantic filtering allows the gossip layer to discard messages that have become
dispensable, according to the consensus logic. In the case of Paxos, decision mes-
sages render voting messages irrelevant. Thus, once a process starts propagating
a decision message, it stops the propagation of any voting messages that lead to
the decision. Semantic aggregation allows processes to group multiple messages
into a single one with equivalent meaning to consensus. In Paxos, multiple voting
messages can be grouped into a single multi-process voting message. Notice that
while Semantic Gossip uses knowledge about Paxos, no changes are required in
the implementation of Paxos.

Semantic filtering and aggregation substantially reduce the number of mes-
sages exchanged by processes to reach consensus. When both techniques are
combined, the reduction can be up to 58%, compared to messages exchanged
with classic gossip.

Moreover, Semantic Gossip boosts the performance of Paxos when compared
to implementations based on classic gossip. The adoption of the two semantic
techniques improves the latency of gossip-based Paxos by from 7% to 24%, while
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it is also able to sustain higher workloads than the Paxos implementation based
on classic gossip.

The performance improvements brought by Semantic Gossip are welcome
as long as they do not come at the expense of the reliability that classic gossip
provides. To consider this aspect, we inject failures (i.e., message loss) in the
execution of Paxos based on both classic gossip and Semantic Gossip. We found
that Semantic Gossip-based Paxos retains the resilience of gossip, up to 20% of
injected message loss.

3.1.1 Outline

The remainder of this chapter is organized as follows. Section 3.2 details the
system model and introduces background information on gossip and Paxos. Sec-
tion 3.3 proposes the design and implementation of Semantic Gossip. Section 3.4
describes the evaluation of Paxos using point-to-point, classic gossip, and Seman-
tic Gossip communication. Section 3.5 concludes the chapter.

3.2 Background

In this section, we provide some basic background on gossip communication and
the adopted consensus algorithm (Paxos [70]).

3.2.1 Gossip communication

The gossip communication approach is derived from epidemic dissemination
strategies used to propagate information in a distributed system. Originally pro-
posed for the dissemination of updates in replicated databases [35], epidemic
algorithms have proven to be an efficient and resilient approach to implement-
ing multicast and broadcast primitives [15]. The operation of epidemic dissem-
ination consists of periodic message-exchange rounds, in which every process
randomly selects other processes with which to interact.

There are three general gossip dissemination strategies. In the push strategy,
every process that has updates (i.e., new messages) to propagate sends them to
the selected peers. In the pull strategy, processes request updates to the selected
peers, which transmit the updates, if they have any, to the requesting processes.
These two strategies can be combined into a push-pull strategy, in which pro-
cesses in a round can both send updates to peers and receive updates from them.
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The push, pull, and push-pull strategies differ in terms of performance, the num-
ber of messages exchanged, and the number of rounds to contact a given portion
of the processes with high probability. The best strategy typically depends on
the application behavior, the size and frequency of updates, and on the methods
used to control the dissemination [35]. In this work we adopt the push strategy,
however, our contributions could be extended to other strategies.

An algorithm interacts with the gossip communication layer using a broadcast
primitive that addresses a message to all processes. It is a non-blocking primitive,
as the dissemination is asynchronous and may take several rounds. The deliver
primitive returns messages broadcast by processes. It is a blocking primitive re-
turning messages locally broadcast and messages received from other processes.
There are no guarantees that a message broadcast by a non-faulty process is de-
livered by all non-faulty processes; due to process or link failures, a message may
never reach some destinations. In addition, the random choice of peers to which
messages are sent may not provide full connectivity. However, a proper choice
of parameters (i.e., number of rounds and the number of processes to which a
processes gossips in each round) provides very high reliability, specially when
the push dissemination strategy is adopted [15].

3.2.2 Paxos

Paxos [70] is an algorithm that implements consensus (Section 2.2) with crash
failures (Section 2.1.1) in a partially synchronous system (Section 2.1.2). It can
be used to implement state machine replication [99] by running multiple inde-
pendent instances of consensus, each identified by a positive integer, where each
instance decides on a single value. The output of the algorithm consists of the
values decided in subsequent instances of consensus, following the total order
established by instance identifiers, with no gaps.

Paxos distinguishes among the roles that processes play in the execution of
the algorithm: proposers, acceptors, and learners. We assume that each Paxos
process plays all these roles. Thus, a process proposes values, works to ensure
that a single value is accepted in each instance of consensus, and learns the
decided values. Paxos has been optimized in many ways (e.g., [13; 72; 83; 85;
90; 94]). We adopt the classic version of the algorithm, described in [70].

Each instance of consensus proceeds in rounds, identified by positive inte-
gers. Each round is orchestrated by a process, the coordinator. A coordinator
can start the same round in multiple instances of consensus. A round consists
of two phases, Phase 1 and Phase 2. In each phase, the coordinator sends a
message, either a Phase 1a or Phase 2a message, to all processes (one-to-many
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communication pattern) and waits for Phase 1b or Phase 2b reply messages from
a majority of them (many-to-one communication pattern). Messages are tagged
with the identifier of the instance they belong to. A process replies to the co-
ordinator of a round provided that it has not replied to messages from higher-
numbered rounds in that instance of consensus. In Phase 1, the coordinator of
a round tries to find out if a value may have been chosen in lower-numbered
rounds. In Phase 2, the coordinator asks the processes to accept a value, either
learned from Phase 1b messages or any value proposed by a client.

When a majority of processes accept a value in the Phase 2 of a round, the
value of that instance of consensus is decided. Paxos ensures that no other val-
ues can be chosen in higher-numbered rounds of that instance of consensus, as
at least one process will report the accepted value in Phase 1. When the coor-
dinator learns, from Phase 2b messages, that a value is decided, it informs all
processes using a Decision message (one-to-many communication pattern). This
communication step becomes redundant if Phase 2b messages are received by all
non-faulty processes, not only by the coordinator.

Paxos is safe in the presence of concurrent coordinators, but for the sake of
progress a single process is expected to act as the coordinator at a time. Once
elected as the coordinator, a process starts a round in multiple instances of con-
sensus at once. In a restricted set of instances processes may have accepted
values, forcing the coordinator to re-propose them in Phase 2. But for most in-
stances no process will report having accepted values in previous rounds; in these
cases, the coordinator is free to propose any value in Phase 2. Thus, in regular
(fail-free) operation, the decision of a value only requires the execution of Phase
2 of a round [70].

3.3 Semantic Gossip

In this section, we motivate the need for gossip protocols optimized for consen-
sus, describe the design of a gossip protocol that takes advantage of consensus
semantics, and detail its implementation.

3.3.1 Motivation

Implementing consensus on top of gossip communication is straightforward. Es-
sentially, the original communication layer, which assumes a fully connected net-
work graph and provides (one-to-one) send and receive primitives, is replaced by
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a partially connected network with a gossip communication layer, which provides
(one-to-many) broadcast and deliver primitives (Figure 3.2).

In Paxos, Phase 1a and Phase 2a messages, sent by the coordinator to all
processes (one-to-many communication pattern) naturally benefit from gossip
communication. Instead of sending Phase 1a and Phase 2a messages to all pro-
cesses the coordinator is directly connected to, it can broadcast the messages via
gossip. Eventually, with a reasonably high probability, the messages are delivered
to all Paxos participants and their propagation cease. Notice that Paxos tolerates
message loss, so probabilistic delivery guarantees are sufficient.

Gossip is not well-suited for propagating Phase 1b messages, from all pro-
cesses to the coordinator (many-to-one communication pattern), as these mes-
sages only concern the coordinator, but will be delivered to all participants. For-
tunately, Phase 1b messages are rarely sent during regular, fail-free operation;
thus, the overhead of propagating them via gossip should not have relevant im-
pact on the overall performance. In the case of Phase 2b messages, the fact that
they will be delivered to all processes, not only to the coordinator, is positive. In
fact, processes do not need to wait for a Decision message from the coordinator
if they receive identical Phase 2b messages from a majority of processes. As a
result, the propagation of Phase 2b messages via gossip may speed up decisions.

The mismatch between Paxos, and more generally a fault-tolerant consensus
protocol, and gossip communication stems from the fact that Paxos was designed
to tolerate process crashes and message losses, while gossip protocols strive to
provide probabilistic reliable communication. Both consensus and gossip achieve
their guarantees by means of communication redundancy. The result is an unnec-
essarily high number of message exchanges, which penalizes performance. The
degree of redundancy increases when using gossip communication, as processes
are likely to receive the same message multiple times, from different peers.

The use of gossip as an underlying means of communication, however, is
beneficial for Paxos since gossip does not require direct communication between
every pair of processes. This feature naturally extends to environments in which
processes are connected to subsets of processes only, and balances the commu-
nication load among processes.

3.3.2 Design

In this section, we discuss simple techniques to address the mismatch between a
fault-tolerant consensus protocol, using Paxos as a reference, and the underlying
gossip communication substrate. The goal is essentially to reduce the message
redundancy at the gossip layer, employing the knowledge about the message se-
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mantics provided by the consensus protocol. The challenge is to achieve this
reduction in message redundancy without sacrificing modularity (i.e., without
modifying the original Paxos protocol) and the original resilience guarantees of-
fered by gossip.

Semantic filtering. The first technique provides to the consensus protocol
the ability to decide whether a message should be sent to a peer. This means
interfering with the operation of the gossip layer, which by default forwards every
message to all peers. The consensus protocol can then restrain the propagation
of messages that are (potentially) no longer useful to a peer, and therefore to
all other processes the peer is connected to. The main goal is to save network
and processing resources that would be used to forward messages that peers will
probably disregard.

Semantic filtering is implemented through a set of rules to identify messages
that, according to the consensus semantics, have become obsolete or redundant.
For instance, a message from a given round of consensus typically renders any
message from previous (smaller) rounds obsolete. Or, for some round steps, ac-
knowledgements from a majority of processes may render further acknowledge-
ments redundant. The semantic filtering rules are evaluated when a message is
ready to be sent to a peer. If the message is filtered out, because it is identified
as either obsolete or redundant, the gossip layer discards it; otherwise, it is sent
as usual.

The evaluation of the semantic filtering rules can be seen as a lightweight exe-
cution of the consensus protocol on behalf of a peer. In fact, to identify messages
that can be filtered out it is necessary to store some information about messages
that were previously sent to that peer. The more comprehensive the rules are,
the more information is stored per peer, and the more costly is to evaluate them.
Thus, the choice of a set of semantic filtering rules should balance the cost of
evaluating them for every message forwarded, with the benefits that an effective
filtering can provide.

In the case of Paxos, the proposed semantic filtering rules affect the propaga-
tion of Decision and Phase 2b messages. A Decision message is broadcast by the
coordinator when it receives Phase 2b messages from a given round and instance
from a majority of processes. A Decision message from a given instance thus ren-
ders any Phase 2b message from that same instance obsolete. A process can also
learn the value decided in an instance of consensus by receiving identical Phase
2b messages from a majority of processes. From this point on, any further Phase
2b message from the same instance becomes redundant. In both cases, Phase 2b
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messages are not forwarded to a peer when they refer to an instance for which
the peer is expected to already know the decision, from the messages previously
sent to it.

Semantic aggregation. The second technique provides the consensus proto-
col with the possibility to replace a number of similar or related messages, which
will be sent to a peer, with a single message comprising the information carried
by the original messages. This technique explores scenarios in which the gossip
layer has multiple pending messages to send to a peer and some of them are
likely to be aggregated, according to the consensus semantics. It is an oppor-
tunistic mechanism that aims to reduce the number of messages exchanged by
processes via gossip, especially when they operate under moderate to high load.

Semantic aggregation is also implemented through a set of rules that, from
a list of pending messages: (i) identify those that are prone to aggregation, and
(ii) define how an aggregated message can be built from the original messages.
When messages prone to aggregation are found, the first of them in the list of
pending messages is replaced by the aggregated message, built according to the
respective rule, while the remaining ones are removed from the list. In other
words, an aggregated message both replaces and filters out the original mes-
sages that it aggregates. Messages that are not prone to aggregation, or for which
aggregation is not deemed advantageous by the consensus protocol, are not af-
fected by this technique. They are kept in the list of pending messages, and are
forwarded to the peers as usual.

Semantic aggregation rules can be either reversible or not. When a process
receives from a peer a message aggregated using a reversible rule, it reconstructs
the original messages and treats them as regular messages. That is, messages
that are received for the first time are delivered to the consensus protocol and
forwarded to other peers—in this process, in particular, they can be semantically
aggregated again. When an aggregated message is built from a non-reversible
rule, it is treated as a new message broadcast by the process that aggregated
it. In this case, the consensus protocol must be able to handle the semantically
aggregated message.

Observe that, despite the similarities, semantic aggregation is not the same
as batching [45]. When implemented at the network level, batching essentially
concatenates messages, treated as raw byte arrays, to optimize the network us-
age. At the application level, some message types are batched until the batch size
reaches a threshold or a timeout expires. As a result, batching can have a nega-
tive effect on performance when the system is subject to low loads, as the sending



17 3.3 Semantic Gossip

of messages is delayed. This does not happen with semantic aggregation, which
despite being ineffective under low loads, does not delay the sending of any mes-
sages. Moreover, the technique is more flexible than batching, as messages are
not only concatenated, but can be transformed or merged in any arbitrary ways
defined by the semantic aggregation rules. So, while the size of a batch of mes-
sages is proportional to the number of messages in the batch, an aggregated vote
message, for instance, has essentially the same size regardless of the number of
single vote messages it has replaced.

As for semantic filtering, the best candidates in Paxos for semantic aggrega-
tion are Phase 2b messages. When there are multiple identical Phase 2b mes-
sages pending to be sent to a process, they can be easily replaced by a single
message. For this, a single semantic aggregation rule was adopted. It considers
for aggregation Phase 2b messages referring to the same instance and round of
consensus; so they only differ by their senders. The aggregated message consists
of any of the original Phase 2b messages plus a field to store the multiple senders.
As reconstructing the original Phase 2b is straightforward, the aggregation rule
is reversible and no changes in the Paxos protocol were required.

3.3.3 Implementation

We implemented a gossip-based communication layer to interconnect processes.
At the system setup, each process opens connections to a randomly selected set
of k processes, where k is a system parameter. Connections are bi-directional,
so that the set of peers of a process includes both the k peers to which it opened
connections, and a number of peers from which it received connection requests.
In fact, the expected number of peers each process interacts with is 2k.

Classic gossip. Figure 3.2 illustrates the architecture of the gossip layer. A
process interacts with the consensus protocol via two queues. The broadcast
queue is fed by locally broadcast messages, and the delivery queue offers messages
to the consensus protocol. A process also maintains, for each peer it is connected
to, a Send and a Receive routine. A send queue is associated to each Send routine;
messages added to a send queue are eventually sent to the corresponding peer.
There is a single receive queue shared by all Receive routines, to which messages
received from all active peers are added. A message added to the broadcast queue
is locally delivered and sent to all peers: it is added to the delivery queue and to
all active send queues. A message added to the receive queue is delivered and
forwarded to all peers but the peer the message came from: it is added to the
delivery queue and to all, but the message’s origin, send queues. The selection of
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Figure 3.2. Architecture of the gossip layer at a process.

peers to which a message is sent is done by the Message forwarding module from
the gossip main routine.

Messages are propagated using the push disseminating strategy. This means
that the same message can be received by a process several times, from distinct
peers. We control the flooding of messages using a simple approach based on a
cache of recently seen messages, maintained by every process. A message is reg-
istered to the recently seen cache before it is delivered to the consensus protocol
and sent to the process’ peers. If the same message is received within a short pe-
riod of time, so that the message’s identifier is still on the recently seen cache, the
message is dropped—i.e., it is not delivered nor forwarded to the peers. This is
the role of the Duplication check module represented in Figure 3.2: it prevents,
with some probability, a message from being delivered and forwarded more than
once. There is no actual guarantee of a deliver-and-forward once behavior, but
the adoption of a reasonable recently seen cache size (e.g., 256 KB) reduces the
probability of message duplication. It is worth noting that the recently seen cache
stores message unique identifiers, that can be defined by the consensus proto-
col to prevent hash collisions, and not full messages, so its size is constant and
relatively small. The same functionality could be obtained by adopting other
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approaches, such as a sliding Bloom filter [92].

Semantic extensions. The gossip layer offers two ways to control its behav-
ior, the techniques presented in Section 3.3.2: semantic filtering and semantic
aggregation. The consensus protocol can adopt one or both techniques by im-
plementing interface methods offered by the gossip layer.

Semantic filtering is provided by allowing the consensus protocol to imple-
ment a validate method, which receives a message and a destination peer, and
returns a boolean:

Bool validate(Message, Peer)

The validate method is invoked by a Send routine when it is ready to send
a message to the respective peer. If the method returns false, the message is
dropped, as the decision was to filter out the message. Otherwise, the message
is sent to the peer, the default behavior when the method is not implemented.
Implementations of the validate method should be fast and non-blocking, as it is
likely to be invoked concurrently by multiple sending routines. The implemen-
tation should keep some information about the state of each peer, essentially a
summary of relevant messages that were previously processed and not filtered
out, and thus sent to that peer. The cost of storing such information versus the
benefit in terms of resource saving by filtering out messages that would be sent
to a peer should be considered.

Semantic aggregation is provided through the implementation of a pair of
methods, aggregate and disaggregate:

Message[] aggregate(Message[], Peer)

Message[] disaggregate(Message)

The aggregate method receives an array of messages and a destination peer,
and returns an array of messages. It is invoked by a Send routine when it has mul-
tiple pending messages to be sent to the respective peer. Messages returned by
the aggregate method, both original and aggregated ones, are sent to the peer,
in the order in which they are returned. The disaggregate method receives an
aggregated message and returns either an array of reconstructed messages, for
reversible semantically aggregated messages, or the same message received oth-
erwise. It is invoked by the main gossip routine of a process when a message
marked as aggregated is received from a peer. Messages returned by the method
are processed as regular messages, in the order in which they are returned: they
are checked against the recently seen cache and, if not duplicated, delivered and
forwarded to peers.
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3.4 Experimental evaluation

In this section, we first introduce the evaluation setup (Section 3.4.1). Then, we
evaluate the effect of applying semantic extensions on the performance (Section
3.4.2) and reliability (Section 3.4.3) of Paxos algorithm. Next, we discuss the
results in light of different network topologies (Section 3.4.4), and conclude with
a summary of the main findings (Section 3.4.5).

3.4.1 Evaluation setup

This section explains the evaluation methodology, followed by details about the
experimental environment and implementation.

Methodology

We carried out experiments with Paxos using three setups, which differ by the
implementation of the communication substrate, while sharing the same Paxos
implementation.

The first setup, Baseline, provides a reference for the performance of a clas-
sic Paxos deployment (with three phases, as presented in Section 3.2.2) in the
experimental environment. In the Baseline setup, the Paxos coordinator com-
municates directly with every other process, which essentially assumes a fully
connected network. Nevertheless, comparing to the Baseline setup illustrates the
inherent difficulty of designing protocols for multi-administrative environments:
performance-wise and under normal conditions, the Baseline setup provides a
best case.

In the second setup, Gossip, processes can communicate directly only with
a small subset of other processes. Communication takes place via gosssip, and
messages are disseminated through a randomly generated overlay network. In
the third setup, Semantic Gossip, processes communicate in the same way as in
the Gossip setup, but the gossip layer is augmented with the semantic filtering
and aggregation techniques described in Section 3.3.2.

Environment

We conducted the main experiments in a geographically distributed environ-
ment, with processes evenly spread among 13 AWS regions: North Virginia,
Canada, Northern California, Oregon, London, Ireland, Frankfurt, São Paulo,
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Region Latency (ms)
Canada 7

N. California 30
Oregon 39
London 38
Ireland 33

Frankfurt 44
S.Paulo 58
Tokyo 73

Mumbai 93
Sydney 98
Seoul 87

Singapore 105

Table 3.1. WAN latencies between the coordinator’s region (North Virginia)
and the other twelve regions.

Tokyo, Mumbai, Sydney, Seoul, and Singapore. We have placed the Paxos coor-
dinator in North Virginia in all experiments because it is the region that has the
lowest latency to and from all other regions.

Table 3.1 lists the WAN latencies between the coordinator’s region (North
Virginia) and the other twelve regions. Processes were hosted by t2.medium
Amazon EC2 instances, with 2 vCPUs and 4GB of RAM.

We conducted an additional set of experiments in a cluster, where we em-
ulated the wide-area latencies between the above mentioned 13 AWS zones.
Latencies between cluster nodes were configured using the Linux Traffic Con-
trol kernel module [62], that allows postponing the sending of messages to a
given destination for a provided delay. The emulated WAN provided an afford-
able approximation of the AWS environment for experiments requiring hundreds
of executions. Those experiments we carried out in a cluster with two groups of
machines: (i) Dell PowerEdge 1435 with two Dual-Core AMD Opteron 2GHz and
4GB of RAM, and (ii) HP SE1102 with two Quad-Core Intel Xeon 2.5GHz and
8GB of RAM. By hosting two processes in nodes of group (ii), the performance
observed in the emulated environment was comparable with the performance
observed in AWS.

Implementation

We implemented Paxos, the gossip communication layer, and the Semantic Gos-
sip extensions in Go. We rely on libp2p [78] to establish and maintain communi-
cation channels between pairs of processes. Libp2p channels are built atop TCP
connections, and provide encryption, multiplexing, flow control, and network-
level batching. Although libp2p channels are reliable, our implementation may
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discard messages when queues connecting different routines are full, as a way
to prevent slow processes from blocking the main transport routine. In addi-
tion, libp2p connections may be dropped when receivers are much slower than
senders; although the dropped connections are reestablished, some messages
may be lost. Temporary disconnections between peers, however, do not compro-
mise the network connectivity.

The same Paxos implementation was used for all setups. In the Baseline setup,
the elected Paxos coordinator opens libp2p channels to all other processes, which
during fail-free operation only interact with the coordinator. In the Gossip and
Semantic Gossip setups, each process opens a libp2p channel to a random subset
of k processes. We set k to log2n, where n is the system size. As a result, each
process communicates directly with 2log2n other processes on average. This
number of connections per process ensures, with high probability, that the gen-
erated network overlay is connected [39]. To provide a fair comparison of results,
for each system size n, we enforce the same network overlay in experiments with
Gossip and Semantic Gossip setups. In Section 3.4.4, we then consider multiple
randomly generated network overlays and argue that this choice does not affect
our conclusions.

Clients generate an experiment workload by proposing values to Paxos. There
is one client per region that submits values to a Paxos process hosted in the same
region as the client. The communication between clients and Paxos processes
is reliable. When a Paxos process receives a value from a client, it forwards the
value to the coordinator; the coordinator then proposes the client value in Phase
2 of the next unused Paxos instance. Paxos processes inform all connected clients
about Paxos decisions. When a client is notified of the decision of a value it has
submitted, it computes the end-to-end latency; throughput is computed as the
rate of decisions per time unit. Clients operate in an open-loop model: a client
does not wait for the decision of a submitted value before submitting a new one.
The rate at which clients submit values to Paxos is an experiment parameter, and
all clients submit values at the same rate.

3.4.2 Performance

Figure 3.3 compares the performance of Paxos in the three setups: Baseline,
Gossip, and Semantic Gossip. Experiments were carried out in AWS with distinct
numbers of Paxos processes: n = 13, 53, and 105. These system sizes were
obtained by placing, respectively, 1, 4, and 8 processes in each of the 13 AWS
regions. An additional process, acting as the Paxos coordinator, was placed in the
North Virginia region to achieve n = 53 and 105. In all experiments, the load is
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Figure 3.3. Overall performance of Baseline, Gossip and Semantic Gossip, with
varying system sizes and 1KB values.

generated by 13 clients, one per region, that submit values at a fixed rate. We ran
experiments with distinct value sizes, but we only present data for 1KB values,
because results with other values sizes presented similar trends. We subjected
Paxos to increasing client workloads (submission rates) until we noticed that the
protocol is saturated. We highlight the saturation points in the graphs by drawing
a circle around them. More precisely, for each setup and system size we highlight
the point of the highest ratio between average latency and throughput. From this
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Figure 3.4. Normalized throughput at saturation point in the three setups.
Absolute throughput (messages per second) presented in the bars.

point on, increasing client workloads results in small throughput increments at
the cost of relevant latency increments. Saturation throughputs, normalized for
the system size, are summarized in Figure 3.4.

The first conclusion we can draw from Figure 3.3 is the relevant overhead
derived from the adoption of gossip as a communication means in a partially
connected network. In fact, the multiple communication hops required to deliver
messages to their destinations via gossip results in a relevant increment in the
average latencies to order values, when compared to the Baseline setup, where
we artificially assume full connectivity. When considering the lowest workload,
the left-most points in the graphs of Figure 3.3, the average latencies in the Gossip
setup are 38%, 39%, and 25% higher than in the Baseline setup for n = 13, 53,
and 105. As we increase the workload, the overhead due to the adoption of
gossip communication grows, so that in the saturation points of the Gossip setup
average latencies are 51%, 52%, and 49% higher than in the Baseline setup, for
n = 13, 53, and 105. In addition, we observe that Paxos in the Gossip setup
saturates before, i.e., at lower workloads than in the Baseline setup. As a result,
throughputs at the saturation points in the Gossip setup are, for n = 13, 53, and
105, respectively, 47%, 74%, and 59% lower than in the Baseline setup.

An explanation for the performance degradation of Paxos in the Gossip setup
is the inherent redundancy of gossip communication. We then compared the
number of messages received by the Paxos coordinator in Baseline and Gossip
setups. In the Baseline setup the coordinator is the only process that communi-
cates directly with all processes, thus the most overloaded process. In the Gossip
setup, in terms of communication, the coordinator is a process like any other.
With n = 105 processes, the number of messages received by a regular process
in the Gossip setup is around 8 times the number of messages received by the
coordinator in the Baseline setup. In fact, the gossip layer discards around 87%
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(about 7/8) of received messages because they are duplicated. For smaller sys-
tem sizes the redundancy factor observed in the Gossip setup is smaller but still
relevant. For n = 53, the redundancy factor is about 5 times and around 80%
of received messages are duplicated. For n = 13, the redundancy factor is about
2 times and around 49% of received messages are duplicated. This difference is
due to the average number of processes to which each process is connected, of
the order of log2n (log2105≈ 6.7, log253≈ 5.7, and log213≈ 3.7).

A second observation from Figure 3.3 is the performance improvement ob-
tained with the adoption of the semantic filtering and aggregation techniques.
For the smallest system size, n = 13, and workloads below the saturation of
Paxos, we observe a discrete but consistent reduction in average latencies in the
Semantic Gossip setup when compared with the Gossip setup: from 6% to 7%.
Then, around the saturation workload of the Gossip setup, the behavior in the
Gossip and Semantic Gossip setups become quite similar, although the saturation
throughput in the Semantic Gossip setup is 14% higher than in the Gossip setup.
With n= 53, despite some fluctuation in results, we note an overall performance
improvement derived from the adoption of the semantic techniques. At the Gos-
sip setup’s saturation workload, in particular, the average latency is 11% lower
in the Semantic Gossip setup, which also reaches a saturation throughput 79%
higher than in the Gossip setup. The improvement is more noticeable for n =
105, where the corresponding reduction in average latency reaches 24% while
the increase in the saturation throughput is of 2.4× with Semantic Gossip.

The advantage of Semantic Gossip can be explained when we compare the
number of messages exchanged by processes via gossip. With n = 105, consid-
ering the saturation point of the Gossip, the number of messages received by a
process in the Semantic Gossip setup is 58% lower than in the Gossip setup. To
this reduction, contribute both the messages discarded through semantic filtering
and multiple messages replaced by a single message through semantic aggrega-
tion. If we consider the messages delivered to Paxos (when received for the
first time and possibly disaggregated), the number is 16% lower in the Semantic
Gossip setup, as a direct result of semantic filtering. The portion of messages
discarded because they are duplicated is 82% in the Semantic Gossip setup, a
small reduction from the 87% observed in the Gossip setup. The inherent re-
dundancy of gossip communication is thus preserved, just as Paxos still operates
with a reasonably safe level of redundancy.

Latency distributions. Figure 3.5 presents the cumulative distribution func-
tion (CDF) of latencies measured by clients in a given configuration for the three
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analyzed setups. The data presented refers to experiments with n = 105 and the
same client workload (104 submissions/s), the biggest workload under which
the protocol is not yet saturated in the three setups.
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Figure 3.5. Latency distribution in all setups with n = 105. Legend with
average latency and standard deviation.

As observed in Figure 3.5, latency distributions show considerable dispersion
and present several noticeable steps. This occurs because latencies are measured
by 13 clients, one client per region, that submit a value to a Paxos process located
at the same region, then wait until the corresponding decision is informed by the
same process. The client located at the same region as the coordinator has the
advantage of having its values delivered to the coordinator with low delays. La-
tencies measured by this client, about 7.7% (1/13) of all, are the lowest, notice-
able in the bottom left part of the CDFs. Values submitted by clients located in
other regions are forwarded to the coordinator, an operation subjected to WAN
latencies. The cost of this operation is more noticeable in curves for the Baseline
setup, as Paxos processes are, exceptionally, allowed to send values directly to the
coordinator. From the second region (Canada) to the coordinator’s region (North
Virginia) the latency is relatively small: 7ms. The second step in Baseline’s CDF
is thus around 15.4% (2/13). Then, up to the seventh region (Frankfurt), WAN
latencies are larger but still below 50ms. The step around 53.8% (7/13) rep-
resents this interval, corresponding approximately to the median of the latency
distributions in the Baseline setup.

Latencies observed by a client are less affected by its geographic location in
the Gossip and Semantic Gossip setups than in Baseline setup. As a result, the
standard deviation of latencies is lower in the Gossip and Semantic Gossip setups
than in the Baseline setup. The least latency variability in gossip-based setups is
associated to the adoption of a randomly generated overlay network. While pro-
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cesses located in close geographical regions are not necessarily connected, which
increases latency between them, processes farther from the coordinator are not
so significantly penalized. In fact, from the 70th-percentile, corresponding to
latencies measured by the 4 clients more distant from the coordinator, the over-
head imposed by the adoption of gossip communication is much less noticeable
(less than 20ms or 6%).

When comparing the Gossip and Semantic Gossip setups, we observe an al-
most constant distance between the CDFs. Except for the latencies measured by
clients connected to the Paxos coordinator, from the 7th to the 97th percentiles
latencies measured in the Semantic Gossip setup are from 13ms to 20ms (5.0%
to 5.6%) lower than in the Gossip setup. The average latency in the Semantic
Gossip setup is 5.4% lower than in the Gossip setup. The improvement in average
latencies reaches 24% in the saturation point of the Gossip setup, but we choose
to compare the setups under a workload at which none of them is saturated. A
less noticeable aspect in Figure 3.5 is the tail of the latency distributions. The
99.9th latency percentile in the Semantic Gossip setup is 140ms (28%) lower
than in the Gossip setup; which, in its turn, is 54ms lower than in the Baseline
setup. In addition to the lowest latency standard deviation, this reaffirms the less
variable latencies observed in the Semantic Gossip setup.

3.4.3 Reliability

A major feature of gossip-based communication is its reliability, which allows
masking link and process failures. This capability stems from the inherent re-
dundancy of gossip communication, attested by the data collected in our previ-
ous experiments. Since a message is transported through multiple distinct paths
in the overlay network, a communication disruption between two processes is
less likely to prevent the message from being received by all destinations. In this
section, we assess the degree of reliability provided by the Gossip and Semantic
Gossip setups.

We implemented a fault-injection mechanism that randomly discards mes-
sages received by a process. In addition, the timeout-trigged procedures that
enable Paxos to react to message loss events were disabled. As a result, Paxos
processes may fail to learn the decision for some consensus instances. The im-
pact for the clients is more relevant: a single unsuccessful instance of consensus
renders all subsequent instances in the same execution also unsuccessful, as val-
ues are delivered in total order, with no gaps. As clients operate in an open-loop,
they continue submitting values at a given rate even after failing to order a value.
We can then compute the number of values that were submitted by clients but
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not ordered by Paxos, due to the injected message loss.
Figure 3.6 summarizes the impact of message loss in the operation of Paxos

with n = 105 processes in the Gossip and Semantic Gossip setups. We subjected
Paxos to increasing workloads, the number of values submitted per second by the
13 clients (y axis), and increasing injected message loss rates (x axis). We ran 10
experiments for each client workload and message loss rate to minimize the effect
of particularly favorable or unfavorable executions (as messages are discarded at
random). Due to the large number of executions, the experiments were carried
out in the emulated AWS environment. Figure 3.6 depicts the aggregate portion
of values submitted but not ordered in each configuration. The white cells of the
graph represent configurations in which all submitted values were successfully
ordered in the 10 executions, despite the injected message loss (i.e., we omit the
0% values).
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Figure 3.6. Impact of message loss in the reliability of Paxos in the Gossip and
Semantic Gossip setups under injected message loss, as the portion of failed
instances of consensus.

We can draw two major conclusions from Figure 3.6. First, the Gossip setup
is indeed resilient to message loss: with injected message loss rates below 10%
every submitted value is ordered. This means that: (i) every submitted value
was received by the coordinator; (ii) at least a majority of processes received the
Phase 2a message from the coordinator and accepted the submitted value; and
(iii) all 13 processes handling clients received both the Phase 2a message and
Phase 2b messages from a majority of processes. With 10% of injected message
loss, only 2% of the submitted values were not ordered, due to the violation of
any of the three conditions above mentioned. Notice that potentially less than
2% of the consensus instances have actually failed, but the client did not deliver
any values ordered after the first unsuccessful instance of consensus. With 20%
of message loss, up to 8% of instances of consensus are affected, while when
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30% are discarded up to 23% of the submitted values are not ordered—in both
cases under more than 100 submissions/s workload. Second, the benefits on
performance obtained with the adoption of the semantic extensions do not come
at the cost of lower reliability. In fact, the Semantic Gossip setup has proved to be,
in the overall, as reliable as the Gossip setup under message loss rates up to 20%.
With 30% of message loss and under higher workloads, however, the portion of
values that Paxos failed to order reaches 29% in the Semantic Gossip setup. This
indicates that under such (extreme) circumstances the semantic extensions may
impact the inherent reliability of gossip communication.

3.4.4 Network overlays

The overlay network interconnecting the processes, and in particular the laten-
cies between the coordinator and the remaining processes, affects the perfor-
mance of Paxos. In fact, since the decision of a value requires a round-trip from
the coordinator to a majority of processes, the median of RTTs from the coordina-
tor to other processes ultimately dictates the latency of a Paxos instance. Distinct
random overlay networks are likely to present different medians of RTTs from
the coordinator to other processes, and so will have different baseline latencies
for deciding values. This is the reason for enforcing the same network overlay in
all experiments in the Gossip and Semantic Gossip setups with the same system
size, as mentioned in Section 3.4.1.

Figure 3.7 illustrates the method to select the overlay network enforced in
experiments with the same system size, n = 105 in the case. We randomly gen-
erated 100 network overlays and submitted them to a minimal client workload
in the Gossip setup. For each network overlay, we compute the median of RTTs
from the coordinator to all processes (x axis), and associate it with the obtained
latency (y axis). Notice that multiple overlay networks can have the same me-
dian RTT but sport distinct latencies, as the RTT is not the only element to deter-
mine latencies. These two parameters allow totally ordering the multiple overlay
networks, from which we select the median one. Due to the high number of ex-
ecutions required, we carried out these experiments in the emulated AWS envi-
ronment. Once the overlay network is selected, we enforce it in AWS and verify
whether the performance in the real environment is similar. Figure 3.7 highlights
the selected overlay network, and presents the latency achieved in this overlay
network in both emulated and actual AWS EC2 environments.

The adoption of a single network overlay for all core experiments with Gos-
sip and Semantic Gossip setups raises another research question: Are the per-
formance improvements observed with the adoption of the semantic techniques
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Figure 3.7. Latency of Paxos in the Gossip setup under low workload in 100
distinct overlay networks. The overlay network adopted in the core experiments
is highlighted.

associated with the choice of a particular overlay network? To answer this ques-
tion, we selected a client workload at which the Gossip setup becomes saturated,
and adopted this workload to assess the Paxos performance in the Gossip and Se-
mantic Gossip setups in 100 distinct overlay networks. Due to the high number
of executions involved, experiments were carried out in the emulated AWS envi-
ronment.

Figure 3.8 presents results with n= 105 processes in the Gossip and Semantic
Gossip setups, adopting the same 100 overlay networks illustrated in Figure 3.7.
We aggregate data of overlay networks with the same median RTT (x axis), pre-
senting the average latency (y axis) among multiple experiments, for the sake
of readability; Figure 3.8 therefore present 44 data points for each setup. The
workload applied to Paxos in these experiments is enough to evidence the perfor-
mance improvements derived from the adoption of the semantic techniques. In
fact, for all network overlays considered in Figure 3.8, Semantic Gossip improves
latency from 11% to 39%, 23% on average, when compared to the Gossip setup.
As a reference, the improvement observed in the network overlay adopted in the
core experiment is of 24% from the Semantic Gossip to the Gossip setups.

3.4.5 Summary

In this section, we recall the main conclusions from our study.

• The adoption of gossip communication has a negative impact on the per-
formance of Paxos. While this is an expected result, our study quantifies
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Figure 3.8. Latency of Paxos in the Gossip and Semantic Gossip setups in 100
distinct overlay networks. The overlay network adopted in the core experiments
is highlighted.

this overhead: Gossip slows down the decision of values, by increasing by
up to 52% the average latencies when compared with the Baseline setup.

• Augmenting the gossip-based communication substrate with semantic ex-
tensions improves the performance of Paxos in all configurations evalu-
ated: Semantic filtering and aggregation reduce the number of messages
exchanged by processes via gossip by up to 58%. As a result, Semantic
Gossip provides average latencies from 7% to 24% lower than in the Gossip
setup, while sustaining up to 2.4× higher workloads and providing stable
and less variable latencies.

• The proposed semantic extensions do not compromise the reliability of gos-
sip communication. For example, without any timeout-trigged retransmis-
sion mechanisms, Paxos was able to operate correctly despite up to 10% of
message loss, both in the Gossip and Semantic Gossip setups.

3.5 Conclusion

This chapter investigates the deployment of consensus protocols in partially con-
nected networks that rely on gossip communication. We introduce Semantic
Gossip, a gossip-based communication substrate that takes consensus semantics
into account to optimize performance.

Semantic Gossip relies on two techniques, semantic filtering and semantic
aggregation. With semantic filtering, the gossip protocol can stop propagating
messages that have become redundant from the perspective of the consensus
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protocol. With semantic aggregation, the gossip protocol can replace multiple
consensus protocol messages by a single message of equivalent meaning.

Both techniques reduce the number of messages that are propagated by gos-
sip without penalizing the resilience of gossip communication. We have demon-
strated the usefulness of Semantic Gossip using Paxos, a well-known consensus
protocol.

We believe that other agreement protocols could also benefit from a gossip-
based communication substrate with semantic extensions. First, semantic fil-
tering is motivated by the fact that some messages in Paxos supersede previous
messages. Whenever this happens, superseded messages can be dropped without
negative consequences for the protocol. This is an aspect that is not particular
to Paxos, but present in other agreement protocols (e.g., based on rounds). Sec-
ond, semantic aggregation is inspired by a common pattern in agreement proto-
cols where a protocol step depends on votes cast by processes in previous steps.
Instead of sending all votes to all processes, votes can be aggregated and prop-
agated as one message. Finally, since gossip communication offers probabilistic
delivery guarantees, agreement protocols that can cope with message loss would
be more appropriate to the proposed techniques.



Chapter 4

How robust are synchronous consensus
protocols?

4.1 Introduction

The synchronous system model requires every message to be delivered within a
predefined time-bound ∆. To increase the probability of this happening, exist-
ing synchronous consensus protocols set∆ as the 99.99-th percentile of sampled
communication [80] or as a 10-time factor of average latency [3]. The reliance on
∆ influences protocol correctness and directly impacts its performance. The re-
sult is a challenging tradeoff: a conservative∆ reduces the chances of synchrony
violations, which favors correctness, but results in poor protocol performance.

In this chapter, we delve into this tradeoff. Our starting point is the obser-
vation that some synchronous consensus protocols can tolerate synchrony vio-
lations without compromising correctness. Resilience to synchrony violations
happens due to communication diversity and redundancy in a protocol. In Fig-
ure 4.1 (left), process p sends a request to process q (mA) and sets a 2∆ timeout
for the answer from q. Even if p’s request violates synchrony (i.e., mA takes
longer than ∆ to arrive at q), q’s response (mB) makes up for the delay and ar-
rives at p within the expected 2∆. In Figure 4.1 (right), p sends a request to q
and r (mA) and sets a 3∆ timeout for their answer. Process q receives mA timely,
replies to p (mB) and relays mA to r. Although r receives mA from p after ∆, it
receives mA from q timely and responds to p (mC). As a result, p receives re-
sponses from q and r within the expected 3∆. These communication patterns
are at the core of BoundBFT, a novel Byzantine fault-tolerant (BFT) synchronous
consensus protocol introduced in this chapter.

Tolerating even a few synchrony violations can provide substantial gains in
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Figure 4.1. Possible BoundBFT execution patterns where several messages (in
gray) violate synchronous bound∆ without compromising protocol correctness.
Some messages are omitted to avoid cluttering.

US West (CA) Europe (EU) Tokyo (JP) Sydney (AU) Sao Paolo (BR)
99.99% 99.999% 99.99% 99.999% 99.99% 99.999% 99.99% 99.999% 99.99% 99.999%

US East (VA) 1097 82190 1112 85649 1226 81177 1372 95074 1214 85434
US West (CA) 1184 1974 1133 1180 1209 6354 1252 90980
Europe (EU) 1310 1397 1375 3154 1257 1382
Tokyo (JP) 1149 1414 2496 11399

Sydney (AU) 1496 2134

Table 4.1. Round-trip latency (in milliseconds) of hping3 across Amazon EC2
datacenters, collected during three months [80].

performance. To understand why, consider Table 4.1, reproduced from [80],
which compares the 99.99-th and 99.999-th percentile of communication across
Amazon EC2 datacenters. For example, a synchronous protocol that can tolerate
one synchrony violation in every ten thousand messages exchanged between US
West and US East can benefit from a significantly lower timeout than a protocol
that expects one synchrony violation in every one hundred thousand messages
to be transmitted timely (i.e., 1097 versus 82190 milliseconds).

Since BoundBFT tolerates Byzantine failures, synchrony violations should
not introduce vulnerabilities that malicious processes could exploit. In leader-
based consensus protocols that tolerate Byzantine failures, such as BoundBFT,
the leader is the most advantageous role for a malicious process as it can induce
honest processes into inconsistent decisions, possibly with help from other ma-
licious processes. In a synchronous protocol, the malicious leader can hope to
get “additional help” from synchrony violations, as some honest processes may
be delayed with respect to other processes. The attack will work as long as the
deceived honest process does not find out about the trickery before deciding.
However, honest processes communicate with many other honest processes, so
there is ample opportunity to find out about the attack even if some messages
are delayed.
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In this chapter, we investigate the robustness of BoundBFT, by which we mean
its ability to maintain correctness under synchrony violations, both in the pres-
ence and absence of malicious processes. Building on BoundBFT’s leader-based
execution model with signed messages, we first characterize the range of poten-
tial attacks and examine their effects when combined with synchrony violations.
Based on this characterization, we identify specific attacks and implement them
to rigorously evaluate BoundBFT’s robustness. Using these implemented attacks,
we conduct experiments to determine an appropriate synchrony bound, ∆, that
provides high confidence in preserving protocol correctness, even when mali-
cious replicas are present. Finally, we apply this bound to evaluate BoundBFT’s
performance, allowing for a meaningful comparison with partially synchronous
protocols.

We have implemented BoundBFT and compared it to state-of-the-art syn-
chronous (i.e., Sync HotStuff [3; 5]) and partially synchronous consensus proto-
cols (i.e., Tendermint [20] and HotStuff-2 [82]). Our evaluation in an emulated
geographically distributed system showed that BoundBFT’s synchrony bounds
could be, in some cases, more than one order of magnitude smaller than typi-
cal synchronous consensus protocols without correctness violations under attack.
Consequently, BoundBFT sports latency comparable to partially synchronous con-
sensus protocols, much smaller than the latency of synchronous counterparts.
Finally, BoundBFT outperforms considered partially synchronous consensus pro-
tocols with increased reliability and availability.

4.1.1 Outline

The remainder of the chapter is structured as follows. Section 4.2 presents
BoundBFT, a new BFT consensus algorithm designed for the synchronous system
model. Section 4.3 analyzes BoundBFT under synchrony violations and attacks.
Section 4.4 experimentally evaluates BoundBFT and competing approaches, and
Section 4.5 concludes the chapter.

4.2 BoundBFT

This section introduces BoundBFT, a new consensus algorithm introduced in this
thesis. This chapter is divided into three parts: the detailed algorithm descrip-
tion, an intuitive explanation of the algorithm’s correctness, and a formal proof
of its correctness.
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4.2.1 Protocol overview

BoundBFT is a synchronous BFT consensus protocol with a rotating leader [5].
It draws inspiration from Tendermint [20], a partially synchronous consensus
protocol, and the rotating-leader version of Sync Hotstuff [5; 3], a synchronous
consensus protocol.

BoundBFT adopts the good-case execution of Sync HotStuff, achieving op-
timal latency and responsive leader rotations [5], and Tendermint’s termina-
tion mechanism, which does not require an explicit leader change subprotocol.
BoundBFT improves on Sync HotStuff by reducing the waiting time for a new
leader to propose from 9∆ to 5∆ when the previous leader is silent. Further-
more, unlike the original Tendermint protocol, BoundBFT does not rely on a gos-
sip communication layer to reliably disseminate all messages to replicas. Lastly,
BoundBFT can tolerate f < n/2 Byzantine replicas, compared to Tendermint’s
tolerance of f < n/3.

Variables

Algorithm 1 presents a set of variables that each honest replica maintains. Bound-
BFT’s execution evolves as a sequence of epochs, numbered 0,1, 2, . . ., with each
replica tracking the last epoch it started, denoted as ep. Each epoch e has a des-
ignated leader, computed using a deterministic function leader(e). The leader
is responsible for proposing a new block in the epoch. Replicas vote once per
epoch for the first leader proposal they receive. The flag hasVotedp indicates
whether the replica has already voted in the current epoch. When a replica re-
ceives f +1 votes signed by distinct replicas for a block b proposed by the leader
in epoch e, it forms a block certificate Ce(b) with the f + 1 signed votes. Each
replica maintains the most recent certified block and its certificate in variables
validBlockp and validBCp, respectively. A certificate Ce(b) is considered more
recent than Ce′(b′) if e > e′. Additionally, if a replica receives a block certificate
for a block proposed in the current epoch before detecting any misbehavior, it
locks on this block by setting the lockedBlockp and lockedBCp variables. Finally,
each replica tracks whether the epoch is still active or finished with the variable
epochStatep. An epoch finishes when a replica commits a block or receives proof
of leader misbehavior.

Normal execution

Algorithm 2 presents BoundBFT’s pseudo-code that covers executions when
leaders are honest. At the start of an epoch, the leader l broadcasts the proposal
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Algorithm 1 BoundBFT consensus algorithm: variables
1: Initialization:
2: ep := 0 Â the current epoch
3: hasVotedp := f alse Â has the replica voted in the current epoch?
4: validBCp := nil Â the most recent block certificate the replica is aware of and...
5: validBlockp := nil Â the block certified by validBCp

6: lockedBCp := nil Â the block certificate the replica is locked on and...
7: lockedBlockp := nil Â the block certified by lockedBCp

8: epochsStatep[] := nil Â an epoch can be in one of the states: ACTIVE, COMMITTED, NOT-COMMITTED

Â ACTIVE - replica is in this state until it commits a block or detects a misbehavior
Â COMMITTED - replica committed a block before detecting any misbehavior
Â NOT-COMMITTED - replica detected a misbehavior before committing a block

Algorithm 2 BoundBFT consensus algorithm: normal case
1: when bootstrapping do Star tEpoch(0) Â the execution starts in epoch 0

2: Procedure Star tEpoch(e) : Â upon starting an epoch:
3: ep ← e Â the replica resets the current epoch variables
4: epochsStatep[ep]← ACTIVE

5: hasVotedp ← f alse
6: if leader(ep) = p then Â if the replica is the leader in the current epoch...
7: block.t xs← GetT xs() Â it gets new transactions to include in the new block
8: if validBlockp 6= nil then Â then, if it knows of a previously certified block...
9: block.prev← id(validBlockp) Â it links the new block with that block
10: broadcast 〈PROPOSE, ep , block, validBCp〉p Â lastly, it broadcasts the proposal with the new block and....

Â the certificate for the block it is extending, validBCp

11: when receive 〈PROPOSE, e, b, BC〉l where valid(b) and Â upon receiving the valid proposal...
12: l = leader(e) and e = ep do Â from the leader of the current epoch:
13: if epochsStatep[e] = ACTIVE ∧ b.prev = BC .id ∧ hasVotedp = f alse ∧ Â if the epoch is active, replica has not voted yet, and...
14: BC .epoch≥ lockedBCp .epoch then Â the proposed block extends a block at least as recent as replica’s lockedBC ...
15: broadcast 〈VOTE, ep , id(b)〉p Â the replica votes for a proposal, VOTE message contains block’s hash
16: hasVotedp = t rue Â then, the replica sets hasVotedp so it does not vote twice, and...
17: forward 〈PROPOSE, e, b, BC〉l Â forwards the proposal message

18: when receive 〈PROPOSE, e, b, BC〉l and f + 1 distinct 〈VOTE, e, id(b)〉∗ Â when the replica receives a proposal and f + 1 votes...
19: where e = ep do Â from the current epoch:
20: cer t ← NewCer t from f + 1 〈VOTE, e, id(b)〉∗ Â it forms a block certificate
21: if epochsState[e] = ACTIVE then Â if no misbehavior is noticed in the current epoch...
22: lockedBCp ← cer t Â the replica locks on this block by setting lockedBCp to cer t and...
23: lockedBlockp ← b Â lockedBlockp to b, and...

24: start t imeoutCommit(ep , b) Â starts t imeoutCommit

25: validBCp ← cer t Â the replica always updates its validBCp and validBlockp ...
26: validBlockp ← b Â to the most recent block
27: forward messages from cer t Â lastly, the replica forwards the votes to other replicas and...
28: Star tEpoch(e+ 1) Â starts the next epoch

29: when t imeoutCommit(e, b) expires do Â when t imeoutCommit expires and...
30: if epochsState[e] = ACTIVE then Â the replica did not observe any proof of misbehavior,
31: epochsState[e]← COMMITTED Â the replica commits the block b and...
32: CommitBlockAndI tsAncestors(b) Â all its already uncommited ancestor blocks

containing a new block b that extends the most recently certified block it knows
of, validBlockl (lines 6–10 in Algorithm 2). Along with the new block, the leader
includes the certificate for validBlockl , validBCl .

Upon receiving a proposal (lines 11–17 in Algorithm 2), a replica verifies
the proposal’s validity (see Section 2.3) and votes for it if the proposed block
truely extends the block from the leader’s block certificate, if the leader’s block
certificate is at least as recent as the replica’s lockedBCp. The replica votes by
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sending a signed vote message to all replicas. A vote contains the current epoch
number and the hash of the block, id(b).

When a replica receives a proposal and f +1 votes for it, it forms a block cer-
tificate for the proposed block. If the replica has no proof of leader l misbehav-
ing, it locks on b and triggers t imeoutCommit(e, b) (lines 18–24 in Algorithm
2). The replica then updates its validBlockp and validBCp variables (lines 25–
28 in Algorithm 2) and starts epoch e + 1. To ensure all honest replicas receive
the proposal and its certificate, the replica forwards them (lines 17 and 27 in
Algorithm 2), allowing all honest replicas to start epoch e+ 1 within ∆ time.

When t imeoutCommit(e, b) expires and the replica has no evidence of leader
misbehavior for epoch e, it commits block b and all blocks b extends (lines 29–
32 in Algorithm 2). In other words, it directly commits block b and indirectly
commits all its uncommitted ancestor blocks.

The replica does not wait for t imeoutCommit(e, b) to expire before starting
the next epoch. Instead, it begins epoch e+1 immediately after receiving a block
certificate in epoch e (line 28 in Algorithm 2). This approach allows BoundBFT
to change leaders without waiting for the conservative network delay∆when we
have a sequence of honest leaders, a property known as optimistic responsiveness
[82]. Additionally, BoundBFT implements pipelining [119], enabling replicas to
start working on the next block before committing the previous one. Specifi-
cally, the leader in epoch e+ 1 will propose a new block once it receives a block
certificate for a block in epoch e.

Handling malicious leaders

Algorithm 3 presents BoundBFT’s pseudo-code responsible for handling Byzan-
tine leaders.

To detect a malicious leader, a replica r starts a timer, t imeoutCer t i f icate(e),
when it enters epoch e (line 2 in Algorithm 3). If t imeoutCer t i f icate(e) expires
and r is still in epoch e, it indicates that r did not receive a block certificate,
which can only occur if the leader is Byzantine. Consequently, replica r blames
the leader and broadcasts a message 〈BLAME, e〉r (lines 3–5 in Algorithm 3).

When a replica receives f +1 blame messages for epoch e from distinct repli-
cas, it has proof that at least one honest replica blamed the leader and forms a
blame certificate Ce(BLAME) (lines 6–7 in Algorithm 3).

Additionally, if an honest replica receives proposals for two distinct blocks
signed by the leader in the same epoch e, it has proof that the leader is misbe-
having. The replica then constructs an equivocation certificate Ce(EQUIV) (lines
9–11 in Algorithm 3).
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Algorithm 3 BoundBFT consensus algorithm: handling malicious leaders
1: upon starting the epoch e do Â when a replica enters a new epoch:

2: start t imeoutCer t i f icate(ep) Â it starts the timer used to detect a malicious leader

3: when t imeoutCer t i f icate(e) expires do Â when t imeoutCer t i f icate expires:
4: if e = ep ∧ epochsState[e] = ACTIVE then Â if the replica did not receive a block certificate and the epoch is still ACTIVE

5: broadcast 〈BLAME, ep〉p Â the replica blames the leader by broadcasting a BLAME message

6: when receive f + 1 distinct 〈BLAME, e〉∗ do Â when receiving f + 1 distinct BLAME messages from an epoch:
7: cer t ← NewCer t from f + 1〈BLAME, e〉∗ Â the replica forms a blame certificate and...
8: MissbehaviorDetected(cer t, e) Â calls MissbehaviorDetected with the certificate and epoch as parameters

9: when receive 〈PROPOSE, e, b, BC〉p and 〈PROPOSE, e, b′, BC ′〉p Â when replica receives two proposals...
10: where p = leader(e) and b 6= b′ do Â from leader for two distinct blocks:
11: cer t ← NewCer t from 〈PROPOSE, e, b, BC〉p and 〈PROPOSE, e, b′, BC ′〉p Â the replica forms an equivocation certificate and...
12: MissbehaviorDetected(cer t, e) Â calls MissbehaviorDetected with the certificate and epoch as parameters

13: Procedure MissbehaviorDetected(cer t, e) : Â when misbehavior is detected in an epoch:
14: if epochsState[e] = ACTIVE then Â if the epoch is still active
15: epochsState[e]← NOT-COMMITTED Â the replica sets state to NOT-COMMITTED

16: if e = ep then Â if cer t is the first certificate for the current epoch,
17: forward messages from cer t Â the replica forwards the messages from certificate and...

18: start t imeoutEpochChange(ep) Â triggers t imeoutEpochChange

19: when t imeoutEpochChange(e) expires do Â when t imeoutEpochChange expires:
20: if e = ep then Â if the replica is in epoch e
21: Star tEpoch(ep + 1) Â the replica starts the next epoch

Whenever a replica has proof of the leader’s misbehavior (i.e., a blame or
equivocation certificate), it calls the function MissbehaviorDetected(cer t, e)
and forwards the certificate and epoch number to it (lines 8 and 12 in Algorithm
3). If a block is not committed in epoch e, the replica marks the epoch state as
NOT-COMMITTED (line 15 in Algorithm 3). Moreover, if cer t is the first certificate
in epoch e, the replica forwards the certificate and triggers t imeoutEpochChange(e)
(lines 16–18 in Algorithm 3). Forwarding the certificate ensures that all honest
replicas learn that the leader is Byzantine within ∆ time. Additionally, the extra
timeout allows the replica to learn if an honest replica r moved to the next epoch
before detecting leader misbehavior, i.e., r received a block certificate in epoch
e, locked on it, and moved to the next epoch.

When t imeoutEpochChange(e) expires and the replica is still in epoch e, it
moves to epoch e+1 (lines 19–21 in Algorithm 3). Replicas wait for t imeoutEpo-
chChange before moving to the next epoch only in the case of a Byzantine leader.
If the leader is honest, replicas form a block certificate and move to the next epoch
without waiting for any timeouts.

4.2.2 Correctness intuition

In this section, we provide an intuitive explanation of BoundBFT’s correctness.
We structure the discussion around the three main properties guaranteed by
BoundBFT.
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Epoch synchronization

The epoch synchronization mechanism guarantees that honest replicas progress
through each epoch in a coordinated manner. Specifically, all honest replicas ini-
tiate each epoch within ∆ time, ensuring synchronization. Additionally, Byzan-
tine replicas cannot disrupt or halt the protocol during any epoch.

The epoch synchronization mechanism in BoundBFT relies on certificates: to
start a new epoch, a certificate (i.e., block, blame, or equivocation certificate)
must be formed in the previous epoch. BoundBFT ensures that, regardless of
Byzantine behavior, a certificate is created in each epoch.

The mechanism BoundBFT employs to guarantee the existence of a certificate
is as follows: honest replicas initiate a t imeoutCer t i f icate upon entering a
new epoch (line 2 in Algorithm 2). If the timeout expires without receiving a
certificate, the replica blames the leader. This results in two possible outcomes:
(i) an honest replica forms one of the certificates, or (ii) no honest replica receives
a certificate before the t imeoutCer t i f icate expires. In case (ii), all f +1 honest
replicas will blame the leader, resulting in the formation of a blame certificate.

Once a certificate is ensured for an epoch, synchronizing replicas becomes
straightforward: each replica forwards the received certificate (lines 17 and 27
in Algorithm 2 and line 17 in Algorithm 3). Within ∆ time, all honest replicas
receive the certificate and start the next epoch if they have not already done so.

Agreement

BoundBFT ensures that no two honest replicas commit different blocks in the
same blockchain height. Consequently, the resulting blockchain remains consis-
tent and does not have forks.

In epochs with a Byzantine leader, multiple certificates can be created. As a
result, different honest replicas may start the next epoch receiving different cer-
tificates. For instance, one honest replica may receive a block certificate, while
another may receive an equivocation certificate. To account for this scenario, an
honest replica commits a proposed block b in epoch e only if it knows that the
first certificate received by all honest replicas in e is a certificate for b. This guar-
antees two properties: (i) all honest replicas vote for block b, and (ii) all honest
replicas lock on block b in epoch e. Property (i) ensures that no other block can
be certified and afterward committed in epoch e. Property (ii) guarantees that
honest replicas vote only for blocks extending b in the following epochs. As a
result, only b and blocks extending b will be certified and committed in epochs
e′ ≥ e, and the agreement property will be satisfied.
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The mechanism BoundBFT uses to verify the commit condition is as follows.
Upon receiving a certificate for block b, Ce(b), as the first certificate in epoch
e, r forwards the certificate and triggers t imeoutCommit(e) at time t (lines
24 and 27 in Algorithm 2). Consequently, r knows that all honest replicas will
receive Ce(b) by time t +∆. If an honest replica p received a different certifi-
cate before Ce(b), it must have received it at time t1 < t + ∆. Since p also
forwards its certificate, r will receive it by time t1 +∆ < t + 2∆. Therefore,
setting t imeoutCommit(e) to 2∆ ensures that r receives p’s certificate on time.
Ultimately, if t imeoutCommit(e) expires and r has not heard about any other
certificates, r can be sure that the first certificate received by all honest replicas
in e is Ce(b). In this case, r commits block b.

Progress

BoundBFT ensures that all honest replicas commit a new block in every epoch
with an honest leader. It does so by: (i) ensuring that all honest replicas vote for
the leader’s proposal, and (ii) preventing the creation of blame or equivocation
certificates. Property (i) guarantees the creation of a unique block certificate,
while property (ii) guarantees that all honest replicas must receive the block
certificate, trigger t imeoutCommit, and, when it expires, commit the proposed
block.

An honest leader of an epoch proposes a new block that extends its validBlock
and sends validBC together with the new block. Other honest replicas will vote
for the new proposal only if the validBC sent by the leader is at least as recent
as their lockedBC . Consequently, BoundBFT ensures that whenever an honest
replica locks on a block in epoch e, all honest replicas update the validBlock
and validBC to the block certified in epoch e. Therefore, the validBCs on all
honest replicas are always at least as recent as lockedBCs on all honest replicas.

BoundBFT ensures that validBlock and validBC are always up to date by
relying on a mechanism that uses t imeoutEpochChange. Namely, an honest
replica r cannot start the next epoch immediately if the first certificate it receives
in the current epoch is a blame or equivocation certificate. Instead, it must ensure
no other honest replica locks on a block in this epoch. Consequently, r forwards
its certificate (line 17 in Algorithm 3), knowing that in ∆ time, all honest repli-
cas will receive it. If any honest replica p locked on a block, it must have done
so before receiving the forwarded certificate. As a result, upon forwarding its
certificate, r sets t imeoutEpochChange(e) to expire in 2∆ time (line 18 in Al-
gorithm 3). Moreover, r starts the next epoch only when this timeout expires, or
it receives the block certificate for the current epoch. Since p also forwards the
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certificate after locking (line 27 in Algorithm 2), r knows it will receive it before
t imeoutEpochChange expires. Notably, r will not lock on a block certificate if
it receives the certificate after t imeoutEpochChange is initiated.

Lastly, BoundBFT must ensure that no equivocation or blame certificates are
possible in epochs with honest leaders. An equivocation certificate will not be
formed since the honest leader will not propose two different blocks. How-
ever, ensuring that no blame certificate is possible requires that no honest replica
blames the leader. In other words, every honest replica must receive the block
certificate before t imeoutCer t i f icate(e) expires. Consequently, honest repli-
cas set t imeoutCer t i f icate(e) to 3∆. The first∆ accounts for epoch drift time,
the second ∆ for the time it takes for the leader’s proposal to reach all hon-
est replicas, and the last ∆ is for the reception of the votes broadcast by hon-
est replicas. Since we already showed that all honest replicas will vote for the
honest leader, the block certificate is formed on all honest replicas before the
t imeoutCer t i f icate(e) expires, and no honest replica blames the leader.

4.2.3 Correctness proof

This section presents the proof that BoundBFT satisfies all the properties of blockchain
protocol (Section 2.3).

Lemma 1. Every honest replica always moves to the next epoch.

Proof. Assume for contradiction that an honest replica r remains in some epoch
e indefinitely. This would imply that r did not generate any of the certificates
Ce(Bk), Ce(BLAME), or Ce(EQUIV). However, each honest replica starts the timer,
t imeoutCer t i f icate(e), upon entering epoch e (line 2 in Algorithm 3). When
this timeout expires, if an honest replica has not received any certificate, it broad-
casts the BLAME message (lines 3–5 in Algorithm 3). Consequently, if no certifi-
cate is formed before the t imeoutCer t i f icate(e) expires, all honest replicas
will broadcast the BLAME message, leading to the formation of the blame certifi-
cate Ce(BLAME). This contradicts our assumption, thus proving that every honest
replica moves to the next epoch.

Lemma 2. If an honest replica starts epoch e at time t, then all honest replicas start
epoch e by time t +∆.

Proof. Suppose an honest replica r starts epoch e at time t. This implies that
r receives and broadcasts Ce−1(Bk) at time t (lines 27–28 in Algorithm 2), or
at time t − timeoutEpochChange(2∆), r receives and broadcasts Ce−1(BLAME)
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or Ce−1(EQUIV) (lines 17 and 21 in Algorithm 3). Messages with certificates will
arrive within∆ time. Consequently, in the former case, all honest replicas receive
Ce−1(Bk) by time t +∆ and start epoch e. In the latter case, all honest replicas
receive Ce−1(BLAME) or Ce−1(EQUIV) by time t−∆ and within 2∆ they start epoch
e, ensuring that all honest replicas start epoch e by time t +∆.

Theorem 1. (Epoch synchronization) All honest replicas continuously move through
epochs, with each replica starting a new epoch within ∆ time of any other honest
replica.

Proof. We prove this theorem by combining Lemma 1 and Lemma 2.
First, from Lemma 1, we know that every honest replica always moves to

the next epoch. This ensures that no honest replica remains stuck in any epoch
indefinitely.

Second, from Lemma 2, we know that if an honest replica starts epoch e at
time t, then all honest replicas start epoch e by time t +∆. This guarantees that
all honest replicas start each epoch within ∆ time of each other.

Combining these two results, we can conclude that all honest replicas con-
tinuously move through epochs, with each replica initiating a new epoch within
∆ time of any other honest replica.

Lemma 3. If an honest replica directly commits block Bk in epoch e, then (i) no
block different than Bk can be certified in epoch e, and (ii) every honest replica locks
on block Bk in epoch e.

Proof. Suppose an honest replica r directly commits Bk in epoch e at time t (line
32 in Algorithm 2). This means that at time t−2∆, r received Ce(Bk), locked on it,
and started t imeoutCommit(e) (lines 18–24 in Algorithm 2). Moreover, replica
r forwarded all messages representing Ce(Bk) (lines 17 and 27 in Algorithm 2)
so all honest replicas received these messages in ∆ time, by time t −∆.

For part (i), assume for a contradiction that some honest replica p received
and voted in epoch e for the block Bl 6= Bk. Since every honest replica votes only
once, p must have received a proposal for Bl before receiving a proposal message
for Bk, at some time t1 < t −∆. As a result, p forwards the propose message
for Bl at time t1 (line 17 in Algorithm 2). Replica r will receive this message
by time t1 +∆, that is, before t. Since these two propose messages lead to a
Ce(EQUIV) certificate, p would not commit (lines 9–12 and 15 in Algorithm 3),
a contradiction. Therefore, property (i) holds since no honest replica votes for a
block different than Bk; otherwise replica r would not commit.

For part (ii), we know by (i) that if replica r directly commits in epoch e,
there is not any possible Ce(Bl) 6= Ce(Bk). So, we need to prove that every honest
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replica p receives Ce(Bk) before receiving Ce(BLAME) or Ce(EQUIV). For a contra-
diction, assume that p receives Ce(BLAME) or Ce(EQUIV) before receiving Ce(Bk).
This must happen at time t1 < t −∆ as p receives Ce(Bk) by time t −∆. After
receiving Ce(BLAME) or Ce(EQUIV), p broadcasts them (line 17 in Algorithm 3).
So, p broadcasts Ce(BLAME) or Ce(EQUIV) at time t1 and r receives them by time
t1 +∆. Since t > t1 +∆ replica r will not commit Bk, a contradiction.

Lemma 4. If Bk is the only certified block in epoch e and f +1 honest replicas lock
on block Bk in epoch e (lockedBlock = Bk and lockedBC = Ce(Bk)), then in all
epochs e′ > e, they vote only for blocks extending Bk, or they blame the proposer.

Proof. The proof proceeds by induction on the epoch number.
Base step (e′ = e + 1) : Let C denote the set of f + 1 honest replicas. The

replicas in set C do not vote for proposals that do not extend blocks certified
in epochs higher than or equal to their lockedBC (line 14 in Algorithm 2). As a
result, when t imeoutCer t i f icate(e′) expires, no block certificate will be formed
since no honest replica has voted, causing honest replicas to blame the proposer
by sending 〈BLAME, e′〉∗ message. Therefore, the lemma holds for the base step
since honest replicas vote only for a block if it extends lockedBlock.

Induction step (e′→ e′+1): Assume that no replica in set C has voted for a
block not extending Bk until epoch e′+1. We now show that the lemma holds for
epoch e′+1. Since replicas from the set C vote for blocks extending Bk or blame
the proposer in epochs e ≤ e′′ ≤ e′, no block Bl not extending Bk can receive f +1
votes in those epochs. Therefore, for all processes in set C , lockedBlock = Bk′

and lockedBC .epoch ≥ e, where Bk′ = Bk or Bk′ extends Bk. Assume, for the
sake of contradiction, that a process p in set C votes in epoch e′ + 1 for a block
not extending Bk. An honest replica will not vote for a block not extending its
lockedBlock (line 14 in Algorithm 2), leading to a contradiction. Hence, the
lemma holds for epoch e′ + 1 as well.

Lemma 5. If an honest replica directly commits block Bk in epoch e, then any block
Bl that is certified in epoch e′ > e must extend Bk.

Proof. The proof follows directly from Lemmas 3 and 4. More precisely, if an
honest replica directly commits block Bk in epoch e, by Lemma 3, we know that
f + 1 honest replicas (set C) lock on block Bk in epoch e and Bk is the only
certified block in epoch e. Consequently, by Lemma 4, replicas from C vote only
for the blocks extending block Bk in epochs e′ > e. Therefore, no block Bl that
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does not extend Bk can collect f + 1 votes and thus cannot be certified in any
epoch e′ > e.

Theorem 2. (Agreement) No two honest replicas commit different blocks at the
same height.

Proof. Suppose, for the sake of contradiction, that two distinct blocks Bk and B′k
are committed for the same height k. Assume that Bk is committed as a result
of Bl being directly committed in epoch e and B′k is committed as a result of Bl ′

being directly committed in epoch e′. Without loss of generality, assume l < l ′.
Note that all directly committed blocks are certified. This is true because in order
to start t imeoutCommit(e) for block Bk, a replica needs to receive Ce(Bk) (lines
18–24 in Algorithm 2). By Lemma 5, Bl ′ extends Bl . Therefore, Bk = B′k, which
contradicts the assumption that Bk and B′k are distinct. Hence, no two honest
replicas can commit different blocks at the same height.

Lemma 6. If an honest replica r locks on a block Bk in epoch e, no honest replica
starts epoch e+1 before updating validBC to Ce(Bl), where Bl does not need to be
equal to Bk.

Proof. Assume that an honest replica r locks on a block Bk in epoch e at time
t. This implies r receives Ce(Bk) at time t and does not receive Ce(BLAME) or
Ce(EQUIV) before that. Since all messages representing Ce(Bk) are broadcast
(lines 17 and 27 in Algorithm 2), all honest replicas receive these messages by
time t +∆.

Suppose for a contradiction that some honest replica p starts the epoch e+1
before receiving Ce(Bk) or some other Ce(Bl), in other words at time t1 < t +
∆. This means it had received Ce(BLAME) or Ce(EQUIV) and broadcast messages
representing them at time t1−2∆ (line 17 in Algorithm 3). Consequently, replica
r receives Ce(BLAME) or Ce(EQUIV) by time t1 −∆ and as t > t1 −∆, it does not
lock on Bk, a contradiction.

Corollary 1. Every honest replica starts epoch e with validBC that is at least as
recent as any certificate any honest replica locks on in any epoch e′ < e.

Proof. Suppose that the last epoch in which some honest replica locks on a block
is epoch e′ < e. By Lemma 6, we know that all honest replicas update their
validBC to some certificate from the same epoch (e′), before starting epoch
e′ + 1. From this and the fact that no honest replica, in any of the following
epochs (e′ < e′′ < e), updates its validBC to an older certificate (lines 25–26 in
Algorithm 2), we see that this corollary holds.
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Theorem 3. (Progress) All honest replicas keep committing new blocks.

Proof. From Lemmas 1 and 2, we see that replicas proceed through epochs, each
epoch having a dedicated leader. If the leader of an epoch is Byzantine and
does not propose any block or proposes equivocating blocks, honest replicas will
collect Ce(BLAME) or Ce(EQUIV) and move to the next epoch. Due to the round-
robin leader election, there will be epochs with honest leaders.

Consider an epoch e with an honest leader l. Let t be the time when the first
honest replica starts epoch e. By Lemma 2, all honest replicas enter epoch e by
the time t +∆. Therefore, by the time t +∆ at the latest, an honest leader l
broadcasts the proposal 〈PROPOSE, e, Bk, validBCl〉l . All honest replicas receive
proposal by time t + 2∆. Since by the Corollary 1, validBCl is at least as re-
cent as any lockedBC of any honest replica, all honest replicas vote for the
proposal. As a result, all honest replicas receive Ce(Bk) by time t + 3∆. Since
t imeoutCer t i f icate(e) > 3∆, no honest replica will send a 〈BLAME, e〉∗ mes-
sage in epoch e, and Ce(BLAME) cannot be formed. Furthermore, considering
that replica l is honest, it does not equivocate, so no Ce(EQUIV) will be formed in
epoch e. Consequently, all honest replicas start t imeoutCommit(e), and when
it expires, they commit Bk and all its ancestors. This scenario will occur in ev-
ery epoch with an honest leader, ensuring that all honest replicas consistently
commit new blocks across all such epochs.

Theorem 4. (External validity) Every committed block satisfies the predefined valid()
predicate.

Proof. This follows directly from the requirement that every committed block
must first be certified (lines 18, 24, and 32 in Algorithm 2). This implies that at
least one honest replica accepted the block, meaning that valid() returned true
for this block on at least one honest replica (line 11 in Algorithm 2).

4.3 Debunking synchrony violations

BoundBFT relies on synchrony every time an action is triggered by a timeout.
Each timeout is expressed as a multiple of a synchrony bound ∆ and is intended
to capture a specific exchange of messages between honest replicas. Conse-
quently, a synchrony violation may result in a scenario where the timeout ex-
pires before a replica receives an expected message from some honest replica.
We refer to this phenomenon as a timeout violation.
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In this section, we first explore how malicious replicas might attempt to com-
promise BoundBFT. We then examine the consequences of timeout violations in
both the presence and absence of malicious replicas by analyzing each Bound-
BFT timeout in detail. Finally, we propose a Byzantine protocol informed by
these insights.

4.3.1 Byzantine behavior

Listing possible faulty behaviors of Byzantine replicas is unusual since, by def-
inition, a Byzantine replica can behave arbitrarily. However, in the context of
leader-based protocols where messages are signed, the scope for deviation is
somewhat limited. In the following, we outline the possible faulty behaviors.

Byzantine Leader Behaviors:

• SILENCE: The leader does not send a proposal to a subset of replicas, or
possibly to any replicas.

• EQUIVOCATION: The leader proposes multiple blocks in the same epoch.

• AMNESIA: The leader ignores its local knowledge of the blockchain and,
instead of extending the blockchain with a new block, proposes an alter-
native block for a previously committed block.

Non-Leader Byzantine Replica Behaviors:

• MULTI-VOTE: A Byzantine replica can vote for any proposal it likes, includ-
ing multiple proposals in the same epoch.

• BLAME: A Byzantine replica can blame the leader by broadcasting a blame
message at any point, even if the leader is honest.

In addition, Byzantine replicas can always remain silent or discard messages
selectively.

4.3.2 Timeout t imeoutCommit

The t imeoutCommit is the only timeout responsible for BoundBFT’s agreement.
An honest replica sets this timeout after locking on a block in an epoch (line 24
in Algorithm 2). The replica then forwards the block certificate and waits for this
timeout to receive certificates from all other honest replicas.

If t imeoutCommit is violated, an honest replica may miss a certificate from
some honest replicas. As a result, it may commit block b in epoch e thinking
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all honest replicas locked on b, while in reality, some honest replicas received a
different certificate and moved to epoch e + 1 without locking on b. If enough
honest replicas did not lock on b, the agreement might be compromised as hon-
est replicas may vote for an alternative block b′, create a block certificate, and
commit b′.

The likelihood of this situation in the absence of Byzantine replicas is low, as
the following conditions must be fulfilled:

1. A blame certificate must be formed in epoch e, meaning a majority of repli-
cas must have blamed the leader in epoch e (i.e., t imeoutCer t i f icate was
violated in all of these replicas).

2. A majority of replicas did not lock on b in epoch e, receiving a blame cer-
tificate before receiving a block certificate for b.

3. The leader of epoch e + 1 did not receive b’s block certificate in epoch e,
thus not updating its validBlock and validBC to b and b’s certificate (i.e.,
its t imeoutEpochChange was violated in epoch e).

Even though t imeoutCer t i f icate and t imeoutEpochChange are responsible
for BoundBFT’s progress, in this scenario, they also play a role in guarding the
protocol’s agreement.

Byzantine replicas can exploit t imeoutCommit violations and potentially
compromise BoundBFT’s agreement through the following attacks:

• AMNESIA-ATTACK: The Byzantine leader ignores the algorithm (line 9 in
Algorithm 2) and does not propose a block that extends its validBlock. In-
stead, it proposes an alternative block b for its validBlock (i.e., b.prev =
validBlock.prev). Byzantine replicas vote for this proposal. The agree-
ment can be violated if an honest replica committed validBlock while
some honest replicas, due to t imeoutCommit violations, did not lock on
validBlock. As a result, these replicas will vote for block b, and if their
votes, together with Byzantine votes, form a majority, block b will be certi-
fied and committed. To increase the probability of this scenario, in epochs
with an honest leader, Byzantine replicas send votes for the block proposed
by the honest leader to one subset of honest replicas to help them form the
block certificate faster and commit a block. At the same time, they send
BLAME messages to a different subset of honest replicas to help them form
a blame certificate before receiving a block certificate.

• EQUIVOCATION-ATTACK: The Byzantine leader proposes two distinct pro-
posals in the same epoch, and Byzantine replicas vote for both. The first
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proposal and its votes are sent to one subset of honest replicas, and the
second proposal and its votes to another subset. As a result, two hon-
est replicas may vote for, receive block certificates, and commit different
blocks if their t imeoutCommits expire before they learn about the equiv-
ocated proposal. In epochs when the leader is honest, Byzantine replicas
remain silent and update validBlock and validBC to stay aware of the
most recently certified block. This is important so that when they become
the leader, Byzantine replicas can generate new blocks that honest replicas
will vote for.

4.3.3 Timeout t imeoutCer t i f icate

Honest replicas initiate this timeout upon starting an epoch (line 2 in Algorithm
3). Its purpose is twofold. First, it ensures that an honest replica does not wait
indefinitely for a silent malicious leader. Second, when the leader is honest
and proposes a block that all honest replicas will vote for, t imeoutCer t i f icate
should not expire before all honest replicas receive the proposal and the votes
from all other honest replicas. In other words, before they receive a block cer-
tificate. Consequently, no honest replicas will blame an honest leader.

If t imeoutCer t i f icate is violated, an honest replica will incorrectly blame
the honest leader. If a majority of honest replicas blame the leader, a blame
certificate can be formed, and the decision might not be reached in the current
epoch. However, the block will be committed when the next honest leader pro-
poses a block and other honest replicas receive the block certificate on time.

The creation of a blame certificate is easier in the presence of Byzantine repli-
cas:

• BLAME-ATTACK: Byzantine replicas do not vote for the proposal sent by
the honest leader. Instead, they broadcast BLAME messages upon starting
the epoch with an honest leader. As a result, the blame certificate can be
formed if a single honest replica blames the leader. In epochs when the
leader is Byzantine, the Byzantine replicas just remain silent.

Apart from unconditionally blaming the leader and hoping that one of the
honest replicas will also blame the leader, there is no other way for Byzantine
replicas to prevent honest replicas from committing a block in epochs with honest
leaders. t imeoutCer t i f icate violations may slow down the execution but will
not lead to violations in agreement (i.e., when two honest replicas decide on
different blocks).
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4.3.4 Timeout t imeoutEpochChange

An honest replica r triggers this timeout when it receives a blame or equivoca-
tion certificate as the first certificate in an epoch (line 18 in Algorithm 3). This
timeout ensures that if another honest replica receives a block certificate as the
first certificate and locks on it in the same epoch, r will receive this block cer-
tificate and update its validBlock and validBC before starting the next epoch.
Consequently, r starts the next epoch when it receives a block certificate from
the current epoch or when t imeoutEpochChange expires.

If the timeoutEpochChange is violated, an honest replica will not hear about
the locked block. Consequently, if the replica is the next epoch leader, it will pro-
pose a block that locked replicas will not accept. If the set of remaining honest
replicas that vote for a proposed block is less than the majority, the block cer-
tificate will not be formed, and a decision will not be reached even though the
epoch leader is honest. However, the new block will be committed when one of
the locked honest replicas becomes a leader.

Honest replicas rely on this timeout only in epochs when an equivocation or
a blame certificate is formed. In the absence of attacks, creating an equivocation
certificate is impossible. As a result, an honest replica uses t imeoutEpochChange
solely in case it receives a blame certificate. This can happen only if t imeout-
Cer t i f icate is violated on a majority of honest replicas, and they blame the
honest leader.

With Byzantine replicas, however, both equivocation and blame certificates
are possible. Byzantine replicas can exploit t imeoutEpochChange violations as
follows:

• EQUIVOCATION-CERTIFICATE-ATTACK: The Byzantine leader broadcasts a
proposal for block b. Then, the Byzantine replicas send votes for block b to
one subset of honest replicas to help them create a block certificate and lock
on b. At the same time, the Byzantine leader sends a second proposal for
block b′ 6= b to the other subset of honest replicas. These honest replicas
will form an equivocation certificate and start t imeoutEpochChange. As
a result, they will not lock on block b.

• BLAME-CERTIFICATE-ATTACK: Similarly, Byzantine replicas impose lock-
ing on one subset of honest replicas by sending a proposal and votes for
block b. Instead of equivocating, the Byzantine leader remains silent and
does not send any proposal to the other subset of honest replicas. More-
over, all Byzantine replicas send blame messages to these replicas. If these
replicas did not receive a block certificate before the t imeoutCer t i f icate
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expires,1 they will blame the leader and, together with blame messages
from Byzantine replicas, form a blame certificate and start t imeoutEpo-
chChange, without locking on block b.

In both attacks, Byzantine replicas remain silent in epochs with an honest
leader. By remaining silent, these replicas ensure that if a t imeoutEpochChange
violation happened and the next honest leader proposes a block that does not
extend block b, a block certificate will not be formed and a decision will not be
reached.

Similarly to t imeoutCer t i f icate, violations of t imeoutEpochChange can
slow down the execution but cannot lead to violations in agreement.

4.3.5 The Byzantine protocol

Algorithm 4 presents the Byzantine replica protocol. Byzantine replicas pro-
ceed through epochs in the same way as honest replicas. Namely, if they receive
a block certificate, they start the next epoch immediately (lines 23–28 in Algo-
rithm 4), while if they receive a blame or equivocation certificate they wait for
t imeoutEpochChange before starting the next epoch (lines 29–36 in Algorithm
4). They do this to be synchronized with honest replicas so they can launch
the attack at the moment that maximizes the attack’s effectiveness. Moreover,
a Byzantine replica waits for t imeoutEpochChange to update its validBlock
and validBC to the most recent values. As a result, when leader in an epoch, a
Byzantine replica can propose a valid block (i.e., an invalid block would be easily
dismissed by honest replicas).

Algorithms 5 and 6 present the logic for attacks on BoundBFT’s agreement
and progress, respectively. We empower the attacks by assuming that Byzantine
replicas know each other and collude (Section 2.1.1): each Byzantine replica has
private keys of all Byzantine replicas. Therefore, a Byzantine replica can sign and
send messages on behalf of other Byzantine replicas.

Upon starting an epoch, a Byzantine replica launches a specific attack, which
is a parameter of an algorithm:

• EQUIVOCATION-ATTACK,

• AMNESIA-ATTACK,

1Even though the Byzantine replicas do not send the proposal and votes to these replicas,
they can receive the forwarded messages from other honest replicas and form a block certificate
before t imeoutCer t i f icate expires.
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Algorithm 4 The Byzantine protocol
1: Initialization:
2: ep := 0 Â the current epoch
3: validBCp := nil Â the most recent block certificate the replica is aware of and...
4: validBlockp := nil Â the block certified by validBCp

5: C := getAl lHonestReplicas() Â the set of honest replicas
6: f := getNumberO f B yzantineReplicas() Â the number of Byzantine replicas
7: at tackT ype := getAt tackT ype() Â the attack type the Byzantine replica launches
8: k := getTar getSize() Â the size of the two random sets of honest replicas that are under the attack

9: when bootstrapping do Star tEpoch(0) Â the execution starts in epoch 0

10: Procedure Star tEpoch(e) : Â upon starting the epoch...
11: ep ← e Â the replica sets the current epoch, and...
12: switch at tackT ype : Â invokes the specific attack and pass the necesarry arguments to it
13: case EQUIVOCATION-ATTACK :
14: LaunchEquivocationAt tack(e, validBlock, validBC , C , k, f )
15: case AMNESIA-ATTACK :
16: LaunchAmnesiaAt tack(e, validBlock, C , k, f )
17: case BLAME-ATTACK :
18: LaunchBlameAt tack(e, C , f )
19: case EQUIVOCATION-CERTIFICATE-ATTACK :
20: LaunchEquivocationCer t i f icateAt tack(e, validBlock, validBC , C , k, f )
21: case BLAME-CERTIFICATE-ATTACK :
22: LaunchBlameCer t i f icateAt tack(e, validBlock, validBC , C , k, f )

23: when receive 〈PROPOSE, e, b, BC〉l and f + 1 distinct 〈VOTE, e, id(b)〉∗ Â when replica receives a proposal and f + 1 votes for it...
24: where e = ep do Â in the current epoch...
25: cer t ← NewCer t from f + 1 〈VOTE, e, id(b)〉∗ Â it forms a block certificate,...
26: validBCp ← cer t Â updates its validBCp and validBlockp ...
27: validBlockp ← b Â to the most recent block, and...
28: Star tEpoch(e+ 1) Â starts immidiately the next epoch

29: when receive 〈PROPOSE, e, b, BC〉p and 〈PROPOSE, e, b′, BC ′〉p Â upon receiving two proposals...
30: where e = ep and p = leader(e) and b 6= b′ do Â in the current epoch, from the leader for two distinct blocks...
31: start t imeoutEpochChange(ep) Â the replica triggers t imeoutEpochChange

32: when receive f + 1 distinct 〈BLAME, e〉∗ where e = ep do Â upon receiving a blame certificate in the current epoch...
33: start t imeoutEpochChange(ep) Â the replica triggers t imeoutEpochChange

34: when t imeoutEpochChange(e) expires do Â when t imeoutEpochChange expires and...
35: if e = ep then Â the replica is stil in epoch e...
36: Star tEpoch(ep + 1) Â the replica starts the next epoch

• BLAME-ATTACK,

• EQUIVOCATION-CERTIFICATE-ATTACK, or

• BLAME-CERTIFICATE-ATTACK.

All Byzantine replicas launch the same attack, not only the current epoch
leader. This ensures that messages arrive at their destinations as fast as possible.
So, if the malicious leader is far from some honest replica, the honest replica
will receive attack messages from its closest Byzantine replica. For example, if
the attack is EQUIVOCATION-ATTACK, each Byzantine replica will generate two
proposals and votes for these proposals and send one proposal and its votes to
one subset of honest replicas and another proposal and its votes to the other
subset of honest replicas.

In attacks where Byzantine replicas divide honest replicas into two subsets
and send different messages to them, the subsets are picked randomly. The size
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Algorithm 5 Byzantine attacks on BoundBFT’s agreement
1: Procedure LaunchEquivocationAt tack(e, validBlock, validBC , honestReplicas, k, f ) : Â ***EQUIVOCATION-ATTACK***
2: if isB yzantineLeader(e) then Â if the epoch leader is a Byzantine replica:
3: p1, p2 ← generateTwoDi f f erentProposals(e, validBlock, validBC) Â the replica creates two distinct proposals
4: v1 ← generateVoteMessages(p1, f ) Â then, the replica generates f VOTE messages for p1, and...
5: v2 ← generateVoteMessages(p2, f ) Â f VOTE messages for p2, one for each Byzantine replica
6: set1, set2 ← getTwoRandomSets(e, k, honestReplicas) Â lastly, the replica divide honest replicas in two random sets of size k
7: send p1 and v1 to set1 Â then, it sends the first proposal and votes for it to the first set, set1,
8: send p2 and v2 to set2 Â while, sending the second proposal and its votes to the second set, set2

9: Procedure LaunchAmnesiaAt tack(e, validBlock, honestReplicas, k, f ) : Â ***AMNESIA-ATTACK***
10: if isB yzantineLeader(e) then Â if the epoch leader is a Byzantine replica:
11: p← generateAl ternativeProposal(e, validBlock) Â the replica generates an alternative proposal for validBlock
12: v← generateVoteMessages(p, f ) Â then, the replica generates f VOTE messages for p, one for each Byzantine replica
13: send p and v to honestReplicas Â the replica sends the proposal and votes for it to the all honest replicas
14: else Â else, if the leader is an honest replica:
15: set1, set2 ← getTwoRandomSets(e, k, honestReplicas) Â the replica divides honest replicas, in two random sets of size k
16: upon receiving p = 〈PROPOSE, e, b, BC〉l Â then, when it receives the proposal...
17: where l = leader(e) do Â from epoch leader...
18: v← generateVoteMessages(p, f ) Â it generates f VOTE messages for received proposal and...
19: b← generateBlameMessages(e, f ) Â f BLAME messages for epoch e, one for each Byzantine replica
20: send v to set1 Â then, it sends votes to one subset of honest replicas, set1,...
21: send b to set2 Â while sending blames to the second subset of honest replicas, set2

Algorithm 6 Byzantine attacks on BoundBFT’s progress
1: Procedure LaunchBlameAt tack(e, honestReplicas, f ) : Â ***BLAME-ATTACK***
2: if isHonest Leader(e) then Â if the epoch leader is honest:
3: b← generateBlameMessages(e, f ) Â the replica generates f BLAME messages, one for each Byzantine replica, and...
4: send b to honestReplicas Â send them to all honest replicas

5: Procedure LaunchEquivocationCer t i f icateAt tack(e, validBlock, validBC , k, Â ***EQUIVOCATION-CERTIFICATE-ATTACK***
6: honestReplicas, f ) :
7: if isB yzantineLeader(e) then Â if the epoch leader is Byzantine:
8: p1, p2 ← generateTwoDi f f erentProposals(e, validBlock, validBC) Â the replica generates two different proposals, and...
9: v1 ← generateVoteMessages(p1, f ) Â f VOTE messages only for p1, one for each Byzantine replica
10: set1, set2 ← getTwoRandomSets(e, k, honestReplicas) Â then, the replica divides honest replicas in two random sets of size k
11: send p1 and v1 to set1 Â finally, it sends the first proposal and votes for it to the first set of honest replicas, set1,...
12: send p1 and p2 to set2 Â while sending both proposals to the second set of honest replicas, set2

13: Procedure LaunchBlameCer t i f icateAt tack(e, validBlock, validBC , k, Â ***BLAME-CERTIFICATE-ATTACK***
14: honestReplicas, f ) :
15: if isB yzantineLeader(e) then Â if the epoch leader is Byzantine:
16: p← generateNewProposal(e, validBlock) Â the replica generates new proposal for epoch e,...
17: v← generateVoteMessages(p, f ) Â f VOTE messages for proposal, and...
18: b← generateBlameMessages(e, f ) Â f BLAME messages, one for each Byzantine replica
19: set1, set2 ← getTwoRandomSets(e, k, honestReplicas) Â then, replica divides honest replicas in two random sets of size k
20: send p and v to set1 Â finally, it sends the proposal and votes for it to the first set of honest replicas, set1,...
21: send b to set2 Â while sending blame messages to the second set of honest replicas, set2

of these subsets is a parameter of the algorithm, defined by k. If k is set to 2,
function getTwoRandomSets(e, k, set) will return two different subsets, each
containing two random elements. Byzantine replicas ensure they have the same
subsets by using the current epoch number as a random number generator seed.
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4.4 Experimental evaluation

In this section, we first introduce the evaluation setup (Section 4.4.1). Next,
we explain how we determined the synchronous bounds for BoundBFT (Sec-
tion 4.4.2) and compare the performance of BoundBFT with state-of-the-art syn-
chronous and partially synchronous consensus algorithms (Section 4.4.3). We
conclude with a summary of the main findings (Section 4.4.5).

4.4.1 Evaluation setup

This section explains the choice of protocols we compare BoundBFT to. Then, it
provides details about the experimental environment and implementation.

Methodology

We compare BoundBFT to state-of-the-art leader-rotating Byzantine consensus
protocols in the synchronous and partially synchronous system models (see Ta-
ble 4.2). Protocols designed to allow frequent leader rotation provide better
blockchain fairness and censorship resistance than protocols where the leader
is not expected to change often (e.g., PBFT) [5]. In leader-rotating protocols,
a new replica is elected leader when the protocol changes epoch (or round or
view) as part of the normal execution, not just in case of a leader failure. This
way, every replica has a chance to be the leader, propose a new block, and receive
a reward for it. Moreover, a Byzantine leader that censors transactions by not
including them in proposed blocks has little impact as leaders change frequently.

System model Resilience Pipelining Optimistic
responsiveness

HotStuff-2 [82] partially
synchronous

f < n/3 yes yes

Tendermint [20] partially
synchronous

f < n/3 no yes

Sync HotStuff [5] synchronous f < n/2 yes yes
BoundBFT synchronous f < n/2 yes yes

Table 4.2. Protocols in our evaluation and their main characteristics.

Additionally, we consider protocols that allow optimistic responsiveness [82],
meaning that in good cases, where we have a sequence of honest leaders, pro-
tocols change leaders responsively, waiting for real network delays only. Lastly,
we consider protocols that use pipelining [119], an optimization where replicas
start working on the next block only after receiving the certificate for the previous
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block, i.e., they do not wait for the previous block to be committed. In doing so,
these protocols can order multiple blocks in parallel, and commit latencies have a
lesser impact on throughput. We include synchronous and partially synchronous
representative protocols that benefit from this optimization.

In the synchronous model, we consider a version of Sync HotStuff that sup-
ports responsive leader rotation, pipelining, and has optimal latency [3; 5]. In
the partially synchronous model, we choose Tendermint [20] and HotStuff-2
[82], the most recent protocol of the HotStuff family [119], with pipelining.
Tendermint provides optimistic responsiveness, and due to its quadratic commu-
nication, it needs only three communication steps to commit a value. As such,
Tendermint serves as a good baseline for latency. However, Tendermint does
not implement pipelining. Consequently, we use HotStuff-2 as a baseline for
throughput. HotStuff-2 implements pipelining and optimistic responsiveness but
has higher latency than Tendermint since it requires five linear communication
steps to commit a value.

Environment

We conducted our experiments in a cluster with emulated wide-area latencies
between 6 AWS zones (see Table 4.1). Latencies between cluster nodes were
configured using the Linux Traffic Control kernel module [62]. The emulated
WAN provided an affordable approximation of the AWS environment since our
evaluation required hundreds of hours of experiments. The cluster contains 60
machines divided in two groups: (i) EPYC Zen 2 with two 16-Core AMD EPYC
2881 MHz and 32GB of RAM, and (ii) HP SE1102 with two Quad-Core Intel Xeon
2.5GHz and 8GB of RAM.

Implementation

To provide a fair comparison, we implemented BoundBFT and all competing
protocols (see Table 4.2) in Go. The implementations use SHA256 hashes and
Ed25519 64-byte digital signatures. We rely on libp2p [78] to establish and
maintain communication channels between pairs of replicas.

To generate a load in our experiments, we equip every replica with a built-
in client that generates transactions in advance and stores them in a local pool.
When a replica is a leader in an epoch, it takes transactions from the pool and
forms a block. The block size defines the number of transactions taken from the
pool. This design leaves the mempool (i.e., the part of a blockchain responsible
for propagating client transactions across the system) out of the discussion as
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different systems may implement it in different ways. Consequently, the latencies
we report here represent consensus latencies (i.e., the time the leader of an epoch
needs to commit a block). Throughput is computed as the rate of committed
blocks per time unit.

4.4.2 BoundBFT’s synchrony bound

In this section, we experimentally determine the value for BoundBFT’s synchrony
bound ∆. Instead of defining a value that ensures, with high probability, that
synchronous system assumptions hold, we ran BoundBFT in the presence of ma-
licious replicas to determine a ∆ that provides sufficient confidence that Bound-
BFT’s correctness will not be compromised. We implemented all proposed attacks
(see Algorithms 4–6).

We then ran BoundBFT in our cluster with f Byzantine replicas. As a starting
point, we set ∆ to 1250 ms (99.99%), the synchronous bound from [80], and
gradually decreased it until we started to observe BoundBFT’s agreement and
progress violations. Tables 4.3 and 4.4 show the complete data from these ex-
periments. We varied the block size, number of Byzantine replicas ( f ), and the
size of a partition (k) for attacks that partition honest replicas into two subsets.
The main takeaways from our experiments are as follows.

When there is a single ( f = 1) or no ( f = 0) Byzantine replicas in the system,
we did not observe any agreement violations, even if we set ∆ as low as 50
ms—the average latency between 80% of replicas in our system is higher than
50 ms. This shows that agreement violations are highly unlikely if the number
of Byzantine replicas is low, even if many messages violate synchronous bounds.

However, the situation changes as the number of Byzantine replicas increases.
When the number of Byzantine replicas is f = 19 (i.e., the maximum number
of Byzantine replicas partially synchronous protocols can tolerate), agreement
violations were observed only when we lowered ∆ to 50 ms. Even then, with
∆ = 50 ms, BoundBFT’s agreement was violated in less than 10% of epochs in
which the attack was launched.

To prevent agreement violations when the number of Byzantine replicas is
f = 29 (i.e., the maximum BoundBFT can tolerate), we needed to increase ∆
to 150 ms and 300 ms for 1KB and 32KB block sizes, respectively. This makes
sense since to create a block certificate, an honest replica needs to receive a vote
from itself, Byzantine replicas, and one other honest replica. Importantly, even
in this case, the resulting ∆ was 8 and 4 times lower than the initial one. Notice
that when f = 29, partially synchronous protocols will halt if Byzantine replicas
remain silent.
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1250
600
300
150
100
50

Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 1% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0%
100 5% 36% 6% 6% 0% 5% 0% 0% 0% 0% 0% 0%
50 19% 80% 31% 60% 2% 73% 8% 54% 0% 65% 0% 65%

Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
100 4% 19% 0% 18% 0% 14% 0% 8% 0% 0% 0% 0%
50 26% 90% 0% 80% 9% 81% 0% 97% 0% 66% 0% 67%

1250
600
300
150
100
50

Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
100 0% 16% 0% 12% 0% 17% 0% 12% 0% 0% 0% 0%
50 2% 88% 0% 90% 0% 86% 0% 80% 0% 63% 0% 66%

Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
100 0% 21% 0% 25% 0% 15% 0% 17% 0% 0% 0% 0%
50 2% 90% 0% 92% 0% 92% 0% 99% 0% 63% 0% 64%

65%
0%

N = 60, 10 minutes experiments, block size 1KB

tSize=all tSize=1 tSize=all

Δ (ms) Safety Liveness
0%
0%
0%
0%
0%
0%

0%
0%
0%
0%

tSize=1 tSize=all

Δ (ms)

Amnesia attack
f=29 f=19 f=1

tSize=1 tSize=all tSize=1

Δ (ms)

Equivocation attack
f=29 f=19 f=1

tSize=1

tSize=all tSize=1 tSize=all

f=29 f=19 f=1
tSize=1

0%
Safety Liveness

0%
0%
0%
0%
0%

0%
0%
0%
0%
84%
100%

Δ (ms)

Blame certificate attack
f=29 f=19 f=1

No attack

tSize=1 tSize=all tSize=1 tSize=all tSize=1 tSize=all

tSize=all tSize=1 tSize=all tSize=1 tSize=all

Δ (ms)
Blame attack

f=29 f=19 f=1

Δ (ms)

Equivocation certificate attack

0%
0%
46%
100%

Safety Liveness
0%
0%
0%
0%
0%
0%

0%
0%
0%
0%
0%
67%

Safety Liveness
0%
0%

0%
0%

0%
0%

0%
0%

Table 4.3. Percentage of Agreement and Progress violations when running
BoundBFT under different attacks while using different values as its ∆. The
table shows data for the setup of 60 replicas, 1KB block size and different
number of Byzantine replicas ( f ). Additionally, for attacks that parition honest
replicas in two subsets, it shows results when Byzantine replicas divide them
in two minimal subsets (k = kmin = 1) and two maximal subsets (k = kmax =
n− f /2).
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1250
600
300
150
100
50

Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0%
150 2% 0% 0% 15% 0% 0% 0% 0% 0% 0% 0% 0%
100 5% 34% 0% 67% 0% 13% 0% 9% 0% 0% 0% 0%
50 27% 91% 5% 85% 1% 94% 0% 97% 0% 66% 0% 66%

Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 3% 26% 1% 10% 0% 1% 0% 0% 0% 0% 0% 0%
100 6% 42% 0% 44% 0% 22% 0% 0% 0% 0% 0% 0%
50 27% 81% 10% 88% 9% 74% 0% 37% 0% 67% 0% 67%

1250
600
300
150
100
50

Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 0% 0% 18% 0% 0% 0% 0% 0% 0% 0% 0%
100 0% 31% 0% 61% 0% 13% 0% 17% 0% 0% 0% 0%
50 3% 86% 0% 83% 0% 95% 0% 95% 0% 67% 0% 67%

Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 2% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0%
100 0% 30% 0% 32% 0% 17% 0% 12% 0% 0% 0% 0%
50 1% 90% 0% 96% 0% 95% 0% 99% 0% 66% 0% 66%

0%
0%
0%
0%
0%
0%

0%
0%
0%
0%
0%
79%

0%
0%
0%
0%
0%
0%

0%
0%
0%
0%
43%
99%

0%
0%
0%
0%
0%
0%

0%
0%
0%
25%
85%
100%

N = 60, 10 minutes experiments, block size 32KB

Δ (ms) No attack
Safety Liveness

Δ (ms)

Equivocation  attack
f=29 f=19 f=1

tSize=1 tSize=all tSize=1 tSize=all tSize=1 tSize=all

Δ (ms)

Amnesia attack
f=29 f=19 f=1

tSize=1 tSize=all tSize=1 tSize=all tSize=1 tSize=all

Δ (ms)
Blame attack

f=29 f=19 f=1
Safety Liveness Safety Liveness Safety Liveness

Δ (ms)

Equivocation certificate attack
f=29 f=19 f=1

tSize=1 tSize=all tSize=1 tSize=all tSize=1 tSize=all

Δ (ms)

Blame certificate attack
f=29 f=19 f=1

tSize=1 tSize=all tSize=1 tSize=all tSize=1 tSize=all

66%

0%
0%
0%
0%
0%

0%
0%
0%
0%
0%
0%

Table 4.4. Percentage of Agreement and Progress violations when running
BoundBFT under different attacks while using different values as its ∆. The
table shows data for the setup of 60 replicas, 32KB block size and different
number of Byzantine replicas ( f ). Additionally, for attacks that parition honest
replicas in two subsets, it shows results when Byzantine replicas divide them
in two minimal subsets (k = kmin = 1) and two maximal subsets (k = kmax =
n− f /2).
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Table 4.5 summarizes the results from Tables 4.3 and 4.4, showing the ∆s
that resulted in no agreement violations and less than 5% of progress violations
for all considered setups. Specifically, no two honest replicas committed different
blocks for the same height, and in less than 5% of epochs with an honest leader,
some honest replicas did not commit a new block. The progress violations can
also be lowered to 0%, but this would require a slight increase in the chosen ∆.
We believe this is not necessary since progress violations can only lead to a slight
decrease in performance and do not affect agreement.

Attack type
1KB 32KB

f=29 f=19 f=1 f=29 f=19 f=1
kmin kmax kmin kmax kmin kmax kmin kmax kmin kmax kmin kmax

EQUIVOCATION 150 150 100 100 100 100 150 300 150 150 100 100
AMNESIA 150 150 150 150 100 100 300 300 150 150 100 100

EQUIVOCATION-CERTIFICATE 150 150 150 150 100 100 300 300 150 150 100 100
BLAME-CERTIFICATE 150 150 150 150 100 100 150 150 150 150 100 100

BLAME 150 150 100 300 150 100
NO ATTACK 100 100

Table 4.5. The ∆ in ms BoundBFT must adopt to achieve 0% of Agreement
and < 5% of Progress violations under a specific attack. The table shows data
for the setup of 60 replicas, 1KB and 32KB block sizes and different number of
Byzantine replicas ( f ). Additionally, for attacks that partition honest replicas
in two subsets, it shows results when Byzantine replicas divide honest replicas
into the two smallest subsets (k = kmin = 1) and the two largest subsets (k =
kmax = n− f /2).

4.4.3 Performance

In this section, we compare BoundBFT to state-of-the-art synchronous and par-
tially synchronous protocols (Table 4.2). Every point in the graphs is an average
of 3 runs. We ran each experiment for 5 minutes.

Latency

BoundBFT and Sync HotStuff wait for 2∆ (BoundBFT’s t imeoutCo-mmit(e))
before committing a block in epoch e. Consequently, their latency is directly af-
fected by the chosen synchrony bound. For BoundBFT, we adopt the synchrony
bound based on the experiments from the previous section (see Table 4.5). Con-
versely, for Sync HotStuff, we use the ∆ from [80].2

2Using different bounds for Sync HotStuff would require a similar analysis and evaluation as
presented in Sections 4.3 and 4.4.2, which is beyond the scope of this work.
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Figure 4.2. Latency comparison for all protocols for 1 KB and 32 KB block
sizes in a system with 60 replicas.

We measured latencies in a system with 60 replicas with 1KB and 32KB block
sizes. Figure 4.2 shows the average latency computed by epoch leaders. First, we
notice the significant impact of BoundBFT’s synchrony bound on latency. Namely,
BoundBFT achieves 5.4× and 3.4× lower latency than Sync HotStuff with 1KB
and 32KB block sizes, respectively. Second, BoundBFT’s latency is in between
the latencies of partially synchronous protocols. It is 1.3× and 1.8× lower than
HotStuff-2’s latency and 1.4× and 2× higher than Tendermint’s for small and
large blocks, respectively. HotStuff-2 has higher latency due to its linear com-
munication pattern, which requires five communication steps, while Tendermint
has quadratic communication and commits a block in only three communication
steps. We can also see that HotStuff-2 has the most significant standard devia-
tion; we attribute this to the lower redundancy due to its linear communication
pattern.

Throughput

BoundBFT and Sync HotStuff [3; 5] use pipelining to limit the impact of ∆ on
throughput, which allows the leader to propose a block Bk+1 that extends block
Bk after receiving Ce(Bk), i.e., before committing block Bk. This way, protocols
can order multiple blocks in parallel, and the throughput is unaffected by ∆.
This technique was initially introduced in HotStuff [119], and we implemented
a pipelined version of HotStuff-2. Adapting pipelining to Tendermint is more
complex and out of the scope of this work. Moreover, notice that we compare
BoundBFT to a pipelined partially synchronous protocol, HotStuff-2.

We evaluated throughput in a system with 60 replicas and various block sizes
(see Figure 4.3). BoundBFT and Sync HotStuff have similar throughout, as they
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both start ordering the next block after receiving a certificate for the previous
block. Moreover, they outperform partially synchronous protocols for all block
sizes considered, reaching throughput more than 2× higher than Tendermint’s
for all block sizes. The reason behind this is that Tendermint does not use pipelin-
ing. They also perform better, from 1.4× to 3×, than HotStuff-2, a partially syn-
chronous protocol with pipelining. This is because even though both protocols
start ordering the next block after collecting a certificate for the previous block,
the certificate in HotStuff-2 requires votes from a two-third majority of replicas,
while in BoundBFT the votes from the majority are enough.
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Figure 4.3. Throughput comparison of all protocols in a system with 60 replicas
with varying block sizes.

4.4.4 Experiments with large blocks

Previous results (Section 4.4.2) have demonstrated that running BoundBFT with
a 32 KB block size necessitates an increased ∆ compared to a 1 KB block size.
To further explore this relationship, we conducted additional experiments where
we increased the block size to 128 KB.

We did not run all possible scenarios as in Section 4.4.2. Instead, we focused
on a scenario with no Byzantine replicas and the most efficient attack scenario,
the equivocation attack.

The results of these experiments are presented in Table 4.6. As anticipated,
the data clearly show that larger block sizes require larger ∆ values to maintain
BoundBFT’s correctness. Specifically, in a scenario with 29 Byzantine replicas,
we observed safety violations even when we ran BoundBFT with a conservative
∆ from [80] (1250 ms). When we lowered the number of Byzantine replicas, the
results improved; we needed to lower the∆ to 50 ms to observe safety violations
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in executions with 19 Byzantine replicas.
Additionally, in executions with one or no Byzantine replicas, we did not

see any safety violations, similar to previous observations (see Tables 4.3 and
4.4). However, we observed that the percentage of liveness violations is generally
much higher than in experiments with smaller blocks. For instance, in executions
with no attack, we started to see liveness violations with a∆ of 150 ms, whereas
before, we needed to lower the ∆ to 50 ms to observe such violations.

1250
600
300
150
100
50

Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness Safety Liveness
1250 1% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0%
600 6% 0% 0% 6% 0% 0% 0% 0% 0% 0% 0% 0%
300 7% 1% 1% 25% 0% 0% 0% 0% 0% 0% 0% 0%
150 14% 29% 2% 37% 0% 1% 0% 20% 0% 0% 0% 1%
100 33% 64% 12% 32% 0% 48% 0% 55% 0% 22% 0% 23%
50 61% 56% 26% 35% 3% 77% 0% 48% 0% 90% 0% 89%

N = 60, 10 minutes experiments, block size 128KB

Δ (ms) No attack
Safety Liveness
0% 0%
0% 0%
0% 0%
0% 2%
0% 22%
0% 89%

Δ (ms)

Equivocation  attack
f=29 f=19 f=1

tSize=1 tSize=all tSize=1 tSize=all tSize=1 tSize=all

Table 4.6. Percentage of Agreement and Progress violations when running
BoundBFT under equivocation attack and under no attack while using different
values as its ∆. The table shows data for the setup of 60 replicas, 128KB
block size and different number of Byzantine replicas ( f ). Additionally, for
equivocation attack, it shows results when Byzantine replicas divide them in
two minimal subsets (k = kmin = 1) and two maximal subsets (k = kmax =
n− f /2).

4.4.5 Summary

In this section, we summarize the main takeaways of our evaluation.

• The probability that synchrony violations alone compromise BoundBFT’s
agreement is deficient, i.e., we did not observe any agreement violations
in our experiments when the number of Byzantine replicas was 0 and 1.
The agreement can be violated if synchrony violations are combined with
a significant number of colluded Byzantine replicas (minority or one-third)
that launch the attack.
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• BoundBFT can use a ∆ that is 4× to 8× smaller than the conservative
99.99%∆ [80], allowing it to improve latency from≈ 3.4× to 5.4×. More-
over, BoundBFT’s ∆ is big enough to ensure correctness with high proba-
bility when the system is under attack. We believe this approach can be
used for other synchronous protocols (e.g., Sync HotStuff).

• In addition to higher resilience and availability, BoundBFT achieves from
1.4× to 3× higher throughput and comparable latency to partially syn-
chronous protocols.

• Increasing block size necessitates a larger ∆ to maintain BoundBFT’s cor-
rectness. Conservative ∆ based on pings [80] was not big enough to pre-
vent safety violations in executions with a 128 KB block size.

4.5 Conclusion

In this chapter, we introduced a novel approach to determining the synchronous
bound ∆. Rather than ensuring all messages are received within synchronous
bounds with high probability, we analyzed protocol semantics and designed Byzan-
tine attacks that could potentially cause correctness violations in case of syn-
chrony violations. We then implemented these attacks to determine a ∆ that
renders them ineffective.

As a showcase, we designed BoundBFT, a new BFT synchronous consensus
protocol, and demonstrated experimentally that BoundBFT can use a less conser-
vative synchrony bound without compromising correctness under attacks. Due
to the lower synchrony bound, BoundBFT outperforms traditional synchronous
consensus protocols. Additionally, it achieves similar latency and better through-
put than partially synchronous protocols, offering higher resilience.

Our experiments also indicate that larger block sizes require a larger ∆ to
maintain BoundBFT’s correctness. Specifically, with a 128 KB block size, we
observed safety violations even with the conservative 99.99% ∆ from [80]. In
the following chapter, we will address these challenges and present a solution to
manage large block sizes effectively.
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Chapter 5

AlterBFT: Fast Synchronous BFT
Consensus

5.1 Introduction

In the previous chapter, we identified that large block sizes necessitate large ∆’s
to maintain the correctness of BoundBFT, a synchronous consensus protocol. To
better understand the underlying reasons and the nature of synchrony bounds,
we conducted a three-month empirical study on message delays in a geographi-
cally distributed system.

Our findings reveal that small messages have significantly lower latency than
large messages (e.g., the 99.99% percentile latency is around 300 milliseconds
for 4 KB messages and 6 seconds for 1 MB messages). Moreover, small mes-
sages exhibit more stable behavior than large messages (e.g., jitter is around 10
milliseconds for 4 KB messages and 390 milliseconds for 1 MB messages).

The key insight from this study is to design protocols whose safety relies solely
on small messages, similar to synchronous protocols, while progress depends
on the eventual bounds of large messages, akin to partially synchronous proto-
cols. This approach led to the development of AlterBFT, a protocol that achieves
performance comparable to partially synchronous protocols, and demonstrates
better resilience, tolerating up to f < n/2 malicious replicas.

We start off by introducing a new system model, the hybrid synchronous sys-
tem model. The new model captures the timely delivery of “small” messages
(i.e., up to 4 KB) and the eventual timely delivery of “large” messages, as in the
partially synchronous system model. We then present AlterBFT, a new rotating-
leader Byzantine fault-tolerant (BFT) consensus protocol for the hybrid synchronous
model. AlterBFT’s safety relies on the timely delivery of small messages, whose

65
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time bounds are significantly lower than those of large messages due to lower
latency and jitter. We also extend AlterBFT with an optimistic fast path [4; 10;
52; 68]. As a result, AlterBFT achieves responsive latency, which depends on
real network delays only, and commits a block in two real network delays in the
absence of failures.

We have implemented AlterBFT and compared it to state-of-the-art synchronous
and partially synchronous protocols. Experimental evaluation in a geographi-
cally distributed environment shows that AlterBFT improves the latency of syn-
chronous protocols from 1.5× to 14.9×, achieving latency comparable to par-
tially synchronous protocols. Furthermore, AlterBFT achieves similar through-
put as synchronous protocol, consistently higher than considered partially syn-
chronous protocols, from 1.3× to 7.2×. Lastly, AlterBFT tolerates the same num-
ber of failures f < n/2 as synchronous protocols, an improvement over partially
synchronous protocols, where f < n/3.

5.1.1 Outline

The remainder of the chapter is structured as follows. Section 5.2 motivates and
defines the new system model. Section 5.3 presents AlterBFT. Section 5.4 exper-
imentally evaluates AlterBFT’s performance in a geographically distributed en-
vironment and compares AlterBFT to state-of-the-art synchronous and partially
synchronous protocols. Section 5.5 concludes the chapter.

5.2 Hybrid synchronous system model

In this section, we motivate our approach based on empirical data observed in
a public geographically distributed system and introduce a novel timing model
that captures the behavior revealed by the gathered data.

5.2.1 Motivation

In the synchronous system model, messages exchanged between non-faulty repli-
cas must arrive within a predetermined time limit ∆, which serves as the basis
for setting timeouts. Accurately understanding communication latency is crucial
for determining ∆ and establishing realistic timeout values. In this section, we
present the findings of an experimental assessment of round-trip latency between
five AWS regions (i.e., N. Virginia, S. Paulo, Stockholm, Singapore, and Sydney).
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Figure 5.1 shows the root mean square (RMS) jitter in milliseconds for dif-
ferent message sizes. The results show that jitter significantly depends on mes-
sage size: while small messages (i.e., up to 4KB) experience low jitter, larger
messages are subject to significant delay variation, a trend that increases with
message size. With 4 KB messages, the jitter for regions 0–3 and 1–4 is 26 ms
and 24 ms, respectively. These are the largest values for 4 KB messages across
all regions, and represent 22% and 15% of the average communication latency
between these regions. Smaller messages have significantly lower jitter across
all regions considered.
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Figure 5.1. Jitter in milliseconds across AWS regions for different message sizes,
where 0:N. Virginia (AWS), 1:S. Paulo (AWS), 2:Stockholm (AWS), 3:Singa-
pore (AWS), and 4:Sydney (AWS).

Figure 5.2 presents actual message delays between replicas in different AWS
regions. As with jitter, message delays increase with message size, a pattern that
holds for all regions considered. Namely, the average message delay for 4KB,
128KB, and 1MB messages is 166ms, 795ms, and 1543ms, respectively. Addi-
tionally, to investigate if low and stable latency of small messages is constrained
solely to AWS servers, we collected the following: (a) message delays between
servers of a different provider, DigitalOcean (Figure 5.3), and (b) message delays
between different AWS and DigitalOcean servers (Figures 5.4–5.6). The results
confirm that our key observation also holds within servers of a different provider
and across providers. Table 5.1 shows the server numbers, their locations, and
their providers.

The data presented in Figure 5.1 is based on experiments conducted dur-
ing 24 hours. This data suggests that large messages have greater and more
variable delays than small messages. Table 5.2 shows that the delay of small
messages remains low and stable during longer periods of time. More precisely,
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Server # Location Provider
0 North Virginia AWS
1 Sao Paulo AWS
2 Stockholm AWS
3 Singapore AWS
4 Sydney AWS
5 New York DigitalOcean
6 Toronto DigitalOcean
7 Frankfurt DigitalOcean
8 Singapore DigitalOcean
9 Sydney DigitalOcean

Table 5.1. The server numbers, their locations, and their providers.

S. Paulo Stockholm Singapore Sydney
99.99% Jitter 99.99% Jitter 99.99% Jitter 99.99% Jitter

1d 3m 1d 3m 1d 3m 1d 3m 1d 3m 1d 3m 1d 3m 1d 3m
N. Virginia 104 101 1.06 3.41 103 107 1.89 4.86 231 238 25.50 13.49 189 166 7.67 3.00

S. Paulo 204 157 2.87 6.94 318 325 14.82 18.86 296 306 24.62 15.64
Stockholm 170 155 8.35 5.28 276 294 16.20 18.14
Singapore 125 125 2.27 2.42

Table 5.2. Message delays (99.99% percentile) and jitter between five distant
AWS regions during one day (1d) and three months (3m); all values in mil-
liseconds and 4 KB messages.

we conducted experiments with 4 KB messages over three months and compared
the three-month to the one-day data latency (i.e., 99.99% percentile) and jitter.
The delays are relatively stable between all considered AWS regions. The most
significant increase is 6.5%, observed between Stockholm and Sydney. Most im-
portantly, the largest 99.99% percentile value is relatively small (325ms).

Our empirical evaluation supports that communication delays for small mes-
sages are relatively consistent, as their processing and transmission times exhibit
minimal variation. This is because small messages are typically transmitted in a
single packet, enabling efficient routing and no fragmentation. In contrast, large
messages are segmented into multiple packets, potentially traversing different
network paths and encountering varying levels of congestion and latency along
the way. This inherent heterogeneity in packet delivery introduces variability in
the latency of large messages, as the delayed arrival of individual packets can
significantly impact their delivery time. Furthermore, transport protocols intro-
duce overhead and delays when large messages are transmitted. For instance,
TCP’s flow control and congestion control mechanisms aim to ensure reliable and
efficient packet delivery, but they can also introduce additional delay and jitter,
particularly in large messages.
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Figure 5.2. Communication delays with various message sizes between different
AWS regions (x-axe is in log scale with the base 2).
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Figure 5.3. Communication delays with various message sizes between different
DigitalOcean regions (x-axe is in log scale with the base 2).
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Figure 5.4. Communication delays with various message sizes between different
AWS and DigitalOcean regions (x-axe is in log scale with the base 2).
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Figure 5.5. Communication delays with various message sizes between different
AWS and DigitalOcean regions (x-axe is in log scale with the base 2).
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Figure 5.6. Communication delays with various message sizes between different
AWS and DigitalOcean regions (x-axe is in log scale with the base 2).

5.2.2 The new model

This section defines the new timing model, the hybrid synchronous system model.
This model sits between the synchronous and partially synchronous system mod-
els. Based on the experimental data presented in Section 5.2.1, we assume the
synchronous system model for small messages and the partially synchronous sys-
tem model for large messages.

Our new hybrid synchronous system model incorporates two communication
properties, one for each message type:

• Type S messages: If an honest replica p sends a message m of type S to an
honest replica q at time t, then q will receive m at time t +∆S or before.

• TypeL messages: If an honest replica p sends a message m of typeL to an
honest replica q at time t, then q will receive m at time max{t, GST}+∆L

or before.
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Simply put, the model assumes small messages will always respect the speci-
fied time bound∆S, while large messages eventually respect the time bound∆L.
Consequently, ∆L does not need to be as conservative as ∆S and can be set the
same way as in partially synchronous protocols [24].

Lastly, we assume that all honest replicas start the execution within ∆S time,
and the communication between honest replicas is reliable: Every message an
honest sender sends to an honest receiver is eventually received.

5.3 AlterBFT

In this section, we first describe the AlterBFT algorithm and its extensions (Sec-
tions 5.3.1–5.3.3). Then, we discuss the intuition behind its correctness (Section
5.3.4) and provide a formal proof (Section 5.3.5).

5.3.1 Protocol overview

AlterBFT provides a solution to the consensus problem under Byzantine failures
(Section 2.2) in the hybrid synchronous model. It is similar to BoundBFT (Sec-
tion 4.2.1) and the rotating leader version of Sync HotStuff [3; 5]. However,
AlterBFT allows some messages (i.e., typeL messages) to be arbitrarily delayed
before GST. To enable this and still tolerate the same number of Byzantine fail-
ures ( f < n/2) as synchronous algorithms, it must be designed with special care.
Specifically, its agreement mechanism must solely depend on the timely delivery
of type S messages, while the timely delivery of typeL messages is needed just
for progress.

Algorithms 7–9 present AlterBFT’s variables and its pseudo-code for normal
and abnormal case operations, respectively.

Algorithm 7 AlterBFT consensus algorithm: variables
1: Initialization:
2: ep := 0 Â the current epoch
3: hasVoted := f alse Â has the replica voted in the current epoch?
4: lockedV Cp := nil Â the most recent value certificate the replica is aware of
5: epochsStatep[] := nil Â an epoch can be in one of the states: ACTIVE, COMMITTED, NOT-COMMITTED

6: epochDecisionp[] := nil Â an epoch decision can be an id of a committed value or nil

AlterBFT’s execution evolves as a sequence of epochs, numbered 0, 1,2, ...
Every epoch e has a designated leader, computed using a deterministic function.
The leader is responsible for proposing a value in an epoch, and replicas vote
for the proposed value. When a replica receives f + 1 votes signed by distinct
replicas for a value v proposed by the leader in epoch e, the replica forms a value
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Algorithm 8 AlterBFT consensus algorithm: normal case
1: when bootstrapping do Star tEpoch(0) Â the execution starts in epoch 0

2: Procedure Star tEpoch(epoch) : Â upon starting an epoch:
3: ep ← epoch; hasVotedp ← f alse Â the replica sets the current epoch, resets hasVoted variable, and...
4: epochsStatep[ep]← ACTIVE; epochsDecisionp[ep]← nil; Â sets epoch state and epoch decision to ACTIVE and nil, respectively
5: if leader(ep) = p then Â if the replica is the leader in the current epoch, and...
6: if ep = 0 or lockedV Cp .epoch= ep − 1 then Â ep is the first epoch or the replica’s lockedV Cp is from the previous epoch:
7: Propose() Â the replica proposes immediately
8: else Â otherwise,...

9: execute Propose() when t imeoutEpochChange(ep) expires Â the replica waits for the timeout...

Â to learn the most recent certified value, before proposing
10: Procedure Propose() : Â in order to propose:
11: v← GetValue() Â the leader gets a value to propose, and...
12: broadcast 〈PROPOSE, ep , v, lockedV Cp〉 Â broadcasts the proposal carrying the value and replica’s lockedV C
13: broadcast 〈VOTE, ep , id(v)〉p Â then, it broadcasts a signed vote, and...
14: hasVotedp ← t rue Â sets hasVotedp to avoid voting when it receives a proposal again

15: Function GetValue() : Â GetValue function returns:
16: if lockedV Cp = nil then Â (a) if the leader does not know about any previously certified values,...
17: return Value{pa yload : getPa yload(), prev : nil} Â the new payload,
18: if chainingEnabled() then Â (b) in case the chaining is enabled,...
19: return Value{pa yload : getPa yload(), prev : lockedV Cp .id} Â new payload linked to the most recent certified value, and
20: return nil Â (c) nil, if there exist a certified value and chaining is disabled

21: when receive 〈PROPOSE, e, v, V C〉 and 〈VOTE, e, id(v)〉c Â when the replica receives a proposal and the vote for it...
22: where e = ep and c = leader(e) and epochsStatep[ep] = ACTIVE do Â signed by the leader of the current epoch that is active:
23: if valid(v) ∧ v.prev = V C .id ∧ hasVotedp = f alse ∧ Â if the value is valid, the replica hasn’t voted in the current epoch, and...
24: (condi t ion1 ∨ condi t ion2) then Â one of the conditions is fullfilled:
25: broadcast 〈VOTE, ep , id(v)〉p Â the replica broadcast a VOTE message containing proposal id, and...
26: hasVotedp ← t rue Â sets hasVotedp so it does not vote twice
27: forward 〈VOTE, e, id(v)〉c Â then, it (a) forwards the leader’s vote, needed for timely equivocation detection, and...
28: forward 〈PROPOSE, e, v, V C〉 Â (b) forwards the received proposal, needed for eventual delivery of all certified blocks

29: condi t ion1 ≡ (lockedV Cp = nil) Â the replica is unaware of any certified value

30: condi t ion2 ≡ (lockedV Cp 6= nil ∧V C 6= nil ∧V C .epoch≥ lockedV Cp .epoch) Â V C from proposal is more recent than lockedV Cp

31: when receive f + 1 distinct 〈VOTE, e, id(v)〉∗ or 〈QUIT-EPOCH, cer t〉 Â when the replica receives...
32: where cer t.t ype = VALUE-CERT Â a value certificate:
33: if 〈QUIT-EPOCH, cer t〉 received then c← cer t Â it can receive it in a QUIT-EPOCH message, or...
34: else c← NewCer t from f + 1〈VOTE, e, id(v)〉∗ Â through f + 1 individual VOTE messages
35: if c.epoch= ep then Â if the certificate is from the current epoch:
36: lockedV Cp ← c Â the replica locks on it by updating its lockedV Cp

37: if epochsState[ep] = ACTIVE then Â then, if the replica has not received any other certificate yet...

38: start t imeoutCommit(ep , c.id) Â the replica starts t imeoutCommit

39: broadcast 〈QUIT-EPOCH, c〉 Â lastly, the replica broadcasts the certificate,...
40: abort t imeoutEx t ra(ep) Â aborts t imeoutEx t ra if it was triggered, and...
41: Star tEpoch(ep + 1) Â starts the next epoch
42: else Â in case the certificate is not from the current epoch:
43: if leader(ep) = p ∧ Â if the replica is current epoch leader, and...
44: (lockedV Cp = nil ∨ c.epoch> lockedV Cp .epoch) then Â the certificate is more recent than replica’s lockedV C:
45: lockedV Cp ← c Â the replica updates its lockedV Cp , and...
46: broadcast 〈QUIT-EPOCH, c〉 Â broadcasts the new certificate

Â ***First commit rule***
47: when t imeoutCommit(e, id) expires do Â when t imeoutCommit expires:
48: if epochsState[e] = ACTIVE then Â if the replica did not observe any proof of misbehavior:
49: epochsState[e]← COMMITTED Â the replica sets epoch state to COMMITTED, and...
50: epochsDecision[e]← id Â the epoch decision value to id

Â ***Second commit rule (FastAlterBFT)***
51: when receive 〈VOTE, e, id(v)〉∗ from all replicas do Â when the replica receives votes from all replicas for the same value:
52: if epochsState[e] = ACTIVE then Â if the replica did not observe any proof of misbehavior:
53: epochsState[e]← COMMITTED Â the replica sets epoch state to COMMITTED, and...
54: epochsDecision[e]← id(v) Â the epoch decision value to id(v)

55: when receive 〈PROPOSE, e, v,∗〉 Â when the replica receives a proposal...
56: where epochDecision[e] = id(v) do Â for a value corresponding to epoch’s committed value:
57: CommitValue(v) Â the replica commits value v
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certificate Ce(v). Every replica maintains the most recent value certificate it is
aware of in variable lockedV C . Certificate Ce(v) is more recent than Ce′(v′) if
e > e′.

An honest leader l broadcasts the proposal with the most recent certified
value it knows of, lockedV Cl , or a new value if lockedV Cl = nil (line 12 in
Algorithm 8). The proposal message is classified as a type L message because
it carries a value that can be of arbitrary size. In addition to the proposal, the
leader also broadcasts its signed vote for the proposal (line 13 in Algorithm 8).
The vote contains the current epoch number and the hash of the value voted for,
id(v). Consequently, it is of a constant small size and is considered a type S
message.

Upon receiving a proposal and a signed vote from the leader, a replica checks
whether the proposal is valid (see Section 2.3) and votes for it if the proposed
value truely extends the value from the leader’s value certificate, and value cer-
tificate is at least as recent as the certificate in the replica’s lockedV C (lines
21–28 in Algorithm 8). The replica votes for a proposal by sending a signed
vote message to all replicas and it votes only once per epoch. In addition, the
replica forwards the proposal and the leader’s vote to all replicas. Forwarding
the leader’s vote is needed to detect leader misbehavior, when a faulty leader
sends different proposals to different replicas; forwarding the proposal ensures
the eventual delivery of all certified values. If a value is certified, at least one
replica among those who voted for the value is honest and will forward the value.

Upon receiving Ce(v) for the current epoch e (lines 31–46 in Algorithm 8),
an honest replica locks on it by setting lockedV C to Ce(v). After that, the replica
propagates the certificate to all replicas, starts epoch e + 1, and starts a timer,
t imeoutCommit(e). The replica does this even if it has not yet received a pro-
posal with value v since it knows it will receive it eventually (see Section 5.3.4).

When t imeoutCommit(e) expires and the replica did not receive any evi-
dence of misbehavior (i.e., a different certificate, Ce(EQUIV) or Ce(BLAME)), the
replica sets epochState[e] and epochDecision[e] to COMMITTED and id(v), re-
spectively (lines 47–50 in Algorithm 8). Moreover, replica commits a value v,
corresponding to epochDecision[e], as soon as it receives it (lines 55–57 in Al-
gorithm 8).

A replica r starts a t imeoutCer t i f icate(e) timer when it enters the epoch
to detect a malicious leader (line 2 in Algorithm 9). If the timer expires and r
has not received any certificate yet, r broadcasts a message 〈BLAME, e〉r , a typeS
message (lines 3–5 in Algorithm 9). When a replica receives f +1 blame messages
for epoch e from distinct replicas (lines 6–9 in Algorithm 9), we say that the
replica forms a blame certificate Ce(BLAME). Additionally, when an honest replica
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receives votes for two distinct values from the leader in the same epoch e (lines
11–14 in Algorithm 9), the replica forms an equivocation certificate Ce(EQUIV).

Upon detecting a misbehavior (i.e., Ce(BLAME) or Ce(EQUIV)) before commit-
ting a value in an epoch, the replica sets the epoch state to NOT-COMMITTED,
broadcasts the certificate to all replicas (lines 16–20 in Algorithm 9), and moves
to the next epoch e + 1 (line 24 in Algorithm 9). Certificates are broadcast in-
side a 〈QUIT-EPOCH〉 messages. These messages are also considered as type S
messages since certificates consist of multiple blame or vote messages that are of
constant small size.

Algorithm 9 AlterBFT consensus algorithm: handling malicious leaders and
asynchrony
1: upon starting the epoch e do Â when a replica enters a new epoch:

2: start t imeoutCer t i f icate(ep) Â it starts the timer used to detect asynchrony or a malicious leader

3: when t imeoutCer t i f icate(e) expires do Â when t imeoutCer t i f icate expires:
4: if e = ep ∧ epochsState[e] = ACTIVE then Â if the replica did not receive any certificate:
5: broadcast 〈BLAME, ep〉p Â the replica broadcasts a BLAME message

6: when receive f + 1 distinct 〈BLAME, e〉∗ or 〈QUIT-EPOCH, cer t〉 Â when a replica receives...
7: where cer t.t ype = BLAME-CERT do Â a blame certificate:
8: if 〈QUIT-EPOCH, cer t〉 received then c← cer t Â it can receive it in a QUIT-EPOCH message with the certificate, or...
9: else c← NewCer t from f + 1〈BLAME, e〉∗ Â from f + 1 distinct BLAME messages
10: MissbehaviorDetected(c, e) Â the replica calls MissbehaviorDetected with the certificate and epoch as parameters

11: when receive 〈VOTE, e, id(v)〉c and 〈VOTE, e, id(v′)〉c or 〈QUIT-EPOCH, cer t〉 Â when replica receives...
12: where c = leader(e) and v 6= v′ or cer t.t ype = EQUIV-CERT do Â an equivocation certificate:
13: if 〈QUIT-EPOCH, cer t〉 received then c← cer t Â it can receive a QUIT-EPOCH message with the certificate, or...
14: else c← NewCer t from 〈VOTE, e, id(v)〉c and 〈VOTE, e, id(v′)〉c Â two distinct VOTE messages signed by the epoch leader
15: MissbehaviorDetected(c, e) Â the replica calls MissbehaviorDetected with the certificate and epoch as parameters

16: Procedure MissbehaviorDetected(cer t, e) : Â when MissbehaviorDetected is called in an epoch:
17: if epochsState[e] = ACTIVE then Â if the epoch is still active:
18: epochsState[e]← NOT-COMMITTED Â the replica sets state to NOT-COMMITTED

19: if e = ep then Â moreover, if cer t is the first certificate for the current epoch:
20: broadcast 〈QUIT-EPOCH, cer t〉 Â the replica broadcasts the certificate, and...

21: start t imeoutEx t ra(ep) Â triggers t imeoutEx t ra(ep)

22: when t imeoutEx t ra(e) expires do Â when t imeoutEx t ra expires:
23: if e = ep then Â if the replica is in epoch e:
24: Star tEpoch(ep + 1) Â the replica starts the next epoch

5.3.2 FastAlterBFT

We now extend AlterBFT with an optimistic fast path [4; 10; 52; 68]. Namely, an
honest replica commits a value v if it receives votes for v in epoch e from all repli-
cas in the system before detecting any evidence of misbehavior (i.e., Ce(EQUIV) or
Ce(BLAME)). Consequently, in optimistic conditions, when there are no failures
in the system, AlterBFT commits a value in only two communication steps, with-
out waiting for any synchrony bound ∆. Optimistic fast paths have historically
introduced significant complexity and potential bugs in partially synchronous
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protocols [1; 2]. AlterBFT’s optimistic fast path, however, required changes in
a few lines of the non-optimistic protocol. Namely, a simple commit rule (lines
51-54 in Algorithm 8) and an additional timeout, t imeoutEx t ra(e). This time-
out is triggered in case the first certificate received in an epoch is Ce(EQUIV) or
Ce(BLAME) (line 21 in Algorithm 9). The replica then moves to the next epoch
either when this timeout expires (lines 22-24 in Algorithm 9) or if it receives a
value certificate in the meantime (lines 40-41 in Algorithm 8).

5.3.3 AlterBFT as a blockchain protocol

We extended AlterBFT to build a blockchain (Section 2.3) inspired by the idea
introduced in [119]. Namely, in each epoch the leader will not propose the most
recent certified block (value), Bk, it is aware of. Instead, it will propose a new
block Bk+1 that extends Bk (lines 18–19 in Algorithm 8). Replicas will accept Bk+1

if it truly extends Bk and if Ce(Bk) is more recent than their lockedV C (line 30
in Algorithm 8). Since blocks are linked, committing block Bk commits all blocks
it extends. Specifically, when a replica commits block Bk proposed in the same
epoch, we say it directly commits block Bk and indirectly commits all Bk’s ances-
tors. Moreover, the protocol ensures that whenever an honest replica commits
block Bk in epoch e, only blocks extending Bk will be certified and committed in
the following epochs. This way, the consistency of the blockchain is maintained
and forks are prevented. Lastly, since AlterBFT is a non-stopping protocol, new
blocks will be added, and the blockchain creation will continue.

5.3.4 Correctness intuition

In this section, we provide the intuition on how AlterBFT maintains protocol
correctness in the hybrid synchronous model.

Epoch synchronization

The epoch synchronization mechanism in AlterBFT is similar to that in BoundBFT
(Section 4.2.2). Namely, honest replicas use t imeoutCer t i f icate(e) (line 2 in
Algorithm 9) to unfailingly form one of the certificates in each epoch regardless
of Byzantine behavior. And then forward the certificates to synchronize replicas
(lines 39 in Algorithm 8 and 20 in Algorithm 9).

In BoundBFT, the equivocation certificate contains equivocated proposals.
Additionally, an honest replica must receive both a proposal and f + 1 votes
for the replica to form a value certificate. Since proposals carry values that can
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be of variable size, messages carrying these certificates must be categorized as
type L messages. As a result, in the hybrid synchronous model, BoundBFT’s
epoch synchronization would not work since before GST type L messages can
be arbitrarily delayed.

In AlterBFT, however, we modified the certificates to exclude the actual val-
ues. Specifically, the equivocation certificate now consists of two signed leader
vote messages instead of two proposal messages (line 11 in Algorithm 9). Ad-
ditionally, a replica forms a value certificate when it receives f + 1 votes for a
proposal, regardless of whether it has received the proposal itself (line 31 in Al-
gorithm 8). The former change is sufficient for equivocation detection, as only
the leader can sign its vote message, and honest replicas accept the proposal
only after receiving a signed vote from the leader (line 21 in Algorithm 8). In
the latter case, a replica does not need to wait for the proposal after receiving
f +1 votes because it knows that at least one of the replicas, among those f +1
that voted for the proposal, is honest and will forward the certificate (line 28 in
Algorithm 8).

As a result, messages with certificates are considered as type S and are de-
livered within ∆S time. Allowing replicas to be synchronized and to access each
epoch within ∆S time.

Agreement

AlterBFT ensures that no two honest replicas commit different values. AlterBFT’s
agreement relies on two invariants: if an honest replica r commits value v in
epoch e then (i) Ce(v) is the only value certificate that exists in epoch e (i.e., no
honest replica voted for a value v′ 6= v in e), and (ii) all honest replicas locked
on v by setting lockedV C to Ce(v) in the epoch e. As a result, honest replicas
only vote for values certified in epochs e′ ≥ e in all following epochs. Since by
(i) v is the only certified value in e and by (ii) all honest set lockedV C to Ce(v),
in epochs greater than e honest replicas will only vote for v and no other value
v′ 6= v will be certified and committed.

Replica r commits value v if (1) t imeoutCommit(e) expires (line 50 in Al-
gorithm 8) or (2) r receives votes from all replicas (line 54 in Algorithm 8), and
no misbehavior is detected. In (1), invariant (i) holds because r, upon receiving
Ce(v) at time t, starts t imeoutCommit(e) and broadcasts Ce(v) (lines 38–39 in
Algorithm 8). Since a message with Ce(v) is a type S message, in ∆S time, all
honest replicas will receive it. If any honest replica q voted for v′ 6= v, it must
have done so before t +∆S. Since q also forwards the leader’s vote for v′ (line
27 in Algorithm 8), r receives it before t + 2∆S. As a result, an honest replica
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must set t imeoutCommit(e) to expire in 2∆S. This way, replica r receives the
leader’s votes for v and v′ before t imeoutCommit(e) expires. Consequently, it
forms an equivocation certificate Ce(EQUIV) (line 11 in Algorithm 9) and does
not commit. Similarly, invariant (ii) holds because q will only lock on Ce(v) if q
moved to epoch e+1 upon receiving Ce(EQUIV) or Ce(BLAME) before t+∆S (line
24 in Algorithm 9). Since q will forward the received certificate (line 20 in Al-
gorithm 9) and messages carrying certificates are type S , r will receive it before
t imeoutCommit(e) = 2∆S expires and will not commit (line 18 in Algorithm
9).

Invariant (i) trivially holds in (2) because a replica knows that all honest
replicas voted for v since it received votes from all honest replicas, and each
honest replica votes only once. However, achieving (ii) needs extra care. In
this case, a replica r locks on value v at time t and commits at time t ′, where
t < t ′ < t + t imeoutCommit(e). As a result, if some honest replica q receives
Ce(EQUIV) or Ce(BLAME) at t ′′, t ′−∆S ≤ t ′′ < t ′+∆S, it will move to epoch e+1
without locking on Ce(v) and replica r will not be aware of this. To handle this
scenario, an honest replica q will set t imeoutEx t ra(e) to expire in 2∆S after
receiving a Ce(EQUIV) or Ce(BLAME) (line 21 in Algorithm 9), and it will move to
the next epoch only if it receives Ce(v) or if the t imeoutEx t ra(e) expires (lines
41 in Algorithm 8 and 24 in Algorithm 9). Since the replica q’s t imeoutEx t ra(e)
expires at t ′′ + 2∆S and t ′′ + 2∆S > t +∆S q will receive Ce(v) and lock on it
before moving to the next epoch, which ensures invariant (ii).

Progress

AlterBFT ensures that all correct replicas eventually commit a value. AlterBFT
guarantees progress after GST (Section 5.2.2) in the first epoch of an honest
leader. Namely, the progress is guaranteed in epoch e > GST with an honest
leader if: (1) the leader proposes a value that all honest replicas vote for, and
(2) no honest replica broadcasts a BLAME message in epoch e. While (1) ensures
the value certificate is formed and the t imeoutCommit(e) started, (2) ensures
that no blame certificate is possible. In addition, since the honest leader proposes
only one value, no Ce(EQUIV) is possible. As a result, when t imeoutCommit(e)
expires, all honest replicas will commit the proposed value.

To ensure (1), the honest leader must learn the most recent certified value
before proposing. Consequently, upon entering epoch e at time t, if it does not
have a value certificate from the previous epoch, e−1, the honest leader l starts
t imeoutEpochChange(e) (line 9 in Algorithm 8). Since honest replicas enter
epoch e by time t+∆S, they all broadcast their lockedV C (line 39 in Algorithm 8)
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at t+∆S at the latest. As a result, the leader l will receive these certificates by the
time t+2∆S. Consequently, the honest leader must set t imeoutEpochChange(e)
to 2∆S to make sure it will learn the most recent certified value.

To guarantee (2), honest replicas must receive the value certificate before
t imeoutCer t i f icate(e) expires. If an honest replica r starts epoch e at time t,
the honest leader l will start the epoch e at t+∆S at the latest. The leader might
wait for the t imeoutEpochChange(e) = 2∆S before proposing, and as a result,
it will propose a value by time t +∆S + 2∆S. Since the proposal is a message
of type L , it may require ∆L time to reach all honest replicas. Consequently, all
honest replicas will vote for the value by time t+3∆S+∆L. Finally, since the votes
are type S , the t imeoutCer t i f icate(e) should account for an additional∆S. In
summary, to guarantee (2) honest replicas must set their t imeoutCer t i f icate(e)
to 4∆S +∆L.

5.3.5 Correctness proof

This section presents the proof of AlterBFT. While this proof closely mirrors that
of BoundBFT (Section 4.2.3), maintaining a similar structure with corresponding
theorems and lemmas, it is provided here in its entirety for the sake of complete-
ness.

Lemma 7. Every honest replica always progresses to the next epoch.

Proof. Assume, for the sake of contradiction, that there exists an honest replica
r that remains in some epoch e indefinitely. This would imply that in epoch e, r
did not generate any of the certificates Ce(Bk), Ce(BLAME), or Ce(EQUIV).

However, upon entering epoch e, every honest replica starts the t imeoutCer t i-
f icate(e) timer (line 2 in Algorithm 9). When this timeout expires, if an honest
replica has not received any certificate, it broadcasts the BLAME message (lines
3–5 in Algorithm 9).

Therefore, if no certificate is formed before the t imeoutCer t i f icate(e) ex-
pires, all honest replicas will broadcast the BLAME message, resulting in the for-
mation of the blame certificate Ce(BLAME). This contradicts the assumption that
an honest replica can stay in epoch e indefinitely. Thus, every honest replica must
progress to the next epoch.

Lemma 8. If an honest replica starts epoch e at time t, then all honest replicas will
start epoch e by time t +∆S.

Proof. Suppose an honest replica r starts epoch e at time t. This implies that r
either received and broadcast Ce−1(Bk) at time t (line 39 in Algorithm 8), or re-
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ceived and broadcast Ce−1(BLAME) or Ce−1(EQUIV) at time t−t imeoutEx t ra(2∆S)
(line 20 in Algorithm 9).

Since messages with certificates (QUIT-EPOCH messages) are of type S , they
will be delivered within ∆S time. Therefore, in the first case, all honest replicas
receive Ce−1(Bk) by time t +∆S and start epoch e. In the second case, all honest
replicas receive Ce−1(BLAME) or Ce−1(EQUIV) by time t − ∆S and subsequently
start epoch e within 2∆S, resulting in the same deadline of t +∆S.

It is also possible that while an honest replica is waiting for t imeoutEx t ra(e−
1) to expire, it may receive Ce−1(Bk). In such a case, the replica will abort the
timeout, broadcast Ce−1(Bk), and start epoch e (lines 39–41 in Algorithm 8). All
honest replicas will then receive this message and, if they have not already done
so, will start epoch e.

Therefore, all honest replicas start epoch e by time t +∆S.

Theorem 5. (Epoch synchronization) All honest replicas continuously move through
epochs, with each replica starting a new epoch within ∆S time of any other honest
replica.

Proof. We prove this theorem by combining Lemma 7 and Lemma 8.
First, from Lemma 7, we know that every honest replica always moves to

the next epoch. This ensures that no honest replica remains stuck in any epoch
indefinitely.

Second, from Lemma 8, we know that if an honest replica starts epoch e at
time t, then all honest replicas start epoch e by time t+∆S. This guarantees that
all honest replicas start each epoch within ∆S time of each other.

Combining these two results, we can conclude that all honest replicas con-
tinuously move through epochs, with each replica initiating a new epoch within
∆S time of any other honest replica.

Lemma 9. If an honest replica directly commits block Bk in epoch e, then (i) no
block different from Bk can be certified in epoch e, and (ii) every honest replica locks
on block Bk in epoch e.

Proof. AlterBFT has two commit rules. We need to show that the lemma holds
in both scenarios.

First, consider the general case where an honest replica r directly commits Bk

at time t because t imeoutCommit(e) = 2∆S expired and it did not receive any
blame or equivocation certificate (lines 47–50 in Algorithm 8). This implies that
at time t−2∆S, r received Ce(Bk), locked on it, and started t imeoutCommit(e).
Additionally, r broadcast Ce(Bk). Since this message is of type S , all honest
replicas received Ce(Bk) within ∆S time, by t −∆S.
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For part (i), assume for contradiction that an honest replica q received and
voted for a block Bl 6= Bk in epoch e. Since every honest replica votes only once, q
must have received the proposal and leader’s vote for Bl before receiving Ce(Bk),
i.e., at time t1 < t −∆S. Upon voting for Bl , q broadcast the leader’s vote (line
27 in Algorithm 8). Consequently, r would receive the leader’s vote for Bl by
t1 +∆S, which is before t. Moreover, since r received Ce(Bk) at t − 2∆S, we
know that at least one honest replica voted for Bk at some moment t2 < t−2∆S.
Therefore, r would receive the leader’s vote for Bk by t2+∆S. Since both leader’s
votes for Bk and Bl would arrive at r before t, a Ce(EQUIV) certificate would
be constructed, and r would not commit (line 18 in Algorithm 9). This is a
contradiction. Therefore, property (i) holds as no honest replica votes for a block
different from Bk, otherwise r would not commit.

For part (ii), it suffices to prove that every honest replica receives Ce(Bk)
before moving to the next epoch. This is sufficient because, due to (i), Bk is
the only certified block in epoch e, and since e is the current epoch, there is no
more recent block certificate. Consequently, if an honest replica receives Ce(Bk)
in epoch e, it will update its lockedV C to it (line 36 in Algorithm 8). Since we
know all honest replicas will receive Ce(Bk) by t −∆S, we need to prove that no
honest replica will start epoch e+ 1 before t −∆S.

Assume, for contradiction, that an honest replica q moves to epoch e + 1 at
t1 < t −∆S without receiving Ce(Bk). Since Ce(Bk) is the only block certificate
in epoch e, q must have moved to epoch e+ 1 because it received Ce(BLAME) or
Ce(EQUIV). Since q broadcasts Ce(BLAME) or Ce(EQUIV) (line 20 in Algorithm 9)
at time t1, r would receive them by t1 +∆S. Since t > t1 +∆S, r would not
commit Bk, a contradiction. Note that waiting for t imeoutEx t ra(e) = 2∆S (line
21 in Algorithm 9) after receiving Ce(BLAME) or Ce(EQUIV) is not needed in this
case.

Now consider the case where r commits due to the FastAlterBFT commit rule
(lines 51–54 in Algorithm 8). Specifically, this means r starts t imeoutCommit(e)
at t − 2∆S and commits at some moment t1 < t after receiving votes from all
replicas. Part (i) trivially holds because if r received votes for Bk from all replicas,
this means that all honest replicas (f+1) voted for Bk. Since honest replicas vote
only once in an epoch, no other B′k 6= Bk can collect (f+1) votes and be certified
in epoch e.

For part (ii), every replica needs to wait t imeoutEx t ra(e) = 2∆S before
moving to the next epoch in case it receives Ce(BLAME) or Ce(EQUIV) first (line
21 in Algorithm 9). Assume, for contradiction, that an honest replica q moved
to epoch e+ 1 before receiving Ce(Bk), namely before t −∆S. Again, due to (i),
replica q moved to epoch e+1 because it received Ce(BLAME) or Ce(EQUIV). Due
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to the extra 2∆S timeout, it must have received one of these certificates at some
moment t2 < t −∆S − 2∆S. Since q would forward the received certificate at
t2, all honest replicas, including r, would receive this certificate by t2 +∆S, and
since this is before t−2∆S, r would not start t imeoutCommit(e) at t−2∆S and
would not commit, a contradiction.

Therefore, both parts (i) and (ii) hold.

Lemma 10. If Ce(Bk) is the only certified block in epoch e and f +1 honest replicas
lock on block Bk in epoch e, then in all epochs e′ > e these replicas will only vote for
blocks that extend Bk.

Proof. Let set C contain f + 1 or more honest replicas that lock on Bk in epoch
e. We prove this lemma by induction on the epoch number.

Base step (e′ = e+1) : A replica r ∈ C will only vote for a block Bk′ in epoch
e′ if Bk′ extends a block certified in an epoch greater than or equal to e (line 30
in Algorithm 8). Since e is the previous epoch and the highest in the system, and
Bk is the only certified block in epoch e, the lemma holds trivially for e′ = e+ 1.

Induction step (e′→ e′+1): Assume the lemma holds for until epoch e′+1.
We will show it holds for e′ + 1 also.

From the induction hypothesis, in epochs e+1 to e′+1, replicas in C only vote
for blocks that extend Bk. Let Bl be the last block to receive f +1 vote messages
in some epoch e′′ where e + 1 ≤ e′′ ≤ e′ − 1. Therefore, for all replicas in C ,
lockedV C = Ce′′(Bl) and it follows that Bl extends Bk. As a result, a replica will
only vote for a block Bk′ in e′ if Bk′ extends Bl and therefore Bk.

By induction, the lemma holds for all epochs e′ > e.

Lemma 11. If an honest replica directly commits block Bk in epoch e, then any
block Bl that is certified in epoch e′ > e must extend Bk.

Proof. The proof follows directly from Lemmas 9 and 10. More precisely, if an
honest replica directly commits block Bk in epoch e, by Lemma 9, we know that
f +1 honest replicas (set C) lock on block Bk in epoch e and Bk is the only certified
block in epoch e. Consequently, by Lemma 10, replicas from C vote only for the
blocks extending block Bk in epochs e′ > e. Therefore, no block Bl that does
not extend Bk can collect f + 1 votes and thus cannot be certified in any epoch
e′ > e.

Theorem 6. (Agreement) No two honest replicas commit different blocks at the
same height.

Proof. Suppose, for the sake of contradiction, that two distinct blocks Bk and B′k
are committed for the height k. Suppose Bk is committed as a result of Bl being
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directly committed in epoch e and B′k is committed as a result of Bl ′ being directly
committed in epoch e′. Without loss of generality, assume l < l ′. Note that all
directly committed blocks are certified. This is true because both commit rules
require that replica receives Ce(Bk) before directly commiting Bk in epoch e (lines
47 and 51 in Algorithm 8). By Lemma 11, Bl ′ extends Bl . Therefore, Bk = B′k
which is a required contradiction.

Lemma 12. If the epoch e is after GST and the leader of the epoch is an honest
replica, all honest replicas commit a block in this epoch.

Proof. Consider an epoch e with an honest leader l, occurring after GST. Let
t > GST be the time when the first honest replica starts epoch e. By Lemma 8,
all honest replicas enter epoch e by time t+∆S. Consequently, they all broadcast
their lockedV C by time t +∆S at the latest. As a result, l will receive certifi-
cates from all honest replicas by time t + 2∆S. This is why l needs to wait for
t imeoutEpochChange(e) = 2∆S after entering the epoch if it does not know the
certificate from the previous epoch, to update its lockedV C to the most recent
certificate (lines 9 and 42–46 in Algorithm 8).

Consequently, the honest leader l broadcasts 〈PROPOSE, e, Bk, lockedV Cl〉 and
〈VOTE, e, id(Bk)〉l by time t+3∆S at the latest. Since we are after GST, all honest
replicas receive both messages within ∆L time, by time t + 3∆S +∆L and vote
for the proposal. The votes are of type S and all honest replicas receive them
within ∆S time, form a block certificate, and start t imeoutCommit(e) by time
t + 4∆S +∆L.

Given that the earliest point when an honest replica entered epoch e is t and
honest replicas set t imeoutCer t i f icate(e) to expire in 4∆S + ∆L, no honest
replica will send a 〈BLAME, e〉∗ message in epoch e, and Ce(BLAME) cannot be
formed. Furthermore, since l is honest, it does not equivocate, so no Ce(EQUIV)
can be formed in epoch e either.

Consequently, when t imeoutCommit(e) expires, all honest replicas will com-
mit Bk and all its ancestors.

Theorem 7. (Progress) All honest replicas keep committing new blocks.

Proof. By the Theorem 5 replicas move through epochs. Eventually, after GST ,
replicas will reach epochs with honest leaders. Consequently, by the Lemma 12
all honest replicas will commit blocks in these epoch.

Lemma 13. Every block Bk (where k 6= 0) proposed by an honest replica in some
epoch e has, as its ancestors, blocks that have been certified in one of the epochs
e′ < e.
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Proof. The proof for this lemma directly follows from Algorithm 8. Specifically,
a leader l of epoch e that proposes block Bk, which extends some block Bl , must
provide a valid block certificate for block Bl from some epoch e′ < e (line 10 in
Algorithm 8).

Furthermore, an honest replica will only vote for Bk if Bk.prev = id(Bl) (line
23 in Algorithm 8).

Theorem 8. (Block availability) All blocks committed by honest replicas will even-
tually be received by all honest replicas.

Proof. Assume an honest replica r commits block Bk. We know that Bk must
be certified before being committed (lines 38, 47, and 51 in Algorithm 8). By
Lemma 13, all of Bk’s ancestors are also certified blocks.

For a block to be certified, at least one honest replica must vote for it. Addi-
tionally, an honest replica, along with the vote, forwards the proposal (line 28 in
Algorithm 8). Consequently, if a block is certified at time t, at least one honest
replica forwards the proposal before time t.

Since the PROPOSE message is of type L , we know, by the communication
properties of type L messages (Section 5.2.2), that it will be received by all
honest replicas before max{t, GST}+∆L.

Theorem 9. (External validity) Every committed block satisfies the predefined valid()
predicate.

Proof. We know that block must be certified before being committed (lines 38,
47, and 51 in Algorithm 8). By Lemma 13, all of Bk’s ancestors are also certified
blocks. This implies that at least one honest replica accepted these blocks, mean-
ing that valid() returned true for these blocks on at least one honest replica (line
23 in Algorithm 8).

5.4 Experimental evaluation

In this section, we first introduce the experimental setup (Section 5.4.1), and
discuss message sizes in AlterBFT (Section 5.4.2). Then we evaluate the perfor-
mance (throughput and latency) in fault-free scenarios (Section 5.4.3) as well
as under faults (Section 5.4.4). Lastly, we evaluate hybrid model alternatives
(Section 5.4.5) and comment on the main takeaways (Section 5.4.6).
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5.4.1 Evaluation setup

We used the same methodology as in Section 4.4.1. Namely, we implemented
AlterBFT in Go and compared it to the same protocols as BoundBFT (see Table
4.2). Table 5.3 compares the good-case latency of the considered protocols in
failure-free executions.

Good-case latency
Sync HotStuff

[5]
δL+δS+2∆

Tendermint
[20]

δL+2δS

HotStuff-2
[82]

3δL+2δS

AlterBFT
(this paper)

δL+δS+2∆S

FastAlterBFT
(this paper)

δL+δS

Table 5.3. Protocols in our evaluation and their good-case latencies. δL is the
actual delay of large messages (i.e., blocks); δS is the actual delay of small
messages (i.e., votes and certificates); ∆ is the conservative message delay that
accounts for large and small messages; and ∆S is the conservative delay of small
messages.

We conducted our experiments on Amazon EC2 and evenly distributed repli-
cas across 5 AWS regions: North Virginia (us-east-1), São Paulo (sa-east-1),
Stockholm (eu-north-1), Singapore (ap-southeast-1), and Sydney (ap-southeast-
2). Replicas were hosted on t3.medium instances, with 2 virtual CPUs, 4GB of
RAM, and running Amazon Linux 2.

5.4.2 On message size

The hybrid synchronous model in AlterBFT differentiates between two types of
messages: S and L . Based on our experimental evaluation (Section 3.3.1),
messages of 4 KB or smaller are classified as type S , while larger messages are
classified as type L .

Table 5.4 presents the sizes of all messages exchanged in AlterBFT. The VOTE

and BLAME messages are small, fixed-size messages that belong to type S . In
contrast, the PROPOSE and QUIT-EPOCH messages have variable sizes.

QUIT-EPOCH messages, which carry certificates, must be exchanged in a timely
manner for correctness (Section 5.3.5) and are thus classified as typeS . The size
of a certificate depends on a majority quorum of replicas. In our experiments,
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Message Message size (payload) Message type
PROPOSE variable size, dominated by block size L

VOTE fixed size, below 120 bytes S
BLAME fixed size, below 100 bytes S

QUIT-EPOCH fixed size (50 bytes) + quorum-size * 66 bytes S

Table 5.4. Message sizes in the AlterBFT prototype.

the largest certificate in a system with 85 replicas is 2.8 KB. Consequently, with
the current prototype, we can accommodate deployments with up to 120 repli-
cas. For larger systems, a more optimized signature techniques such as BLS [19]
would be necessary.

The size of PROPOSE messages depends on both the block and certificate sizes.
However, in AlterBFT, these messages are classified as type L , which means
there are no restrictions on their size, and consequently, no restrictions on the
block size as well.

5.4.3 Failure-free performance

In this section, we compare AlterBFT to state-of-the-art protocols in the absence
of failures. We measure latency and throughput while varying the system size
(i.e., 25, 55, and 85 replicas) and block size (i.e., from 1 KB up to 1 MB).

Latency

Figure 5.7 shows the average consensus latency computed by leaders. From
Table 5.3, Sync HotStuff and AlterBFT latencies directly depend on conservative
synchronous bounds. This is because both protocols wait for a timeout (i.e.,
t imeoutCommit, computed as twice the time bound) before committing a value.
We used the conservative 99.99% [80] values as synchronous bounds for Sync
HotStuff and AlterBFT. Table 5.5 shows 99.99% delays for messages of different
sizes. We can clearly see that values increase with the message size, from 254
ms to 6099 ms for 1 KB and 1 MB message sizes, respectively.

Message
size (KB)

1 2 3 4 8 16 32 64 128 256 512 1024

99.99 %
(ms)

254 273 308 325 514 663 995 2594 2825 3935 5080 6099

Table 5.5. The 99.99 % percentile of collected message delays for different
message sizes; values collected during one-day-long experiments.
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Figure 5.7. Average latency for all protocols when varying system size (i.e., 25,
55, and 85 replicas) and block size (all graphs in log scale).

Classical synchronous protocols, such as Sync HotStuff, must adopt a ∆ that
accommodates the timely delivery of all messages, regardless of their size. As
a result, the ∆ must be sufficiently large to ensure the delivery of both large
and small messages. Consequently, because the size of messages carrying blocks
increases with the block size, the ∆ also increases (see Table 5.6), leading to
higher latency in Sync HotStuff.

In contrast, AlterBFT’s t imeoutCommit consists of ∆S, which accounts only
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Block
size (KB)

1 2 4 8 16 32 64 128 256 512 1024

25
replicas

273 ms
(2 KB)

308 ms
(3 KB)

325 ms
(5 KB)

514 ms
(9 KB)

663 ms
(17 KB)

995 ms
(33 KB)

2594 ms
(65 KB)

2825 ms
(129 KB)

3935 ms
(257 KB)

5080 ms
(513 KB)

6099 ms
(1025 KB)

55
replicas

308 ms
(3 KB)

325 ms
(4 KB)

325 ms
(6 KB)

514 ms
(10 KB)

663 ms
(18 KB)

995 ms
(34 KB)

2594 ms
(66 KB)

2825 ms
(130 KB)

3935 ms
(258 KB)

5080 ms
(514 KB)

6099 ms
(1026 KB)

85
replicas

325 ms
(4 KB)

325 ms
(5 KB)

514 ms
(7 KB)

514 ms
(11 KB)

663 ms
(19 KB)

995 ms
(35 KB)

2594 ms
(67 KB)

2825 ms
(131 KB)

3935 ms
(259 KB)

5080 ms
(515 KB)

6099 ms
(1027 KB)

Table 5.6. Sync HotStuff’s synchronous conservative bound ∆ for different
block and system sizes. Table’s fields show: ∆ (message size it accounts for).

for the timely delivery of small type S messages. Since messages carrying blocks
are categorized as type L messages, ∆S remains unaffected by block size (see
Table 5.7). Consequently, the difference between AlterBFT’s and Sync HotStuff’s
latencies increases with the block size. Specifically, up to 4 KB block size AlterBFT
performs slightly better, however already with 8 KB blocks AlterBFT’s latency
is more than 1.5× lower than Sync HotStuff’s, and this difference raises to an
outstanding 14.9× with 1 MB blocks.

Block size (KB) 1 2 4 8 16 32 64 128 256 512 1024
25 replicas 254 ms (1 KB)
55 replicas 273 ms (2 KB)
85 replicas 308 ms (3 KB)

Table 5.7. AlterBFT’s synchronous conservative bound ∆S for different block
and system sizes. Table’s fields show: ∆S (message size it accounts for).

On the other side, Figure 5.7 shows that Tendermint’s latency is still lower,
around 2×, than AlterBFT’s in all setups. However, the difference does not in-
crease with the block size. This is because Tendermint’s and AlterBFT’s latencies
are only affected by one actual network delay for large messages (see Table 5.3).
In addition, we see that even though HotStuff-2’s latency depends only on real
communication delays, HotStuff-2 sports lower latency (around 20%) than Al-
terBFT only up to 8 KB blocks. The reason is that the actual network delay, δL,
increases as the block size increases. Since the latency of the pipelined version of
HotStuff-2 requires three such delays (see Table 5.3), the overall latency grows.
As a result, HotStuff-2 achieves latency from 1.7× to 7× higher than AlterBFT
when the block size is greater than 8 KB.

Lastly, latencies of FastAlterBFT and partially synchronous protocols rely only
on the actual message network delays. Note here that FastAlterBFT requires
one voting phase where it needs to receive the votes from all replicas, while
Tendermint and HotStuff-2 use two voting phases where they need to receive
votes from more than 2/3 of replicas. Consequently, FastAlterBFT optimization
works only in optimistic conditions when there are no failures.
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In failure-free cases, FastAlterBFT’s latency is 1.6 to 2.5× lower than the la-
tency of AlterBFT and almost identical to Tendermint’s latency. This result sug-
gests that, in our wide-area setup, a voting phase where the leader needs to
receive votes from all replicas requires a similar amount of time as two voting
phases with two-third majority quorums.

Throughput

Sync HotStuff, AlterBFT, and FastAlterBFT have similar throughput (see Figure
5.8), as they share the same communication pattern in the failure-free case.
Namely, all protocols start working on the next block as soon as they receive
the certificate for the previous block.

All three protocols outperform partially synchronous protocols for all sys-
tem and block sizes, achieving throughput that is 1.4× to 2× higher than Ten-
dermint’s. This advantage is due to Tendermint’s lack of pipelining. Moreover,
they also perform better than HotStuff-2, a partially synchronous protocol with
pipelining, by a factor of 1.3× to 7.2×.

Although HotStuff-2 uses pipelining, it only performs better (1.4×) than Ten-
dermint when the block size is up to 8 KB. With larger blocks, HotStuff-2’s through-
put decreases, becoming worse than Tendermint’s. This is attributed to the fact
that as block size increases, the real network delay of messages carrying blocks
also increases and varies more. Consequently, since HotStuff-2 uses a linear com-
munication pattern where replicas can receive the proposal only from the leader,
this can take longer, reducing overall throughput as block size increases.

Lastly, we highlight that even with block sizes up to 8 KB, the throughput of
AlterBFT is still around 1.4× better than HotStuff-2’s. This is because, although
both protocols start ordering the next block after collecting a certificate for the
previous block, the certificate in HotStuff-2 requires votes from more than a two-
thirds majority of replicas, whereas, in AlterBFT, votes from a simple majority are
sufficient.

5.4.4 Performance under attack

We now evaluate AlterBFT and FastAlterBFT under equivocation attack. Con-
trary to the equivocation attack presented in 4.3.2, the Byzantine replicas are
not colluded. Namely, the Byzantine leader of an epoch sends one proposal to
half of the replicas and another proposal to the other half, with Byzantine repli-
cas voting for both proposals. Figure 5.9 presents the data for a system of 25
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Figure 5.8. Throughput comparison of all protocols with varying system sizes
and block sizes (all graphs in log scale).

replicas with 128 KB blocks, varying the number of Byzantine replicas from 2 to
12.

FastAlterBFT’s throughput is minimally affected by equivocation attacks due
to its chaining mechanism. Honest replicas will not commit a block in epochs
with a Byzantine leader, but if they gather a certificate for one of the two proposed
blocks, the leader in subsequent epochs (if honest) will extend and indirectly
commit one of these blocks. Since in FastAlterBFT, replicas wait for 2∆S after



93 5.4 Experimental evaluation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  2  4  8  12

T
h

ro
u

g
h

p
u

t 
(K

B
/s

)

# of Byzantine replicas

AlterBFT
FastAlterBFT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  2  4  8  12

L
a

te
n

c
y
 (

m
s
)

# of Byzantine replicas

AlterBFT
FastAlterBFT

Figure 5.9. AlterBFT and FastAlterBFT throughput (top) and latency (bot-
tom) under equivocation attack, 25 replicas and 128 KB blocks.

receiving an equivocation certificate, they always receive a certificate for one of
the blocks before moving to the next epoch. As a result, the throughput is almost
identical to that in the failure-free case.

In contrast, AlterBFT replicas move to the next epoch immediately after re-
ceiving the equivocation certificate. Consequently, blocks proposed by Byzantine
leaders are often wasted. As the number of Byzantine replicas increases, more
epochs are wasted, leading to a decrease in AlterBFT’s overall throughput.

Moreover, the equivocation attack does not significantly affect the latency
of the protocols. With 2 Byzantine replicas, the latencies remain the same. As
the number of faulty replicas increases to 4, 8, and 12, the latency of AlterBFT
increases by 2%, 2%, and 7.5%, respectively, while the latency of FastAlterBFT
increases by 6.5%, 15.7%, and 33%. The increase is due to blocks proposed by
Byzantine replicas not being committed in the epochs in which they were pro-
posed but in the first epoch with an honest leader. Since FastAlterBFT has more
such blocks than AlterBFT, the impact on average latency is more significant.

Lastly, we observe that the extra 2∆S delay in FastAlterBFT has an overall
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positive effect on performance during equivocation attacks. Together with the
benefits presented in the failure-free case (see Section 5.4.3), this result serves
as a compelling argument for the adoption of FastAlterBFT.

5.4.5 Design alternatives

In this section, we evaluate possible alternatives for the hybrid model and Al-
terBFT. We consider two approaches for synchronous consensus protocols that
build on the fact that small messages have reduced and more stable communi-
cation delays than large messages (Section 5.2.2):

1. Limiting message size to a few thousand bytes (i.e., small messages).
In this case, the synchrony bound only needs to accommodate small mes-
sages, but this limits the block size to what can fit within a small message.
Consequently, multiple consensus instances are required to order blocks
larger than the chosen message size.

2. Sending every large message as many small messages. A large block
can use a single instance of consensus in this case, but a replica can only act
on a large block after it has received all smaller messages that correspond
to the original block.

We evaluate the first alternative approach and compare it to AlterBFT and
Sync HotStuff, where large blocks require conservative synchrony bounds. Specif-
ically, we measure the throughput and latency of Sync HotStuff, where to order
a 128 KB block, the leader uses 64 consensus instances. In each instance, the
leader proposes a 2 KB chunk (Chunked-HS). We compare this to Sync HotStuff,
where a leader uses one consensus instance but sets a conservative synchrony
bound (Sync HotStuff).

In these experiments, we use the original Sync HotStuff [3] with a stable
leader since it is unclear how the technique could be used with a rotating leader
(i.e., how would every leader know which block chunk to propose?). Figure 5.10
shows results for 25 replicas.

Chunked-HS performs worse than Sync HotStuff with a conservative bound:
it has 2× higher latency and 55× lower throughput. The reason behind this lies
in the overhead of additional consensus executions. Even though Sync HotStuff
starts multiple instances in parallel, it cannot start the next instance before cer-
tifying the proposal of the current instance, requiring two communication steps
before starting a new instance.
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Figure 5.10. Performance comparison of synchronous consensus with chunked
proposals (Chunked-HS), conservative bounds (Sync-HS), and AlterBFT for
25 replicas with 128 KB blocks.

In conclusion, empirical evidence suggests that consensus protocols are better
off combining small and large messages, instead of resorting to small messages
only.

To evaluate the second alternative approach described above, we repeated
the same experiments used in Section 5.2.1 to collect message delays. Instead
of sending one large message, we divided the messages into small messages and
measured the time needed for those small messages to reach their destination
and for a response to come back (i.e., round-trip time).

Figure 5.11 compares message delays between N. Virginia and S. Paulo when
sending one 128 KB message as a whole (Non-Chopped) versus sending 64 2 KB
messages (Chopped). We can see that the delays observed are almost identical.

We conclude that chopping large messages into small messages does not re-
duce communication delays. Therefore, a large message chopped into small mes-
sages is subject to the same timeouts as large messages.
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Figure 5.11. Message delays between N. Virginia and S. Paulo (x-axis in log
scale) when sending 128 KB messages (Non-Chopped) versus sending 64 2 KB
messages (Chopped).

5.4.6 Summary

In this section, we summarize the main takeaways from our performance evalu-
ation.

• Message size has an important impact on communication delays. Our em-
pirical data shows that messages below 4KB tend to have low and stable
delays, while larger messages experience increasing delays and jitter.

• AlterBFT significantly outperforms state-of-the-art synchronous protocols. De-
pending on block size, AlterBFT’s latency is 1.5× to 14.9× lower than Sync
HotStuff’s latency while maintaining similar throughput.

• AlterBFT exhibits higher resilience, higher throughput, and comparable la-
tency to partially synchronous protocols. With 85 replicas, AlterBFT toler-
ates 15 more faulty replicas, achieves throughput 1.4× to 5× higher, and
maintains latency below 1 second.

• FastAlterBFT optimization enhances AlterBFT’s performance both in failure-
free scenarios and under equivocation attacks.

• Splitting and chopping large blocks does not provide any performance advan-
tage.
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5.5 Conclusion

In this chapter, we introduced the hybrid synchronous system model and Al-
terBFT, a novel BFT hybrid synchronous consensus protocol. The hybrid syn-
chronous system model differentiates between small messages, which adhere to
strict timing bounds, and large messages, which may exceed these bounds but are
eventually delivered. AlterBFT’s agreement mechanism depends exclusively on
the timely delivery of small messages, while the progress of the protocol relies on
the eventual delivery of large messages carrying blocks. Consequently, AlterBFT’s
latency is not affected by the substantial conservative synchrony bounds required
for large messages, resulting in a more efficient protocol. AlterBFT demonstrates
superior performance compared to traditional synchronous consensus protocols
by offering equivalent resilience. Additionally, it surpasses partially synchronous
protocols by providing higher throughput and resilience.
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Chapter 6

Related work

In this chapter, we review the existing literature relevant to our work, focus-
ing on the key developments and innovations in gossip communication (Section
6.1) and consensus algorithms (Section 6.2). We also discuss additional related
proposals (Section 6.3).

6.1 Gossip communication

Gossip algorithms were first introduced by Demers et al. [35] to manage replica
consistency in the Xerox Clearinghouse Service [95]. The proposed algorithms
were specific for the dissemination of database updates, assumed to not be very
frequent (a few per second, at most). The adoption of gossip mechanisms as
a building block for the dissemination of arbitrary application messages derives
from Bimodal Multicast [15]. The algorithm consists of two phases. In the first
phase, messages are disseminated in a best-effort fashion through multicast trees,
using IP-multicast when available. In the second phase, processes periodically
send to a random-selected peer a list of recently received messages, so that to
retransmit, on demand, messages that have not yet been received by the peer.
Since then, multiple approaches have been proposed to improve throughput and
security of gossip dissemination [16; 40; 56; 66; 76; 79; 86; 113].

Research in gossip-based broadcast algorithms has focused essentially on two
issues. First, the efficient dissemination of messages in large-scale systems through
the adoption of overlay networks. Proposed approaches consider building pseudo-
random network overlays, by selecting links based on geographic proximity and
available bandwidth [66; 86], or topological and connectivity properties [76; 79;
114]. A second research direction addresses the cost/effectiveness of epidemic
mechanisms which enable processes to request messages that they failed to re-

99
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ceive. The efficiency of these anti-entropy [15; 35] or gossip repair [16; 40; 56;
113] mechanisms is crucial to improve the reliability of gossip dissemination.
Efforts have also been made to develop gossip-based services to support large-
scale broadcast and multicast algorithms, such as failure detection [109], group
membership [47; 63], monitoring and management systems [108].

Semantic Gossip differs from existing approaches because it is designed to
support distributed applications that, by themselves, include layers of redun-
dancy. This is the case of Paxos, which includes both typical broadcast steps
(to propose values) and the exchange of control messages to ensure agreement,
which is a strong form of reliability.

Probabilistic Atomic Broadcast [41] is the algorithm whose behavior most
resembles the operation of Paxos atop gossip. The algorithm proceeds in rounds,
in each round a process can broadcast a message and should vote for a message,
either broadcast or received during the round. Processes periodically exchange
the list of messages and associated votes with a random subset of peers. When the
number of votes reaches a threshold, all messages in the list are delivered, and the
process proceeds to the next round. As in our Paxos deployment, processes send
and forward values (broadcast messages) and votes to peers via gossip. Unlike
Paxos, the algorithm of [41] only provides probabilistic safety guarantees: two
processes may deliver messages in distinct orders, which is equivalent in Paxos
to deciding different values in the same consensus instance.

Even though most work on gossip has considered crash failures, recent Byzan-
tine fault-tolerant consensus protocols for large-scale environments (e.g., blockchain)
have considered the use of gossip as underlying communication substrate. Ten-
dermint is a blockchain middleware based on a BFT consensus algorithm [20]
designed for gossip communication. Tendermint has its own gossip layer imple-
mentation, that is application-specific and tightly coupled with the consensus im-
plementation. Casper [21], the BFT consensus algorithm proposed to replace the
proof-of-work core of the Ethereum blockchain is also designed for a gossip-based
environment. HotStuff [118], the BFT consensus protocol at the core of the Libra
Blockchain [8], although not designed for gossip-based communication, consid-
ers its adoption as the number of processes participating on consensus (validator
nodes) grows [106]. The key architectural aspect that distinguishes these pro-
posals from Semantic Gossip is that gossip in blockchain systems is intertwined
with consensus logic. Semantic Gossip exploits application (i.e., consensus) se-
mantics without giving up modularity.
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6.2 Consensus

This section surveys the literature on consensus protocols, covering both crash
fault-tolerant (CFT) and Byzantine fault-tolerant (BFT) models.

6.2.1 Crash fault-tolerant consensus

There are numerous consensus protocols within the CFT system model [34]. In
the following discussion, we focus on Paxos-based protocols and their relevance
for Gossip Paxos (Chapter 3).

Paxos is arguably the best-known consensus protocol, widely adopted in both
academic and industrial settings [13; 26; 67; 72; 84; 85]. Although it is optimal
in terms of communication steps and the number of tolerated failures [73], Paxos
is notoriously difficult to understand [18; 94] and implement [26; 67]. Addition-
ally, the Paxos coordinator’s distinguished role often becomes a bottleneck in the
protocol, limiting performance [13; 72; 83].

Raft [94] is a protocol inspired by Paxos, designed to be easier to understand
and implement than Paxos. Raft focuses on replicating a totally ordered sequence
of values, rather than solving single instances of consensus. This led to important
improvements in the leader-replacement mechanism, used in case of (suspicion
of) failures. In the absence of failures, however, the operation of Raft and Paxos
are identical [61]: the leader broadcasts values that must be acknowledged by
a majority of processes. This makes the semantic extensions proposed for the
regular operation of Paxos easily applicable to a gossip-based Raft deployment.

Several Paxos variants address the performance bottlenecks of Paxos. In Men-
cius [83] processes take turns as the coordinators of successive instances of con-
sensus. While this strategy allows distributing the coordinator load among mul-
tiple processes, it does not necessarily improve performance, as it will be ulti-
mately dictated by the slowest coordinator. In S-Paxos [13], the dissemination
and ordering of values are detached. Processes disseminate values without the
intervention of the coordinator, which proposes value ids in Paxos instances, thus
alleviating the coordinator’s load. S-Paxos is a good candidate for a gossip-based
implementation, where values are inherently disseminated to all processes, while
the proposed semantic techniques can be adopted to improve the ordering layer.

Fast Paxos [72] enables any process to propose values directly to all processes,
thus bypassing the coordinator. This allows reaching consensus in two communi-
cation steps (while Paxos requires three) in instances in which conflicting propos-
als do not collide. Collisions occur when values are received in distinct orders by
processes, which tends to be common with the latency variability of WAN setups,
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and can be worsened when communication takes place via gossip. Generalized
consensus [71] allows processes to deliver some values, considered independent
by the application, in distinct order: the total ordering is relaxed to a partial or-
dering. The best-known implementation of this approach is EPaxos [90], which
allows values to be ordered in two communication steps when no dependent
values are concurrently proposed. However, when dependent values are concur-
rently proposed, EPaxos requires a complex collision-solving procedure, with a
communication pattern that is not efficiently implemented atop gossip.

6.2.2 Byzantine fault-tolerant consensus

In this section, we provide a survey of BFT consensus algorithms, a key concept
in Chapters 4 and 5. Primarily, we focus on protocols that are designed for a
blockchain context.

Early blockchain systems used proof-of-work protocols (e.g., [91; 115]), which
do not require knowledge of the full system membership, but consume a lot of
energy and have poor performance. In this section, we review protocols that,
like BoundBFT and AlterBFT, are membership-based.

Asynchronous protocols

HoneyBadgerBFT [87] is the first practical purely asynchronous consensus pro-
tocol designed for a blockchain environment. As such, it makes no assumptions
about message bounds ∆ and can provide deterministic safety and probabilis-
tic liveness [43]. This protocol represents a more efficient version of the asyn-
chronous atomic broadcast protocol presented in [22]. It consists of a dissemi-
nation phase (optimized with the use of erasure codes and Merkle trees), where
all processes reliably broadcast transactions in parallel, and agreement phase
that consists of n concurrent asynchronous binary Byzantine agreement (ABBA).
Later, in [53; 54] agreement phase was improved by replacing n ABBAs with a
single asynchronous multi-value validated Byzantine agreement (MVBA). This
resulted in better performance, both throughput and latency. Lastly, the perfor-
mance was further improved by decoupling transaction dissemination and agree-
ment [117] and further by allowing them to be executed completely concurrently
[48]. The main advantage of all these protocols is that they can achieve termina-
tion without relying on synchrony. Consequently, they can order blocks in asyn-
chronous periods where the performance of deterministic partially synchronous
or synchronous solutions can deteriorate [87]. However, in good-case scenar-
ios, they perform worse than partially synchronous and synchronous protocols,
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because they require more communication steps. As a consequence, some pro-
tocols use a leader-based partially synchronous protocol to improve the latency
in good cases [49; 69; 81; 98].

Partially synchronous protocols

Dwork, Lynch, and Stockmeyer introduced the partially synchronous system model
[37], defining a degree of synchrony sufficient to circumvent the FLP impossibil-
ity result [43] and achieve deterministic consensus.

The first practical BFT consensus protocol designed for a partially synchronous
system model is PBFT [24], a leader-based protocol that can commit a value in
three communication steps. PBFT was originally built for scenarios with a sta-
ble leader, where the leader change occurs only in the event of a leader failure.
Consequently, the leader replacement mechanism is costly, incurring O(n3) com-
munication overhead.

In contrast, blockchain systems require that every node be given the oppor-
tunity to act as a leader. This is essential to ensure that each node has a fair
chance to propose a block and collect the associated fees, while also preventing
a Byzantine leader from indefinitely censoring transactions. Consequently, a new
line of BFT protocols tailored for blockchain contexts has emerged, focusing on
facilitating efficient and frequent leader changes.

Tendermint [20] removes the need for a leader replacement sub-protocol, in-
corporating leader changes as part of its regular execution. It operates in rounds,
with each round having a dedicated leader and a failure-free communication
pattern similar to PBFT’s. Unlike PBFT, the new leader in a given round r (a
concept akin to a view in PBFT) does not need to execute a leader replacement
sub-protocol to determine the value to propose. Instead, each process maintains
the most up-to-date value in a local state, validValue, and proposes this value
when leader in a round. The mechanism ensuring that a value proposed by
an honest process is eventually accepted by all honest processes—and thus de-
cided—relies on gossip communication (which ensures that after GST, all honest
processes witness the same set of messages) and a round transition mechanism
(which ensures that after GST, an honest process does not advance to the next
round without learning the most up-to-date value). In BoundBFT and AlterBFT,
we adopt a similar design.

HotStuff [119] designed a leader rotation mechanism that requires linear
communication O(n) and is responsive, meaning that a new leader needs to wait
for only n − f messages before proposing a value, rather than the maximum
network delay. HotStuff achieves responsiveness at the cost of additional com-
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munication, requiring three voting phases compared to the two phases needed in
PBFT and Tendermint. HotStuff-2 [82] demonstrates that the additional phase
in HotStuff is unnecessary in practice and achieves responsiveness without extra
communication under optimistic conditions, when there is a sequence of honest
leaders and a synchronous network.

An alternative approach to prevent censorship and allow multiple leaders is
to enable parallel leaders [30; 88; 103]. These solutions provide higher through-
put but are more complex as they must address challenges such as request du-
plication in the context of parallel leaders [103]. Recent work has shown how a
leader-driven protocol can be transformed into a scalable multi-leader one using
a new primitive called Sequenced (Total Order) Broadcast [104].

Synchronous protocols

Synchronous BFT consensus protocols require a majority of honest replicas [42;
44; 64], as opposed to partially synchronous and asynchronous protocols, which
require a two-third majority. Dfinity [58] is the first synchronous consensus de-
signed for blockchains. Contrary to the early BFT protocols in the synchronous
model [36; 74], Dfinity does not assume lock-step execution where replicas exe-
cute the protocol in rounds and messages sent at the start of the round arrive by
the end of the round. Instead, it assumes that replicas start the protocol within∆
time. Dfinity’s throughput is affected by the maximum network delay∆ because
every replica at the beginning of each round waits for 2∆ before casting a vote.

Abraham et al. [3] introduced Sync HotStuff, which removes the effect of
maximum network delay on throughput, achieving throughput comparable to
the partially synchronous HotStuff, and also reducing latency. A rotating-leader
version of Sync HotStuff was introduced in [5]. AlterBFT and BoundBFT share
similar common-case behavior as rotating-leader Sync HotStuff. However, they
have different epoch synchronization mechanisms. Moreover, AlterBFT is de-
signed for hybrid synchronous model and its agreement does not require timely
delivery of all messages.

Thunderella [96] points out that the latency of synchronous BFT consensus
protocols does not need to depend on∆ when the actual number of faults is less
than 1/4 of the replicas. They refer to these protocols as optimistically responsive
since their latency does not depend on∆ only in some special, optimistic, condi-
tions. FastAlterBFT is optimistically responsive when there are no failures in the
system [4; 52; 68].
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Protocols based on extended hardware

Some protocols increase resilience by relying on trusted components. The main
idea is to execute key functionality, such as appending to a log [27] or incre-
menting a counter [77], inside a trusted execution environment (e.g., Intel SGX
enclaves [100]). Extended hardware has been used to allow both PBFT [27;
77; 93; 111] and HotStuff [33; 116] to tolerate a minority of Byzantine repli-
cas. BoundBFT and AlterBFT do not require any trusted components and rely on
synchrony instead.

Another approach is to divide the system into two parts [110]: a synchronous
subsystem that transmits control messages, and an asynchronous subsystem that
transmits the payload. This model was generalized to the wormhole hybrid dis-
tributed system model where secure and timely components co-exist [29; 112].
AlterBFT also differentiates between two types of messages, but does not assume
the existence of any separate subsystem or special components.

DAG-based protocols

HashGraph [12] introduced the idea of building a directed acyclic graph (DAG) of
messages and designing an algorithm that will solve BFT consensus just by inter-
preting the DAG without sending any additional messages. Aleph [46] improved
the DAG structure by adding rounds, and a round version of the DAG was effi-
ciently implemented in Narhwal [32]. Different versions of DAG-based BFT con-
sensus protocols that built on Narhwal’s DAG have been proposed for both asyn-
chronous [32; 65; 101] and partially synchronous system models [102; 105].
More recently, the authors of [11] demonstrated how to further reduce the la-
tency of DAG-based protocols by eliminating the requirement for nodes in the
DAG to be certified. All these systems tolerate fewer than 1/3 of Byzantine repli-
cas. Designing a synchronous DAG-based protocol that can tolerate a minority
of Byzantine replicas is still an open question.

6.3 Additional proposals

Guo et al. [55] introduced the “weak synchronous model” (called mobile sluggish
model in [3] for consistency with other works in the literature). The model
tolerates Byzantine replicas and allows some honest replicas to be slow, that
is, the messages received from or sent by slow processes can violate synchrony
bounds. However, this is true only in situations when the actual number of faulty
and slow processes is a minority at any point in time during the execution. The
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first BFT consensus protocol presented in the weak synchronous model was PiLi
[25], with latency between 40∆ and 65∆. In [3], the authors showed how Sync
HotStuff can be adapted to the weak synchronous model. One open question
is how our hybrid model could be combined with the weak synchronous model,
yielding a version of AlterBFT whose safety would rely on the timely delivery of
small messages between the majority of timely and honest replicas.

XFT [80] is based on the observation that typical BFT consensus protocols
assume a powerful adversary that fully controls malicious processes and the net-
work between honest processes. They note that this type of adversary is unre-
alistic. We share this view, and consider an adversary that cannot control the
network between honest processes in Chapters 4 and 5. XFT differentiates be-
tween three types of faulty processes: crash, Byzantine, and partitioned (i.e.,
processes that cannot exchange messages with other honest processes within the
known synchrony bound). It ensures progress as long as the total number of
faulty processes in the system is lower than f < n/2. In other words, XFT as-
sumes a majority of honest replicas that can communicate timely. Since selecting
a quorum of f + 1 responsive replicas out of n replicas requires an exponential
number of attempts, the solution is practical when f is small.

The hybrid fault model introduced in [107] distinguishes between different
types of failures and proposes different thresholds for crash and Byzantine fail-
ures. Its most recent refinement [97] expands the work by adding the threshold
for slow replicas. This approach allowed the design of more cost-efficient (tol-
erating the same number of failures with fewer replicas) protocols in the data
center environment.

Gilad et al. [50] propose a model with different timing assumptions for progress
and agreement. Namely, for progress, they assume that most (e.g., 95%) pro-
cesses can send messages that will be received by most (e.g., 95%) other pro-
cesses within a known time-bound. For agreement, they assume a network can
be asynchronous for a long but bounded time (e.g., at most one day or week).
Afterwards, the network must be strongly synchronous for a reasonably long pe-
riod (e.g., a few hours or a day). Furthermore, they assume loosely synchronous
clocks to recover progress after asynchronous periods. Their consensus algorithm
can tolerate the same number of Byzantine replicas as asynchronous but provide
probabilistic guarantees.

The authors in [31] proposed a model where the replicas are equipped with
hardware clocks with a bounded drift rate. Moreover, they design protocols by
leveraging the hardware clocks to detect untimely events accurately. These pro-
tocols don’t have a strict bound on the number of synchronous/asynchronous
and correct/faulty replicas and do not consider Byzantine failures.
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The transmission fault model [14; 89] approaches the system from a different
angle. Instead of modeling faulty replicas or links, they assume that messages
can be arbitrarily lost or corrupted. The common aspect between this model and
ours is that both focus on messages. However, since the blockchain environment
usually comes with the PKI infrastructure and every message is usually signed,
corrupted messages are easily detectable.

Aguilera et al. [7] examine how to enhance the performance of consensus
algorithms in synchronous systems with crash failures by utilizing fast failure
detectors. These detectors are implemented through specialized hardware or
expedited message delivery mechanisms. Expedited message delivery prioritizes
critical messages by tagging them for faster processing in network queues or
using a separate transmission medium. Some papers demonstrate how expe-
dited messages can be enforced in real-time systems [59; 60]. This approach can
further improve the performance of AlterBFT by marking type S messages as
expedited.
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Chapter 7

Concluding remarks

This thesis has significantly advanced the understanding and development of
consensus protocols, which are vital for the reliability and fault tolerance of dis-
tributed systems. By tackling critical challenges posed by modern decentralized
environments (e.g., blockchain systems), this research provides novel insights
and practical solutions to enhance consensus mechanisms. The primary focus
was on three key areas: integrating gossip-based communication with consen-
sus protocols, assessing the robustness of synchronous Byzantine fault-tolerant
(BFT) protocols under synchrony violations, and developing a hybrid synchrony
model to improve performance. Through comprehensive theoretical analysis and
rigorous experimental evaluation, this work has not only addressed current lim-
itations but also set the stage for future innovations in the field of distributed
systems.

7.1 Research assessment

This section summarizes the key contributions of this thesis.

Gossip-based consensus protocols. This thesis has explored the deployment
of consensus protocols in partially connected networks utilizing gossip communi-
cation. Our investigation into the Paxos consensus algorithm revealed significant
latency and throughput overheads caused by gossip-based communication. To
mitigate these issues, we introduced Semantic Gossip, which employs seman-
tic filtering and semantic aggregation. Our experimental evaluation confirmed
that Semantic Gossip significantly reduces message overhead, enhances perfor-
mance, and maintains the reliability of gossip communication despite message
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loss. These results indicate that similar optimizations could benefit other agree-
ment protocols, suggesting promising directions for future research and practical
applications.

Robustness of synchronous consensus. This thesis presents a novel approach
for assessing the resilience of synchronous BFT consensus protocols in the face
of synchrony violations, considering scenarios with and without Byzantine repli-
cas. Applied to BoundBFT, a novel BFT synchronous consensus protocol, this
approach demonstrates that BoundBFT can withstand synchrony violations with-
out compromising correctness, leveraging communication diversity and redun-
dancy. Our experimental results show that BoundBFT achieves lower synchrony
bounds and improved performance compared to existing protocols. These find-
ings underscore the effectiveness of the proposed assessment approach and offer
valuable insights into the robustness of synchronous consensus protocols under
challenging conditions.

Hybrid synchronous system model and AlterBFT. This thesis has presented
a three-month experimental study on communication delays in a geographically
distributed system. Based on the collected insights, we proposed the hybrid syn-
chronous system model, which reflects the observed data more accurately than
the classical synchronous model by distinguishing between small messages with
strict timing bounds and large messages with eventual delivery.

Using this model, we designed AlterBFT, a new BFT consensus protocol. Our
experimental evaluation showed that AlterBFT relies on the timely delivery of
small messages for agreement while allowing progress with the eventual deliv-
ery of large messages. AlterBFT achieves the same fault tolerance as synchronous
protocols, with up to 15× lower latency and similar throughput. Additionally, Al-
terBFT offers higher throughput and comparable latency to partially synchronous
protocols. These results highlight the effectiveness of the hybrid synchronous
model and suggest that AlterBFT can provide significant improvements in prac-
tical applications.

7.2 Future directions

The insights and contributions from this thesis pave the way for several future
research directions:
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7.2.1 Byzantine Gossip Consensus

We plan to investigate the applicability of Semantic Gossip to BFT consensus
protocols. In particular, we have started exploring the integration of Seman-
tic Gossip with Tendermint, a well-known BFT consensus protocol that already
utilizes gossip-based communication. This integration aims to reduce message
overhead while maintaining security guarantees in adversarial settings.

However, adapting semantic aggregation for BFT protocols requires special
care to prevent new attack vectors. Aggregated messages must include signed
votes to ensure their validity and resist malicious behaviors. More efficient cryp-
tographic schemes, such as Boneh-Lynn-Shacham (BLS) signatures [19], could
be employed to reduce message size while preserving security.

Our preliminary experiments with Tendermint have shown promising results,
indicating that Semantic Gossip can further enhance the performance and scal-
ability of BFT protocols. Future research will focus on refining these techniques
and conducting extensive evaluations in various network conditions.

7.2.2 Hybrid model validation

In Chapter 5, we introduced the new hybrid synchronous system model, moti-
vated by data on message delays between replicas located in five AWS and five
DigitalOcean regions. The replicas were hosted on medium-sized machines and
communicated via TCP. To further substantiate the viability of this model, we
plan to expand our data collection and analysis. Specifically, we aim to:

1. Include additional geographic regions to provide a more comprehensive
understanding of global communication delays.

2. Utilize various data transfer protocols, such as QUIC, to evaluate their im-
pact on communication latency and reliability.

3. Expand our experiments to include additional cloud service providers be-
yond AWS and DigitalOcean, such as CloudLab, Microsoft Azure, and Google
Cloud, to assess the stability of the hybrid synchronous model across di-
verse infrastructure environments.

4. Experiment with different VM instance types, including larger machines, to
determine the impact of varying bandwidth availability on message delays.

By broadening the scope of our experimental study, we aim to validate the hybrid
synchronous model’s applicability and effectiveness in a wider range of practical
scenarios.
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7.2.3 AlterBRB

We intend to design AlterBRB, a new BFT reliable broadcast protocol for the
hybrid system model. Recent research [17; 28; 51] has shown the importance
of such protocols in building decentralized online payment systems [91] that
do not require consensus. We believe AlterBRB may serve as an alternative to
asynchronous Byzantine reliable broadcast protocols used in these systems, po-
tentially offering comparable performance while providing higher resilience and
availability.

Reliable dissemination of data and ordering on hashes/metadata is a known
technique [38] for increasing the performance of an ordering service. This tech-
nique is also utilized in modern blockchain systems [32; 48; 117]. AlterBRB
can be employed as an efficient reliable broadcast protocol and combined with
AlterBFT or other synchronous protocols to create an efficient ordering service.
This service would tolerate a minority of Byzantine processes, unlike current
partially synchronous solutions, which tolerate only up to one-third of malicious
processes.

7.2.4 Handling large blocks in partially synchronous protocols

In our evaluation in Chapter 5, we observed that while partially synchronous
systems do not rely on conservative ∆ values, their latency tends to increase
with larger block sizes. Specifically, in a system with 25 replicas, the latency
of HotStuff-2 increased by 10× when the block size was increased from 1KB
to 1MB. Similarly, Tendermint’s latency increased by 1.4×. We believe this is
because the actual communication delays for large messages are significantly
higher compared to small messages.

To address this issue, we propose modifying these protocols to alleviate the la-
tency increase associated with larger block sizes. Our approach involves sending
the message containing the block in parallel with the voting process. Specifically,
a replica would send a propose message carrying a hash of the block and a mes-
sage with the full block in parallel. Replicas would vote after receiving the hash
of the block, even if they have not yet received the full block. However, repli-
cas would lock on the block and send a second phase vote message only after
receiving the full block. This approach allows the protocol to proceed with the
first voting phase without waiting for the full block to be received, thereby giving
more time for block propagation and potentially reducing overall latency.
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