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ABSTRACT Human mobility modeling is crucial for many facets of our society, including disease
transmission modeling and urban planning. The explosion of mobility data prompted the application of deep
learning to human mobility. Along with the growth of research interest, there is also increasing privacy
concern. This study first examines the cutting-edge approaches for trajectory generation, classification,
and next-location prediction. Second, we propose a novel privacy-aware approach for predicting next-week
trajectories. The approach is based on two modules, a Generative Adversarial Network used for generating
synthetic trajectories and a deep learning model for user identification which safeguards privacy. These two
modules are combined with a next-week trajectory predictor that uses privacy-aware synthetic data. The
experiments on two real-life datasets show that the generator creates trajectories similar to the real ones
yet different enough to safeguard privacy. The low user-recognition recognition accuracy of models trained
on the generated data demonstrates privacy awareness. Statistical tests confirm no significant difference
between the original and the generated trajectories. We further demonstrate the utility of the synthetic data
by predicting week-ahead trajectories based on the synthetic trajectories. Our study shows how privacy and
utility can be managed jointly using the proposed privacy-aware approach.

INDEX TERMS Deep learning, generative adversarial networks, location data, machine learning, mobility
modeling, privacy.

I. INTRODUCTION
The urban population is rapidly increasing, and human
mobility is becoming more complex and voluminous. These
changes affect critical aspects of people’s lives, such as the
spread of viral diseases (COVID-19 pandemic) [1], [2], peo-
ple’s behavior in natural disasters [3], public and private
transportation and the resulting traffic volumes [4], and peo-
ple’s well-being [5].Moreover, migrations from rural to urban
regions, such as those caused by natural disasters, climate
change, and wars, impact crowd mobility between cities [6].

However, authorities are not defenseless in the face of
these problems. The emergence of interconnected devices
and platforms, e.g., mobile phones, the Internet of Things,
and social media, produce up-to-date and precise mobility
data at multiple temporal and spatial dimensions. Examples
of mobility data include traces from GPS devices embedded
in smartphones [7], [8], modern cars [9], records produced
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by phone-to-cellular network communication [10], and geo-
tagged posts from social media platforms [11]. This stream
of digital data drove a massive research output on many
aspects of humanmobility, such as trajectory datamining [12]
and next-location (next-place) prediction [13]. It is critical in
many applications, such as advertisement (e.g., travel recom-
mendations and marketing), early warning of possible public
hazards, and friend recommendations on social networks.
The development of sophisticated Artificial Intelligence (AI)
techniques and the availability of large amounts of mobil-
ity data provided researchers with the expansive potential
to employ Deep Learning (DL) methodologies to address
mobility-related problems.

Along with the growth of research interest, there is also
increasing concern regarding privacy in handling these types
of data, given the many methods capable of tracing back
to the source of the data (user) even after data anonymiza-
tion [14]. Simply eliminating unique identifiers from mobil-
ity traces does not preserve privacy. A recent example is
Trajectory-User Linking (TUL), which allows one to identify
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FIGURE 1. Privacy – Utility trade-off in generated data.

which (anonymous) trajectories belong to which user [15].
Thus, it is important to resolve these issues by developing
technologies progressively focused on user privacy.

The main challenges in human mobility that we address
with this work are twofold:

• Privacy – Utility trade-off. Privacy is always a concern
when it comes to personal data modeling. However, the
process of maximizing data privacy may destroy data
utility. This trade-off between privacy and utility is well
known [16], but is rarely evaluated with a joint approach.
In our work, privacy refers to data anonymization, i.e.,
the source user cannot be identified from the correspond-
ing mobility data. On the other hand, we define the
utility as the amount of information in a dataset with
which further modeling can be done. This study explores
this trade-off to find the equilibrium where privacy and
utility are balanced (Fig. 1).

• The Impact of Data Sparsity. Mobility data is already
inherently sparse due to the collection methods, e.g.,
check-ins, on-demand sensing, and geotagging. Further-
more, compared to the often overwhelming number of
places accessible, a user visits very few. This study
includes one sparse and one dense dataset to analyze the
influence of data sparsity.

We start by examining the cutting-edge approaches cur-
rently dealing with human mobility trajectory generation,
classification, and next-location prediction. We propose
a new privacy-aware approach for accurately predicting
week-ahead trajectories based on the state-of-the-art (SOTA).
Besides the accurate predictions, the approach generates real-
istic synthetic mobility data (compared to existing datasets)
that are used to ensure user privacy (evaluated via the accu-
racy of a user-identification model).

While the proposed method can be applied for a vari-
ety of tasks in privacy-aware mobility modeling, here we
explicitly list two examples. The COVID-19 contact-tracing
apps raised citizens’ privacy concerns in many countries
[17], [18]. Having privacy-aware predictive models would
benefit both the citizens (e.g., smartphone users by having
better privacy conditions) and the authorities (e.g., better
end-user compliance and thus better pandemics modeling).
The second scenario where the proposed approach can

be directly applied is privacy-aware geomarketing. Based
on the privacy-aware week-ahead trajectory predictions,
smartphone users can receive week-ahead recommendations
regarding traffic, restaurants, and shopping places, enabling
personalized services for the users and thus improved quality
of life.

The main contributions presented in this work include:
• A unified implementation of two SOTA approaches
for human mobility modeling, LSTM-TrajGan [16] and
MARC [19], enabling usage of these two methods
through a single processing pipeline.1

• Development of a novel approach for predicting
variable-sized next-week trajectories in a privacy-aware
manner. The approach is based on the two SOTA
approaches, LSTM-TrajGan [16] used for generating
synthetic trajectories, and MARC [19] used for user
identification. The combination of these two approaches
is extended with a next-week trajectory predictor,
which provides accurate predictions using only the
privacy-aware synthetic data. Unlike the related work,
we take into account the two important aspects of mobil-
ity modeling, i.e., privacy and utility, through a unified
approach.

• Evaluation of the proposed approach on two real-life
datasets with respect to: (i) the quality of the synthetic
data, including spatial, temporal, and semantic char-
acteristics; (ii) user-privacy, i.e., whether users can be
traced back from the synthetic data; (iii) data utility, i.e.,
whether accurate next-week trajectory predictors can be
developed using the privacy-aware synthetic data.

The rest of the paper is structured as follows: In section
two, we summarize the related work, including methods for
generating data, user identification, and trajectory prediction.
In section three, we present the two datasets used in the
study, and in section four, we present the proposed approach.
In section five, we present the experimental setup and experi-
mental results.We finalize the paper with a discussion section
followed by a conclusion section.

A. SUMMARY OF THE RELATED WORK
Human mobility modeling is a complex subject that includes
data-processing pipelines and models (e.g., generative or
predictive) that try to maximize data utility. Improving the
accuracy of the mobility models is one task that many related
studies tackle. User privacy is the second task that has gained
attention recently. Maximizing data privacy may decrease the
data utility and models’ accuracy. Most of the related-work
studies focus on only one of these components at a time (accu-
racy or privacy), solving specific tasks or improving existing
techniques. Different from the related work, our work aims
to include these two important aspects of mobility modeling,
i.e., privacy and utility, into a joint approach. This is carried
out by (i) using a GAN to generate a synthetic version of the
original trajectories; (ii) using a TUL DL model to ensure

1https://github.com/fonticode/Privacy-aware-Mobility-Modeling
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that the users can not be traced back from the synthetic data;
and (iii), using a next-place prediction DL model over the
synthetic data to ensure that the generated data is still useful
for user mobility modeling.

B. GENERATION OF SYNTHETIC TRAJECTORIES
Generative Model Definition [20]: ‘‘A generative model
for human mobility M is any algorithm capable of gen-
erating a collection of n synthetic trajectories TM =

{Ta1 , . . . ,Tan}, which describe the motions of n independent
agents a1, . . . , an over a given time period.’’
Generative models aim to create synthetic trajectories

representing real-life patterns in human mobility. Synthetic
trajectories must mimic the collection of geographical, tem-
poral, and semantic characteristics of mobility, that is, the
distribution of coordinates and spatial distances, the temporal
time spans, and the routinely predictable behavior. Themodel
should experimentally represent the time and length of visits
and the set of specific places with their meaning. The most
difficult challenge is describing users’ routines while consid-
ering the erratic tendency to explore new places. The syn-
thetic data should represent the routine and predictable nature
of human displacements [21], and the occurrence of visits
to places far from one another [10]. Regarding geographical
criteria, the synthetic trajectories should emulate both classes
of users: returners and explorers [22]. The first type tends to
travel shorter distances and visit the same set of places, while
the latter is characterized by arbitrary behavior and longer
distances.

The most recent generative models are based on DL gen-
erative frameworks such as GANs and Variational Auto
Encoders (VAEs). Both frameworks deploy DL techniques
to model the data distributions and generate novel synthetic
trajectories based on those distributions. GANs andVAEs can
capture several elements of mobility concurrently because of
the adaptability of DL modules, whereas previous techniques
can only capture certain attributes of trajectories (e.g., limited
to spatial or spatiotemporal). Furthermore, DL models can
learn subtle and non-linear correlations in data that standard
techniques may miss. As a result, these techniques can pro-
duce synthetic data that is more authentic than typical models.
Two Stage GAN (TSG) [23]: The first stage extracts the

geographical points to a grid (spatial tessellation) to be mod-
eled with a GAN using Convolutional Neural Networks,
to learn general patterns, particularly the start and end point
of every trajectory. The second stage deploys an additional
GAN, processing each square of the grid to extract the road
information from the geographical map. The GAN uses two
parallel LSTMs to generate the sequence of intermediate
stay points of the journey between the start and end of the
trajectory. The generative capabilities are assessed on the
Porto taxi dataset [7] by calculating the Jensen-Shannon (JS)
divergence between the distribution of trajectory lengths and
the frequencies of the 50 most visited places.

MoveSim [24]: MoveSim is a model-free GAN frame-
work that incorporates human mobility regularity domain
knowledge. Unlike other GAN-based approaches, MoveSim
pre-trains the generator and discriminator to accelerate the
learning process. MoveSim was tested using two datasets,
a private mobile phone dataset, and a publicly available
dataset, GeoLife [25]. The synthetic trajectories are tested by
computing the distance distributions, the radius of gyration,
the daily frequency of visits, the G-rank, and the I-rank.
Sequential Variational Autoencoder (SVAE) [26]: SVAE

introduced a framework that combines the capabilities of
VAEs and LSTMs. VAE generates a latent space capturing
relevant features of trajectories. LSTMs, on the other hand,
are used to handle sequential input. The purpose of SVAE is
trajectory reconstruction to solve the problem of incomplete
mobility data (sparsity).
Ouyang GAN [27]: A trajectory generator based on

WassersteinGAN [28]. ACNN serves as the basis for both the
generator and the discriminator. The evaluation uses theMDC
dataset [8] with a 64 × 64 squared tessellation of Lausanne,
Switzerland.

The latest methods for generating trajectories have intro-
duced powerful techniques for high-quality simulations of
human mobility. The quality of the generated trajectories has
been evaluated using metrics such as distribution similari-
ties [23], [24], distance metrics [26], road-network match-
ing accuracy [23], and marginal-distribution metrics [27].
In addition to such evaluation metrics, our work introduces
two additional evaluation steps: (i) we evaluate whether
the users can be identified from the synthetic trajectories;
(ii), we evaluate the quality of the synthetic trajectories by
building next-week trajectory predictors using DL.

C. TRAJECTORY-USER LINKING (TUL)
Trajectory classification is a critical problem in mobility data
mining that aims to predict the class labels of moving entities
based on their trajectories. Examples include the prediction
of the object’s mean of transport (e.g., automobile, taxi, bus,
pedestrian, bike), vessel type (e.g., cargo, fishing), the user
who owns the trajectory, and so on. TUL is a specific type of
classification problem.
TUL definition [29]: Let Tui = (p1i , p2i , . . . pni ) indicate

a trajectory belonging to user ui. An unlinked trajectory
Tk = (p1k , p2k , . . . pnk ) is a trajectory for which, unlike
the previous one, we do not know the ID of the user who
originated. Supposed we now have a set of these unlinked
trajectories T = (T1,T2, . . . ,Tm) produced by users U =

(U1,U2, . . . ,Un) where m ≫ n. TUL is the task of mapping
unlinked trajectories to users T → U .
Similar to other mobility modeling tasks, TUL utilizes the

latest end-to-end DL techniques, such as RNNs, LSTMs,
CNNs, and attention mechanisms. Some specific DL archi-
tectures for TUL are listed below.
Bi-TULER [14]: This study introduced the TUL task as

a subset of trajectory classification in which the labels are
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the users, i.e., the individuals who produced each trajectory.
Bi-TULER is a bidirectional RNN, which learns embed-
dings of Points of Interest (POIs) based on the distributional
hypothesis [30]. The embeddings are exploited to train an
RNN model for classifying trajectories, and despite the fact
that it can capture more complicated patterns of mobility data
than earlier efforts, just the POI identifier is employed to train
the model.
TULVAE [15]: TULVAE is a successor of Bi-TULER,

proposed especially to address the TUL problem. POI embed-
dings, like Bi-TULER, are pre-learned and then fed into the
model. Trajectories are modeled using a VAE architecture.
TULVAE is primarily dependent on POIs visited by users
and hence does not allow the spatial, temporal, and semantic
properties of trajectories.

Our work utilizes the latest TUL methods as one com-
ponent of the overall proposed methods. This component
safeguards user privacy, ensuring that the user IDs cannot be
traced back from the synthetic data.

D. NEXT-LOCATION PREDICTION
Human mobility prediction models attempt to estimate future
locations, either individually or collectively. Individually,
next-location predictors anticipate an individual’s future loca-
tions based on previous observations. Predicting people’s
future locations is useful in a variety of applications, includ-
ing monitoring public health [31], well-being [32], and traffic
congestion [33], as well as improving travel recommendation,
geomarketing, and link prediction in social network plat-
forms [34]. The prediction of a user’s next location may be
difficult since it involves collecting spatiotemporal patterns
characterizing its unique routine [35], as well as merging
disparate data sources to simulate different factors driving
human mobility.
Definition of Next-location prediction [20]): Next-location

prediction is the prediction of the next location (stay point)
that an individual will visit in the future based on their
previous mobility data. Let u be a user, Tu their trajectory, and
pt ∈ Tu u’s present position, next-location prediction seeks to
forecast u’s next destination pt+1.
CLNN [36]: Classification Learning Neural Network

(CLNN) is based on spatiotemporal features, user features,
and POIs from current and previous trajectories. The coor-
dinates are processed using an LSTM. A dense representa-
tion contains the date, time, user attributes, and POIs. One
fully-connected layer handles the dense representation, while
another fully-connected layer processes previous trajectories.
The two resulting outputs are combined with coordinates
representation to form a unique output. The output is then
processed to estimate the future location. The performance
is tested by computing the mean Haversine distance on the
Porto taxi dataset [7].
Flashback [37]: Flashback is based on RNNs and the idea

of flashbacks, i.e., a strategy that predicts future POIs by
searching similar temporal properties in trajectories in the

training data, using trajectories with sparse semantics. Flash-
back also uses embedding to estimate individuals’ prefer-
ences for visiting various POIs. The next POI visit is predicted
by combining embedding and the recurrent outputs with a
fully-connected layer. Flashback used ACC@k (e.g., acc@5)
for evaluation on the Foursquare [38] and Gowalla [39]
datasets.
VANext [40]: The historical and current trajectories in

Variational Attention-Based Next Location (VANext) are
encoded into latent features via two independent encoders
to capture the similarity and periodicity of POIs. A CNN is
used to learn from previous trajectories, while the embedded
trajectories are modeled with GRUs. A variational atten-
tionmechanism process both resulting representations, which
finds previous trajectories similar to the current to be com-
pared for predicting the user’s next POI. VANext is evaluated
with ACC@k on Gowalla [39] and Foursquare [38].
DeepMove [41]: DeepMove uses attention and a recurrent

neural network that predicts future location from long and
sparse trajectories. Both past and present trajectory data are
embedded using multi-modal embeddings, which generates
latent representations of spatial, temporal and semantic fea-
tures. An attention mechanism identifies mobility patterns
from historical trajectories, while a GRU processes current
trajectories.

The latest next-location predictors are based on DL, which
enabled researchers to overcome major challenges by cap-
turing temporal, geographical, and social-geographic patterns
in data utilizing mechanisms such as RNNs, LSTMs, CNNs,
and attention mechanisms [42]. Our work utilizes a DL-based
predictor as one component of the overall proposed methods.
This component ensures that the synthetic data generated
is useful for downstream machine learning tasks, such as
predicting future mobility trajectories.

II. DATASETS
To analyze the influence of data sparsity, our study included
experiments on two different datasets, Breadcrumbs (a dense
dataset) and Foursquare (a sparse dataset). Both datasets are
publicly available. Breadcrumbs requires researchers to sign
an agreement, whereas Foursquare is freely available. The
details of the two datasets are presented in the following
subsections.

A. BREADCRUMBS
Breadcrumbs [43] is a rich mobility dataset with POI anno-
tation. In the spring of 2018, DOPLab and the Informa-
tion Security and Privacy Lab organized a Data Collection
Campaign at and around the University campus of Lausanne
and EPFL. The campaign ran for three months, collecting
multi-sensor data (GPS, GSM, WiFi, Bluetooth) on smart-
phones of 80 individuals. The main goal was to create a
novel dataset that addresses common limitations on available
mobility datasets. These limitations include:
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• Lack of location data and related information captured
from multiple sensors.

• Unavailability of location data at a high spatiotemporal
granularity throughout the data collection.

• Lack of ground-truth information regarding participant
POI.

• Unavailability of semantic information regarding POIs.

Participants had to keep the data-gathering application run-
ning for the duration of the whole experiment. Moreover,
they had to fill out questionnaires to validate their data,
with respect to the semantics of POIs and relationships with
other participants, as well as provide additional information
regarding demographic and lifestyles. Given the granularity,
the wide set of semantic labels, and the key ground truth, this
dataset is a perfect candidate for modeling experiments.

B. FOURSQUARE
Foursquare is a local search-and-discovery mobile app devel-
oped by Foursquare Labs Inc. The app offers local search and
personalized recommendations of places near the users’ loca-
tion based on their previous browsing and check-in history.
The dataset used in this work is extracted in the study by
Yang et al. [38], provided by Petry et al. [19]. It was origi-
nally used for studying the spatial-temporal regularity of user
activity in LBSNs (Location-Based Social Network). It con-
tains check-ins in New York City collected from 12 April
2012 to 16 February 2013 (about ten months). Each check-in
entry records GPS coordinates, associated timestamps, and
venue categories. There are 193 users, 3,079 trajectories, and
66,962 trajectory points in total in the dataset.

III. APPROACH
Based on two SOTA approaches for human-mobility mod-
eling, we developed a new privacy-aware approach for pre-
dictingweek-ahead trajectories. To ensure privacy awareness,
the developed approach combines the strengths of LSTM-
TrajGAN [16] and Multi-Aspect Trajectory Classification
(MARC) [19] by: (i) using LSTM-TrajGAN to train a GAN
model for generating realistic synthetic data; and (ii), using
MARC to ensure user privacy by monitoring whether the
actual users can be identified from the synthetic data. The
developed approach is capable of predicting week-ahead vis-
its described via the day of the week, time of day, and cate-
gorical POIs. The approach is presented in Fig. 2. In the next
subsections, we first present the data preprocessing steps, and
then we present the details of each component.

A. DATA PRE-PROCESSING
The two datasets come with their different characteristics,
features, and semantics. However, for an accurate analysis,
a common ground has to be defined, i.e., a format that allows
easy processing for modeling and a direct correspondence in
features – ensuring consistency and variability in the evalu-
ation. Furthermore, the crucial aspect we want to model is

FIGURE 2. Workflow of the approach.

TABLE 1. Preprocessed dataset format.

the trajectory. The definition of trajectory is defined by Petry
et al. [19] with the following constraints and transformations:

• Check-ins belonging to broad categories are removed.
• Duplicated check-ins considering a 10minutes threshold
are also removed.

• Trajectories are grouped as a set of weekly check-ins
from each user.

• Trajectories contains at least ten check-ins.
• Users have at least ten valid weekly trajectories.

The next step is to define the common characteristics of the
datasets. The final formatted header of data is in the form
[uid, tid, lat, lon, day, hour, poi] presented below in Table 1.

B. NEXT-WEEK TRAJECTORY PREDICTION
This component is responsible for evaluating the utility of
synthetic data. Therefore it is a realistic application where
the purpose is to predict the weekly trajectory with respect
to temporal and semantic features (POIs), thus a POI rec-
ommendation system that provides awareness for the users’
routines. The architecture is divided into four parts:

• Encoding layer, which encodes spatial, temporal, and
semantic features into a representation based on their
respective vocabulary size.

• Fusion layer, which combines all embeddings in fixed-
size vectors.

• LSTM layer, which models the fused latent vectors
sequentially and captures the temporal characteristics.

• Prediction layer, which provides the prediction of a
possible future trajectory.
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1) ENCODING LAYER
The Encoding layers are responsible for converting the data
into a format that can be fed as input to the DL models. The
interval data (e.g., date-time) has to be converted into two
separate features composed of a single number representing
the day of the week and the hour. The coordinates (latitude
and longitude) are standardized using the centroid of all
trajectories to obtain the deviations from the centroid. The
nominal attributes such as the POI category are converted into
a numerical representation.

Coordinate deviations are made such the model can learn
the spatial deviation pattern between distinct trajectory points
more effectively [44], they are treated as numerical input
since the generation for these is set as a regression task.

Temporal and Semantic attributes are one-hot encoded
based on the vocabulary sizes, encoding the features into
high-dimensional binary vectors. For example, the feature
day indicating the day of the week is represented by a
seven-dimensional binary vector (e.g., Monday is encoded as
[1, 0, 0, 0, 0, 0, 0]). Similarly, the feature hour is encoded
in a 24-dimensional binary vector, and POI depends on the
unique set of POIs available in each dataset.

Following the features encoding procedure, all trajectory’s
spatial, temporal, and semantic attributes are stored in a mul-
tidimensional matrix, where the first dimension provides the
index for each trajectory. Because the length of each trajec-
tory (number of POIs) varies, we use padding to ensure that
all trajectories have the same length as the longest trajectory
in the dataset. Concretely, we employ zero pre-padding to pad
empty trajectory points (points with all features set to zero) to
each trajectory until all trajectories have the same maximum
length. The fundamental reason behind this is that data of the
same size may be used for batch processing when training
the model, accelerating the training process. Moreover, pre-
padding (up against post-padding) has been proven more
efficient when modeling, especially with LSTMs [45]. These
padding trajectory points will be masked (omitted) through-
out the model training and inference stages and will not affect
the model’s weights. The padded data is then fed into feature-
specific multi-layer perceptrons (MLPs), which learn vector
representations for each feature type separately [46].

2) FEATURE FUSION, LSTM, AND PREDICTION
Following the embedding procedure, all vectors are con-
catenated and then fused into 100-dimensional vectors using
a dense layer. This blends together spatial, temporal, and
semantic attributes of each trajectory point to provide spa-
tiotemporal information.

Next, the LSTM layer models the input with a many-to-
many strategy, i.e., it accepts a sequence with certain time
steps as input and constructs (generates) a sequence with the
same time steps as output. Finally, the synthetic trajectories
produced by the LSTM layer must be decoded (given the
many-to-many approach). For the latitude and longitude vari-
ations decoding, a dense layer of two units with a hyperbolic

tangent activation function (tanh) is applied. To reconstruct
the one-hot representation of categorical features dense layer
is also applied but with the same number of units as the
vocabulary size using the softmax normalized exponential
function. The embedding and decoding weight matrices are
shared across all trajectory points. Each output is predicted
independently as a multi-task prediction problem.

C. TRAJECTORY GENERATOR AND DISCRIMINATOR
The generative component is trained to produce synthetic
trajectories, and the discriminative component is trained to
discriminate between the synthetic trajectories and the real-
life trajectories. The generator architecture is composed of:
an input layer, an embedding layer, a feature fusion layer,
an LSTM layer, and a regression/multi-classification output
layer. The encoded real trajectories and random noise are
input into the generator, which then embeds the trajecto-
ries using MLPs [47]. The spatial dimension, defined as a
pair of latitude and longitude deviations, is embedded into
a fixed 64-dimensional vector. Temporal (day and hour)
and semantics (POI) features are also embedded in a fixed-
dimensional vector. Following the embedding procedure, all
the vectors and random noise are concatenated and fused into
100-dimensional vectors using a dense layer. The resulting
embedded trajectory sequence is then modeled with a many-
to-many strategy by an LSTM layer. In the last step, the syn-
thetic trajectories generated by the LSTM layer are decoded
to match the input format of the data.

The discriminator and the generator share a similar archi-
tecture. The main distinctions between them are:

• The discriminator only accepts trajectory data as input
(no random noise required).

• The discriminator’s LSTM layer employs amany-to-one
strategy that accepts a sequence as input and produces
one scalar as output.

• The scalar output of the discriminator is then passed into
a one-unit dense layer with a sigmoid activation function
to perform the binary classification (real/fake).

The balance between the two modules is achieved via
a special loss function, TrajLoss similarity function [16].
Unlike the original GANs, which take as input just random
numbers (noise), in our case, real trajectory data is required as
input in addition. As a result, a special loss metric function is
needed. TrajLoss measures the difference between the actual
trajectory and the corresponding synthetic trajectory data in
spatial, temporal, and semantic dimensions, and this loss
function is deployed to train the generator. This is how the
TrajLoss is defined:

TrajLoss(yr , yp, tr , ts) = αBCE(yr , yp) + βMSE(tr , ts)

+ γCCEt (tr , ts) + δCCEs(tr , ts)

(1)

In the equation, yr and yp are the ground truth label and
the discriminator’s prediction for the trajectory, respectively.
tr and ts are the real and the matching generated trajectories.
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BCE is the discriminator’s original binary cross-entropy loss.
MSE is the Mean Squared Error of deviations loss, CCEt is
the temporal categorical cross-entropy loss (applied over the
modeled as categories), and CCEs is the spatial categorical
cross-entropy loss. All loss functions represent the mismatch
between the real and synthetic trajectories through a different
perspective. α, β, γ , and δ are the weights for these losses,
which can be parameterized differently for different scenar-
ios. The TrajLoss updates the generator weights duringmodel
training to improve the quality of the generated synthetic
trajectories.

D. USER IDENTIFICATION
This module safeguards user privacy, ensuring that the user
IDs cannot be traced back from the synthetic data. The mod-
ule is based on MARC [19], which is a method that can be
used to train machine-learning models for user identification
based on trajectory data. The goal of the model is to minimize
the categorical cross-entropy loss, which is provided by the
following equation:

−
1

Ntrain

∑
T∈Ttrain

∑
L∈L

1T∈L · log p[T ∈ L] (2)

In the equation, Ttrain is the set of trajectories used to train
the model,Ntrain is the number of training instances (trajecto-
ries), andL is the set of labels used to classify the trajectories.
In other words, we seek to increase our model’s likelihood
of accurately predicting each trajectory’s label (the user ID)
T . Finally, we also employ dropout [48] and regularization
techniques to prevent overfitting our model to the training
data, which is an intrinsic issue in deep neural networks
such as RNNs. Dropout layers are used throughout the model
to ensure that units are discarded at random throughout the
training phase. Furthermore, the LSTM units’ weights and
biases are regularized using L1 regularization.

IV. EXPERIMENTS
This section first presents the experimental setup, and then
it presents the experimental results in three separate subsec-
tions: the first subsection presents results about the quality
of the synthetic data by looking into the spatial, temporal,
and semantic characteristics of the generated data. The sec-
ond subsection presents the results on user privacy, and the
third subsection presents the results on next-week trajectory
prediction.

A. EXPERIMENTAL SETUP
The experimental setup is represented in Figure 3. Where the
generator, the classifier (user identification), and the predictor
(next-week trajectory prediction) are tested individually. The
main purpose is to test the generated data in a practical way
with the two use cases representing privacy and utility. All
experiments are carried out using the two datasets that have
already been prepared and divided into a train (two-thirds of
the data of each user) and a test (one-third of the data of each
user) set, colored in green and red, respectively.

FIGURE 3. Experiments workflow.

The generator is trained according to the min-max game
using the train set. Once convergence is reached, the train and
test sets are passed through the trainedmodel to generate their
respective synthetic versions.

The model for user identification is responsible for assess-
ing the privacy of the data. The model tries to identify users
through their corresponding trajectories. For this purpose, the
model is trained with the real training set and tested with both
real and synthetic test sets. The evaluation with the real test
set represents a baseline performance. The goal is to achieve
lower accuracy with the synthetic evaluation showing that the
synthetic dataset secures the users’ privacy.

The predictor represents a real-world use case for deter-
mining the utility of the synthetic data. The goal is to predict
the user’s next-week trajectory given the current one. The
predictor is trained with real and synthetic train sets but only
tested with the real test set. This is because we want to see if
it is possible to have a good performance using only synthetic
training data instead of real training data. A good quality
predictor trained with synthetic data should have similar
predictive power as a predictor trained with real data.

B. QUALITY OF SYNTHETIC TRAJECTORIES
1) SPATIAL DISTRIBUTIONS
The spatial distributions for both real and generated data are
presented in Figure 4. Where the x and y axes are latitude
and longitude coordinates, respectively. These are grouped in
bins for visualization convenience and colored to differentiate
the distributions of real (blue color) from fake (synthetic in
orange color). In both cases, it can be seen how the distribu-
tion of the synthetic data mirrors the real one, even generating
disconnected and distant points from the base distribution.
On the Breadcrumbs dataset, the generator tries to reach
more distant and scattered points in the generation. On the
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FIGURE 4. Spatial distribution (longitude and latitude coordinates) of the
real data vs. the generated data for the two datasets (Foursquare and
Breadcrumbs).

FIGURE 5. Temporal distribution (hour of the day) of the real data vs. the
generated data for the Breadcrumbs dataset.

Foursquare dataset, this is less pronounced because of how
the data is distributed and the resolution of the bins. Nonethe-
less, it happens on the edges of the distribution ‘‘area’’.

2) TEMPORAL CHARACTERISTICS
Figure 5 presents the distribution of the feature hour of the
day for the real and for the generated data. We visualized
only the results for the Breadcrumbs because they were more
challenging compared to the Foursquare dataset. For the
Foursquare dataset, the two distributions matched even better
than the presented results. In Figure 5, the x-axis represents
the hour of the day (from 0 to 24), and the y-axis represents
the density of the distribution. The figure shows that the two
distributions generally overlap (the gray area). There is a
slight difference between 10h and 22h. The figure also shows
that the low frequency between 00:00 and 05:00 does not
prevent the model’s excellent performance.

Figure 6 presents the distribution of the feature day of
the week. The x-axis numerically indicates the day of the
week, starting from 0 (Monday) to 6 (Sunday), and the y-axis
represents the density of the frequency distribution of the
categorical attribute. From the figure, it can be seen that there
is an almost perfect match between the two distributions.

FIGURE 6. Temporal distribution (day of the week) of the real data vs. the
generated data for the Breadcrumbs dataset.

TABLE 2. Pearson’s correlation coefficient (PCC) of Temporal attributes
(real vs. generated).

TABLE 3. Chi-square p-values of categorical attribute frequencies.

Table 2 presents the Person’s correlation coefficient for the
two features day of the week and hour of the day. The results
confirm the match between the real and the generated data
distributions for the two features.

3) SEMANTIC CHARACTERISTICS
We performed statistical analysis using the chi-square test
to quantify the similarities between the distributions of the
POI semantic category. The null hypothesis is that the two
distributions are similar, i.e., the frequencies of the POI cat-
egories are the same for both the real and the generated data.
The alternative hypothesis is that the two distributions are
different. The results of the tests are presented in Table 3.
The p-values are above 0.05, thus the null hypothesis can-
not be rejected, i.e., we cannot state the two distributions
are different. Furthermore, it can be seen that the Bread-
crumbs dataset is more problematic than the Foursquare
dataset.

Figure 7 presents an example of the visit frequency for each
POI semantic category in the Foursquare dataset. The bars
represent the visit frequency, and the lines indicate the kernel
density estimation (KDE). The frequency is represented on a
logarithmic scale. The figure shows that the only problematic
category with more prominent differences between the real
and the generated data is the category Event. This is probably
because the visit frequency for that place was the smallest
compared to the other POIs.
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FIGURE 7. Temporal distribution (day of the week) of the real data vs. the
generated data for the Breadcrumbs dataset.

C. USER PRIVACY
Table 4 presents the results in TUL accuracy. In these exper-
iments, higher accuracy represents lower user privacy, i.e.,
the user can be identified from the corresponding trajectories
more accurately. We present the accuracy@K score, which
shows whether the actual user was part of the top-k pre-
dicted users, ranked by the likelihood scores that the TUL
model outputs. We tested two versions of the model. One that
uses longitude and latitude coordinates as input (coord.), and
another without the coordinates, i.e., the no_coord. model
uses only trajectories represented via the date-time features
and the POI category.

For the Breadcrumbs dataset, the model can recognize
users from their trajectories with an accuracy of 99.37%.
On the other hand, the respective test on synthetic data is
less than 6%. In the version without coordinates, we see that
the accuracy is lower. Nevertheless, the respective synthetic
version shows an even lower performance. For the Foursquare
dataset, the model that uses all the features reflects the same
performance in identifying users. Although between 93.96%
and 21.32% the difference is smaller, there is still a high rate
of privacy protection. In the version of the model without
coordinates, the performance with the synthetic data is the
same aswith the real data. For this case, including coordinates
in the classification is important for performance. Neverthe-
less, these experiments also confirm how easily a user can be
recognized from mobility trajectories.

These results indicate that the latest machine learning
methods for user identification (e.g., MARC) can identify the
users from the training data with 99% accuracy. However,
if we use the synthetic data instead of the original data to
train the predictive models (and the attackers get access to the
training data), the user-identification accuracy drops to 6% on
the Breadcrumbs dataset and 21% on the 4square dataset.

D. NEXT-WEEK TRAJECTORY PREDICTION
The evaluation results for these experiments are presented
in Table 5. Higher accuracy represents better quality data,
i.e., better models can be created from the data. ‘‘Real’’ and
‘‘Generated’’ data refer to the dataset on which the model was
trained. Multi-task prediction is performed on the temporal

TABLE 4. User identification results for models with latitude and
longitude coordinates as input (coord.) and models without input
coordinates (no_coord.).

TABLE 5. Accuracy for next-week trajectory prediction.

(day, hour) and categorical(POI) features. Also, these results
are compared with a ‘‘Dummy’’ predictor, which makes a
prediction based on the most frequent occurrences. To predict
trajectory Ti+1 the model uses the most frequent correspond-
ing feature value in Ti.

For the Breadcrumbs dataset, the decrease is from 24% to
23% for feature hour, an improvement from 30% to 33% for
the feature hour, and an improvement from 45% to 59%fea-
ture POI. The result of the Dummy model is the best in
the case of POI. This is probably due to the complexity of
modeling the Breadcrumbs dataset, given its density of check-
ins. In contrast, for the Foursquare dataset, the difference
between the models is even smaller. In this case, also the
baseline results achieved by the Dummy predictor are far
exceeded.

V. DISCUSSION
A. GENERATION OF SYNTHETIC TRAJECTORIES
The generator of synthetic trajectories demonstrated high
performance in modeling spatial, temporal, and semantic
feature characteristics. The spatial characteristics were the
most challenging to capture. Nevertheless, the distribution
of longitude and altitude coordinates depicted in Figure 4
showed that the generator can synthesize points far detached
from the centroid. For the temporal features, the correla-
tions between the real trajectories and the synthetic generated
for both Breadcrumbs and Foursquare datasets were above
0.97 (see Table 2). The semantic characteristic (POI type)
was the most complex feature to synthesize; nonetheless,
the generator considered even those with a low frequency.
The Chi-square statistical tests for the categorical features
indicated that there is no statistically significant difference
between the POIs of the original trajectories and the synthetic
generated. The p-values of Breadcrumbs and Foursquare,
0.35 and 0.99, respectively, indicate that the hypothesis of
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the synthetic trajectories being similar cannot be rejected. The
model is very complex and includes amultitude of parameters
that still have the potential to be fine-tuned.

The learning rate of the generator was one of the most
important parameters. Depending on this parameter, the
model could either make a complete copy of the real data
observing only the most general patterns or instead, it could
encode more fine-grained habits, generating realistic syn-
thetic trajectories rich in information that can be used in
practice.

Also, the importance of data pre-processing, especially
the coordinate preparation technique, should be emphasized.
These are standardized to amplify the difference between two
points and thus more easily learned by the model. Since the
difference between two sets of relatively close coordinates is
only visible after the decimal point.

B. USER PRIVACY—TUL
The experiments performed on user identification (see
Table 4) demonstrated the ability of the generator to pre-
serve privacy. The user-identification accuracy for the real
data is 99% for the Breadcrumbs dataset and 93% for the
Foursquare dataset. The synthetic trajectories decreased the
accuracy to 5.9% and 21% for Breadcrumbs and Foursquare
datasets, respectively. We suspect that the high density of the
Breadcrumbs dataset is the reason for the higher difference
in accuracy between real and synthetic trajectories. These
experiments also show that using the coordinates as input is
the most important source for user identification.

C. NEXT-WEEK TRAJECTORY PREDICTION
The novel privacy-aware approach for predicting future tra-
jectories achieved high accuracy with both datasets in their
respective real and synthetic versions(Table 5). This demon-
strated the effectiveness of the proposed approach, i.e.,
the approach can achieve high utility while maintaining a
low probability of user identification. For the Breadcrumbs
dataset, the accuracy for predicting the POI feature was 45%
in the original trajectories and the same for the synthetic
data. The same applies to the Foursquare dataset, with 91%
accuracy on the POI feature.

The major difference between the Foursquare and Bread-
crumbs datasets is the number of trajectories per user and
their length. The foursquare dataset, despite its sparsity, pro-
vided a bigger number of trajectories per user, therefore more
examples to learn from.

D. COMPUTING TIME
We implemented the method using TensorFlow and Python,
and we ran all experiments on the Google Colab platform,
which provides access to a Tesla T4 GPU (16 GB RAM.)
To estimate the computational cost, we measured the training
time and the inference time for each of the three components
of the method. The results are presented in Table 6, where
we can see that the most computationally demanding step is
the training process of the GAN model, which requires close

TABLE 6. Computing time (in seconds) required during training and
inference for the three components (GAN, MARC, and next-week
trajectory predictor) of the proposed method.

to one hour for the smaller dataset (Breadcrumbs), and close
to two hours and a half for the larger dataset (Foursquare).
The training time of the MARC and the next-week trajectory
predictors is less than a minute. The inference time for all
three components is between 0.14 and 1.3 seconds.

E. GAN STABILITY
The stability of the trajectory generator in our proposed
method is an important component that needs to be consid-
ered, given that GANs utilize complex training of several
modules (e.g., a generator and a discriminator). Nevertheless,
our experiments showed that the generator is quite stable. One
evidence of stability is the low standard deviation presented in
Table 2, i.e., the Parsons’s correlation coefficient was above
0.95, signifying high-quality trajectories in all experiments.
Furthermore, in the experiments on next-week trajectory pre-
diction (Table 5) we used two different datasets and three
different modalities, two of which are numerical (day and
hour), and one is categorical (POI). Thus, the GANmodels in
our work were evaluated in six different combinations (three
modalities, two datasets).

To further evaluate the stability of the GAN, and the
impact of the training data on the overall proposed method,
we performed experiments where we varied the size of the
training set used to train the GAN model. More specifically,
we trained GANmodels using n% of the training data of each
participant, where n was set to 30, 50, and 100. We then gen-
erated synthetic trajectories using the three variations of the
GAN models, and we subsequently trained three next-week
trajectory predictors. The next-week predictors were then
evaluated on the real test set. The test data was kept constant
across these experiments to allow for a fair comparison. The
results of these experiments are presented in Table 7. From
the table, it can be seen that the accuracy for the feature day
is stable for both datasets (Breadcrumbs and Foursquare),
regardless of the size of the training set. The accuracy for
the feature hour is stable for the Breadcrumbs dataset, but
it decreases on the Foursquare dataset when the models are
trained with smaller training datasets (e.g., 50% or 30%
of the overall training data). The accuracy for the feature
POI is stable for the Foursquare dataset. It decreases by
14 percentage points for the Breadcrumbs dataset when the
models are trained with 50% or with 30% of the training
dataset.

These results indicate that the quality of the synthetic
trajectories generated by the GAN model depends on the
type of the dataset, i.e., Foursquare is bigger but sparser,
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TABLE 7. Accuracy for next-week trajectory prediction for varying training
data sizes (100%, 50%, and 30%).

and Breadcrumbs is a smaller but denser dataset. The quality
also depends on the feature type (day, hour, or POI in our
experiments). And, as expected, the quality depends also on
the size of the training data, i.e., models trained with the over-
all training data produce better synthetic trajectories com-
pared to the models trained with 50% or 30% of the training
dataset.

F. FUTURE WORK AND LIMITATIONS
The generator requires significant computing power. It is
also constrained by the number of POIs, which increases
the number of parameters exponentially by influencing the
size of the encoding layers. A common human mobility
dataset with tens of thousands of one-hot encoded POIs can
occupy as much as 10 GBs of working memory. A future
direction would be to augment the approach to work with
multi-hot encoding or other types of dense representations.
Furthermore, the generator outputs synthetic trajectories
with the same length. This may be solved using input and
output sequences that have a dynamic length, similar to
generative models that generate sentences with a dynamic
length [49].

In this work, we used the user-identification task for testing
privacy, but other assessments could also be used to evaluate
privacy from other perspectives.

Regarding the hyperparameters of the TrajLoss function,
a detailed analysis of their influence on the GAN models has
been presented by Rao et al. [16]. For example, they have
investigated TrajLoss with and without spatial, temporal,
and categorical components. However, our user-identification
experiments showed that the spatial input, i.e., POI coor-
dinates, is the most important input for user identification
from the generated data (see Table 4). Consequently, the
weight of the spatial component of the TrajLoss function (the
parameter δ), may be an interesting component to analyze,
providing a trade-off between the quality of the generated
trajectories and user privacy.

VI. CONCLUSION
We presented a novel approach for predicting next-week
trajectories in a privacy-aware manner. The approach is
based on two SOTA approaches, LSTM-TrajGan [16] used
for generating synthetic trajectories, and MARC [19] used
for user identification. The combination of these two
approaches was augmented with a next-week trajectory

predictor, which provides accurate predictions using only the
privacy-aware synthetic data. All components of the approach
work with spatial, temporal, and semantic properties that
characterize multiple-aspect trajectories and employ multi-
feature embedding layers to represent these heterogeneous
dimensions.

The experiments show how privacy and utility are not two
opposing dimensions but instead can be combined with the
new approach, creating a new synthetic dataset based on the
original one that preserves both utility and privacy. The utility
was demonstrated to be high, given the ability to predict
week-ahead trajectories, having learned only from synthetic
trajectories. Additionally, user privacy was preserved, given
that the user-identification model that used synthetic trajec-
tories performed much worse than the model that used real
trajectories.

The generator was able to create trajectories that are similar
to the real ones but difficult to trace back to the original
users. This was demonstrated by the low user-recognition
recognition accuracy and by the accurate next-week trajec-
tory prediction. The statistical descriptors, including Pear-
son’s correlation coefficient and Chi-square statistical tests,
confirmed that there is no significant difference between the
original and the generated trajectories.

The results per dataset show that the problem of sparsity is
present but not necessarily the primary issue. Sparsity refers
to the fact that trajectories in the datasets are often composed
of considerably distant points, distant from a spatial, tempo-
ral, and semantic perspective. Depending on the application,
the distribution of coordinates, the number of different POIs,
and their frequency may be the main factors influencing the
results. Furthermore, the size of the data might have a bigger
influence on the quality of the models than the sparsity of
the data, i.e., models built on smaller and dense datasets
(Breadcrumbs in our case) may perform worse than models
built on large and sparse datasets (e.g., Foursquare in our
case). Nevertheless, this relation should be investigated with
a wider variety of datasets.
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