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Abstract—Code smells are symptoms of poor design or bad
implementation choices. Their automatic detection is helpful for
various reasons. For example, the detected smells can guide de-
velopers during code inspection to find the causes of maintenance
problems. Many code smells have been proposed for several
technologies, including database communication, such as ORM
or SQL antipatterns. However, despite its popularity, no research
has been conducted on MongoDB smells.

We present a systematic multivocal literature mapping study,
also covering “grey” literature, to build a catalog of MongoDB
code smells. After evaluating 1,498 artifacts (e.g., blog posts,
online articles, book chapters, scientific papers, presentation
slides, and videos) from 12 search engines, we manually reviewed
174 sources and devised a catalog of 76 smells organized into
11 categories. We present the catalog of MongoDB code smells
through a series of examples.

Index Terms—NoSQL, MongoDB, Code Smells, Multivocal
Mapping Study, Static Analysis, JavaScript
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NoSQL (“Not Only SQL”) data stores have become popular
backends of database applications [1]–[3]. MongoDB is the
most popular NoSQL data store, according to DB-Engines
Ranking [4]. Unlike relational databases (DBs), MongoDB is
a document store that handles data as a series of JSON-like
documents, offering attractive features to developers, such as
improved flexibility and horizontal scalability. This comes at
the cost of some critical features of relational DBs, such as
referential integrity [5]. In the worst case, these differences can
lead to erroneous constructs, runtime errors, or data loss [6].

Researchers studied approaches to assist MongoDB devel-
opers. For example, Kanade et al. proposed a normalization
and embedding approach to improving DB performance [7].
Mahajan et al. evaluated the effectiveness of query optimiza-
tion on energy efficiency [8]. Zhao et al. devised an approach
to support the migration of a relational DB to MongoDB [9],
and Maity et al. investigated this migration scenario in the op-
posite direction [10]. Security also interests researchers [11]–
[13], especially the critical NoSQL injection [14]–[17].

Many problems stem from maintainability or quality is-
sues, often originating from poor design and implementa-
tion choices. Code smells, or antipatterns, are well-known
indicators of such problems [18]–[24], and they are well-
studied in the context of database applications: There are
data smells [25], [26], DB schema smells [27], object-
relational mapping (ORM) smells [28]–[30], SQL antipatterns
or smells [31]–[39].

Despite its popularity, we found a lack of research on
antipatterns or code smells for MongoDB. However, there are
numerous discussions on forums, blogs, etc.

To better understand the state-of-the-art and practice in
MongoDB code smells, we present a multivocal literature
mapping (MLM) study [40]. Similar studies have been recently
used in software engineering (e.g., [41]–[48]) as a form of
systematic literature review when data from multiple sources
are considered. An MLM study allows extending the scope of
a systematic literature review by including “grey” literature,
such as blog posts, white papers, and presentation videos. It
is especially useful when there is a vast grey literature written
by practitioners, as it can help researchers and practitioners
locate and synthesize such a large literature [42], [43], [49].

For this purpose, we queried various search engines for
sources discussing MongoDB code smells. We looked for on-
line articles, blog posts, presentation materials, books, forum
discussions, and directly queried targeted sources such as the
official MongoDB blog site [50]. We ran a total number of
72 queries (6 queries on 12 search engines), resulting in an
initial set of 1,498 search results. We manually filtered them
following a set of inclusion/exclusion criteria. In the end,
we identified 174 sources which we manually reviewed to
establish a list of 76 MongoDB code smells.

Our paper provides an overview of the list of smells and
the grey literature we found with our MLM approach. Such
an overview can be helpful for practitioners and researchers as
a summary and “index” of what we know about these smells.
It can also serve as a starting point for future research on
MongoDB code smells.

The main contributions of this paper are the following:
i) an MLM of 174 sources on MongoDB code smells,

ii) a catalog of 76 MongoDB code smells and their sources
in the grey literature,

iii) a discussion of implications in software research and
practice,

iv) source code of tools used in our study and relevant data
set in an online appendix [51].

Paper Structure: Section II introduces the main concepts
through an example of a MongoDB code smell. In Section III,
we describe the study method. Section IV and Section V
present the results of the MLM study. In Section VI, we
discuss implications for researchers and practitioners as well
as threats to validity. Section VII overviews the related work.
Finally, we present our conclusions in Section VIII.
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Countries (collection)

{
  _id: 1,
  name: “Latvia”,
  cities: [
    {
       _id: 1,
       name: “Riga”
    },
    {
       _id: 2,
       name: “Daugavpils”
    },
  ]
}

{
  _id: 2,
  name: “Cyprus”,
  cities: [
    {
       _id: 1,
       name: “Limmassol”
    },
    {
       _id: 2,
       name: “Nicosia”
    },
  ]
}

{
  _id: 3,
  name: “Finnland”,
  cities: [
    {
       _id: 1,
       name: “Rovaniemi”
    },
    {
       _id: 2,
       name: “Helsinki”
    }
  ]
}

(document)

(embedded document)

(embedded document)const { MongoClient } = require("mongodb");
const uri = "mongodb://localhost:27017";
const client = new MongoClient(uri); 
 
async function run() {
  try { 
    await client.connect();
    const db = client.db("test");
    await db.collection("countries").aggregate([ 
      {
        "$lookup": { 
          "from": "cities",
          "localField": "_id",
          "foreignField": "country”,
          "as": "country_cities" 
        }
      } 
    ]).forEach(console.log);
  } catch(err) { 
    console.log(err);
  } finally { 
    await client.close();
  } 
}
run().catch(console.dir); 
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Cities

{
  _id: 3,
  name: “Germany”
}

{
  _id: 2,
  name: “Austria”
}

{
  _id: 3,
  name: “Finnland”
}

Countries

{
  _id: 4,
  name: “Berlin”
  country: 3
}

{
  _id: 3,
  name: “Vienna”
  country: 2
}

{
  _id: 2,
  name: “Salzburg”
  country: 2
}

{
  _id: 2,
  name: “Helsinki”,
  country: 3
}

(document)

(document)

(collection) (collection)

    /* ... same as Lines 1-8 */ 
    await db.collection("countries").find()
      .forEach(console.log);
    /* ... same as Lines 19-25 */ 

 8.
 9.
10.
11.

Fig. 1. Example of Separating data accessed together smell. Countries and Cities are two collections frequently queried together (left). The separated
documents require slow and resource-intensive join (i.e., $lookup) operation. Countries could embed their Cities to avoid expensive joins (right).

II. BACKGROUND

MongoDB is a document-oriented datastore that organizes
its data in collections, which store a set of BSON (Binary
JSON) documents. A document has field and value pairs
holding relevant information for an object, similar to a table
record in a relational DB. Unlike a table, a collection has a
flexible structure without a fixed schema, and documents can
embed other documents.

MongoDB provides drivers for many languages, includ-
ing JavaScript. There are also popular libraries built on
top of these drivers, e.g., MongoDB Node Driver [52]
in Node.js. Some libraries provide more abstract persis-
tence services by mapping objects to documents. They are
called ODMs (Object-Document Mapping), similar to ORMs
(Object-Relational Mapping) in relational databases, such as
Mongoose ODM [53].

The left side of Fig. 1 shows a JavaScript code snippet using
the MongoDB Node Driver. First, it imports and initializes a
MongoClient from the library (Lines 1–3). It connects to
the database (Line 7), then queries the countries collection
and its related cities (Lines 9–17). The query uses the
standard MongoDB method to perform a left outer join on
two collections with the aggregate() function and the
$lookup operator. Finally, it prints the results (Line 18) and
closes the connection (Line 22).

The countries and cities collections hold multiple
documents. A country contains _id and name fields. A city
has _id, name, and country fields. The latter references
the document of the city’s parent country.

There is a MongoDB smell in the example: $lookup is
slow and resource-intensive compared to operations that do
not need to combine data from multiple collections.

The usage of $lookup is discouraged in MongoDB, and
document embedding is recommended as “data that is ac-
cessed together should be stored together” [50]. An optimized
solution embeds cities in their corresponding countries. The
query can then be substituted with a simple find() method
invocation (see the right side of Fig. 1). The resulting code
becomes shorter, requires fewer resources, and runs faster.

III. METHOD

A. Research Questions

The absence of research on MongoDB smells motivates our
research questions:
RQ1: What types of MongoDB smells have been proposed in

the community? (Mapping based on smell types.)
RQ2: Where are MongoDB smells discussed by the commu-

nity? (Mapping based on types.)

B. Multivocal Literature Mapping

To answer RQ1 and RQ2 we conducted a systematic liter-
ature review including grey literature, i.e., sources that do not
necessarily go through quality control mechanisms (e.g., peer
review), such as blog posts, forum messages, and whitepapers.
Recent studies have considered similar sources relevant for
code smells [42], [43], [54], and the approach has become
known as multivocal literature mapping (MLM) [41], [42].

An MLM aims to classify the body of knowledge in a given
area, similar to a systematic review or literature mapping study.
MLMs can be extended with follow-up studies. Our goal is
to review the literature and classify MongoDB smells. We
identify relevant sources, manually examine them to distill
candidate smells, then organize them into a catalog.

Fig. 2 depicts the main steps of the entire MLM approach.
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12 search engines

(Google Scholar, Science 
Direct, Google Europe, USA, 

Brazil, South Africa, 
Australia, South Korea, 
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MongoDB forum, IEEE 

Xplore, ACM Digital library)

6 search strings

MongoDB antipatterns, 
MongoDB code smells, 

MongoDB smells, MongoDB 
best practices, MongoDB 

mistakes, Document 
database antipatterns

WWW Forums

Blog post/Online article 92
Forum post 28
Published paper 12
Book 11
Presentation video 9
Q&A 6
White paper 3
Documentation 3
Presentation slides 2
Course/Certification material 2
Technical report 1
Presentation appendix 1
Master's thesis 1
Bug report 1
Book chapter 1
Bachelor's thesis 1

174 sources
Manually Inspected1498 sources

Inclusion Criteria
I1: Mentions MongoDB in the title/abstract
I2: Mentions antipatterns/code smells in the 

title/abstract
I3: Author is clearly identified

Exclusion Criteria
E1: Is a general code smell resource
E2: Not in English
E3: Already in the returned sources
E4: Not related to MongoDB and code smells/

antipatterns
E5: Not fully available online

Fig. 2. Overview of the Multivocal Literature Mapping Approach

1) Source Mining: We mined online sources through search
engines of scientific databases (Google Scholar, Science Di-
rect, IEEE Xplore, ACM Digital Library), MongoDB forum-
s/blogs (MongoDB Website, MongoDB Community Forums),
and Google. Initially, we did not include MongoDB forum-
s/blogs, but early iterations of the query showed lots of
results originating from these sources, which motivated us to
incorporate them into our searches.

To formulate the search string, we first determined a set
of potential keywords based on the study’s objective. We
then conducted trial searches to validate each possible search
string as recommended in the guidelines by Kitchenham and
Charters [55]. Finally, we devised the following search string:

(“MongoDB” AND (“Smells” OR “Code smells” OR “Antipat-
terns” OR “Best practices” OR “Mistakes”)) OR (“Document
database” AND “Antipatterns”)

We employed both “Code smells” and “Antipatterns”, as
these terms are often used interchangeably by practitioners
[56]. We added “Mistakes” as we observed that authors would
use the term describing code smells (e.g., (S114)). We also in-
cluded “Best practices”, as code smells were often mentioned
in conjunction with their violations. Furthermore, we included
“Document database antipatterns” as our trial searches discov-
ered relevant matches, but examining its alternatives did not
yield further sources.

We ran Google queries multiple times through VPN from
five continents (Europe, North America, South America, Ocea-
nia, and Asia) to mitigate potential location bias [57]. We
reviewed the returned results for each search engine and
query string, then manually checked each source to deter-
mine whether its content and quality met our inclusion and
exclusion criteria (see Fig. 2). When deciding whether the
source should be included was impossible based on the title
and summary, we opened its link and examined it separately.

As suggested by Garousi et al. in their guidelines for
multivocal literature reviews [40], we relied on a saturation
approach for the stopping criteria: We set a minimum thresh-
old for each query, which was relaxed when needed until the
search engine returned no new relevant matches. For example,
we looked at the first 20 sources returned by Google but
extended this limit to 60 for Google Europe, our first search.

We ran 72 queries (6 searches x 12 engines) and examined
1,498 candidate sources. 154 satisfied our quality (source
author is clearly identifiable), inclusion and exclusion criteria.
We kept these sources for manual inspection and added
20 sources through snowballing. If a source mentioned one
outside our list, we examined that too.

The most relevant source types were the following: Blog
post/Online article (92), Forum post (28), Scientific paper
(12), Book/Book chapter (11), Presentation video/slides (9),
and Q&A Post (6).

2) Smell Classification: We conducted open coding [58]
to identify and classify the smells mentioned in the sources.
Such approaches are common in systematic literature reviews
and software engineering studies [59]–[62] to identify and
classify relevant concepts in various sources. Two authors
independently inspected all 174 sources to collect MongoDB
antipatterns/smells according to the following criteria:

• MongoDB code smells, antipatterns, or bad practices:
Recurring problems and bad practices leading to per-
formance or maintainability issues originating from the
database or the database communication.

• Oppositions to MongoDB’s good practices: Good prac-
tices, investigating if ignoring them could lead to perfor-
mance or maintainability issues.

• Oppositions between SQL and MongoDB: Common mis-
takes that SQL programmers could make when design-
ing/using a NoSQL DB as a SQL database.

• Transpositions of SQL antipatterns: Code smells or an-
tipatterns defined for SQL databases that could be ex-
tended to NoSQL databases.

We provided a short description for each smell, kept track
of its origin, and assessed whether it could be detected from
data, schema, or application code.

In total, we collected 242 unique smells (the union of 135
and 140 of each author). The two labelers partially agreed in
72% of the sources, i.e., where both reviewers found at least
one common smell for the same source.

We resolved conflicts and organized the smells into cat-
egories in the next step. We used open card sorting, an
established practice for knowledge elicitation and classifica-
tion [63], [64]. First, the two labelers discussed all 242 smells
individually. They merged synonymous smells, excluded too
generic ones (i.e., unrelated to source code or MongoDB),
and organized them in categories. Two additional authors then
revised the final results of this categorization process.

Ultimately, we distilled a catalog of 76 MongoDB smells
organized into 11 categories. A final set of 87 sources were
related to these smells. The remaining sources did not contain
smell or antipattern definitions.

https://bigdataanalyticsnews.com/mongodb-mistakes-to-avoid-the-best-practices-to-follow/


The number of smells also reduced substantially as various
sources named smells differently. For example, “Bloated doc-
ument” had 9 alternatives, e.g., “Large documents”, “crossing
16mb doc size”, or “$project the Elephant”.

Details of this classification process (e.g., sources of smells,
merged/excluded smells) are available in the appendix [51].

IV. RQ1: MONGODB CODE SMELL CATALOG

Fig. 3 presents the catalog of the 76 MongoDB smells
resulting from the MLM process, organized into 11 categories.
The figure shows the number of sources mentioning each
smell in parentheses. We describe each category by present-
ing examples of smells. Detailed descriptions of all smells,
including links to their sources,1 are available in our online
appendix [51].

a) Aggregation: MongoDB provides aggregation opera-
tions [65] to process multiple documents in collections. This
is an alternative API to the more common find() queries.
A forum post explicitly asks about common mistakes when
using this API (S125). The answers highlight that developers
with SQL backgrounds are often unaware of aggregations and
tend to use CRUD operations or map-reduce processing [66]
where aggregations would be more efficient.

Backup: Poor backup strategies can result in permanent
data loss; hence, we grouped them into a separate category.
Sources highlight the importance of a dedicated backup budget
(S4) and regular automated backups (S62). Most sources (22)
emphasized that replicas [67] should not be treated as backups
as they offer redundancy to protect against system failure but
do not protect from accidents caused by human error, e.g.,
dropping a collection or database (S47).

Design oversights: Many smells originate from poor
design choices to accelerate design & development. These
decisions often lead to decreased maintainability, bugs, storage
waste, and performance issues. Such issues can stem from the
application code, design, data or schema. For example, Immor-
tal cursors, i.e., unclosed cursors, can result in memory leaks
(S176), or Querying too much data can generate unnecessary
network traffic for the application (S4).

On the schema side, Unbound arrays was the most often
mentioned smell, found in 24 sources.

“Embedding vs. References” is a critical schema deci-
sion in MongoDB, and referencing documents in arrays is
a common technique to map one-to-many or many-to-many
relationships. Various sources noted that caution should be
exercised with growing large arrays as they can strain ap-
plication resources (S32). Similarly, Bloated documents (i.e.,
unnecessarily large documents) should be avoided as they
can result in working sets unfit for MongoDB’s memory
allotment (S30).

We also separated a subcategory for index usage, as various
sources mentioned related smells. Abusive use of indexes was
the second most frequent, with alternative names in 22 sources.

1When we cite sources, we use an Sx notation where x is the unique identifier.
These references can be found in the online appendix.

For example, common alternative names were “Too many
indexes” (S65), “Over indexing,” or “Index littering” (S4).
Maintaining unnecessary indexes can lead to degraded per-
formance and excessive storage allocation.

Human-oriented decisions: Fostering human understand-
ability over optimal design choices also produces code smells.
For example, the Human-readable values (2) smell suggests
that inefficient formats result in storage/RAM/network band-
width consumption overhead, e.g., “storing a 10-digit int value
takes 10 bytes as a string.” (S4). Similarly, Too long attribute
names (2) can be harmful as BSON requires storing the
attribute names as well, e.g., “Long field names increase the
minimum amount of space a database requires.” (S66).

Performance: Most performance issues are due to defi-
cient configurations that harm performance or memory usage.
For example, 4 sources pointed out that running MongoDB on
a 32-bit system (S84) entails significant data constraints (max.
2GB of data). 2 sources stressed unnecessarily high read-ahead
(a setting that benefits sequential I/O operations) could be
counterproductive because MongoDB disk access patterns are
generally random (S50).

Query: Queries are prone to various smells. Most sources
mentioned problems due to inefficient index usage. For ex-
ample, 5 sources stressed the importance of covering queries
with indexes because a query without a matching index likely
performs a full collection scan instead of an optimized index
scan (S111). A case-insensitive query should also be covered
with a case-insensitive index (7) (S24). 2 sources also stressed
that leading wildcard searches (i.e., regular expressions that are
not left anchored or rooted) should be avoided (S83), (S96).

Relational design ghosts: Problems often stem from
developers trying to apply relational modeling habits in a
document database. MongoDB’s golden rule is “Data accessed
together should be stored together.” Joins require the slow and
resource-intensive $lookup operator, that should be avoided
as recommended by the Separating data accessed together
smell in 19 sources (S34). In relational DBs developers rely on
transactions to guarantee ACID (atomicity, consistency, isola-
tion, durability) properties. However, an operation on a single
document is already atomic in MongoDB. Thus, transactions
indicate accessing data that should not be separated (S154).

Security: Security practices, if not respected, may lead
to system intrusion, data leakage, etc. The official MongoDB
Security Checklist [68] suggests enforcing the authentication
in the first place. 4 sources pointed out that MongoDB does
not enable authentication by default, e.g., (S126). Defining a
user policy with the least privilege is a common practice to
enable access monitoring. In that context, 4 sources stressed
that a single user accessing the database is never a good idea
as it exposes the application to more vulnerabilities (S116). An
example of MongoDB user management can also be found in
an official MongoDB tutorial [69].

Sharding: Horizontal scaling is achieved in MongoDB
via sharding, where shards (i.e., data subsets) are distributed
along a chosen attribute, the shard key [70].

https://www.mongodb.com/community/forums/t/what-are-some-of-the-biggest-mistakes-people-make-in-aggregation-pipelines/11803
https://www.linkedin.com/pulse/big-data-anti-patterns-marc-kenig/
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781783982608/1/ch01lvl1sec05/mongodb-configuration-and-best-practices
https://devops.com/7-best-practices-new-mongodb-users-know/
https://www.amazon.com/MongoDB-Definitive-Powerful-Scalable-Storage
https://www.linkedin.com/pulse/big-data-anti-patterns-marc-kenig/
https://www.mongodb.com/developer/products/mongodb/schema-design-anti-pattern-massive-arrays/
https://www.mongodb.com/developer/products/mongodb/schema-design-anti-pattern-bloated-documents/
https://www.compose.com/articles/mongodb-indexing-best-practices/
https://www.linkedin.com/pulse/big-data-anti-patterns-marc-kenig/
https://www.linkedin.com/pulse/big-data-anti-patterns-marc-kenig/
https://www.datavail.com/blog/mongodb-best-practices/
https://support.engineyard.com/hc/en-us/articles/7598869697810-Best-Practices-for-Using-a-Custom-MongoDB-Environment-with-Engine-Yard-Cloud
https://dzone.com/articles/10-mongodb-best-practices-for-aws-prod-deploys
https://www.slideshare.net/mongodb/mongodb-world-2019-the-sights-and-smells-of-a-bad-query
https://medium.com/@ayazhussainbs/mongodb-schema-design-anti-patterns-in-a-nutshell-fbd0dfe0d416
https://s3-ap-southeast-1.amazonaws.com/tv-prod/documents%2Fnull-10gen-MongoDB_Operations_Best_Practices.pdf
https://www.mongodb.com/blog/post/performance-best-practices-indexing
https://www.mongodb.com/developer/products/mongodb/schema-design-anti-pattern-separating-data/
https://www.mongodb.com/community/forums/t/how-to-manage-a-db-with-collections-with-different-fields/98287/8
https://www.mongodb.com/blog/post/mongodb-security-part-ii-10-mistakes-that-can
https://hub.packtpub.com/5-mistakes-web-developers-make-when-working-mongodb/


Aggregation issues: associated with poor query 
performance.

     Lookup without supporting indexes (1)
     Map-Reduce for projection (3)
     Too many aggregation stages (1)

Backup issues: increase the risk of data loss and 
vulnerabilities.

      Manual backups (1)
      No backup budget (1)
      Replicas as backup (3)

Design oversights: poor design choices to accelerate design 
& development, leading to decreased maintainability, bugs, 
storage waste, and performance issues.

   Design oversights in application code
      Immortal cursors (1)
      No dependency injector (1)
      Querying too much data (3)
      Testing only CRUD operations (1)
      Testing queries on the entire ad-hoc big data lake (1)
      The single-person bridge (1)
   Design oversights in Data/Schema
      Bloated documents (17)
      Data oriented instead of application oriented (12)
      Flat raw data (2)
      Inconsistent attribute structure (5)
      Multiple schemas in a file (1)
      Repeated immutable data (1)
      Storage of easily calculated values (2)
      Too many collections (13)
      Unbound arrays (24)
      Using a document for "_id" (1)
   Design oversights in indexes
      Abusive use of indexes (22)
      Index intersection rather than compound index (1)
      Non-ESR compound indexes (Equality, Sort, Range) (2)
      Prefix index of compound indexes (1)

Human-oriented decisions: caused by data modeling 
choices to foster human aspects, resulting in sub-optimal 
design choices, leading to performance or storage/
bandwidth overhead.

      Bias toward access patterns (1)
      Human-readable values (2)
      Too long attribute names (2)
      Too long document keys (2)
      Using $ prefixed fields (1)

Performance/Memory issues: misconfigurations or 
inadequate running environment; associated with poor 
performance or memory overhead.
      Large read-ahead (2)
      Large WTC (WiredTiger Cache) (1)
      Multiple "mongod" instances (1)
      Running MongoDB in a shared environnement (1)
      Running MongoDB on 32-bit systems (4)
      Unlimited mongos taskExecutor in a container (1)
      Using fast writes (1)
      Using GridFS for small binary data (2)

Query issues: misuse of the query mechanism; are 
associated with slow query execution time
      Avoid $Where (1)  
      Case-insensitive queries without matching indexes (6)
      Confusing null and undefined (1)
      Large skips for pagination (1)
      Leading wildcard searches on indexed columns (3)
      Negation in queries (2)
      No $elemMatch to match an entire array (1)
      Single update/insert for batches (1)
      Sorted monkeys (1)
      Uncovered queries (5)
      Using $limit without $sort (1)
      Using $map, $reduce and $filter with array fields (1)
      Using limit and skip for pagination (1)

Relational design ghosts: originate from misunderstandings 
of design principles;  can be expected when a programmer 
familiar with SQL DB design and manipulation recently 
switched to MongoDB.
      Relying on transactions (2)
      Separating data accessed together (19)
      Storage of empty values (1)
      Use of relational collections (1)

Security issues: inadequate security practices; exposing the 
database and the whole system to vulnerabilities.
      Forgetting to tie down MongoDB's attack surface (1)
      Improper user credential storage (2)
      No database access control (2)
      No database user policy (3)
      No input sanitizing (1)
      No security patches (1)
      Not using LDAP for passwords rotations (1)
      Server without authentication (3)
      Too much network exposure (4)
      Unencrypted communication (2)
      Unencrypted data (2)
      Using basic passwords (1)
      Using default Mongod ports (1)
      Using unofficial packages (1)

Sharding issues: poor use of MongoDB partition 
mechanism, can lead to poor performance, storage waste, 
and memory overhead.

      Low-cardinality shard key (1)
      Monotonically increasing shard key (3)
      Premature sharding (3)
      Scatter-gather queries (1)
      Unshardable collection (2)
      Working set exceeds memory (7)

Fig. 3. MongoDB Code Smell Classification
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Selecting a suitable attribute for the sharding key is crucial,
as a low-cardinality key will result in poor data distribution
across the shards (S51).

Sources (3) said that a monotonically increasing shard key
is inadequate: “using an incrementing counter shard key, all
documents will be written to the same shard and chunk until
MongoDB splits the chunk and attempts to migrate it to a
different shard” (S19). The Working set exceeds memory also
showcases poor sharding, mentioned in 7 sources, e.g., (S45).
A large working set, i.e., data and indexes accessed during
normal operations, indicates the tipping point of the sharding
process.

RQ1: What types of MongoDB smells have been proposed
in the community?
We identified 11 smell categories with 76 different code
smells: Aggregation issues, Design oversight with sub-
categories Application code, Data/Schema and
Indexes, Performance/Memory issues, Sharding issues,
Backup issues, Query issues, Security issues, Relational
design ghosts, and Human-oriented decisions.

V. RQ2: SOURCE TYPES’ CLASSIFICATION

At the end of the open coding process, we identified 87
sources discussing MongoDB code smells. We grouped them
into categories to have an overview of all these sources.
Similarly to the classification proposed by Garousi et al. [40],
we differentiate ‘grey’ sources such as Blog posts/Online arti-
cles, Discussions, Presentations, Project Artifacts, and Course
materials. As our study is not only limited to the ‘grey’
literature, we also consider ‘white’ sources such as Research
papers, Master/Bachelor theses, and Books.

Table I breaks down the source types’ classification and the
distribution of the sources.

It shows the number of sources manually reviewed for each
type and the number of sources with MongoDB code smells.

Most of the sources come from the categories Blog post-
s/Online articles (60%) and Discussions (27%), which high-
lights the community aspect of our MLM study.

Despite our searches for scientific papers on multiple
sources, the white literature is minimal in MongoDB smells.
While 12 papers passed our initial filtering, after manually
reviewing all of them, we found only one paper mentioning
MongoDB smells. In this paper, Mahajan et al. [8] study the
energy efficiency of relational and NoSQL databases via query
optimizations. They do not mention the smells explicitly but
investigate how indexed vs. non-indexed queries affect the
performance in MongoDB. Hence, we included it in our MLM.

We also notice a significant amount of books among the
sources. These books are MongoDB in Action (S18) (with
a dedicated chapter for Design patterns in its appendix),
The Little Mongo DB Schema Design Book (S19), Mastering
MongoDB 6.x (S20), Practical MongoDB (S56), 50 Tips Tricks
MongoDB Developers (S171), and MongoDB: The Definitive
Guide: Powerful and Scalable Data Storage (S176).

Fig. 4 shows the categorization of a source from its Search
engine to its Category and smell Type. Again, most
smells come from Blog posts/Online articles (60%) and Dis-
cussions (27%). However, some smell types (i.e., Backup
and Security) only have sources from the Blog post/Online
article category.

Surprisingly, only a small part of the code smell catalog
was found using the official MongoDB website (5). However,
we still used sources from this website (15) as we reached
them from Google. The same phenomenon can be observed
in the Research category. While the academic search engines
did not find relevant sources, we still reached some sources in
the Research category through Google.

https://geekflare.com/mongodb-sharding-best-practices/
http://learnmongodbthehardway.com/schema/sharding/
https://d0.awsstatic.com/whitepapers/AWS_NoSQL_MongoDB.pdf
https://books.google.fr/books?hl=nl&lr=&id=kzkzEAAAQBAJ&oi=fnd&pg=PT21&dq=mongodb+antipatterns&ots=8U6YrX4-3d&sig=mgTPEUBC-My-nq1E2YmyLolnmJo#v=onepage&q=mongodb%20antipatterns&f=false
http://learnmongodbthehardway.com/schema/sharding/
https://books.google.fr/books?hl=nl&lr=&id=wAOEEAAAQBAJ&oi=fnd&pg=PP1&dq=mongodb+antipatterns&ots=VWtKBIdN8u&sig=5IhGU1eVNvJ_JGv19g4s7BqqYkg#v=onepage&q=mongodb%20antipatterns&f=false
https://link.springer.com/book/10.1007/978-1-4842-0647-8
https://www.amazon.com/50-Tips-Tricks-MongoDB-Developers-ebook
https://www.amazon.com/MongoDB-Definitive-Powerful-Scalable-Storage


TABLE I
SOURCE TYPES CLASSIFICATION

Category Source Type # Sources
Reviewed w/ Smells

Blog post/Online
article

Blog post/Online article 92 50
White paper 3 2

Discussion Forum post 28 22
Q&A 6 2

Presentation
Presentation video 9 1
Presentation slides 2 1

Presentation appendix 1 -

Project Artifact
Documentation 3 -
Technical report 1 -

Bug report 1 -

Research
Published paper 12 1
Master’s thesis 1 -

Bachelor’s thesis 1 -

Book Book 11 6
Book chapter 1 1

Course Course/Certification material 2 -

Total 174 87

We also investigated how many smells are induced by
different source types: a SOurce SO induces a SMell SM if
SO was used as an input in the code smell extraction step to
extract SM. If a blog post talks about five MongoDB smells
and we extracted them, we say it induces five smells.

Discussion (n=24)

Project Artifact (n=1)
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Presentation (n=2)

Blog post/Online article (n=52)

Book (n=7)
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Fig. 5. Induced smell per category

Fig. 5 shows the distribution of the number of induced
smells for each source type. As most of the smells are
mentioned in blog posts, they are expected to induce more
smells. It is interesting to notice that Books took the first
place, which can be attributed to their thoughtful nature.

Another observation is that the median number of induced
smells is the closest to one for the Discussion category, which
acknowledges that a discussion typically revolves around a
specific problem or smell.

The median number of induced smells was 1.5 considering
all sources.

A blog post on Big Data Anti-Patterns by Marc Kenig,
published in 2019 (S4), induced the highest number of Mon-
goDB smells (13). The next notable source was the Practical
MongoDB book (S56) which induced 11 smells of the catalog.

To have a broader picture of the relationships between
sources and code smells, we constructed a graph that can
be seen in Fig. 6. The blue nodes are the sources, and the
red nodes are the code smells. We use the same Sx notation
for each source as we identify it in the source list of the
online appendix. An edge between source Sx and smell SM
indicates that Sx induces SM. Globally, we can observe a
coupled network between sources and smells, with two notable
exceptions. The first one is highlighted by the circle in the top
left corner of the figure. These are the isolated source-smell
pairs, typically showing Q&A or forum posts about a specific
smell. The second one is depicted in the bottom-right circle.
It denotes smells mentioned in multiple sources.

For example, 24 sources induce the Unbound Array smell,
with 11 only about this specific smell. Similar “hot spots” are
the Abusive use of indexes and the Separating data accessed
together smells with 22 and 19 sources, respectively.

Finally, Fig. 7 shows a bar chart of the sources according
to their publication year.

MongoDB keeps track of its release notes starting from
version 1.2, released in 2009 [71]. However, the first release
is 0.0.3 from 2008 in its Git repository [72].

Our earliest sources are from 2010-2011, as the first editions
of the books 50 Tips and Tricks for MongoDB Developers:
Get the Most Out of Your Database (2011), MongoDB: The
Definitive Guide: Powerful and Scalable Data Storage (2010),
MongoDB in Action (2010), and MongoDB: The Definitive
Guide: Powerful and Scalable Data Storage (2010).

Only a few, 1–5 sources appear each year until 2018. These
are typically blog posts on MongoDB “best practices” such
as (S47), (S50), (S53), (S65), (S66), and (S69). Interesting to
highlight is the 14 Things I Wish I’d Known When Starting
with MongoDB InfoQ article by Phil Factor (S69), published
in 2018, which becomes cited by other sources too.

A sharp increase can be observed from 2019 with 7 (2019),
12 (2020), 17 (2021), and 27 (2022) new sources. Interest-
ing to note here is that MongoDB published blog posts on
Performance Best Practices: Indexing (S96) and Performance
Best Practices: Sharding (S98) in 2020, then started a blog
series on MongoDB Schema Design Best Practices (S74) and
Schema Design Anti-Patterns in 2022. The posts generated
related discussions on their forums, e.g., see (S7) and (S11).

RQ2: Where are MongoDB smells discussed by the com-
munity?
Most of the sources come from the categories of Blog
posts/Online articles (60%) and Discussions (27%), which
we retrieved in the biggest part from Google. While being
less numerous, Books (8%) tend to hold more smells,
contrary to the Discussions which mostly revolve around a
specific code smell. A sharp increase in published sources
can be observed since 2019.

https://www.linkedin.com/pulse/big-data-anti-patterns-marc-kenig/
https://link.springer.com/book/10.1007/978-1-4842-0647-8
https://devops.com/7-best-practices-new-mongodb-users-know/
https://dzone.com/articles/10-mongodb-best-practices-for-aws-prod-deploys
https://github.com/vaquarkhan/Technology-best-practices/blob/master/nosql/mongodb/README.md
https://www.compose.com/articles/mongodb-indexing-best-practices/
https://www.datavail.com/blog/mongodb-best-practices/
https://www.infoq.com/articles/Starting-With-MongoDB/
https://www.infoq.com/articles/Starting-With-MongoDB/
https://www.mongodb.com/blog/post/performance-best-practices-indexing
https://www.mongodb.com/blog/post/performance-best-practices-sharding
https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/
https://www.mongodb.com/community/forums/t/best-way-to-store-products-and-its-attributes-information-in-mongodb/130338
https://www.mongodb.com/community/forums/t/is-it-better-to-make-frequent-read-operations-or-to-pull-all-data-periodically/151429/3
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Fig. 6. Network representation of smells and sources
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VI. DISCUSSION

In this section, we discuss implications for researchers
and practitioners. We motivate this discussion by presenting
example smell instances in open-source systems.

A. Illustrative examples in open-source systems

As a preliminary attempt to find smells in open-source
systems, we implemented static analyzers for the Relational
design ghosts category. We chose this category given its im-
portance, as many sources referred to these common mistakes.

They are often made by developers who came to the NoSQL
world with a relational database background.

1) Detection tool: We relied on CodeQL [73] as a static
analysis framework that supports various analyses (e.g., data
flow or taint analysis) for multiple languages, including
JavaScript. The language was significant for us as previous
studies found that JavaScript is the most widely used language
with MongoDB [2].

CodeQL builds a database to store the project’s AST (Ab-
stract Syntax Tree) and analysis data. This database can then
be queried in QL, a declarative, object-oriented query language
with SQL-like syntax. We implemented QL queries for the
Storage of empty values, Separating data accessed together,
Use of relational collections, and Relying on transactions
smells. Their source code is publicly available in our GitHub
repository [51].

1 from MethodCallExpr mce, ObjectExpr queryFilter
2 where mce.getMethodName() = "insert" and
3 mce.getAnArgument() = queryFilter and
4 queryFilter.getAProperty().getInit().

getStringValue() in ["null", "undefined", ""
, "’’", "[]"]

5 select mce, "this inserts holds null values"

Listing 1. CodeQL query to find Storage of empty values instances

Listing 1 shows an example query of the Storage of
empty values smell. The query has three main clauses: from,
where, and select.



It searches for a method named insert (Line 2), the dedi-
cated method to insert documents in MongoDB and Mongoose
drivers. It takes the argument of this method call (Line 3),
which was selected as an object expression in the from clause.
Then it tests the argument for an empty value (Line 4). Finally,
the select clause lists expressions for the warning message,
e.g., MethodCallExpr variable in the example (Line 5).

More complicated queries require CodeQL features such
as classes, predicates, data flow analysis, or taint tracking.
Our implementation of the four smells of the Relational
design ghost category with two drivers (MongoDB Node
Driver and Mongoose) tries to handle dynamic features of
JavaScript in about 700 lines of QL code, available in the
online appendix [51].

2) Smell instances: We analyzed top-starred open-source
systems on GitHub (see the online appendix [51]) and found
interesting smell instances, which we share as motivational
examples for future studies.

a) Use of relational collection: The voluntarily/vly2
repository hosts the source code of the Voluntarily [74] vol-
unteering platform in New Zealand. It is a “matchmaking
platform to connect awesomely skilled volunteers with schools
who need a hand.” We found a Use of relational
collection smell in its codebase as follows.

The getMembersWithAttendedInterests arrow
function uses an aggregation on the Member collection.2 This
query has 65 lines of code that we briefly summarize here.

First, there is a $lookup operator (L14) to perform a left
outer join between the Member and InterestArchive
collections using the person attribute and outputting
the array as archivedInterests. Later another
$lookup (L37) uses this array output to perform a
join with the archivedopportunities collection.
This means that InterestArchive was used to access
archivedopportunities, similar to a join table in
relational modeling. The Use of relational collection smell is
exactly about this, as the $lookup operator is known to be
slow and resource-intensive (S42).

The project’s developers implement an M-N relationship
through separate collections, representing members’ interests
in opportunities. An alternative would be to embed a member’s
opportunities into its corresponding document.

b) Storage of empty values: The impronunciable/hack-
dash repository is a collaborative dashboard to organize
hackathon ideas. The method setCachedPage3 inserts a docu-
ment into the pages collection (see Listing 2).

The document inserted has a value attribute with an empty
string (’’) on L89. This is a simple instance of the Storage
of empty values smell. Due to MongoDB’s schema flex-
ibility, the empty attribute can be omitted.

Its absence can be queried/updated later [75]. Consequently,
empty values unnecessarily complicate queries. An alternative
would be to omit the attribute from the inserted document.

2See https://github.com/voluntarily/vly2/blob/master/server/api/statistics/statistics.lib.js/
#L8.

3See https://github.com/impronunciable/hackdash/blob/master/seo.js/#L85.

82 function setCachedPage(url){
83
84 db.collection(’pages’, function(err, collection) {
85 if (err){ return console.log(err); }
86
87 collection.insert({
88 key: url,
89 value: ’’,
90 created: new Date(),
91 pending: true
92 }, { w: 0 });
93
94 });
95 }

Listing 2. An example query with a Storage of empty values smell
in impronunciable/hackdash

B. Implications

MongoDB is a relatively “young” 14-year-old NoSQL
database compared to relational database management sys-
tems, which have been around for over a quarter of a century.
The first release of POSTGRES, for example, dates back
to 1989 [76]. It is interesting to observe how a discussion
in the community emerges around common code smells and
antipatterns as the database management system evolves and
its popularity increases. We found the first “Best practices”
and then “Antipatterns” in books from 2010, when MongoDB
was only two years old. However, it took additional eight years
to see a more apparent impact on the community.

It is not the purpose of our study to investigate what
happened after 2018. Still, it is interesting to observe that
it takes a significant amount of time for a community to
recognize and start naming its frequent maintainability issues.
Once they do so, it brings more attention to such problems
and fosters discussions around them. As noticed in previous
research, by not knowing the state of practice, practitioners
tend to “reinvent the wheel” and use various names for existing
smells [42]. We have seen the same effect when we coded all
the sources and collected 242 labels to end up with 76 smells
after merging conceptually similar or duplicated labels.

We believe we are at the right time for a multivocal mapping
study. The numbers indicate that a vast amount of (fresh)
knowledge has been gathered in the grey literature of online
sources: 76 smells in 87 sources and a sharply increasing trend
in new sources. It is time to take a reflective step, map and
organize this knowledge. However, the research community
still needs to recognize the importance of this field.

There are several ways in which researchers could help prac-
titioners and vice versa. For example, we found many forum
discussions where developers seek solutions to these smells.
Research studies could help understand the contexts where
MongoDB smells occur and cause bugs, quality, maintenance,
or additional problems.

A first step in this direction is the study of Mahajan et al. [8]
on the impact of index usage on energy efficiency. Automated
tools and AI approaches could help detect and fix the smells.
Our CodeQL queries show promising potential in this direction
as a static analysis approach.

https://blog.panoply.io/mongodb-best-practices
https://github.com/voluntarily/vly2/blob/master/server/api/statistics/statistics.lib.js/#L8
https://github.com/voluntarily/vly2/blob/master/server/api/statistics/statistics.lib.js/#L8
https://github.com/impronunciable/hackdash/blob/master/seo.js/#L85


C. Threats to Validity

Our study is based on a multivocal mapping approach
exposed to threats to validity by its nature of relying on
“grey” literature. While we considered several academic search
engines (Google Scholar, IEEE Xplore, ACM Digital Library),
very few were kept from these sources (12). Despite our qual-
ity criteria and manual inspection of the sources, one might
consider the grey literature origin of our catalog as a threat
to validity. In contrast to the sizeable knowledge in sources
written by practitioners and enthusiasts, the marginal presence
of scientific literature (1 source inducing 2 code smells)
justifies the MLM study. When peer-reviewed literature is
unavailable, studying grey literature [41]–[43], [54] is common
in software engineering. To the best of our knowledge, there
are no prior studies on MongoDB smells.

We tried to mitigate potential threats following established
guidelines (e.g., [40], [55]) by relying on various search
engines, minimizing search bias, selecting diverse sources,
theoretical saturation for stop criteria, employing quality crite-
ria, and open coding with multiple participants. Additionally,
we share our tools and data in a public repository including
detailed smell descriptions with references to all sources [51].

VII. RELATED WORK

Code smells [18] have been studied in various languages
and contexts. Many researchers have proposed catalogs or
taxonomies for object-oriented code smells [18], [77]–[80] and
investigated their effects on software systems [19], [81]–[85].

Smells in Database Communication: There is significant
literature about smells related to database communication.
Karwin et al. [31] published a book on SQL antipatterns.
Red Gate Software Ltd. published a booklet of 240 SQL code
smells [86]. SQL code smells do not necessarily cause bugs
but impact the performance of the database communication,
thus, the system itself [29], [32], [87], [88].

Some tools exist to detect smells in database communica-
tion. For example, Van Den Brink et al. analyze SQL queries in
PL/SQL, COBOL, and Visual Basic systems [89]. Nagy et al.
implemented SQLInspect to find SQL antipatterns defined by
Karwin [31] embedded in Java programs [38]. Chen et al.
detected antipatterns in systems using ORM [28]. In their
follow-up work, they investigated the performance impact of
redundant data accesses [29] and how web applications can
be improved by refactoring performance antipatterns [90].

Yang et al. detected ORM performance antipatterns in Ruby
on Rails applications with dynamic analysis [88]. Later they
presented PowerStation, a RubyMiner IDE plugin to detect
ORM inefficiency problems and suggest fixes to develop-
ers [91]. Yan et al. also proposed static analysis to identify
and fix ORM issues in Ruby on Rails applications [92].
Cheung et al. proposed a lazy evaluation approach to batch
and reduce the number of round trips to the database [93]. Lyu
et al. studied Android apps and identified potential problems
associated with local database usage [94].

They implemented a static approach to optimize inefficient
database writes [95] and developed SAND, a static analysis
tool for detecting SQL antipatterns in mobile apps [96].

MongoDB and NoSQL: Despite their popularity, there
are few studies on code smells or bad practices in NoSQL
databases. Gomez et al. compared the performance of six
MongoDB databases containing the same data set but with
different data structuring choices [97]. Imam et al. suggested
23 guidelines for designing a document-oriented database [98].
Such guidelines can also be found in the MongoDB Applied
Design Patterns book by Copeland et al. [99]. Kumar et al.
performed a security analysis of unstructured data in NoSQL
MongoDB databases [11]. Wen et al. proposed a tool for
discovering access control vulnerabilities in web applications
using MongoDB.

Summary: Overall, to the best of our knowledge, our
work is the first attempt to organize MongoDB code smells or
antipatterns in a catalog.

VIII. CONCLUSION

We presented a catalog of MongoDB code smells, which we
distilled by performing a multivocal literature mapping (MLM)
study, using various search engines, gathering 1,498 sources,
and manually inspecting 174 sources. The catalog includes
76 smells classified into 11 categories.4 Many smells induce
performance issues, others hinder design and development, and
others induce non-trivial security issues.

We opted for an MLM instead of a systematic literature
review (SLR) because the field of MongoDB smells is largely
unexplored, and peer-reviewed literature simply does not exist
yet. However, it is a hot topic among developers, as proven
by the numerous “grey literature” sources (developer blogs,
forums) that we found in our study. There is also a noteworthy
amount of information stemming from books. It all points
to highly relevant topics for developers and practitioners,
but have received little attention from researchers so far.
Furthermore, the historical analysis presented in Section VI
shows a sharp increase of interest in the topic in recent years.

The catalog of MongoDB smells presented in this paper
constitutes a starting point for future research in the field.
First, this catalog could still be refined and further extended.
Second, automated detection strategies could be implemented
for all the smells of the catalog, which in turn will enable
further empirical investigations. For instance, we intend to
investigate the evolution of the smells, and to understand why
developers introduce them and when and how they fix them.
Another research objective would be to provide recommenda-
tions to (automatically) remove the detected smells. Given the
ephemeral nature of database-related source code, it is easy to
foresee that removing the smells is a non-trivial endeavor.
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4Due to space reasons we discussed only selected example smells, but we
provide a complete and detailed list in our online appendix.
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