
Long-Term Indoor Localization in
Floor Plans using Semantic Cues

for robot autonomy in human-oriented environments

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Nicky Zimmerman

under the supervision of

Prof. Kai Hormann

co-supervised by

Prof. Alessandro Giusti, Dr. Jérôme Guzzi, Prof. Luca Benini

September 2024

Dissertation Committee

Prof. Piotr Didyk Università della Svizzera italiana, Switzerland
Prof. Luca Gambardella Università della Svizzera italiana, Switzerland

Prof. Acquaviva Andrea Università di Bologna, Italy
Prof. Sorrenti Domenico Università di Milano Bicocca, Italy

Dissertation accepted on 24 September 2024

Prof. Kai Hormann
Research Advisor

Università della Svizzera italiana, Switzerland

Prof. Alessandro Giusti
Research Co-Advisor

Università della Svizzera Italiana, Switzerland

Dr. Jérôme Guzzi
Research Co-Advisor

Scuola universitaria professionale della Svizzera italiana, Switzerland

Prof. Luca Benini
Research Co-Advisor

ETH/Università di Bologna, Switzerland/Italy

Prof. Walter Binder & Prof. Stefan Wolf
PhD Program Director

i

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Nicky Zimmerman
Lugano, 24 September 2024

ii

To Green Day, for teaching me how to march to my own beat.

iii

iv

"Hidden talent counts for nothing"

Nero

v

vi

Acknowledgements

I would like to thank my main advisors, Alessandro and Jerome. I stormed back into their
peaceful existence, and was met with a warm embrace. This is particularly special because
they were well aware of all my flaws and I was not accounted for as part of their planned
responsibilities.

I would like to express my sincere gratitude and appreciation to Prof. Cyrill Stachniss, for
his guidance through mentoring and personal example of excellence in robotics research.

To my oldest friend, Dana Yudelevich, thank you for your saint’s patience, listening to count-
less hours of me ranting. To Alex Gendelman, a manager-turned-friend, I’m grateful for your
almost-optimistic perspective and solid confidence in my abilities.

A well-deserved mention goes to Hanna Müller, my collaborator since my M.Sc, when I
started my robotics journey. Her wizard skills with hardware majorly contributed to the re-
search presented in this thesis. I would also like to thank Prof. Luca Benini for supervising our
collaboration, as well as Dr. Michele Magno and all of the excellent Beninis from IIS/PBL who
helped along the way (Vlad, Georg, Tommaso, Julian,...).

Matteo Sodano, even though we had some fierce disagreements, I think we did well in
overcoming our differences. Thank you for keeping me sane when I was at my lowest - to quote
Prof. Stachniss "This environment is not enjoyable". I am also very proud of our collaborative
research work. I would also like to acknowledge Prof. Marija Popovic, for her support and
guidance even though I was not her responsibility, for her friendship even though we had a
shaky start, and for being an inspiration for young researchers.

To my dear parents, I am sorry for the last 34 years. I would be happy to have you with me
for at least another 34 years, and I will try to give you reasons to be proud of me for as long as
you stick around.

Last but not least, my master directors, Prof. Kai Hormann and Prof. Evanthia Papadopoulou.
Thank you for being inspirational figures, sympathetic ear and working relentlessly to improve
the experience of students in the faculty. I am forever indebted to Prof. Kai Hormann for saving
me from the hole I dag for myself, and providing me with a supportive academic environment
to pursue my research.

Ah. And I would like to remind myself that I am capable and worthy, and a lot stronger than
I usually think, to have made it to this point.

vii

viii

Abstract

Localization in a given map is an essential capability of most autonomous robots, and robust
long-term localization is crucial in the case of service robots. This is a challenging task, es-
pecially in a dynamic, human-occupied environment, and it motivates the use of sparse map
representations containing structural elements that remain constant over time. Floor plans, in
particular, are a sparse map representation that is often readily-available without the additional
cost and effort of sensor-based mapping.

We present different strategies for achieving robust long-term localization in floor plans,
by taking inspiration from the way humans navigate in indoor environments. We start with a
classical range sensor-based particle filter framework and augment it by integrating textual in-
formation. We then improve localization by considering a variety of semantic cues and propose
a 3D metric-semantic map representation that enriches floor plans with semantic information.
We address the challenge of localization on resource-constrained platforms and verify that our
semantic localization approach is suitable for a variety of robotic platforms. Finally, we explore
the benefits of collaborative localization, where robots in a team assist each other in improving
the pose estimation.

ix

x

Contents

Contents ix

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Overview . 2

2 Background 5
2.1 Monte Carlo Localization . 5
2.2 Long-Term Localization . 8
2.3 Localization in Floor Plans . 9

3 Robots and Infrastructure 11
3.1 Global Localization Infrastructure . 11

3.1.1 Localization infrastructure - IPB Lab . 12
3.1.2 Localization infrastructure - PBL Lab . 12
3.1.3 Calibration infrastructure - IPB Lab . 14

3.2 Robots . 15
3.2.1 Kuka YouBot . 15
3.2.2 Clearpath Robotics Dingo . 15

4 Textual Information for Robust Localization 21
4.1 Related Work . 23
4.2 Approach . 23

4.2.1 Text Spotting . 24
4.2.2 Text Likelihood Maps . 25
4.2.3 Integration of Textual Cues . 25

4.3 Experimental Evaluation . 25
4.3.1 Experimental Setup . 26
4.3.2 Localization under Changes using a Sparse Map 28
4.3.3 Localization under Few Dynamics using a Sparse Map 29
4.3.4 Localization using LiDAR-Based Map Built with the Robot’s Sensors . . . 30
4.3.5 Runtime . 30
4.3.6 Ablation Study . 30

xi

xii Contents

4.3.7 In-Field Experiments . 31
4.4 Conclusion . 31

5 Exploiting Semantic Cues for Long-Term Localization 33
5.1 Related Work . 35
5.2 Approach . 36

5.2.1 High-Level Semantic Maps . 36
5.2.2 Semantic Visibility Model . 36
5.2.3 Integrating Different Modalities in the MCL Framework 38
5.2.4 Semantic Stability Analysis . 39
5.2.5 Hierarchical Semantic Localization . 40

5.3 Experimental Evaluation . 40
5.3.1 Experimental Setup . 40
5.3.2 Long-Term Localization in CAD Floor Plans 42
5.3.3 Localization in a Previously Unseen Environment 43
5.3.4 Ablation Study . 43
5.3.5 Runtime . 44
5.3.6 In-Field Experiments . 44

5.4 Conclusion . 45

6 Enriching Floor Plans with 3D Metric-Semantic Information 47
6.1 Related Work . 48

6.1.1 3D Object Detection . 48
6.1.2 Semantic Mapping . 49
6.1.3 Semantic Localization . 49

6.2 Approach . 50
6.2.1 Label Generation for 3D Object Detection . 51
6.2.2 Statistical Analysis of 3D Object Detections 52
6.2.3 3D Semantic Map Construction . 53
6.2.4 3D Semantic Localization . 56

6.3 Experimental Evaluation . 56
6.3.1 Experimental Setup . 57
6.3.2 Mapping . 58
6.3.3 Long-Term Localization in CAD Floor Plans 59
6.3.4 Baseline Comparisons for Semantic Localization 59
6.3.5 Runtime . 60

6.4 Conclusion . 60

7 Localization under Resource-constraints 61
7.1 Related Work . 63
7.2 System Overview . 64

7.2.1 Hardware: Crazyflie and Extension Boards 64
7.2.2 Processor: GAP9 . 65

7.3 Approach . 65
7.3.1 Object Detection . 66
7.3.2 Lightweight and Parallel Embedded Implementation of MCL 66
7.3.3 Semantic Map Format . 67

xiii Contents

7.3.4 Geometric-Semantic Fusion Sensor Model 68
7.4 Experimental Evaluation . 68

7.4.1 Experimental Setup . 69
7.4.2 Object Detection Performance . 70
7.4.3 Global Localization in Floor Plans . 71
7.4.4 Real-time execution, power and memory footprint 71

7.5 Conclusion . 73

8 Collaborative Localization 75
8.1 Related Work . 76
8.2 Approach . 77

8.2.1 Collaborative Monte Carlo Localization . 77
8.2.2 Distribution Compression . 78
8.2.3 Baselines . 79

8.3 Complexity Analysis . 80
8.3.1 Compression . 80
8.3.2 Communication . 81
8.3.3 Fusion . 81

8.4 Experimental Setup . 81
8.4.1 Robots . 82
8.4.2 Environments . 82
8.4.3 Scenario . 83
8.4.4 Metrics . 83
8.4.5 Procedure and parameters . 83

8.5 Experimental Evaluation . 84
8.5.1 Collaborative localization . 84
8.5.2 Bandwidth requirements . 87
8.5.3 Runtime cost . 87
8.5.4 Clustering . 88

8.6 Conclusion . 88

9 Conclusions 91

A Publications 95
A.1 Long-term Localization . 95
A.2 Resource-Constrained Localization . 95
A.3 Collaborative Localization . 96
A.4 Human Pose Estimation on nano-UAV . 96
A.5 Software Releases . 96

Bibliography 97

xiv Contents

Figures

1.1 The early prototype of the ABB platform for mobile manipulation designed for
project Harmony. 2

2.1 The logic flow of the Monte Carlo localization algorithm. 6

2.2 Illustration of the Beam-End observation model. (a) An occupancy grid map and
two particles representing the hypotheses about the robot’s 2D pose. (b) A range
measurement composed of 8 beam end points in the robot’s coordinate system.
(c) The measurement transformed to the global frame based on each particle’s
pose hypothesis. (d) The EDT of the map, overlaid with the positions of the
transformed scans. 6

2.3 Visualization of the low-variance resampling method, where particles are sam-
pled at fixed intervals based on their accumulated weight. Particles with high
weight, such as w3 are sampled multiple times, while particles with low weight,
i.e. w1, are more likely to be skipped. 8

3.1 The making and installation of AprilTags in IPB lab. (a) Hand-made AprilTag
marker. (b) Laser pointer beam used to align the markers. (c) Geodetic tripod
with a level. (d) Installing the markers along the IPB lab’s corridor. 13

3.2 The localization infrastructure in IPB lab. (a) A top-view of the sub-sampled
pointcloud constructed from combined scans. (b) Multiple detected AprilTag
markers in a frame captured by the up-facing wide-angle camera. 13

3.3 Multiple AprilTag markers detected in each frame in the PBL lab. 13

3.4 The localization infrastructure in PBL lab. (a) Verification against IR tracking
system (Vicon) for the pose estimation pipeline. (b) Specialized training in the
Hilti facility. (c) The unified pointcloud from the PBL lab scans. 14

3.5 (a) The calibration room in the IPB lab. (b) Calibration of the YouBot. (c) Cali-
bration of the Dingo. 15

3.6 The initial configuration of the Kuka Youbot platform. 16

3.7 Incremental improvement of the sensor setup of the YouBot. (a) 3D printing of
a sensor mount. (b) An intermediate setup with the Intel RealSense D435 and
Intel T265 supported by the 3D printed mount. (c-d) The final camera setup with
4 Intel RealSense D455, Intel RealSense T265, Kinect Azure and the up-looking
GoPro 5 camera. 16

3.8 Transitioning from laptop dependency to onboard computation using an Intel NUC. 17

xv

xvi Figures

3.9 The early phases of the Dingo platform. (a) The dingo platform upon arrival,
with no sensors or compute platform. (b) powering the Nvidia Jetson from the
Dingo battery (c) First installation of the Dingo drivers on the Jetson. 18

3.10 Sensor suite design for the Dingo. (a) Mechanical work for sensor mounting. (b)
Installing the LiDAR sensors. (c) Running all drivers onboard. 18

3.11 Electricity diagram for the Dingo. 19

3.12 The final setup of our ground robots, with 2D LiDAR scanners and 4 cameras
providing 360◦ coverage. The up-ward facing camera is only used for generating
the ground truth via AprilTag detections. (a) YouBot. (b) Dingo. 19

4.1 Top Left: The corridor in which the experiment took place in. Top right: The
Kuka YouBot platform that was used for data collection, equipped with 2D LiDAR
scanners and cameras that cover the complete 360◦ field-of-view we utilize for
text spotting. Bottom: The results of of localization in a corridor with closed
doors (indicated by red lines), which are not reflected in the map, with and
without textual cues. 22

4.2 Particle injection with text spotting. (a) The text likelihood maps, based on the
collected data, indicate the locations in which detection of each room number
is likely. The likelihood maps are used for particle injection when a detection
of a known text cues occurs. (b) Before detection, we have a situation with
multi-modal distribution of particles (shown in red) as the corridor with closed
doors is a symmetric situation that cannot be resolved just using the LiDAR scans.
(c) With the first text detection (indicated by the green cross), we can inject
new particles inside the bounding box extracted from the text map. We replace
low weighted particles by new particles (shown in blue) that are uniformly dis-
tributed inside the corresponding bounding box of the text detection (shown by
a dashed green line). 24

4.3 Different maps used in the experiments: (a) floor plan-like map, constructed by
horizontally slicing a 3D point cloud captured with a FARO Focus X130 terrestrial
laser scanner and (b) LiDAR-based occupancy grid map from GMapping [46]
that was aligned to the FARO scan. (c) map built using GMapping, based on
the recordings from the corridor scenario, which significantly deviates from the
maps provided for localization. 26

4.4 Visualization of the different sequences used for evaluating our approach. Se-
quences S1-S10 correspond to the scenario where all doors are closed. Sequences
D1-D4 were recorded with all the doors open, and with moderate amount of hu-
mans moving around. The color of the trajectory correspond to the time, where
purple is the beginning and red corresponds to the end of the sequence. 28

4.5 ATE (xy) averaged over sequences S1-S10 as a function of the number of par-
ticles used in the particle filter, for the different methods method. The error
for MCL+Text is similar across large range of particle set sizes, exhibiting the
robustness of our approach. 30

4.6 Results for the ablation study exploring different injection strategies, with the
sparse map and 300 particles. 31

4.7 In-field evaluation of our proposed approach in ETH Zurich. 32

xvii Figures

5.1 Floor plan maps include high degree of symmetry and low similarity to actual
LiDAR measurements. This leads to multiple hypotheses that cannot be resolved
correctly. We propose integrating semantic cues from a high level, abstract se-
mantic map to assist with global localization. The red cross indicates the ground
truth pose and the green dots are the particles. Left: 2D LiDAR MCL with mul-
tiple hypotheses. Right: Convergence to a single hypothesis when exploiting
semantic cues, in an abstract semantic maps including various objects (colored
rectangles). 34

5.2 A simplified overview of the online localization approach. Given RGB images,
2D LiDAR scans an odometry input, we integrate semantic cues into an MCL
framework. 37

5.3 A visualization of the semantic visibility concept. (a) A semantic map of a sin-
gle room, with a query point (black dot). (b)-(f) The bearings in which each
semantic class objects are visible from the query point. 38

5.4 The bounding box detecting a dynamic class (person) is projected to 3D and used
to mask the LiDAR beams that fall within the cone. 39

5.5 Examples of pose estimation for localization in previous unseen environment,
using SMCL and 10,000 particles. 43

5.6 In-field evaluation of our proposed approach in the ABB facility. 45

6.1 A 3D semantic metric map combining a floor plan with 3D object bounding boxes
built using our approach. This map is used for long-term localization in dynamic
indoor environments. Different box colors indicate different object classes. . . . 48

6.2 An overview of our approach. Top row: offline pre-computation to adapt the
approach to a specific environment. Bottom row: 3D-from-2D object detection
and mapping, that can be executed on demand when the environment undergoes
structural changes and a map update is necessary. 50

6.3 Our global localization infrastructure can enable automatic generation of 3D la-
bels by computing the relative pose between the robot and the observed objects.
(a) Extracting the robot’s pose using the AprilTag infrastructure. (b) One-time
labeling of the objects in a 3D scan of the lab. 51

6.4 2D object detection to create better 3D annotations. Top: when rendering the
ground truth objects from the camera, we have no information about dynamic
objects like closed doors, which results in wrong annotations. The 2D object
detection detects a door, and none of the objects in the 3D map. Therefore, no
3D annotations are generated (faded colors). Bottom: the 2D object detection
detects tables and boards, but not the drawers due to occlusion. Therefore 3D
annotations are generated only for the boards and the tables. 52

6.5 Object probability map mp which contains the per-object distribution po(c | l),
for specific classes of interest. 53

6.6 Flow diagram for the 3D metric-semantic map construction. 54

6.7 Flow diagram for the 3D semantic localization approach. 54

6.8 2D projection for the 3 maps. Left: ground truth map obtained with terrestrial
laser scanner. Middle: KP map. Right: map built using scan matching (ICP). . . 58

xviii Figures

7.1 (a) A nano-UAV while flying and globally localizing in an office environment
using our novel sensor fusion approach. (b-c) A qualitative evaluation of the
localization results on recorded sequences. Ground truth pose is marked by black
stars. The rainbow colors encode the time of prediction, with purple marking the
beginning of the sequence and red its end. 62

7.2 System overview. Top: All stacked components on the nano-UAV, ordered from
the top (left) to the bottom (right). Bottom: A visualization of the communica-
tion paths and task distribution between all employed processors and sensors. . 66

7.3 Parallelizing the resampling wheel: Each color represents a core, the current
particles are distributed evenly (here two per core) and then the new particles
are chosen according to where the arrows of the resampling wheel point. 67

7.4 Left: A top view of the dense pointcloud captured with the Z+F Imager 5016
terrestrial laser scanner, which was used solely for GT extraction. The full point-
cloud has 200 million points. Right: The semantically-enriched floor plan of the
lab. Semantic objects of interest are represented using their bounding box and
class ID. Different colors represent different object classes. The semantic infor-
mation was added manually, without a complex measuring or mapping procedure. 69

7.5 A qualitative evaluation of the 8-bit quantized object detection model on 256×
192 input images. 70

7.6 A failed localization scenario due to ambiguity in both geometric and semantic
features. The particles, marked as green dots, are divided between two rooms
with similar properties. The weighted-average prediction is marked with a red
cross. 72

7.7 The 1.5 MB L2 memory on GAP9 is used for code and data. 73

8.1 Top: two robots during one experimental run when robot A detects robot B. Bot-
tom: localization of robot B in the same run using 3 methods; prediction, color-
coded for time, is plotted against ground truth position (black). Two failures,
using non-collaborative MCL and Prorok et al. [114], and a successful conver-
gence after 20 s with our collaborative localization approach (Compress++). . . 76

8.2 (a) An illustration of an experimental run up to the first detection event. (b) A
run where robot B has no particles around its truth position at the time of detec-
tion (left), followed by reciprocal sampling (center) and successful localization
(right). 78

8.3 The robotic platform used in the evaluation. 82
8.4 Environments have varying degree of geometric symmetry and feature richness.

The area highlighted in red was reconstructed in our lab for real-world evalua-
tion. The three maps are to scale; the LiDAR range, 12 m, is marked in blue. . . 83

8.5 The success rate of all methods for each of the environments for robot B. 84
8.6 The fraction of runs whose current pose estimation of robot B is below con-

vergence threshold. The time t = 0 is synchronized by the arrival of the first
detection message from robot A. 86

8.7 The behavior of different distribution compression methods on different data
points formations. 88

Tables

4.1 Algorithm parameters . 26
4.2 Evaluation of the performance for each sequence for the corridor scenario, using

the sparse map with 300 particles. We report ATE after convergence as angular
error in radians / translational error in meters, and the time to convergence in
seconds. In parentheses, the length of the sequences in seconds. 27

4.3 Evaluation of the performance for each sequence for the mostly static environ-
ment scenario, using the sparse map with 300 particles. We report ATE after
convergence as angular error in radians / translational error in meters, and the
time to convergence in seconds. In parentheses, the length of the sequences in
seconds. 27

4.4 Evaluation of the performance for each sequence for the corridor scenario, using
the GMapping map with 300 particles. We report ATE after convergence as an-
gular error in radians / translational error in meters, and the time to convergence
in seconds. In parentheses, the length of the sequences in seconds. 29

4.5 Evaluation of the performance for each sequence for the mostly static scenario,
using the GMapping map with 300 particles. We report ATE after convergence
as angular error in radians / translational error in meters, and the time to con-
vergence in seconds. In parentheses, the length of the sequences in seconds. . . 29

4.6 Average inference time in ms for the sensor model on the NUC as a function of
the number of particles. 30

5.1 Semantic stability scores for different detected object classes computed on se-
quences T1-T5. 40

5.2 Algorithm parameters . 40
5.3 Evaluation of the performance on sequences recorded all across the second floor

in the span of several weeks. We report ATE after convergence as angular error
in radians / translational error in meters, and the success rate. 42

5.4 ATE for tracking on a subset of sequences recorded all across the second floor
in the span of several weeks. The particle filter was set to adaptive 1,500-5,000
particles for AMCL and a fixed 1,500 particles for MCL and SMCL. Angular error
in radians / translational error in meters. 42

5.5 Performance on 11 sequences recorded all across the second floor in the span of
several weeks. A run was considered successful if the algorithm converged to the
ground truth in the first 95% of the recording and remained localized until the
end of the sequence. Angular error in radians / translational error in meters. . . 44

xix

xx Tables

5.6 Runtime for HSMCL, with 10,000 particles. The Yolov5s results are for inference
on a single camera. 44

6.1 Algorithm parameters . 56
6.2 Computed metrics for the two constructed maps compared to the map obtained

with a FARO 3D scan. KP was constructed based on known poses from infras-
tructure, and ICP was constructed with poses extracted from 2D LiDAR ICP. . . . 57

6.3 Evaluation of the map construction quality through long-term localization per-
formance. The success rate for all maps on all reported sequences is 100%. We
report ATE in [rad/m] format for 10 sequences recorded all across our lab in the
span of nine months. 59

6.4 Baseline comparison for long-term localization on the ground truth map. We
report success rate and ATE in [rad/m] format for 10 sequences recorded all
across our lab in the span of nine months. 59

7.1 Average precision(AP) (IoU=0.50) scores for the test set, confidence TH 0.2, IoU
TH 0.5 . 70

7.2 Algorithm parameters . 71
7.3 Evaluation of the approaches on recordings S1-S10 with 4096 particles. Top:

Absolute trajectory error in meters. Bottom: convergence time in seconds. 71
7.4 Execution time, worst-case execution rate, and resulting processor load for single-

and multi-core implementations (where present). 73

8.1 Algorithm Complexity. N is the number of particles. K is the number of clusters
for Prorok et al. and K-means, and the number of points selected by standard
thinning. 81

8.2 Common MCL parameters . 83
8.3 Baseline comparison of global localization performance for robot B. We report

success rate, convergence time in seconds (top) and ATE in [rad/m] format (bot-
tom). ATE is not reported when all runs resulted in failure. 85

8.4 Runtime cost in milliseconds for one update step of filters with 10000 particles. 87

Chapter 1

Introduction

Robot localization is the task of estimating where a robot is located with respect to its environ-
ment. Localization is central element in the autonomy of mobile robots, and lies the foundation
for more complex tasks such as navigation and planning. When robots are expected to collabo-
rate, with other robots or humans, it is important to have a predefined global frame, such as a
map. When localizing using a given map, the estimated poses or the desired goal poses can be
shared and understood by other team members. Using a map to navigate in a dynamic, human-
occupied environment is a challenging task, due to changes the environment undergoes during
long-term operation. Floor plans, which represent static structural elements such as walls, can
be utilized to avoid continuous map updates triggered by a changing environment. They are
also readily-available when deploying a robot in an new facility. However, the sparse geometric
information contained in floor plans can lead to localization failure in the presence of geometric
symmetry, as occurs with highly-repetitive environments.

In this doctoral dissertation, we address several scientific challenges, working towards ro-
bust long-term localization in changing, human-oriented environments using floor plans. We
explore sources of information that can be used to improve on the conventional geometry-based
localization approaches. We propose methods of exploiting semantic information for the task
of global localization, drawing our inspiration from human navigation, and how humans can
efficiently adjust to drastic changes in the environment. We present fusion strategies for in-
tegrating information coming from different sensors or perception models. We suggest floor
plans as a powerful prior for both long-term localization and mapping. Finally, we verify that
our proposed research is also suitable for robotic platforms with constrained resources.

1.1 Motivation

The research was motivated by the Harmony project,1 which aims to enhance healthcare by
introducing robust and safe autonomous robotic mobile manipulation. These mobile robots
will operate in human-centered environment, assisting healthcare workers with logistic tasks.
This EU-funded project, brought together several universities and industry partners, each con-
tributing to a specific component in the workflow. At that time, I was part of the University of
Bonn, and we were tasked with providing the localization and mapping modules, which served

1https://cordis.europa.eu/project/id/101017008

1

2 1.2 Thesis Overview

(a) (b)

Figure 1.1. The early prototype of the ABB platform for mobile manipulation designed for project Harmony.

as the foundation for more complex robotic tasks, such as navigation, planning, manipulation
and human interaction.

According to the scope of the project, we focused our research on indoor global localiza-
tion. We were also assured that floor-plans would be available for the buildings in which we are
expected to operate, therefore we embraced it as a prior. Since we targeted human-oriented en-
vironment, we decided to consider textual and semantic cues that are prevalent in such spaces.
The robotic prototype was a ground robot (Fig. 1.1), leading us to restrict the localization prob-
lem to a 2D plane, or multiple parallel 2D planes in case of multi-story buildings. As the most
foundational component in the workflow, we prioritized robustness over accuracy. Addition-
ally, we considered map representations that are easily editable by non-expert humans, at the
request of our clinical partners.

1.2 Thesis Overview

The structure of the dissertation is as follows: In the next chapter we provide an overview of
the research about single robot localization, with emphasis on long-term localization and the
usage of floor plans. In Sec. 3, we describe the engineering efforts that laid the foundation
for our scientific research. In the following chapters (Sec. 4 - Sec. 8) we present our research,
focusing on long-term localization in floor plans, which was completed and published.

We introduce long-term localization exploiting textual information in Sec. 4, inspired by
the usage of textual cues in human navigation. We explore scenarios that contain quasi-static
changes, such as closing and opening of door, as well as the highly symmetric environment

3 1.2 Thesis Overview

of a long corridor. We show that incorporating textual information into a MCL framework
significantly increases the robustness. Our work on text-guided MCL has been published in
Zimmerman et al. [170].

We extend the work to robust localization using semantic cues in user annotated abstract
semantic maps in Sec. 5. With the knowledge that we target human-oriented environments,
we again borrow from how humans localize, and exploit spatial relationships between semantic
objects to describe places. We provide a user-friendly, easily-adjustable representation for se-
mantic maps that can be hand-annotated and does not require a dedicated mapping procedure.
We demonstrate robust localization in floor plans spanning two floors of the IPB lab building,
including previously unseen areas. Our work on semantic localization has been published in
Zimmerman et al. [171].

We propose an approach for 3D metric-semantic mapping for long-term localization in
Sec. 6. Building on the idea of semantic localization, we present an automated procedure
for acquiring these semantic maps using 3D object detection from monocular camera, coupled
with a complementary localization approach that relies solely on vision sensors. We address
the uncertainty of the 3D detection model by learning the characteristic errors, and integrate
it into our probabilistic mapping and localization framework. We evaluate our approach on a
dataset spanning across 9 months, consisting of dynamic obstacles and structural changes. Our
work on 3D metric-semantic mapping has been published in Zimmerman et al. [172].

We address the challenges of localization under resource constraints in Sec. 7. To convince
ourselves that semantic localization is a viable solution for robots regardless of their size, we
adapt our approach to run onboard a nano-UAV with constrained resources. We optimize and
adjust our semantic-guided localization to execute on ultra-low-power processor with miniatur-
ized, short-range sensors and low resolution camera. We establish that semantic localization
can be deployed on nano-UAVs and successfully localize in full-scale environments. The content
of this chapter covers two publications, Müller et al. [97] and Zimmerman et al. [174].

In Sec. 8 we tackle collaborative localization, in which robots help each other localize by
exchanging their belief upon detecting each other. We explore a technique to minimize the
computational and communication cost of exchanging and integrating beliefs to improve the
localization robustness of a team of robots. We implement and analyze several baselines, in-
cluding seminal works, and verify the advantage of our proposed approach across multiple
environments in simulation and the real world. This work is under review for IROS 2024.

Finally, in Sec. 9 we conclude our work and pinpoint major obstacles in the path of indoor
localization.

The main contribution of this dissertation is improving the robustness of long-term indoor
localization in human-oriented environments. We achieve that goal through several means:

1. Utilizing readily-available floor plans as a prior for global localization.

2. Integrating semantic and textual cues into a traditional geometry-based localization frame-
work through novel sensor models.

3. Enriching floor plans with semantic information that supports long-term localization,
based on analysis of their stability.

4. Leveraging robot collaboration to boost robustness of single-robot localization.

5. Deploying on various robotic platforms, with a wide range of sensing and compute capa-
bilities, to verify our semantic, human-inspired localization paradigm is generally appli-

4 1.2 Thesis Overview

cable to robots.

Chapter 2

Background

Localization of mobile platforms is a well researched area in robotics [18, 146, 167], and is
often classified under state estimation. The state of a robot is the collection of all aspects of the
robot and the environment it operates in that can have influence on the future, such as its pose,
the configuration of its joints, its velocity or the functionality of its sensors. State estimation
aims to recover quantities from sensor data which are not directly observable.

Probabilistic state estimation approaches utilize Bayesian statistics to compute belief dis-
tributions, which reflect the robot’s internal knowledge about its or the environment’s state.
Probabilistic methods that estimate the robot’s state have proven to be exceptionally robust,
and include the extended Kalman filter (EKF) [68], Markov localization by Fox et al. [39] and
particle filters often referred to as Monte Carlo localization (MCL) by Dellaert et al. [28]. These
seminal works focused on localization using range sensors such as 2D LiDARs and sonars, as
well as cameras. For cameras, the global localization task is framed under the visual place
recognition framework, for which multiple algorithms have been proposed [7, 27].

The term localization is used to describe three main problems:

• Global localization - an agent needs to infer its pose in a pre-defined global coordinate
system, when the initial pose is unknown [39, 28].

• Pose tracking - an agent attempt to correct its odometry drift starting from a known po-
sition in a global frame [13, 68].

• Relative positioning - an agent estimates the relative poses of other agents or object in its
own coordinate system [54, 81].

Our research focuses on global localization, extending and improving on the Monte Carlo lo-
calization framework.

2.1 Monte Carlo Localization

Monte Carlo localization(MCL) [28] is a probabilistic method for estimating a robot’s state xt

given a map m, sensor measurements zt and odometry inputs ut . The MCL algorithm has three
main components: the motion model, observation model and resampling, as seen in Fig. 2.1.

As we operate in an indoor environment, the robot’s state xt = (x , y,θ)⊤ is given by a
2D position and the orientation θ ∈ [0, 2π). In our case, for a range sensor, an observation

5

6 2.1 Monte Carlo Localization

Figure 2.1. The logic flow of the Monte Carlo localization algorithm.

(a) (b) (c) (d)

Figure 2.2. Illustration of the Beam-End observation model. (a) An occupancy grid map and two particles
representing the hypotheses about the robot’s 2D pose. (b) A range measurement composed of 8 beam
end points in the robot’s coordinate system. (c) The measurement transformed to the global frame based
on each particle’s pose hypothesis. (d) The EDT of the map, overlaid with the positions of the transformed
scans.

z is composed of K individual range measurements(beams) zk and the map m is represented
by an occupancy grid map [94]. Occupancy grid maps are a discrete representation of the
environment, where each cell in the grid is a random variable corresponding to whether the
cell is an occupied or a free space.

We use a particle filter to represent the belief about the robot’s state p(xt | zt , m), where each
particle si

t =
�

xi
t , wi

t

�

is represented by a state xi
t and a weight wi

t . The proposal distribution
p(xt | xt−1,ut) is sampled when a new motion prior ut is available, by applying the prediction
step

p (xt | zt−1) =

∫

p (xt | xt−1,ut) p (xt−1 | zt−1) dxt−1, (2.1)

where we assume the current state xt only depends on the previous state xt−1 and the odometry
input ut . In the second step we update the prior distribution by applying the observation model

7 2.1 Monte Carlo Localization

p (zt | xt , m), which incorporates information obtained by the sensors into the state estimation

p (xt | zt , m) =
p (zt | xt , m) p (xt | zt−1)

p (zt | zt−1)
. (2.2)

For every observation, each particle is weighted according to the likelihood of the observation
given its state, i.e., wt = p(zt | xt , m). After assigning to each particle a new weight based on
the observation, we resample the particles. In the resampling step, particles with high weight
are likely to be sampled and particles with low weight are discarded. Repeating this process
allows us to focus on the strong hypotheses, until the particle filter converges to a single pose
estimation. Even in cases where multiple hypotheses exist due to geometric symmetries, even-
tually the filter will collapse to one mode due to sensor and odometry noise, and issues arising
from float precision.

In our implementation of a motion model for holonomic robots, we decompose the motion
prior ut into three components, forward, sideways and rotation, ut = (f , s, r). The odometry
noise σodom ∈ R3 is assumed to be Gaussian and is applied separately to each component of the
odometry

ũt =





f̃
s̃
r̃



=





N (f ,σodom,f)
N (s,σodom,s)
N (r,σodom,r)



 . (2.3)

As described in Eq. (2.1), the particle’s pose xt is updated based on the noised motion prior
ũt = (f̃ , s̃, r̃) and the previous state xt−1





x t

yt

θt



=





x t−1 + f̃ cosθt−1 − s̃ sinθt−1

yt−1 + f̃ sinθt−1 + s̃ cosθt−1

r̃ + θt−1



 . (2.4)

For range-based localization, a common choice of an observation model for the update step
(Eq. (2.2)) is the beam-end model [146]

p(zk
t | xt , m) =

1
p

2πσobs

exp

�

−
EDT(ẑk

t)
2

2σ2
obs

�

, (2.5)

where ẑk
t is the end point of the beam in the map m, and EDT is the Euclidean distance trans-

form [37] that indicates the distance to an occupied cell in the occupancy map. σobs is the mea-
surement noise, reflecting inaccuracies in the sensor. The procedure is illustrated in Fig. 2.2.
First, we start with an occupancy grid map m, a particle’s pose xi

t and an range measurement
zt , where zk

t corresponds to a single range measurement annotated at a green point. A range
measurement zk

t is a point relative to the robot’s pose, and given a particle’s pose xi
t , we con-

vert it to an absolute pose ẑk
t in the global coordinate frame. We then use the position of the

transformed point ẑk
t to sample the EDT. As expected from range sensors, this end point should

correspond to an occupied cell in the grid map, which is a equivalent to a low-valued cell in the
EDT.

Eq. (2.5) computes the weight of a particle given a single beam zk
t , therefore we must con-

sider how to compute the weight for the full observation zt . The product of likelihood model
assumes scan points are independent of each other. With the high angular resolution of modern
LiDARs this assumption does not hold. To address the overconfidence problem of the product

8 2.2 Long-Term Localization

Figure 2.3. Visualization of the low-variance resam-
pling method, where particles are sampled at fixed
intervals based on their accumulated weight. Parti-
cles with high weight, such as w3 are sampled mul-
tiple times, while particles with low weight, i.e. w1,
are more likely to be skipped.

of likelihood model, we decided to use the product of experts model [90], where the weight of
each particle is computed as the geometric mean of all scan points

p(zt | xt , m) =
K
∏

k=0

p(zk
t | xt , m)

1
K . (2.6)

For the resampling, we use low-variance resampling [146], which is visualized in Fig. 2.3.
For N particles, we sample at a fixed interval 1

N based on the accumulated weight wi
acc =

∑N
i=1 wi . To estimate the robot’s pose, we compute the weighted average of all particles in

the filter.

2.2 Long-Term Localization

A problem arises when dynamic objects are detected in the scans and observations cannot be
correctly matched to a given map. Outlier rejection can be utilized for handling dynamics in the
context of state estimation, such as robust kernels proposed by Chebrolu et al. [21]. Thrun et al.
[146] also incorporate the appearance of unexpected objects in the sensors model, by modeling
it as a component of the sensor noise. Dynamic objects would result in measurements that are
shorter than the true range, which can be determined using ray casting. They point out that
the likelihood of sensing unexpected objects decreases with range, and can be described by an
exponential distribution. Another aspect of scene dynamics is changes that are longer-lasting
and not as fast to appear and disappear like moving objects. These long-lasting changes can
be closing and opening of passages, transferring large packages from one place to another and
shifting of large furniture. Since those changes are more constant, standard filtering techniques
will fail to remove them.

Stachniss and Burgard [141] address the case of slow-dynamic environments, specifically
the case of closing and opening doors. They first learn the different environmental configura-
tion by observing the environment at different times and clustering sub-maps that represent
possible environmental states. They extend the standard MCL algorithm, by also considering
the configuration of the environment as opposed to using a static map.

9 2.3 Localization in Floor Plans

Several localization works focus on the challenge of seasonal changes in an environment [151,
88]. However, these methods require a sequence of images to localize, by matching them
against a database of pre-recorded sequences. A different approach by Krajník et al. [65] tries to
capture periodic changes by representing every cell in the occupancy map as a periodic function.
This approach to life-long mapping and localization is based on the assumption that changes to
the environment are caused by processes which are (pseudo-) periodic. In standard occupancy
grid maps, each cell stores a single value corresponding to its probability of it being occupied.
With frequency-enhanced maps, each cell stores a probabilistic function of time composed of
several harmonic components. To estimate these parameters, long-term observations are an-
alyzed using non-uniform Fourier transform. However, these methods require a sequence of
images to localize, by matching them against a database of pre-recorded sequences. In our
work, we do not assume to have prior knowledge on changes that may occur in the map, nor
do we require long sequences of images to match against.

To tackle more general semi-permanent changes, Valencia et al. [148] suggest using multiple
static maps, each corresponding to a different time scale. They localize in NDT-occupancy grid
maps [129], where each cell holds a occupancy probability function, resulting in a map that is
piece-wise continuous instead of discrete. NDT-MCL handles quasi-static changes by construct-
ing short-term maps and alternating between localization with a known map, and mapping with
a known pose. Biber and Duckett [10] extend the concept of a map from a static, geometric
description to a spatio-temporal representation, inspired by the human memory. They empha-
size the plasticity-stability trade-off, between updating the map based on new observations and
preserving the old ones. They define a timescale parameter that determines the decay rate for
old measurements, and allows to classify observations as outliers, while maintaining several
maps over multiple timescales. They track both stationary and non-stationary elements of the
environment using robust statistics.

Sun et al. [143] account for dynamic obstacles by using a distance filter, such that obser-
vations that are closer than the closest obstacle in the map are rejected as outliers during lo-
calization. Localization is implemented using a particle filter with additional scan matching to
improve the accuracy. The scan matching also provides a score which is used as confidence
measure, which can help in deciding whether to update the map. The occupancy grid map is
dynamic and is modeled by an HMM. Similarly, in the work of Tipaldi et al. [147], a Hidden
Markov model [5] is assigned to every grid cell, creating dynamics occupancy grids that can
be updated. The state transition probabilities are computed using the EM algorithm, and the
localization is implemented using the a Rao-Blackwellized particle filter (RBPF)[46]. These
methods require continuous update of the map, while we handle changes without altering the
map.

2.3 Localization in Floor Plans

Localization in feature-rich maps, often constructed by range sensors, is well-established [93].
However, there are advantages for using sparse maps such as floor plans for localization. We
consider floor plans to be sparse as they lack much of the detailed geometric knowledge con-
tained in sensor-based maps, and can be shortly summarized as a list of geometric primitives
rather than the explicit occupancy grid maps [93]. Floor plans are often available for build-
ings and do not require prior mapping with LiDARs or other range sensors. Their sparsity also
means they do not need to be updated as frequently as detailed maps that include possibly mov-

10 2.3 Localization in Floor Plans

ing objects, such as furniture. Their downside is their lack of details, which can render global
localization challenging when faced with multiple identical rooms. Another issue is a possible
discrepancy between the plans and the construction [13].

Boniardi et al. [13] exploit floor plans to represent the immutable features of a building,
as their methods switches between pure localization and pose graph estimation. In their work,
Boniardi et al. [13] show robustness to structural changes, but do not address the challenge of
dynamic obstacles.

Li et al. [72] tackle the issue of improper maps - from inaccurate floor plans to hand-drawn
maps, by introducing a new state variable, scale, to address the scale difference between the
map and the observed structures. For every step of the localization, they look at local sub-map,
and the measured LiDAR ranges are associated with the nearest occupied cells in the sub-map. A
cost function is then minimized to infer the state variables, (x , y,θ , s), using stochastic gradient
descent [126].

Watanabe et al. [157] also address the discrepancies between floor plans and the constructed
buildings, as well as the presence of dynamic objects. By extracting planes from 3D LiDAR
scans, they filter outliers, and ensure the scan contains only the points derived from walls and
columns. They estimate the transformation between the scan and the floor plan using gener-
alized ICP [133] framework, which can also overcome inconsistencies between the floor plan
and the real structures.

Winterhalter et al. [160] acquire full 6 DoF pose estimation in floor plans, combining RGB-D
images and highly accurate visual-inertial odometry. Their approach is based on MCL, optimized
by KLD sampling [38], a technique which adjusts the number of particles by bounding the
approximation error introduced by the sample-based representation of the particle filter. They
apply the Beam-End model [146] by randomly sampling K range measurements from the dense
depth images. They model objects that are not present in the floor plan by uniform distributions,
and experimentally estimate the parameters by evaluating the measurement error on posed
depth images collected in their office environment. All approaches enable tracking but not
global localization.

Maffei et al. [79] compute the Free-Space Density(FSD) [78] of floor plan to globally localize
using RGB-D images. Similarly to the EDT, the FSD of a given position in space is a measure
of the free-space surrounding such position, which is computed using a circular kernel. They
propose a method of localizing in an incomplete local map by estimating an interval of possible
FSD values.

Wang et al. [154] annotate floor plan corners as landmarks, and match them against corners
extracted from a 3D LiDAR scan. They present a factor graph-based localization approach that
considers the uncertainty of the landmarks, and a robust data association method to match
the detected corners with the annotated corners in the floor plan. As they only consider long
vertical edge features extracted from the 3D LiDAR scan, they can filter dynamic objects and
some of the permanent objects that are excluded from the floor plan, such as furniture.

Both Boniardi et al. [14] and Howard-Jenkins and Prisacariu [55] align room layout inferred
from an image with the floor plan of a scene to globally localize. While Boniardi et al. [14]make
assumptions on the scene’s geometric to extend the 2D floor plan to a 3D model, Howard-
Jenkins and Prisacariu [55] learn a general prior over 2D floor plans, implicitly hallucinating
3D structure across the entire plan. While these works address the difficulties of localizing in
floor plans in different ways, their exclusive reliance on geometric information is not sufficient
for global localization in a highly repetitive indoor environments.

Chapter 3

Robots and Infrastructure

The goal of robotics research is to design, assemble and evaluate intelligent systems than can
assist humans in a variety of tasks. The field of robotics is applicative and practical, and success
is measured when robotic systems display the desired behavior in the wild. Knowing robotics
is knowing your robots, and working with robots is essential to fulfilling the purpose of a PhD
- becoming an expert in the field.

While for localization the scientific contribution is mostly algorithmic in nature, such re-
search cannot be conducted without robots. The approaches proposed in the following chapters
could not be properly developed and evaluated in the absence of real robots - from collecting
custom datasets to onboard deployment and real-life testing.

In this chapter, we present the engineering and infrastructure work that served as the
foundation of our scientific research. We present an infrastructure for accurate global local-
ization, providing ground truth poses with which we evaluated our methods. We detail the
trial-and-error involved in developing a robotic platform, a critical part in enabling the auton-
omy of robots in real-life environments. We introduce the sensor setups that were used in our
work (Fig. 3.12), and explain the calibration procedure required to describe all sensors in the
same coordinate system.

3.1 Global Localization Infrastructure

Accurate, dense ground truth pose is essential for many robotics research domains. Naturally,
when developing localization algorithms, ground truth poses are crucial for evaluation. How-
ever, these poses are also useful for navigation, planning and manipulation tasks. The use of
salient visual features for localization has been long established [3, 18, 162]. A gold stan-
dard for robot localization is the AprilTag [104], a visual fiducial system. The target tags
are open-sourced1 and easy to manufacture, with near-optimal fiducial design and coding sys-
tem [17, 104]. The detection software for the target is also open-sourced2, and is sufficiently
robust to changing lighting conditions and a wide range of viewing angles. The AprilTag de-
tector detects the 2D image coordinates of the marker’s corners, as well as the marker’s ID
and a Hamming error. Assuming a calibrated camera, this allows us to compute the marker’s
precise 3D pose relative to the camera via spatial resection [139, 130], also known as the PnP

1https://github.com/AprilRobotics/apriltag-imgs
2https://github.com/AprilRobotics/apriltag

11

12 3.1 Global Localization Infrastructure

algorithm [61, 69]. Spatial resection in photogrammetry refers to estimating the six degrees of
freedom, (x , y, z,θ ,φ,ψ), encoding the 3D pose of a single image, based on known 3D control
points. These parameters are computed by finding the correspondence between the known 3D
control points and their respective 2D locations in the image. The size of AprilTag target is
known prior to installation, and therefore can be used to set the 3D control points. When the
3D coordinates of the targets are known, we can estimate the absolute pose of the camera in
our global coordinate system.

3.1.1 Localization infrastructure - IPB Lab

For the research conducted in the university of Bonn, a global localization infrastructure was
installed in the first and second floor of the IPB lab. The AprilTags were assembled manually,
and installed in a grid-like structure across the ceilings of all rooms. The markers were aligned
precisely by projecting a laser beam across the ceiling and placed in fixed intervals, as shown
in Fig. 3.1. The markers were densely placed, at around 1 tag/m2, with more than 300 tags
covering areas of interest in the lab.

To extract the 3D coordinates of the AprilTag markers, we scanned the lab with a high-
precision terrestrial laser scanner (TLS). Using the ICP algorithm [1], we combined over 40
scans into a large pointcloud of 1.6 billion points. Once all markers were present in the same
coordinate system, we selected a slice of the pointcloud that contained only the ceiling. Since
the TLS provides extremely dense pointclouds, it was possible to detect the AprilTag markers
from the pointcloud by using orthographic projection. In orthographic projection, a 3D object
is projected to 2D without perspective distortion, so parallel lines are preserved. Therefore, we
were able to to automatically detect the 3D coordinates for the markers in a unified frame.

A wide-angle up-looking camera was chosen for detecting the tags, capturing multiple tags
in every frame (Fig. 3.2). The AprilTag detection code was wrapped in a ROS node, and while
the ground truth pose estimation was mostly an offline procedure, it can also run onboard
our ground robots at 10 Hz. Once the 2D corners and marker IDs were detected in an image,
spatial resection was implemented using the BACS library [131]. While popular libraries like
OpenCV [15] include implementations of spatial resection for pinhole model cameras, BACS
also offers support for fisheye (or equi-distant) camera models and provides the covariance
matrix for the pose. Since multiple markers were detected at every frame, a least squares
optimization was performed to compute the 3D pose. With our latest robotic platform, the
upgraded Dingo (Sec. 3.2.2), we achieved a sub-centimeter accuracy for the the ground truth
pose estimation.

3.1.2 Localization infrastructure - PBL Lab

For the research conducted in ETH-Zurich, a global localization infrastructure was installed
in the PBL lab. Due to hardware related constraints, it was not possible to have a dedicated
onboard camera for ground truth pose extraction. In this case, the front-facing camera was
utilized also for ground truth pose estimation, and the markers were placed on the walls instead
of the ceiling.

148 tags were manufactured and installed in an area of 280 m2. Since the camera had a
limited FoV of 60o, we decided to place the markers in a 2×2 grid, to increase the probabilities
of detecting multiple tags in a single frame. Examples of the AprilTag markers detected from
the onboard low-resolution camera can be seen in Fig. 3.3.

13 3.1 Global Localization Infrastructure

(a) (b) (c) (d)

Figure 3.1. The making and installation of AprilTags in IPB lab. (a) Hand-made AprilTag marker. (b)
Laser pointer beam used to align the markers. (c) Geodetic tripod with a level. (d) Installing the markers
along the IPB lab’s corridor.

(a) (b)

Figure 3.2. The localization infrastructure in IPB lab. (a) A top-view of the sub-sampled pointcloud
constructed from combined scans. (b) Multiple detected AprilTag markers in a frame captured by the
up-facing wide-angle camera.

(a) (b) (c) (d)

Figure 3.3. Multiple AprilTag markers detected in each frame in the PBL lab.

14 3.1 Global Localization Infrastructure

(a) (b) (c)

Figure 3.4. The localization infrastructure in PBL lab. (a) Verification against IR tracking system (Vicon)
for the pose estimation pipeline. (b) Specialized training in the Hilti facility. (c) The unified pointcloud
from the PBL lab scans.

Similarly to the procedure performed in the university of Bonn, we scanned the lab with a
high-precision terrestrial laser scanner(TLS) provided by Hilti, and 18 scans were merged using
the ICP algorithm. In order to correctly operate the scanner we underwent training in the Hilti
facility in Schaan.

The extraction of 3D coordinated from the combined pointcloud was slightly more involved
than the one in IPB lab, as the markers were placed on the walls and not on the ceiling. There-
fore, we were not able to cleanly and automatically extract surfaces containing the AprilTags.

Since the front-facing camera was not a wide-angle camera, we were able to utilize the
open-source OpenCV implementation of the PnP algorithm. To verify the correctness of our
pipeline, we combined AprilTag markers with IR markers in a lab equipped with a motion
capture system (Vicon) and compared our pose estimation to the ground truth pose provided
by the tracking system. For the various test points we considered, the errors were around 0.05m.

3.1.3 Calibration infrastructure - IPB Lab

To accurately combine information from different sources, the transformation between the sen-
sors must be known. We refer to the process of find these transformations as sensor calibration.
As we have multiple sensors on our robot platforms (Fig. 3.12), we had to establish a procedure
to efficiently and accurately calibrate our sensors.

The calibration room (Fig. 3.5) of IPB lab was established for that purpose. AprilTag markers
were installed to aid with calibration of cameras and 3D pyramids were mounted on the walls
to assist with LiDAR calibration. The room was scanned with TLS and the 3D coordinates of the
AprilTag markers were extracted. First, the robot is placed in different locations in the room,
while recording from all sensors. Then the sensors are synchronized such that each time stamp
includes a measurement from every sensor. A sequence of multiple synchronized frames is then
matched against the known 3D model of the room, and the transformations between sensors are
extracted in a least-squares fashion. Calibration of the intrinsic camera parameters is performed
prior to this. A detailed description of the calibration process is provided by Wiesmann et al.
[159].

15 3.2 Robots

(a) (b) (c)

Figure 3.5. (a) The calibration room in the IPB lab. (b) Calibration of the YouBot. (c) Calibration of the
Dingo.

3.2 Robots

3.2.1 Kuka YouBot

The Kuka YouBot is a small, omnidirectional mobile robotic platform designed for scientific
research and education. Initially, the YouBot in the IPB lab was equipped with an outdated
depth camera and a pair of 2D Hokuyo UTM-30LX LiDAR sensors. The drivers were installed
on a laptop with Ubuntu 16.04. To comply with the sensor setup of the Harmony project, the
vision sensors were upgraded to include 4 sideways-looking Intel RealSense RGB-D (D455) with
a 360o FoV and a Kinect 2 sensor. Additionally, an up-looking GoPro 5 camera was mounted to
extract the ground truth poses via the AprilTag infrastructure. The GoPro 5 was chosen for its
wide-view and self-stabilizing properties.

However, the Lenovo laptop could not handle the large bandwidth of streaming from all
cameras at 30 Hz, and placing the laptop onboard increased the instability of the sensor mount.
The Intel NUC10i7FNK was chosen as an onboard computer, and was powered from the YouBot
battery using a DC converter. While the NUC could handle the USB bandwidth for camera
streaming, it could not provide power to all connected cameras. Therefore a powered-USB
hub was added to the setup, also supplied by the robot’s battery. The official support for the
YouBot drivers ended with Ubunntu 16.04, but the drivers were adjusted, built from source and
upgraded to Ubuntu 20.04 and ROS Noetic.

The YouBot served as our data collection platform, contributing to several research works,
and also functioned as testing platform for Harmony-related tasks. Since Kuka stopped man-
ufacturing the YouBot, it was difficult to find replacement parts, and custom batteries were
self-made in the university of Bonn. The IPB YouBot began to degrade after 8 years of opera-
tion, and it was time to design the new generation of indoor IPB robots.

3.2.2 Clearpath Robotics Dingo

The Clearpath Robotics Dingo is a small, omnidirectional mobile platform for indoor operation.
We chose it to replace the aging YouBot, for its size, cost and form, which allows to mount a
variety of sensors.

The Dingo was purchased in its most basic configuration - a chassis and an MCU, as shown in

16 3.2 Robots

(a) (b)

Figure 3.6. The initial configuration of the Kuka Youbot platform.

(a) (b) (c) (d)

Figure 3.7. Incremental improvement of the sensor setup of the YouBot. (a) 3D printing of a sensor
mount. (b) An intermediate setup with the Intel RealSense D435 and Intel T265 supported by the 3D
printed mount. (c-d) The final camera setup with 4 Intel RealSense D455, Intel RealSense T265, Kinect
Azure and the up-looking GoPro 5 camera.

17 3.2 Robots

(a) (b)

Figure 3.8. Transitioning from laptop dependency to onboard computation using an Intel NUC.

Fig. 3.9. The official recommendation for a compute platform was the Nvidia Jetson, which was
purchased separately. At the time, drivers were supported up to Ubuntu 18.04/ROS Melodic,
and they were installed on a Nvidia Jetson Xavier AGX, which was powered from the robot’s
battery.

Preliminary testing with the Jetson revealed that it could not handle the large bandwidth
from all cameras. Therefore, we decided to use the Intel NUC again, but no drivers were pro-
vided for this platform. We decided to install Ubuntu 20.04 and ROS Noetic on the NUC, and
again compiled all the drivers from source. This update was partially successful as we could
control the robot with a joystick, but the indicator lights were blinking rapidly, signaling a bat-
tery issue. We investigated the matter and found that the battery status messages format had
changed between the supported ROS version and the version we built from source. To remedy
this, the firmware on the Dingo’s MCU was updated, a convoluted procedure that was remotely
assisted by Clearpath Robotics engineers.

With project Harmony in mind, the sensor mounting for the Dingo was designed. Learning
from the mistakes made with the YouBot, we improved the structure holding the cameras to
offer more stability (Fig. 3.10). To reduce the USB bandwidth, we chose an Ethernet-based
BlackFly S camera for our ground truth extraction. The BlackFly, combined with a wide-angle
lense, proved easier to calibrate than the YouBot’s GoPro. Additionally, 4 sideways-looking Intel
RealSense RGB-D (D455) with a joint 360o FoV were mounted, and a pair of SICK TIM781S
LiDAR sensors.

The Intel NUC proved sufficient for data collection, but for testing localization algorithms
onboard we also made use of the Nvidia Jetson. All sensors and compute platforms were pow-
ered by the board (Fig. 3.11), and required thoughtful wiring work to accomplish.

18 3.2 Robots

(a) (b) (c)

Figure 3.9. The early phases of the Dingo platform. (a) The dingo platform upon arrival, with no sensors
or compute platform. (b) powering the Nvidia Jetson from the Dingo battery (c) First installation of the
Dingo drivers on the Jetson.

(a) (b) (c)

Figure 3.10. Sensor suite design for the Dingo. (a) Mechanical work for sensor mounting. (b) Installing
the LiDAR sensors. (c) Running all drivers onboard.

19 3.2 Robots

Figure 3.11. Electricity diagram for the Dingo.

Hokuyo UTM-30LX
Intel RealSense D-455

GoPro Hero 5 Black
(used only for evaluation)

(a) (b)

Figure 3.12. The final setup of our ground robots, with 2D LiDAR scanners and 4 cameras providing 360◦

coverage. The up-ward facing camera is only used for generating the ground truth via AprilTag detections.
(a) YouBot. (b) Dingo.

20 3.2 Robots

Chapter 4

Textual Information for Robust
Localization

Localization in a given map is a fundamental capability required by most autonomous robots
operating in indoor environments, such as offices or hospitals. These environments are of-
ten populated by people, also undergoing “quasi-static” changes such as closing of doors, ob-
jects temporarily misplaced, or moved furniture that is not reflected in the given map that was
recorded at a different point in time. Such changes, which we refer to as “quasi-static” in con-
trast to dynamic ones such as moving people, result in sensor observations that substantially
differ from the map and can lead to localization failure, as illustrated in Fig. 4.1, where closed
doors in a corridor remove localization cues, which can then lead to ambiguities.

To overcome such localization challenges, readily available sources of information can be
exploited to aid pose estimation. One example is using WiFi signal strength [57] from existing
access points to aid the localization. Another example is using textual information that is part
of the building infrastructure. Textual cues are often used by humans to navigate in the envi-
ronment and are therefore available in most buildings designed for humans. With the recent
advances in deep learning-based text recognition [137], we can reliably and efficiently decode
textual content from images and utilize these hints in our localization approach. Surprisingly,
there exist only a few approaches [26, 117] in the robotics community to exploit text spotting or
optical character recognition (OCR) for robot localization. The main contribution of this work
is a localization framework that integrates text spotting into a particle filter to improve local-
ization. To this end, we build maps indicating the likelihood of detecting room numbers across
the environment, under the assumption that room numbers are rarely change. The locations
with high likelihood for successful detection are then used to inject particles when a known
sign is detected. The textual cues allow us to globally localize with a small number of particles
enabling online performance on mobile robots with limited computational resources. In our
experiments, we show that our approach is able to (i) localize in quasi-static environments, (ii)
localize in an environment with low dynamics, (iii) localize in different maps types – a feature-
less floor plan-like map, and LiDAR-based, feature rich map. Furthermore, our approach runs
online on an onboard computer.

This work, titled "Robust Onboard Localization in Changing Environments Exploiting
Text Spotting" [170], was accepted to Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2022.

21

22

ground truth

without text

with text

Figure 4.1. Top Left: The corridor in which the experiment took place in. Top right: The Kuka YouBot
platform that was used for data collection, equipped with 2D LiDAR scanners and cameras that cover the
complete 360◦ field-of-view we utilize for text spotting. Bottom: The results of of localization in a corridor
with closed doors (indicated by red lines), which are not reflected in the map, with and without textual
cues.

23 4.1 Related Work

4.1 Related Work

The problem of localization using CAD floor plans has been seldom addressed in literature,
and an overview of the approaches is given in Sec. 1. To assist global localization, additional
modalities were considered.

Fingerprinting, a common indoor positioning technology based on signal strength data, is
also applicable for robot localization. Xu et al. [164] propose acoustic-based wide-area local-
ization in floor plans utilizing Bluetooth measurements and the built-in MEMS sensors of a
smartphone. However, they rely on an external infrastructure of acoustic anchors and their
localization accuracy is insufficient. Miyagusuku et al. [89] explore ways in which different
WiFi access points can be combined in a joint distribution, given that every access point has
its own likelihood map constructed as function of the signal strength. Ito et al. [57] use WiFi
signal strength to estimate the initial pose, based on signal strength maps that were previously
constructed, and then track the pose in a floor plan using RGB-D images. Hahnel et al. [49]
present an approach for both mapping and localization based on RFID technology. They provide
a probabilistic model for mapping RFID tags into occupancy grid maps, and then show how the
RFID detection can improve upon LiDAR-based localization. Joho et al. [60] suggest a sensor
model for RFID that combines the likelihood of detecting a tag at a given pose and the likeli-
hood of receiving a specific signal strength. We take inspiration from these papers for building
our text likelihoods/priors but apply it for a different modality. Unlike these approaches, our
text-augmented floor plans can be also constructed by hand, and does not require a dedicated
mapping process.

Considerable amount of information is helping humans navigate, from publicly available
maps to direction signs. Vysotska and Stachniss [150] use publicly available maps, like Open
Street Map, to localize with LiDAR in outdoor environments. While humans rely often on textual
cues to navigate, exploitation of text for localization is not commonly explored. It was suggested
by Radwan et al. [117] but considers outdoor environment and usage of Google Maps, while
our approach tackles indoor environments. Another implementation of text spotting in a MCL
framework is presented by Cui et al. [26], who rely on text detection as its only sensor model.
This differs from our work, which uses a 2D LiDAR-based sensor model and only leveraged text
to improve global localization. The advantage of our method is that we are able to localize
even in the absence of textual cues. Furthermore, in the work of Cui et al. [26], text spotting
is trained specifically for spotting parking space numbers, while we use a generic, off-the-shelf
text spotting that performs well on a variety of textual cues [137].

4.2 Approach

Our goal is to globally localize in an indoor environment that can undergo significant structural
changes using 2D LiDAR scanners, cameras and wheel odometry. In sum, we achieve this by
building upon the Monte Carlo localization framework. To aid with global localization and
recover from localization failures, we use a text spotting approach inferred from camera images
to detect room numbers of an human oriented environment. To integrate the textual cues, we
create text likelihood maps, which indicates the likelihood of detection of each room number
as a function of the robot position. We inject particles corresponding to the locations suggested
by the text likelihood.

24 4.2 Approach

(a) (b) (c)

Figure 4.2. Particle injection with text spotting. (a) The text likelihood maps, based on the collected data,
indicate the locations in which detection of each room number is likely. The likelihood maps are used for
particle injection when a detection of a known text cues occurs. (b) Before detection, we have a situation
with multi-modal distribution of particles (shown in red) as the corridor with closed doors is a symmetric
situation that cannot be resolved just using the LiDAR scans. (c) With the first text detection (indicated
by the green cross), we can inject new particles inside the bounding box extracted from the text map. We
replace low weighted particles by new particles (shown in blue) that are uniformly distributed inside the
corresponding bounding box of the text detection (shown by a dashed green line).

4.2.1 Text Spotting

Text spotting can traditionally be split into text detection, i.e., localizing a bounding box that
includes text, and text recognition, i.e., decoding the image patches extracted from the bound-
ing boxes, to text. Text recognition is essentially a classification problem, therefore only the
characters that are introduced during training can be inferred. The last decade’s progress in
object detection and text recognition allows us to use deep learning models for text spotting.

For the text spotting, we used the differentiable binarization text detector proposed by Liao
et al. [73]. The backbone is a ResNet18 [51] neural network, which is powerful but also efficient
enough to allow for fast inference.

The text recognition model is based on the work of Shi et al. [137], who proposed the
CRNN architecture, that combines convolution, recurrent and transcription layers. This model
can handle text of arbitrary length, is end-to-end trainable without requiring fine-tuning and is
relatively small while maintaining accuracy. We use four cameras, with a coverage of 360◦, to
spot text.

25 4.3 Experimental Evaluation

4.2.2 Text Likelihood Maps

To incorporate text spotting into the MCL framework, we build a likelihood function of where
the robot might detect a specific room number by collecting data that included image streams
and the robot’s pose. We apply the text spotting pipeline on the recorded images, assuming that
the textual cues we are interested in follow a specific pattern (“Room X”) but it can generally
be used for any textual content of interest.

We compute 2D histograms for each room number, of locations where successful detec-
tions were made. The sampled locations give a sparse description of the text spotting likeli-
hood, which we refer to as text likelihood maps (Fig. 4.2). As we are interested in a dense
representation for the likelihood, we chose a simple strategy – for each text tag, we compute
an axis-aligned bounding box around all sampled locations where the detection rate is above
threshold τ for this textual cue. We approximate the likelihood of text detection with a uniform
distribution within the bounding box.

4.2.3 Integration of Textual Cues

When a room number is detected, we store the room number and from which camera it was
observed. Upon first detection, we inject particles into the corresponding area of the map
(Fig. 4.2). If the last detection was made from the same camera and of the same room number,
we do not inject particles. The number of particles injected is defined by the injection ratio, ρ,
the number of injected particles divided by the total number of particles.

In the injection process, for a particle filter with N particles, we first remove ρN particles
with the lowest weights as they represent the least likely hypotheses, and then inject an equal
number of particles uniformly into the bounding box corresponding to that room number. The
orientation oi of the injected particle si

t depends on which camera spotted the text. We assumed
that the camera detecting the text facing the room number at perpendicular angle, because a
perpendicular angle usually provided the highest detection probability. Thus, we inject particles
with corresponding orientation and add Gaussian noise, σinject = 0.05. The injection ratio ρ
was chosen to be 0.5. A very high injection ratio could lead to localization failure if a wrong
room number is detected. A low injection ratio has limited impact on the pose estimation.
Therefore, the injection rate must be correlated to the confidence one has in the text prediction.
The injection of particles is done asynchronously, whenever a textual cue is available, and new
particles are initialized with weight wi = 1

N .
The particle injection can be seen as sampling from a proposal distribution generated by the

text spotting model. This technique allows delocalized robots to get new hypotheses based on
the detection, enriching their particle filters with the proposed poses, and is sometimes referred
to in literature as reciprocal sampling [112].

4.3 Experimental Evaluation

The main focus of this work is an efficient, robust localization algorithm that leverage text in-
formation to better handle significant changes in the environment. We present our experiments
to show the capabilities of our method and to support our claims, that we can (i) localize in
quasi-static environments, (ii) localize in an environment with low dynamics, (iii) localize in
different maps types – a featureless floor plan-like map, and LiDAR-based, feature rich map.
These capabilities can be run online on our robot.

26 4.3 Experimental Evaluation

(a) (b) (c)

Figure 4.3. Different maps used in the experiments: (a) floor plan-like map, constructed by horizontally
slicing a 3D point cloud captured with a FARO Focus X130 terrestrial laser scanner and (b) LiDAR-based oc-
cupancy grid map from GMapping [46] that was aligned to the FARO scan. (c) map built using GMapping,
based on the recordings from the corridor scenario, which significantly deviates from the maps provided
for localization.

Table 4.1. Algorithm parameters

σodom σobs rmax τ ρ dxy dθ

(0.02, 0.02, 0.02) 2.0 15.0 m 0 0.5 0.05 m 0.05 rad

4.3.1 Experimental Setup

To benchmark the performance of our approach, we recorded a dataset in an indoor office
environment. To this end, we equipped a Kuka YouBot platform with 2 Hokuyo UTM-30LX Li-
DAR sensors, 4 sideways-looking Intel RealSense RGB-D (D455), and an upward-looking GoPro
Hero5 Black that is used only for evaluation purposes, as shown in Fig. 3.12b. We recorded the
data including wheel odometry for different scenarios.

We recorded different scenarios. A long recording was made in the corridor with all doors
closed, and sequences S1-S10 are randomly sampled from that data. Similarly, the sequences
starting with D are sampled from recordings D1-D4, where doors were open but contain fast-
moving dynamics. We include a plot of the trajectory of the scenarios in Fig. 4.4.

To determine the ground truth pose of the robot, we use precisely localized AprilTags [104],
densely placed on the ceiling of every room and corridor. The AprilTags were detected using
an up-facing camera that is used solely for this purpose. The AprilTags allow to continuously
and accurately localize the robot with the dedicated sensor even under dynamic changes, as
explained in Sec. 3.1.

We explore two map representations, a floor plan-like map and a 2D LiDAR-based occupancy
grid produced by GMapping [46], both illustrated in Fig. 4.3. The sparse, floor plan-like map
was extracted from a high resolution terrestrial FARO laser scan, by slicing the dense point
cloud at a fixed height. For all experiments, we use a map resolution of 0.05 m/cell and the
parameters specified in Tab. 4.1.

As baseline, we compare against AMCL [111], which is a publicly available and highly-
used ROS package for MCL-based localization, and our implementation of MCL that does not
rely on textual cues. Additionally, we implemented two sensor models for integrating textual
information into the MCL framework, referred to as SM1 and SM2. SM1 assigns all particles
within the bounding box a high weight, wk

t = 1.0, and a low weight, wk
t = 0.1, to particles

elsewhere. SM2 converts the bounding box into a likelihood map and the weight for each
particle is proportional to a Gaussian applied on its distance from the bounding box, similar to

27 4.3 Experimental Evaluation

Table 4.2. Evaluation of the performance for each sequence for the corridor scenario, using the sparse
map with 300 particles. We report ATE after convergence as angular error in radians / translational error
in meters, and the time to convergence in seconds. In parentheses, the length of the sequences in seconds.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
(234.4) (229.6) (220.8) (212.1) (203.2) (187.7) (176.3) (152.1) (145.4) (123.0)

AMCL -/- -/- -/- -/- 0.01/0.110 -/- -/- -/- 2.426/10.468 -/-
MCL 2.241/9.592 -/- 0.287/0.594 0.045/0.581 -/- 1.795/7.803 0.625/2.036 2.465/11.550 1.859/9.262 1.011/1.640
SM1 0.405/2.329 -/- 0.01/0.537 0.045/0.563 -/- 1.795/7.803 0.625/2.022 2.465/11.550 1.855/9.393 1.011/1.501
SM2 1.116/1.795 0.777/2.597 1.227/3.214 0.706/2.611 0.861/1.704 1.600/3.782 0.118/5.644 0.321/0.563 1.388/2.276 1.148/1.466

MCL+Text 0.063/0.250 0.01/0.245 0.063/0.246 0.063/0.266 0.01/0.246 0.179/0.369 0.045/0.221 0.077/0.343 0.493/0.332 0.01/0.184

AMCL - - - - 54.5 - - - 19.6 -
MCL 99.3 - 18.6 0.0 - 75.9 148.8 121.5 11.5 3.2
SM1 15.7 221.9 35.2 0.0 - 75.9 148.8 121.5 11.5 3.2
SM2 0.0 1.5 4.7 0.0 126.5 56.5 135.4 5.6 11.5 3.3

MCL+Text 0.0 1.7 12.6 0.0 10.9 11.2 50.2 5.7 11.5 2.4

Table 4.3. Evaluation of the performance for each sequence for the mostly static environment scenario,
using the sparse map with 300 particles. We report ATE after convergence as angular error in radians /
translational error in meters, and the time to convergence in seconds. In parentheses, the length of the
sequences in seconds.

Method D1.1 D1.2 D1.3 D1.4 D2.1 D3.1 D3.2 D3.3 D4.1 D4.2
(171.4) (162.4) (144.8) (130.5) (78.2) (177.7) (160.6) (147.7) (120.0) (100.4)

AMCL 2.022/6.031 0.063/0.135 -/- -/- 0.010/0.095 -/- -/- -/- -/- -/-
MCL -/- 0.413/0.690 1.253/2.708 0.893/1.961 -/- 1.439/3.298 2.284/4.743 2.090/3.945 -/- 0.703/1.021
SM1 -/- 1.970/3.637 1.255/2.715 0.893/1.961 -/- 1.537/4.274 2.284/4.743 2.090/3.945 -/- 1.007/6.035
SM2 1.315/3.942 2.341/5.634 1.346/4.275 1.358/2.319 -/- -/- 1.628/3.336 1.357/2.836 1.524/5.708 1.505/5.609

MCL+Text 0.045/0.158 0.045/0.175 0.077/0.182 0.010/0.152 0.045/0.279 0.010/0.133 0.333/0.697 0.010/0.141 0.045/0.161 0.063/0.197

AMCL 112.4 8.7 - - 10.6 - - - - -
MCL 167.6 9.6 80.9 53.6 - 69.2 55.2 17.7 - 7.4
SM1 167.6 136.7 80.9 53.6 - 70.6 55.2 17.7 - 1.8
SM2 2.1 106.4 0.2 18.4 - - 55.2 22.9 20.4 0.0

MCL+Text 2.2 2.0 0.7 16.3 4.8 64.6 55.9 14.9 36.4 0.0

28 4.3 Experimental Evaluation

(a) Sequences S1-S10 (b) Sequences D1.1-D1.5

(c) Sequences D3.1-D3.5 (d) Sequences D4.1-D4.4

Figure 4.4. Visualization of the different sequences used for evaluating our approach. Sequences S1-S10
correspond to the scenario where all doors are closed. Sequences D1-D4 were recorded with all the doors
open, and with moderate amount of humans moving around. The color of the trajectory correspond to
the time, where purple is the beginning and red corresponds to the end of the sequence.

Eq. (2.5). All experiments were executed with 300 particles unless mentioned otherwise, and
N particles are initialized uniformly across the map.

We consider two metrics, time to convergence and absolute trajectory error (ATE) after
convergence. We define convergence as the point where the prediction is within a distance of
0.5 m from the ground truth pose. If convergence did not occur within the first 95% of the
sequence, then we consider it a failure, which is marked as −/−.

4.3.2 Localization under Changes using a Sparse Map

The first experiment evaluates the performance of our approach and supports the claim that we
can localize in changing environment using floor plan-like maps. It is conducted on sequences
recorded in a long corridor with all doors closed, while in the map these doors are all open,
and it supports our claim of robust localization in face of quasi-static changes. We consider 10
sequences (S1-S10), each sequence starting at the a different location along the corridor. We
evaluate the time to convergence and ATE for this challenging scenario on the 10 sequences.
As can be seen in Tab. 4.2, our text-enriched method converges quickly, and outperformed the
baselines in all sequences. When the map no longer reflect the environment, it is expected that
classic MCL implementations would perform poorly. For text spotting sensor model to affect the
pose estimation, a particle must be in the close vicinity of a specific text likelihood bounding
box. With relative low number of particles, such as 300, it is unlikely to have enough particles
in such a small area. Therefore, the sensor model methods have limited contribution to global
localization compared to particle injection. The MCL+Text method also shows exceptional ro-

29 4.3 Experimental Evaluation

Table 4.4. Evaluation of the performance for each sequence for the corridor scenario, using the GMapping
map with 300 particles. We report ATE after convergence as angular error in radians / translational error
in meters, and the time to convergence in seconds. In parentheses, the length of the sequences in seconds.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
(234.4) (229.6) (220.8) (212.1) (203.2) (187.7) (176.3) (152.1) (145.4) (123.0)

AMCL -/- -/- 0.010/0.087 -/- -/- -/- -/- 2.436/9.151 2.420/10.756 -/-
MCL -/- 2.399/9.822 0.941/6.763 1.352/7.113 0.010/0.242 0.010/0.547 2.176/7.869 -/- 2.600/9.385 1.280/5.901
SM1 0.010/0.294 0.601/3.727 0.941/6.781 1.407/7.486 2.480/11.063 0.010/0.525 2.176/7.869 -/- 2.600/9.385 1.918/7.056
SM2 1.347/4.181 1.344/4.644 2.014/5.334 1.618/4.257 1.002/3.598 1.566/4.100 0.499/1.915 0.476/1.936 2.312/8.422 1.414/4.625

MCL+Text 0.063/0.191 0.063/0.203 0.063/0.216 0.063/0.228 0.063/0.171 0.045/0.293 0.632/1.788 0.010/0.192 0.697/0.920 0.205/0.196

AMCL - - 113.0 - - - - 22.8 19.7 -
MCL - 29.5 21.8 0.2 159.1 122.8 7.9 - 8.9 1.1
SM1 18.1 9.7 21.8 0.2 173.2 122.2 7.9 - 8.9 1.1
SM2 6.5 1.7 3.2 0.2 114.1 10.9 7.9 47.8 8.9 1.1

MCL+Text 0.0 1.5 3.6 0.2 8.4 9.7 7.9 31.2 8.9 1.1

Table 4.5. Evaluation of the performance for each sequence for the mostly static scenario, using the GMap-
ping map with 300 particles. We report ATE after convergence as angular error in radians / translational
error in meters, and the time to convergence in seconds. In parentheses, the length of the sequences in
seconds.

Method D1.1 D1.2 D1.3 D1.4 D2.1 D3.1 D3.2 D3.3 D4.1 D4.2
(171.4) (162.4) (144.8) (130.5) (78.2) (177.7) (160.6) (147.7) (120.0) (100.4)

AMCL 0.547/3.490 -/- -/- -/- -/- 2.389/17.461 -/- -/- -/- -/-
MCL 1.714/2.794 1.895/3.982 0.215/1.230 0.495/1.144 0.262/1.864 1.424/3.427 0.885/10.403 0.812/3.825 0.991/1.190 0.632/9.345
SM1 0.425/3.683 1.895/3.982 0.215/1.230 0.495/1.145 0.265/1.828 1.422/3.453 0.045/0.225 1.599/5.664 0.991/1.190 1.335/7.131
SM2 0.778/1.843 1.881/4.875 1.169/2.799 1.083/1.772 0.118/0.347 1.497/5.087 1.593/2.155 1.628/5.366 1.404/6.117 0.704/1.477

MCL+Text 0.010/0.109 0.010/0.109 0.077/0.099 0.010/0.116 0.045/0.161 0.010/0.156 0.010/0.169 0.045/0.165 0.063/0.160 0.045/0.131

AMCL 0.0 - - - - 35.2 - - - -
MCL 111.2 10.1 30.7 50.9 21.5 67.8 133.4 31.0 51.6 64.2
SM1 115.7 10.1 30.7 50.9 21.5 67.8 87.2 39.2 51.6 8.3
SM2 2.2 73.9 30.2 16.2 7.1 72.0 50.3 15.6 26.5 0.5

MCL+Text 2.1 1.8 0.2 16.0 4.7 71.5 50.6 19.3 21.4 0.0

bustness when reducing the number of particles in the filter, as can be seen in Fig. 4.5. The
ATE for our approach is slightly larger for 10,000 particles, due to the formation of multi-modal
hypotheses caused by the symmetry of the corridor.

4.3.3 Localization under Few Dynamics using a Sparse Map

The second experiment is presented to support the claim that our approach is able to localize
in a floor plan-like map (not built using the robot’s sensors) when the environment is mostly
static. Recordings D1-D4 are taken across the lab, through different office rooms, with a small
number of people moving around. In all sequences, all doors are open, and the environment is
similar to the map.

This experiment considers localization in a feature-sparse map and in the presence of low
dynamics. This presents its own challenges even in a mostly unchanging environment. As
seen in Tab. 4.3, our text-enriched method performs best. Despite having the doors open, these
scenarios include movement in a corridor with very high symmetry. Textual cues can contribute
to breaking such symmetries. In addition, there are many details such as furniture, that are not
part of the sparse map and can affect the accuracy of LiDAR-only localization. While SM2 shows
a rather promising convergence time, the impact of the text-based sensor model is milder than
particle injection, leading to divergence later on, and a large ATE.

30 4.3 Experimental Evaluation

Figure 4.5. ATE (xy) averaged over sequences S1-
S10 as a function of the number of particles used in
the particle filter, for the different methods method.
The error for MCL+Text is similar across large range
of particle set sizes, exhibiting the robustness of our
approach.

300 1000 10000
Number of particles

0

2

4

6

8

10

 A
TE

 (m
)

AMCL
MCL
SM1
SM2
MCL+text

Table 4.6. Average inference time in ms for the sensor model on the NUC as a function of the number of
particles.

300 500 1 000 10 000

NUC10i7FNK 30 51 106 1027
Dell Precision-3640-Tower 24 40 80 793

4.3.4 Localization using LiDAR-Based Map Built with the Robot’s Sensors

The third experiment is presented to support the claim that our approach is able to localize in
a LiDAR-based map, when the environment is structurally changing or when there are a few
dynamics in the scene. To ensure our algorithm works sufficiently well in LiDAR-based maps,
we constructed a GMapping map based on 2D LiDAR scans. While this map is more detailed,
the recordings were made across several weeks, resulting in some differences between the map
and the environment. It is still difficult to localize globally with only 300 particles in a big
scene, therefore our text-guided method enjoys an advantage. Our approach outperformed the
baselines also in corridor scenario, as can be seen in Tab. 4.4. While the sensor model methods
manage to converge in a timely manner (Tab. 4.4), they are less stable than our injection tech-
nique and result in greater ATE. Similarly, for the mostly static scenario, our approach achieves
the best ATE overall, in addition to its fast convergence, displayed in Tab. 4.5.

4.3.5 Runtime

The next set of experiments has been conducted to support our fourth claim that our approach
runs fast enough to execute online on the robot in real-time. We, therefore, tested our approach
once using a Dell Precision-3640-Tower and once on an Intel NUC10i7FNK, which we have on
our YouBot. The Dell PC has 20 CPU cores at 3.70 GHz and 64 GB of RAM. The Intel NUC has
12 CPU cores at 1.10 GHz and 16 GB of RAM.

Text spotting on the NUC runs at an average of 167 ms, and on the desktop 100 ms. Tab. 4.6
summarizes the runtime results for our approach. The numbers support our fourth claim,
namely that the computations can be executed fast and in an online fashion.

4.3.6 Ablation Study

Additionally, we conducted an ablation study to identify the best way of integrating the textual
hints into our MCL framework. In addition to our MCL+Text method, we also explored the
following strategies for injecting particles:

31 4.4 Conclusion

seeds repeat conservative MCL+text
Injection method

0.0

0.2

0.4

0.6

0.8
 A

TE
 (m

)
seeds
repeat
conservative
MCL+text

(a) ATE (xy) averaged over sequences S1-S10.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Injection method

0

20

40

60

 C
on

ve
rg

en
ce

 ti
m

e
(s

) seeds
repeat
conservative
MCL+text

(b) Convergence time for sequences S1-S10.

Figure 4.6. Results for the ablation study exploring different injection strategies, with the sparse map and
300 particles.

1. Seed locations: Specific hand-picked locations in the map, which correspond to room
number locations, and are used to sample particles around them with a predefined co-
variance.

2. Repeat: Using the text likelihood maps, described in Sec. 4.2.2, we compute a bounding
box for each room number plate, and inject particles in that area for every room number
detection. If we have multiple consecutive detections of a room number from the same
camera, we inject particles each time.

3. Conservative: Using the text likelihood maps, we compute a bounding box for each room
number plate, and inject particles in that area only once, if the filter’s pose estimation
mean does not lie in the bounding box. If the mean pose of MCL is within the bounding
box, the filter is in line with the tag observations, and we do not inject particles. If we
have multiple consecutive detections of a room number from the same camera, we inject
particles only in the first detection.

As can be seen in Fig. 4.6, MCL+Text outperforms the other text-guided methods. MCL+Text
also converges faster than the other text-guided methods.

4.3.7 In-Field Experiments

In addition to the evaluation we performed in our lab, the text-based localization was also tested
in different environments during Harmony project integration events. The method was tested
on a Clearpath Robotics Ridgeback fitted with YuMi arms in the ASL lab in ETH (Fig. 4.7). Ad-
ditionally, it was deployed on the Harmony prototype platform (Fig. 1.1) and tested in the ABB
facility in Vasteras, Sweden. For both environments, we constructed the text likelihood maps
manually, hand-annotating the bounding boxes without an accurate mapping procedure. Both
field evaluations were considered successful by the projects reviewers, as well as our academic
and industry partners.

4.4 Conclusion

In this chapter, we presented a novel approach to localize a robot in environments that deviate
significantly from the provided map, as illustrated in Fig. 4.3, due to changes in the scene. Our

32 4.4 Conclusion

(a) The ETH mobile platform
used for early stages of the Har-
mony project.

(b) Successful localization in the occupancy grid map of the ASL lab.

Figure 4.7. In-field evaluation of our proposed approach in ETH Zurich.

method exploits the readily available human-readable textual cues that assist humans in navi-
gation. This allows us to successfully overcome localization failure in the cases where critical
changes to the layout differ greatly from the map. We implemented and evaluated our approach
on a dataset collected strictly for simulating such structural alterations, and provided compar-
isons to other existing techniques and supported all claims made in this work. The experiments
suggest that incorporating human-readable localization cues in mobile robot localization sys-
tems provides considerable improvement in robustness.

Chapter 5

Exploiting Semantic Cues for
Long-Term Localization

To operate autonomously in indoor environments, such as factories or offices, mobile robots
must be able to determine their pose. For localization in a given map, there are two challenges:
the changing nature of human-occupied environment and the quality of available maps. Pre-
cise, highly-detailed maps are an accurate representation of the environment only at the time
they were captured, and they become outdated in the presence of “quasi-static” changes such
as moving furniture, clutter, opening and closing doors. We describe “quasi-static” changes as
long-lasting alterations (hours, days, weeks) that cause deviation between sensor observations
and the given map, in contrast to dynamics such as humans and fast-moving objects. The avail-
ability of feature-rich, dense maps is not guaranteed and construction of such maps can be
costly. Therefore, autonomous robots benefit from localizing in sparse maps such as floor plans
or hand-crafted room layouts as they are seldom affected by changes. Architectural drawings
are familiar to inexpert users and can be easily updated with CAD software. As they capture
persistent structures, they typically do not require updates. However, using these sparse maps
is challenging due to the paramount discrepancies between the robot’s observations of the en-
vironment and the information depicted in the maps. Additionally, floor plans lack geometric
information necessary to localize in a highly repetitive indoor environment, as can be seen in
Fig. 5.1.

Additional sources of information can be used to overcome the challenges of global local-
ization, and such cues have been frequently used by researchers to improve robot localization.
For example, WiFi, an extremely prevalent utility, can aid in pose estimation by considering the
signal strength [57]. Textual information, constantly used by humans to navigate, is readily
available in human-occupied environments. However, very few works consider textual cues for
localization [26, 117, 170].

Another avenue is exploiting semantic information. The last decade was marked by sig-
nificant advances in object detection [12, 168] and semantic segmentation [52, 134], where
semantic cues can be efficiently inferred from images (with some fine-tuning). The most com-
monly used map representation for robotics is an occupancy grid map [94]. However, human
environments tend to be object-centric, and humans do not require precise metric information in
order to navigate them [85, 166]. Rather, humans rely on a small number of specific landmarks,
and associate places with the objects present there. For this reason, we consider localization in a

33

34

Figure 5.1. Floor plan maps include high degree of symmetry and low similarity to actual LiDAR mea-
surements. This leads to multiple hypotheses that cannot be resolved correctly. We propose integrating
semantic cues from a high level, abstract semantic map to assist with global localization. The red cross
indicates the ground truth pose and the green dots are the particles. Left: 2D LiDAR MCL with multiple
hypotheses. Right: Convergence to a single hypothesis when exploiting semantic cues, in an abstract se-
mantic maps including various objects (colored rectangles).

sparse, approximate map, that does not require an elaborate map acquisition process. No work
on semantic localization in sparse maps with abstract and hierarchical semantic information
exists to our knowledge.

The main contributions of this work is a global localization system in floor plan maps that
integrates semantic cues. We propose to leverage semantic cues to break the symmetry and dis-
tinguish between locations that appear similar or identical in the nondescript maps. Semantic
information is commonly available in the form of furniture, machinery and textual cues and can
be used to distinguish between spaces with similar layout. To avoid the complexity of building
a 3D map from scans and to enable easy updates to semantic information, we present a 2D,
high level semantic map. Thus, we present a format for abstract semantic map with an edit-
ing application and a sensor model for semantic information that complements LiDAR-based
observation models. Additionally, we provide a way to incorporate hierarchical semantic infor-
mation. Unlike most modern semantic-based SLAM approaches [22, 82, 127, 152, 163], our
approach does not require a GPU and can run online on an onboard computer. Like seman-
tic visual SLAM methods, we also rely on semantic information, but while SLAM approaches
construct a map online, we focus on localization in a given map. In our experiments, we show
that our approach is able to: (i) localize in sparse floor plan-like map with high symmetry us-
ing semantic cues, (ii) localize long-term without updating the map, (iii) localize in previously
unseen environment. (iv) localize the robot online using an onboard computer. These claims
are backed up by our experimental evaluation.

This work, titled "Long-Term Localization Using Semantic Cues in Floor Plan Maps" [171],
was accepted to IEEE Robotics and Automation Letters (RA-L), 2023.

35 5.1 Related Work

5.1 Related Work

Recent works in extracting semantic information with deep learning models showed significant
improvement in performance for both text spotting [73][137] and object detection [12][168].
In this chapter, we expand our previous work [170] to consider semantic cues via object detec-
tion, not only textual ones. The use of semantic information for localization and place recogni-
tion is applied to a variety of sensors, including 2D and 3D LiDARs, RGB and RGB-D cameras.

Rottmann et al. [124] use AdaBoost features from 2D LiDAR scans to infer semantic labels
such as office, corridor and kitchen. They combine the semantic information with occupancy
grid map in an MCL framework. Unlike our approach, their method requires a detailed map
and manually assigning a semantic label to every grid cell.

Inspired by human navigation, Mendez et al. [84] question the importance of accurate met-
ric data for robot localization. They use RGB-D sensors, apply semantic segmentation to RGB
images and utilize the depth-images for range sensing. They globally localize in a 2D floor plan
where windows, walls and doors are annotated. Building on an MCL framework, they propose
an observation model that considers both range measurements and the semantic labels of de-
tected cells. They then proceed to demonstrate that localization is still possible solely based
on the semantic information, even when depth is not considered. To account for potential in-
accuracies in the floor plan, their motion model includes a ghost factor to allow particles to
go through "walls". Since human-oriented environments tend to contain repetitive structures,
relying solely on windows, walls and doors maybe not be sufficient to enable global localization.

Hendrikx et al. [53] utilize available building information model to extract both geometric
and semantic information, and localize by matching 2D LiDAR-based features corresponding to
walls, corners and columns. While the automatic extraction of semantic and geometric maps
from a Building Information Model (BIM) is promising, the approach is not suitable for global
localization as it cannot overcome the challenges of a repetitively-structured environment.

Atanasov et al. [2] treat semantic objects as landmarks that include their 3D pose, semantic
label and possible shape priors. They detect objects using a deformable part model [36], and
use their semantic observation model in an MCL framework. The results they report do not
outperform LiDAR-based localization.

An alternative representation for semantic information is a constellation model, as sug-
gested by Ranganathan and Dellaert [119]. In their approach, they use stereo cameras, ex-
ploiting depth information. They rely on hand-crafted features including SIFT [77] to detect
objects. Places are associated with constellations of objects, where every object has shape and
appearance distribution and a relative transformation to the base location. Unlike these two
approaches, our approach does not require exact poses for the semantic objects.

A more flexible representation is proposed by Yi et al. [166], who use topological-semantic
graphs to represent the environment. They extract topological nodes from an occupancy grid
map, and characterize each node by the semantic objects in its vicinity. It suffers when ob-
jects are far from the camera and can easily diverge when objects cannot be detected, while
our approach is more robust as it relied additionally on LiDAR observations and textual cues.
Similarly to the above mentioned approaches, we also use sparse representation for semantic
objects. However, by using deep learning to detect objects, we are able to detect a larger variety
of objects with greater confidence, and localize in previously unseen places.

SÃ¼nderhauf et al. [144] construct semantic maps from camera by assigning a place cate-
gory to each occupancy grid cell. They use the Places205 ConvNet [169] to recognize places,
and rely on a LiDAR-based SLAM for building the occupancy grid map. The limitation of their

36 5.2 Approach

approach is in the high level of semantic abstraction. As their work relied on coarse room cat-
egorization, it might not be sufficient for global localization in highly repetitive environments.

Blum et al. [11] consider the interesting case on localization in partially unstructured and
drastically changing environments such as construction sites, where 2D localization is insuffi-
cient since the floors are tilted or elevated, and the flat and rectangular world assumption does
not hold. The authors use foreground segmentation to extract building surfaces from images,
assigning each pixel a density value. They proceed to project a 3D LiDAR scan on the image,
corresponding density values to the 3D points. They follow by a weighted point-to-plane ICP,
where the weight is defined by the density value, and the target pointcloud is a subset of 3D
scan of the construction site. Their approach only enables tracking, and not global localization.

5.2 Approach

Our goal is to globally localize in an indoor environment represented by a nondescript floor
plan and a high level semantic map. As sensors for localization, we use 2D LiDAR, cameras and
wheel odometry. We build our localization approach on the Monte Carlo localization (MCL)
framework [28]. To distinguish between locations that appear similar or identical in the sparse
maps, we introduce imprecise, high-level semantic maps in Sec. 5.2.1 and a sensor model for
semantic similarity in Sec. 5.2.2. The integration of the semantic information in the MCL frame-
work is introduced in Sec. 5.2.3. In addition, we perform an analysis to determine the stability
of semantic classes as discussed in Sec. 5.2.4 and utilize the semantic information to discard
LiDAR measurements resulting from dynamic objects. Furthermore, in Sec. 5.2.5 we explore a
hierarchical semantic approach for inferring the room type based on objection detection, and
exploit this information to initialize the particle filter. An overview of the approach is illustrated
in Fig. 5.2.

5.2.1 High-Level Semantic Maps

We represent our prior information about semantics with a 2D high level semantic map, where
semantic objects are represented by a semantic class label l and a rectangle overlying the occu-
pancy grid map. see Fig. 5.3. The size of the rectangle does not have to be very accurate and
the location where it is marked can be a rough estimate of its actual placement. In our abstract
map, objects differed from their actual size by 62.5%, or up to 1.25 m. This imprecise represen-
tation of semantic information is both generic enough to address variety of objects and simple
enough to allow editing by end users. Each room can be assigned a name, corresponding to a
text sign, and a room category representing a higher level of semantic understanding compared
to basic object detection. The semantic maps can be easily created and edited using the GUI
application MAPhisto1.

5.2.2 Semantic Visibility Model

The last decade’s progress in semantic interpretation allows us to use deep learning models for
text spotting [73][137] and object detection [12][168]. Object detection is the task of detecting
instances of semantic objects in images and videos. In our approach, the required output from
an object detection model is a semantic label, a bounding box and a confidence score for every

1https://github.com/FullMetalNicky/Maphisto

37 5.2 Approach

Resampling

Motion
model

Beam End
Point

Semantic
visibility

Object
detection

2D Semantic map

2D LiDAR

RGB image

Odometry

Pose estimation

Resampled

particles

Reweighted

particles

Reweighted

particles

Motion-sampled
particles

Motion-sampled
particles

Figure 5.2. A simplified overview of the online localization approach. Given RGB images, 2D LiDAR scans
an odometry input, we integrate semantic cues into an MCL framework.

detected object. For each bounding box in the prediction, we transform it to a 3D cone x̂ in
the robot coordinate system, see Fig. 5.4. We take the pixel coordinates of the right and left
boundaries of a bounding box, (bbr , bbl) and project them to 3D rays by using the camera’s
intrinsics and extrinsics matrices. For a pixel v = (x , y, 1)T , we define the associated 3D ray
V(λ) as follows:

V(λ) = O+λR−1K−1v, (5.1)

where K ∈ R3×3 is the camera intrinsics, R ∈ R3×3 is the camera rotation and O ∈ R3 is camera
center.

From the high-level semantic information, we construct visibility maps for the semantic
classes. For each valid, free space cell c in the occupancy grid map, we compute the visibility of
semantic objects. A semantic object o is visible from a grid cell c if we can ray-trace it without
crossing a non-valid, i.e., occupied or unknown, cell. For each cell c, we maintain a list of all
visible semantic classes. For each semantic class l, we store the set of bearing vectors,

B = {b1, . . . ,bn},∥bi∥= 1, (5.2)

in which objects of class l are visible. This process of constructing the visibility maps is per-
formed once, when the algorithm is launched, and is illustrated in Fig. 5.3.

A semantic observation yt includes the set of detected objects. For every object we store its
semantic label l, its confidence score f and the center of its cone as the bearing b̂. For each
particle si

t with pose xi
t = (x , y,θ)⊤, we transform the bearing b̂ into the world coordinate

system. We query the pre-built semantic visibility maps for cell c corresponding to the pose of
particle si

t , and compare it with the observation. If an object is observed with confidence score
f which is lower than a threshold τ, we ignore the observation. Otherwise, if an object with

38 5.2 Approach

Figure 5.3. A visualization
of the semantic visibility con-
cept. (a) A semantic map of
a single room, with a query
point (black dot). (b)-(f) The
bearings in which each se-
mantic class objects are visi-
ble from the query point.

(a) (b) (c)

(d) (e) (f)

sink door whiteboard table storage

semantic label l is visible from cell c, we compare the observed bearing b̂ to the set of possible
bearings B by using the cosine similarity:

sim(v1,v2) =
v1 · v2

∥v1∥∥v2∥
, (5.3)

where v1,v2 ∈ R2. To compare the observed bearing b̂ with all possible visible bearings bi ∈ B
and select the best match according to the distance d, defined as

d = 1−max
bi∈B
(sim(bi , b̂)). (5.4)

For a set of detected objects zS
t , our observation model is given by

pS(z
k
t | xt , mS) = exp (−d) zk

t ∈ zS
t , (5.5)

where zk
t is the kth confidently observed object in the set zS

t , and mS is the abstract semantic
map.

5.2.3 Integrating Different Modalities in the MCL Framework

We handle all information sources asynchronously – the motion model is sampled when odom-
etry input is available, and the particles are re-weighted when an observation arrives. We in-
tegrate the 2D LiDAR measurements and the object detections using two different observation
models. For a 2D LiDAR observation, zL

t , we use the beam-end model pL(zL
t | xt , mL) described

39 5.2 Approach

Figure 5.4. The bounding box detecting a dynamic class (person) is projected to 3D and used to mask the
LiDAR beams that fall within the cone.

by Eq. (2.5). When object detection information arrives, zS
t , we use the semantic visibility model

pS(zS
t | xt , mS), detailed in Sec. 5.2.4.

The product of likelihood model assumes elements of each observation, e.g scan points in a
LiDAR scan, are independent of each other. With the high angular resolution of our LiDAR this
assumption does not hold. Similarly, for the semantic visibility model, detected objects are not
entirely independent of each other as they often belong to the same context. The traditional
product of likelihood model tends to be overconfident in such circumstances, leading us to
choose the product of experts model [90], which uses geometric mean to compute the weight
of each particle

p(zt | xt , m) =
K
∏

k=0

p(zk
t | xt , m)

1
K , (5.6)

where zk
t is a single component of an observation zt , be it a LiDAR scan or a set of detected

objects. The beam-end model is triggered only when the robot moves more than dx y or rotates
more than dθ , while the semantic observation model is always updated. Based on the semantic
stability analysis, we detected semantic classes that tend to move frequently, which we refer to
as dynamics. In addition to excluding these classes from the semantic map, we also use these
detections to filter out LiDAR measurements that are the result of dynamics, as seen in Fig. 5.4

5.2.4 Semantic Stability Analysis

To decide which semantic classes would benefit localization, we estimated how likely they are
to move around. We prepared a semantic map for all detectable classes, and examined the
training-dedicated recordings T1-T5 spanning over multiple weeks. As our dataset includes
the ground truth pose of the robot using an external reference system, we were able to con-
clude whether the position of detected objects corresponded to their position in the map. Using
Eq. (5.4), we consider a detected object to correspond to the semantic map if d < τs. We calcu-
late the ratio of map-consistent detection per semantic class, and deem a semantic class stable
if the ratio was above 0.6. The ratio is computed by dividing the number of map-consistent

40 5.3 Experimental Evaluation

Table 5.1. Semantic stability scores for different detected object classes computed on sequences T1-T5.

Class sink door oven whiteboard table cardboard plant drawers sofa storage chair extinguisher person desk

Score 0.97 0.96 0.90 0.91 0.95 0.46 0.88 0.86 0.99 0.96 0.58 0.84 0.11 1.00

Table 5.2. Algorithm parameters

Method σodom σobs rmax τs ρ dxy dθ

MCL (0.15, 0.15, 0.15) 6.0 15.0 m - - 0.1 m 0.03 rad
TMCL (0.15, 0.15, 0.15) 6.0 15.0 m - 0.5 0.1 m 0.03 rad

HSMCL (0.15, 0.15, 0.15) 6.0 15.0 m 0.6 - 0.1 m 0.03 rad

detected objects of class l, by the total number of detections. Unstable classes are excluded
from the semantic visibility model, and then stability scores are given in Tab. 5.1.

5.2.5 Hierarchical Semantic Localization

In big indoor environments, a very large number of particles is required to sufficiently cover
the area in the initialization phase of global localization, which result in great computational
costs. It is possible to reduce the number of used particles and achieve global localization
by considering a hierarchy of semantic information. We propose to infer the room category
(office, corridor, kitchen, reception) based on the predictions from the object detection. We use
a nearest-neighbor classifier [95] to learn a relationship between the detected objects and the
room category. We encode the semantic information as a feature vector r ∈ RM , where M is
the number of classes we are able to detect. Each vector element rl represents the number of
detected objects from a specific semantic label l. We used our initial semantic observations to
infer the room category, and initialize the particle filter accordingly, so that particles are only
initialized in rooms of the same category. The information about the category of each room is
stored in the high-level semantic map (Sec. 5.2.1).

5.3 Experimental Evaluation

The focus of this work is to provide an efficient, robust localization approach that exploits
semantic information for long-term operation in sparse floor plans. We conducted our experi-
ments to support our claims and show that our approach is able to: (i) localize in sparse floor
plan-like map with high symmetry using semantic cues, (ii) localize long-term without updating
the map, (iii) localize in previously unseen environment, (iv) localize the robot online using an
onboard computer.

5.3.1 Experimental Setup

To evaluate the performance of our approach, we recorded a dataset on the first and second
floors of our building. Our mobile sensing platform consisted of a Kuka YouBot platform with 2
Hokuyo UTM-30LX LiDAR sensors, wheel encoders, 4 cameras covering jointly a 360◦ field-of-
view, and an upward-looking camera that is used only for evaluation purposes, seeFig. 3.12a.

41 5.3 Experimental Evaluation

The recordings span across several weeks, capturing different scenarios including moving fur-
niture, opening and closing of doors and humans passing by.

By using precisely localized AprilTags [104], which are densely placed (approx. 1 tag/m2)
on the ceiling of every room and corridor on the second floor, we are able to extract the ground
truth pose of the robot from the upwards-looking camera. The camera is used to detect the
AprilTags, which allows us to accurately localize the robot even when the environment under-
goes changes. The upward-looking camera captured frames at 25 Hz, and due to its wide-angle
lens, we were able to detect multiple AprilTags in every frame. The pose was extracted in a
least-squares fashion using multiple detections. The locations of the AprilTags were obtained
using a high resolution terrestrial FARO laser scanner, and were aligned to the floor plan of the
second floor. As the AprilTags were part of a large pointcloud covering the entire lab, it was
possible to align the floor plan with the pointcloud. By enforcing a shared coordinate system,
we are able to compare the pose estimation to our ground truth poses.

Recording R1-R11 are captured in the second floor of our building and include ground truth
poses. Recording Q1-Q3 were recorded in the first floor of the building and do not include
ground truth information, and are used for qualitatively evaluation on previously unseen envi-
ronment. Each sequence was evaluated multiple times to account for the inherent stochasticity
of the MCL framework.

In our implementation, we used YOLOv5 [58], which is a family of object detection models
of varying size and performance. YOLOv5 models are capable of real-time inference on CPU-
only platforms, thus making them well-suited for mobile robots. We trained a small model,
YOLOv5s, on 581 images from the second floor of our building using the default training script
provided in the YOLOv5 repository. The map used for localization is joint map of two CAD floor
plan drawings, of the first and second floor side-by-side, illustrated in Fig. 5.1. The semantic
information was integrated using our GUI application MAPhisto2 based on our recollection of
location of semantic objects. For all experiments, we use a map resolution of 0.05 m by 0.05 m
per cell and the algorithm parameters specified in Tab. 5.2.

As baseline, we compare against AMCL [111], which is a publicly available and highly-used
ROS package for MCL-based localization, our own MCL implementation without using semantic
cues and a text-enhanced MCL [170], which we refer to as TMCL. Our method, exploiting both
semantic information from object detection and hierarchical semantic knowledge discussed in
Sec. 5.2.5, is referred to as HSMCL. For the tracking experiments, we considered SMCL, a varia-
tion of our approach that uses only semantic cues through the semantic visibility model, without
hierarchical semantic localization. All experiments were executed with 10,000 particles in the
filter unless mentioned otherwise.

We consider two metrics, the success rate and absolute trajectory error (ATE) after conver-
gence. In our definition, convergence occurs when the estimated position is within a radius of
0.3 m from the ground truth pose and the estimated orientation is within π

4 rad. Tracking of
the pose is considered unreliable if the pose estimate diverges for more than 1% of the time.
If convergence did not occur within the first 95% of the sequence, or if the pose is not reliably
tracked from convergence moment until the end of the sequence, we consider it a failure.

2https://github.com/FullMetalNicky/Maphisto

https://github.com/ultralytics/yolov5

42 5.3 Experimental Evaluation

Table 5.3. Evaluation of the performance on sequences recorded all across the second floor in the span of
several weeks. We report ATE after convergence as angular error in radians / translational error in meters,
and the success rate.

Method R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 AVG

AMCL -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/-
MCL -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/-

TMCL -/- -/- 0.048/0.16 -/- -/- -/- 0.034/0.22 0.043/0.18 0.050/0.21 -/- 0.034/0.18 0.042/0.19
HSMCL 0.054/0.15 0.064/0.24 0.069/0.25 0.205/0.23 0.100/0.34 0.064/0.23 0.069/0.23 0.049/0.18 0.090/0.26 0.052/0.16 0.052/0.25 0.079/0.23

AMCL 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
MCL 40% 20% 60% 40% 20% 0% 0% 40% 20% 60% 0% 27%

TMCL 80% 0% 100% 80% 60% 40% 100% 100% 100% 80% 100% 76%
HSMCL 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 5.4. ATE for tracking on a subset of sequences recorded all across the second floor in the span of
several weeks. The particle filter was set to adaptive 1,500-5,000 particles for AMCL and a fixed 1,500
particles for MCL and SMCL. Angular error in radians / translational error in meters.

Method R3 R4 R6 R7 R8 R10 AVG

AMCL -/- -/- 0.047/0.22 -/- -/- -/- 0.047/0.22
MCL 0.051/0.17 0.050/0.21 0.051/0.29 0.064/0.23 0.039/0.14 0.041/0.15 0.049/0.20

SMCL 0.063/0.21 0.046/0.22 0.068/0.29 0.048/0.19 0.042/0.15 0.044/0.13 0.052/0.20

5.3.2 Long-Term Localization in CAD Floor Plans

The first experiment evaluates the performance of our approach and supports the claim that
we are capable of long-term localization in sparse, floor-plan-like maps. Sequences R1-R11
are recorded in April-June 2022, and traverse all the rooms in the second floor. The given
map had been constructed in 2021. All sequences include humans walking around, opening
and closing of doors, moving furniture and large amount of clutter. We repeat the evaluation
of each sequence 5 times, computing the success rate, ATE and convergence time over all 5
runs, and compare against the baselines. As can be seen in Tab. 5.3 the semantically-enhanced
methods have superior performance over the baselines. AMCL and MCL are mostly used with
detailed maps constructed using range-sensor measurements, and we can attribute their poor
performance to the sparse nature of the floor plans. This highlights the impact of semantic
information when localizing in nondescript, sparse maps, especially in face of high geometric
symmetry.

As reported in Tab. 5.3, upon successful convergence, HSMCL achieves accuracy of 0.23 m
and negligible angular error. While TMCL has lower ATE, it only converges in 76% of the cases.
HSMCL successfully converges, on average over all sequences, after 25 s.

We further provide pose tracking experiments. A similar approach to ours, Boniardi et al.
[14], tracked the pose of a robot by inferring the room layout from camera images, reporting
RMSE of approx. 0.23 m and approx. 0.04 rad with adaptive particle number ranging between
1,500-5,000. However, they did not provide open source code. Our office environment is
similar to the Freiburg one where Boniardi et al. [14] evaluated their method. For the tracking
experiments we used SMCL, which integrates semantic cues from object detection, without
hierarchical information. We report our tracking results with fixed 1500 particles in Tab. 5.4,
achieving an ATE of 0.2 m and 0.05 rad. This suggest that integrating semantic cues, and
specifically, our SMCL approach, are beneficial also for tracking purposes and not only for global
localization.

43 5.3 Experimental Evaluation

Q1
Q2
Q3

Figure 5.5. Examples of pose estimation for localization in previous unseen environment, using SMCL and
10,000 particles.

5.3.3 Localization in a Previously Unseen Environment

To support our claim that we are able to localize in a previously unseen environment, we qual-
itatively evaluate our method on sequences Q1-Q3 recorded on the first floor of our building.
The object detection model and the room category classifier were not trained or validated on
data from this floor. While the first floor is not entirely dissimilar to the second one, it does
include different furniture and rooms that serve different purposes such as a classroom and
a robotics lab. The pose estimated by SMCL sequences is shown in Fig. 5.5. Our approach
correctly predicts that the robot is located in the first floor and identifies the correct room and
maintaining a trajectory that is consistent with floor plan map. We manually verified that the
robot’s estimated trajectory corresponded to the rooms visited in the video recordings.

5.3.4 Ablation Study

To justify our use of both low-level and hierarchical semantic information, we conducted an
ablation study. We analyzed three strategies for integrating semantic knowledge into an MCL
framework. SMCL uses only semantic cues through the semantic visibility model. HMCL uses
semantic hierarchy, described in Sec. 5.2.5, to initialize the particles only in the rooms cor-
responding to the observed room category, and then relies solely on the LiDAR information.
HSMCL combines both strategies. The ATE was computed only on stable sequences with 100%
success rate. As can be seen in Tab. 5.5, utilizing the two levels of semantic information benefits

44 5.3 Experimental Evaluation

Table 5.5. Performance on 11 sequences recorded all across the second floor in the span of several weeks.
A run was considered successful if the algorithm converged to the ground truth in the first 95% of the
recording and remained localized until the end of the sequence. Angular error in radians / translational
error in meters.

Method Hierarchy Semantics Success ATE ATE
(# of stable sequences) (# of successful runs)

MCL 27% - (0) 0.046/0.20 (15)
HMCL ✓ 61% 0.046/0.21 (3) 0.044/0.19 (34)
SMCL ✓ 81% 0.055/0.23 (7) 0.066/0.24 (45)

HSMCL ✓ ✓ 100% 0.079/0.23 (11) 0.079/0.23 (55)

Table 5.6. Runtime for HSMCL, with 10,000 particles. The Yolov5s results are for inference on a single
camera.

Platform Sem. Visibility Beam-End Yolov5s Yolov5s
(640x480) (320x240)

NUC10i7FNK 55 ms 24 ms 223 ms 57 ms
Dell Precision-3640-Tower 19 ms 14 ms 10 ms 6.8 ms

localization. HSMCL was able to localize stably even on the challenging sequences, where other
methods failed. The ATE for HSMCL is on par with the other methods, and the slightly larger
error can be attributed to including more challenging sequences and runs in the computation
of the ATE for HSMCL, sequences and runs where other methods failed to localize entirely.

5.3.5 Runtime

We evaluate the runtime performance of our approach in support of our fourth claim, that we
are able to operate onboard and allow real-time localization. We tested our approach on a Dell
Precision-3640-Tower (with NVidia GeForce RTX 2080) and once on an Intel NUC10i7FNK,
which we have on our robot. The Dell PC has 64 GB of RAM and runs at 3.70 GHz. The Intel
NUC has 16 GB of RAM and runs at 1.10 GHz. The measurements are reported in Tab. 5.6.
Since we are using 4 cameras simultaneously for object detection, we used an optimized ONNX
export of YOLOv5s, and run inference on 320 by 240 images. Qualitative online tests indicates
that reducing the resolution does not impact the detection accuracy significantly. These run-
time results suggest that our approach is suitable for online localization, and utilizes semantic
information without requiring a GPU onboard.

5.3.6 In-Field Experiments

In addition to the evaluation we performed in our lab, our semantic-guided localization was also
tested in different environments during Harmony project integration events. The method was
tested on a Clearpath Robotics Ridgeback fitted with YuMi arms in the ASL lab in ETH (Fig. 4.7).
Additionally, it was deployed on the Harmony prototype platform (Fig. 1.1) and tested in
the ABB facility in Vasteras, Sweden. For both environments, the semantic maps were hand-
annotated using the MAPhisto GUI application. Both field evaluations were considered success-

45 5.4 Conclusion

Figure 5.6. In-field evaluation of our proposed approach in the ABB facility.

ful by the projects reviewers, as well as our academic and industry partners.

5.4 Conclusion

Our approach incorporates semantic information, from low-level object detection to higher un-
derstanding of room categories, to assist navigation in human-oriented environments. This
enables us to successfully localize in sparse floor plans under high geometric symmetry and
changing environments. We demonstrate that using sparse and abstract map representation
benefits long-term localization, and reduces the need to update the map. We also provide a tool
for updating the semantic map, when critical changes occur. For our evaluation, we recorded
a dataset spanning across weeks, introducing a variety of elements that are not represented
in the floor plan, and the changes a human-occupied environment undergoes. We compared
our performance to other existing methods, supporting all of our claims. The results of our ex-
periments imply mobile localization systems can benefits greatly from exploiting ever-present
semantic cues.

46 5.4 Conclusion

Chapter 6

Enriching Floor Plans with 3D
Metric-Semantic Information

In the previous chapters, we focused on the issue of robot localization. In this chapter, we in-
troduce and address the task of map construction, which is equally important and essential for
mobile autonomous systems. Object-based maps, coupled with semantically-augmented local-
ization are the foundation for more complex robotics tasks such as navigation and manipulation,
as well as AR/VR applications. They enable to estimate the 3D geometry of the environment,
and enrich it with semantic information. We focus on the metric-semantic map construction
coupled with long-term object-based localization, using only monocular RGB frames and a floor
plan prior. We use RGB cameras instead of RGB-D due to their lower power consumption and
bandwidth requirements. For both tasks, we are interested in approaches that operate online
on a mobile platform.

Previous works on 3D mapping leverage 3D reconstruction techniques to create a geometric
description of the environment [103, 107]. In recent years, the progress in semantic segmenta-
tion and object detection enabled the integration of semantic information into 3D reconstruc-
tion [45, 64, 122]. Some works have put emphasis on highly-accurate and detailed reconstruc-
tion of the environment [71, 128]. Other approaches use 3D bounding boxes as a valuable
and compact abstraction for objects [70, 165]. Here, we leverage 3D object detection for en-
riching a floor plan map with metric-semantic information suitable for long-term object-based
localization. Floor plan maps are commonly available and store information about unchanging
structures, such as walls. Localization in floor plan maps is challenging due to the sparsity of
geometric information; its advantage, however, is that information stored in floor plans rarely
change. Often, additional sources of information are used to support robust localization, such
as textual cues [170] and WiFi signals [57]. 3D object-based maps can be used to improve
long-term localization in floor plan maps. Works such as the ones by Li et al. [70, 71] allow
the construction of object-based maps from monocular RGB frames, but they do not include
static structural elements such as walls, which have a critical importance for localization and
planning tasks.

The main contribution of this work is a global localization and object-based mapping system
using 3D semantic information suitable for long-term operations in dynamic environments. We
address the difficulty of creating 2D and 3D labels by proposing an efficient method for label
generation from RGB frames. These labels can then be exploited to achieve accurate perfor-

47

48 6.1 Related Work

Figure 6.1. A 3D semantic metric map combining a floor plan with 3D object bounding boxes built using
our approach. This map is used for long-term localization in dynamic indoor environments. Different box
colors indicate different object classes.

mance on the target environment by finetuning off-the-shelf detection models. We analyze
the performance of our detector, creating a probabilistic detection model that benefits both,
map creation and object-based global localization. We utilize 3D object detection to construct
object-centric maps, as seen in Fig. 6.1, augmenting readily-available floor plan maps with se-
mantic information. We provide a global localization system for the pre-built object-based map
with an uncertainty-aware sensor model for 3D object information, relying solely on monocular
cameras.

In sum, our approach is able to (i) generate 3D labels for fine-tuning of 3D object detection
models, (ii) enrich floor plans with object information, (iii) and localize in such maps in an
online fashion, using onboard computers. These claims are backed up by our experimental
evaluation.

This work, titled "Constructing Metric-Semantic Maps Using Floor Plan Priors for Long-
Term Indoor Localization" [172], was accepted to Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2023.

6.1 Related Work

6.1.1 3D Object Detection

Scene understanding is the ability of recognizing objects and obtaining a semantic interpre-
tation of the surrounding environment. In the last years, deep learning enabled tremendous
advancements in image-based object detection [43, 120], semantic segmentation [134], and
panoptic segmentation [23, 63, 140]. In the 3D domain, object detection approaches aimed to
reproduce the efforts of 2D object detection in 3D [138, 153]. Most approaches, however, took
alternative paths. Qi et al. [115] propose an end-to-end 3D object detection network inspired
by the generalized Hough voting. The authors also propose an extension fusing 2D and 3D
voting for boosting 3D object detection [116]. Recent efforts in 3D object detection tackle the

49 6.1 Related Work

problem by processing more than one frame at a time [70, 155], since performances of single-
view approaches [71] are degraded by the depth-scale ambiguity [70]. Recently, Brazil et al.
[16] proposed a single-view approach, called Cube R-CNN, that achieves state-of-the-art results
for 3D object detection and solves the depth-scale ambiguity by introducing a training objective
that incorporates a virtual depth.

6.1.2 Semantic Mapping

Map construction is a crucial elements of most robotics applications, and object-based maps
are a step further towards higher level scene understanding. In recent years, learning-based
approaches were applied to 3D object-based map construction. Many works were aimed at
object-aware mapping [45, 64] or simultaneous localization and mapping (SLAM) [82, 142]
with RGB-D cameras. In this work, we focus on object-based mapping with known poses using
monocular RGB images.

For this task, Li et al. [70] extend the 2D object detection model DETR [19] with another
head that predicts 3D bounding boxes. They train a graph neural network for data association,
which considers the 3D bounding boxes, 2D bounding boxes and semantic classes of detected
objects, and matches them to map objects. Once a prediction is matched to a map object,
they rely only the 2D bounding box information to optimize a multi-view 3D bounding box
represented as a super-quadratic surface. While they claim learning features for data association
is preferable to hand-crafted measures like IoU, it can also impose an additional refinement
phase when deploying the mapping algorithm in a new environment, additionally to the fine-
tuning an object detection model might require.

Li et al. [71] propose an approach for semantic-aware reconstruction. They operate on RGB
imaegs extracting 2D bounding boxes and 3D object poses using a modifies DETR [19] model.
Each cropped patch containing an object detection is mapped into a shape code, and detections
are tracked using Bayesian filtering. Hungarian algorithm is used for the data association, based
on the predicted object location and the shape code. They perform a coarse-to-fine reconstruc-
tion, first representing the objects only as localized bounding boxes, and using shape codes for
a detailed reconstruction, using DeepSDF [110].

A similar approach is the one introduced by Runz et al. [128], who apply instance segmen-
tation to RGB images and use ray clustering for data association. 3D rays from the camera
center through the center of a 2D bounding boxes are expected to approximately intersect if
they correspond to the same detected object. They train a shape encoder to infer object shape
code from a single-view, and fuse multiple associated single-view codes to reconstruct a dense
surface. These works focus on detailed reconstruction of indoor spaces, resulting in maps that
are not suitable for long-term localization, as they introduce objects that are transient instead
of filtering out noise that can negatively impact robust localization.

6.1.3 Semantic Localization

Long-term global localization in changing environments is a challenging task. Researchers in-
vestigated different sources of information such as textual cues [26, 170], wifi signal strength [89],
and semantic cues to support pose estimation. Rottmann et al. [124] use a semantically-labeled
occupancy grid map to localize in a Monte Carlo Localization (MCL) [28] framework, perform-
ing place classification from RGB frames. Mendez et al. [84] extract semantic information about
structural elements (walls, windows, doors) from floor plans, classify the pixels of an RGB-D

50 6.2 Approach

3D-FROM-2D OBJECT DETECTION

3D ANNOTATED

SCAN

LABELING

AND TRAINING

. . .

STATISTICAL ANALYSIS

board sink

MAPPING LOCALIZATION

Figure 6.2. An overview of our approach. Top row: offline pre-computation to adapt the approach to a
specific environment. Bottom row: 3D-from-2D object detection and mapping, that can be executed on
demand when the environment undergoes structural changes and a map update is necessary.

image and match it against the semantic floor plan to localize. Both approaches do not use an
explicit object-based map. Atanasov et al. [2] use objects as landmarks, defined by their 3D
pose, semantic class and possible shape priors. The object are detected using a deformable part
model [36], and the semantic information is integrated into a MCL framework. Ranganathan
and Dellaert [119] suggest a different representation for a semantic map, by using a constel-
lation model. They detect objects using hand-crafted features, and rely on depth information
provided by stereo cameras. Yi et al. [166] localize using a topological graph, where each node
is characterized by the semantic objects in its vicinity. Similarly to these approaches, we incor-
porate the prediction uncertainty into our localization approach and use sparse object-based
maps. We provide a pipeline for acquiring the metric semantic map. Most other approaches
use 2D object detection, while we utilize 3D object information. Zimmerman et al. [171] incor-
porate high and low-level semantic cues from 2D object detection and geometric information
from 2D LiDAR scanners, but use manual map creation. In contrast to this, our approach does
not require LiDAR input.

6.2 Approach

We aim to enhance sparse floor plans with semantic cues and globally localize in these object-
based maps using monocular cameras. In Sec. 6.2.1, we present a way of creating 3D labels for
fine-tuning 3D object detection models. Using such labels, we show how to fine-tune an object
detection model and learn a noise model, see Sec. 6.2.2, and use it to build a probabilistic
object-based map. We construct a standard metric-semantic map using 3D object detections on
posed RGB images, detailed in Sec. 6.2.3. We exploit the object-based maps for object-based
global localization, as described in Sec. 6.2.4. An overview of our approach is visualized in

51 6.2 Approach

(a) (b)

Figure 6.3. Our global localization infrastructure can enable automatic generation of 3D labels by com-
puting the relative pose between the robot and the observed objects. (a) Extracting the robot’s pose using
the AprilTag infrastructure. (b) One-time labeling of the objects in a 3D scan of the lab.

Fig. 6.2.

6.2.1 Label Generation for 3D Object Detection

The performance of off-the-shelf 3D object detection models are often not accurate enough for
the purpose of map building and they possibly focus on classes that are not beneficial for the
purpose of indoor localization. For this reason, mapping and localization systems might need
to finetune an existing model to the environment of interest. 3D object detection from RGB
images requires 3D bounding boxes annotations that include the object dimension, rotation
and translation relative to the camera frame, in addition to 2D bounding box annotation for the
RGB image with semantic category. Often, truncation and visibility of objects are also needed.
Truncation refers to the percentage of the object in the camera frustum, while visibility is a
measure of occlusion of an object by other object in the scene. Providing accurate labels in a
real-world environment is challenging. In our approach, we construct the 3D labels based on
a 3D model of the environment extracted from a 3D scan, 2D object detector and posed RGB
images. As a pre-processing step, we manually annotate the 3D model of the environment with
3D bounding boxes of objects of interest. Relying on our accurate localization infrastructure,
we can extract the relative poses and the 3D bounding boxes of observed objects (Fig. 6.3). We
project the 3D bounding boxes onto the posed camera frame using

x= K

�

R t
0 1

�

X, (6.1)

where X= (x , y, z, 1)⊤ is a 3D point in the world coordinate system in homogenous coordinates,
K ∈ R3×3 is the camera calibration matrix, R and t are the camera rotation matrix and translation
vector, and x is a point in the image plane in homogenous coordinates. We then determine the
visibility and truncation for every annotated object. To determine if an object is occluded by a
dynamic obstacle, such as a person or a closed door, or by a static obstacle that is not annotated,
we use a 2D object detector, as seen in Fig. 6.4. The detector is trained on classes of interest
including dynamics and is made available by Zimmerman et al. [171]. For every object detected

52 6.2 Approach

GT objects 2D object detection 3D annotations

Figure 6.4. 2D object detection to create better 3D annotations. Top: when rendering the ground truth
objects from the camera, we have no information about dynamic objects like closed doors, which results
in wrong annotations. The 2D object detection detects a door, and none of the objects in the 3D map.
Therefore, no 3D annotations are generated (faded colors). Bottom: the 2D object detection detects tables
and boards, but not the drawers due to occlusion. Therefore 3D annotations are generated only for the
boards and the tables.

using the 2D object detector, we match a previously-annotated 3D bounding box based on the
semantic class and the IoU between the projected and the detected 2D bounding box. In this
way, for every posed RGB frame, the system annotates the detectable 3D objects, including their
relative pose in the camera frame, dimensions, semantic class, 2D bounding boxes, visibility and
truncation. Using these labels, we fine-tune a 3D object detector. We choose Cube R-CNN [16],
but our implementation allows integration of any other 3D object detector with the same output
structure. Further details about the architecture and training procedure can be found in Sec. 6.3.

6.2.2 Statistical Analysis of 3D Object Detections

Given posed RGB frames, capturing objects belonging to classes of interest, we run inference on
the images using Cube R-CNN, fine-tuned with our labels. Given two non-overlapping object
predictions of the same class, a key issue is determining whether they belong to the same in-
stance suffering from noisy detection or they are two separate instances in close vicinity. This is
particularly common with semantic classes whose bounding boxes have one dimension which
is substantially smaller than the other, such as whiteboards. To address this problem, we ana-
lyze the per-class characteristic noise for detections. For each class, we build a 2D probability
distribution by matching the 3D predictions to map objects O, and projecting them in 2D on
the ground plane. For matching, a predicted object can be assigned to a ground truth object
only if the euclidean distance between the center of the predicted object co and the center of
the ground truth object cGT is smaller than a threshold δ.

53 6.2 Approach

(a) Sinks (b) Tables (c) Cabinets

Figure 6.5. Object probability map mp which contains the per-object distribution po(c | l), for specific
classes of interest.

In the case a predicted object can be assigned to multiple ground truth objects, we select
the one with the highest 3D IoU. In case the prediction has no overlap with any ground truth,
we match based on center distance only. Additionally, if no ground truth center is within dis-
tance δ from the center of the predicted object, we discard the prediction. Then, we aggregate
predictions of different objects of the same class by transforming them into an object-centric
coordinate system where the center of the associated ground truth object is the origin. For every
class, we take the matched predictions and project their center on the 2D plane. Additionally,
we discretize the 2D plane into cells of 0.05 m creating a histogram of occurrences. Then, we
fit a Gaussian distribution

p(c | l) =
1
p

2π |Σ|
exp
¦

−
(c−µ)⊤Σ−1(c−µ)

2

©

, (6.2)

where c indicates the 2D center coordinate of the predicted object, and l is its semantic class.
Then, we transform the per-class distribution p(c | l) to be centered around each map ob-

ject o of class l. We shift the mean µ and rotate the covarianceΣ of the class-specific distribution
in local frame, according to the projected 2D center point co and the rotation matrix Ro of an
object:

µo = µ+ co, Σo = RoΣR⊤o . (6.3)

Thus, the per-object distribution po(c | l) is given by the parameters µo and Σo of Eq. (6.3).
We build the object probability map mp by composing the individual Gaussians of the map

objects po(c | l),∀o ∈O. Our object probability map mp can be seen in Fig. 6.5.

6.2.3 3D Semantic Map Construction

Given posed RGB images and a 3D object detector, we construct a metric semantic map to
enhance a floor plan map. We define an object as

o = {c, D, R, Iactive, nskip, nmatch}, (6.4)

where c is the center of the object, D= (W, H, L) is the object’s bounding box dimensions, R is
the orientation of the bounding box, Iactive ∈ {0, 1} is a state that indicates whether an object

54 6.2 Approach

Figure 6.6. Flow diagram for the 3D metric-semantic map construction.

Figure 6.7. Flow diagram for the 3D semantic localization approach.

55 6.2 Approach

is active or not, nskip and nmatch are two object-specific counters that will be explained in the
following. An object is in the active state if it is in the camera frustum and is not occluded by
other objects. We test for the visibility of an object by rendering the 3D scene into the camera
frame, constraining the visibility with walls extracted from the floor plan map. We aggregate
consecutive detections into a short-term, local map m̂g by associating detected objects across
different frames. Active objects are associated by means of the Hungarian algorithm [67] and
a cost function defined by

C(o1, o2) =
1
2

�

CIoU + Ccen

�

(6.5)

CIoU = 1− IoU(o1, o2) (6.6)

Ccen = 1− po1
(co2
| lo2
), (6.7)

where o1 and o2 are detected objects, po1
(co2
| lo2
) represents the goodness score of a center

prediction based on the statistical analysis in Sec. 6.2.2, co2
and lo2

are the center and the
semantic class of object o2, respectively. After the robot has moved more than dx y or rotated
more than dθ , we integrate the objects of m̂g into the global object map mg using the matching
strategy described above. Given the associations computed by the Hungarian algorithm, we
merge matched objects if the cost in Eq. (6.7) is below a threshold τcost. Otherwise, we initialize
a new map object. When objects are merged, we increase the nmatch count. If an active map
object was not associated with a prediction, we increase the nskip. When merging a prediction
o1 to a map object o2, we use a weighted average to update the center and the dimensions of
the bounding box:

co2
=

no2

match co2
+ no1

match co1

no1

match + no2

match

Do2
=

no2

match Do2
+ no1

match Do1

no1

match + no2

match

.

(6.8)

We update the rotation matrix by computing the weighted average and extracting the rota-
tion matrix via SVD as proposed by Moakher [91]:

UΣV⊤ = SVD
�no2

match Ro2
+ no1

match Ro1

no1

match + no2

match

�

(6.9)

Ro2
= UV⊤. (6.10)

Additionally, we update the weight of the object by summing up nmatch. We purge objects
from the map when

nmatch

nskip
< τpurge,

where τpurge is an empirically-chosen threshold.
We obtain room segmentation by applying morphological operations and connected-component

analysis on the floor plan. This allows us to associate objects to rooms, so we update only ob-
jects located in the room we are currently in. A summary of the mapping approach is brought
in Fig. 6.6.

56 6.3 Experimental Evaluation

Table 6.1. Algorithm parameters

Method σodom σobs rmax τs dxy dθ

Ours (0.15, 0.15, 0.15) - - - 0.1 m 0.03 rad
HSMCL (0.15, 0.15, 0.15) 6.0 15.0 m 0.6 0.1 m 0.03 rad

6.2.4 3D Semantic Localization

We globally localize using an MCL [28] framework. Our sensor model is based on the probabilis-
tic analysis of the accuracy of the 3D object detection model, see Sec. 6.2.2. Our observation z
includes the object class l, the confidence score f and the object 3D bounding box b3D in the
coordinate frame of the camera. For every particle st , we transform the prediction into world
frame using the particle state xt , and we project it on the ground, obtaining the corresponding
2D bounding box b̂2D.

To compute the weight of every particle we consider two measures – the object-based like-
lihood po(z | mp,xt) and the shape similarity score ps. Using the object probability map mp

computed in Sec. 6.2.2, we sample po at the location indicated by the center c of the trans-
formed 2D bounding box. To compute the likelihood of predicting a center c of class l, we
consider the corresponding class distribution for every object given by the object probability
map mp:

po(z | mp, xt) = max
{o∈O | lo=l}

po(c | l), (6.11)

where lo is the semantic class of object o. For data association, we match the prediction to map
object with the highest likelihood, referred to as omax.

The metric semantic map ms, constructed in Sec. 6.2.3, stores the 3D bounding box of omax,
which we project to 2D bounding box b̂max

2D . The shape similarity score is computed from the
IoU of the 2D bounding boxes b̂2D and b̂max

2D :

pg(z | mg ,xt) = exp
�

−
�

1−IoU
�

b̂2D, b̂max
2D

���

. (6.12)

The probability of detecting an object from particle state xt is given by

p(z | m, xt) = po pg + (1− po)η, (6.13)

whereη is an empirically computed constant, representing the weight of a false data association,
and po and pg are defined in Eqs. 6.11 and 6.12, respectively. When K objects are detected in
a single frame, we compute the overall particle weight as a geometric average

p(zt | m, xt) =
K
∏

k=1

p(zk
t | m, xt)

1
K . (6.14)

An illustration of the localization approach is brought in Fig. 6.7.

6.3 Experimental Evaluation

We present our experiments to show the capabilities of our method. The results of our experi-
ments also support our key claims, which are: our approach is able to (i) generate 3D labels for

57 6.3 Experimental Evaluation

Table 6.2. Computed metrics for the two constructed maps compared to the map obtained with a FARO
3D scan. KP was constructed based on known poses from infrastructure, and ICP was constructed with
poses extracted from 2D LiDAR ICP.

map board cabinet desk drawers fire ext. oven plant sink sofa table AVG

IoU KP 0.54 0.75 0.79 0.39 0.55 0.85 0.61 0.77 0.68 0.76 0.67
Pr KP 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00 1.00 1.00 0.96
Rc KP 0.94 0.92 1.00 0.62 1.00 1.00 1.00 1.00 1.00 0.95 0.94

IoU ICP 0.51 0.70 0.77 0.40 0.66 0.68 0.60 0.65 0.77 0.75 0.65
Pr ICP 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00 1.00 1.00 0.96
Rc ICP 1.00 0.92 1.00 0.62 1.00 1.00 1.00 1.00 1.00 0.95 0.95

fine-tuning of 3D object detection models, (ii) enrich floor plans with object information, (iii)
and localize in such maps in an online fashion, using onboard computers.

6.3.1 Experimental Setup

To assess the performance of our approach, we made multiple recordings in our building. Our
data collection platform was a Kuka YouBot with 2 Hokuyo UTM-30LX LiDARs, wheel encoders,
4 cameras with a joint coverage of 360◦ field-of-view, and an up-looking camera used strictly
for evaluation purposes. The recordings span across 9 months, capturing changes to the lab
furniture, varying amount of clutter, human movement and opening and closing of doors.

To extract precise ground truth information about the robot’s pose, we use an external lo-
calization infrastructure based on densely placed (approx. 1 tag/m2) AprilTags, covering the
ceiling of each room and corridor of our lab. In every frame captured with the up-looking cam-
era, we detect multiple AprilTags computing the pose estimation in a least-squares fashion and
achieving accuracy of under 3 cm. A high resolution point cloud of the lab, generated with a
terrestrial laser scanner, was also used to produce the 3D labels used in 6.2.1, and the localiza-
tion infrastructure was used to generate the poses for the RGB frames used the metric-semantic
mapping in 6.2.3.

For Cube R-CNN [16], we fine-tuned the ResNet34-based model [51] the authors provide for
indoor perception. For doing this, we created a list of objects of interest suitable for long-term
localization. The success of our approach depends on the appropriate choice of the classes of
interest. It is important to consider the stability of the object classes, as discussed in Zimmerman
et al. [171], and their observability and map coverage. We optimize our model with stochastic
gradient descent for 100 epochs, with an initial learning rate of 0.0015 and a batch size of 12.
For training, we recorded sequences T1-T7 on the second floor of our building.

As baseline, we compare against HSMCL [171], another semantic MCL framework. All ex-
periments were executed with 5000 particles. The parameters for the different approaches are
reported in Tab. 6.1. We consider three metrics, the success rate, absolute trajectory error (ATE)
after convergence and convergence time. We define convergence as the time when the estimate
pose is within 0.3 m radius of the ground truth pose, and the orientation is within π

4 . After glob-
ally localizing, the tracked pose must not diverge for an accumulated 1.5 s. A localization run
is successful if convergence is achieved in the first 95% of the sequence time and the tracked
pose does not diverge. Each sequence was evaluated multiple times to account for the inherent
stochasticity of the MCL framework, and the success rate is computed over multiple runs.

58 6.3 Experimental Evaluation

Figure 6.8. 2D projection for the 3 maps. Left: ground truth map obtained with terrestrial laser scanner.
Middle: KP map. Right: map built using scan matching (ICP).

6.3.2 Mapping

To support our second claim, we evaluate the quality of our mapping pipeline. We use sequence
M1, which include ground truth poses, RGB stream, and 2D LiDAR scans, while the robot was
traversing the entire second floor. We evaluate our constructed maps by matching them against
a ground truth (GT) map, extracted with a highly accurate 3D terrestrial laser scanner, and
annotated manually. The creation of the ground truth map is labour-intense offline procedure
that requires specialized sensors and equipment, providing sub-centimeters accuracy. It has
been carried out for evaluation purposes only. Our constructed maps are built using the metric-
semantic mapping pipeline describe in Sec. 6.2.3, using data for sequence M1. For the first
constructed map, we used precise poses extracted from our localization infrastructure, and
we refer to it as known poses (KP) map. We also generated a map using sensor-based poses,
estimated via ICP on 2D LiDAR scans. We aligned the estimated poses to an existing grid map,
such as floor plan, by initializing the ICP with a known pose. We believe the poses could also
be extracted with low-drift visual-inertial odometry pipelines [122]. We evaluated the accuracy
of the generated maps directly by comparing it to the ground truth map, considering the IoU
between objects in the object-based map, and precision and recall. As can be seen in Tab. 6.2
and Fig. 6.8, the constructed maps are well-matched to the ground truth map: the IoU scores
between the ground truth map and our generated map are high, while precision and recall are
close to 1, indicating a low number of false positives and false negatives. We also evaluate the
performance of robot localization based on the constructed maps. The localization accuracy for
the KP map and the ICP map is on par with the accuracy for the ground truth (GT) map, see
Tab. 6.3, suggesting that our maps are well-suited for localization.

59 6.3 Experimental Evaluation

Table 6.3. Evaluation of the map construction quality through long-term localization performance. The
success rate for all maps on all reported sequences is 100%. We report ATE in [rad/m] format for 10
sequences recorded all across our lab in the span of nine months.

Method Map R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 AVG

Ours GT 0.089/0.14 0.065/0.11 0.070/0.14 0.043/0.17 0.065/0.16 0.075/0.15 0.073/0.17 0.077/0.20 0.060/0.17 0.047/0.12 0.066/0.15
Ours KP 0.082/0.14 0.098/0.16 0.082/0.15 0.041/0.14 0.088/0.22 0.075/0.14 0.073/0.16 0.085/0.23 0.065/0.15 0.042/0.14 0.073/0.16
Ours ICP 0.078/0.14 0.115/0.11 0.085/0.16 0.039/0.15 0.077/0.18 0.081/0.14 0.074/0.18 0.083/0.27 0.057/0.12 0.045/0.11 0.073/0.16

Table 6.4. Baseline comparison for long-term localization on the ground truth map. We report success
rate and ATE in [rad/m] format for 10 sequences recorded all across our lab in the span of nine months.

Method Map R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 AVG

HSMCL GT 0% 60% 100% 100% 100% 0% 100% 100% 100% 20% 68%
EDT-MCL GT 100% 80% 100% 100% 100% 100% 100% 100% 100% 0% 88%
D-MCL GT 100% 60% 100% 100% 100% 100% 100% 100% 80% 0% 84%
O-MCL GT 100% 80% 100% 100% 40% 0% 100% 100% 100% 0% 72%
Ours GT 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

HSMCL GT -/- -/- 0.101/0.30 0.147/0.32 0.084/0.25 -/- 0.052/0.19 0.063/0.24 0.078/0.30 -/- 0.088/0.27
EDT-MCL GT 0.094/0.17 -/- 0.075/0.18 0.043/0.20 0.122/0.16 0.076/0.20 0.073/0.25 0.058/0.23 0.060/0.16 -/- 0.075/0.19
D-MCL GT 0.068/0.13 -/- 0.055/0.18 0.036/0.17 0.075/0.16 0.037/0.21 0.046/0.24 0.039/0.22 -/- -/- 0.051/0.19
O-MCL GT 0.082/0.14 -/- 0.054/0.15 0.045/0.16 -/- -/- 0.056/0.18 0.049/0.19 0.061/0.14 -/- 0.058/0.16
Ours GT 0.089/0.14 0.065/0.11 0.070/0.14 0.043/0.17 0.065/0.16 0.075/0.15 0.073/0.17 0.077/0.20 0.060/0.17 0.047/0.12 0.066/0.15

6.3.3 Long-Term Localization in CAD Floor Plans

To assess the performance of our localization approach, we recorded sequences R1-R10, through
our building, spanning across nine months. These sequences include the addition and removal
of furniture, dynamic obstacles, and quasi-static changes such as the closing and opening of
doors. The starting points for the localization sequences were spread between different rooms
and the corridor. Accuracy and success rate are reported in Tab. 6.3 for the three different
maps. Each map was generated once, and has not been updated during the evaluation period.
Convergence time averaged over sequences R1-R10 is 10.9 s for ground truth map and 12.1 s
for KP map.

6.3.4 Baseline Comparisons for Semantic Localization

We compare our approach to three strategies for integrating 3D object information into MCL.
The first baseline, called EDT-MCL, extends the commonly-used beam-end point model. Based
on the semantic metric map ms (see Sec. 6.2.3), we create an Euclidean distance transform (EDT)
for each semantic class. The second approach, D-MCL, computes the particle weight based on
the object probability map mp and the likelihood po defined in Eq. (6.11). The third approach,
O-MCL, is based on the overlap between a predicted bounding box and the semantic-metric
map ms. The weight is computed based on the overlap score described in Eq. (6.12).

As can be seen in Tab. 6.4, our approach outperforms the baselines. Both EDT-MCL and O-
MCL do not incorporate information about the model noise. D-MCL makes use of the learned
statistical information about the model performance, but only considers the center of the predic-
tion, discarding valuable information about the object dimensions and rotation. Our approach
leverages both the geometric information from the 3D bounding box and takes into account
the characteristic model noise, which results in improved performance. Unlike HSMCL, our
approach does not use LiDAR information, yet the localization is more robust.

60 6.4 Conclusion

6.3.5 Runtime

Our mapping and localization approaches both run online, onboard of a mobile platform. On
our robots, we use an Intel NUC10i7FNK and a NVidia Jetson Xavier AGX. The 3D object de-
tection runs at ∼9 Hz on the NVidia Jetson, and the sensor model executes at 60 Hz on the
NUC10i7FNK. This performance is sufficient to construct a 3D metric semantic map and globally
localize on our mobile platform. A longer video, including live demos for both mapping and lo-
calization, and the code can be found on our GitHub repository at https://github.com/PRBonn/SIMP.

6.4 Conclusion

In this chapter, we presented a novel approach for semantic global localization with a com-
plementary 3D mapping procedure to build the object-based maps used for localization. The
augmentation of floor plan maps with the 3D metric semantic maps assists navigation in clut-
tered and dynamic indoor environments. We show that our semantically-guided localization is
reliable and accurate on both, the ground truth map and the map acquired with our proposed
pipeline, benchmarking it over a dataset of challenging scenarios spanning over nine months.
We compared our approach to similar approaches, and the experiments show how long-term
localization can benefit from 3D metric semantic maps.

Chapter 7

Localization under
Resource-constraints

So far we considered localization for standard-sized robots, where power and compute re-
sources impose little to no limitations. For standard-sized robots, RTK-GPS is often used for
outdoor localization [132], as well as heavy high-end power-hungry 3D LiDARs [22, 33], which
require expensive computations. However, these approaches are unsuitable for nano-UAVs.
First, nano-UAVs are usually deployed indoors, in GPS-denied environments. Second, their low
payload and limited battery capacity restrict the type and accuracy of sensors and the com-
putational resources available onboard. While deploying algorithms onboard nano-UAVs are
challenging, unmanned aerial vehicles (UAVs) are emerging for applications such as monitor-
ing, inspection, surveillance, transportation and logistics [135]. Mainly in indoor scenarios,
a small form factor brings key advantages since smaller UAVs allow for safe operation near
humans and can reach locations which are inaccessible with larger platforms [48].

One approach to localizing small-sized UAVs in GPS-denied environment is infrastructure-
based localization, commonly implemented using ultra-wideband (UWB) [149, 102] or other
wireless communication protocols [76, 24]. To tackle the sensing and compute constraints on
nano-UAVs, off-board processing was proposed for pose estimation [25, 86]. However, these
methods are unsuitable for many application scenarios, as they require prior installation of
external infrastructure and reliable communication between the mobile agent and the base
stations.

Map-based approaches for localization do not require pre-existing infrastructure or exter-
nal localization cues, and can therefore operate independently in indoor environments even
when communication is unavailable. In map-based approaches, the agent uses measurements
acquired by its sensors (LiDAR, camera, sonar, etc.) to estimate its pose in a given map, such
as a landmark-based map [9, 47] or an occupancy grid map [94, 32].

Range sensors have been successfully coupled with occupancy grid maps [28, 145] for in-
door localization. Unfortunately, these sensors are power-hungry and large and therefore un-
suitable for use on a nano-UAV (Fig. 7.1), where only around 10% (around 1-2 Watts) of the
overall power budget can be spent on sensing and processing without affecting the flight time
substantially [34]. Miniaturized time-of-flight (ToF) sensors [97] were used to localize a nano-
UAV. However, they suffer from a short range and low beam count (8×8) that limits their ability
to operate in large spaces.

61

62

(a)

ground truth

(b)

ground truth

(c)

Figure 7.1. (a) A nano-UAV while flying and globally localizing in an office environment using our novel
sensor fusion approach. (b-c) A qualitative evaluation of the localization results on recorded sequences.
Ground truth pose is marked by black stars. The rainbow colors encode the time of prediction, with purple
marking the beginning of the sequence and red its end.

Sparse maps, such as floor plans, are attractive due to their availability, removing the need
for a complex mapping procedure before deployment. However, relying solely on geometric
information from range sensors can lead to global localization failures in sparse maps and en-
vironments with high structural symmetries [171].

Humans navigate using objects rather than precise metric measurements [84, 166], which
inspires leveraging semantic information to improve localization. With the recent advances
in tasks such as object detection [12], semantic cues are commonly utilized for robot local-
ization [2, 166, 171]. However, they still require high-end, energy-consuming computational
resources, which are usually not available on nano-UAVs. The challenge of executing semantic
inference under limited computational resources is addressed with neural architecture search,
quantization and optimized deployment engines [35, 87, 156].

Our main contribution is an approach for global indoor localization on a nano-UAV. In our
approach, we use sensor fusion to exploit both semantic and geometric information. We fully
execute our online and onboard approach on a novel low-power processor. We address the
difficulty of executing object detection tasks on resource-constrained platforms, describing a
pipeline for model quantization and deployment. We introduce a memory-efficient map repre-
sentation which contains both semantic and geometric information. We utilize semantic infor-
mation extracted from the camera and fuse it with range measurements from a miniaturized ToF
sensor to localize a nano-UAV in a the metric-semantic map, by introducing a novel observation
model, as seen in Fig. 7.1.

In our evaluation, we demonstrate that our approach can (i) globally localize a nano-UAV in
a given map, (ii) infer semantic cues under resource constraints, (iii) operate with low power
consumption onboard (iv) execute in real-time (15 Hz ToF, 5 Hz camera). Additionally, we
provide a video of the live demo, as well as an open-source implementation.

The research presented in this chapter covers two published works. The first, titled "Fully
On-board Low-Power Localization with Multizone Time-of-Flight Sensors on Nano-UAVs" [97],
was accepted to Design, Automation & Test in Europe Conference & Exhibition (DATE), 2023. The
second, titled "Fully Onboard Low-Power Localization with Semantic Sensor Fusion on a
Nano-UAV using Floor Plans" [174], was accepted to IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2024.

63 7.1 Related Work

7.1 Related Work

Recent literature has demonstrated that sensing and processing on nano-UAVs are strongly lim-
ited; therefore, many previous works have proposed solutions for autonomous navigation that
only rely on simple state estimation techniques such as an inertial measurement unit and odom-
etry for localization [83, 96, 109, 101]. The major drawback of these approaches is their in-
ability to compensate for drift and recover from accumulated errors [96]. Most drift-correction
approaches use range measurements to anchors with known locations [102].

In indoor scenarios, the most commonly used technology is UWB, but approaches with Blue-
tooth or WiFi are also available. They all have disadvantages — they require line-of-sight be-
tween nodes, depend on pre-installed infrastructure [57, 102] or can only estimate relative
position [149]. The resulting mean localization errors are often over 20 cm (22 cm in [102],
28 cm in [149]). Coppola et al. [24] present a Bluetooth based relative localization approach
where signal strength is used as a range measurement. In contrast to previous works, our ap-
proach focuses on an infrastructure-less approach to globally navigate indoors: a map-based
localization approach using particle filters, which was not explored on nano-UAVs until now.
Probabilistic approaches provide robust localization and include seminal works such as the ex-
tended Kalman filter (EKF) [68], Markov localization [39] and particle filters often referred to
as MCL [28]. These approaches are suitable for localization using range sensors such as 2D Li-
DARs, sonars, and cameras. Until now, these approaches were nearly infeasible on nano-UAVs,
due to bulky power-hungry sensors, and high computational demands, which are hard to satisfy
on embedded systems.

For both the sensing and the processing challenges, promising hardware recently emerged.
Although introduced on the market only recently, lightweight multizone ToF sensors are already
working well for obstacle avoidance [96]. As for powerful and energy-efficient SoCs for process-
ing, SoCs of the parallel ultra-low power (PULP) family have been employed on drones before.
The GAP8 SoC is utilized for corridor [101] or person following [109]. These approaches use
deep learning with quantized models but do not venture into float-heavy tasks such as particle-
filter localization. A novel SoC, GAP91 was recently released, which with 0.33 mW per giga
operation (GOP) is an order of magnitude more power efficient than GAP8 and most impor-
tantly, features increased memory and floating point support.

Localization in indoor human-oriented environments is particularly challenging, due to the
presence of dynamic obstacles such as humans, chairs and carts, as well as quasi-static changes
such as opening and closing of doors and rearrangement of furniture [172]. Relying solely
on geometric features may lead to global localization failure, especially when localizing on
sparse maps such as floor plans [171]. Additional sources of information, such as WiFi and
textual cues, have been integrated into localization frameworks [26, 57, 170] to increase the
robustness of localization, as well as semantic information about objects in the scene Mendez
et al. [84], Zimmerman et al. [171].

In our previous work [171], we propose a semantic localization utilizing both 2D laser and
a camera, and our current work shares the concept of abstract semantic map representation.
Unlike the previous method which requires a 360o LiDAR and camera coverage, and a power-
hungry onboard computer (Intel NUC10), we demonstrate semantic localization with less than
1% of that power consumption and sensors that are orders of magnitude smaller.

Extracting semantic information is essential for semantically-guided localization. While

1https://greenwaves-technologies.com

https://greenwaves-technologies.com

64 7.2 System Overview

lightweight architectures such as YOLO [12] enable inference of object detection models on-
board computers such as Intel NUC and Nvidia Jetson, they still require several tens of megabytes
of memory for sensor-rate execution and are therefore unsuitable for execution on microcon-
trollers(MCU). Recent years witness a growing interest in the deployment of machine learning
on edge devices, specifically semantic perception tasks such as object detection [56, 74, 92].
Motivated by these trends, our approach incorporates also semantic information from the on-
board camera, to overcome the range limitation of the ToF sensors.

In this chapter, we combine a miniature multizone ToF sensor with a novel processor to
enable on-board infrastructure-less localization in indoor environments with an accuracy that
surpasses the state of the art of localization in nano-UAVs with UWB [149, 102]. We first
introduce our optimized ToF-based MCL implementation [97]. We discuss its limitations, as it
cannot operate in larger, open environments due to the short range of the ToF sensors (2.5 m),
and propose a sensor-fusion semantic localization approach suitable for nano-UAVs.

To the best of our knowledge, our approach is the first to fuse both range measurements
and semantic cues for global localization on nano-UAVs. By optimizing the map format and
sensor model for a novel ultra-low-power processor, we are able to globally localize, onboard
and online, in indoor environments without the need for infrastructure or reliable communica-
tion [102, 149]. Additionally, we are the first to deploy a state-of-the-art (SotA) object detection
model from the YOLO family on a RISC-V multi-core platform, achieving 20 Hz with only 2.5 mJ
per frame.

7.2 System Overview

We introduce the hardware setup including the nano-UAV, sensors, and compute platform. We
use a Crazyflie 2.1, an open-source drone, and extend it with three plug-on decks, as shown in
Fig. 7.2. Note that the WiFi module, the 2.4 GHz radio and the uSDcard solely serve for logging
and remote steering purposes, no computations are offloaded. For time synchronization of the
logging we send a timestamp packet from the STM32 on the Crazyflie to the GAP9 every 10 ms.
Fig. 7.2 displays the interactions between the different components introduced below.

7.2.1 Hardware: Crazyflie and Extension Boards

The Crazyflie 2.1 is a commercially available open software/hardware nano-UAV. In this work,
we use its inertial measurement unit (IMU), radio communication (using an nRF51822, solely to
log data and steer the drone) and the main processor, an STM32F405 (168 MHz, 192 kBRAM),
which is responsible for sensor readout, state estimation, and real-time control. We equip the
Crazyflie 2.1 with upgrade-kit motors and propellers and a 350mAh battery.

Flow-deck v2

a commercially available deck featuring a downward-facing optical flow sensor and 1D ToF sen-
sor for odometry measurements. Those sensors improve the internal position estimate provided
by the Crazyflie firmware through an extended Kalman Filter.

65 7.3 Approach

Multizone-ToF-deck

a custom deck featuring up to 4 VL53L5CX sensors, which can provide a matrix of either 8x8
or 4x4 pixels at maximally 15 Hz or 60 Hz respectively. For each zone, it provides a distance
measurement coupled with an error flag, which gets raised when out-of-range measurements
or interference are detected. Each sensor has a 67◦ diagonal field of view (FoV) and a maximal
range of ∼2.5m [41].

GAP9-deck

a custom deck, featuring GAP9, which integrates an RGB camera (OV5647) and a RISC-V par-
allel system-on-chip called GAP92 as processing platform. It also includes a NINA WiFi module,
which is used for data collection. In our application, the multizone ToF sensor measurements
are acquired by the STM32 via an I2C bus and then, together with the state estimation, sent via
SPI to the GAP9 SoC.

7.2.2 Processor: GAP9

GAP9’s architecture is based on the open-source SoC Vega [123] and features 10 RISC-V in-
struction set architecture-based cores, extended with custom instructions. The compute clus-
ter, featuring 9 cores, one for orchestration and 8 workers, delivers programmable compute
power at extreme energy efficiency. GAP9 features 128 kB of shared L1 memory. The fabric
controller (FC) has access to various peripherals and features 64 kB RAM, 1.5 MB interleaved
memory (L2) and even 2 MB flash. The architecture employs adjustable dynamic frequency
and voltage domains, allowing us to tune the energy consumption to the exact requirements at
a particular point in time. At peak performance, the cores run at 400 MHz on both the cluster
and the FC. GAP9 also features NE16, a convolutional neural network (CNN) hardware accel-
erator, specialized for highly efficient MAC operations. NE16 is tailored to 3×3 convolutions,
as it features 9×9×16 8x1bit MAC units, but it also offers support for 1×1 and 3×3 depth-wise
convolutions and fully connected layers. Additionally to the aforementioned internal memory
on GAP9, we mount an L3 RAM octa-SPI memory of 32 MB. As our approach requires a cam-
era interface and the execution of multiple computationally heavy loads with relatively high
memory requirements (>1 MB), making GAP9 a good fit.

7.3 Approach

We aim to globally localize a nano-UAV in a given floor plan, targeting full-scale human oriented
environments, such as offices. To this end, we fuse geometric and semantic information, in a
MCL framework. In Sec. 7.3.1 we detail the training and deployment pipeline for porting a SotA
object detection model to a resource-constrained MCU. We briefly introduce our lightweight,
parallel MCL implementation in Sec. 7.3.2. In Sec. 7.3.3 we describe our optimized semantic
map format, and then present our novel fusion sensor model in Sec. 7.3.4.

2https://greenwaves-technologies.com/gap9_processor

https://greenwaves-technologies.com/gap9_processor

66 7.3 Approach

Figure 7.2. System overview. Top: All stacked components on the nano-UAV, ordered from the top (left)
to the bottom (right). Bottom: A visualization of the communication paths and task distribution between
all employed processors and sensors.

7.3.1 Object Detection

We use a modified architecture from the YOLOv5 family, we refer to as YOLOv5p, to reduce
the memory and execution time required for inference fully onboard, on the parallel RISC-V
processor. The proposed YOLOv5p has a smaller backbone and also a reduced head, with 623K
parameters compared to the 1.9M parameters of smallest YOLOv5 model(YOLOv5n). We first
pre-train our model on the COCO dataset [75] for 100 epochs, and then fine-tune on our custom
dataset, learning semantic classes of interest. To deploy the model on the GAP9, we use the
deployment pipeline NNTool3, which includes quantization, an inference engine for verification
in python and code generation for deployment on resource-constraint MCUs. It supports the
NE16, a hardware accelerator present in GAP9.

7.3.2 Lightweight and Parallel Embedded Implementation of MCL

The two main constraints in the nano-UAVs hardware are memory and execution time, and both
resources must be used efficiently to enable MCL on-board in real-time. Our implementation
of MCL is asynchronous – the motion model is sampled when odometry is available, and the
particles are re-weighted when new range measurements arrive. We only consider new obser-
vations if the drone moves more than dx y or rotates more than dθ . However, we configured
our sampling rates for the motion and observation update to be the same, limited by the 15 Hz
maximum update rate of the ToF sensor.

3https://github.com/GreenWaves-Technologies/ gap_sdk/tree/master/tools/nntool

https://github.com/GreenWaves-Technologies/gap_sdk/tree/master/tools/nntool

67 7.3 Approach

W0

W1

W3

W12
W13

W14

W2

W4W5W6
W7

W8

W10
W11

W9

W15

core 0

core 1

core 2

core 3

core 4

core 5

core 6

core 7

Figure 7.3. Parallelizing the resampling wheel: Each color represents a core, the current particles are
distributed evenly (here two per core) and then the new particles are chosen according to where the
arrows of the resampling wheel point.

The motion model, observation model and pose computation can be parallelized exploiting
the GAP9 cluster by distributing the particles among the cores. The resampling step can also
be parallelized, but due to its dependency on all weights, the workload distribution cannot be
planned optimally. The first step is weight normalization, which involves computing the sum
and dividing by it – we can parallelize this step by splitting the particles evenly to all cores.
We also store the partial sums, as we can use them to parallelize the main resampling step,
drawing the new particles. For drawing the new particles, we use a systematic resampling al-
gorithm [29], which we explain with the analogy of a wheel, as shown in Fig. 7.3. We draw
one random number, corresponding to the first arrow in the wheel, with the other N − 1 ar-
rows being fixed at regular intervals from that randomly picked arrow. The colors show how
we distribute the drawing of the next particles to the cores. The current particle weights are
represented by the cone area they occupy. As we know the partial sums computed by all cores,
we can directly use them to calculate which core will resample how many particles and which
ones. In Fig. 7.3, the colored arrows represent the new particles picked by the corresponding
cores.

The main components of MCL using memory space are the particles and the map. The oc-
cupancy map requires just 2 bits per cell (to represent the 3 possible states). However, we also
precompute the EDT values for each cell, leading to an additional floating point number being
saved for every cell. To decrease the memory usage, we compare three possibilities: 32-bit
floating point numbers, 16-bit floating point numbers, and quantized 8-bit unsigned integer
values. Each particle stores 4 components, (x , y,θ , w). With a 32-bit floating point representa-
tion, this leads to 16 bytes per particle. However, as we are double-buffering the particles for
executing the resampling step, we need 32 bytes per particle for the 32-bit representation, and
16 bytes for more memory-efficient 16-bit representations.

7.3.3 Semantic Map Format

The proposed semantic map format contains geometric information, in the form of an occu-
pancy grid map extracted from a floor plan, which is enhanced with prior semantic information.
Similarly to our previous work [171], we choose a simplified representation for our semantic
information, defining objects by their semantic class and a 2D bounding box. However, the

68 7.4 Experimental Evaluation

contribution of our work is a unified, memory-efficient map representation, instead of multi-
ple semantic visibility maps. In the proposed approach, the occupancy states (free, occupied,
unknown) are represented by 2 bits, and the semantic maps are represented by 1 bit per class,
resulting in one 16-bit map. This generic representation of semantic objects enables fast, man-
ual annotation and removes the need for an expensive mapping procedure. Our approach can
handle inaccurate annotations of both object pose and size. A colored visualization of the se-
mantic maps can be seen in Fig. 7.4.

7.3.4 Geometric-Semantic Fusion Sensor Model

The output of our object detection model contains the class label, the bounding boxes coordi-
nates in a x y x y format and the confidence score for the detected object. First, we compute the
center of the bounding box vc = (xc , yc , 1) in homogeneous coordinates and project it to a 3D
ray in the camera frame

Vc(λ) = O+λR−1K−1vc , (7.1)

where K ∈ R3×3 is the camera intrinsics, R ∈ R3×3 is the camera rotation and O ∈ R3 is camera
center. As the camera is aligned to the forward direction of the nano-UAV, we assume the
rotation matrix is unity. For every particle si

t ∈ S, we transform the 3D ray Vc(λ) to the map
coordinate frame using the pose xi

t . Then we trace the ray in the semantic map, from xi
t in

the direction of the transformed ray Vm
c (λ). We consider the tracing to fail if we encounter an

occupied cell before reaching an object of class c, and in this case we penalize the particle by
lowering its weight to wpenalty. As the FoV of the front ToF sensor and the camera overlap, we
can associate range measurements to detected objects. If the tracing was successful, we look
up the 8× 8 ToF beam measurements corresponding to the bounding box, and calculated the
average distance to the object dToF. If the distance is less than τt , we match the traced distance
dtrace to the measured distance dToF

ps(zt | m,xt) =
1
p

2πσs

exp

�

−
(dtrace − dToF)2

2σ2
s

�

, (7.2)

where zt includes both the semantic observation inferred by our object detection model and
range measurements from the front ToF sensor. When semantic information is not available, we
use the ToF observations to re-weight the particles according to the Beam End Model [146](Sec. 2.1),
with 32 range measurements, extracting 8 beam points from the middle row of our 4 ToF sen-
sors. To reduce memory consumption, the EDT was truncated at distance rmax and quantized
to 8-bit for memory efficiency. As the ToF measurements are unreliable after 3 m, we discard
observations beyond that range, and only perform the update step with enough valid mea-
surements. We employed an aggressive resampling strategy, sampling the particle after every
observation.

7.4 Experimental Evaluation

We evaluate the proposed method in several experiments, to support our claims the we can
(i) globally localize a nano-UAV in a given map, (ii) infer semantic information under resource
constraints, (iii) operate with low power consumption onboard, (iv) execute in real-time (15 Hz

69 7.4 Experimental Evaluation

Figure 7.4. Left: A top view of the dense pointcloud captured with the Z+F Imager 5016 terrestrial laser
scanner, which was used solely for GT extraction. The full pointcloud has 200 million points. Right:
The semantically-enriched floor plan of the lab. Semantic objects of interest are represented using their
bounding box and class ID. Different colors represent different object classes. The semantic information
was added manually, without a complex measuring or mapping procedure.

ToF, 5 Hz camera). Specifically, we show that we can localize in a featureless map such as a
floor plan using a low-power compute platform and miniaturized sensors, due to leveraging
semantic information.

7.4.1 Experimental Setup

To evaluate our approach, we recorded 10 piloted drone flights (S1-S10) over several weeks,
spanning across the lab (Fig. 7.4), including quasi-static changes, furniture moving and dif-
ferent lighting conditions. The recordings include odometry from the Crazyflie’s internal state
estimation and ToF measurements at 15 Hz. For the front ToF sensor, we recorded the full 8×8
grid, while for the right, back and left ToF sensors, we only recorded 8 beams extracted from the
middle row of the grid, due to bandwidth limitations. We also recorded images with 640×480
pixel at a lower rate of 2 Hz, due to Wi-Fi streaming limitations.

To assess the accuracy and robustness of our approach, we used AprilTags [104] to compute
the pose of the nano-UAV. We placed 148 AprilTags on the walls, and then used a SotA laser
scanner to create a dense 3D pointcloud of the lab, shown in Fig. 7.4. The 3D coordinates of
the AprilTags were extracted by running the detector on orthographic projections of the walls.
In images where the AprilTags are detectable, we used 2D-3D correspondences to estimate the
nano-UAV’s position [80]. The images were recorded at 640×480 pixel to enable the detection
of AprilTags. Due to the low resolution and the blurry nature of in-flight images, the GT accuracy
is ∼ 0.1 m. The AprilTags are used strictly for evaluation and are not part of the localization
approach. In addition, we collected training, validation and test sets to train and benchmark
our object detection model.

The given map (Fig. 7.4) is a floor plan augmented with semantic information in the form
of bounding boxes, annotated by a lab member from memory. The semantic annotations are
imprecise, and did not require any type of measurement, but are simply hand-drawn. In our
abstract map, objects differed from their actual size by 50%, or up to 1 m. The map resolution
is 0.05 m/pixel, covering an area of 280 m2.

70 7.4 Experimental Evaluation

Table 7.1. Average precision(AP) (IoU=0.50) scores for the test set, confidence TH 0.2, IoU TH 0.5

Class sink door fridge board table plant drawers sofa cabinet extinguisher all

YOLOv5p 0.663 0.579 0.952 0.574 0.51 0.379 0.604 1.0 0.826 0.967 0.705
FP32 0.663 0.508 1.0 0.525 0.515 0.337 0.659 1.0 0.723 1.0 0.693

MIXED 0.663 0.482 1.0 0.752 0.516 0.168 0.554 1.0 0.715 1.0 0.685
UINT8 0.663 0.492 1.0 0.644 0.436 0.168 0.604 1.0 0.68 0.851 0.654

Figure 7.5. A qualitative evaluation of the 8-bit quantized object detection model on 256 × 192 input
images.

7.4.2 Object Detection Performance

We evaluated the quantized YOLOv5p object detection model to ensure that our deployment
process can preserve the accuracy of the full precision model. While images are acquired at
640x480 pixel, they are downsampled to 256× 192 for inference. We compared the average
precision for each class of interest and the mean average precision for 4 variations. We trained
YOLOv5p using the Ultralytics framework [59]. FP32 is a full precision model converted by
the NNTool from YOLOv5p. MIXED is a quantized model with varying precision - the first
layer is FP16, and the rest are UINT8. UINT8 is a NNTool 8-bit quantization of YOLOv5p.
YOLOv5p inference was executed on a NVidia GTX3070 GPU. MIXED and UINT8 inferences
were executed on the GAP9. For the evaluation, we collected a test set with 50 images, including
several instances of each class of interest. The images were captured by the nano-UAV’s onboard
camera. As can be seen in Tab. 7.1, we lose up to 7.2% accuracy in the quantization and
deployment process, but the performance is still satisfactory, enabling the extraction of semantic
information for localization. Inference examples from the UINT8 model can be seen in Fig. 7.5.

Our object detection pipeline consists out of four parts: (i) image acquisition (ii) prepro-
cessing (iii) quantized neural network (iv) post-processing. As we experienced limitations in
the camera acquisition speed it takes 50ms to acquire an image. As the image is acquired by the
µDMA [123], with double buffering this time can be used productively on GAP9. The second
part is preprocessing, which includes demosaicing and transforming from 10 to 8 bit inputs and
takes 5ms. The quantized neural network takes 38 ms, and the post-processing (non-maximum
suppression) takes 0.3 ms. This means that the limiting factor is the image acquisition - cur-
rently we can reach 20 Hz, however, even if the hardware would allow to acquire images faster
23 Hz would still be the upper limit for the UINT8 network.

71 7.4 Experimental Evaluation

Table 7.2. Algorithm parameters

Method σodom σg σs τt rmax dxy dθ wpenalty

Nano-SMCL (0.5, 0.5, 0.5) 8.0 10.0 2.5 m 2 m 0.05 m 0.05 rad -
Nano-MCL (0.5, 0.5, 0.5) 8.0 - - 2 m 0.05 m 0.05 rad 0.01

Table 7.3. Evaluation of the approaches on recordings S1-S10 with 4096 particles. Top: Absolute trajec-
tory error in meters. Bottom: convergence time in seconds.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 AVG

Nano-SMCL 0.47 - 0.30 0.22 0.36 0.22 0.40 0.25 0.29 0.37 0.32
Nano-MCL - - - - - 0.26 - - - - 0.26

Nano-SMCL 30.87 - 42.39 101.43 19.30 30.32 56.04 54.78 24.69 46.57 45.15
Nano-MCL - - - - - 67.02 - - - - 67.02

7.4.3 Global Localization in Floor Plans

To evaluate the capability of our localization approach, we examined 3 metrics. The success
rate, convergence time and absolute trajectory error (ATE). Since our ground truth (GT) po-
sitions are not continuous, as AprilTags are not visible or detectable in every frame, we only
evaluated our predictions at the timestamps where the GT checkpoints were available. We
consider the point of convergence to be when the ATE is lower than 0.5 m. We consider a lo-
calization to be successful when the pose estimation remains converged until the end of the
sequence. The algorithm parameters are specified in Tab. 7.2. We tested our approach (Nano-
SMCL) with 4096 particles, that were initialized uniformly all over the map. For inferring the
semantic cues, we used the 8-bit quantized model, with 256× 192 input images.

As a baseline, we used the ToF-based MCL approach [97], referred to as Nano-MCL, pro-
viding input from 4 ToF sensors and not relying on semantics. As portrayed in Tab. 7.3, our
algorithm converges with 90% success rate, with an average ATE of 0.32 m. Our average conver-
gence time is 45 s. A qualitative evaluation of our localization results can be seen in Fig. 7.1.
Our approach failed to localize on sequence S7. In this short sequence, the nano-UAV was
mostly in the center of a large and cluttered room, and we could not make use of the ToF mea-
surement. In addition, there is also an ambiguity related to the semantic information, where the
configuration of sofa, cabinet and table in close proximity also exists in another room, causing
the particle filter to maintain two hypotheses as can be see in Fig. 7.6. We outperformed the
range-only MCL approach on all criteria, showing that relying solely on geometric information
leads to a success rate of only 10% We speculate that Nano-MCL is suitable for more detailed
maps such as occupancy grid maps, and also for environments without vast empty spaces. This
is a limiting factor for the short-sighted ToF sensor, and motivates the additional use of semantic
information.

7.4.4 Real-time execution, power and memory footprint

In this section, we present the execution times, power measurements and memory footprint of
our approach.

Execution times In Table 7.4 we summarize the average execution times (FC and cluster

72 7.4 Experimental Evaluation

Figure 7.6. A failed localization scenario due to ambiguity in both geometric and semantic features. The
particles, marked as green dots, are divided between two rooms with similar properties. The weighted-
average prediction is marked with a red cross.

running at 370 MHz) of the different steps, and the resulting processor load per task at the
worst-case execution rate, using the maximal 15Hz from the ToF sensor for the ToF and odom-
etry update, as well as 5 Hz for the camera (all tests are executed at around 2 Hz, limited by
streaming for debugging and repeatability purposes).

When parallelizing on 8 cores, we reach an overall average speedup of 4.5 on the MCL,
leading to a maximum worst-case load of 0.77 and demonstrating that our semantic localization
approach can run in real-time. Note that this is a worst-case scenario for computations, since
we assume the maximum frequencies we can acquire data with. In practice, the MCL updates
are only performed under certain conditions, such as having valid observations and moving a
threshold distance. Note that the camera acquisition time does not imply any processor load
per se, as it can be executed by the µDMA [123], however, due to camera driver limitations we
can only acquire images with the full FoV in VGA resolution and with 10 bits per pixel, saved
in 2 bytes, resulting in a too big image to double buffer it in L2. The data coming from the
Crazyflie’s STM32 (odometry estimation and ToF measurements) is much smaller and can be
double buffered.

Power consumption Power consumption of the drone can be divided to 3 main categories:
actuation, sensing, and processing, with the motors consuming the most at ∼ 15W . The ToF
sensors require 266mW each in continuous operation, accumulating to 1.06W, while the camera
consumes only 90 mW. The Crazyflie stock electronics consume∼280 mW. The added processor,
GAP9, consumes on average 64.7mW during the quantized YOLOv5p execution and 23 mW dur-
ing the MCL execution, which results in an average processing and sensing power consumption
of just under 1.5W, staying inside the 10% power budget usually advised for sensing and com-
putation on nano-UAVs. For comparison, onboard compute platforms for standard-size robots,
such as Intel NUC10, consume up to 120W, 5 orders of magnitude more than the GAP9.

73 7.5 Conclusion

Table 7.4. Execution time, worst-case execution rate, and resulting processor load for single- and multi-
core implementations (where present).

camera pre-
NN

post cam/ToF obs.
motion resampling total

acqu. process process fusion ToF

Worst-case exec. rate (Hz) 5 5 5 5 15 15 15 15
Single-core (ms) 50 4.5 - 0.3 43.9 39.1 10.3 0.6
Load single-core 0.25 0.02 - 0.00 0.66 0.58 0.15 0.01 1.67 + CNN
Multi-core (ms) - - 38 - 8.5 8.6 2.6 0.5
Load multi-core (0.25) (0.02) 0.19 (0.00) 0.13 0.13 0.04 0.01 0.77

Figure 7.7. The 1.5 MB L2 memory on GAP9 is used for code and data.

Memory The main constraint, fitting everything into the assigned L2 space, which we illus-
trate in Fig. 7.7 As we update the MCL at up to 15 Hz, we allocate L2 memory for the particles
for faster access. This requires 128kB for 4096 particles, where each particle’s state si

t = (x
i
t , wi

t)
is represented by 4 floats (32-bit). For the 371x302 pixel semantic map, each pixel is repre-
sented by 16-bit value to encode the occupancy grid map and the multiple semantic maps. We
also store a quantized 8-bit EDT, and both map and EDT require 336 kB. We acquire raw images
in VGA resolution (640×480×22bytes), totaling in 614 kB, and preprocess them to 256×256
8-bit RGB images, reducing the memory consumption to 196 kB. The NNTool allows to limit
L2 size allocated for the model inference in exchange for slower execution (as transfers from
external octa-SPI RAM are necessary). We allocated 300KB for our 8-bit quantized YOLOv5p
as the inference time was only 3 ms longer than with 1MB. Additionally, code and static data
occupy L2 memory as well - 75KB for the MCL code, 225 kB for the neural network inference
and 34 kB for static data. The overall peak memory usage is 1.41 MB out of the available
1.5 MB, enabling the implementation of additional functionalities such as obstacle avoidance
or navigation.

7.5 Conclusion

This chapter presents a fully-onboard, global localization approach for a nano-UAV, operating in
a full-scale, human-oriented indoor environment. The proposed approach exploits low-element
count, miniaturized ToF sensors, fusing the range measurements with semantic information
extracted from the onboard camera, to localize in a semantically-enhanced floor plan. We
present a SotA object detection model at 20 Hz and 2.5 mJ per frame on a < 100 mW RISC-V
multi-core processor. We provide an optimized semantic map format and a sensor model that
are suitable for onboard, online execution on nano-UAVs. In our experiments, we show the
benefit of exploiting semantic cues for localization, and demonstrate that our approach can
successfully localize in various real-world scenarios.

74 7.5 Conclusion

Chapter 8

Collaborative Localization

Previously, we discussed the challenges of localization when the environment is highly symmet-
ric, featureless or very dynamic. Human-oriented indoor environments such as office buildings,
contain high degree of geometric symmetry due to repetitive structures. In addition, the readily-
available map representations such as floor plans are lacking in details, resulting in seemingly
identical structures. Relying solely on geometric features may result in localization failure,
leading researchers to exploit additional sources of information. RFID [60] and Wi-Fi signal
strength [57] can be used to improve pose estimation, as well as textual cues [26, 170]. An-
other venue is utilizing semantic information [2, 53, 60], harnessing the significant progress in
the fields of semantic understanding. Despite our best efforts to enable robust long-term single-
robot localization, it can still fail. Recovering from a localization failure in the single robot sce-
nario, mostly involves a human in the loop, in particular when navigating with erroneous pose
estimation raises safety concerns. In contrast, in a multi-robot setup, a poorly-localized robot
can recover if assisted by a well-localized robot.

In the last decade, multi-robot systems have become more prevalent, introducing a new
challenge of multi-robot localization. As opposed to single-robot localization, where a robot
estimates its pose based on its own sensing, in a collaborative setting a robot can make use of
information it receives from other agents. A recurring pattern in the related research is using the
state estimation of one robot to improve the localization of another robot upon detection [4, 40,
114]. This information exchange involves broadcasting the belief of the robots, a distribution
that is often approximated by a particle filter in the case of global localization. When the
area the robots operate in is large, the particle set representing the belief can easily reach tens
of thousands of particles. The naive approach of simply broadcasting all of the particles and
then integrating them into another robot’s belief [114], is computationally costly and has high
bandwidth consumption. Therefore, a compressed representation of the belief is imperative and
has been proposed in the past [114]. In this work, we analyse the computational complexity
related to compressing, exchanging, and fusing robots’ beliefs for collaborative localization.

The main contribution of this work is a novel approach to collaborative global localiza-
tion (Fig. 8.1) which reduces the amount of data communicated and the computational cost.
Additionally, we provide a unified overview and thorough analysis of alternative approaches
to compress belief exchange. Furthermore, we release an open-source C++/ROS2 implemen-
tation for seminal works, as baselines for collaborative localization. While the methods are
capable of operating in multi-robot scenarios, our experiments focus on the case of two collab-

75

76 8.1 Related Work

Figure 8.1. Top: two robots during one experimental run when robot A detects robot B. Bottom: local-
ization of robot B in the same run using 3 methods; prediction, color-coded for time, is plotted against
ground truth position (black). Two failures, using non-collaborative MCL and Prorok et al. [114], and a
successful convergence after 20 s with our collaborative localization approach (Compress++).

orating robots, where we show that our approach (i) improves collaborative localization, (ii)
decreases the required bandwidth, (iii) reduces the computational load, (iv) runs online on an
onboard computer.

The chapter is organized as follows. Sec. 8.1 provides a summary of related research in
collaborative localization. In Sec. 8.2, we present our novel approach for collaborative global
localization with distribution compression, as well as overview of alternative approaches. We
analyze the complexity of distribution compression, communication and fusion in Sec. 8.3. We
introduce our experimental setup in Sec. 8.4. In Sec. 8.5, we evaluate the performance of our
approach against several baselines, and offer insights regarding their different behaviors.

This work, titled "Resource-Aware Collaborative Monte Carlo Localization with Distri-
bution Compression" [173], was accepted for Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2024.

8.1 Related Work

Map-based localization is an integral part of enabling the autonomy of mobile robots [18, 146].
Global localization for a single robot is widely-researched, and probabilistic methods [28, 39,
146] have gained popularity due to their robustness. The growing interest in multi-robot sys-
tems, presented a new challenge of collaborative multi-robot localization. While the term multi-
robot localization sometimes refers to relative positioning [54, 81], we focus on cooperative
global localization in a given map [40].

Multi-centralized approaches [98, 99, 125], where each robot maintains the belief for all
robots, generally do not scale well with the number of robots. In decentralize approaches, each
robot estimates only its own state and integrates relative observations from other robots when
available.

Similarly to the single robot case [2, 53, 60, 171, 172], leveraging semantic scene under-
standing [12, 23, 52, 140] was adopted for multi-robot localization. A common approach to
collaborative localization relies on robot detection, where one robot can sense another robot.
Fox Fox et al. [40] propose a factorial representation where each robot maintains its own be-

77 8.2 Approach

lief, and the belief of different robots are assumed to be independent from each other. When
one robot detects another, the detection model is used to synchronize their beliefs. However,
no analysis is provided about the processing requirements and the experiments only cover one
scenario. Barea et al. [4], propose a system for collaborative localization based on Monte-Carlo
localization [28] framework, but do not include an explicit detection model.

Wu and Su [161] present an improvement to Fox et al. [40], where they consider whether
the belief should be updated upon detection, by comparing the entropy of both robots’ beliefs.
They too, do not provide information about the computational and bandwidth requirement
for the information exchange. Özkucur et al. [106] introduce an approach to collaborative
localization where robots can be detected but not identified, but no details are given about
the complexity of the approach. Prorok and Martinoli [112] first detail a naive approach of
synchronizing the beliefs of two robots, each with N particles, with O(N2) complexity. In their
later work [114], they provide a clustering algorithm to reduce the complexity to O(NK), where
K is the user-defined number of clusters. In all works by Prorok et al. [114], Prorok and Martinoli
[112], the experimental setup does not include exteroceptive sensing and the utilization of a
map, while we explore the contribution of belief exchange in the framework of a range-based
MCL. With the exception of Prorok’s works, the constrains imposed by limited compute and
bandwidth are largely unaddressed. Furthermore, the cited works present limited results for
their individual approach, without comparing them against other baselines. In our work, we
provide thorough analysis for the computational and communication requirements of seminal
works [40, 114], as well as present resource-aware alternative detection models. We benchmark
the various approaches on several environments, and offer insights regarding their performance.

8.2 Approach

We aim to globally localize a team of robots in a given map. We describe in Sec. 8.2.1 a com-
mon approach to distributed multi-robot localization, where beliefs are exchanged when robots
detect each other, including the concept of reciprocal sampling. In Sec. 8.2.2, we introduce our
novel approach and, in Sec. 8.2.3, we give an overview of alternative methods.

8.2.1 Collaborative Monte Carlo Localization

Collaborative Monte Carlo localization extends the single robot MCL (Sec. 1) by incorporating
information from other robots into a robot’s belief. Each robot locally runs an independent MCL
that integrates its own sensor and odometry readings. When robot A detects robot B at time t,
it estimates the relative position dt ∈ R2 of B and then sends message M to B with information
about its state X A

t and detection dt , as illustrated in Fig. 8.1.
B, upon receiving the message, updates the weights of its particles [40], fusing information:

wB
t,i = wB

t−1,i p
�

xB
t,i

�

�M
�

dt , X A
t

�

�

. (8.1)

A straightforward but naive way of implementing the right-most factor in Eq. (8.1) is to
include the entire particle set X A

t in the message. Then

p(xB
t,i |dt , X A

t) =
N
∑

j=1

wA
t, j p(x

B
t,i |dt ,x

A
t, j), (8.2)

78 8.2 Approach

(a)

(b)

Figure 8.2. (a) An illustration of an experimental run up to the first detection event. (b) A run where
robot B has no particles around its truth position at the time of detection (left), followed by reciprocal
sampling (center) and successful localization (right).

where p(xB|d,xA) is the detection model, which we model as a normal distribution with variance
Σ (detection noise) around a position corresponding to d

p
�

xB
�

�d,xA
�

=N
�

(x , y)B; T (d;xA),Σ
�

, (8.3)

where T (·;xA) transforms a relative position with respect to pose xA to an absolute position;
please note that detections have no information about orientation. This naive implementation
has quadratic time-complexity (see Section 8.3), which is problematic when resources are lim-
ited. For this reason, in Sec. 8.2.2, we compress the belief of A in M , summarizing it with fewer
representative points.

Reciprocal Sampling

To accelerate convergence, Prorok et al. [114], during the particle filter resampling step, pro-
pose sampling from the detection distribution (i.e., the right-most factor in Eq. (8.1)) with
probability α > 0. In essence, particles in the detected robot’s filter are replaced with particles
suggested by the detecting robot, based on its belief and the estimated relative position. The
reciprocal sampling procedure is illustrated in Fig. 8.2.

8.2.2 Distribution Compression

We present our approach for near-linear time distribution compression, based on Compress++ [136].
This compression method performs better than standard thinning algorithms, such as indepen-
dent and identically distributed (i.i.d.) sampling, which are not concise and have a large in-
tegration error [31]. An important measure is the maximum mean discrepancy (MMD) [44],
which measures distance between two distribution or sample sets, as a difference between mean

79 8.2 Approach

embedding of features. The MMD between two sample sets X1 and X2 is defined as

MMD(X1, X2)
.
= ||EX1

[K(X1)]−EX2
[K(X2)]||H, (8.4)

where k(·) is the reproducing kernel, such that K(X)
.
=
�

k(x i , x j)
�

i j is a symmetric positive
semi-definite matrix over all input points x i ∈ X . Kernel thinning (KT) algorithms [30, 31] use
a better than i.i.d., non-uniform randomness to thin a sample set. KT algorithms recursively
partition the input into balanced coresets, by ensuring each pair of coresets minimizes the MMD.
In the initial step, there are two empty coresets, and two samples, x and x’, from the original
sample set are chosen at random. The assignment of each of the samples to a coreset is designed
to minimize MMD(X1∪ {x}, X2∪ {x ’}). This step is repeated until all samples from the original
set are assigned to one of the two coresets. This yields a near-optimal thinning procedure, which
compresses a set of points while providing error guarantees. However, it suffers from quadratic
or super-quadratic runtime. Shetty et al. [136] introduce Compress++, a meta-procedure for
speeding up thinning algorithms while suffering at most a factor of 4 in error. This root-thinning
algorithm returns a subset of

p
N samples, with time complexity of O(N log3 N).

In our formulation, we first compute a set

X̄ AB
t = {T (dt ;xA)|(xA, ·) ∈ X A

t } ⊂ R
2 (8.5)

of position samples for B from the particles set X A (after resampling, i.e., when particles have
uniform weights) and then compress it using Compress++ to X̃ AB

t ⊂ X̄ AB
t : this representative

subset is then used in Eq. (8.2) and Eq. (8.3) instead of the whole set.
We adopt the idea of reciprocal sampling for our distribution compression, by first sampling

uniformly from X̃ AB
t and then sampling a pose using Eq. (8.3):

µ∼ U(X̃ AB
t), (x , y)Bt,i ∼N (µ,Σ), θ B

t,i ∼ U([0, 2π)). (8.6)

8.2.3 Baselines

As part of our contribution, we implement several baselines, including seminal works [40, 114]
in collaborative localization. We provide an overview of these approaches, using common no-
tations for clarity.

Density Estimation Tree

Fox et al. [40] propose to use density estimation trees (DET) [105, 118] to transform the sample
set into a piece-wise constant density function. First, DETAB is constructed from X̄ AB

t and shared
with B, who then updates its belief by querying it:

p
�

xB
t,i

�

�M
�

dt , X A
t

�

�

= DETAB((x , y)Bt,i). (8.7)

While DET was suggested as a remedy for the nontrivial issues of establishing correspondence
between two sample sets (X B and X̄ AB

t) without an explicit detection model, it can be used to
compress the distribution by limiting the size T of the tree. For this method, we do not perform
reciprocal sampling because the implementation detailed in the work does not include it.

80 8.3 Complexity Analysis

Divide-and-Conquer Clustering

Prorok et al. [114] propose a non-iterative, order-independent, non-parametric clustering in-
spired by multidimensional binary trees [8]. The particles of A are clustered into K cluster
abstractions, which include the centroid mathb f cA

t,k, weight wA
k, detection mean µA

k and detec-
tion variance ΣA

k. The belief is updated as

p
�

mathb f xB
t,i

�

�

�M
�

dt , X A
t

�

�

=
K
∑

k=1

wA
kN (T

−1
�

(x , y)Bt,i ;cA
t,k

�

;µA
k ,ΣA

k +Σ),

where T−1 transforms absolute to relative positions, the multivariate normal distribution is
represented in relative polar coordinates, and Σ captures the detection noise.

K-means Clustering

K-means clustering [50] is a commonly-used, low-cost iterative clustering method. It is men-
tioned by Prorok et al. [114] in the context of collaborative localization, where the authors
dismiss it as too sensitive to the initial cluster assignment, but no comparison is reported. We
introduce a belief compression based on K-means clustering: we compute K clusters of X̄ AB

t
with centroids cA

t,k; for each cluster, we compute its intra-cluster variance ΣA
k and total weight

wA
k. The belief is then updated as

p
�

xB
t,i

�

�M
�

dt , X A
t

�

�

=
K
∑

k=1

wA
kN
�

(x , y)Bt,i ;cA
t, j ,Σ

A
k +Σ
�

(8.8)

By clustering X̄ AB
t instead of X A, we reduce the amount of information to broadcast compared to

the approach suggested by Prorok et al. [114]. For the reciprocal sampling strategy, we sample
from the mixture of normal distributions of Eq. (8.8).

Standard Thinning

The most common approach to reduce the number of samples is i.i.d. sampling, where K
samples are randomly picked from a set of size N . This can be used to reduce X̄ AB, share it and
then apply Eq. (8.2). In our implementation, we also include a reciprocal sampling step similar
to the one preformed for our Compress++ approach.

8.3 Complexity Analysis

The complexity of all approaches is presented in Tab. 8.1. We discuss the complexity of 3
components: compression, communication and fusion. These time and space complexities be-
come significant in systems with many robots or when the computational and communication
resources are constrained.

8.3.1 Compression

The naive implementation for belief exchange require just O(N) complexity for compression,
but results in high communication cost and computational cost during fusion. The construction
of a DET involves leave-one-out cross-validation, resulting in a O(HDN log N) complexity for
N data samples with D features and H tries. For the non-iterative clustering method suggested
by Prorok et al. [114], the complexity for K clusters is O(NK). The complexity of K-means

81 8.4 Experimental Setup

Table 8.1. Algorithm Complexity. N is the number of particles. K is the number of clusters for Prorok et
al. and K-means, and the number of points selected by standard thinning.

Method Naive Std. Thinning Fox et al. Prorok et al. K-means Compress++

Compression O(N) O(K) O(HDN log N) O(NK) O(NK L) O(N log3 N)
Communication O(N) O(K) O(N) O(K) O(K)

p
N

Fusion O(N2) O(NK) O(N log N) O(NK) O(NK) O(N
p

N)

clustering is O(NK L), where L in the number of iterations. Even though K-means clustering
is an iterative approach, for L = 5 this compression strategy is comparable to Prorok et al.’s
approach, and in practice runs faster (see Sec. 8.5.3). The complexity of the standard thinning
algorithm is O(K), where K is the size of the reduced sample set. To compress a state with N
particles, our Compress++ approach has a time complexity of O(N log3 N).

8.3.2 Communication

When multiple robots communicate on the same network, the total bandwidth required needs to
be considered. The naive approach communicates the robot’s belief by broadcasting all particle
in the filter, which takes O(N) space. To reduce the amount of information we broadcast,
it is necessary to compress the belief. When the belief is represented as a DET ([40]), the
information sent is in the order of O(N), with constant coefficient that represents the space
required for the bookkeeping of a single tree node. When the size of the tree is limited to T
nodes, the cost is reduced to O(T). Both Prorok et al.’s and K-means clustering use cluster
representatives to summarize the belief, resulting in O(K) space for K clusters. Similarly, for
standard thinning, we only broadcast the reduced set of K particles. Using our Compress++
approach, the coreset representation reduces the communication cost to O(

p
N) (K =

p
N in

this case).

8.3.3 Fusion

Following Eq. (8.2), the complexity of updating the belief is O(N2) for the naive implemen-
tation. Fox et al. [40] requires O(N log N), since it involves querying a tree. The update step,
combined with the reciprocal sampling, detailed by Prorok and Martinoli [112] requires O(NK)
time; the same for K-means and std. thinning. Our Compress++ approach has also a O(N

p
N)

complexity when updating the belief (K =
p

N in this case).

8.4 Experimental Setup

We restrict the study to the case of two robots, although all presented methods generalize to
larger multi-robot systems. In our experiments, robot B is delocalized at the time when it is first
detected by robot A; we explore the contribution of information exchange to the localization
performance of robot B.

82 8.4 Experimental Setup

Figure 8.3. The robotic platform used in the evaluation.

8.4.1 Robots

The platform we use in the evaluation is the DJI RoboMaster EP, a commercially available ground
robot, with omnidirectional drive, and a size of 32 cm×24 cm×27 cm. Depicted in Fig. 8.3, the
robot has a front-facing CMOS HD camera with a 102◦ horizontal FoV and a YDLIDAR Tmini Pro
2D LiDAR with a range of 12 m, 360◦ FoV, and resolution of 0.54◦ at 6 Hz. The onboard robot
firmware includes an ML model for detecting other RoboMasters in the camera stream. The
detector runs at about 5 Hz and returns a list of bounding boxes in image space, from which,
using calibrated homography, we reconstruct the relative horizontal position of detected robots
d = (r,θ), with a zero-mean Gaussian error (σr ≈ 0.05r,σθ ≈ 0.03 rad) that depends on the
range. The robots carry a Single Computer Board (Khadas VIM4) that runs ROS2 drivers for
the robot platform1 and LiDAR.

The same platform is available in simulation2 (CoppeliaSim [121]), where we replicate the
same sensing error model and run the same ROS2 driver.

8.4.2 Environments

In simulation, we design three different environments (Fig. 8.4), with a varying degree of ge-
ometric symmetry and feature richness. Environment 1 is specifically designed to be feature-
sparse, with multiple areas that challenge the limited range (12 m) of our LiDAR. Environment
2 is modeled after a floor of our building. Environment 3 is designed to have a large degree of
symmetry. Environments 1 and 2 have a free area of 500 m2 where experiments are executed
with 10000 particles. Environment 3 is smaller, with a free area of 140 m2 where experiments
are executed with 2000 particles. To conduct real-world evaluation, we reconstruct the layout
of the left room in environment 3 in our lab, which features a motion tracker system to collect
ground truth information.

1https://github.com/jeguzzi/robomaster_ros
2https://github.com/jeguzzi/robomaster_sim

https://github.com/jeguzzi/robomaster_ros
https://github.com/jeguzzi/robomaster_sim

83 8.4 Experimental Setup

12m

(a) Env1 (b) Env2 (c) Env3

Figure 8.4. Environments have varying degree of geometric symmetry and feature richness. The area
highlighted in red was reconstructed in our lab for real-world evaluation. The three maps are to scale;
the LiDAR range, 12 m, is marked in blue.

Table 8.2. Common MCL parameters

σodom σobs rmax α δx y δθ

(0.05,0.05, 0.05) 0.5 m 12.0 m 0.06 0.05 m 0.05 rad

8.4.3 Scenario

We focus our experimental scenario on the impact of collaborative localization, therefore we
make sure that each experimental run includes multiple detection events. We randomly choose
start and goal poses of robot A and compute a shortest-path trajectory to follow. We then choose
the start pose for robot B such that it would be seen by robot A at some point along its trajectory,
and a random goal pose. In this scenario, robot B is delocalized at the time of the first detection
by robot A, as illustrated in Fig. 8.2.

8.4.4 Metrics

Three metrics were considered for the evaluation - the success rate, absolute trajectory er-
ror (ATE) after convergence and convergence time. We define convergence as the time when
the estimate pose is within 0.3 m radius of the ground truth pose, and the orientation is within
0.3 rad. After convergence, the tracked pose must not diverge for an accumulated 5% of the re-
maining sequence. A localization run is successful if convergence is achieved in the first 90% of
the sequence time and the tracked pose does not diverge. Each sequence is evaluated multiple
times to account for the inherent stochasticity of the MCL framework.

8.4.5 Procedure and parameters

We first record odometry, LiDAR scans, detections and ground truth poses for each robots during
all experimental runs. In total, we recorded 19 runs for the 3 environments in simulation
and 17 runs for Env3 in real-world. Then, we evaluate each method presented in Sec. 8.2 on
the same runs, using the parameters reported in Tab. 8.2 for the common MCL part. Overall,
112 evaluations were run for each of the 7 methods. The Compress++ algorithm reduces the

84 8.5 Experimental Evaluation

Figure 8.5. The success rate of all methods for each of the environments for robot B.

sample set first to the closest power of 4, and then perform root-thinning, which resulted in
64 representative samples from a set of 10000 particles, and 32 representative samples for a
sample set of 2000 particles. For Fox at al.’s approach, we ensured that we have no more than
20 leaves in the DET. Prorok and Martinoli [112] explored different cluster numbers, between
1 and 32, and reported no significant change in performance for any K > 1. Therefore, for both
Prorok et al.’s and the K-means approaches, we set K = 8. The reciprocal sampling ratio was
set to α= 0.06, as suggested by Prorok and Martinoli [112].

8.5 Experimental Evaluation

We conducted a thorough evaluation of the different approaches to cooperative localization. We
present our experiments to show the capabilities of our method. The results support the claims
that our proposed approach (i) improves collaborative localization, (ii) decreases the required
bandwidth, (iii) reduces the computational load, (iv) runs online on an onboard computer.

8.5.1 Collaborative localization

We compare our approach against the different baselines. We focus on the impact of belief ex-
change between the somewhat-localized robot A and the delocalized robot B, on the localization
performance of robot B, for the different approaches.

As can be seen from Fig. 8.5 and Tab. 8.3, the results highlight the importance of reciprocal
sampling. The seminal work by Fox et al. [40] does not include a reciprocal sampling step and
performs poorly in many sequences. To support this claim, we evaluated the performance of the
naive implementation with no reciprocal sampling, which result in a dramatic drop of perfor-
mance, with success rates of (20%, 10%, 40%) in the 3 simulated environments respectively. As
illustrate in Fig. 8.2, reciprocal sampling is particularly crucial when robot B is delocalized and
few-to-none particles are present around its true location, as reweighting particles in Eq. (8.1)
has minimal impact: it can only encourage particles that are in the vicinity of the detection
position, but not propose new hypotheses to robot B. In contrast, reciprocal sampling allows
robot A to enrich robot B’s particle filter with new samples.

85 8.5 Experimental Evaluation

Table 8.3. Baseline comparison of global localization performance for robot B. We report success rate,
convergence time in seconds (top) and ATE in [rad/m] format (bottom). ATE is not reported when all
runs resulted in failure.

Method Env1 Env2 Env3 (sim) Env3 (real) Average

MCL 17.8% (11.2) 16.7% (7.8) 0.0% (-) 0.0% (-) 11.6% (6.6)
Std. Thinning 51.1% (32.4) 90.0% (24.5) 100.0% (45.6) 70.6% (43.8) 73.2% (34.4)
Naive 51.1% (29.7) 90.0% (24.6) 90.0% (53.1) 76.5% (38.2) 72.3% (33.8)
Fox et al. 46.7% (34.8) 76.7% (17.4) 10.0% (91.1) 5.9% (39.5) 42.0% (40.9)
Prorok et al. 40.0% (43.3) 93.3% (18.3) 95.0% (41.0) 17.6% (27.5) 60.7% (33.8)
K-means 33.3% (51.9) 70.0% (16.5) 0.0% (-) 5.9% (39.9) 33.0% (31.3)
Compress++ 60.0% (34.2) 100.0% (23.1) 100.0% (47.9) 88.2% (41.2) 82.1% (34.7)

MCL 0.032/0.198 0.005/0.175 -/- -/- 0.014/0.127
Std. Thinning 0.026/0.199 0.022/0.103 0.031/0.062 0.062/0.153 0.031/0.142
Naive 0.026/0.201 0.021/0.106 0.023/0.071 0.060/0.186 0.029/0.150
Fox et al. 0.029/0.217 0.045/0.142 0.048/0.185 0.181/0.117 0.060/0.176
Prorok et al. 0.034/0.199 0.036/0.121 0.068/0.099 0.090/0.114 0.049/0.147
K-means 0.030/0.193 0.033/0.163 -/- 0.156/0.171 0.045/0.147
Compress++ 0.024/0.214 0.018/0.108 0.026/0.062 0.060/0.154 0.028/0.149

Another interesting insight comes from the difference in performance in different environ-
ments. Due to the sparsity of environment 1, robot A’s localization is less accurate prior to the
detection event. For the real-world environment, localization is challenging due to discrepan-
cies between the map and the constructed maze. Additionally, the LiDAR is partially occluded
by the arm, reducing the FoV to 300◦. For these reasons, the localization for robot B is challeng-
ing even after integrating A’s belief, as indicated by the higher ATE across all methods (Tab. 8.3)
in these two environments. Methods that perform well on the second and third (simulated) en-
vironment, like standard thinning and the approach of Prorok et al., suffer a significant loss in
performance in the first environment, as well as in the real-world experiments. Our approach,
Compress++, remains a top-performer in all 3 environments, including in the real-world, sup-
porting our first claim. We provide a demonstration of our approach in a real environment in
the attached video.

In Fig. 8.6, we visualize convergence as a function of time, where all sequences are synchro-
nized such that t = 0 when the first detection message is received by robot B. For every time
step, we report for what fraction of the runs the current pose estimation is below the conver-
gence threshold. While in Fig. 8.5 and Tab. 8.3 success requires that pose estimation remains
within a convergence threshold from the moment of convergence, in Fig. 8.6, we only consider
whether a pose estimation is close enough to the ground truth at a given time. Therefore,
Fig. 8.6 differs from results about success, yet shows a similar ranking between the methods,
with Compress++ converging with the highest reliability. We note that while Prorok et al.’s
approach converges well in the long run, it suffers particularly from instability as it tends to
converge fast and then diverge, as seen in the drop around t = 5 s and t = 60 s in Env3 (real).
Similar differences between convergence and success rate can be seen for all methods but to a
lesser degree.

86 8.5 Experimental Evaluation

Figure 8.6. The fraction of runs whose current pose estimation of robot B is below convergence threshold.
The time t = 0 is synchronized by the arrival of the first detection message from robot A.

87 8.5 Experimental Evaluation

Table 8.4. Runtime cost in milliseconds for one update step of filters with 10000 particles.

HW Method Std. Thinning Naive Fox et al. Prorok et al. K-means Compress++

Laptop Compression (A) 0.1 0.1 5.4 20.8 1.6 32.2
Fusion (B) 2.6 286.1 0.4 1.0 1.5 2.5

Khadas Compression (A) 0.2 0.3 10.9 51 8.8 85
Fusion (B) 9.9 1191.7 0.6 4.0 5.9 9.9

8.5.2 Bandwidth requirements

We go through the implementation of all methods to compute how much bandwidth they re-
quire. For the naive approach, where the entire distribution is exchanged, the size of a message
is 12N = 120 kB as each particle is represented by 3 floating point numbers, assuming 4-byte
representation for floats. For the K-means approach, we require 6 floating point numbers to
encode each cluster, i.e., a message size of 24K = 192 bytes for K = 8 clusters. For Prorok et
al.’s approach, we need 8 floating point numbers to describe each cluster abstraction, giving a
message of 256 bytes. For Fox et al.’s, the whole DET is sent; since each node requires some
bookkeeping (50 bytes per node, a conservative estimation), it requires 50T = 1 kB for the en-
tire tree when T = 20. For standard thinning, we require 3K = 192 bytes for K = 64 sampled
particles. For Compress++, representative points have equal weight and are represented by 2
floats; as it first reduces the set to the nearest power of 4, and then takes the root, it requires 512
bytes for 10000 particles and 256 bytes for 2000 particles. Therefore our approach drastically
reduces the bandwidth requirement compared to the naive approach (second claim), achiev-
ing a comparable compression rate as the other methods but maintaining a larger localization
performance.

8.5.3 Runtime cost

As discussed in Sec. 8.3, our approach reduces the overall time-complexity compared to the
naive approach: on one side, it increases the time-complexity of compression for robot A by
factor log3 N , on the other side, it decreases the larger time-complexity for robot B by a more
significant factor

p
N , supporting our third claim. The runtime cost for all collaborative lo-

calization approaches is presented in Tab. 8.4. We benchmarked the approaches using 10000
particles. Since the output of Compress++ is 64 representative points, we select a comparable
K = 64 for Prorok et al., std. thinning, and K-means, and constrain the DET construction to
result in about 64 nodes. As expected, the naive approach requires the longest time to perform
the belief fusion.

We evaluated the performance on two platform, a laptop with Intel Core i9 processors (16
cores), and Khadas VIM4 board with ARM Cortex processors (8 cores). Even though K-means
clustering has a slightly higher theoretical complexity, for L = 5 this compression strategy is
comparable to approach of Prorok et al., and in practice runs 12 times faster on the laptop and
5.8 times faster on the embedded platform. We attribute this performance gap to the fact that
K-means is much easier to parallelize. While all other methods are implemented in C++ and are
optimized for multi-core execution, our method utilizes a open-source Python implementation
of Compress++.3 Nonetheless, its runtime for compression is on-par with the approach of

3https://github.com/microsoft/goodpoints/tree/main

88 8.6 Conclusion

(a) (b)

Figure 8.7. The behavior of different distribution compression methods on different data points forma-
tions.

Prorok et al. and takes less than 10 ms to integrate the belief, supporting our fourth claim that
it can run in real-time onboard. Additionally, the attached video shows how our localization
method runs online, onboard of the robots.

8.5.4 Clustering

We explore an artificial yet interesting case of compression in the presence of symmetry, as
would occur when a robot is not yet localized but maintains several hypothesis, e.g., due to
geometric symmetry of the environment. We generated 20 points each from 4 evenly spaced
regions in a diamond formation (Fig. 8.7a) and another 20 points from a region at the center
(Fig. 8.7b). We then apply different methods to extracts 8 representative points.

This test case reveals a weakness of the divide-and-conquer clustering algorithm proposed
by Prorok et al. [114]: as shown in Fig. 8.7b, the algorithm struggles to divide the particle set
into well-defined clusters, likely due to the division strategy, which separates clusters along the
axis of highest variance. The algorithm also fails when an even number of clusters are places
along a circle with an additional one in the middle.

K-means clustering also fails to perfectly segment the clusters on this type of points distri-
bution. The standard thinning approach, i.e., sampling 8 points at random, is naturally less
expressive than other density estimation approaches, yet, in this case, it represents 4 out of the
5 clusters. Compress++ succeeds to extract samples from each cluster.

8.6 Conclusion

In this chapter, we presented a novel approach to resource-aware collaborative global localiza-
tion. We also provided a detailed overview of different distribution compression approaches,
as well as a C++/ROS2 implementation. Additionally, we conducted a thorough complexity
analysis and bench-marking for the various methods, which we also open-source for the benefit

89 8.6 Conclusion

of the community. In the future, we would like to extend the experiments to larger groups of
robots, as well as to expand the real-world experimental setup beyond a single room.

90 8.6 Conclusion

Chapter 9

Conclusions

The objective of this dissertation was to address the challenges of robust long-term localization
in changing, human-oriented environments using floor plans. The research we conducted to
reach our objective included: (i) exploring additional sources of information to improve on the
conventional geometry-based localization; (ii) exploiting semantic information for the task of
global localization, inspired by human navigation; (iii) proposing fusion strategies for integrat-
ing information coming from different sensors or perception models; (iv) utilizing floor plans
as a powerful prior for both long-term localization and mapping; (v) verifying that our research
is applicable for a variety of robotic platform, including resource-constrained platforms.

The concept of enriching the traditional geometry-based MCL framework with additional
sources of information is shared throughout the entire research process. In Sec. 4, we demon-
strated the benefits of integrating textual cues from cameras into a range-based MCL. In Sec. 5,
we showed how semantic information from objects can further improve the robustness of long-
term localization, and how hierarchical view of semantic information can accelerate conver-
gence. In Sec. 8, we illustrated the contribution of information exchange between robots to
improve global localization.

The understanding that semantic information is powerful and should be leveraged for robot
localization has guided this research from beginning to end. The benefits of semantic infor-
mation are especially highlighted in Sec. 5 and Sec. 6, where semantic cues are used for lo-
calization and also for mapping. The strength of semantic cues is particularly evident when
localization is greatly improved even when the semantic information is abstract and impre-
cise. Unlike geometry-based approaches that require great detail to enable global localization,
utilizing semantic cues is advantageous even when objects are merely described with manually-
annotated bounding box. This allows abstract semantic maps to be annotated and updated by
an non-expert without a cumbersome mapping procedure.

A major factor in the robustness of localization is integration of multiple sensors and percep-
tion models. The issue of noisy, limited sensors or imprecise perception models can be mitigated
by fusing information from multiple sources instead of relying solely on one. We filtered LiDAR
measurements of dynamic objects using camera-based object detection in Sec. 5, and proposed
an approach that factors in information from both camera and LiDARs. We combined LiDAR
odometry with floor plan prior to assist with our camera-based semantic mapping in Sec. 6. We
also showcased the ability of 3D object detection as a source of geometric information that can
complement range sensors in localization. We proposed a sensor model for fusing short-sighted

91

92

miniaturized ToF sensors with cameras in Sec. 7. In Sec. 8 we integrate the camera-based per-
ception model output of another robot to improve the range-based localization carried out by
another robot.

As we were targeting indoor localization, and floor plans are generally available for human-
oriented spaces such as offices and hospitals, we adopted floor plans as a prior since beginning.
In all of our works, we proved that floor plans, despite being a sparse and incomplete represen-
tation of the scene’s geometry, still provide valuable information and are easily augmented by
semantic cues.

Online and onboard execution of our proposed approaches had been an essential and con-
stant part of our evaluation. As the nature of robotics is practical, testing our works on different
types of robots with a range of sensing capabilities and computational resources, was an inte-
gral part of our research. We have successfully deployed our approaches on medium and small
wheeled-robots, as well as nano-drones, confirming that the principles that guided our research
can be applied to robots in general.

Research on indoor localization has been particularly challenging and often non-conclusive
due to several factors. For outdoor localization, there are variety of public, sensor-rich datasets
which include ground-truth poses [42, 62, 100], some even include semantic annotations [6,
100]. However, for indoor localization there are no public datasets for indoor localization which
contain multiple sensors and reliable, continuous ground truth poses. During my time in the
university of Bonn, we invested in installing the infrastructure and designing the robots that
would serve to create such dataset. However, after my departure, these plans had been mostly
abandoned.

Another issue is the lack of open-source code for indoor localization papers. To truly deter-
mine the progress we have made with this dissertation, we would ideally compare ourselves to
the state-of-the-art localization approaches that preceded us. Unfortunately, the relevant works
did not include code. In cases where the code was straight-forward enough [39, 40, 113], we
have taken upon ourselves to implement the baselines, and open-sourced the code as a contri-
bution to our community. However, papers that are not as clear or make use of a fine-tuned
neural network model cannot be re-implemented. We see the lack of open-source code as a ma-
jor detriment to the progress of indoor localization, and therefore made the implementations
to all our work publicly available.

Last but not least, is the absence of standard metrics to evaluate the quality of indoor lo-
calization. A variety of metrics are proposed in the relevant literature, and even when the
same metrics (in principle) are used, their implementation may differ and result in substan-
tially different values. Domains that experienced rapid progress in the last decade, are also
known to have prevalent usage of standard metrics, such as average-precision and intersection-
over-union which evaluate object detection and semantic segmentation. A famous benchmark
for outdoor odometry is the KITTI benchmark [42] which popularized and standardize the im-
plementation of metrics for evaluating odometry. These metrics, as well as the ones used in
the related research for indoor localization and our own work, focus on geometric accuracy
and evaluate localization in isolation. However, the metrics should reflect how much we con-
tributed to enabling robot autonomy, which has been our main motivation all along. In the
pursuit of questionable benchmarks, the focus on geometry-based approaches overshadowed
research about the hierarchical, semantic description of the environment.

The abundance of research on sub-centimeter accurate localization and precise 3D recon-
struction of large scenes begs the question, did we forget our goal as roboticists? Localization
and mapping transformed into a competitive sport, without considering the fact that these two

93

tasks are in service of a higher purpose - enabling more complex abilities and behaviors that
will allow robots to assist humans. From this perspective, of being a small (but crucial) part in
a larger system, the mindset behind localization and mapping approaches and how we evaluate
them, need to shift drastically. And this, I hope to explore in my future research.

94

Appendix A

Publications

First authors (including equal contributors) are marked in bold.

A.1 Long-term Localization

We presented Long-term localization exploiting textual information in [170]. We extended the
work to robust localization using semantic cues in user annotated abstract semantic maps in
[171]. We proposed an approach for 3D metric-semantic mapping for long-term localization in
[172].

[170] Zimmerman, Nicky and Wiesmann, Louis and Guadagnino, Tiziano and LÃ¤be,
Thomas and Behley, Jens and Stachniss, Cyrill. Robust Onboard Localization in Changing En-
vironments Exploiting Text Spotting. Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2022.
[171] Zimmerman, Nicky and Guadagnino, Tiziano and Chen, Xieyuanli and Behley, Jens

and Stachniss, Cyrill. Long-Term Localization Using Semantic Cues in Floor Plan Maps. IEEE
Robotics and Automation Letters (RA-L), 176–183, 2023.
[66] Kuang, Haofei and Chen, Xieyuanli and Guadagnino, Tiziano and Zimmerman, Nicky

and Behley, Jens and Stachniss, Cyrill. IR-MCL: Implicit Representation-based Online Global
Localization. IEEE Robotics and Automation Letters (RA-L), 1627–1634, 2023.

[172] Zimmerman, Nicky and Sodano, Matteo and Marks, Elias and Behley, Jens and
Stachniss, Cyrill. Constructing Metric-Semantic Maps Using Floor Plan Priors for Long-Term
Indoor Localization. Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2023.

[158] Wiesmann, Louis and Guadagnino, Tiziano and Vizzo, Ignacio and Zimmerman,
Nicky and Pan, Yue and Kuang, Haofei and Behley, Jens and Stachniss, Cyrill. LocNDF: Neural
Distance Field Mapping for Robot Localization. IEEE Robotics and Automation Letters (RA-L),
2023.

A.2 Resource-Constrained Localization

We addressed the challenges of localization under resource constraints in [97]. In [92] we
proposed a lightweight object detection architecture that can be deployed to various MCUs, lay

95

96 A.3 Collaborative Localization

the groundwork for our work on semantic localization under resource-constraints [174].
[97]Müller, Hanna and Zimmerman, Nicky and Polonelli, Tommaso and Magno, Michele

and Behley, Jens and Stachniss, Cyrill and Benini, Luca. Fully On-board Low-Power Localization
with Multizone Time-of-Flight Sensors on Nano-UAVs. Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2023. (Equal contribution)

[92] Moosmann, Julian and Müller, Hanna and Zimmerman, Nicky and Rutishauser,
Georg and Benini, Luca and Magno, Michele. Flexible and Fully Quantized Ultra-Lightweight
TinyissimoYOLO for Ultra-Low-Power Edge Systems.IEEE Access, 2024. (Equal contribution)

[174] Zimmerman, Nicky and Müller, Hanna and Magno, Michele and Benini, Luca.
Fully Onboard Low-Power Localization with Semantic Sensor Fusion on a Nano-UAV using Floor
Plans. IEEE Intl. Conf. on Robotics & Automation (ICRA), 2024. (Equal contribution)

A.3 Collaborative Localization

[170] Zimmerman, Nicky and Giusti, Alessandro and Guzzi, Jérôme.Resource-Aware Collabo-
rative Monte Carlo Localization with Distribution Compression. Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2024.

A.4 Human Pose Estimation on nano-UAV

In addition to the main research about localization, we also present some work on human pose
estimation for nano-UAVs.
[108] Palossi, Daniele and Zimmerman, Nicky and Burrello, Alessio and Conti, Francesco

and Müller, Hanna and Gambardella, Luca Maria and Benini, Luca and Giusti, Alessandro and
Guzzi, Jérôme. Fully onboard ai-powered human-drone pose estimation on ultralow-power
autonomous flying nano-uavs. IEEE Internet of Things Journal, 1913–1929, 2023.

[20] Cereda, Elia and Ferri, Marco and Mantegazza, Dario and Zimmerman, Nicky and
Gambardella, Luca M. and Guzzi, Jérôme and Giusti, Alessandro and Palossi, Daniele. Improv-
ing the Generalization Capability of DNNs for Ultra-low Power Autonomous Nano-UAVs. 17th
International Conference on Distributed Computing in Sensor Systems (DCOSS), 327–334, 2021.

A.5 Software Releases

Open-source code drives the robotics community forward, and therefore, we strive to release
the implementation for our publications. Our papers [170, 171, 97, 172, 66, 158, 174, 173]
have publicly available code on Github.

Bibliography

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-Squares Fitting of Two 3-D Point Sets.
IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI), PAMI-9(5):698–700,
1987.

[2] N. Atanasov, M. Zhu, K. Daniilidis, and G. J. Pappas. Localization from semantic obser-
vations via the matrix permanent. Intl. Journal of Robotics Research (IJRR), 35, 2016.
doi: 10.1177/0278364915596589.

[3] R. Azzam, T. Taha, S. Huang, and Y. Zweiri. Feature-based visual simultaneous localiza-
tion and mapping: A survey. SN Applied Sciences, 2:1–24, 2020.

[4] R. Barea, E. López, L. M. Bergasa, S. Álvarez, and M. Ocaña. Collaborative multi-robot
Monte Carlo localization in assistant robots. International Transactions on Systems Science
and Applications, 3(3):227–237, 2007.

[5] L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state
Markov chains. The annals of mathematical statistics, 37(6):1554–1563, 1966.

[6] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall.
SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences. In
Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), 2019.

[7] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric Localization with Scale-
Invariant Visual Features using a Single Perspective Camera. In H. Christiensen, edi-
tor, European Robotics Symposium 2006, volume 22 of STAR Springer Tracts in Advanced
Robotics, pages 143–157. Springer Verlag, 2006. ISBN 3-540-32688-X. URL http:

//www.informatik.uni-freiburg.de/~stachnis/pdf/bennewitz06euros.pdf.

[8] J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-
mun. ACM, 18(9):509–517, 1975.

[9] M. Betke and L. Gurvits. Mobile robot localization using landmarks. IEEE transactions
on robotics and automation, 13(2):251–263, 1997.

[10] P. Biber and T. Duckett. Dynamic Maps for Long-Term Operation of Mobile Service Robots.
In Proc. of Robotics: Science and Systems (RSS), pages 17–24, 2005.

[11] H. Blum, J. Stiefel, C. Cadena, R. Siegwart, and A. Gawel. Precise robot localization in
architectural 3d plans. arXiv preprint, 2020.

97

http://www.informatik.uni-freiburg.de/~stachnis/pdf/bennewitz06euros.pdf
http://www.informatik.uni-freiburg.de/~stachnis/pdf/bennewitz06euros.pdf

98 Bibliography

[12] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. YOLOv4: Optimal Speed and Accuracy of
Object Detection. arXiv preprint, 2004.10934, 2020.

[13] F. Boniardi, T. Caselitz, R. Kümmerle, and W. Burgard. Robust LiDAR-based localization
in architectural floor plans. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2017.

[14] F. Boniardi, A. Valada, R. Mohan, T. Caselitz, and W. Burgard. Robot localization in floor
plans using a room layout edge extraction network. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2019.

[15] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[16] G. Brazil, J. Straub, N. Ravi, J. Johnson, and G. Gkioxari. Omni3D: A Large Benchmark
and Model for 3D Object Detection in the Wild. arXiv preprint:2207.10660, 2022.

[17] R. A. Brualdi and V. S. Pless. Greedy Codes. Journal of Combinatorial Theory, Se-
ries A, 64(1):10–30, 1993. ISSN 0097-3165. doi: https://doi.org/10.1016/0097-
3165(93)90085-M. URL https://www.sciencedirect.com/science/article/pii/

009731659390085M.

[18] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and
J. Leonard. Past, Present, and Future of Simultaneous Localization And Mapping: To-
wards the Robust-Perception Age. IEEE Trans. on Robotics (TRO), 32:1309–1332, 2016.
URL http://arxiv.org/pdf/1606.05830v4.

[19] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-
end object detection with transformers. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pages 213–229.
Springer, 2020.

[20] E. Cereda, M. Ferri, D. Mantegazza, N. Zimmerman, L. M. Gambardella, J. Guzzi,
A. Giusti, and D. Palossi. Improving the Generalization Capability of DNNs for Ultra-
low Power Autonomous Nano-UAVs. In 2021 17th International Conference on Dis-
tributed Computing in Sensor Systems (DCOSS), pages 327–334, 2021. doi: 10.1109/
DCOSS52077.2021.00060.

[21] N. Chebrolu, T. Läbe, O. Vysotska, J. Behley, and C. Stachniss. Adaptive Robust Kernels
for Non-Linear Least Squares Problems. IEEE Robotics and Automation Letters (RA-L), 6
(2):2240–2247, 2021.

[22] X. Chen, A. Milioto, E. Palazzolo, P. Giguére, J. Behley, and C. Stachniss. SuMa++:
Efficient LiDAR-based Semantic SLAM. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2019. URL http://www.ipb.uni-bonn.de/wp-content/

papercite-data/pdf/chen2019iros.pdf.

[23] B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and L.-C. Chen. Panoptic-
DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation.
In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2020. URL
https://openaccess.thecvf.com/content_CVPR_2020/papers/Cheng_Panoptic-

DeepLab_A_Simple_Strong_and_Fast_Baseline_for_Bottom-Up_Panoptic_CVPR_

2020_paper.pdf.

https://www.sciencedirect.com/science/article/pii/009731659390085M
https://www.sciencedirect.com/science/article/pii/009731659390085M
http://arxiv.org/pdf/1606.05830v4
http://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/chen2019iros.pdf
http://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/chen2019iros.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Cheng_Panoptic-DeepLab_A_Simple_Strong_and_Fast_Baseline_for_Bottom-Up_Panoptic_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Cheng_Panoptic-DeepLab_A_Simple_Strong_and_Fast_Baseline_for_Bottom-Up_Panoptic_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Cheng_Panoptic-DeepLab_A_Simple_Strong_and_Fast_Baseline_for_Bottom-Up_Panoptic_CVPR_2020_paper.pdf

99 Bibliography

[24] M. Coppola, K. N. McGuire, K. Y. Scheper, and G. C. de Croon. On-board communication-
based relative localization for collision avoidance in micro air vehicle teams. Autonomous
Robots, 42:1787–1805, 2018.

[25] B. Şimşek and H. Ş. Bilge. A Novel Motion Blur Resistant vSLAM Framework for
Micro/Nano-UAVs. Drones, 5(4), 2021. ISSN 2504-446X. doi: 10.3390/drones5040121.

[26] L. Cui, C. Rong, J. Huang, A. Rosendo, and L. Kneip. Monte-Carlo Localization in Under-
ground Parking Lots Using Parking Slot Numbers. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2021.

[27] M. Cummins and P. Newman. FAB-MAP: Probabilistic localization and mapping in the
space of appearance. Intl. Journal of Robotics Research (IJRR), 27(6):647–665, 2008.

[28] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo Localization for Mobile Robots.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 1999.

[29] R. Douc and O. Cappe. Comparison of Resampling Schemes for Particle Filtering. In ISPA
2005. Proceedings of the 4th International Symposium on Image and Signal Processing and
Analysis, 2005., 2005.

[30] R. Dwivedi and L. Mackey. Kernel Thinning. arXiv preprint arXiv:2105.05842, 2021.

[31] R. Dwivedi and L. Mackey. Generalized Kernel Thinning. In International Conference on
Learning Representations, 2022.

[32] A. Elfes. A probabilistic framework for robot perception and navigation. PhD thesis,
Carnegie-Mellon University, 1989.

[33] M. Elhousni and X. Huang. A Survey on 3D LiDAR Localization for Autonomous Vehicles.
In 2020 IEEE Intelligent Vehicles Symposium (IV), 2020.

[34] N. Elkunchwar, S. Chandrasekaran, V. Iyer, and S. B. Fuller. Toward battery-free flight:
Duty cycled recharging of small drones. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5234–5241. IEEE, 2021.

[35] I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough. Sparse: Sparse architecture
search for cnns on resource-constrained microcontrollers. Advances in Neural Information
Processing Systems, 32, 2019.

[36] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Visual Object Detection
with Deformable Part Models. Commun. ACM, 56:97–105, 2013.

[37] P. F. Felzenszwalb and D. P. Huttenlocher. Distance Transforms of Sampled Functions.
Theory of Computing, 8(1):415–428, 2012.

[38] D. Fox. KLD-sampling: Adaptive particle filters. Proc. of the Advances in Neural Informa-
tion Processing Systems (NIPS), 14, 2001.

[39] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic
environments. Journal of Artificial Intelligence Research (JAIR), 11:391–427, 1999.

100 Bibliography

[40] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A Probabilistic Approach to Collaborative
Multi-robot Localization. Autonomous Robots, 8:325–344, 2000.

[41] C. Friess, V. Niculescu, T. Polonelli, M. Magno, and L. Benini. Fully onboard slam for
distributed mapping with a swarm of nano-drones. arXiv preprint:2309.03678, 2023.

[42] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous Driving? The KITTI
Vision Benchmark Suite. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2012.

[43] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2014. URL https://arxiv.org/pdf/1311.2524.pdf.

[44] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-
sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

[45] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Siegwart, and J. Nieto.
Volumetric Instance-Aware Semantic Mapping and 3D Object Discovery. IEEE Robotics
and Automation Letters (RA-L), 4(3):3037–3044, 2019. ISSN 2377-3766.

[46] G. Grisetti, C. Stachniss, and W. Burgard. Improving Grid-based SLAM with Rao-
Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2005.

[47] J.-S. Gutmann. Markov-Kalman localization for mobile robots. In 2002 International
Conference on Pattern Recognition, 2002.

[48] N. Gyagenda, J. V. Hatilima, H. Roth, and V. Zhmud. A review of gnss-independent uav
navigation techniques. Robotics and Autonomous Systems, page 104069, 2022.

[49] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose. Mapping and localization
with RFID technology. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2004.

[50] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. JSTOR: Applied Statistics,
28(1):100–108, 1979.

[51] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016. URL
https://arxiv.org/pdf/1512.03385.

[52] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In Proc. of the IEEE
Intl. Conf. on Computer Vision (ICCV), 2017.

[53] R. Hendrikx, P. Pauwels, E. Torta, H. Bruyninckx, and M. van de Molengraft. Connecting
Semantic Building Information Models and Robotics: An application to 2D LiDAR-based
localization. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[54] A. Howard, M. J. Matark, and G. S. Sukhatme. Localization for mobile robot teams using
maximum likelihood estimation. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2002.

https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1512.03385

101 Bibliography

[55] H. Howard-Jenkins and V. A. Prisacariu. LaLaLoc++: Global floor plan comprehension
for layout localisation in unvisited environments. In Proc. of the Europ. Conf. on Computer
Vision (ECCV), 2022.

[56] E. Impulse. FOMO: Real-Time Object Detection on Microcontrollers, a Presentation
from Edge Impulse, 2022. URL https://www.edge-ai-vision.com/2022/06/fomo-

real-time-object-detection-on-microcontrollers-a-presentation-from-

edge-impulse/.

[57] S. Ito, F. Endres, M. Kuderer, G. Tipaldi, C. Stachniss, and W. Burgard. W-RGB-D: Floor-
Plan-Based Indoor Global Localization Using a Depth Camera and WiFi. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2014. doi: 10.1109/ICRA.2014.
6906890. URL http://ais.informatik.uni-freiburg.de/publications/papers/

ito14icra.pdf.

[58] G. Jocher. ultralytics/yolov5: v3.1. https://github.com/ultralytics/yolov5, 2020.
URL https://doi.org/10.5281/zenodo.4154370.

[59] G. Jocher, A. Chaurasia, and J. Qiu. YOLO by Ultralytics. https://github.com/

ultralytics/ultralytics, Jan. 2023.

[60] D. Joho, C. Plagemann, and W. Burgard. Modeling RFID signal strength and tag detection
for localization and mapping. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2009.

[61] T. Ke and S. I. Roumeliotis. An efficient algebraic solution to the perspective-three-point
problem. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2017.

[62] G. Kim, Y. S. Park, Y. Cho, J. Jeong, and A. Kim. MulRan: Multimodal Range Dataset
for Urban Place Recognition. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2020.

[63] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár. Panoptic Segmentation. In Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019.

[64] I. Kostavelis and A. Gasteratos. Semantic mapping for mobile robotics tasks: A survey.
Journal on Robotics and Autonomous Systems (RAS), 66:86–103, 2015.

[65] T. Krajník, J. P. Fentanes, M. Hanheide, and T. Duckett. Persistent localization and life-
long mapping in changing environments using the frequency map enhancement. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2016.

[66] H. Kuang, X. Chen, T. Guadagnino, N. Zimmerman, J. Behley, and C. Stachniss. IR-MCL:
Implicit representation-based online global localization. IEEE Robotics and Automation
Letters (RA-L), 8(3):1627–1634, 2023.

[67] H. Kuhn. The hungarian method for the assignment problem. Naval research lo-
gistics quarterly, 2(1-2):83–97, 1955. URL https://web.eecs.umich.edu/~pettie/

matching/Kuhn-hungarian-assignment.pdf.

https://www.edge-ai-vision.com/2022/06/fomo-real-time-object-detection-on-microcontrollers-a-presentation-from-edge-impulse/
https://www.edge-ai-vision.com/2022/06/fomo-real-time-object-detection-on-microcontrollers-a-presentation-from-edge-impulse/
https://www.edge-ai-vision.com/2022/06/fomo-real-time-object-detection-on-microcontrollers-a-presentation-from-edge-impulse/
http://ais.informatik.uni-freiburg.de/publications/papers/ito14icra.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/ito14icra.pdf
https://github.com/ultralytics/yolov5
https://doi.org/10.5281/zenodo.4154370
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://web.eecs.umich.edu/~pettie/matching/Kuhn-hungarian-assignment.pdf
https://web.eecs.umich.edu/~pettie/matching/Kuhn-hungarian-assignment.pdf

102 Bibliography

[68] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking geometric bea-
cons. IEEE Trans. on Robotics and Automation, 7(3):376–382, 1991.

[69] V. Lepetit, F. Moreno-Noguer, and P. Fua. EP n P: An accurate O (n) solution to the P n P
problem. Intl. Journal of Computer Vision (IJCV), 81:155–166, 2009.

[70] K. Li, D. DeTone, Y. F. S. Chen, M. Vo, I. Reid, H. Rezatofighi, C. Sweeney, J. Straub, and
R. Newcombe. ODAM: Object Detection, Association, and Mapping using Posed RGB
Video. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), 2021.

[71] K. Li, H. Rezatofighi, and I. Reid. MOLTR: Multiple Object Localization, Tracking and
Reconstruction From Monocular RGB Videos. IEEE Robotics and Automation Letters (RA-
L), 6(2):3341–3348, 2021.

[72] Z. Li, M. H. Ang, and D. Rus. Online Localization with Imprecise Floor Space Maps using
Stochastic Gradient Descent. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2020.

[73] M. Liao, Z. Wan, C. Yao, K. Chen, and X. Bai. Real-time Scene Text Detection with
Differentiable Binarization. arXiv preprint, 1911.08947, 2019.

[74] J. Lin, W.-M. Chen, Y. Lin, C. Gan, S. Han, et al. Mcunet: Tiny deep learning on iot
devices. Advances in Neural Information Processing Systems, 33:11711–11722, 2020.

[75] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft COCO: Common Objects in Context. In Proc. of the Europ. Conf. on Computer
Vision (ECCV), pages 740–755, 2014.

[76] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor positioning techniques
and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 37(6):1067–1080, 2007.

[77] D. Lowe. Object recognition from local scale-invariant features. In Proc. of the IEEE
Intl. Conf. on Computer Vision (ICCV), volume 2, pages 1150–1157, 1999. URL http:

//www.cs.ubc.ca/~lowe/papers/iccv99.pdf.

[78] R. Maffei, V. A. M. Jorge, V. F. Rey, M. Kolberg, and E. Prestes. Fast Monte Carlo Local-
ization using spatial density information. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2015.

[79] R. Maffei, D. Pittol, M. Mantelli, E. Prestes, and M. Kolberg. Global localization over 2d
floor plans with free-space density based on depth information. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2020.

[80] E. Marchand, H. Uchiyama, and F. Spindler. Pose estimation for augmented reality: a
hands-on survey. IEEE transactions on visualization and computer graphics, 22(12):2633–
2651, 2015.

[81] A. Martinelli, F. Pont, and R. Siegwart. Multi-robot Localization using Relative Observa-
tions. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2005.

[82] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger. Fusion++: Volu-
metric Object-Level SLAM. In Proc. of the Intl. Conf. on 3D Vision, 2018.

http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf

103 Bibliography

[83] K. McGuire, C. De Wagter, K. Tuyls, H. Kappen, and G. C. de Croon. Minimal Navigation
Solution for a Swarm of Tiny Flying Robots to Explore an Unknown Environment. Science
Robotics, 4(35), 2019.

[84] O. Mendez, S. Hadfield, N. Pugeault, and R. Bowden. Sedar-semantic detection and
ranging: Humans can localise without lidar, can robots? In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

[85] O. Mendez, S. Hadfield, N. Pugeault, and R. Bowden. Sedar-semantic detection and
ranging: Humans can localise without lidar, can robots? In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

[86] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The GRASP Multiple Micro-UAV
Testbed. IEEE Robotics and Automation Magazine, 17(3):56–65, 2010. doi: 10.1109/
MRA.2010.937855.

[87] Microsoft. Neural Network Intelligence. https://github.com/microsoft/nni, 2021.
URL https://github.com/microsoft/nni.

[88] M. Milford and G. Wyeth. SeqSLAM: Visual route-based navigation for sunny summer
days and stormy winter nights. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2012.

[89] R. Miyagusuku, A. Yamashita, and H. Asama. Data information fusion from multiple
access points for wifi-based self-localization. IEEE Robotics and Automation Letters (RA-
L), 4(2):269–276, 2018.

[90] R. Miyagusuku, A. Yamashita, and H. Asama. Data Information Fusion From Multiple
Access Points for WiFi-Based Self-localization. IEEE Robotics and Automation Letters (RA-
L), 4(2):269–276, 2019.

[91] M. Moakher. Means and averaging in the group of rotations. SIAM Journal on Matrix
Analysis and Applications, 24(1):1–16, 2002.

[92] J. Moosmann, H. Müller, N. Zimmerman, G. Rutishauser, L. Benini, and M. Magno. Flex-
ible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Sys-
tems. IEEE Access, pages 1–1, 2024. doi: 10.1109/ACCESS.2024.3404878.

[93] H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 1985.

[94] H. P. Moravec. Sensor Fusion in Certainty Grids for Mobile Robots. In Sensor Devices and
Systems for Robotics (SDSR), 1989.

[95] A. Mucherino, P. J. Papajorgji, and P. M. Pardalos. k-Nearest Neighbor Classification, pages
83–106. Springer Verlag, 2009.

[96] H. Müller, V. Niculescu, T. Polonelli, M. Magno, and L. Benini. Robust and Efficient Depth-
based Obstacle Avoidance for Autonomous Miniaturized UAVs. arXiv preprint, 2022. doi:
10.48550/ARXIV.2208.12624. URL https://arxiv.org/abs/2208.12624.

https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://arxiv.org/abs/2208.12624

104 Bibliography

[97] H. Müller, N. Zimmerman, T. Polonelli, M. Magno, J. Behley, C. Stachniss, and L. Benini.
Fully On-board Low-Power Localization with Multizone Time-of-Flight Sensors on Nano-
UAVs. In Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1–6. IEEE, 2023.

[98] E. D. Nerurkar and S. I. Roumeliotis. Asynchronous multi-centralized cooperative lo-
calization. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2010.

[99] E. D. Nerurkar, S. I. Roumeliotis, and A. Martinelli. Distributed maximum a posteriori
estimation for multi-robot cooperative localization. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2009.

[100] T.-M. Nguyen, S. Yuan, T. H. Nguyen, P. Yin, H. Cao, L. Xie, M. Wozniak, P. Jensfelt,
M. Thiel, J. Ziegenbein, and N. Blunder. MCD: Diverse Large-Scale Multi-Campus Dataset
for Robot Perception. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2024.

[101] V. Niculescu, L. Lamberti, F. Conti, L. Benini, and D. Palossi. Improving Autonomous
Nano-Drones Performance via Automated End-to-End Optimization and Deployment of
DNNs. IEEE Journal on Emerging and Selected Topics in Circuits and Sys., 11(4):548–562,
2021.

[102] V. Niculescu, D. Palossi, M. Magno, and L. Benini. Energy-efficient, Precise UWB-based
3-D Localization of Sensor Nodes with a Nano-UAV. IEEE Internet of Things Journal,
2022.

[103] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. Voxblox: Incremental 3d
euclidean signed distance fields for on-board mav planning. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2017. URL https://helenol.

github.io/publications/iros_2017_voxblox.pdf.

[104] E. Olson. AprilTag: A robust and flexible visual fiducial system. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2011.

[105] S. Omohundro. Bumptrees for efficient function, constraint and classification learning.
In Proc. of the Advances in Neural Information Processing Systems (NIPS), 1990.

[106] N. E. Özkucur, B. Kurt, and H. L. Akın. A collaborative multi-robot localization method
without robot identification. In RoboCup 2008: Robot Soccer World Cup XII 12, 2009.

[107] E. Palazzolo, J. Behley, P. Lottes, P. Giguere, and C. Stachniss. ReFusion: 3D Reconstruc-
tion in Dynamic Environments for RGB-D Cameras Exploiting Residuals. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.

[108] D. Palossi, N. Zimmerman, A. Burrello, F. Conti, H. Müller, L. M. Gambardella, L. Benini,
A. Giusti, and J. Guzzi. Fully onboard ai-powered human-drone pose estimation on
ultralow-power autonomous flying nano-uavs. IEEE Internet of Things Journal, 9(3):
1913–1929, 2021.

https://helenol.github.io/publications/iros_2017_voxblox.pdf
https://helenol.github.io/publications/iros_2017_voxblox.pdf

105 Bibliography

[109] D. Palossi, N. Zimmerman, A. Burrello, F. Conti, H. Müller, L. M. Gambardella, L. Benini,
A. Giusti, and J. Guzzi. Fully Onboard AI-Powered Human-Drone Pose Estimation on
Ultralow-Power Autonomous Flying Nano-UAVs. IEEE Internet of Things Journal, 9(3):
1913–1929, 2022.

[110] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[111] P. Pfaff, W. Burgard, and D. Fox. Robust Monte-Carlo Localization Using Adaptive Like-
lihood Models. In STAR Springer Tracts in Advanced Robotics, 2006.

[112] A. Prorok and A. Martinoli. A reciprocal sampling algorithm for lightweight distributed
multi-robot localization. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2011.

[113] A. Prorok, A. Bahr, and A. Martinoli. Low-cost collaborative localization for large-scale
multi-robot systems. In 2012 IEEE International Conference on Robotics and Automation,
pages 4236–4241. IEEE, 2012.

[114] A. Prorok, A. Bahr, and A. Martinoli. Low-cost collaborative localization for large-scale
multi-robot systems. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2012.

[115] C. R. Qi, O. Litany, K. He, and L. J. Guibas. Deep Hough Voting for 3D Object Detection
in Point Clouds. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), 2019.

[116] C. R. Qi, X. Chen, O. Litany, and L. J. Guibas. Imvotenet: Boosting 3d object detection in
point clouds with image votes. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2020.

[117] N. Radwan, G. Tipaldi, L. Spinello, and W. Burgard. Do You See the Bakery? Leverag-
ing Geo-Referenced Texts for Global Localization in Public Maps. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2016.

[118] P. Ram and A. G. Gray. Density estimation trees. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2011.

[119] A. Ranganathan and F. Dellaert. Semantic modeling of places using objects. In Proc. of
Robotics: Science and Systems (RSS), 2007.

[120] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look Once: Unified, Real-
Time Object Detection. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

[121] E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and scalable robot simulation
framework. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2013.

[122] A. Rosinol, M. Abate, Y. Chang, and L. Carlone. Kimera: an open-source library for real-
time metric-semantic localization and mapping. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2020.

106 Bibliography

[123] D. Rossi, F. Conti, M. Eggiman, A. D. Mauro, G. Tagliavini, S. Mach, M. Guermandi,
A. Pullini, I. Loi, J. Chen, E. Flamand, and L. Benini. Vega: A Ten-Core SoC for IoT
Endnodes With DNN Acceleration and Cognitive Wake-Up From MRAM-Based State-
Retentive Sleep Mode. IEEE Journal of Solid-State Circuits, 57(1):127–139, 2022. doi:
10.1109/JSSC.2021.3114881.

[124] A. Rottmann, O. Martínez-Mozos, C. Stachniss, and W. Burgard. Place Classification of
Indoor Environments with Mobile Robots using Boosting. In Proc. of the National Confer-
ence on Artificial Intelligence (AAAI), pages 1306–1311, Pittsburgh, PA, USA, 2005. URL
http://www.informatik.uni-freiburg.de/~stachnis/pdf/rottmann05aaai.pdf.

[125] S. I. Roumeliotis and G. A. Bekey. Distributed multi-robot localization. IEEE Trans. on
Robotics (TRO), pages 179–188, 2000.

[126] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[127] M. Runz, M. Buffier, and L. Agapito. MaskFusion: Real-Time Recognition, Tracking and
Reconstruction of Multiple Moving Objects. In Proc. of the Intl. Symposium on Mixed and
Augmented Reality (ISMAR), 2018.

[128] M. Runz, K. Li, M. Tang, L. Ma, C. Kong, T. Schmidt, I. Reid, L. Agapito, J. Straub,
S. Lovegrove, and R. Newcombe. FroDO: From Detections to 3D Objects. In Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2020. URL proceedings:

runz2020cvpr.pdf.

[129] J. Saarinen, H. Andreasson, T. Stoyanov, J. Ala-Luhtala, and A. J. Lilienthal. Normal
distributions transform occupancy maps: Application to large-scale online 3D mapping.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2013.

[130] J. Schneider and W. Förstner. Real-time Accurate Geo-localization of a MAV with Om-
nidirectional Visual Odometry and GPS. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), 2014.

[131] J. Schneider, F. Schindler, T. Läebe, and W. Föerstner. Bundle Adjustment for Multi-
camera Systems with Points at Infinity. In ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2012.

[132] J. Schneider, C. Eling, L. Klingbeil, H. Kuhlmann, W. Förstner, and C. Stachniss. Fast and
Effective Online Pose Estimation and Mapping for UAVs. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2016.

[133] A. Segal, D. Haehnel, and S. Thrun. Generalized-icp. In Proc. of Robotics: Science and
Systems (RSS), 2009.

[134] D. Seichter, M. Köhler, B. Lewandowski, T. Wengefeld, and H.-M. Gross. Efficient RGB-
D Semantic Segmentation for Indoor Scene Analysis. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2021.

[135] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Oth-
man, A. Khreishah, and M. Guizani. Unmanned aerial vehicles (uavs): A survey on civil
applications and key research challenges. Ieee Access, 7:48572–48634, 2019.

http://www.informatik.uni-freiburg.de/~stachnis/pdf/rottmann05aaai.pdf
proceedings: runz2020cvpr.pdf
proceedings: runz2020cvpr.pdf

107 Bibliography

[136] A. Shetty, R. Dwivedi, and L. Mackey. Distribution Compression in Near-linear Time. In
Proc. of the Int. Conf. on Learning Representations (ICLR), 2022.

[137] B. Shi, X. Bai, and C. Yao. An End-to-End Trainable Neural Network for Image-based
Sequence Recognition and Its Application to Scene Text Recognition. arXiv preprint,
1507.05717, 2015.

[138] S. Shi, X. Wang, and H. Li. PointRCNN: 3D Object Proposal Generation and Detection
From Point Cloud. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019.

[139] C. C. Slama, C. Theurer, and S. W. Henriksen. Manual of photogrammetry. American
Society of Photogrammetry, Falls Church, 4th edition, 1980.

[140] M. Sodano, F. Magistri, T. Guadagnino, J. Behley, and C. Stachniss. Robust double-
encoder network for rgb-d panoptic segmentation. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2023.

[141] C. Stachniss and W. Burgard. Mobile Robot Mapping and Localization in Non-Static
Environments. In Proc. of the National Conference on Artificial Intelligence (AAAI), pages
1324–1329, 2005. URL http://www.informatik.uni-freiburg.de/~stachnis/pdf/

stachniss05aaai.pdf.

[142] J. StÃ¼ckler, N. Biresev, and S. Behnke. Semantic mapping using object-class segmen-
tation of RGB-D images. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2012. doi: 10.1109/IROS.2012.6385983.

[143] D. Sun, F. Geißer, and B. Nebel. Towards effective localization in dynamic environments.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2016.

[144] N. SÃ¼nderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P. Corke, G. Wyeth, B. Up-
croft, and M. Milford. Place categorization and semantic mapping on a mobile robot. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2016.

[145] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo Localization for Mobile
Robots. Artificial Intelligence, 128(1-2), 2001. URL https://www.sciencedirect.com/

science/article/pii/S0004370201000698.

[146] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[147] G. D. Tipaldi, D. Meyer-Delius, and W. Burgard. Lifelong localization in changing envi-
ronments. Intl. Journal of Robotics Research (IJRR), 32(14):1662–1678, 2013.

[148] R. Valencia, J. Saarinen, H. Andreasson, J. Vallvé, J. Andrade-Cetto, and A. J. Lilienthal.
Localization in highly dynamic environments using dual-timescale NDT-MCL. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2014.

[149] S. Van Der Helm, M. Coppola, K. N. McGuire, and G. C. de Croon. On-Board Range-
Based Relative Localization for Micro Air Vehicles in Indoor Leader–Follower Flight. Au-
tonomous Robots, 44(3):415–441, 2020.

http://www.informatik.uni-freiburg.de/~stachnis/pdf/stachniss05aaai.pdf
http://www.informatik.uni-freiburg.de/~stachnis/pdf/stachniss05aaai.pdf
https://www.sciencedirect.com/science/article/pii/S0004370201000698
https://www.sciencedirect.com/science/article/pii/S0004370201000698

108 Bibliography

[150] O. Vysotska and C. Stachniss. Exploiting Building Information from Publicly Available
Maps in Graph-Based SLAM. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2016. URL http://www.ipb.uni-bonn.de/pdfs/vysotska16iros.

pdf.

[151] O. Vysotska and C. Stachniss. Lazy Data Association For Image Sequences Matching
Under Substantial Appearance Changes. IEEE Robotics and Automation Letters (RA-L), 1
(1):213–220, 2016. URL http://www.ipb.uni-bonn.de/pdfs/vysotska16ral-icra.

pdf.

[152] K. Wada, E. Sucar, S. James, D. Lenton, and A. J. Davison. MoreFusion: Multi-object
Reasoning for 6D Pose Estimation from Volumetric Fusion. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.

[153] T. Wang, X. Zhu, J. Pang, and D. Lin. FCOS3D: Fully convolutional one-stage monocular
3d object detection. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), 2021.

[154] X. Wang, R. J. Marcotte, and E. Olson. GLFP: Global Localization from a Floor Plan. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.

[155] Y. Wang, V. C. Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. Solomon. DETR3D: 3D object
detection from multi-view images via 3D-to-2D queries. In Proc. of the Conf. on Robot
Learning (CoRL), 2022.

[156] P. Warden and D. Situnayake. Tinyml: Machine learning with tensorflow lite on arduino
and ultra-low-power microcontrollers. O’Reilly Media, 2019.

[157] Y. Watanabe, K. R. Amaro, B. Ilhan, T. Kinoshita, T. Bock, and G. Cheng. Robust Localiza-
tion with Architectural Floor Plans and Depth Camera. In 2020 IEEE/SICE International
Symposium on System Integration (SII), 2020.

[158] L. Wiesmann, T. Guadagnino, I. Vizzo, N. Zimmerman, Y. Pan, H. Kuang, J. Behley, and
C. Stachniss. LocNDF: Neural Distance Field Mapping for Robot Localization. IEEE
Robotics and Automation Letters (RA-L), 2023.

[159] L. Wiesmann, T. Läbe, L. Nunes, J. Behley, and C. Stachniss. Joint Intrinsic and Extrinsic
Calibration of Perception Systems Utilizing a Calibration Environment. IEEE Robotics and
Automation Letters (RA-L), 9(10):9103–9110, 2024. doi: 10.1109/LRA.2024.3457385.

[160] W. Winterhalter, F. Fleckenstein, B. Steder, L. Spinello, and W. Burgard. Accurate in-
door localization for rgb-d smartphones and tablets given 2d floor plans. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2015.

[161] D. Wu and H. Su. An improved probabilistic approach for collaborative multi-robot
localization. In 2008 IEEE International Conference on Robotics and Biomimetics, pages
1868–1875. IEEE, 2009.

[162] X. Xin, J. Jiang, and Y. Zou. A review of Visual-Based Localization. In Proceedings of the
2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence,
2019.

http://www.ipb.uni-bonn.de/pdfs/vysotska16iros.pdf
http://www.ipb.uni-bonn.de/pdfs/vysotska16iros.pdf
http://www.ipb.uni-bonn.de/pdfs/vysotska16ral-icra.pdf
http://www.ipb.uni-bonn.de/pdfs/vysotska16ral-icra.pdf

109 Bibliography

[163] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison, and S. Leutenegger. MID-
Fusion: Octree-based Object-Level Multi-Instance Dynamic SLAM. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2019.

[164] S. Xu, R. Chen, G. Guo, Z. Li, L. Qian, F. Ye, Z. Liu, and L. Huang. Bluetooth, floor-plan,
and microelectromechanical systems-assisted wide-area audio indoor localization sys-
tem: Apply to smartphones. IEEE Transactions on Industrial Electronics, 69(11):11744–
11754, 2021.

[165] S. Yang and S. Scherer. Cubeslam: Monocular 3-D object SLAM. IEEE Trans. on Robotics
(TRO), 35(4):925–938, 2019.

[166] C. Yi, I. H. Suh, G. H. Lim, and B.-U. Choi. Bayesian robot localization using spatial
object contexts. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2009.

[167] F. Zafari, A. Gkelias, and K. K. Leung. A Survey of Indoor Localization Systems and
Technologies. IEEE Communications Surveys Tutorials (CST), 21(3):2568–2599, 2019.

[168] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, and H.-Y. Shum. DINO: DETR
with Improved DeNoising Anchor Boxes for End-to-End Object Detection. arXiv preprint,
2203.03605, 2022.

[169] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning Deep Features for
Scene Recognition using Places Database. In Conference on Neural Information Processing
Systems (NIPS), 2014.

[170] N. Zimmerman, L. Wiesmann, T. Guadagnino, T. Läbe, J. Behley, and C. Stachniss. Robust
Onboard Localization in Changing Environments Exploiting Text Spotting. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2022.

[171] N. Zimmerman, T. Guadagnino, X. Chen, J. Behley, and C. Stachniss. Long-Term Local-
ization Using Semantic Cues in Floor Plan Maps. IEEE Robotics and Automation Letters
(RA-L), 8(1):176–183, 2023.

[172] N. Zimmerman, M. Sodano, E. Marks, J. Behley, and C. Stachniss. Constructing Metric-
Semantic Maps Using Floor Plan Priors for Long-Term Indoor Localization. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2023.

[173] N. Zimmerman, A. Giusti, and J. Guzzi. Resource-Aware Collaborative Monte Carlo
Localization with Distribution Compression, 2024.

[174] N. Zimmerman, H. Müller, M. Magno, and L. Benini. Fully Onboard Low-Power Local-
ization with Semantic Sensor Fusion on a Nano-UAV using Floor Plans. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA). IEEE, 2024.

110 Bibliography

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Overview

	Background
	Monte Carlo Localization
	Long-Term Localization
	Localization in Floor Plans

	Robots and Infrastructure
	Global Localization Infrastructure
	Localization infrastructure - IPB Lab
	Localization infrastructure - PBL Lab
	Calibration infrastructure - IPB Lab

	Robots
	Kuka YouBot
	Clearpath Robotics Dingo

	Textual Information for Robust Localization
	Related Work
	Approach
	Text Spotting
	Text Likelihood Maps
	Integration of Textual Cues

	Experimental Evaluation
	Experimental Setup
	Localization under Changes using a Sparse Map
	Localization under Few Dynamics using a Sparse Map
	Localization using LiDAR-Based Map Built with the Robot's Sensors
	Runtime
	Ablation Study
	In-Field Experiments

	Conclusion

	Exploiting Semantic Cues for Long-Term Localization
	Related Work
	Approach
	High-Level Semantic Maps
	Semantic Visibility Model
	Integrating Different Modalities in the MCL Framework
	Semantic Stability Analysis
	Hierarchical Semantic Localization

	Experimental Evaluation
	Experimental Setup
	Long-Term Localization in CAD Floor Plans
	Localization in a Previously Unseen Environment
	Ablation Study
	Runtime
	In-Field Experiments

	Conclusion

	Enriching Floor Plans with 3D Metric-Semantic Information
	Related Work
	3D Object Detection
	Semantic Mapping
	Semantic Localization

	Approach
	Label Generation for 3D Object Detection
	Statistical Analysis of 3D Object Detections
	3D Semantic Map Construction
	3D Semantic Localization

	Experimental Evaluation
	Experimental Setup
	Mapping
	Long-Term Localization in CAD Floor Plans
	Baseline Comparisons for Semantic Localization
	Runtime

	Conclusion

	Localization under Resource-constraints
	Related Work
	System Overview
	Hardware: Crazyflie and Extension Boards
	Processor: GAP9

	Approach
	Object Detection
	Lightweight and Parallel Embedded Implementation of MCL
	Semantic Map Format
	Geometric-Semantic Fusion Sensor Model

	Experimental Evaluation
	Experimental Setup
	Object Detection Performance
	Global Localization in Floor Plans
	Real-time execution, power and memory footprint

	Conclusion

	Collaborative Localization
	Related Work
	Approach
	Collaborative Monte Carlo Localization
	Distribution Compression
	Baselines

	Complexity Analysis
	Compression
	Communication
	Fusion

	Experimental Setup
	Robots
	Environments
	Scenario
	Metrics
	Procedure and parameters

	Experimental Evaluation
	Collaborative localization
	Bandwidth requirements
	Runtime cost
	Clustering

	Conclusion

	Conclusions
	Publications
	Long-term Localization
	Resource-Constrained Localization
	Collaborative Localization
	Human Pose Estimation on nano-UAV
	Software Releases

	Bibliography

