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Abstract—Software visualization concerns itself with the visual
depiction of software systems to facilitate their comprehension.
Any visualization approach, whether 2D or 3D or immersive,
comes with a plethora of configuration possibilities (e.g., which
types of artifacts to visualize and how, which layouts to use).
This reflects the complexity of the domain at hand, where
manipulating millions of entities pertaining to dozens of different
types of artifacts is common. Most visualization tools encode their
customizations in the form of view configurations/specifications
(in short viewspecs), which are either created declaratively
(using DSLs), or through custom user interfaces. In the case
of immersive visualization, approaches using such customization
facilities are cumbersome, may generate unnecessary context
and paradigm switches, and fail to leverage the full potential
of modern VR headsets’ controllers.

We present an approach to interactively manipulate the view
specifications by depicting them as 3D objects in the immersive
space, supporting definition and configuration with an automatic
reflection-based mapping of the software domain model under
exploration. IVAR-NI, the tool we developed, incorporates new
immersive interaction paradigms (e.g., slot-based selection) and
in-object real-time feedback (e.g., preview of the view specifica-
tion effects) to enhance the usability of this new generation of
VR-native interfaces for software visualization customization.
Å https://youtu.be/HsWGtrINtHc

Index Terms—Virtual Reality, VR-Native Interfaces, Software
Visualization, VR Interactive Interfaces, IVaR-NI
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Virtual Reality (VR) headsets reached a maturity that makes
them robust enough to be viable for everyday visualiza-
tion tasks and scientific experiments. From so called serious
games [1], to education [2], and medical applications [3],
they opened new possibilities to visualize complex data struc-
tures [4], [5], and software systems are among the most
complex artifacts created by humankind.

Modern software systems can consist of up to hundreds
of millions of lines of code [6]. Cisco’s IOS-XE software,
for example, counts more than 2,200 software components
and tens of thousands of source files. It supports hundreds
of hardware products for different purposes (e.g., routing,
switching, wireless, network management) [6]. Software visu-
alization provides the means to address such complexity and
to explore and understand large-scale systems [7].

Immersive VR environments and traditional screen-based
dashboards compete for software and data visualization [8].
Custom VR visualizations [9], [10] have been proposed
for software development metrics [8], software architecture
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analysis and recovery [11]–[13], and dependency ecosystems
analysis [14]. Nevertheless, these tools are often either pre-
determined in the way they show the components of the
system [11], or provide a simple representation based on well-
known metaphors (e.g., the city metaphor [15]) with limited
configurability unless leaving the immersive environment.

To remedy to such limitations, we propose a novel ap-
proach to manipulate VR-native user interfaces for software
visualization customization. IVAR-NI, the tool we developed
as a proof-of-concept of our approach, allows to reduce
the disconnect from VR by reducing the need to switch
back to non-immersive configuration tools, like, for example,
2D Graphical User Interfaces (GUIs), or Domain Specific
Languages (DSLs) [16]. Meta-entities in the system (e.g.,
class prototypes, metrics mappings) are visualized as 3D
shapes and manipulated as normal entities to configure the
desired visualization (Figure 1). An interactive preview of the
manipulations’ effects, on a small-scale representation of the
system, considerably tightens the customization feedback loop.

is_java_file_color_mapping = {
    True: 'green',
    False: 'red'
}

text_file_color_mapping = CategoricalMapping(
    metric=IsJavaFileMetric(),
    categories=is_java_file_color_mapping
)

GlyphMapping(
    x_scale=fixed_1_scale_mapping,
    y_scale=text_y_scale_mapping,
    z_scale=fixed_1_scale_mapping,
    color=text_file_color_mapping,
    primitive=CategoricalMapping("cylinder")
)

scaling = LinearScaling(scaling_factor=100)

text_y_scale_mapping = NumericalMapping(
    metric=NumberOfLinesMetric(),
    scaling=scaling
)

GlyphMapping(
    x_scale=fixed_1_scale_mapping,
    y_scale=text_y_scale_mapping,
    z_scale=fixed_1_scale_mapping,
    color=text_file_color_mapping,
    primitive=CategoricalMapping("cylinder")
)

GlyphMapping(
    x_scale=fixed_1_scale_mapping,
    y_scale=text_y_scale_mapping,
    z_scale=fixed_1_scale_mapping,
    color=text_file_color_mapping,
    primitive=CategoricalMapping("cylinder")
)
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Fig. 1. Examples of 3D object manipulation and corresponding DSL code.
(A) Primitive shape, (B) y-scaling, (C) categorical metric color mapping.

https://youtu.be/HsWGtrINtHc


II. VIEWSPECS MANIPULATION IN VR

Traditional software visualization tools leverage GUIs [17],
[18], and DSLs [16], [19] to configure different aspects of the
final expected output, in order to highlight the desired insights
through the visualization. These configuration means are be-
coming limited and obsolete with the increasing relevance of
VR-assisted software engineering (e.g., see [20]–[24] just as
a few examples), forcing developers to either step away from
the immersive experience (e.g., external tools to configure the
VR environment) or to forego the potential of the VR medium
by “flattening” traditional 2D GUIs in VR.

Limited foveal resolution and artifacts in the stereoscopic
anti-aliasing of text add to this problem, contributing to the
poor readability of 2D GUIs in VR. This, in turn, increases
the importance of exploring a new way of building software
visualization configurations, by managing the same primitives
that represent the components of the analyzed system, while
meta-entities act as manipulation proxies for the corresponding
model abstractions, as shown in Figure 1.

Viewspec Configuration: The configuration process is di-
vided in two steps. The first step (Figure 2 top) configures the
three main components at system-level:

• Layout: How are the entities in the system placed in the
available space (e.g., linear, grid, rectangle packing);

• Scaling: The scaling to apply to all entities in the system
(no scaling, fixed scaling, room-size);

• Sorting: For ordered layouts (e.g., linear), the order in
which the entities are considered for positioning.
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Fig. 2. Viewspec configuration interface.

After selecting a system by placing an entity from (A) in
(B) and configuring system-wide parameters (C), the second
step (Figure 2 bottom) configures the representation of each
entity of interest in the system (D).

Each entity is selected by placing it in the selection win-
dow (E), the possible metrics and scalings can be shown for
each visual attribute one at a time (F) (x/y/z-scaling, shape,
color). Each metric object and an optional scaling can be
placed on top of the corresponding visual attribute on which to
project the (scaled) metric. For categoric metrics, each possible
value can be mapped to the different values of a corresponding
categoric visual property. For example, the two values of the
boolean metric of being a Java file can be mapped to two
different colors, green for true and red for false (G).

This process is repeated for all the entities of interest, until
the configuration is completed (H). For optimization reasons
the preview is updated when the mapping for an entity is
complete (i.e., the object sphere is removed from the selection
window, see Sections V and VII for a discussion of limitations
and possible improvements).

In Figure 3, we show how each saved viewspec (A) can be
applied to instances of systems (B). We produce a preview of
the system visualization (C) by loading (i.e., placing) a system
onto a viewspec.
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Fig. 3. Viewspec application to system instances and previews.

In Figure 4, a composable preview (C) can be created
from individual systems’ previews (e.g., Argo UML (A) and
Serenity JS (B) GitHub repositories) and acts as a proxy for
the scene to be manipulated before transitioning from the
configuration lobby to the actual system exploration area.
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Fig. 4. Composable previews: Argo UML GitHub repository (A), Serenity
JS GitHub repository (B), and composed view scene preview (C).



GitHub

Data
mining

Serializer

Viewspec 
builder

Domain builder

System scaling

Layouting

Glyph builder

Nodes filter

View builder

Python 
backend

Viewspec builder

Connection 
manager

Repositories

Viewspecs

Planning table

Visualization root
XR Interaction 

setup

Unity 
frontend

Explorer

REST
API

XR
Rig

Fig. 5. Software architecture overview.

III. IVAR-NI
We developed IVAR-NI, a prototype to explore which fea-

tures could make Interactive Virtual Reality-Native Interfaces
usable for configuring VR software visualization applications.
Figure 5 shows an overview of the software architecture.

IVAR-NI is composed of a Python backend that reifies the
domain model of interest, providing the objects (e.g., domain
entities, viewspecs, metrics) via REpresentational State Trans-
fer (REST) endpoints. The frontend is a Unity1 application
optimized for the Oculus Meta Quest 32 Head Mounted
Display (HMD). The interactions in VR are carried over with
two Quest 3 Touch Plus controllers (one in each hand).

The backend consists of 4 components. The domain builder
mines a GitHub repository to build a graph of the model to
be visualized. Nodes correspond to the entities (e.g., folders,
binary files, text files, file types) and edges to their relation-
ships (e.g., containment edges between folders and files). The
viewspec builder uses reflection to analyze the domain and
compute metrics to provide the frontend with the data to build
the viewspec configuration interface. The view builder uses a
viewspec to build the view of a domain, filtering the nodes to
be displayed, building the glyphs for each node, scaling and
arranging them. Finally, a serializer enables object transfer
and communication between the backend and the frontend.

The frontend is a Unity application installed in the Meta
Quest 3. The connection manager provides the endpoints
to connect to the backend, serialize, and deserialize data.
The connection parameters (e.g., IP address, port) can be
configured through a menu in the Head Up Display (HUD).3

The viewspec builder, the repositories, the viewspecs and their
composition via the planning table implement the customiza-
tion approach described in Section II. The visualization root
is the entry point for system exploration and is responsible
for spawning and handling the glyphs. Finally, the eXtended
Reality (XR) interaction setup collects all the components
that manage user interaction with the 3D scene (e.g., poke
interactor, ray interactor). In particular, the XR rig, shown
in Figure 6, manages input data from the controllers and the
HMD and output data to the HUD and the inspection tool.

1See https://unity.com
2See https://www.meta.com/quest/quest-3/
3Some elements can be anchored to the HUD and displayed in a position

relative to the user’s point of view (e.g., connection parameters menu).
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Fig. 6. XR Rig.
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Fig. 7. Inspection tool.

The XR Rig provides custom mappings for VR navigation
by moving in the real world (e.g., walking, crouching, turning
and tilting head) or through the controllers: Via teleportation
(pushing the thumb-stick upward and pointing the casted ray
to the desired destination) and by snap turning (pushing the
thumb-stick left or right). Continuous movement and turn
can be enabled4 on the thumb-sticks of the controllers, also
allowing the user to fly for a bird’s eye view of the system.

4This control mode caused motion sickness to some users, default disabled.

https://unity.com
https://www.meta.com/quest/quest-3/


Both controllers allow object manipulation through the
grab interaction or from a distance with the casted selection
ray. Grabbed objects can be rotated with the thumb-stick.
Controllers’ stabilization and “magnetic” rays casted from the
controllers enable precise interactions even at long distances.

The inspection tool, shown in Figure 7, completes the
toolset for system exploration: A basic tooltip (A) with concise
information and an advanced tooltip (B), that can be toggled,
with detailed information about the focused domain object.

IV. DISCUSSION

We presented an approach to software visualization cus-
tomization based on VR-native interfaces to avoid unnecessary
context switches. The configuration steps leverage 3D shapes
that match those in the software visualization (thus increasing
memory recall) to represent entities and meta-entities of the
explored system. The reflection-based collection of domain
entities and their metrics renders this approach to configuration
(and the frontend) domain-independent.

The interactivity provided by scaled-down previews of the
visualization and the tuning of visualization elements directly
in VR help in keeping the focus on the configuration task. The
amount of usable space provided by an immersive 360 degree
solution allows to experiment with scaling of the configuration
options while keeping the interface functional. Some aspects
of the hierarchical organization of UI components still need to
be improved, to limit scene clutter and information overload.

Regarding the interactions, ambidextrous object manipula-
tion is superior to mouse-based 2D interaction in allowing
complex coordinated gestures (e.g., moving controllers away
from each other to scale an object in different dimensions).
The number of buttons available on each controller is superior
to those of a typical mouse but lacks the functionalities of a
keyboard. Still, the additional degrees of freedom for object
manipulation proved a key factor in shaping the customization
interface in 3D. Horizontal alignment of options for visual
attributes and displacement on the depth axis for the selection
of each option contribute to easily controllable interactions
with the interface, even at a distance (i.e., with casted rays).

The scale of the 3D interface determines the effectiveness
of the interactions and should be fine-tuned also with respect
to the physical characteristics of the user (e.g., arm reach).
Our preliminary results show a promising naturalness even at
significant tilt angles and distances (e.g., about 45 degrees
from the front of the object, 1.5 meters away). This is
particularly relevant for the number of configuration options
and alternatives that can be made available in a VR-native user
interface. The performance comparison with different layouts
and shortcut-based interfaces still needs to be evaluated.

V. GENERALIZABILITY AND LIMITATIONS

The reflection-based approach we propose can generalize to
different domains, from a file-system, to a GitHub repository
with source code files, representing entities such as classes,
methods, and attributes. Integrating object customization di-
rectly in the visualization allows for a domain-independent

approach to define the visual characteristics of the represented
model entities. Nevertheless, we still need to validate the ap-
plicability of our approach to scale to source code granularity.

We encountered some limitations in the reliability of the
plugins for the Unity frontend. The quality of the developers
toolchain for VR frameworks influences the developer’s expe-
rience, and these software tools are still not mature enough to
be stable across different hardware configurations.

Performance-related issues are a limiting factor for the
usability of the tool. The interactive preview is useful only
as long as its update is fast enough to keep the configuration
manipulation process smooth. Our current implementation is
usable, but a more fine-grained updating strategy of the fron-
tend components could significantly increase its performance.

To mitigate the limited internal validity of our design
decisions for the prototype, during development, we utilized
examples of real systems to assess the feasibility of our
approach and the usability of the tool on non-synthetic data. A
complete evaluation is planned as future work (Section VII).

There are also limitations in how repetitive operations need
to be manually performed multiple times. To mitigate this,
IVAR-NI supports the definition of default viewspecs that can
be fine-tuned, minimizing the number of required operations.

VI. RELATED WORK

VR-assisted software development is becoming the norm
rather than the exception [20]–[25], yet, most of the proposed
VR software visualization solutions do not allow users to build
their own view specifications interactively. Merino et al. exper-
imented with situated data visualizations in augmented reality,
finding that live feedback is critical for user engagement [26].

The advantages of VR over non-VR visualizations are
still debated [8]. Moreno et al. developed BabiaXR, a tool
for experimenting with data visualization in XR [10]. Many
tools leverage custom VR visualizations for collaborative [12]
software architecture analysis and recovery [9], [11], [13],
exploration of large software systems [7], and dependency
ecosystems analysis [14]. While the software visualization part
of these works provides significant contributions, the config-
urability of the tools is often limited to standard metaphors,
slightly adapted to the VR context, that do not feel natural.

LaViola et al. [27] provide guidelines on design of 3D and
VR user interfaces, highlighting how virtual environments can
provide the user with a sense of presence. By designing natural
interactions through lifelike metaphors, one can take advantage
of the knowledge the user already has of the real world, thus
reducing the cognitive distance between real and virtual [27].

Lanza presented guidelines on configuration of traditional
visualization tools [17] learned while developing Code-
Crawler [18]. Its view editor window is a GUI with selection
lists and drop-down menus. Similarly, Raglianti et al. used
viewspecs with 2D software visualization tools for developers
communications on Discord [19], [28]. These viewspecs are
configurable in a simple internal DSL (using the Pharo lan-
guage syntax) and we used them as a starting point for the
system-wide configuration (see Section II).



VII. FUTURE WORK

Technical Improvements: IVAR-NI is still a stand-alone
proof-of-concept. We plan to explore its integration as a library
to enhance other projects. We will also improve both the
backend and the frontend. Better support for automatic parsing
of the system’s architecture will allow, through the same
reflection mechanisms we already use, to capture more fine-
grained aspects of the system and further tune its visualization.
Increasing the responsiveness of the preview is also crucial.

New Features: Our current approach is limited to customiz-
ing the visualization of the system, but the whole explorable
scene could be configured “from inside”. We will expand the
planning table component to integrate the definition of param-
eters in a preview lobby, without leaving the VR environment,
for an immersive and configurable end-to-end experience.

User Study Evaluation: We will perform a complete
evaluation with a pilot study and a larger user study. The
former will be targeted at tweaking design decisions of the
prototype, the latter will gather feedback through surveys and
semi-structured interviews. We aim to assess the impact of
eliminating context switches that bring the user away from a
fully immersive environment and interaction metaphor.

VIII. CONCLUSION

Rethinking configuration of software visualization in VR
can be highly beneficial. The trend to explore VR solutions
to assist software engineers and software architect, coupled
with the maturity level of modern VR headsets opens up
novel and interesting paths. The proposed approach is just
a first step in the direction of VR-native user interfaces for
software visualization customization. Nevertheless, keeping
software developers and engineers immersed in the system
visualization and giving them interactive means to affect it
from within, while using natural metaphors coherent with the
VR environment surrounding them, is key to keeping them in
the flow and reducing unnecessary context switches.

Demo video: Å https://youtu.be/HsWGtrINtHc
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