
Terminals All the Way Down
Michael MacInnis

School of Computer Science
Carleton University
Ottawa, Canada

michaelpmacinnis@cmail.carleton.ca

Olga Baysal
School of Computer Science

Carleton University
Ottawa, Canada

olga.baysal@carleton.ca

Michele Lanza
REVEAL @ Software Institute

USI, Lugano
Lugano, Switzerland
michele.lanza@usi.ch

ABSTRACT
The terminal is a remarkably resilient interface for many program-
ming activities. From its humble beginnings as a teletypewriter
more than half a century ago, through video terminals like the
VT100, to present-day windowed terminal emulators, it has re-
mained a relevant and productive, albeit very gaunt, interface. This
is in stark contrast with feature-rich integrated development envi-
ronments (IDEs), which on top of their innate complexity allow for
the creation of custom extensions. Indeed, researchers have been
prolific in proposing innumerable, but often ignored, plug-ins.

We propose using inter-connected windowed terminal emula-
tors as the foundation for a new type of distributed and language-
agnostic development environment. By delegating the handling of a
system’s source code to a set of dedicated windowed terminal emu-
lators we aim at complementing existing visual tools and leveraging
the large body of existing command-line and terminal-based devel-
opment tools. We present the architecture of the terminal-based
development environment that we envision, outline our future im-
plementation plans, and discuss how such an environment can be
evaluated both in terms of its usefulness and usability.

KEYWORDS
Development Environment, Programming, Source Code, Terminal

ACM Reference Format:
Michael MacInnis, Olga Baysal, and Michele Lanza. 2022. Terminals All
the Way Down. In New Ideas and Emerging Results (ICSE-NIER’22), May
21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3510455.3512784

1 INTRODUCTION

©Michael MacInnis, Olga Baysal, and Michele Lanza. 2022. This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version was published in the proceedings of the 44th International Conference on Software Engineering, https://doi.org/10.1145/3510455.3512784.

The terminal, and the command-line interface it presents, remains
a relevant and often extremely productive interface, particularly
on Unix and Unix-like systems, thanks to the Unix shell [10]. “Ter-
minal emulators, or simply terminals, are used ubiquitously by
developers” [16] and the terminal’s ubiquity is not limited to pro-
fessional settings. In education, as well, “the use of command line
tools alone for teaching introductory programming is remarkably
persistent” [24].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9224-2/22/05
https://doi.org/10.1145/3510455.3512784

The terminal’s command-line interface allows for typescript1-
style interaction. “The typescript — an intermingling of textual
commands and their output — originates with the scrolls of paper
on teletypes” [26].

Teletypes or teletypewriters were eventually replaced by video
terminals and those were in turn replaced by windowed terminal
emulators. Opinions on the merits of windowed terminal emulators
have always been divided:

The advent of windowed terminals has given each user
what amounts to an array of teletypes, a limited and
unimaginative use of the powers of bitmap displays and
mice [26].

The advent of windowing systems brought great ad-
vances in juxtaposability for all jobs where more than
one task was performed concurrently. A notable im-
provement for many users was being able to run ter-
minal emulations with windows, using one window for
each thread under say X-windows and making a whole
new way of working possible; in contrast, on the stan-
dard Unix platform without windows, all the threads
had to be merged into one stream, making multiple con-
current sessions extremely hard [...] to manage [20].

Using the full power of a graphical user interface to emulate a
video terminal is unimaginative, but a video terminal and in partic-
ular the command-line interface it presents is already a powerful
interface and, as stated above, simply having the ability to see more
than one windowed terminal emulator at a time makes a whole
new way of working possible.

Windowed terminal emulators, like the video terminals they
emulate, are also not limited to supporting only typescript-style
interactions. The cursor addressing extensions introduced by video
display terminals and standardized as ANSI escape codes [5] allow
full screen textual applications to be developed. Among these, the
venerable vi editor which lives on as vim and continues to be
popular with developers [4, 7, 8]. Andwindowed terminal emulators
have continued to evolve, adding support for hyperlinks [21] and
even raster graphics [19].

We propose a framework that adds two small layers of indirection
in the hopes of allowing current windowed terminal emulators to
serve as the foundation for a new type of distributed and language-
agnostic development environment for Unix and Unix-like systems.
1Throughout this paper, the term typescript is used to mean the “intermingling of
textual commands and their output” [26] and not as a reference to the strongly typed
language built on top of JavaScript, developed and maintained by Microsoft, called
TypeScript

https://doi.org/10.1145/3510455.3512784
https://doi.org/10.1145/3510455.3512784
https://doi.org/10.1145/3510455.3512784
https://doi.org/10.1145/3510455.3512784


ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA MacInnis et al.

In addition to building and experimenting with the possibilities
presented by this new framework, we are investigating how best
to evaluate these contributions. Ideally, we would like to conduct
user studies with actual developers working on real problems.

2 COBBLERS, BAKERS, AND THE PERFECT
MUSTARD

The cobbler always having the worst shoes is a popular idiom that
exists in many similar forms. A common interpretation is that the
cobbler is too busy making or fixing other people’s shoes, and so the
cobbler’s own shoes are neglected. Many people believe that this
is the case with software development. A popular misconception
is that professional developers stick with antiquated approaches
because they have been too busy to learn to use more productive
tools. Joel Spolsky offers another interpretation when describing
how bakers see things differently:

The whole concept of clean in the bakery was something
you had to learn. To an outsider, it was impossible to
walk in and judge whether the place was clean or not.
An outsider would never think of looking at the inside
surfaces of the dough rounder [...] to see if they had been
scraped clean. An outsider would obsess over the fact
that the old oven had discoloured panels, because those
panels were huge. But a baker couldn’t care less whether
the paint on the outside of their oven was starting to
turn a little yellow. The bread still tasted just as good.
After two months in the bakery, you learned how to
‘see’ clean [31].

The cobbler, like Spolsky’s bakers, sees things differently. The
cobbler’s shoes may look worn out to those who do not spend a
lot of time working with shoes but the cobbler is not distracted by
superficial details. Similarly, many developers prefer the terminal,
despite its gaunt interface, for its simplicity and reliability and be-
cause it provides access to tools that can be automated and scripted.
We believe it is important to not be distracted by the superficial
qualities of the terminal, like its age, and that by doing so and ex-
ploring a mostly unexplored area of the development environment
ecosystem (see Figure 1), we can arrive at a solution that comple-
ments existing visual tools in addition to leveraging the large body
of existing command-line and terminal-based development tools.

Our innate tribal tendencies often cause software development
discussions to devolve into ridiculous debates: emacs vs. vi, tabs vs.
spaces, the one true brace style vs. all the other obviously incorrect
ways to format C-like languages, etc. Development environments
are no exception but improving development environments is not
a zero-sum game and treating it as such only serves to diminish
the set of possible solutions. Gladwell, presenting the findings of
Howard Moskowitz, says: “There is no perfect mustard or imperfect
mustard. There are only different kinds of mustard [or spaghetti
sauce, or coffee] that suit different kinds of people” [17].

Similarly, there is no perfect development environment. There
are different kinds of development environments that suit different
development styles and tasks.

Figure 1: Development environments.

3 THE PROBLEMWITH IDES
The terminal can be a uniquely expressive interface but modern
IDEs are also incredibly powerful. Many developers would balk at
the idea of using anything else. Syntax highlighting, code comple-
tion, refactoring support, and interactive debugging are just a few
of the features offered by modern IDEs [25].

Figure 2: Visual Studio Code, IntelliJ, and Sublime Text.

The problem with IDEs, at least from a tool developer’s perspec-
tive, is the total control approach they take and how this results in
increasingly large and complicated code bases. Popular IDEs also
share little, if any, code. Researchers building software development



Terminals All the Way Down ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

tools as IDE plug-ins must expend a significant amount of effort
which has to be repeated for each targeted IDE “as the tools have
to be ported to [each] IDE to benefit maximally from it” [29]. This
is aggravated by a tendency that IDEs have to fall out of fashion.
The complexity of their code bases and plug-in ecosystems seem to
require a minimum popularity to remain viable and relevant.

Despite having distinct, increasingly large, and complicated code
bases, IDEs have converged, over the last forty years, on “a ‘bento
box’ design: the screen is partitioned into rectangular areas that
contain editors (e.g., code editors, user interface designers), navi-
gators (e.g., project viewers, class viewers), and tool output (e.g.,
search results, compilation errors)” [14]. This “bento box” design
(see Figure 2) does not exploit the possibilities that multiple moni-
tors present nor is it helpful in allowing developers “to form and
exploit spatial memory” [14].

4 PROPOSAL
Writing code, despite attempts at richer representations, is mostly
handling text. Text “is a universal interface” [28], and although it
may not be the best way to represent programs it is better than
“all those other forms that have been tried from time to time” [11].
We believe that current windowed terminal emulators are excellent
at handling text and powerful enough to serve as the foundation
for a new type of distributed and language-agnostic development
environment for Unix and Unix-like systems. To investigate this
we propose building a system that adds two layers of indirection
(see Figure 3).

Figure 3: Proposed Framework.

The first layer of indirection we call the terminal server. The
terminal server exists locally and manages all windowed terminal

emulator instances on the local machine. It knows which windowed
terminal emulator instances exist and what they are doing. The
terminal server serves multiple windowed terminal clients. The
windowed terminal client, or just terminal client, allows us to avoid
having to implement a competitive terminal emulator from scratch.
Instead we can rely on any of the many terminal emulators that
already exist. Instead of the windowed terminal emulator commu-
nicating with a program (through a pty) it communicates with the
terminal client (through a pty) which communicates with the ter-
minal server which manages all sessions. These sessions rely on
the second layer of indirection, which we call a pty multiplexer.

The ptymultiplexer exists locally and on all remotemachines and
inside any and all containers we expect to be able to use as part of
our distributed development environment. This layer of indirection
is not a new idea. The pty multiplexer is similar to screen [3]
or tmux [9] but in addition to handling multiple pty sessions it
multiplexes output and demultiplexes input. By cooperating with
the terminal server, input is sent to the appropriate program and
output to the appropriate local window. We are aiming for the pty
multiplexer to be small enough and well contained enough that
installing it would be similar to installing screen or tmux. One pty
multiplexer may end up indirectly launching other pty multiplexers
over SSH on remote machines or in containers. The pty multiplexer
instances form a tree and work together to route input and output.

All communication between components will be encoded using
an ANSI escape sequence [5], referred to by ECMA-48 as a “Pri-
vacy Message” [1]. Privacy Messages are ignored by all xterm-like
windowed terminal emulators [2]. We envision the pty mutliplexer
signalling its ability to handle a multiplexed data stream with an
advertisement encoded in this way. Encoding this advertisement as
a Privacy Message will ensure that it is harmless in the case that
the receiver does not support multiplexing which will allow the
pty multiplexer to fallback to behaving as a transparent shim.

This infrastructure will allow us to preserve the illusion that
breaks when the terminal is used to access remote or containerized
systems. We want to make remote and containerized development
more seamless by baking in the idea that all development does not
occur on the local machine. The terminal server, co-operating with
the pty multiplexer locally, on remote systems, or in a containers,
will be able to launch programs on those systems with their own
local windows.

5 USE CASES
Even in an embryonic state we believe this framework will be useful
for remote and containerized development.

Containerized Development. Launching a terminal inside a
container can be as simple as typing docker run. Launching addi-
tional terminals, however, is more cumbersome. Additional steps
are required to “connect” to the container again. Our framework
will solve this problem and only require the pty multipexer to be
installed and configured as the entrypoint for an image.

Remote Containerized Development. Our framework will
require no additional configuration to allow multiple terminals to
be launched inside a remote container with the pty multiplexer
installed and configured as the entrypoint. If, additionally, we want



ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA MacInnis et al.

to easily launch multiple terminals on the remote server we can con-
figure and install the pty mutliplexer on the remote server but even
without this our framework will happily multiplex terminals inside
the remote container transparently through the SSH connection to
the remote server.

6 FUTURE PLANS
We propose developing or extending a terminal-based editor so
that it can cooperate with our framework. Our goal is to be able
to have the output of these windows affect each other. We see
many common IDE features as simply the juxtaposition of one
or more textual windows with the ability to control one textual
window (cursor position, colour, highlighting or other annotations)
with the output from another window. Amazingly, there is already
a convention most command-line tools follow when referring to
code even if they do not know it by name — “code addresses” [13].

There are many modern command-line and terminal-based tools
that offer much more than simple typescript-style interaction [12,
15, 18]. We are excited by the possibilities offered by a framework
that will allow these tools to communicate and co-operate. The
framework we propose here is only the first step.

7 EVALUATION PLAN
Our aim is to build a framework that is useful on its own while
significantly reducing the effort required to build subsequent devel-
opment tools. A key part of this will be validating our assumption
that windowed terminal emulators are powerful enough to serve
as a foundation. To do this we plan to start by not only evaluating
how easily the framework allows us to mimic common useful IDE
features but also investigating the opportunities it presents to sup-
port features that are not commonly found in popular IDEs. We
believe that this is a fairly unique time in the history of software
development, and that these efforts will be aided by the consider-
able amount of consolidation not only in popular languages and
tools but in how we approach software development itself [22].

If our assumptions about windowed terminal emulators being
powerful enough are correct, we then plan to use this framework
“for our daily work, not just as a research tool. [This will force]
us to address shortcomings as they arise and to adapt the system
to solve our problems” [27]. We intend to leverage existing open-
source tools as much as possible and also release components of
our framework as open source as soon as they reach a minimum
viable state. Our goal is to attract other like minded cobblers, bakers,
developers. We hope that there will be enough interest to attract a
sufficient number of volunteers to allow evaluation through inter-
views and questionnaires and that these will allow us uncover any
lingering issues and unnecessary barriers to adoption. Finally, we
plan to perform a comparative evaluation between our framework
and other popular tools [32]. As previously stated, in addition to
building and experimenting with the possibilities presented by this
new framework, we are investigating how best to evaluate these
contributions. Our investigation into these methods is ongoing.

Our target audience is anyone who needs to edit text files. Par-
ticularly in the initial stages, we feel that our approach will be
suited to small, emerging, and domain-specific languages that do
not yet, or may never, have good IDE support. Developers are also

only part of our target audience. Nebulous definitions of dev-ops
aside, the basic idea of dev-ops is that developers and operators, or
administrators, perform many of the same tasks and, we believe,
can be served by the same tools.

In later stages we hope that the consolidation we see in tools
and approaches along with projects like the Language Server Pro-
tocol [6] which decouple language services from editors will allow
us to achieve feature parity with existing IDEs. Our hope is that
by delegating text handling to windowed terminal emulators, win-
dow management to the window manager, and access to remote
and containerized systems to existing terminal-based tools, our
approach will be easier to extend than existing IDEs while also
having a significantly lower total complexity.

“A [tool’s] got to know [its] limitations”
– Dirty Harry

Our ultimate goal is not to promote text and the terminal inter-
face above all other interfaces but to “infiltrate existing development
environments and complement the existing functionalities” [23].
We believe that tools including, but not limited to, “software visual-
ization should have a symbiotic relationship with the practice of
code reading by pointing the viewer to the location in the system
where [they] should read and/or modify the code” [23].

8 CONCLUSION
“From a terminal, you SSH to a VM and get what?”
“A terminal.”
“And then you docker exec and get what?”
“Another terminal. It’s terminals all the way down.”

The terminal is a remarkably resilient interface. In its current
incarnation(s), as the many and various windowed terminal emula-
tors, the terminal has evolved beyond supporting a typescript-style
of interaction and into “a general support environment for text-
based programs” [30]. Meanwhile, IDEs have converged on a de
facto standard, “bento box”, design which does not take full advan-
tage of increasingly common multiple monitor environments nor
help developers “form and exploit spatial memory” [14].

Worse, the significant effort expended by researchers to develop
plug-ins for IDEs is often ignored and can be largely wasted if and
when the targeted IDE falls out of fashion.

We suspect that current windowed terminal emulators are power-
ful enough to serve as the foundation for a new type of distributed
and language-agnostic development environment for Unix and
Unix-like systems. We hope that the persistence and adaptability
of the terminal will mean that tools developed for our framework
will be more resilient and that our framework will lower the bar for
software development tool builders and allow for more and easier
experimentation.

Acknowledgements
MacInnis and Baysal gratefully acknowledge the support of the
Natural Sciences and Engineering Research Council of Canada
(NSERC), RGPIN-2021-03809. Lanza gratefully acknowledges the
financial support of the Swiss National Science Foundation (SNF)
for the project “INSTINCT” (SNF Project No. 190113).



Terminals All the Way Down ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

REFERENCES
[1] 1991. ECMA-48: Control functions for coded character sets. https://www.ecma-

international.org/publications-and-standards/standards/ecma-48/.
[2] 2005. Xterm Control Sequences. https://www.xfree86.org/current/ctlseqs.html.
[3] 2016. GNU Screen. https://www.gnu.org/software/screen/.
[4] 2019. State of Haskell Survey Results. https://taylor.fausak.me/2019/11/16/haskell-

survey-results/.
[5] 2020. All Escape Codes. https://bjh21.me.uk/all-escapes/all-escapes.xhtml.
[6] 2020. Language Server Protocol Specification - 3.16. https://microsoft.github.io/

language-server-protocol/specification.
[7] 2021. Go Developer Survey Results. https://go.dev/blog/survey2020-results.
[8] 2021. Stack Overflow Developer Survey. https://insights.stackoverflow.com/

survey/2021.
[9] 2021. tmux. https://github.com/tmux/tmux.
[10] Jon Bentley, Don Knuth, and Doug McIlroy. 1986. Programming Pearls: A Literate

Program. Communications of the ACM 29, 6 (June 1986), 471–483.
[11] Winston Churchill. 1947. The Worst Form of Government. https://

winstonchurchill.org/resources/quotes/the-worst-form-of-government/.
[12] Maxime Coste. 2021. Kakoune. https://kakoune.org/.
[13] Russ Cox. 2021. Code Addresses. https://pkg.go.dev/rsc.io/rf#hdr-Code_

addresses.
[14] Robert DeLine and Kael Rowan. 2010. Code Canvas: Zooming Towards better

Development Environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2. 207–210.

[15] Brendan Falk. 2021. Fig. https://fig.io/.
[16] Ishaan Gandhi and Anshula Gandhi. 2020. Lightening the Cognitive Load of

Shell Programming. http://reports-archive.adm.cs.cmu.edu/anon/isr2020/CMU-
ISR-20-115B.pdf. PLATEAU 2020 (Nov. 2020).

[17] Malcolm Gladwell. 2004. Choice, Happiness and Spaghetti Sauce. https://www.
ted.com/talks/malcolm_gladwell_choice_happiness_and_spaghetti_sauce.

[18] Kovid Goyal. 2021. kitty. https://sw.kovidgoyal.net/kitty.

[19] Kovid Goyal. 2021. Terminal Graphics Protocol. https://sw.kovidgoyal.net/kitty/
graphics-protocol/.

[20] Thomas Green and Alan Blackwell. 1998. Cognitive Dimensions of Informa-
tion Artefacts: a tutorial. https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/
CDtutorial.pdf.

[21] Egmont Koblinger. 2020. Hyperlinks in Terminal Emulators. https://gist.github.
com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda.

[22] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. 2016. Code Review
Quality: How Developers See It. In Proceedings of the 38th ACM/IEEE International
Conference on Software Engineering. 1028–1038.

[23] Michele Lanza. 2003. Program Visualization Support for Highly Iterative De-
velopment Environments.. In Proceedings of the 2nd International Workshop on
Visualizing Software for Understanding and Analysis, VISSOFT. 67–72.

[24] Lauri Malmi, Ian Utting, and Amy J. Ko. 2019. Tools and Environments. Cambridge
University Press.

[25] Gail C. Murphy, Mik Kersten, and Leah Findlater. 2006. How are Java software
developers using the Elipse IDE? IEEE Software 23 (2006), 76–83.

[26] Rob Pike. 1994. Acme: A User Interface for Programmers.. In USENIX Winter.
223–234.

[27] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard
Trickey, and Phil Winterbottom. 1995. Plan 9 from Bell Labs. Computing Systems,
Summer 8, 3 (1995), 221–254.

[28] Eric Steven Raymond. 2003. The Art of Unix Programming. Addison-Wesley.
[29] Romain Robbes and Michele Lanza. 2007. Towards Change-Aware Development

Tools. Technical Report. Università della Svizzera italiana.
[30] Chris Siebenmann. 2021. The xterm terminal emulator can do a lot

more than just display text. https://utcc.utoronto.ca/~cks/space/blog/unix/
XTermQuiteSophisticated.

[31] Joel Spolsky. 2005. Making Wrong Code Look Wrong. https://www.
joelonsoftware.com/2005/05/11/making-wrong-code-look-wrong/.

[32] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer Science
& Business Media.

https://www.ecma-international.org/publications-and-standards/standards/ecma-48/
https://www.ecma-international.org/publications-and-standards/standards/ecma-48/
https://www.xfree86.org/current/ctlseqs.html
https://www.gnu.org/software/screen/
https://taylor.fausak.me/2019/11/16/haskell-survey-results/
https://taylor.fausak.me/2019/11/16/haskell-survey-results/
https://bjh21.me.uk/all-escapes/all-escapes.xhtml
https://microsoft.github.io/language-server-protocol/specification
https://microsoft.github.io/language-server-protocol/specification
https://go.dev/blog/survey2020-results
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://github.com/tmux/tmux
https://winstonchurchill.org/resources/quotes/the-worst-form-of-government/
https://winstonchurchill.org/resources/quotes/the-worst-form-of-government/
https://kakoune.org/
https://pkg.go.dev/rsc.io/rf#hdr-Code_addresses
https://pkg.go.dev/rsc.io/rf#hdr-Code_addresses
https://fig.io/
http://reports-archive.adm.cs.cmu.edu/anon/isr2020/CMU-ISR-20-115B.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isr2020/CMU-ISR-20-115B.pdf
https://www.ted.com/talks/malcolm_gladwell_choice_happiness_and_spaghetti_sauce
https://www.ted.com/talks/malcolm_gladwell_choice_happiness_and_spaghetti_sauce
https://sw.kovidgoyal.net/kitty
https://sw.kovidgoyal.net/kitty/graphics-protocol/
https://sw.kovidgoyal.net/kitty/graphics-protocol/
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda
https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda
https://utcc.utoronto.ca/~cks/space/blog/unix/XTermQuiteSophisticated
https://utcc.utoronto.ca/~cks/space/blog/unix/XTermQuiteSophisticated
https://www.joelonsoftware.com/2005/05/11/making-wrong-code-look-wrong/
https://www.joelonsoftware.com/2005/05/11/making-wrong-code-look-wrong/

	Abstract
	1 Introduction
	2 Cobblers, Bakers, and the Perfect Mustard
	3 The Problem with IDEs
	4 Proposal
	5 Use Cases
	6 Future Plans
	7 Evaluation Plan
	8 Conclusion
	References

