
Visualizing GitHub Issues
Aron Fiechter, Roberto Minelli, Csaba Nagy, Michele Lanza

REVEAL @ Software Institute — USI, Lugano, Switzerland

Abstract—The rise of distributed version control systems, such
as git, and platforms built on top of it, such as GitHub, has
triggered a change in how software is developed. Most notably,
state-of-the-art practice foresees the use of pull requests and
issues, enriched by means to enable discussions among the
involved people. Platforms like GitHub and GitLab have thus
turned into comprehensive and cohesive modern software devel-
opment environments, also offering additional mechanisms, such
as code review tools and a transversal support for continuous
integration and deployment. However, the plethora of concepts,
mechanisms, and their interconnections are stored and presented
in textual form, which makes the understanding of the underlying
evolutionary processes difficult.

We introduce the notion of an issue tale, a visual narrative
of the events and actors revolving around any GitHub issue,
and present an approach, implemented as an interactive visual
analytics tool, to depict and analyze the relevant information
pertaining to issue tales. We illustrate our approach and its
implementation on several open-source software systems.

Index Terms—software evolution visualization, visual analytics,
github issues

I. INTRODUCTION

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/VISSOFT52517.2021.00030

Modern software development has been shaped by the use
of distributed version control systems like Git, and enriched by
collaboration platforms like GitHub. These platforms provide
a cohesive and comprehensive experience for developing and
evolving software through the use of specific mechanisms,
such as issues and pull requests (PRs).

Issues on GitHub can be used to report bugs, or also to
request new features. Many teams also use GitHub Issues to
guide their software development by associating issues with
PRs where bugs are fixed or new features are implemented. Is-
sues have become the central element that drives development,
and more and more open-source projects are pointing potential
new contributors to good first issues to facilitate onboarding,
as encouraged by GitHub itself [1].

Both issues and PRs support open discussions via comments
and can be categorised and tagged using customizable labels.
Issues also show whenever they are mentioned by other issues
or by commit messages. It is apparent that all these concepts
and mechanisms are deeply interconnected. However, GitHub
shows all this information in textual form and shows the
interconnections through hyperlinks, which hinders a compre-
hensive understanding of the evolution of an issue.

We introduce the notion of an issue tale, a visual narrative
centered around a GitHub issue that encompasses all events
and actors related to it. We present our implementation of issue
tales as an interactive visual analytics tool and illustrate it on
open-source software systems.

II. VISUALIZING GITHUB ISSUES

A. Modeling a Software Project

We model a software project as a graph with nodes and
edges. Fig. 1 shows a simplified diagram of the model.

Fig. 1. The Model of a Software Project

The nodes are divided into two main categories: Container
nodes and Object nodes. The root node, Project, contains a
Repository, an Issue Tracker, a Pull Request Tracker, and a
Community. All of these are container nodes. For a Repository
node, we retrieve commits and compute diffs in the implemen-
tation using the git command-line tool. We retrieve the issues
and pull requests using the GitHub API.

The Object nodes are the following: Commit, Issue, Pull
Request, and Person. These entities also include secondary
nodes, such as comments, labels, and events (e.g., labeled or
closed).

We consider four edge types to describe relationships:
Structural, Authorship, Mention, and Derived. Structural edges
are static, and exist between a node and another that contains
it, e.g., a commit and its repository. Authorship edges represent
the relation between a node and the person who created it, e.g.,
a comment and its author. Mention edges exist between two
nodes, where one mentions the other, e.g., a commit message
that mentions an issue, or a comment that mentions a person.
Derived relation edges are generated from other edges in the
last step of the linking process.

B. The Linking Process

The linking process happens once all nodes of a project
have been retrieved, and consists of three phases: (1) creation
of structural and authorship edges; (2) creation of mention
edges, in which we search textual mentions between object
nodes (e.g., an issue key mentioned in a commit message);
and (3) creation of derived relation edges, which are built on
top of existing edges and support the creation of issue tales.

https://doi.org/10.1109/VISSOFT52517.2021.00030


Once the linking is finished, the graph representing the
project is completed. In Fig. 2, we show an example structure
of a project. Container nodes are shown in blue, object nodes
in black. Edge classes are in green except for structural edges
that can be seen as entities containing subentities.

Fig. 2. Object Diagram of a Simple Project

C. Creating Issue Tales
We define an “issue tale” as the collection of all nodes

related to an issue. Starting from the issue for which we
want to build the tale (i.e., the subject issue), we collect all
related issues, commits, pull requests, and people by traversing
derived relation edges. We also include in the issue tale all
comments and events of the subject issue, and of course, the
subject issue itself.

From this creation process, it is already apparent that issue
tales can heavily overlap, especially for closely related issues.

III. COARSE-GRAINED VISUALIZATION

Fig. 3 shows a coarse-grained view of all issue tales in
JetUML.1 The view shows each issue tale as a striped rectan-
gle, where stripes represent the related model entities, which
are issues, pull requests, commits, people, and comments. The
width represents the duration and a black border means the
subject issue of the tale is still open.

The color-coding helps to get a quick overview of the issue
tales in a project. In the case of JetUML, it is interesting to
see that most issue tales contain a large amount of commits
(in blue), and that only a few issues are still open.

There are other projects, like Braintree Android SDK2

(depicted in Fig. 4), that have a prevalence of comments in
issue tales (in orange), and others, like Zerocode3 (depicted in
Fig. 5), that are more varied. The number of open issues also
varies significantly across projects.

To better understand specific issue tales, we implemented a
fine-grained visualization, detailed in the next section.

1See https://github.com/prmr/JetUML
2See https://github.com/braintree/braintree_android
3See https://github.com/authorjapps/zerocode

Fig. 3. Coarse-Grained View of the Issue Tales in JetUML

Fig. 4. Coarse-Grained View of the Issue Tales in Braintree

Fig. 5. Coarse-Grained View of the Issue Tales in Zerocode

https://github.com/prmr/JetUML
https://github.com/braintree/braintree_android
https://github.com/authorjapps/zerocode


Fig. 6. Tale of Issue JetUML #231: Port UI to JavaFX

IV. FINE-GRAINED TIMELINE

Given the time-based nature of an issue tale, we chose to
adopt a timeline for the fine-grained visualization, with time
flowing from left to right. We maintain a structure similar to
the coarse-grained striped rectangle, with different nodes being
on separate rows. Fig. 7 shows a template for the fine-grained
visualization of a single issue tale. The bottom row shows
the central issue as a large rectangle with all its events and
comments as small squares.

Fig. 7. Structure of an Issue Tale Timeline

All nodes except for authors have a timestamp, and are thus
shown at the corresponding horizontal position. The nodes
have various metrics mapped to visual properties such as
position and width. Table I shows which metrics are mapped
to which properties.

In this view, we also show the relationship between the
various nodes as edges between them. Since the authors are
not time-based, they are positioned horizontally by averaging
the positions of their connected nodes.

At the bottom, we show a time scale. The top row, where
we display related issues, acts as a navigation bar, allowing

TABLE I
METRICS MAPPED TO ATTRIBUTES IN THE FINE-GRAINED VIEW.

Node Type Metric Attribute
All except Person Timestamp Horizontal Position
Main issue Duration Width
Commit Number of changed files Height

the user to open the timeline views of the tales of other issues.

A. Two Tales from JetUML

In Fig. 3, we annotated three issue tales with the letters A,
B, and C, which correspond to issues #231, #300, and #12.

1) Tale A: A Major Architectural Change: We start by
showing issue tale A in Fig. 6. We repeat the layering
explained in Fig. 7 for convenience.

The timeline view featured a related issue that was placed
much earlier than all other nodes in the tale, but since the
view is interactive, we removed it to allow all other nodes to
be shown clearly on the timeline.

Tale A is very rich: there are over 150 commits, 9 pull
requests, and the issue spans three months. There are only
three people involved with the issue: kkutschera, prmr,
and C5262168. The first two people are the most important
in the issue tale: kkutschera authored the vast majority
of the commits, while prmr seems to be mostly concerned
with orchestrating the status of the issue, adding milestones,
labels, and closing the issue. C5262168 has only one commit.
Further inspection reveals a duplicate of a commit by prmr.

This specific issue tale is about development, porting part
of the codebase to a new UI platform.



2) Tale B: A Nasty Bug: In the fine-grained timeline view
of tale B, shown in Fig. 8, we see no pull requests and only
one single commit, which is related to only one of the issues.

Fig. 8. Tale of Issue JetUML #300: Opening second diagram crashes on Mac

We interacted with the view to remove all events and show
some of the comments posted on the issue. After opening the
issue, neilernst immediately suggested that it could be
related to issue #280. After that, the tale only contains a few
other interactions in more than a year, such as suggestions for
potential fixes. On January 17, 2020, prmr closed the issue
with the comment “Now subsumed by #324”. Notice that #324
is one of the related issues shown on the top of the view. By
inspecting its timeline, we see a similar situation. Now it is
issue #385 that subsumed #324. The new issue, #385, is still
open and does not feature commits other than a minor fix. To
conclude, this issue tale is telling a story of a persistent bug.

B. Tangled Issue Tales

In Fig. 9, we show tale C of issue #12, as well as the one
of issue #13 in Fig. 10. We show both because the issues are
related and share the same commits in their tales.

Fig. 9. Fine-grained tale timeline of issue #12 in JetUML

The two issues relate to two features that need to be added:
copy-and-paste and undo. The fine-grained views of the tales
and the near-simultaneousness of the two issues tell us that
they are tightly related.

Fig. 10. Fine-grained tale timeline of issue #13 in JetUML

C. Sample Tales from Other Projects

1) A Quick Contribution: In Fig. 11, we present a very
short tale timeline for Issue #285 in the project Zerocode. We
opened two comments and a word cloud of the file changes of
the three commits in the tale. The font size of the file names
depends on the total number of changed lines, while the color
shows whether there is a majority of deletions or additions (in
red or blue).

Fig. 11. Tale of Issue Zerocode #284: Mention Jetbrains support in Readme

We see that the biggest file change is jetbrains.svg,
which is the JetBrains logo. There are also other seemingly
unrelated changes to code files. After inspection, we under-
stand that these are part of an integration merge of the main
branch before merging the PR. There are also changes to the
README, as the issue title suggests.

2) Adopting a Fix Takes Time: Fig. 12 shows the tale of
an issue in the project Braintree Android SDK. We made
hidden on the view all event nodes, opened two comments,
and created a word cloud of the last seven comments on the
issue, which all happened after the issue was closed.

The word cloud suggests that people commenting after the
issue was closed were having problems with the Google Play
Store related to removal and build rejection.

This demonstrates how an issue tale is not finished when
the issue is closed, but continues until people stop interacting
with the issue. An issue tale can also start a long time before
the issue is even created, for example, in old related issues or
pull requests.



Fig. 12. Tale of Issue Braintree Android SDK #325: Unsafe implementation of the HostnameVerifier interface - Google policy violation

V. RELATED WORK

Software Evolution Visualization. Much research has been
done to visualize software evolution, from single systems, as
in CodeCity [2], to entire ecosystems in Complicity [3]. Burch
et al. explored ways to visualize work processes in a software
system through the concept of Developer rivers [4].

Visualization of Issues. D’Ambros et al. visualized an
entire bug database, as well as single issues, focusing on the
properties of the bug report, such as the status, description, and
involved people [5]. Knab et al. presented an approach to visu-
alize problem reports that helps in uncovering hidden patterns
and supports analysis by allowing the combination of various
visualizations flexibly [6]. Hora et al. created BugMaps, a tool
that visualizes issues together with links to other artifacts of
the software system such as source code entities [7]. Dal Sasso
and Lanza created a web-based visual analytics tool to explore
bug reports, with a coarse-grained view of all bug reports and a
fine-grained view that shows various properties of a single bug
report [8]. More recently, Liao et al. devise various aggregated
views of GitHub issues [9].

Techniques. We used an approach similar to the one
explained by Bird et al. to disambiguate users [10]. Our
implementation creates different views using the concept of
intensional views [11]. Every view is built using a complete
graph and a view specification, which defines its representation
and the metrics mapped on visual attributes for each node or
edge kind. The fine-grained timeline visualization of an issue
tale is a time-based view of a complex graph [12] [13].

VI. CONCLUSIONS

We introduced the concept of issue tales and presented our
approach and implementation as an interactive visual analytics
tool. We have shown two visualizations of issue tales: a coarse-
grained view that encodes the size and duration of tales and
offers a global view of all issue tales in a project, and a fine-
grained timeline view which explains the internal structure of
a single issue tale while enabling a deeper understanding of
the entities that compose it and their relations.

Acknowledgements. We gratefully acknowledge the finan-
cial support of the Swiss National Science Foundation for the
project “INSTINCT” (SNF Project No. 190113).

REFERENCES

[1] X. Tan, M. Zhou, and Z. Sun, “A First Look at Good First Issues on
GitHub,” in Proceedings of ESEC/FSE 2020 (28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering). ACM Press, 2020, p. 398–409.

[2] R. Wettel and M. Lanza, “CodeCity: 3D Visualization of Large-Scale
Software,” in Proceedings of ICSE 2008 (Companion of the 30th
International Conference on Software Engineering). ACM Press, 2008,
p. 921–922.

[3] S. Neu, M. Lanza, L. Hattori, and M. D’Ambros, “Telling stories
about GNOME with Complicity,” in Proceedings of VISSOFT 2011 (6th
International Workshop on Visualizing Software For Understanding and
Analysis). IEEE CS Press, 2011, pp. 14–21.

[4] M. Burch, T. Munz, F. Beck, and D. Weiskopf, “Visualizing Work Pro-
cesses in Software Engineering with Developer Rivers,” in Proceedings
of VISSOFT 2015 (3rd Working Conference on Software Visualization).
IEEE CS Press, 2015, pp. 116–124.

[5] M. D'Ambros, M. Lanza, and M. Pinzger, “”A Bug's Life” Visualizing
a Bug Database,” in Proceedings of VISSOFT 2007 (4th International
Workshop on Visualizing Software for Understanding and Analysis).
IEEE CS Press, 2007, pp. 113–120.

[6] P. Knab, B. Fluri, H. C. Gall, and M. Pinzger, “Interactive Views
for Analyzing Problem Reports,” in Proceedings of ICSM 2009 (IEEE
International Conference on Software Maintenance). IEEE CS Press,
2009, pp. 527–530.

[7] A. Hora, N. Anquetil, S. Ducasse, M. Bhatti, C. Couto, M. T. Valente,
and J. Martins, “Bug Maps: A Tool for the Visual Exploration and
Analysis of Bugs,” in Proceedings of CSMR 2021 (16th European
Conference on Software Maintenance and Reengineering). IEEE CS
Press, 2012, pp. 523–526.

[8] T. Dal Sasso and M. Lanza, “A Closer Look at Bugs,” in Proceedings
of VISSOFT 2013 (First IEEE Working Conference on Software Visual-
ization). IEEE CS Press, 2013, pp. 1–4.

[9] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, and S. Liu, “Exploring the
Characteristics of Issue-Related Behaviors in GitHub Using Visualiza-
tion Techniques,” IEEE Access, vol. 6, pp. 24 003–24 015, 2018.

[10] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Min-
ing Email Social Networks,” in Proceedings of MSR 2006 (International
Workshop on Mining Software Repositories). ACM Press, 2006, p.
137–143.

[11] K. Mens, A. Kellens, F. Pluquet, and W. Roel, “The Intensional View
Environment,” in Proceedings of ICSM 2005 (21st IEEE International
Conference on Software Maintenance). IEEE CS Press, 2005, pp. 81–
84.

[12] W. Aigner, S. Miksch, H. Schumann, and C. Tominski, Visualization of
Time-Oriented Data. Springer London, 2011.

[13] T. Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. Wijk, J.-
D. Fekete, and D. Fellner, “Visual Analysis of Large Graphs: State-of-
the-Art and Future Research Challenges,” Computer Graphics Forum,
vol. 30, pp. 1719–1749, 2011.


	Introduction
	Visualizing GitHub Issues
	Modeling a Software Project
	The Linking Process
	Creating Issue Tales

	Coarse-grained visualization
	Fine-grained timeline
	Two Tales from JetUML
	Tale A: A Major Architectural Change
	Tale B: A Nasty Bug

	Tangled Issue Tales
	Sample Tales from Other Projects
	A Quick Contribution
	Adopting a Fix Takes Time


	Related Work
	Conclusions
	References

