
The Human Side of Fuzzing: Challenges Faced by Developers
During Fuzzing Activities

OLIVIER NOURRY, Kyushu University, Japan
YUTARO KASHIWA, Nara Institute of Science and Technology, Japan
BIN LIN, Radboud University, The Netherlands
GABRIELE BAVOTA, Università della Svizzera italiana, Switzerland
MICHELE LANZA, Università della Svizzera italiana, Switzerland
YASUTAKA KAMEI, Kyushu University, Japan

Fuzz testing, also known as fuzzing, is a software testing technique aimed at identifying software vulnerabili-
ties. In recent decades, fuzzing has gained increasing popularity in the research community. However, existing
studies led by fuzzing experts mainly focus on improving the coverage and performance of fuzzing techniques.
That is, there is still a gap in empirical knowledge regarding fuzzing, especially about the challenges devel-
opers face when they adopt fuzzing. Understanding these challenges can provide valuable insights to both
practitioners and researchers on how to further improve fuzzing processes and techniques.

We conducted a study to understand the challenges encountered by developers during fuzzing. More
specifically, we first manually analyzed 829 randomly sampled fuzzing-related GitHub issues and constructed
a taxonomy consisting of 39 types of challenges (22 related to the fuzzing process itself, 17 related to using
external fuzzing providers). We then surveyed 106 fuzzing practitioners to verify the validity of our taxonomy
and collected feedback on how the fuzzing process can be improved. Our taxonomy, accompanied with
representative examples and highlighted implications, can serve as a reference point on how to better adopt
fuzzing techniques for practitioners, and indicates potential directions researchers can work on toward better
fuzzing approaches and practices.

CCS Concepts: • Software and its engineering → Software testing and debugging; • General and
reference→ Empirical studies; Surveys and overviews.

Additional Key Words and Phrases: fuzzing, software testing, empirical software engineering

ACM Reference Format:
Olivier Nourry, Yutaro Kashiwa, Bin Lin, Gabriele Bavota, Michele Lanza, and Yasutaka Kamei. 2023. The
Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities. 1, 1 (September 2023),
26 pages. https://doi.org/10.1145/3611668

1 INTRODUCTION

©2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/
by-nc-nd/4.0/. The original published version can be found at: https://doi.org/10.1145/3611668

Given the complexity of modern software systems, a tremendous number of open-source software
(OSS) libraries are adopted by developers to ease development tasks and enhance productivity.

Authors’ addresses: Olivier Nourry, oliviern@posl.ait.kyushu-u.ac.jp, Kyushu University, Japan; Yutaro Kashiwa, Nara
Institute of Science and Technology, Japan, yutaro.kashiwa@is.naist.jp; Bin Lin, Radboud University, The Netherlands,
bin.lin@ru.nl; Gabriele Bavota, Università della Svizzera italiana, Switzerland, gabriele.bavota@usi.ch; Michele Lanza,
Università della Svizzera italiana, Switzerland, michele.lanza@usi.ch; Yasutaka Kamei, kamei@ait.kyushu-u.ac.jp, Kyushu
University, Japan.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2023/9-ART
https://doi.org/10.1145/3611668

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://doi.org/10.1145/3611668
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3611668
https://doi.org/10.1145/3611668

2 Nourry et al.

However, recently disclosed issues such as the heartbleed vulnerability [12] and the log4j vulnerabil-
ity [2] harshly reminded the open source community how even a single bug can propagate through
the internet and impact millions. A breach of security of this magnitude can easily compromise the
trust from the enterprise sector in OSS library adoption as indicated by the 2022 Anaconda State of
Data Science report [1]: 51% of the respondents stated that the fear of vulnerabilities is the main
cause preventing their organization from leveraging open source, while 25% admit to scaling back
their use of OSS as a direct result of the log4j vulnerability. Therefore, it is critical to ensure that
OSS libraries are secure and fault-proof.
In this context, developers around the world have now incorporated extensive testing and

bug detection activities into their software development cycle. However, testing activities can
be complex and time-consuming in nature, resulting in industry practices shifting toward test
automation and more sophisticated testing infrastructure [57]. In particular, one type of automated
testing techniques called fuzz testing (or fuzzing) [63] has been gaining popularity. Its goal is to
reveal software defects and vulnerabilities by injecting invalid, unexpected, or random inputs to
software.

While a lot of research has been done to improve fuzzing techniques [10, 13, 71, 72, 83], there is
currently a lack of knowledge about fuzzing from the perspective of developers. More specifically,
developers can face many complex challenges trying to conduct their fuzzing activities depending
on the scope and the nature of the software. For example, developers may not know what type of
fuzzer best suits their codebase, and fuzzers can also require specific configurations based on what
kind of software is being fuzzed. Fuzzers are also notorious for requiring substantial processing
power and memory, which makes fuzzing on a personal device difficult; especially if the fuzz targets
are very large. To alleviate these performance issues, developers often turn to external sources
to fuzz their software. The OSS-Fuzz initiative by Google [27], for example, continuously fuzzes
hundreds of projects considered key/important for the OSS ecosystem with the goal of finding
critical vulnerabilities before the ecosystem is affected.
Our goal is to shed light on what challenges developers face when fuzzing their software. We

focus on developers who adopt fuzzing in their testing practices instead of those who create or
maintain fuzzing techniques. Having such knowledge can not only help us to identify existing
issues of using fuzzers, but also highlight the potential directions researchers and practitioners can
investigate for better fuzzing tools.
To the best of our knowledge, no comprehensive empirical study has been conducted in this

manner. The most relevant work is the one by Boehme et al. [7], which lists general challenges
regarding fuzzing techniques after seminar discussions. However, these results were produced
by brainstorming instead of being extracted from evidence, leading to coarse-grained challenges,
which did not put fuzzing practitioners in the center of attention.

We build our theories from two sources: 1) issues discussed on GitHub and 2) developers’ opinions
collected through a survey. More specifically, we first retrieved 3,721 GitHub issues from fuzzing
communities. We sampled 829 issues and manually analyzed developers’ discussions to identify the
specific challenges faced by developers. Then, a card-sorting approach [76] was followed to define
a taxonomy consisting of challenge categories. In total, we obtained 22 categories of challenges
regarding fuzzing tools and practices themselves, and 17 categories of challenges regarding fuzzing
service providers. After that, we used an online survey to collect developers’ feedback regarding
the challenges we identified, and check whether any challenges were missed. We distributed the
survey to developers who are active in OSS projects which adopted fuzzing, and collected a total
of 106 valid responses. These responses were used to examine our taxonomy, which also brought
some new insights regarding fuzzing tools and practices.

The main contributions of our paper are as follows.

, Vol. 1, No. 1, Article . Publication date: September 2023.

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 3

• We are the first to establish a comprehensive taxonomy of challenges developers encounter
during fuzzing activities and verify it with developers who have relevant expertise.

• Through both qualitative and quantitative approaches, we analyze the prevelance of the
challenges presented in the taxonomy.

• We provide potential solutions to the challenges presented, accompanied with developers’
insightful feedback, which shed light on future research directions.

2 STUDY DESIGN
The goal of our study is to investigate the challenges developers encountered during fuzzing. The
context consists of (i) 829 manually analyzed GitHub issues from 129 fuzzing-related repositories
and (ii) 106 responses collected from an online survey. The study aims to answer the following
research question:

What are the challenges practitioners face when fuzzing their software?
We focus on developers and researchers who are involved in fuzzing activities, and aim to collect

concrete challenges they face in practice. To answer our research question, we follow two steps.
First, we conducted a manual analysis on 829 GitHub issues and formed a taxonomy of challenges
developers face during fuzzing. We then distributed a survey to fuzzing practitioners to get their
feedback on our taxonomy. We also asked them directly what challenges they have faced while
fuzzing, and to tell us what areas of fuzzing they think should be improved.

2.1 Manual Analysis on GitHub Issues
To understand what challenges developers face during fuzzing, we investigated discussions in
GitHub issues and extracted relevant information. The GitHub issues were extracted through two
sources:

Issues from the OSS-Fuzz repository. OSS-Fuzz1 is a service by Google that provides continu-
ous fuzzing for OSS projects which either have a significant user base or are critical to the global IT
infrastructure. It supports several popular fuzzing engines (e.g., libFuzzer2, AFL++3) and multiple
programming languages (e.g., C/C++, Rust, Go). We collected all the GitHub issues on the OSS-Fuzz
repository through the GitHub API, and obtained 1,766 issues in total.
Issues from projects participating in Google’s OSS-Fuzz initiative. By the time we con-

ducted this study, over 5004 projects had been fuzzed by OSS-Fuzz according to the official website.5
At the time of data collection, 361 projects were actively being fuzzed (the projects were in the
“projects” directory of OSS-Fuzz GitHub repository). Since these projects themselves are not focus-
ing on fuzzing techniques, the discussions in their issue trackers might contain several discussion
threads outside of our interest. To isolate fuzzing-related issues from other issues within each
GitHub repository, we only collected issues whose title contains “afl” or “fuzz”. These two keywords
were chosen because “fuzz” allows us to catch any variation of the word such as “fuzzing” and
“fuzzers”, while “afl” is one of the most widely used fuzzers6 [80]. This process led to 2,562 issues.

A manual inspection of dozens of issues revealed two mains problems within our dataset: First,
many issues were merely reporting bugs found by fuzzers; second, the issues in the repositories
where fuzzing tools are developed are mostly related to development challenges rather than fuzzing
challenges while also containing the keywords we were looking for. Since our goal is to identify
1https://github.com/google/oss-fuzz
2https://llvm.org/docs/LibFuzzer.html
3https://aflplus.plus/
4The number is dynamic and keeps increasing.
5https://google.github.io/oss-fuzz/
6While the fullname of “afl” is “American Fuzzy Lop”, in practice, developers tend to use its abbreviated version.

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://github.com/google/oss-fuzz
https://llvm.org/docs/LibFuzzer.html
https://aflplus.plus/
https://google.github.io/oss-fuzz/

4 Nourry et al.

the challenges of using fuzzers, we performed extra filtering by removing the GitHub issues whose
titles indicated they were automatically generated (e.g., OSS-Fuzz issue 41533 7).
We then manually removed a few repositories which we found to be fuzzing tool development

repositories, to reduce the number of false positives we would encounter during our manual labeling
process (GitHub issues related to fuzzing tool development instead of a fuzzing challenge).

At the end of the process, we ended up with 3,721 unique GitHub issues from these two sources.
While we acknowledge that fuzzing-related discussions also widely exist in other projects not
sampled in this study, we believe the large number of included projects is representative, and our
project selection approach largely reduced the cost of searching due to the fact that fuzzing is a
very specific task and only counts for a small fraction of all the issues.

2.1.1 Manual Identification of Fuzzing Challenges. The 3,721 GitHub issues collected were used
for our qualitative analysis: our goal was to extract fuzzing challenges from issue content and
developer discussions. Not all the issues contain discussions related to fuzzing challenges, and
some are not even related to fuzzing at all. However, these issues would be filtered out during our
manual inspection.
Given the large number of issues and limited human resources, it was not realistic to inspect

all the issues. Therefore, we extracted a randomly-stratified sample of 829 issues from our two
data sources. The strata represented the data source, i.e., issues were sampled proportionally to
the number of collected issues from the OSS-Fuzz repository and the number of collected issues
from projects participating in Google’s OSS-Fuzz initiative. More specifically, we applied a sample
size formula for an unknown population [17] which guarantees a confidence level of 95% with a
significance interval (margin of error) of ±3%. This resulted in 829 issues in total, including 390 from
the official OSS-Fuzz GitHub repository and 439 extracted from our list of projects participating in
Google’s OSS-Fuzz initiative.

We followed the card sorting procedure [76] to create a taxonomy of challenges developers face
during fuzzing. In our case, multiple people formed the theory collectively without any predefined
categories. Each issue was inspected independently by two authors and subsequently annotated.
As the authors are located in different locations, to keep the process organized and manageable, we
created a web app to assist with the annotation process (Figure 1).
The web app shows the title, link, data source, body and comments of the issue. An annotator

then assigns challenge labels to the issue. One issue can be assigned multiple labels if different
challenges are found. In case no challenge is presented, the annotator labels it as a “false positive”
and continues with the next issue. During the annotation process, to keep a consistent taxonomy,
annotators are allowed to reuse labels created before. However, we do ask annotators to clearly
state the essense of the challenge. For example, when the fuzzer has compatibility issues, the label
needs to include the information about which environment is incompatible with the fuzzer. When
two issues encounter the exactly same challenge, annotators are encouraged to use the existing
label over creating a new label. Due to the level of details added to the labels, however, it is likely
that the authors may not find an exact match in the pool of existing labels. If none of the current
labels perfectly fits, annotators can create a new label, and the created label is automatically added
to the shared set and become visible for others to use from the time being. The web app also keeps
track of which issues have already been labeled by each of the annotators, and allows annotators to
modify their own labels. The assigned labels of an issue from one annotator is hidden from other
annotators throughout the whole process so that annotators will not be biased when deciding the
labels.

7https://github.com/google/gopacket/issues/983

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://github.com/google/gopacket/issues/983

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 5

Fig. 1. Web App used for inspecting issues

Three authors independently annotated the selected issues. The web app automatically assigned
two annotators to each issue. To ensure that assigned labels are consistent, we used 80 issues as our
trial batch. After annotating them, the three authors looked into the labels together and discussed
how to assign better labels. The three authors then labeled the remaining 749 issues. To lower
fatigue, conflicts were resolved after every 100 annotated issues. After each iteration, all three
authors held an online meeting and went through the labels together. Any conflict was discussed
until an agreement was reached. If an issue was ambiguous (not clear if the developers involved
were actually facing challenges, or simply reporting an update or creating an issue for logging
purposes) the issue was discarded.
At the end of the process, we could filter out 563 false positives. For the remaining 266 issues,

we initially obtained 521 labels, among which 448 were unique. While each issue was annotated
by two authors, some issues are annotated as false positives by one author, therefore they only
received one valid label. During the conflict resolution, three authors agreed that these issues
should be relevant and re-assigned labels to them after discussion. After resolving all the conflicts
and merging the two labels for each issue, we obtained 262 unique labels (170 fuzzing process + 92
fuzzing provider).

2.1.2 Creating the First Taxonomy. The three authors who participated in the annotating process
worked together to conduct the card sorting [76] on the 262 labels of challenges. The goal was to
merge labels with similar meanings and categorize these labels. The general categories were based
on the ISO/IEC 25,010 product quality model [58]. Extra categories were added when necessary. The
card sorting process was done in iterations where the three authors inspected the labels sequentially.
Any disagreement about the categorization was discussed after the inspection until consensus was
reached. All annotators were also involved with refining the categories of fuzzing challenges. In
the end, 22 challenges related to fuzzing processes and 17 challenges related to using a fuzzing
service provider were obtained.

, Vol. 1, No. 1, Article . Publication date: September 2023.

6 Nourry et al.

2.2 Survey with Developers
To verify the validity of our taxonomy and get feedback from developers involved in fuzzing
activities, we conducted a survey which served three purposes: (1) to understand how often
developers encounter the fuzzing challenges we observed during our investigation; (2) to know
from the developers whether we missed any challenges during our manual investigation; (3) to ask
the developers directly which areas of fuzzing need improvement and how the software engineering
community could potentially help address these issues. Since our focus is to study challenges directly
related to fuzzing, we did not include challenges related to using fuzzing service providers in our
survey.

2.2.1 Survey Design. The first part of the survey consisted of generic questions about the back-
ground and experience of the respondents. In the second part of the survey we asked developers
how often they encounter each type of challenge defined in our taxonomy. The survey provides
multiple choice answers for each of these challenges previously identified following a 5-level Likert
scale answer (i.e., “Always”, “Often”, “Sometimes”, “Rarely” and “Never”) [14]. An “I don’t know”
option was also provided. The final part of the survey was made up of free answer questions to get
feedback from developers directly. To verify the integrity of our taxonomy, we asked the survey
respondents to write down if they have encountered any other challenges not mentioned in the
survey. Finally, we asked developers to comment on how the fuzzing process could be improved.

2.2.2 Survey Participants. Given the very specific topic investigated in the paper, it was important
to reach the right survey respondents. We identified our targets through two sources: (1) We selected
developers who participated in issue discussions of the official OSS-Fuzz GitHub repository. Since
the whole repository is about fuzzing, we knew that the participants to this repository were either
directly or indirectly conducting fuzzing activities; (2) We collected developers who are involved in
the GitHub projects whose topic labels include “fuzzing” via the GitHub search feature. In this way
we could reach a wider variety of developers who might have different fuzzing experience.

We sent the survey to 1,545 fuzzing practitioners and made it available for 25 days. Out of 1,545
potential respondents, we got 106 valid (complete) responses. This gives us a 6.86% answer rate,
on par with most software engineering surveys which typically get a response rate of around
5% [61]. Most of our respondents identified as developers (42%), followed by technical leads (25%)
and experts working in the security field (14%). The remaining respondents identified as either
researchers, bug hunters, engineering managers or did not share their profession.

Table 1. Years of development and fuzzing experience of the survey respondents.

<3 years 3-5 years 6-10 years >10 years

Professional software development experience 13 15 27 51
Fuzzing experience 47 40 13 6

Table 1 shows the experience of survey respondents in software development and fuzzing. The
whole experience spectrum is covered, however, the experience distributions demonstrate a totally
different trend: 74% of respondents have over 5 years of experience in software development, while
the number drops to 18% for fuzzing experience. The reason might be that the popularity of fuzzing
has greatly increased in OSS communities only within recent years and experienced developers are
just starting to get involved with fuzzing.

, Vol. 1, No. 1, Article . Publication date: September 2023.

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 7

3 RESULTS
During our manual analysis, two types of challenges emerged: one is related to fuzzing itself, the
other boils down to the issues brought by using third-party fuzzing service providers (in our case,
OSS-Fuzz). We discuss these two types of challenges in Section 3.1 and Section 3.2, respectively. To
clearly present our results and highlight the insights, we use the following notations:

• : provides an example of GitHub issues which fit into the current category of fuzzing
challenges.

• ♂: illustrates respondents’ experience or opinions related to the challenge. Each respondent
is represented as R#.

• : indicates potential solutions or directions to investigate for addressing some of the chal-
lenges.

3.1 Challenges from Fuzzing Itself

Compatibility Functionality Performance Reliability Reproducibility Usability Implementation

Issues in build tools or
external dependencies

lead to crash/build
failures

Issues in corpus lead to
build failures or

unreliable results

Incorrect use of the
corpus leads to fuzzing
failures or low coverage

Bugs in fuzzer lead to
build failures or

inconsistent fuzzing
behaviors

Issues with fuzzing test
code lead to crashes/

build failures

Different fuzzing
environments lead to
unstable/unreliable

results

F7

F8

F9

F10

F11

F3The fuzzer misses
desired functionalities

F4
Fuzzing process takes

too much time or
resources

F6
Bad fuzzing targets lead

to fuzzing failure or
inconsistent results

F13Developers are not able
to save or re-use corpus

F15

Developers have
difficulties generating
the correct inputs or

targeting specific parts
of software

Fuzzer unusual inputs
cause crashes/issues

F12

F20Bad code design limits
the ability to fuzz

F2

Incompatibility between
fuzzing environment
and project leads to

build failures

F5

The fuzzer has
scalability issues when

facing large inputs/
fuzzing targets/corpora

Developers are
struggling to reproduce

build failures or bugs
detected by fuzzing

F14
Developers have

difficulties in setting up,
building or using fuzzer

Documentation on how
to use the fuzzer is
missing/insufficient

F16

F17

Messages
generated by fuzzers is

missing/confusing/
unhelpful

F18

Overloading outputs
lead to difficulties to

focus on specific issues
F19

F21

Developers have
difficulties writing/

understanding fuzzing
code

F22

Developers have
difficulties in deciding

which part of the
software to fuzz

F1

22

2 7 12

7

6

3

14

2

10

3

3

6

19

6

32

4

7

2

2

1

3

24 7 19 41 25 51 6

Fig. 2. Taxonomy of challenges from the fuzzing process itself.

At the end of the annotating process, we identified 171 GitHub issues containing challenges
related to fuzzing itself, out of the 829 initially sampled issues. These 171 issues span over 22
distinct sub-categories defined during the label refining process and constitute our taxonomy of
fuzzing challenges. Figure 2 shows the complete taxonomy of these 22 types of challenges, which
belong to seven large categories including compatibility, functionality, performance, reliability,
reproducibility, usability, and implementation. The numbers in blue squares attached to categories
indicate how many times the corresponding types of challenges occur during our manual analysis.
As mentioned in Section 2, the categories are derived from the ISO/IEC 25,010 product quality
model [58]. We added the one extra category of “implementation” deemed necessary and not fitting
within one of the existing categories. Below we describe these categories in detail and provide both
real-world examples and insights gained from the survey done with developers conducting fuzzing
activities.

, Vol. 1, No. 1, Article . Publication date: September 2023.

8 Nourry et al.

3.1.1 Compatibility Challenges. These arise when fuzzers are not compatible with certain elements
of the environment they are being executed in.

Different fuzzing environments lead to unstable/unreliable results (F1). Developers often
run their fuzzing tests on different machines to save resources. When these machines have different
environments, the consistency of the fuzzing output can be affected or disrupted.

 For example, in issue #3347 of the scapy project [74], a fuzzing developer finds out
that the outcome of fuzzing the software is not consistent across runs due to different
python versions being used.

Incompatibility between fuzzing environment and project leads to build failures (F2).
In this category, we find environment challenges which completely prevent developers from
fuzzing unlike in F1 where developers can fuzz but the results are not reliable. Versioning issues, for
instance, were one of themost common recurring themeswhile conducting themanual investigation.
Compiler updates and versioning, specifically, can break fuzzing builds and require complex manual
intervention from the developers to fix the problem. Several fuzzers only working on specific
compilers and compiler versions also led to multiple fuzzing build failures. R16 and R18 of our
survey both indicated having issues regarding fuzzing on multiple platforms. This type of issue
seems to be frequently encountered by developers and was present in nearly 13% of all issues
related to fuzzing challenges.

 As shown in issue #19557 from the bitcoin GitHub repository [4], the operating
system running on the machine can be a limiting factor as many fuzzers are either
platform dependent or must be compiled differently on different operating systems.
♂ R16: “[One challenge is the] cross-platform use of fuzzers, e.g., if a development team
primarily targets windows, the available fuzzing tools for windows are very lacking and
hard to use.”

 Compatibility suggestion(s). Integrating fuzzing with the environment like the GO language
has done (as suggested by R31) or integrating fuzzing with testing frameworks (as suggested by R15)
could be possible approaches to address environment issues and platform dependence.

3.1.2 Functionality Challenges. These are encountered by developers due to the limitations of
fuzzers and their features.
The fuzzer misses desired functionalities/features (F3). Some fuzzers lack features that

prevent developers from fuzzing their system properly. Since systems vary, specialized fuzzing tools
can be required for different types of software. Several respondents (R18, R27, R28, R34) mentioned
that they had a need for fuzzers that support the latest tools and techniques. Another developer
(R13) also mentioned that they would like it if fuzzers could provide fuzzing suggestions such as
recommending areas of the source code which have not been covered by existing fuzzing code.

 In issue #1675 of the official OSS-Fuzz GitHub repository [38], a developer wishes to
fuzz memory allocations but only finds out that this functionality was not yet supported
by the fuzzers at the time.
♂ R12: “With afl, I end up having to start from scratch every cycle. It would be nice if it
were easier to minimize while I’m fixing issues and then have a fast start based on the
previous cycle. Plus I sometimes have to recompile to work with other tools, like valgrind
or gdb.”
♂ R44: “Runtime target selection for coverage guided tools would be a great improvement.”

 Functionality suggestion(s). As developers often need to implement some needed functions for
fuzzing themselves, it would be helpful to create an index to facilitate the reuse of the implemented
functionalities.

, Vol. 1, No. 1, Article . Publication date: September 2023.

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 9

3.1.3 Performance Challenges. This category of fuzzing challenges includes all obstacles related to
poor performance of fuzzers or fuzzing practices.
Fuzzing process takes too much time or resources (F4). Since fuzzers require significant

memory and CPU consumption, it is not uncommon that developers mention that their fuzzer is
taking all of their local machine’s memory and prevents them from doing other work.

 Developers of the “wasmtime” project discussed the problem in a GitHub issue [11]
that their fuzzers are taking too much time to compile and run, making it not worth
the value gained by fuzzing.
♂ R13: “Allocating time and resources for continued fuzzing is difficult; ideally tooling
would make it easy for e.g., all developers on a project to contribute to fuzzing at a low-level,
rather than occupying dedicated machines for brief but intense periods of fuzzing [...].”

The fuzzer has scalability issues when facing large inputs/fuzzing targets/corpora (F5).
Scalability concerns have been another recurring theme while investigating GitHub issues. These
issues can arise from multiple different sources including the target being fuzzed, the corpora of
old crashes, or the list of valid inputs used for future mutations.

 In issue #20088 of the bitcoin project [5], developers wonder how to scale their
fuzzing as the number of fuzz targets, CPU time and disk space all grow over time. As
the developer also mentions, keeping good coverage is another challenge to consider
when scaling up.

 Performance suggestion(s). Using an external agent to fuzz your software such as OSS-Fuzz
or integrating the fuzzer(s) to a CI tool can alleviate some of the issues related to fuzzers using too
much memory.

3.1.4 Reliability Challenges. They affect the reliability of the fuzzing process and its results. Obsta-
cles causing abnormal or unexpected behaviors during the fuzzing process are categorized in one
of the challenges included in this category.
Bad fuzzing targets lead to fuzzing failure or inconsistent results (F6) and Issues with

fuzzing test code lead to crashes/build failures (F7). In these two categories, we find a wide
range of cases where the fuzzing target itself or the fuzzing code caused problems for developers
trying to fuzz. Multiple respondents (R4, R25, R43, R44) mentioned the difficulties of writing good
fuzz targets.

 The fuzz target being too small can cause problems for the fuzzer(s) and result in
breaking the fuzzing build, as shown in issue #815 of the OSS-Fuzz repository [34].
♂ R4: “Writing a good fuzz target is hard, because it requires domain knowledge.”
♂ R25: “Writing a harness for a closed-source software (or library, for example: .so or .dll)
is very challenging.”

Bugs in the fuzzer lead to build failures or abnormal/inconsistent fuzzing behaviors
(F8).

A common challenge we found in the reliability category is that developers could not fuzz due
to an issue with the fuzzer itself. This subcategory had a wide range of problems ranging from
fuzzers not being able to detect known positive cases, to generating false positives or reporting
the wrong type of failure. In many cases, bugs found in the fuzzer crashed fuzzing tests or broke
project builds.

 Developers have had issues where AFL would not be able to compile properly. In
such cases, developers ask the fuzzer developers to fix the issue via GitHub issues, as
shown in issue #6871 of the OSS-Fuzz repository [48].

, Vol. 1, No. 1, Article . Publication date: September 2023.

10 Nourry et al.

Incorrect use of the corpus leads to fuzzing failures or low coverage (F9). This subcategory
encompasses cases where developers could not properly set up or use the fuzzing corpora. In such
cases, developers sometimes turned to GitHub to get help frommore experienced fuzzing developers.

 In issue #638 of the OSS-Fuzz repository, the developer was not providing the corpus
correctly to his fuzzer which made the fuzzer not detect/use it and therefore have poor
overall coverage [33].

Issues with the build tools or external dependencies lead to crash/build failures (F10).
Fuzzers are often used in combinations with other development tools. In some cases, these external
tools can negatively affect the fuzzing process and lead to problems. The sources of crashes or
failure are very diverse, which can be, for instance, container tools, compiling tools, or remote
storage.

 For example, developers have had issues building and running their fuzzers in Docker
containers due to their Docker image growing too big in size over time, as shown in
issue #3548 of the OSS-Fuzz repository [45].

Issues in the corpus lead to build failures or unreliable results (F11). Some developers
encountered unreadable or bad data in their corpus which needed debugging and also caused their
build to fail.

 For example, when a corpus contains unreadable or corrupted files, the entire build
can fail as a result of a bad corpus as shown in issue #7138 of the OSS-Fuzz repository
[50].

Fuzzer unusual inputs cause crashes/issues (F12). Fuzzers can sometimes generate bad
inputs which result in more serious crashes. Because these crashes can stop the fuzzing process
entirely, developers have discussed possible ways to either handle these problematic inputs or try
to avoid them entirely.

 For example, a developer describes issues he has had with inputs crashing his fuzz
target in issue #1622 of the syzkaller repository [54]. In some cases his computer
crashed or was rebooted while fuzzing his system.

 Reliability suggestion(s). To avoid the issues caused by incorrect use of fuzzers and faulty
implementations, fuzzing tool developers might need to consider making the tools “simple-to-write”,
as suggested by R43. Meanwhile, a plugin or intelligent assistant could hint the existing issues
and potential misuse to speed up the fuzzing process and prevent developers from wasting efforts
debugging.

3.1.5 Reproducibility Challenges. Challenges related to the reproducibility of the fuzzing process
and its results.

Developers are not able to save or re-use corpus (F13). This is another challenge related to
corpus management. In this category, we find instances where developers were unable to reuse
their corpus after running fuzzers.

 For example, in issue #52292 of the Go project [24], one developer described that he
was not able to reuse the corpus generated by his fuzzer and asks Golang developers
how to save the corpus.

Developers are struggling to reproduce build failures or bugs detected by fuzzing (F14).
This subcategory is one of the most mentioned types of challenges across all subcategories. We
found that developers often encounter flaky crashes while conducting our investigation. In this
subcategory, we also find instances where fuzzer logs were not clear or specific enough for the
developers to locate or reproduce the issue. Multiple survey respondents also used the free text

, Vol. 1, No. 1, Article . Publication date: September 2023.

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 11

section to mention that reproducing crashes is a common problem when fuzzing. This type of
challenge was the third most common type after F16 and F2 and accounted for almost 11% of our
fuzzing challenge issues.

Most of the GitHub issues labeled in this category were about developers finding
and discussing flaky fuzzing crashes. For example, issues #2635 [41] and #6147 [47]
of the OSS-Fuzz repository are common examples of flaky crashes caused by flaky
memory errors.
♂ R18: “Replicating crashes is a major issue.”
♂ R63: “Well I already mentioned in the survey, I would like to emphasize once again that
the most difficult part of fuzzing is to reproduce failures/bugs”

 Reproducibility suggestion(s). As suggested by R19, when an issue is detected, it would
be helpful for replication to “see the minimal standalone code example with minimal dependencies
to recreate it”. Extracting the minimal standalone code examples are apparently not an easy task,
which requires further research and development.

3.1.6 Usability Challenges. This category encompasses all challenges related to the usability of
fuzzers, the fuzzing outputs, and the external tools used during fuzzing activities.

Developers have difficulties generating the correct inputs or targeting specific parts of
software (F15). Some software and APIs require specific inputs and must pass strict pre-condition
checks which pose a challenge for fuzzers trying to generate new inputs. Developers discuss with
fellow fuzzing practitioners and contributors to figure out how to generate inputs to fuzz specific
parts of the system. Multiple survey respondents mentioned the issue of fuzzers going down “the
wrong path” and finding only surface level memory corruption because of it.

 Issue #213 in the libcoap project [69] is a representative example of developers trying
to fuzz one of their APIs but are not sure how to proceed.
♂ R44: “Fuzzing finds low priority edge cases that have no priority for developers but also
block the fuzzing process (in particular pathological OOMs are an issue) [...]. With a huge
codebase, a specific fuzzer can easily be mislead into the ‘wrong’ target code.”

Developers have difficulties in setting up, building or using fuzzer (F16).While conducting
our manual investigation, we found this challenge to be one of the most commonly recurring topics.
It encompasses all challenges related to configuring or using a fuzzer. The correct configuration
of fuzzing seems to be very challenging, and a wrong configuration can have a wide range of
impacts such as breaking the build, not fuzzing the right fuzz target, causing the fuzzer to use
too much memory, and many other issues. This was the most commonly encountered problem by
practitioners and account for 18% of all issues related to fuzzing challenges.

 In issue #32443 of the ClickHouse project [16], the fuzzer checks out to the wrong
commit because the contributor did not properly set it up in the configuration file.
♂ R26: “Fuzzing involves getting build systems to work. Build systems are the devil.”.

Documentation on how to use the fuzzer is missing/insufficient (F17). Configuring a
fuzzer can be complex and developer often rely on the fuzzer documentation to correctly guide
them through the process.

However, there have been multiple instances where developers needed to use specific features of
the fuzzers but the arguments managing these features were not documented. In these instances,
developers of the fuzzing tool usually had to tell the user about the existence of these arguments in
GitHub issues directly. A few survey respondents also reported not having proper documentation
for the fuzzers they were using.

, Vol. 1, No. 1, Article . Publication date: September 2023.

12 Nourry et al.

 For example, in issue #7948 of the solidity project [21], a developer asks for better
documentation on how to build fuzzers via docker.
♂ R28: “specific fuzzer component’s documentation is not provided”.
♂ R103: “More transparency and documentation on how the fuzzers concretely work would
help the developers know what to do when the behavior is not as expected”.

Messages/information generated by fuzzers is missing/confusing/unhelpful (F18). Logs
and outputs generated by fuzzers are often useful to keep track of what and how well the fuzzer
process is doing. However, not all the logs and outputs do their job properly. Some information in
the logs and outputs may be incomplete and ambiguous, which provides little help to developers
for quickly understanding what is happening and sometimes even misleads them.

 In issue #48179 of the go project [23], the fuzzer finds a crashing output but does
not report it.

Overloading outputs lead to difficulties to focus on specific issues (F19). During fuzzing,
both fuzzers and other involved tools might generate a large amount of outputs. It is sometimes
challenging for developers to quickly locate the information they need, spending time disentangling
the mixed outputs from various sources.

 In issue #57 of the Syzkaller project [53], a developer mentioned that the output of
his fuzzer frequently got mixed with other console outputs when running inside a VM.
♂ R3: “Dealing with the volume of findings can be challenging.”
♂ R18: “[...] triaging them (crashes) is another big issue.”

 Usability suggestion(s). There are various ways to increase the usability of fuzzers. For
example, integrating fuzzers to standard unit test frameworks (R15) and development environment
“like Go has done” (R31) could lower the barrier of entry and increase its adoption. R15 also gave a
scenario or such integration: “for instance, adding a unit test, marking one parameter as fuzzable. the
framework could then run that ‘unit test’ with a fuzzer”. Logging issues are also heavily studied by
researchers. More clear and structural messages and outputs would help developers easily navigate
through large chunks of information. Configurable logging systems which allows disabling certain
logs and outputs could also reduce the workload to identify the relevant parts of information.

3.1.7 Implementation Challenges. The implementation challenges are related to the adaptation of
an existing codebase or developing new functionalities for fuzzing purposes.

Bad code design limits the ability to fuzz (F20). In some cases, the architecture of the source
code can limit or affect the ability to fuzz the software. More than one survey respondent reported
having faced a situation where isolating a specific piece of code for fuzzing was challenging.

 In issue #20232 of the Bitcoin project [6], there was a case where a fuzz target was
using a global variable defined in the source code. This global variable was however
scheduled to be deglobalized as part of a refactoring task and would therefore break
some of the fuzz targets.
♂ R43: “[There is a] difficulty fuzzing internal boundaries in software. [...] Reason: mono-
lithic design, assumptions about intended behavior.”
♂ R44: “[...] Insufficient segmentation/separation of the target code (cannot easily carve
out parts to test, many tests must be done on the full system) [...]”.

Developers have difficulties writing/understanding fuzzing code (F21). Fuzzing can be
very challenging for developers starting their fuzzing journey. In such cases, beginners sometimes
ask for help from more experienced practitioners on GitHub to get started with writing code for
their fuzzers.

, Vol. 1, No. 1, Article . Publication date: September 2023.

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 13

 In issue #1398 of the scapy project [73], a less experienced developer asks help from
more experienced fuzzing developers to help him fix bugs in his code so that he can
contribute to the public repository .

Developers have difficulties in deciding which part of the software to fuzz (F22). Mature
repositories often contain very large codebases and legacy code. Contributors of a project therefore
need to discuss together on GitHub about which parts of the software need to be covered by the
fuzzers due to the loss of knowledge on certain parts of the source code. For projects where multiple
parallel builds are being supported, developers also need to decide which builds/releases need to be
fuzzed and which ones do not.

 In issue #6201 of the Solidity project [20], developers discuss if specific directories
should be fuzzed considering that nobody had proper knowledge of this part codebase
at the time, and this part of the code might be phased out in the future.

 Implementation suggestion(s). To help developers onboard, R58 mentioned that “guidance
on which parts of the software to fuzz would be very helpful.” R13 also echoed, “[...] the tooling could
suggest interfaces that could be fuzzed; for example, places in the code where network input is read but
which haven’t already been covered by the existing fuzzing code.” Researchers and developers could
invest more efforts in creating intelligent agents for fuzzing recommendations.

3.2 Challenges from Fuzzing Service Providers
After our manual analysis on fuzzing-related GitHub issues, we identified 97 issues which are
related to the challenges developers encounter due to third-party fuzzing service providers, in
our case, mainly OSS-Fuzz. Similarly, we extracted 17 different types of challenges from these
issues (Figure 3), which can be classified into seven large categories: compatibility, documentation,
functionality, performance, permission, reliability, and usability. The numbers in blue squares
indicate the occurrences of challenges during our manual analysis.

Compatibility Documentation Functionality Performance Permission Reliability Usability

OSS-fuzz cannot handle
small fuzz targets

Updates on the side of
OSS-Fuzz lead to

project crash/build
failures

O7

O3

Documentation about
how to use/integrate
OSS-Fuzz is missing/

unclear

O5
OSS-Fuzz misses

desired functionalities/
features

O6

OSS-Fuzz does not
allocate enough
resources to (a)

project(s) for fuzzing

O8

Developers do not have
access to project

status/fuzzer logs/bug
reports/test case on

OSS-Fuzz

O10

Connection issues on
OSS-Fuzz lead to

project crash/build
failures

O15

Disorganized/missing
information on issue

trackers makes it
difficult to locate the

problem

O2

Compatibility of
environment or

dependencies between
project and OSS-Fuzz
lead to project crash/

build failures

Oss-fuzz configurations
lead to undesired bug

public release
O9

Key resources
unavailable on OSS-
Fuzz lead to project
crash/build failures

OSS-Fuzz bugs lead to
build/fuzzing process

failures

O11

O12

Bug status is not correct
in the issue tracking

system
O13

Bugs in OSS-Fuzz
causes fuzzer to

misbehave or produce
wrong results

O14

O16

Information in fuzzing
reports can be missing,
unclear, misleading or

even wrong

O17

Oss-fuzz configurations
lead to confusing/

unreported/hard-to-
reproduce issues

O1

OSS-Fuzz does not
provide clear guidance

on how to reproduce the
bug

O4

21

7 6 5 2 13 2 2

2 2 1 2 10

1

13

6

3

28 8 5 4 14 24 15

Fig. 3. Taxonomy of challenges from fuzzing service providers.

, Vol. 1, No. 1, Article . Publication date: September 2023.

14 Nourry et al.

While challenges related to fuzzing service providers are not the main focus of our study and
not included in the survey to developers active in fuzzing, we still present each type of challenge
with an example, so that the readers better understand the context and the issues developers might
have when using a third-party fuzzing service (i.e., OSS-Fuzz). Some of these challenges might
share certain similarities with challenges in section 3.1, with the main difference being that here
the issues are caused by fuzzing service providers and the fuzzing process works properly on local
machines.

3.2.1 Compatibility Challenges. Challenges related to making a project compatible with OSS-Fuzz.
Updates on the side of OSS-Fuzz lead to project crash/build failures (O1). OSS-Fuzz is still

under development, thus the users sometimes need to commit or push updates to the platform to
maintain the compatibility of their project or support new features. The updates done by OSS-Fuzz
can however have unintended impacts on projects being fuzzed. In some cases, new updates can
lead to build failures for some projects, which cause them to stop being fuzzed.

 In issue #153 of the OSS-Fuzz [29] repository, a project developer finds that his build
suddenly fails after an argument was renamed by OSS-Fuzz.

Compatibility of environment or dependencies between project and OSS-Fuzz lead to
project crash/build failures (O2). In this category, we find instances where a project cannot be
built or fuzzed due to mismatching fuzzing environments between OSS-Fuzz and the project. Most
issues in this category happen when a project is able to conduct its normal fuzzing activities on a
contributor’s local machine or within a CI environment but not on OSS-Fuzz. We also found this to
bethe most frequent provider challenge during our manual analysis, accounting for close to 21% of
all the relevant issues related to external fuzzing providers.

 In issue #823 of the OSS-Fuzz repository [35], a project was using the latest features
offered by a new compiler version which were not yet supported by the OSS-Fuzz
environment.

3.2.2 Documentation Challenges. In this category, we identify cases where developers could not
find a solution to their issue by consulting the OSS-Fuzz documentation.

Documentation about how to use/integrate OSS-Fuzz is missing/unclear (O3). Efforts are
required by project developers to integrate their fuzzing infrastructure with OSS-Fuzz [26]. Some
developers rely on the official documentation of OSS-Fuzz to guide them through the process but
the documentation might be incomplete or unclear in some cases.

 In issue #2094 of the OSS-Fuzz repository [39], a developer trying to integrate his
project using AFL to OSS-Fuzz mentioned the lack of relevant examples on AFL in
OSS-Fuzz’s documentation.

OSS-Fuzz does not provide clear guidance on how to reproduce the bug (O4). Developers
can sometimes have difficulties trying to reproduce bugs found by OSS-Fuzz fuzzers. In these cases,
developers turn to the official OSS-Fuzz documentation to get some guidance about the proper
methodology to reproduce a bug. Unfortunately, the official documentation sometimes proves to
be not robust enough to assist developers trying to reproduce bugs found by OSS-Fuzz.

 In issue #1344 [37], a developer asked for guidance from OSS-Fuzz developers due
to not being able to reproduce the bug using only OSS-Fuzz’s documentation.

3.2.3 Functionality Challenges. In this category, we identify challenges related to the lack of
support from OSS-Fuzz as a service for features that developers need to fuzz their software.
OSS-Fuzz misses desired functionalities/features (O5). The OSS-Fuzz platform can some-

times lack features either by design decisions or because the platform is still under development.

, Vol. 1, No. 1, Article . Publication date: September 2023.

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 15

This category encompasses issues where project developers needed a specific feature which was
not supported by OSS-Fuzz to conduct their fuzzing activities.

 For example, in issue #2558 [40], a developer asked OSS-Fuzz developers to build support
for multiple sanitizers when reproducing bugs since it takes a lot of time to rebuild the
project multiple times using different sanitizers to reproduce issues.

3.2.4 Performance Challenges. This category encompasses performance challenges for fuzzing
activities on OSS-Fuzz.

OSS-Fuzz does not allocate enough resources to (a) project(s) for fuzzing (O6). The OSS-
Fuzz team takes care of assigning CPU resources and disk space to each project, with the purpose
of ensuring that all projects regardless of their size can be fuzzed. When not enough resources are
dedicated to a project, the project might not have all of its fuzz targets fuzzed or not be continuously
fuzzed.

 In issue #3014 [42], a developer finds out that little CPU time was dedicated to their
project and wonders why their project is not being fuzzed continuously by OSS-Fuzz.

OSS-Fuzz cannot handle small fuzz targets (O7).When a project’s build is failing or is not
being fuzzed, OSS-Fuzz developers will generally investigate the cause of the issues. In some cases,
the OSS-Fuzz team found that the root of the problem came from the fuzz targets being too small
for OSS-Fuzz fuzzers to fuzz.

 In issue #1333 of the OSS-Fuzz repository [36], an OSS-Fuzz developer found that
one of the project’s builds is failing due to a bad fuzz target. After further investigation
with the project’s developers, they found that it was due to one of the fuzz targets
being too small.

3.2.5 Permission Challenges. We present challenges project developers face due to OSS-Fuzz
permission-related issues.
Developers do not have access to project status/fuzzer logs/bug reports/test case on

OSS-Fuzz (O8). Several fuzzing logs/reports and newly discovered bugs are only available to be
seen by project maintainers before being released to the general public. Project developers are
sometimes not registered as project maintainers or cannot access the logs and must ask OSS-Fuzz
developers to grant them the permissions they need to access the logs for bug fixing. This type
of challenge is also widely encountered by developers, and accounts for 13% of all the manually
analyzed issues related to fuzzing providers.

 In issue #243 [30] of the OSS-Fuzz repository, a developer found out that he was not
able to access one of fuzzer UIs when using an alternative email address from the one
he uses for OSS-Fuzz.

OSS-Fuzz configurations lead to undesired bug public release (O9). OSS-Fuzz has a clear
bug disclosure policy as described in its official documentation [25]. In some cases, the strict bug
disclosure policy of OSS-Fuzz might not align with project developers’ interests as they might
require more time before public disclosure of a bug or vulnerability.

 In issue #244 [31], a developer asked OSS-Fuzz developers to change their policy for
public disclosure of bugs for their project so that the issues would only be disclosed
once the fixes are pushed to their project’s stable branch.

3.2.6 Reliability Challenges. This category encompasses all challenges related to the reliability of
the OSS-Fuzz platform or the environment and services it provides.

Connection issues on OSS-Fuzz lead to project crash/build failures (O10). OSS-Fuzz must
deal with several external dependencies such as dependencies downloaded during a project’s

, Vol. 1, No. 1, Article . Publication date: September 2023.

16 Nourry et al.

compilation or dependencies in the form of external tools used by the platform. All of these
dependencies can be subject to connection issues. In some cases, these issues can impact fuzzing
activities and cause unintended failures.

 In issue #7581 [52], a developer reported having a lot of build failures in OSS-Fuzz
due to connection failures.

Key resources unavailable on OSS-Fuzz lead to project crash/build failures (O11).Multiple
dependencies and files can be required during a project’s compilation or during fuzzing. Any of
these resources missing or being unavailable will typically cause problems such as breaking a
project’s build.

 For example, in issue #7198 [51], a developer reported that his build was failing due
to corpus files not being available on OSS-Fuzz.

OSS-Fuzz bugs lead to build/fuzzing process failures (O12). OSS-Fuzz takes care of a lot of
different tasks such as managing fuzzers, executing fuzzers, and managing each project’s corpus.
When one of the platform’s features has bugs, it can lead to various issues preventing a project
from being fuzzed properly.

 In issue #3082 [43], a bug on OSS-Fuzz caused problems with corpus pruning tasks
and broke the coverage build.

Bug status is not correct in the issue tracking system (O13). A recurrent topic in the
OSS-Fuzz GitHub repository is issue management in the bug tracker. When project developers
already fixed a bug or are in the process of fixing a bug, there can be inconsistencies between
the actual status of the bug and the bug status being shown in the bug tracker. This challenge is
also fairly common and is present in 13% of all the manually analyzed issues related to fuzzing
providers.

 In issue 5526 [28], a developer reported that multiple issues that were previously
reproducible and subsequently fixed where still being labeled as “flaky” on the OSS-Fuzz
bug tracker.

Bugs in OSS-Fuzz causes fuzzer to misbehave or produce wrong results (O14). OSS-Fuzz
developers need to properly configure their fuzzers for each project fuzzed by OSS-Fuzz. Even
though the OSS-Fuzz team consists of fuzzing experts, errors in the configuration can happen and
impact the validity of the fuzzing outputs. The various bots and automation tools used by OSS-Fuzz
to fuzz a project can also contain bugs resulting in undesired fuzzing results/outputs.

While discussing how OSS-Fuzz should handle timeouts and OOM errors in issue
#3432 [46], a developer mentioned that he had instances where the CIFuzz jobs timed
out due to infinite loops without reporting any problem.

3.2.7 Usability Challenges. In this category, we describe obstacles related to the usability of OSS-
Fuzz as a fuzzing provider for project developers.
Disorganized/missing information on issue trackers makes it difficult to locate the

problem (O15). OSS-Fuzz currently uses the Chromium bug tracker Monorail [15] to track bugs
found by OSS-Fuzz. Using bug trackers can be a challenge for developers who are not familiar with
the UI, the naming conventions, or the templates used by a bug tracker to describe a bug.

 In issue #273 [32], developers discussed about information that should be included in
a bug report in the issue tracker. In the current version, it was unclear which revisions
were still affected by the bug.

Information in fuzzing reports can be missing, unclear, misleading or even wrong (O16).
Project developers use fuzzing logs and reports for debugging or monitoring fuzzing activities and

, Vol. 1, No. 1, Article . Publication date: September 2023.

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 17

fuzzing coverage for their projects. Logs and reports provided by OSS-Fuzz can however sometimes
be incorrect, missing or unclear as to what is the problem. This can make it difficult for developers
trying to debug their project or trying to get an overview of their project’s coverage from OSS-Fuzz
reports.

 For example, in issue #6885 [49], a developer had a problem where the OSS-Fuzz
fuzzer found a bug but the reproducer test case was either not generated or not uploaded.
The logs generated by the fuzzer also contained misleading information about what
happened to the crash report.

OSS-Fuzz configurations lead to confusing / unreported / hard-to-reproduce issues (O17).
There can be several differences in how a project’s fuzzers are configured versus how OSS-Fuzz
developers configure their fuzzers. Different configurations can determine how strict fuzzers are in
terms of which errors can be ignored versus which errors need to be reported. These differences in
configuration can lead to confusion for project developers who might want to address any error
regardless of their importance. For instance, a project developer might want to fix a smaller type
of error such as integer overflow whereas OSS-Fuzz might choose to silence integer overflow by
default and therefore not report any error as shown in issue #3227 of the OSS-Fuzz repository [44].

 In issue #6587 [22], a developer discovered that some bugs found by the fuzzer were
ignored and not treated as errors.

3.3 Survey Result Analysis
3.3.1 Frequency of Fuzzing Challenge Occurrences in the Survey. Figure 4 shows the responses of
survey participants when asked about the frequency at which they encounter each challenge in our
taxonomy. The most common challenge for fuzzing developers is by far to generate the right inputs
to fuzz the system (F15) with 15% of the survey respondents stating that this is a constant challenge
and 40% stating that they often encounter issues trying to generate inputs for their system. This is
not surprising since software systems can require strict pre-conditions to accept an input and can
also have paths in the source code that are difficult to reach for fuzzers. Challenges linked directly
to the fuzzers also seem to be very common: over 70% of our respondents have had issues where the
fuzzer was missing certain features to fuzz the system properly. Practitioners trying to scale their
fuzzers was also the challenge with the highest amount of “Always” with 17% of the respondents
stating that scaling their fuzzers was always a challenge and 21% stating that it’s often a challenge.

Another trend worth noting is that 60% of our respondents have had issues with fuzzing breaking
their system’s build (F2, F10, F16). We also find that the most common causes of build breakages
(F1, F10, F16) are all related in some way to the configuration of the fuzzer(s). Fuzzers often require
precise configuration based on a variety of factors such as the hardware they are running on, the
version of the compiler, the programming language and many others. Since most of the respondents
surveyed had less than 5 years of fuzzing experience (as shown in Table 1), it is not surprising that
configuration challenges were quite common for developers still developing their fuzzing expertise.
With over 60% of our respondents stating that they have faced issues with fuzzing taking too

much time and resources, our survey also confirms the need for ways to fuzz systems externally.
Both initiatives such as OSS-Fuzz which can fuzz a project on Google’s servers and CI tools which
can support continuous fuzzing can help alleviate the hardware and human workload associated
with fuzzing. In the free text section of the survey, resource consumption issues, the need for better
tooling, and the lack of support for continuous fuzzing from CI tools were all challenges mentioned
by the respondents.

3.3.2 Frequency Comparison Between Survey and Manual Analysis. From our manual analysis
(Figure 2), difficulties in setting up, building or using fuzzer (F16), incompatibility between fuzzing

, Vol. 1, No. 1, Article . Publication date: September 2023.

18 Nourry et al.

0 20 40 60 80 100
(F11) Issues in the corpus lead to build failures or unreliable results.

(F8) Bugs in the fuzzer lead to build failures or abnormal/inconsistent fuzzing behaviors.
(F7) Issues with the fuzzing code lead to crashes/build failures.

(F12) Fuzzer inputs cause unusual crashes or issues.
(F13) Issues when trying to save or re-use the corpus.

(F21) Difficulties writing or understanding fuzzing code.
(F18) Output messages generated by the fuzzer are missing/confusing/unhelpful.

(F10) Issues with the build tools or external dependencies lead to crash/build failures.
(F19) Overloading outputs lead to difficulties to focus on specific issues .
(F17) Documentation on how to use the fuzzer is missing or insufficient.

(F6) Bad fuzzing targets lead to fuzzing failures or inconsistent results.
(F14) Difficulties trying to reproduce build failures or bugs detected during fuzzing.

(F22) Difficulties in deciding which part of the software to fuzz.
(F1) Different fuzzing environments lead to unstable/unreliable results.

(F4) The fuzzing process takes too much time or resources.
(F9) Incorrect use of the corpus leads to fuzzing failures or low coverage.

(F20) Bad code design limits the ability to fuzz.
(F2) Incompability between the fuzzing environment and the project leads to build failures.

(F5) The fuzzer has scalability issues when facing large inputs/fuzzing targets/corpora.
(F16) Difficulties in setting up, building or using the fuzzer.

(F3) The fuzzer misses desired functionalities/features.
(F15) Difficulties generating the correct inputs or targeting specific parts of the software.

Always Often Sometimes Rarely Never

Fig. 4. Frequency at which the respondents encounter each challenge in percentage.

environment and project (F2), and difficulties in reproducing build failures or bugs (F14) are the
most common challenges, which have much more occurrences than other issues and account for
around 18%, 12%, and 11% of all issues, respectively. This is to a certain extent supported by our
survey results. The difficulties of fuzzer usage (F16) and compatibility issues (F2) are among top
5 most common challenges according to survey responses (Figure 4). While the reproducibility
issue is not at the top spot, it is still fairly common (over a quarter of respondents indicate that
they always or often encounter this issue). It is worth noting that our manual analysis and survey
mainly focus on the prevalence of the challenges instead of the difficulties. In fact, Respondent R63
specifically emphasizes that “the most difficult part of fuzzing is to reproduce failures/bugs”.

There are also some differences regarding the challenge frequency ranks in manually analyzed
issues and survey responses. For example, in the survey, difficulties in generating the correct
inputs or targeting specific parts of software (F15) are considered the most prevalent challenge by
developers in the survey, while in the manual analysis, this category of challenge only accounts for
3.5% of all the issues and ranks at 9th in terms of frequency. Similarly, many developers complain
that bad code design limits their ability to fuzz software systems (F20) in the survey, while only 2
manually analyzed issues mention this challenge. One reason for these differences can be attributed
to the nature of these two sources. On GitHub issues, developers tend to discuss straightforward
technical problems (e.g., build failure, setup troubleshooting), while those issues which do not
directly lead to failures are less likely to be mentioned (F15 and F20). We believe the survey
results can well complement the manual issue analysis and help readers to have a more complete
perspective on these issues.

3.3.3 Impact of Developer Experience on the Results. Developers with different levels of fuzzing
experience might perceive challenges differently. To investigate the extent to which this happens,
we looked at how the survey responses change based on the fuzzing experience. We split the survey
participants into four groups: “beginner” (<3 years of fuzzing experience), “intermediate” (3-5
years of experience), “experienced” (6-10 years of experience), and “expert” (>10 years of fuzzing
experience). The graphs of frequency at which the respondents of different groups encounter each

, Vol. 1, No. 1, Article . Publication date: September 2023.

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 19

challenge can be found in our replication package [68]. Due to the low number (6) of experts
participating in the survey, below we only discuss the similarities and differences among the
remaining three groups.
Regardless of experience, missing functionalities of fuzzers (F3) and difficulties in generating

correct inputs or targeting specific parts of software (F15) are the most common issues for all the
groups. Meanwhile, failures caused by problematic data in the corpus (F11), crashes caused by
generated inputs (F12), and the difficulties of corpus reuse (F13) are the least frequent encountered
challenges across all respondents.

In spite of these similarities, there are also some notable differences. Insufficient documentation
(F17) is considered a common issue only by the “beginner” group, and “beginners” have much more
difficulties in fuzzer setup and usage (F16) compared to other groups. One possible reason is that
fuzzing has a steep learning curve and better on-boarding support would be highly appreciated by
“beginners”. On the contrary, fuzzing failure or inconsistent results caused by bad fuzzing targets
(F6) are rather common for “intermediate” and “experienced” groups, while it is not a dominant
challenge for the “beginner” group. One possible reason for this difference is that developers with
more fuzzing experience have higher chances to fuzz more complex software systems. Further
studies are needed to confirm this hypothesis.

3.3.4 Feedback from Practitioners on Current Fuzzing Solutions and the Field of Fuzzing. In the
survey, some respondents provided feedback on challenges and potential solutions in the free-text
questions. These opinions mainly focus on three aspects: applicability of new tools, performance
and resource issues, and barrier of entry.

Applicability of new tools. According to R36 and R90, while academia tries to address some of
these challenges by developing new fuzzing tools, these tools often fall short of features, replica-
bility, or documentation. Moreover, they often do not reach production. Similarly, regarding the
applicability of these tools, R65 suggests that simple fuzzing tools focusing on small specific issues
should be developed first instead of trying to make them as generic as possible: “There’s an effort
currently to create generic fuzzers that touch upon a lot of categories. I’d focus on a smaller, maybe
niche area, and create pretty good fuzzing primitives that can be then put together on a per-project
basis.”

Performance and resource issues. The issue of performance and resources during fuzzing is
also quite prevalent in our survey analysis. Currently, one widely adopted solution is to use an
external provider (e.g., OSS-Fuzz) that takes over the workload. However, as R69 however points
out, there are currently very limited options available to practitioners who want to use an external
provider: it is “hard to set up on larger scale by yourself (no widely used Kubernetes setups, GitLab
gates their fuzzing feature behind their most expensive tier, GitHub doesn’t even have something like
this, Google operates OssFuzz as SaaS)”.
While the availability of external providers might need further improvement, overall, using an

external service provider does seem to alleviate performance problems, and OSS-Fuzz generally
seems to be an initiative appreciated by practitioners. For example, respondent R85 says: “My overall
experience with ossfuzz is quite good. Having something that is managed [...] and that only requires
my attention when bugs are filed makes fuzzing [...] a reasonably good [experience]”. R67 further
supports this sentiment and mentions the benefit of not needing to set up fuzzing infrastructure
from scratch: “Our project’s fuzzing is hosted by OSS-Fuzz (Google-maintained infrastructure), which
helps a lot on many of the issues mentioned in this survey. Setting up a fuzzing infrastructure from
scratch must be a daunting task.”. As R75 points out, however, some improvements to the platform
are still needed to help practitioners with the entire fuzzing process: “We need anything platforms

, Vol. 1, No. 1, Article . Publication date: September 2023.

20 Nourry et al.

that assist us in the whole fuzzing lifecycle: setup and continuously run fuzzing, alert about findings,
rerun fuzzing when fix is available”.
Barrier of entry. Another recurrent aspect is about the adoption of fuzzing itself. As of now,

the barrier of entry to fuzzing seems quite high, which limits the adoption of fuzzing as a standard
practice. Survey respondent R15, who has 6-10 years’ experience, suggests integrating fuzzing
directly into unit test frameworks to “lower the barrier for developers to join in on fuzzing, instead
of having dedicated persons writing fuzzers”. Respondent R13 with 6-10 years’ experience and
respondent R90 with over 10 years’ experience further supports this argument by stating that
tooling should “make it easy for all developers on a project to contribute to fuzzing at a low-level” and
“typical developer, doesn’t have the skill set to analyze their code for interesting parts in the context of
fuzzing. So fuzzing engineers end up doing a lot of work on analysing the target code and behavior”.

One possible reason for the current high barrier of entry for fuzzing is tooling related to fuzzing
practices. As respondent R12 with over 10 years of fuzzing experience suggests, “[fuzzing needs]
more porcelain tooling, we just get the plumbing today and I use ad hoc support scripts now”. Even
experienced fuzzing practitioners are relying on custom made scripts instead of having proper
tooling to help them conduct fuzzing activities. It is highly likely that writing these “support scripts”
require deep domain knowledge which beginners might do not have. It is therefore important to
develop standardized tools so that the “quality of life” improvements brought by custom scripts can
be generalized across the whole field via tooling.

4 THREATS TO VALIDITY
Threats to construct validity concern the relationship between theory and observation. In this study,
to collect GitHub issues related to fuzzing activities for our manual analysis, we used the keywords
“afl” and “fuzz” for issue searching. We acknowledge that some relevant issues, which are not
described with specific keywords, might be filtered out. In our survey, we offered 5-level Likert
scale options (i.e., “Always”, “Often”, “Sometimes”, “Rarely” and “Never”) to survey participants
when answering how common each type of challenge is. While this is a standard setting in surveys,
these options are still subject to different interpretations, which might lead to biases in the results.
As it is impractical to strictly define these options by quantification given the various sizes and
scales of software systems developers are working on, we believe they can still accurately capture
the relative prevalence of different challenges, which well serves the purpose of this study.
Threats to internal validity concern factors internal to our study that could have influenced

our results. In our study, it is mainly related to the possible subjectiveness during our manual
analysis and taxonomy creation. The annotation of challenges contained in GitHub issues is a
subjective process based on the author’s understanding of the problem and, despite multiple years
of programming experience, the authors might not have all the relevant domain knowledge of
the fuzzing tools used. To mitigate the impact of the potential biases, three authors independently
investigated and classified each issue without consulting each other until the end of an iteration in
which conflicts were resolved via unanimous agreement.

Threats to external validity concern the generalizability of our findings. The repositories we used
are all open source projects fuzzed by Google’s OSS-Fuzz. Other projects using different fuzzing
providers or not using any fuzzing provider may encounter additional fuzzing challenges not
present in projects participating in OSS-Fuzz. Also, although OSS-Fuzz supports state-of-the-art
fuzzers [27], there are dozens of other publicly available or even self-created fuzzing tools used by
developers, which may lead to their own set of challenges. On a similar note, OSS-Fuzz currently
supports only certain programming languages. We may therefore miss out some challenges related
to fuzzing projects written in an unsupported languages such as web applications developed in
JavaScript and NodeJS.

, Vol. 1, No. 1, Article . Publication date: September 2023.

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 21

5 RELATEDWORK
5.1 Studies on Fuzzing Techniques
Developing fuzzing techniques is non-trivial, as different software systems require different types of
inputs which must satisfy pre-conditions before the software accepts them. Developing specialized
fuzzing tools to fuzz all sorts of software and hardware such as APIs [55] or microcontrollers [62]
has therefore been an active field of research for many years.

Many researchers are actively developing new fuzzing techniques. In an ideal scenario, a fuzzer
would be able to have perfect coverage by generating inputs that can trigger every possible edge of
a codebase. To improve the discovery of new paths in the source code during fuzzing, some studies
have proposed new ways to generate inputs and improve the coverage of fuzzers. Menendez et
al. [65] developed the HashFuzz technique in order to have more diversity of covered paths in
the test sets generated by fuzzers. Using HashFuzz, they find that fuzzers achieve better coverage
and observe an increase of 28% to 97% in unique crash detection. Nguyen et al. [67] developed
the BeDivFuzz feedback-driven fuzzing technique which takes into account how many times each
branch of the source code was executed. Using BeDivFuzz, Nguyen et al. were able to achieve better
branch coverage diversity by preventing a fuzzer from generating inputs that always target the
same branches of code. Padhye et al. [70] proposed the FuzzFactory framework, which improves
coverage-guided fuzzing by saving specific inputs generated during fuzzing so that the generated
inputs can easily be reused to augment the coverage and generate more complex inputs.
Other studies have looked into fuzzing techniques from a different perspective more than

coverage. The idea of mixing a black-box and a white-box (or coverage-based) fuzzing approaches
has led to the design of graybox fuzzing and its first implementation AFLGo [9]. Graybox fuzzing
aims to balance between getting better input generation than purely random inputs without
requiring complete knowledge of the codebase. Since AFLGo, other researchers have also tried
to improve graybox fuzzing by proposing their own tools and variations of the underlying input
generation algorithm [19, 66]. Zhou et al. [82] proposed a new approach VisFuzz, which leverages
extracted call graphs of the codebase to guide test engineers to locate blocking constraints and
design better inputs for these constraints. VisFuzz can achieve coverage improvements between
10% and 150%.

Researchers have also tried to tackle the challenge of fuzzing domain-specific software and
improve the fuzzing effectiveness with semi-automated techniques which require limited human
intervention. For example, Shoshitaishvili et al. [75] proposed an approach which can automatically
extract the parts of software and assign them to developers with proper expertise for vulnerability
analysis. Their results demonstrate that humans, even without intensive training, can significantly
improve the performance of fuzzing-based vulnerability analysis techniques. Aschermann et al. [3]
adopted an annotation-based approach, which allows developers to annotate the source code to
guide fuzzers during the execution. Their implementation is able to resolve complex patterns (e.g.,
hash map lookups), play games and find novel security issues via fuzzing.
With the increased usage of deep learning based techniques in recent years, multiple fuzzing

tools focusing on finding bugs in deep learning frameworks have been developed. Wei et al. [77]
developed FreeFuzz, which aims at fuzzing deep learning libraries via mining open source software
repositories. Gu et al. [56] developed Muffin, which can generate deep learning models via fuzzing
in order to exercise and test deep learning libraries. With the advent of self-driving and image
processing techniques, a new fuzzing tool aimed at fuzzing image processing deep learning libraries
has also been proposed by Zhang et al. [81].

, Vol. 1, No. 1, Article . Publication date: September 2023.

22 Nourry et al.

5.2 Studies on Fuzzing Challenges
Prior to our work, several empirical studies have been conducted to understand the fuzzing process
and shed light on certain fuzzing challenges. Yun et al. [79] conducted a thorough survey of fuzzing
in the field of embedded systems. In the paper, they list the current tools and techniques used to
fuzz embedded systems and discuss future paths to improving fuzzing techniques for embedded
systems. Ding et al. [18] conducted an empirical study using OSS-Fuzz data on bug fixing. In their
study, they document what types of bugs are found by continuously fuzzing via OSS-Fuzz and the
time required to detect bugs via OSS-Fuzz. They also investigate which bugs are prioritized for bug
fixing by developers.

Böhme et al. conducted another empirical study on fuzzing where they measured the decreasing
return of investment over time of fuzzing as more time is needed to find bugs over time [8]. In
their study, Böhme et al. find that increasing the number of machines dedicated to fuzzing is
neither sufficient nor a good approach to finding more vulnerabilities over time. Instead, they state
that developing smarter and more efficient fuzzers is the key to finding more vulnerabilities and
improving performances. The same phenomenon is observed in another study led by Klooster et
al. [60] where they find that shorter sessions of fuzzing of 15 minutes can be sufficient to uncover
important bugs while being less resource intensive than long fuzzing sessions. These studies provide
hints on how to address the challenge of performance issues, which were well documented in our
taxonomy (F4).
The adoption of fuzzing as a practice is another topic that has been gaining interest for practi-

tioners and researchers. Kelly et al. [59] tried to alleviate the efforts needed to integrate fuzzing to a
codebase by automatically generating fuzz targets. Using their approach, they were able to quickly
generate dozens of fuzz targets without additional developer efforts. Their approach can be used to
tackle usabiliity issues (F15 in our taxonomy) to a certain extent. Liang et al. [64] conducted a case
study at Huawei where engineers tried to start fuzz testing one of their libraries. In their study, they
presented the main obstacles faced by Huawei engineers and described how they overcame some
of the fuzzing challenges the team encountered. The authors also discussed some of the lessons
learned from the team after integrating fuzzing into their internal systems. They found that the
strict environmental constraints expected by fuzzers pose a problem for industrial environments
which might be using different operating systems, compilers and hardware. This finding is in line
with our compatibility challenges (F1 and F2). They also found that there is a lack of support from
build systems and that training is required before software testers/developers become sufficiently
knowledgeable about fuzzing to properly integrate fuzzing into a software system, which is highly
relevant to one of the usability issues presented in our taxonomy (F16).
In a previous Shonan meeting [7], fuzzing experts gathered and discussed the current state of

fuzzing. During this meeting, they summarized some of the challenges of fuzzing and the limitations
of current fuzzers for identifying relevant bugs. They also discussed the current theories being
worked on in the field of fuzzing. Finally, the meeting participants conducted a small survey with
24 respondents and found that improving automation is the most important challenge in the field
of fuzzing. Yan et al. [78] reached a similar conclusion when they investigated the role of humans
in fuzzing activities by categorizing popular fuzzing tools into three different types: human-out-of-
the-loop, human-on-the-loop, and human-in-the-loop. In their paper, they discussed about possible
directions to improve fuzzing tools based on human-machine collaboration and hypothesized that
automation must be improved pre-fuzzing to make fuzzers easier to use and post-fuzzing to analyze
the vulnerabilities found. These two studies have a different focus regarding the challenges, that is,
they look into the challenges of improving existing fuzzing techniques instead of the challenges

, Vol. 1, No. 1, Article . Publication date: September 2023.

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 23

developers face during fuzzing activities (e.g., how to improve automation of fuzzer vs. what issues
developers face during fuzzing automation).

Our taxonomy and survey complement some of the prior empirical work conducted in the field
of fuzzing. Multiple of our respondents’ answers align with the results obtained by previous studies.
For example, some of our survey respondents mentioned that bug triaging and bug fixing are
challenges that need improvement in fuzzing (F19) which align with the findings in Ding et al.’
study [18] showing that fuzzers are finding thousands of bugs. Several respondents also mentioned
the lack of specialized features and the inability of fuzzers to fuzz in a structure-aware manner (F3).
This is further confirmed by Böhme et al. in their work on the performance challenge related to
fuzzing [8] where they recommend to develop better fuzzing tools and techniques rather than to
add more machines dedicated to fuzzing.
To the best of our knowledge, our study is the first to systematically derive the categories of

challenges developers face during fuzzing activities, by both qualitative and quantitative means.
The presented taxonomy was created based on evidence embedded in issue discussions and further
confirmed by developers with relevant expertise, which by far gives the most complete overview
regarding this issue. On one hand, this study confirms fragmented and specific challenges which
can be seen in related work; On the other hand, the presented challenges contain many new
findings which were not already disclosed by previous studies (e.g., documentation issues, mislead-
ing messages, fuzzing provider challenges). We therefore hope that our survey and our manual
investigation can serve as a reference points for fuzzing practitioners and researchers looking to
develop better fuzzing tools and approaches.

6 CONCLUSIONS
As software systems are growing larger and becoming more complex, the number of software
vulnerabilities will only continue to increase over time. Consequently, the adoption of fuzzing as a
means to detect software vulnerabilities should become more common over time as well. Industrial
practitioners have already started integrating fuzzing as part of their internal testing practices as
shown by the case study led by Liang et al. [64].

To provide practitioners and researchers with insights on fuzzing improvements, we conducted
a study to analyze the challenges associated with fuzzing activities. We constructed a taxonomy of
fuzzing challenges and validated it by surveying fuzzing practitioners, collecting their feedback,
and asking them directly what challenges they have themselves faced while fuzzing their software.
Our taxonomy, accompanied with real-world examples and potential solutions for addressing
the challenges, can support both practitioners and researchers. For software testers and software
developers looking to conduct fuzzing activities, our taxonomy allows them to be aware of the
challenges they might face while fuzzing their software.
Using our taxonomy as a reference point, we hope potential fuzzing adopters can plan ahead

of time on how to handle the challenges highlighted in our study and, consequently, smoothly
integrate fuzzing with their existing testing infrastructure. For practitioners who are already fuzzing
their software and are looking to use an external provider such as OSS-Fuzz to reduce fuzzing costs
or scale up their fuzzing, we also highlight some of the challenges they might encounter which are
not present on their own machines.

For researchers, our taxonomy highlights areas of the field which need improvements according to
fuzzing practitioners. Our survey respondents’ answers reveal the need for more specialized fuzzing
tools. Besides, intelligent agents integrated in developers’ workflow would also help practitioners
better adopt fuzzing tools, which can be investigated more by researchers. Bug triaging and
integration of fuzzers with CI systems, for instance, is another promising direction to look into.

, Vol. 1, No. 1, Article . Publication date: September 2023.

24 Nourry et al.

Finally, our study provide empirical researchers another stepping stone to improve the current
empirical body of knowledge with respect to the field of fuzzing.

Our future work will focus on two directions. First, we would like to expand our research scope
and investigate challenges of fuzzing projects developed in a programming language less prominent
in the fuzzing field. Second, we would like to analyze fuzzing challenges in detail and try to propose
approaches to address some of the current issues. Given the various insights disclosed in this study,
we believe there is plenty of room for improving fuzzing techniques and practices, which will in
the end benefit both industry and academia.

REPLICATION
To facilitate future work, we have made available online the anonymized survey responses and the
result of the manual labeling process in our replication package [68].

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support of JSPS and SNSF for the project SENSOR (No.
183587, JPJSJRP20191502), JSPS for the KAKENHI grants (JP21H04877, JP22K18630, JP21K17725),
JST for the PRESTO grant (JPMJPR22P3), Kyushu University for the Leading Human Resource De-
velopment Fellowship, and the Inamori Research Institute for Science (Kyoto, Japan) for supporting
Yasutaka Kamei via the InaRIS Fellowship. Lanza gratefully acknowledges the financial support of
the Swiss National Science Foundation (SNF) for the project “INSTINCT” (SNF Project No. 190113).

REFERENCES
[1] Anaconda. 2022. State of Data Science Report 2022. https://www.anaconda.com/state-of-data-science-report-2022
[2] Oxford Analytica. 2021. Apache software flaw could result in major breaches. Emerald Expert Briefings oxan-es (2021).
[3] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. 2020. Ijon: Exploring Deep State Spaces via

Fuzzing. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP’20). 1597–1612.
[4] bitcoin/bitcoin. 2020. Issue #19557. https://github.com/bitcoin/bitcoin/issues/19557. Last accessed on 07-12-2022.
[5] bitcoin/bitcoin. 2020. Issue #20088. https://github.com/bitcoin/bitcoin/issues/20088. Last accessed on 07-12-2022.
[6] bitcoin/bitcoin. 2020. Issue #20232. https://github.com/bitcoin/bitcoin/issues/20232. Last accessed on 07-12-2022.
[7] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2021. Fuzzing: Challenges and Reflections. IEEE Software 38,

3 (2021), 79–86.
[8] Marcel Böhme and Brandon Falk. 2020. Fuzzing: On the Exponential Cost of Vulnerability Discovery. In Proceedings

of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (FSE’20). 713–724.

[9] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. 2017. Directed Greybox Fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS’17). 2329–2344.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS’16). 1032–1043.

[11] bytecodealliance/wasmtime. 2019. Issue #459. https://github.com/bytecodealliance/wasmtime/issues/459. Last accessed
on 07-12-2022.

[12] Marco Carvalho, Jared DeMott, Richard Ford, and David A. Wheeler. 2014. Heartbleed 101. IEEE Security & Privacy 12,
4 (2014), 63–67.

[13] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive mutational fuzzing. In Proceedings of the
2015 IEEE Symposium on Security and Privacy (SP’15). 725–741.

[14] Peter M Chisnall. 1993. Questionnaire design, interviewing and attitude measurement. Journal of the Market Research
Society 35, 4 (1993), 392–393.

[15] Chronium. [n. d.]. Monorail, Chronium. https://bugs.chromium.org/. Last accessed on 07-12-2022.
[16] ClickHouse/ClickHouse. 2021. Issue #32443. https://github.com/ClickHouse/ClickHouse/issues/32443. Last accessed

on 07-12-2022.
[17] Wayne W Daniel and Chad L Cross. 2018. Biostatistics: a foundation for analysis in the health sciences. Wiley.
[18] Zhen Yu Ding and Claire Le Goues. 2021. An Empirical Study of OSS-Fuzz Bugs. https://arxiv.org/abs/2103.11518
[19] Zhengjie Du, Yuekang Li, Yang Liu, and Bing Mao. 2022. WindRanger: A Directed Greybox Fuzzer Driven by Deviation

Basic Blocks. In Proceedings of the 44th International Conference on Software Engineering (ICSE’22). 2440–2451.

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://www.anaconda.com/state-of-data-science-report-2022
https://github.com/bitcoin/bitcoin/issues/19557
https://github.com/bitcoin/bitcoin/issues/20088
https://github.com/bitcoin/bitcoin/issues/20232
https://github.com/bytecodealliance/wasmtime/issues/459
https://bugs.chromium.org/
https://github.com/ClickHouse/ClickHouse/issues/32443
https://arxiv.org/abs/2103.11518

The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities 25

[20] ethereum/solidity. 2019. Issue #6201. https://github.com/ethereum/solidity/issues/6201. Last accessed on 07-12-2022.
[21] ethereum/solidity. 2019. Issue #7948. https://github.com/ethereum/solidity/issues/7948. Last accessed on 07-12-2022.
[22] ethereum/solidity. 2021. Issue #6587. https://github.com/ethereum/solidity/issues/6587. Last accessed on 07-12-2022.
[23] golang/go. 2021. Issue #48179. https://github.com/golang/go/issues/48179. Last accessed on 07-12-2022.
[24] golang/go. 2022. Issue #52292. https://github.com/golang/go/issues/52292. Last accessed on 07-12-2022.
[25] Google. [n. d.]. Geting Started, Bug disclosure guidelines, OSS-Fuzz. https://google.github.io/oss-fuzz/getting-started/

bug-disclosure-guidelines/. Last accessed on 07-12-2022.
[26] google. [n. d.]. Geting Started, OSS-Fuzz. https://google.github.io/oss-fuzz/getting-started/. Last accessed on 07-12-

2022.
[27] Google. [n. d.]. OSS-Fuzz. https://google.github.io/oss-fuzz/
[28] google/oss fuzz. [n. d.]. Issue #5526. https://github.com/google/oss-fuzz/issues/5526. Last accessed on 07-12-2022.
[29] google/oss fuzz. 2016. Issue #153. https://github.com/google/oss-fuzz/issues/153. Last accessed on 07-12-2022.
[30] google/oss fuzz. 2017. Issue #243. https://github.com/google/oss-fuzz/issues/243. Last accessed on 07-12-2022.
[31] google/oss fuzz. 2017. Issue #244. https://github.com/google/oss-fuzz/issues/244. Last accessed on 07-12-2022.
[32] google/oss fuzz. 2017. Issue #273. https://github.com/google/oss-fuzz/issues/273. Last accessed on 07-12-2022.
[33] google/oss fuzz. 2017. Issue #638. https://github.com/google/oss-fuzz/issues/638. Last accessed on 07-12-2022.
[34] google/oss fuzz. 2017. Issue #815. https://github.com/google/oss-fuzz/issues/815. Last accessed on 07-12-2022.
[35] google/oss fuzz. 2017. Issue #823. https://github.com/google/oss-fuzz/issues/823. Last accessed on 07-12-2022.
[36] google/oss fuzz. 2018. Issue #1333. https://github.com/google/oss-fuzz/issues/1333. Last accessed on 07-12-2022.
[37] google/oss fuzz. 2018. Issue #1344. https://github.com/google/oss-fuzz/issues/1344. Last accessed on 07-12-2022.
[38] google/oss fuzz. 2018. Issue #1675. https://github.com/google/oss-fuzz/issues/1675. Last accessed on 07-12-2022.
[39] google/oss fuzz. 2019. Issue #2094. https://github.com/google/oss-fuzz/issues/2094. Last accessed on 07-12-2022.
[40] google/oss fuzz. 2019. Issue #2558. https://github.com/google/oss-fuzz/issues/2558. Last accessed on 07-12-2022.
[41] google/oss fuzz. 2019. Issue #2635. https://github.com/google/oss-fuzz/issues/2635. Last accessed on 07-12-2022.
[42] google/oss fuzz. 2019. Issue #3014. https://github.com/google/oss-fuzz/issues/3014. Last accessed on 07-12-2022.
[43] google/oss fuzz. 2019. Issue #3082. https://github.com/google/oss-fuzz/issues/3082. Last accessed on 07-12-2022.
[44] google/oss fuzz. 2020. Issue #3227. https://github.com/google/oss-fuzz/issues/3227. Last accessed on 07-12-2022.
[45] google/oss fuzz. 2020. Issue #3548. https://github.com/google/oss-fuzz/issues/3548. Last accessed on 07-12-2022.
[46] google/oss fuzz. 2021. Issue #3432. https://github.com/google/oss-fuzz/issues/3432. Last accessed on 07-12-2022.
[47] google/oss fuzz. 2021. Issue #6147. https://github.com/google/oss-fuzz/issues/6147. Last accessed on 07-12-2022.
[48] google/oss fuzz. 2021. Issue #6871. https://github.com/google/oss-fuzz/issues/6871. Last accessed on 07-12-2022.
[49] google/oss fuzz. 2021. Issue #6885. https://github.com/google/oss-fuzz/issues/6885. Last accessed on 07-12-2022.
[50] google/oss fuzz. 2022. Issue #7138. https://github.com/google/oss-fuzz/issues/7138. Last accessed on 07-12-2022.
[51] google/oss fuzz. 2022. Issue #7198. https://github.com/google/oss-fuzz/issues/7198. Last accessed on 07-12-2022.
[52] google/oss fuzz. 2022. Issue #7581. https://github.com/google/oss-fuzz/issues/7581. Last accessed on 07-12-2022.
[53] google/syzkaller. 2016. Issue #57. https://github.com/google/syzkaller/issues/57. Last accessed on 07-12-2022.
[54] google/syzkaller. 2020. Issue #1622. https://github.com/google/syzkaller/issues/1622. Last accessed on 07-12-2022.
[55] Harrison Green and Thanassis Avgerinos. 2022. GraphFuzz: Library API Fuzzing with Lifetime-Aware Dataflow Graphs.

In Proceedings of the 44th International Conference on Software Engineering (ICSE’22). 1070–1081.
[56] Jiazhen Gu, Xuchuan Luo, Yangfan Zhou, and Xin Wang. 2022. Muffin: Testing Deep Learning Libraries via Neural

Architecture Fuzzing. In Proceedings of the 44th International Conference on Software Engineering (ICSE’22). 1418–1430.
[57] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale. 2018. Software testing: Survey of the industry practices.

In Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO’18). 1449–1454.

[58] ISO/IEC. [n. d.]. ISO 25000 Portal. https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
[59] Matthew Kelly, Christoph Treude, and Alex Murray. 2019. A Case Study on Automated Fuzz Target Generation for

Large Codebases. In Proceedings of the 2019 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM’19). 1–6.

[60] Thijs Klooster, Fatih Turkmen, Gerben Broenink, Ruben ten Hove, and Marcel Böhme. 2022. Effectiveness and
Scalability of Fuzzing Techniques in CI/CD Pipelines. https://arxiv.org/abs/2205.14964

[61] Timothy Lethbridge, Susan Sim, and Janice Singer. 2005. Studying Software Engineers: Data Collection Techniques for
Software Field Studies. Empirical Software Engineering 10 (07 2005), 311–341.

[62] Wenqiang Li, Jiameng Shi, Fengjun Li, Jingqiang Lin, Wei Wang, and Le Guan. 2022. MAFL: Non-Intrusive Feedback-
Driven Fuzzing for Microcontroller Firmware. In Proceedings of the 44th International Conference on Software Engineering
(ICSE’22). 1–12.

[63] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018. Fuzzing: State of the art. IEEE
Transactions on Reliability 67, 3 (2018), 1199–1218.

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://github.com/ethereum/solidity/issues/6201
https://github.com/ethereum/solidity/issues/7948
https://github.com/ethereum/solidity/issues/6587
https://github.com/golang/go/issues/48179
https://github.com/golang/go/issues/52292
https://google.github.io/oss-fuzz/getting-started/bug-disclosure-guidelines/
https://google.github.io/oss-fuzz/getting-started/bug-disclosure-guidelines/
https://google.github.io/oss-fuzz/getting-started/
https://google.github.io/oss-fuzz/
https://github.com/google/oss-fuzz/issues/5526
https://github.com/google/oss-fuzz/issues/153
https://github.com/google/oss-fuzz/issues/243
https://github.com/google/oss-fuzz/issues/244
https://github.com/google/oss-fuzz/issues/273
https://github.com/google/oss-fuzz/issues/638
https://github.com/google/oss-fuzz/issues/815
https://github.com/google/oss-fuzz/issues/823
https://github.com/google/oss-fuzz/issues/1333
https://github.com/google/oss-fuzz/issues/1344
https://github.com/google/oss-fuzz/issues/1675
https://github.com/google/oss-fuzz/issues/2094
https://github.com/google/oss-fuzz/issues/2558
https://github.com/google/oss-fuzz/issues/2635
https://github.com/google/oss-fuzz/issues/3014
https://github.com/google/oss-fuzz/issues/3082
https://github.com/google/oss-fuzz/issues/3227
https://github.com/google/oss-fuzz/issues/3548
https://github.com/google/oss-fuzz/issues/3432
https://github.com/google/oss-fuzz/issues/6147
https://github.com/google/oss-fuzz/issues/6871
https://github.com/google/oss-fuzz/issues/6885
https://github.com/google/oss-fuzz/issues/7138
https://github.com/google/oss-fuzz/issues/7198
https://github.com/google/oss-fuzz/issues/7581
https://github.com/google/syzkaller/issues/57
https://github.com/google/syzkaller/issues/1622
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://arxiv.org/abs/2205.14964

26 Nourry et al.

[64] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei Zhang. 2018. Fuzz testing in practice: Obstacles
and solutions. In Proceedings of the 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER’18). 562–566.

[65] Hector D. Menendez and David Clark. 2022. Hashing Fuzzing: Introducing Input Diversity to Improve Crash Detection.
IEEE Transactions on Software Engineering 48, 9 (2022), 3540–3553.

[66] Ruijie Meng, Zhen Dong, Jialin Li, Ivan Beschastnikh, and Abhik Roychoudhury. 2022. Linear-Time Temporal
Logic Guided Greybox Fuzzing. In Proceedings of the 44th International Conference on Software Engineering (ICSE’22).
1343–1355.

[67] Hoang Lam Nguyen and Lars Grunske. 2022. BeDivFuzz: Integrating Behavioral Diversity into Generator-based
Fuzzing. In Proceedings of the 44th International Conference on Software Engineering (ICSE’22).

[68] Olivier Nourry, Yutaro Kashiwa, Bin Lin, Gabriele Bavota, Michele Lanza, and Kamei Yasutaka. 2023. Replication
package for the paper: The Human Side of Fuzzing: Challenges Faced by Developers During Fuzzing Activities.
https://github.com/posl/fuzzingChallengesReplicationPackage

[69] obgm/libcoap. 2018. Issue #213. https://github.com/obgm/libcoap/issues/213. Last accessed on 07-12-2022.
[70] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh Vijayakumar. 2019. FuzzFactory:

Domain-Specific Fuzzing with Waypoints. Proc. ACM Program. Lang. 3 (2019), 29 pages.
[71] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by program transformation. In Proceedings of

the 2018 IEEE Symposium on Security and Privacy (SP’18). 697–710.
[72] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David Warren, Gustavo Grieco, and David

Brumley. 2014. Optimizing seed selection for fuzzing. In Proceedings of the 23rd USENIX Security Symposium (USENIX
Security’14). 861–875.

[73] secdev/scapy. 2018. Issue #1398. https://github.com/secdev/scapy/issues/1398. Last accessed on 07-12-2022.
[74] secdev/scapy. 2021. Issue #3347. https://github.com/secdev/scapy/issues/3347. Last accessed on 07-12-2022.
[75] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls, Ruoyu Wang, Christopher Kruegel, and

Giovanni Vigna. 2017. Rise of the HaCRS: Augmenting Autonomous Cyber Reasoning Systems with Human Assistance.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 347–362.

[76] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
[77] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free Lunch for Testing: Fuzzing Deep-Learning

Libraries from Open Source. In Proceedings of the 44th International Conference on Software Engineering (ICSE’22).
995–1007.

[78] Qian Yan, Minhuan Huang, and Huayang Cao. 2022. A Survey of Human-machine Collaboration in Fuzzing. In
Proceedings of the 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC’22). 375–382.

[79] Joobeom Yun, Fayozbek Rustamov, Juhwan Kim, and Youngjoo Shin. 2022. Fuzzing of Embedded Systems: A Survey.
55, 7 (2022).

[80] Michael Zalewski. [n. d.]. American fuzzy lop (2.52b). https://lcamtuf.coredump.cx/afl/
[81] Pengcheng Zhang, Bin Ren, Hai Dong, and Qiyin Dai. 2022. CAGFuzz: Coverage-Guided Adversarial Generative

Fuzzing Testing for Image-Based Deep Learning Systems. IEEE Transactions on Software Engineering 48, 11 (2022),
4630–4646.

[82] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, Chengnian Sun, and Yu Jiang. 2019. VisFuzz: Understanding and
Intervening Fuzzing with Interactive Visualization. In Proceedings of the 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE’19). 1078–1081.

[83] Xiaogang Zhu and Marcel Böhme. 2021. Regression greybox fuzzing. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS’21). 2169–2182.

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://github.com/posl/fuzzingChallengesReplicationPackage
https://github.com/obgm/libcoap/issues/213
https://github.com/secdev/scapy/issues/1398
https://github.com/secdev/scapy/issues/3347
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Study Design
	2.1 Manual Analysis on GitHub Issues
	2.2 Survey with Developers

	3 Results
	3.1 Challenges from Fuzzing Itself
	3.2 Challenges from Fuzzing Service Providers
	3.3 Survey Result Analysis

	4 Threats to Validity
	5 Related Work
	5.1 Studies on Fuzzing Techniques
	5.2 Studies on Fuzzing Challenges

	6 Conclusions
	References

