
Using Interactive Animations to Analyze
Fine-grained Software Evolution

Carmen Armenti∗, Michele Lanza∗
∗REVEAL @ Software Institute – USI, Lugano, Switzerland

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: TBD

Abstract—Understanding the evolution of software systems is
a challenging task, due to their sheer size and complexity. Several
visualization approaches have been presented over the years,
using both 2D and 3D depictions. The vast majority of the
approaches is geared towards understanding the “big picture”,
facilitating the comprehension of the overall evolution. However,
when it comes to understanding the basic building blocks of
software evolution, i.e., the commits performed by the developers,
visualization seems to fall short in favor of the de facto standard
of textual diff views.

We present an approach, implemented in a custom tool, to
depict commits using interactive animations which allow the
viewer to inspect and dissect the intricacies of one or multiple
commits. We illustrate our approach on a number of case studies,
showing its potential benefits.

Index Terms—software animation, program comprehension

I. INTRODUCTION

As Lehman stated half a century ago, software systems
increase in complexity and scale as they are adapted to
changing requirements [1]. Understanding software evolution
is a complex mental activity that demands technical knowledge
and abstraction skills [2]. Although software consists of code,
the development process involves more than writing text [3].
Developers spend a significant amount of time reading and
understanding source code [4]–[6], with the aim of building a
mental model of the system they are working on [6]–[8]. While
textual information is useful, it can lead to comprehension
issues [9]. Text processing relies on less efficient cognitive
processes [10], making software difficult to understand when
viewed in its textual form [6], [11].

Software visualization aids in understanding software sys-
tems [12] by mapping software entities, behaviour, and evo-
lution to visual metaphors, thereby reducing the perceived
complexity and providing clearer insights and understanding
[10], [13]. Over the years, various visualization approaches
have been developed, including 2D (e.g., [14]–[17]) and 3D
depictions (e.g., [18]–[20]), as well as immersive environments
(e.g., [21], [22]). Animated visualizations have also been uti-
lized for educational purposes [11] and to visualize software-
related aspects, such as program execution [11], [23] and the
history of software repositories [24], [25].

Most visualizations represent coarse-grained structures of
software systems, facilitating the comprehension of the overall
evolution. However, when it comes to understanding the
fundamental building blocks of software evolution – embodied
by the commits performed by developers – visualization falls
short, and textual diff views remain the de facto standard.

According to Weinberg “The reading of programs is still the
key to understand how we make programs” [3]. Source code
remains the natural and primary focus for understanding both
a software system and its evolution [7], [26], [27]. During code
reviews activities and when accepting pull requests, developers
have no other choice than relying on (code) textual diffs, which
are the primary source of information they seek, as code-diffs
log the parts of the system that have been changed. In fact,
code-diffs are the first point of reference developers look into
when commit messages are unclear [9].

Many software engineering tasks require developers to un-
derstand the history and evolution of source code [6]. Studies
have shown that resolving questions about the rationale behind
source code changes (i.e., who did what, why, and when) is
time-consuming, and that methods providing the creation and
evolutionary history of code can help developers understand
the design rationale and the context of the changes [4], [28].

Understanding the evolution of software systems is a chal-
lenging problem due to the extensive, time-based, and hetero-
geneous nature of change sequences tracked by the commits
of Version Control Systems (VCS). While the field of software
visualization has developed powerful techniques to synthesize
and simplify complex information, these methods typically
face limitations such as scale and modularization. Also, they
usually lack temporal context and struggle to represent fine-
grained information. On the other hand, history exploration
tools (e.g., GitGraph, CHRONOS [29], Deep Intellisense
[30]) and code reviews tools (e.g., Gerrit, GitHub interface)
allow one to browse throughout the evolution (i.e., time) of
software systems and answer very specific questions engrained
in the history of a piece of software (e.g., what is the last
revision in which this line of code was modified?), albeit
exercising a higher cognitive load, since they mostly rely on
textual information.

We present an approach, implemented in a tool, to inspect
and dissect one or multiple commits through interactive ani-
mated visualizations, where the changes between two or more
sequential commits, are represented in their dynamic nature.
The interactivity of the animations we propose plays a major
role: The approach allows to investigate and further inspect
each file version pertaining to the commit at any moment in
time during the animation. Basic features such as pausing, re-
winding or replaying are provided. We present the tool sup-
ported by the approach, that we describe and illustrate through
a number of case studies showing the potential benefits of our
idea, and conclude with a reflection on the findings.

https://www.doi.org

II. RELATED WORK

Understanding Commits. Commits are atomic units of
change of software systems: By tracking information about the
evolution of systems they are a valuable resource to support
software evolution research. The problem of understanding
commits has long been explored by researchers. Hattori et al.
[31] proposed a size segmentation of commits based on the
number of files they contain. Alali et al. [32] also aimed at
characterising commits, including file and hunk diffs. Commits
adhere to some rationale [33]: Tao et al. [34] found that the
most important information needed to understand commits
is logic. The logic of a piece of software, documented by
commits, is conveyed by textual code-diffs. However, reading
and understanding code-diffs remains a demanding task [35].

Software Evolution. Several studies leveraged visualization
to understand system evolution. Revision Towers [25] repre-
sented by whom and to what extent a file has been changed.
The RepoGrams tool provides a metric-based visualization
model to understand the evolution of metrics during the history
of a software project [36]. Researchers have used a two-
dimensional matrix structure as the baseline for their visu-
alization to (1) present metrics changes and (2) improve the
software evolution comprehension [37]–[39]. Aghajani et al.
proposed the Code Time Machine, a plugin which leverages
visualization techniques to represent the history of files, which
can be augmented with meta-information mined from the
underlying versioning system [40]. Zimmermann et al. applied
data mining techniques to version histories and proposed a
tool (ROSE) to detect changes and build prediction model to
suggest future changes to developers [41]. Kim et al. presented
an interactive visual analytics system to represent a large Git
graph in a scalable manner, to allow developers to effectively
understand the context of development history through the
interactive exploration of Git metadata [42].

Program Animations. In 1990, Stasko claimed that pro-
grams are difficult to understand when viewed in textual
form: The meaning, methodology and purpose of a program
are better explained by algorithm animations than program’s
textual representation. He proposed an approach to convey the
meaning and purpose of programs, which is based on animated
graphical views [11]. Animations were also employed in other
disciplines other than software engineering [43]–[45].

Although algorithm animations have been used primarily for
instructional purposes, some frameworks have been developed
for industrial prototyping and simulation as well [46]. Anima-
tions, by dynamically displaying a process or a procedure,
should be able to compensate for a student’s scarce aptitude
or skill to imagine motions [47]. Hoffler et al. conducted
a meta-analysis of 26 primary studies, yielding 76 pair-
wise comparisons of dynamic and static visualizations, which
revealed an overall advantage of instructional animations over
static pictures [48]. Dynamic visualizations help in visualizing
a process resulting in a reduction of cognitive load compared
to a situation in which the process or the procedure has to be
reconstructed from a series of static pictures [49].

The rationale for animations is based on the cognitive load
theory, which provides a theoretical foundation to explain the
superiority of animations over static graphics [50]–[52].

Visualization tools, such as Gource, provide visualizations
of the activity of a Git repository in an animated and aesthetic
fashion, but the granularity depicted is coarse-grained and
the resulting animation does not allow for interaction and
inspection of the changes being displayed.

Learning with static visual representations requires informa-
tion integration and inferential reasoning. On the other hand,
animations are made up of consecutive visual representations
(frames), which can serve to facilitate the understanding of
dynamic systems and represent their changes over time [53].
Our work proposes an approach that leverages interactive and
animated customized visualizations to represent fine-grained
information about the evolution of software systems, providing
a dynamic visual approach for exploring software histories.

III. SOFTWARE EVOLUTION COMPREHENSION WITH
INTERACTIVE ANIMATIONS

Commits are usually depicted as text-based “diff represen-
tations,” which neglects the actual dynamics of file transitions
between versions. Represented as text, code changes in files
are typically reviewed individually, despite files in the same
commit changing together. It also has limitations with respect
to time, as it squashes the time period during which changes
occur, discarding important details [31], [54], [55] and hinder-
ing the comprehension of source code changes rationale [6].
The core idea of our approach is to represent the evolutive
nature of file version changes through animated visualizations.
Figure 1 shows the overall approach.

A. Animation Assembly

An animation is composed of 5 phases (4 in Figure 1):
pre-commit, prologue, corpus, epilogue, and post-commit.
1) Pre-Commit. Each file involved in the commit is visual-

ized, along with its name and a bar, whose length encodes
the lines of code of the file version before the commit. Files
removed during the commit are colored red. File added
during the commit are not displayed at this stage. Modified
files are color-coded: Light green if they grow because of
the commit and light red if they shrink.

2) Prologue. This phase is dedicated to showing the appear-
ance of newly added files throughout the commit, using
for each one of them a fade-in effect. The newly added
files are color-coded as green bars, and their length is kept
to a minimum value until the next phase: Their growth is
depicted during the main corpus stage.

3) Corpus. This is the main phase of the animation, and takes
up most of the time. Files that grow or shrink as a result of
the commit grow/shrink accordingly. Files that are changed
but do not grow or shrink (i.e., lines are substituted with
other lines) are shown as “activated”: Their color changes
following a fading color scheme that ranges from light grey
(only one line is substituted) to deep blue (all lines are
substituted).

1

GitHub Commits

Data Mining

2
Commit Selection

User can select one or
more* commits to

animate

* a contiguous sequence of
commits can be

aggregated into a “digest”
animation

3
Commit Dismantling

4

Files added

Files modified

Files deleted

Files renamed

Animation Assembly

5
Interactive Viewer

LOC pre-commit

fileVersion 1A

D

M

R

M

M

Pre-Commit

fileVersion 2

fileVersion 3

fileVersion 4

fileVersion 5

fileVersion 6

Lines of Code

LOC pre-commit

fileVersion 1A

D

M

R

M

M

Prologue

fileVersion 2

fileVersion 3

fileVersion 4

fileVersion 5

fileVersion 6

Lines of Code

LOC pre-commit

fileVersion 1A

D

M

R

M

M

Corpus

fileVersion 2

fileVersion 3

fileVersion 4

fileVersion 5

fileVersion 6

Lines of Code

LOC pre-commit

fileVersion 1A

D

M

R

M

M

Epilogue

fileVersion 2

fileVersion 3

fileVersion 4

fileVersion 5

fileVersion 6.1

Lines of Code

LOC pre-commit

fileVersion 1A

D

M

R

M

M

Post-Commit

fileVersion 2

fileVersion 3

fileVersion 4

fileVersion 5

Lines of Code

fileVersion 6.1

Time (t)

C
or

pu
s

Pr
ol

og
ue

Pr
e-

co
m

m
it

Po
st

-c
om

m
it

Ep
ilo

gu
e

Fig. 1. Overview of the approach: The processing is depicted at the top, and the animation phases are detailed at the bottom.

4) Epilogue. This phase displays the disappearance of files
deleted during the commit, each with a fade-out effect. This
allows users to understand at one glance which files have
been deleted. For files that have been renamed during the
commit, this phase will fade out the old name and then
fade in the new name.

5) Post-Commit. This phase depicts the status of the files
participating to the commit after the commit has been
performed. The boxes representing deleted files are no
longer displayed; the length of each file bar represents
the number of lines they contain after the commit, the
colors continue to indicate the type of change the files have
undergone as a result of the commit.

B. Commit Selection

Commits are our unit of observation and its constituent
parts are the files that have been added, deleted, renamed,
and modified. Our tool allows users to pick (a) one single
commit or (b) a sequence of commits they want to animate.
The single-commit animation modality allows to answer
questions such as “what was the impact of this commit on the
system?”, while observing how the single commit transposed
file versions from their prior state to the one tracked by
the commit under observation. The commit digest modality
animates a sequence of commits and commits related to each
other (e.g., in the case of commits pertaining to a pull request)
and makes possible to answer questions like: “what happened
yesterday?”, “how did the system evolve between the opening
and closing of a GitHub issue?”, or “what is the summary of
a pull request?”. The animation modalities are described in
Section IV.

C. Interactive Viewer

The user can set animation-specific parameters, such as
frame rate and duration animation. Also, the Viewer allow
to specify how to spread the whole duration over the phases
of the animation. Experience values range between 5 and 10
seconds for the whole animation, most of which is taken up
by the corpus.

The animation is fed to a tool we implemented (Figure 2),
which allows users to select the commit or the sequence of
commits they want to animate A , and provides several means
to interact with the animation B , such as pausing, rewinding,
stepping, etc. Moreover, it allows further inspections on file
versions D , E , and one-click direct access to the GitHub diff
viewer D . Popups on each bar provide a summary on the type
of change the file version underwent with its value before and
after the commit C . At the bottom of the Interactive Viewer

F , the commit message and the number of files touched by
the commit selected are available, together with the link to
GitHub Commits view. Additional features of the Viewer also
include the possibility to export the animation as a video file
or a sequence of stills (sets of pictures).

IV. INTERMEZZO

Data Mining. We mined the data of the 10 most popular
software repositories from GitHub, ranked from the most
starred to the least. The number of stars is the most visible
indication of the popularity of open source projects, as starring
repositories is a way to bookmark a specific project and to
show appreciation in the GitHub ecosystem. Table I reports
the list of projects collected and shows statistics such as the
number of commits and stars as of May 28, 2024.

TABLE I
THE TOP 10 MOST POPULAR OPEN SOURCE GITHUB PROJECTS

Name #Commits #Stars Explored

freecodecamp 35,430 389,886 Yes
developer-roadmap 4,175 275,869 Yes
react 18,716 223,064 Yes
vue 3,590 207,037 Yes
tensorflow 163,529 182,509 No
linux 1,275,250 171,548 No
ohmyzsh 7,235 169,475 Yes
bootstrap 22,800 167,621 Yes
flutter 40,795 162,153 Yes
vscode 121,425 158,513 No

A

F

D

B

E

C

Fig. 2. Interactive Viewer on a commit of the JetUML repository, performed on December 18, 2020.

We did not explore 3 (out of 10) software repositories
because their size made the data collection impractical for the
purposes of the this study. The column “Explored” indicates
whether the project was considered or not.

Example Repository. Using two examples from JetUML1,
we show how we utilize animations to understand commits.
Our tool represents an animation as an interactive “movie” that
can be paused, rewound, etc., where any entity is available for
inspection at any moment.

Animations are difficult to illustrate on paper. Both exam-
ples and case studies animations are available as videos on
YouTube (links provided in figure captions). For discussion
purposes, we disassemble the animation into a series of frames,
showing only main frames in a top-down order. The animation
is composed of many more frames, whose number depends
on its duration and frame rate. For example, a 5 seconds
animation at 30 FPS will generate a total of 150 frames.

A. Commit Animation Example

Figure 3 depicts a commit versioned on January 22, 2015,
whose message is “Code cleanups”. The file versions are or-
dered alphabetically (as in the GitHub interface). In this com-
mit, the animation mainly operates in the corpus phase 3 - 5 ,
as all the files involved gets modified. While Direction.java
increase in its size of 2 lines of code, FormLayout.java and
GraphFrame.java undergo lines substitutions: In the first file
67 lines out of 100 are modified, in the latter 2 out of 133. The
different magnitude of modifications determines the different
activation color, which in the first instance is indigo and in
the second case is a somewhat deeper shade of grey than
the starting color. PrintDialog.java gets deleted: This action
is depicted not only during the corpus but also in the epilogue
phase 6 , where it fades out. Pre- 1 and post-commit 7

frames depicts the state of the file versions involved before and
after the commit. There is no activity in the prologue phase

2 , as no file was added.

1§ See: https://github.com/prmr/JetUML

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Pr
ol
og

ue
C
or
pu

s
C
or
pu

s
C
or
pu

s
Ep

ilo
gu

e
Po

st
-c
om

m
it

2

3

4

5

6

7

Direction.java

FormLayout.java

GraphFrame.java

PrintDialog.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Pr
e-
co

m
m
it

1

Fig. 3. Commit Animation Example: January 22, 2015 – JetUML.
Å Video: https://youtu.be/5tg8rNRpwPk

B. Commit Digest Example

Figure 4 depicts the commits versioned in 2017, on De-
cember 11 and 12. The file versions are ordered alphabetically
(inter single commit) and chronologically (intra commits).

Assuming there are 2 commits with 2 files versions each,
the first 2 glyphs (boxes and labels) are ordered alphabetically
between the two of them, and appear before the 2 files versions
of the second commit.

In a commit digest, the transition between n + 1 states of
parts of a system is represented (n is the number of commits).

https://github.com/prmr/JetUML
https://youtu.be/5tg8rNRpwPk

Pre-digest

Corpus

Prologue

Corpus

Corpus

Corpus

Corpus

Epilogue

Post-digest

1

2

3

4 7

85

6 9

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

src/ca/mcgill/cs/jetuml/persistence/JsonEncoder.java

src/ca/mcgill/cs/jetuml/persistence/PersistenceService.java

src/ca/mcgill/cs/jetuml/persistence/JsonDecoder.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationException.java

src/ca/mcgill/cs/jetuml/persistence/Properties.java

test/ca/mcgill/cs/jetuml/graph/nodes/TestActorNode.java

src/ca/mcgill/cs/jetuml/graph/ValueExtractor.java

src/ca/mcgill/cs/jetuml/persistence/Context.java

src/ca/mcgill/cs/jetuml/graph/GraphElement.java

src/ca/mcgill/cs/jetuml/graph/nodes/AbstractNode.java

src/ca/mcgill/cs/jetuml/graph/nodes/NamedNode.java

src/ca/mcgill/cs/jetuml/persistence/AbstractContext.java

src/ca/mcgill/cs/jetuml/persistence/SerializationContext.java

src/ca/mcgill/cs/jetuml/persistence/DeserializationContext.java

src/ca/mcgill/cs/jetuml/graph/edges/AbstractEdge.java

src/ca/mcgill/cs/jetuml/graph/nodes/FieldNode.java

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Fig. 4. Commit Digest Example: December 11&12, 2017 – JetUML. Å Video: https://youtu.be/jRsynQZp4PM

The structure of the animation, i.e., the sequence of prologue,
corpus, and epilogue, summarizes the chain of the commits
animated: The change-phase mapping is preserved and the
history between commits is represented in the corpus phase,
which has as many rounds as the digest magnitude.

At the beginning of the animation all file versions are
depicted 1 , and newly added files, which appear fading in
during the prologue, are represented only by their names. The
single commits changes are represented during the corpus
phase 3 - 7 and are animated in sequence: Frame 5 in
Figure 4 is the pivot frame, i.e., the conjunction frame between
commits. In the epilogue deleted versions disappear 8 , and
the post-digest represent the result of the changes applied to

all files versions in the commit 9 , especially if compared
to the pre-digest 1 . Pre-digest and post-digest phases are
analogous to the single commit animation’s pre-commit and
post-commit phases.

When files are touched by multiple and sequential commits,
the animation highlights the chain of changes those files
underwent. Figure 4 exemplifies such a case: The animation
conveys that Context.java is first added and then deleted, and
that GraphElement.java and AbstractNode.java first grow and
then shrink. NamedNode.java also slightly changes over all
commits (from 5 - 8 it does not change much, indeed 2 lines
of code out of 76 were substituted). All other file versions are
added or grow in size within a single commit.

https://youtu.be/jRsynQZp4PM

src/platforms/web/runtime/components/index.js

src/platforms/web/runtime/components/transition-control.js

src/platforms/web/runtime/components/transition-group.js

src/platforms/web/runtime/components/transition.js

0 10 20 30 40 50 60 70

src/platforms/web/runtime/components/index.js

src/platforms/web/runtime/components/transition-control.js

src/platforms/web/runtime/components/transition-group.js

src/platforms/web/runtime/components/transition.js

0 10 20 30 40 50 60 70

src/platforms/web/runtime/components/index.js

src/platforms/web/runtime/components/transition-control.js

src/platforms/web/runtime/components/transition-group.js

src/platforms/web/runtime/components/transition.js

0 10 20 30 40 50 60 70

src/platforms/web/runtime/components/index.js

src/platforms/web/runtime/components/transition-control.js

src/platforms/web/runtime/components/transition-group.js

src/platforms/web/runtime/components/transition.js

0 10 20 30 40 50 60 70

src/platforms/web/runtime/components/index.js

src/platforms/web/runtime/components/transition-control.js

src/platforms/web/runtime/components/transition-group.js

src/platforms/web/runtime/components/transition.js

0 10 20 30 40 50 60 70

src/platforms/web/runtime/components/index.js

src/platforms/web/runtime/components/transition-control.js

src/platforms/web/runtime/components/transition-group.js

src/platforms/web/runtime/components/transition.js

0 10 20 30 40 50 60 70

Pr
e-
co

m
m
it

1

Pr
ol
og

ue

2

C
or
pu

s

3

C
or
pu

s
Ep

ilo
gu

e
Po

st
-c
om

m
it

4

6

5

Fig. 5. Vue: Single commit animation of tangled code changes from July 13, 2016. Å Video: https://youtu.be/7jQkQD5Colk

V. CASE STUDIES

To evaluate the usefulness of our approach, we explored
7 (out of 10) repositories and report 3 case studies from 3
different projects, pertaining to:

• Tangled code changes identification;
• Chronological settlement of idem-timestamp commits

(e.g., commits in pull-requests or GitHub issues);
• Summary of tiny commits (defined by Hattori et al. as

those with 5 files or fewer [31]);
• Overview of development activities over a period of time.
The first case study (V-A) illustrates the benefits that our

animations can provide while analyzing a single commit; the
second (V-C) and third (V-B) depict commits digests.

A. Vue – Tangled Code Changes

Vue is a JavaScript framework for building UIs, that builds
on top of standard HTML, CSS, and JavaScript. Vue, specif-
ically Vue 2, is the 5th most popular software repository on
GitHub by number of stars. Vue 2 has reached end of life
on December 31, 2023 and has been succeeded by its next
version, yet the repository is still available and maintained.

The commit we picked as a case study dates back to July
13, 2016. The first commit happened on April 4, 2016, thus at
that time the repository was at the beginning of its evolution.

Figure 5 dissects the commit animation into 6 frames and
represents the main frames of the animation that involves 4
file versions. Thanks to the use of 2 different shades of green,
it is easy to distinguish files that are newly added from those
who only incremented in their size.

Most importantly, animating single commits allows to grasp
tangled code-changes. In the case study proposed it appears
that the content of transition-control.js was transmitted to
transition-group.js and transition.js.

In fact, while the bar of transition-control.js shrinks to its
minimum size during the corpus phase 2 - 5 and disappears
during the epilogue 5 , on the other hand transition.js gets
increased 2 - 5 .

Accordingly, in index.js 2 out of 7 lines of code were
changed. Indeed, as stated by the commit message “transition-
mode was merged into transition”. The file transition-group.js
gets created with 1 line of code only.

This animated visual depiction facilitates the gathering of
possible dependencies between file versions. In the case of
such commit, since changes in transition.js led to changes in
index.js, one could expect also in the future to find this two
files changing in the same context.

B. Oh My Zsh – A Pull Request of Tiny Commits

Oh My Zsh is a community-driven framework for managing
zsh configuration; it is the 7th most popular project by number
of stars. As of May 28, 2020, it has 7,235 commits.

As stated at the beginning of this section, the second and
third scenarios that we believe might benefit from our tech-
nique are: (a) the chronological settlement of idem-timestamp
commits and (b) the summary of tiny commits. These benefits
are leveraged in the commits digest modality, which enables
to animate a sequence of commits possibly tied to each other,
such as those part of the same pull request (the latter comes
under the scenario of idem-timestamp commits).

One disadvantage of VCS, such as Git, is that there are
cases when the historical information is rubbed out, e.g., when
a pull request is ready to be merged, the commit order and
authorship information can be preserved or not, depending
on the merge strategy adopted [56]. Also, still in the case of
commits belonging to pull requests, VCS compress the time
span during which code changes occur, discarding relevant
details: In such case, the commits have all the same timestamp,
even if they were performed at separate times.

https://youtu.be/7jQkQD5Colk

Pr
e-
di
ge

st

1

Pr
ol
og

ue

2

C
or
pu

s

3

C
or
pu

s

4

C
or
pu

s

5

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

0 10 20 30 40

C
or
pu

s

C
or
pu

s
C
or
pu

s
C
or
pu

s
C
or
pu

s
Ep

ilo
gu

e
Po

st
-d
ig
es

t

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

0 10 20 30 40

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

0 10 20 30 40

0 10 20 30 40

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

0 10 20 30 40

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

0 10 20 30 40

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

9

6

8

7

0 10 20 30 40

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

0 10 20 30 40

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

0 10 20 30 40

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

0 10 20 30 40

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

0 10 20 30 40

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

0 10 20 30 40

plugins/bundler-exec/bundler-exec.plugin.zsh

plugins/bundler/bundler.plugin.zsh

plugins/rails3/rails3.plugin.zsh

10

11

12

Fig. 6. Oh My Zsh: Commit digest of 10 idem-timestamp and tiny commits from a pull request on July 13, 2011. Å Video: https://youtu.be/ipffv KxHq4

Analyzing a software system’s commit history by browsing
the commit diff views provided by modern tools is a time-
consuming task. It is considerably more difficult if the commits
include just a fiew files. The history of Oh My Zsh has a large
amount of tiny commits (6,275 out of 7,257).

To demonstrate how our approach might be useful in the
two previously described cases, we picked 10 tiny commits
from the same pull request on July 13, 2011.

The resulting animation depicted in Figure 6, not only
allows one to view the animated transition between different
states of file versions all at once (which would normally be
analyzed separately), but it also recreates the chronology of
their changes, which is typically flattened by VCS.

The file bundler-exec-plugin.zsh undergoes 5 changes:
Firstly it gets created 1 - 2 ; 3 out of 37 of its lines of
code are modified 4 - 5 and it shrinks as 3 lines of code
are deleted from it 6 . It is modified again 6 - 7 , this time
more lines of code are substituted (15 out of 34). Then it
is deleted 9 - 12 . On the other hand, bundler.plugin.zsh and
rails3.plugin.zsh only grow and shrink respectively 3 - 8 .

C. Bootstrap – May 2012

Bootstrap is a “powerful, extensible, and feature-packed
frontend toolkit” at the 8th place amongst the 10 most popular
GitHub software repositories, based on the number of stars.
When we collected the data, the repository was composed by
22,813 commits (on May 28, 2024 they were 22,800).

https://youtu.be/ipffv_KxHq4

js/bootstrap-tooltip.js

navbar.html

docs/examples/navbar.html

forms.html

docs/examples/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

1

2

3

4

5

6

11

12

Pr
e-
di
ge

st
Pr
ol
og

ue
C
or
pu

s
C
or
pu

s

C
or
pu

s

js/bootstrap-tooltip.js

navbar.html

docs/examples/navbar.html

forms.html

docs/examples/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

C
or
pu

s
C
or
pu

s

C
or
pu

s

C
or
pu

s
Ep

ilo
gu

e
Po

st
-d
ig
es

t

7

C
or
pu

s

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

js/bootstrap-tooltip.js

navbar.html

docs/examples/navbar.html

forms.html

docs/examples/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

js/bootstrap-tooltip.js

navbar.html

docs/examples/navbar.html

forms.html

docs/examples/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

js/bootstrap-tooltip.js

navbar.html

docs/examples/navbar.html

forms.html

less/tests/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

js/bootstrap-tooltip.js

navbar.html

docs/examples/navbar.html

forms.html

less/tests/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

js/bootstrap-tooltip.js

navbar.html

less/tests/navbar.html

forms.html

less/tests/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

js/bootstrap-tooltip.js

navbar.html

less/tests/navbar.html

forms.html

less/tests/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

js/bootstrap-tooltip.js

navbar.html

less/tests/navbar.html

forms.html

less/tests/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

js/bootstrap-tooltip.js

navbar.html

less/tests/navbar.html

forms.html

less/tests/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

js/bootstrap-tooltip.js

navbar.html

less/tests/navbar.html

forms.html

less/tests/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

js/bootstrap-tooltip.js

navbar.html

less/tests/navbar.html

forms.html

less/tests/forms.html

docs/templates/pages/index.mustache

docs/index.html

js/bootstrap-dropdown.js

less/type.less

js/tests/unit/bootstrap-tooltip.js

less/component-animations.less

README.md

Fig. 7. Bootstrap: Development activity digest from May 14 to May 28, 2012. Å Video https://youtu.be/T8mZwfIcffY

We selected 16 commits performed on May 2012 and
represented them in a commit digest: The main frames of the
animation are depicted in Figure 7. For the sake of clarity, we
excluded from all commits made in May 2012 those with file
versions large enough to skew the whole view.

The commits digest modality allows to aggregate sequen-
tial commits into a commit digest. This animation modality
summarizes the selected commits, leveraging software evolu-
tion comprehension when a period of time of development,
e.g., a month, a week, or even a day, needs to be explored.

https://youtu.be/T8mZwfIcffY

A way to watch sequential changes using visual aids has
the potential to enhance code comprehension tasks as well:
It can help to understand the context of the changes made,
and identify files that are regularly modified. The motivation
of our animated commits digest is to make software evolution
more accessible by grouping sequential commits.

Typically, when developers review code, they are faced with
textual code-diffs that do not readily allow them to traverse
the history previous to the specific diff view they are looking
at, which in fact might be beneficial to discover when a certain
feature or defect was introduced. To the best of our knowledge,
the only way to achieve this is to manually browse the (textual)
commits history. Reading textual diffs and browsing software
development history are both time-consuming processes.

The commits digest in Figure 7 provides a visual overview
of the sequence of changes tracked by 16 commits. The
digest illustrates how files change throughout the month of
May, 2012. The first file undergoing changes is js/bootstrap-
tooltip.js, that increases 1 - 9 and decreases 10 - 12 . The
files navbar.html, docs/examples/navbar.html, and forms.html
get created in 3 subsequent commits and are incremented until
they reach quite the same size 3 - 4 , before forms.html starts
being deleted 4 . 8 commits after its creation, navbar.html
gets deleted 8 - 12 ; on the other hand docs/examples/-
navbar.html is renamed in tests/tests/navbar.html 7 . The
files docs/templates/pages/index.mustache and docs/index.html
undergo lines substitutions during the 10th commit of the
digest: Only 1 line is changed in both files. The files
js/bootstrap-dropdown.js and less/type.less remain subtractive
during the whole corpus phase 3 - 10 ; on the opposite
js/tests/unit/bootstrap-tooltip.js and README.md linger as ad-
ditive files. In the file less/component-animations.less, 3 lines
out of 20 are substituted 10 .

VI. DISCUSSION

The comprehension of commits is key in program compre-
hension activities, and in practical scenarios where developers
need to review past changes. Understanding the intents of
the implementation behind commits is fundamental as well.
Static visualizations are successful in many contexts, yet they
fall short when it comes to representing dynamic events, such
as code changes. We proposed a novel means to understand
fine-grained software evolution using animated and interactive
visualizations. However, the approach has a number of short-
comings, still.

Limitations. Representing large commits or commits with
one or more file versions containing a large number of lines
of code distorts the visualization and makes it difficult to spot
the changes in smaller files. While one could think of applying
logarithmic scaling, the question that should be asked is why
there are very large files in the first place.

At this time we filter out binary files from the commits
of the projects under examination. While they do not provide
much new knowledge regarding coding activities (they can
only be added or deleted), they remain part of the codebase if
present, and should be presented as well.

Next steps. We will refine our animated visualizations,
by providing metaphors other than the one used which is
based on polymetric views [57]: The idea is to provide means
to understand where in a file lines are added, deleted, or
substituted. We will take inspirations from the SeeSoft tool
[14] and the Microprints [58], which are capable of depicting
the code down to the level of single characters. Last, but
not least, we plan on performing a controlled experiment
with human subjects, on the one hand to gather feedback to
ameliorate the animations, on the other hand to evaluate to
what extent and in which contexts our animations prove to be
beneficial.

VII. CONCLUSION

Software systems evolution is a difficult domain to under-
stand in and of itself, as it is composed of complex and het-
erogeneous information, coupled with scarse documentation:
For example, commit messages are often of poor quality [59]
and almost 40% of all pull requests are not tracked as merged
even though they were [56]. One of the promises of software
visualization is to tackle these complexities.

We proposed an approach, implemented in an interactive
animation tool, whose fundamental idea is to provide a new
way to understand and look at code changes. The animated
visualizations we propose seek to facilitate program compre-
hension and propose a fresh approach to analyze fine-grained
software evolution.
Å All the videos referenced in the paper are compiled

in the following YouTube playlist: https://www.youtube.com/
playlist?list=PL9LiNpHT0QqgkkQjCfT8yduye6x8yFhOL

BONUS

For recreational purposes, we created a digest of all the
commits from the repository we used to write the paper
(Figure 8). The digest animation illustrates the benefits of
extending the deadline, which resulted in nearly 40 additional
commits on the files depicted in Figure 8.
Å Digest video: https://youtu.be/uJ8mLszOIEY

ACKNOWLEDGMENTS

The authors would like to thank the Swiss Group for Origi-
nal and Outside-the-box Software Engineering (CHOOSE) for
sponsoring the trip to the conference and the Swiss National
Science Foundation (SNF) for the financial support via the
project “INSTINCT” (Project No. 190113).

https://www.youtube.com/playlist?list=PL9LiNpHT0QqgkkQjCfT8yduye6x8yFhOL
https://www.youtube.com/playlist?list=PL9LiNpHT0QqgkkQjCfT8yduye6x8yFhOL
https://youtu.be/uJ8mLszOIEY

0 10 20 30 40 50 60 70 80 90 100 110 120 130

case-study.tex

intermezzo.tex

approach.tex

related.tex

main.tex

conclusion.tex

discussion.tex

outlook.tex

epilogue.tex

0 10 20 30 40 50 60 70 80 90 100 110 120 130

case-study.tex

intermezzo.tex

approach.tex

related.tex

main.tex

conclusion.tex

discussion.tex

outlook.tex

epilogue.tex

0 10 20 30 40 50 60 70 80 90 100 110 120 130

case-study.tex

intermezzo.tex

approach.tex

related.tex

main.tex

conclusion.tex

discussion.tex

outlook.tex

epilogue.tex

0 10 20 30 40 50 60 70 80 90 100 110 120 130

case-study.tex

intermezzo.tex

approach.tex

related.tex

main.tex

conclusion.tex

discussion.tex

outlook.tex

epilogue.tex

0 10 20 30 40 50 60 70 80 90 100 110 120 130

case-study.tex

prologue.tex

approach.tex

related.tex

main.tex

conclusion.tex

discussion.tex

outlook.tex

epilogue.tex

Pr
e-
di
ge

st

1

C
or
pu

s
C
or
pu

s

C
or
pu

s
C
or
pu

s
Po

st
-d
ig
es

t

case-study.tex

modalities.tex

approach.tex

related.tex

main.tex

conclusion.tex

discussion.tex

outlook.tex

epilogue.tex

0 10 20 30 40 50 60 70 80 90 100 110 120 130

4

52

63

Fig. 8. Frame 1 is the status of the file versions depicted on June 15. Frames 2-5 show the activity during the days 15-18 June. Frame 6 is the status of the
file versions involved in the last changes at submission time.

REFERENCES

[1] M. M. Lehman, “Laws of software evolution revisited,” in European
workshop on software process technology. Springer, 1996.

[2] R. D. Banker, G. B. Davis, and S. A. Slaughter, “Software development
practices, software complexity, and software maintenance performance:
A field study,” Management science, vol. 44, no. 4, pp. 433–450, 1998.

[3] G. M. Weinberg, The psychology of computer programming. Van
Nostrand Reinhold New York, 1971, vol. 29.

[4] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of ICSE 2007 (Interna-
tional Conference on Software Engineering). IEEE, 2007, pp. 344–353.

[5] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last summer-
An investigation of how developers spend their time,” in Proceedings
of ICPC 2015 (International conference on Program Comprehension).
IEEE, 2015, pp. 25–35.

[6] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proceedings of ICSE 2006
(International Conference on Software Engineering). ACM, 2006.

[7] V. Singh, L. L. Pollock, W. Snipes, and N. A. Kraft, “A case study
of program comprehension effort and technical debt estimations,” in
Proceedings of ICPC 2016 (International Conference on Program
Comprehension). IEEE, 2016, pp. 1–9.

[8] M.-A. Storey, “Theories, methods and tools in program comprehension:
Past, present and future,” in Proceedings of IWPC 2005 (International
Workshop on Program Comprehension). IEEE, 2005, pp. 181–191.

[9] E. Fregnan, L. Braz, M. D’Ambros, G. Çalıklı, and A. Bacchelli, “First
come first served: The impact of file position on code review,” in
Proceedings of ESEC/FSE 2022 (Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing). ACM, 2022, pp. 483–494.

[10] D. Moody, “The “physics” of notations: Toward a scientific basis for
constructing visual notations in software engineering,” IEEE Transac-
tions on Software Engineering, vol. 35, no. 6, pp. 756–779, 2009.

[11] J. T. Stasko, “Tango: A framework and system for algorithm animation,”
ACM SIGCHI Bulletin, vol. 21, no. 3, pp. 59–60, 1990.

[12] S. Diehl, “Software visualization,” in Proceedings of ICSE 2005 (Inter-
national Conference on Software Engineering), 2005, pp. 718–719.

[13] S. Benford, C. Brown, G. Reynard, and C. Greenhalgh, “Shared spaces:
Transportation, artificiality, and spatiality,” in Proceedings of CSCW
1996 (Conference on Computer Supported Cooperative Work). ACM,
1996, pp. 77–86.

[14] S. Eick, J. Steffen, and E. Sumner, “Seesoft-A tool for visualizing line
oriented software statistics,” IEEE Transactions on Software Engineer-
ing, vol. 18, no. 11, pp. 957–968, 1992.

[15] M. Pinzger, H. Gall, M. Fischer, and M. Lanza, “Visualizing multiple
evolution metrics,” in Proceedings of SOFTVIS 2005 (ACM Symposium
on Software Visualization). ACM, 2005, pp. 67–75.

[16] W. Scheibel, C. Weyand, and J. Döllner, “Evocells – A treemap layout
algorithm for evolving tree data.” in VISIGRAPP (3: IVAPP), 2018, pp.
273–280.

[17] D. P. Tua, R. Minelli, and M. Lanza, “Voronoi evolving treemaps,”
in Proceedings of VISSOFT 2021 (Working Conference on Software
Visualization). IEEE, 2021, pp. 1–5.

[18] C. Knight and M. Munro, “Virtual but visible software,” in Proceedings
of VIS 2000 (Conference on Information Visualization). IEEE, 2000,
pp. 198–205.

[19] F. Pfahler, R. Minelli, C. Nagy, and M. Lanza, “Visualizing evolving
software cities,” in Proceedings of VISSOFT 2020 (Working Conference
on Software Visualization). IEEE, 2020, pp. 22–26.

[20] R. Wettel and M. Lanza, “Visualizing software systems as cities,”
in Proceedings of VISSOFT 2007 (Working Conference on Software
Visualization). IEEE, 2007, pp. 92–99.

[21] A. Hoff, L. Gerling, and C. Seidl, “Utilizing software architecture
recovery to explore large-scale software systems in virtual reality,”
in Proceeding of VISSOFT 2022 (Working Conference on Software
Visualization). IEEE, 2022, pp. 119–130.

[22] D. Moreno-Lumbreras, R. Minelli, A. Villaverde, J. M. González-
Barahona, and M. Lanza, “Codecity: On-screen or in virtual reality?”
in Proceedings of VISSOFT 2021 (Working Conference on Software
Visualization). IEEE, 2021, pp. 12–22.

[23] M. F. Kleyn and P. C. Gingrich, “GraphTrace—Understanding object-
oriented systems using concurrently animated views,” in Proceedings of
OOPSLA 1988 (Conference on Object-Oriented Programming Systems,
Languages and Applications). ACM, 1988, pp. 191–205.

[24] G. Occhipinti, C. Nagy, R. Minelli, and M. Lanza, “Syn: Ultra-scale
software evolution comprehension,” in Proceedings of ICPC 2023 (In-
ternational Conference on Program Comprehension). IEEE, 2023, pp.
69–73.

[25] C. M. Taylor and M. Munro, “Revision towers,” in Proceedings of
VISSOFT 2002 (International Workshop on Visualizing Software for
Understanding and Analysis). IEEE, 2002, pp. 43–50.

[26] M. D. Storey, F. D. Fracchia, and H. A. Müller, “Cognitive design
elements to support the construction of a mental model during software
exploration,” Journal of Systems and Software, vol. 44, no. 3, pp. 171–
185, 1999.

[27] T. Dal Sasso, R. Minelli, A. Mocci, and M. Lanza, “Blended, not stirred:
Multi-concern visualization of large software systems,” in Proceedings
of VISSOFT 2015 (International Conference on Software Visualization).
IEEE, 2015, pp. 106–115.

[28] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Evaluation and usability of programming languages and tools, 2010,
pp. 1–6.

[29] F. Servant and J. A. Jones, “History slicing: Assisting code-evolution
tasks,” in Proceedings of SIGSOFT 2012 (International Symposium on
the Foundations of Software Engineering), 2012, pp. 1–11.

[30] R. Holmes and A. Begel, “Deep intellisense: A tool for rehydrating evap-
orated information,” in Proceedings of MSR 2008 (Working Conference
on Mining Software Repositories). ACM, 2008, pp. 23–26.

[31] L. P. Hattori and M. Lanza, “On the nature of commits,” in Proceedings
of ASE 2008 (International Conference on Automated Software Engi-
neering). IEEE, 2008, pp. 63–71.

[32] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? A
characterization of open source software repositories,” in Proceedings
of ICPC 2008 (International Conference on Program Comprehension).
IEEE, 2008, pp. 182–191.

[33] K. A. Safwan and F. Servant, “Decomposing the rationale of code
commits: The software developer’s perspective,” in Proceedings of
ESEC/FSE 2019 (Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering),
2019, pp. 397–408.

[34] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software en-
gineers understand code changes? An exploratory study in industry,” in
Proceedings of FSE 2012 (International Symposium on the Foundations
of Software Engineering). ACM, 2012, pp. 1–11.

[35] K. Yamauchi, J. Yang, K. Hotta, Y. Higo, and S. Kusumoto, “Clustering
commits for understanding the intents of implementation,” in Proceed-
ings of ICSME 2014 (International Conference on Software Maintenance
and Evolution). IEEE, 2014, pp. 406–410.

[36] D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser, H. Becker,
M. Palyart, and G. C. Murphy, “Comparing repositories visually with
repograms,” in Proceedings of MSR 2016 (Working Conference on
Mining Software Repositories), 2016, pp. 109–120.

[37] M. Lanza and S. Ducasse, “Understanding software evolution using
a combination of software visualization and software metrics,” Obj.
Logiciel Base données Réseaux, vol. 8, no. 1-2, pp. 135–149, 2002.

[38] M. Lanza, S. Ducasse, H. C. Gall, and M. Pinzger, “CodeCrawler: An
information visualization tool for program comprehension,” in Proceed-
ings of ICSE 2005 (International Conference on Software Engineering),
15-21 May 2005, St. Louis, Missouri, USA, G. Roman, W. G. Griswold,
and B. Nuseibeh, Eds. ACM, 2005, pp. 672–673.

[39] M. Lanza, “The evolution matrix: Recovering software evolution using
software visualization techniques,” in Proceedings of IWPSE 2001
(International Workshop on Principles of Software Evolution). ACM,
2001, pp. 37–42.

[40] E. Aghajani, A. Mocci, G. Bavota, and M. Lanza, “The code time
machine,” in Proceedings of ICPC 2017 (International Conference on
Program Comprehension). IEEE, 2017, p. 356–359.

[41] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Transactions on
software engineering, vol. 31, no. 6, pp. 429–445, 2005.

[42] Y. Kim, J. Kim, H. Jeon, Y.-H. Kim, H. Song, B. Kim, and J. Seo,
“Githru: Visual analytics for understanding software development his-
tory through git metadata analysis,” IEEE Transactions on Visualization
and Computer Graphics, vol. 27, no. 2, pp. 656–666, 2020.

[43] L. P. Rieber, “Using computer animated graphics in science instruction
with children.” Journal of Educational Psychology, vol. 82, no. 1, p.
135, 1990.

[44] D. L. Sonnier and S. L. Hutton, “Enhancing visual aids through the use
of animation,” in Proceedings of MSCCC 2004 (Conference on Mid-
South College Computing). Mid-South College Computing Conference,
2004, p. 155–164.

[45] E.-M. Yang, T. Andre, T. J. Greenbowe, and L. Tibell, “Spatial ability
and the impact of visualization/animation on learning electrochemistry,”
International Journal of Science Education, vol. 25, no. 3, pp. 329–349,
2003.

[46] R. L. London and R. A. Duisberg, “Animating programs using
Smalltalk,” Computer, vol. 18, no. 08, pp. 61–71, 1985.

[47] G. Salomon, Interaction of Media, Cognition, and Learning: An Ex-
ploration of How Symbolic Forms Cultivate Mental Skills and Affect
Knowledge Acquisition, 1st ed. Routledge, 1994.

[48] T. N. Höffler and D. Leutner, “Instructional animation versus static
pictures: A meta-analysis,” Learning and instruction, vol. 17, no. 6,
pp. 722–738, 2007.

[49] M. Bétrancourt and B. Tversky, “Effect of computer animation on users’
performance: A review,” Le travail humain, vol. 63, no. 4, p. 311, 2000.

[50] F. Paas, A. Renkl, and J. Sweller, “Cognitive load theory and instruc-
tional design: Recent developments,” Educational psychologist, vol. 38,
no. 1, pp. 1–4, 2003.

[51] W. Schnotz and C. Kürschner, “A reconsideration of cognitive load
theory,” Educational Psychology Review, vol. 19, pp. 469–508, 2007.

[52] J. Sweller, J. J. Van Merrienboer, and F. G. Paas, “Cognitive architecture
and instructional design,” Educational Psychology Review, vol. 10, pp.
251–296, 1998.

[53] S. Berney and M. Bétrancourt, “Does animation enhance learning? A
meta-analysis,” Computers & Education, vol. 101, pp. 150–167, 2016.

[54] M. D’Ambros, M. Lanza, and R. Robbes, “Commit 2.0,” in Proceedings
of Web2SE 2010 (1st International Workshop on Web 2.0 for Software
Engineering). ACM, 2010, pp. 14–19.

[55] N. Tsantalis, A. Ketkar, and D. Dig, “RefactoringMiner 2.0,” IEEE
Transactions on Software Engineering, vol. 48, no. 3, pp. 930–950, 2020.

[56] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining GitHub,” in Proceedings
of MSR 2014 (Working Conference on Mining Software Repositories).
ACM, 2014, p. 92–101.

[57] M. Lanza, “Codecrawler - Polymetric views in action,” in Proceedings
of ASE 2004 (International Conference on Automated Software Engi-
neering). IEEE, 2004, pp. 394–395.

[58] S. Ducasse, M. Lanza, and R. Robbes, “Multi-level method understand-
ing using microprints,” in Proceedings of VISSOFT 2005 (International
Workshop on Visualizing Software for Understanding and Analysis).
IEEE, 2005, pp. 33–38.

[59] Y. Tian, Y. Zhang, K.-J. Stol, L. Jiang, and H. Liu, “What makes a
good commit message?” in Proceedings of ICSE 2022 (International
Conference on Software Engineering), 2022, pp. 2389–2401.

	Introduction
	Related Work
	Software Evolution Comprehension with Interactive Animations
	Animation Assembly
	Commit Selection
	Interactive Viewer

	Intermezzo
	Commit Animation Example
	Commit Digest Example

	Case Studies
	Vue – Tangled Code Changes
	Oh My Zsh – A Pull Request of Tiny Commits
	Bootstrap – May 2012

	Discussion
	Conclusion
	References

