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Abstract

Automatically linking bug-fixing changes to bug-inducing ones (BICs) is one
of the key data-extraction steps behind several empirical studies in software
engineering. The SZZ algorithm is the de facto standard to achieve this goal,
with several improvements proposed over time. Evaluating the performance
of SZZ implementations is, however, far from trivial. In previous works,
researchers (i) manually assessed whether the BICs identified by the SZZ
implementation were correct or not, or (ii) defined oracles in which they
manually determined BICs from bug-fixing commits. However, researchers
have limited knowledge of the studied systems, so their evaluation might be
either biased or simply erroneous. Ideally, the original developers should be
involved in defining an oracle to evaluate SZZ implementations. We propose
a methodology to define a “developer-informed” oracle for evaluating SZZ
implementations. We use Natural Language Processing (NLP) to identify
bug-fixing commits in which developers explicitly reference the commit(s)
that introduced the fixed bug. A manual filtering step followed this to ensure
the oracle’s quality and accuracy. We use the built oracle to extensively
evaluate existing SZZ variants defined in the literature. We also introduce
and evaluate two variants aimed at addressing two weaknesses we observed
in state-of-the-art implementations.
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1. Introduction1

The revision history of long-lived software projects features plenty of cor-2

rective changes, i.e., modifications aimed at fixing bugs. For each corrective3

change – or bug-fixing commit – it exists a non-empty set of commits that in-4

troduced the addressed bug. While the performed bug-fixing activity is often5

explicitly documented in the commit message, the same obviously does not6

happen for the commits introducing bugs. Therefore, while such a linking7

can be useful to conduct empirical studies on the characteristics of changes8

that introduce bugs (Bavota and Russo, 2015; Tufano et al., 2017; Aman9

et al., 2019; Chen and Jiang, 2019) or to validate defect prediction tech-10

niques (Hata et al., 2012; Tan et al., 2015; Pascarella et al., 2019; Yan et al.,11

2020; Fan et al., 2019), it is challenging to establish.12

In 2005, Śliwerski et al. (2005) proposed the SZZ algorithm to address13

such a problem. Given a bug-fixing commit CBF , the SZZ algorithm identifies14

a set of commits that likely introduced the error fixed in CBF . These commits15

are named “bug-inducing” commits. In a nutshell, SZZ identifies the last16

change (commit) to each source code line changed in CBF (i.e., changed to17

fix the bug). This is done by relying on the annotation/blame feature of18

versioning systems. The identified commits are considered as the ones that19

later on triggered the bug-fixing commit CBF .20

Since the original work was published, several researchers have proposed21

variants of the original algorithm, with the goal of improving its accuracy22

(Kim et al., 2006; Williams and Spacco, 2008a; Davies et al., 2014; Da Costa23

et al., 2016; Neto et al., 2018, 2019). For example, a limitation of the original24

SZZ algorithm is that it considers changes to code comments and whitespaces25

like any other change. Therefore, if a comment is modified in CBF , the lat-26

est change to such a comment is mistakenly considered as a BIC. Therefore,27

Kim et al. (2006) introduced a variant which ignores such changes. Simi-28

larly, other variants ignore non-executable statements (e.g., import state-29

ments) (Williams and Spacco, 2008a), meta-changes (e.g., merge commits)30

(Da Costa et al., 2016), and refactoring operations (e.g., variable renaming)31

(Neto et al., 2018, 2019).32

Despite the growth of the number of SZZ variants introduced to achieve33

higher and higher levels of accuracy, da Costa et al. highlighted (Da Costa34

et al., 2016) that the performed accuracy evaluations mostly rely on manual35
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analysis performed on the output of the proposed SZZ variants (Śliwerski36

et al., 2005; Kim et al., 2006; Williams and Spacco, 2008a; Davies et al.,37

2014). Researchers themselves usually perform such a validation, despite38

not being the original developers of the studied systems and, thus, not al-39

ways having the knowledge needed to correctly identify the bug introducing40

commit. Other researchers, instead, defined a ground truth to evaluate the41

performance of their variants (Neto et al., 2019). Also in these cases, how-42

ever, researchers completed such a task. Therefore, there is a clear need for43

oracles defined by exploiting the knowledge of people who worked on the44

system (Da Costa et al., 2016). Still, directly involving them to manually45

evaluate a large sample of BICs is impractical (Da Costa et al., 2016).46

In this paper, we extend our ICSE’21 paper (Rosa et al., 2021) in which we47

addressed this problem by introducing a methodology to build a “developer-48

informed” oracle for the evaluation of SZZ variants. To explain the core idea,49

let us take as an example commit 31063db from the mrc0mmand/systemd50

GitHub project, accompanied by a commit message saying: “sd-device: keep51

escaped strings in DEVLINK= property. This fixes a bug introduced by52

87a4d41. Fixes systemd#17772”. The developer fixing the bug is explicitly53

documenting the commit that introduced such a bug. Based on this observa-54

tion, we defined strict NLP-based heuristics to automatically detect messages55

of bug-fixing commits in which developers explicitly reference the commit(s)56

that introduced the fixed bug. We call such commits “referenced bug-fixing57

commits”. It is worth noting that such a process is not meant to be exhaus-58

tive, i.e., we do not aim at finding all the referenced bug-fixing commits.59

Instead, we mainly aim at obtaining a high-quality dataset of commits that60

are very likely induced a bug-fix.61

We used our NLP-based heuristics to filter all the commits done on62

GitHub public repositories between March 2011 and the end of January63

2021 by relying on GitHub Archive (Grigorik, 2012), a public service which64

archives all public events occurred on GitHub. Compared to our previous65

paper, we have analyzed 9 additional months of GitHub events. From a set66

of 24,042,335 (i.e., 4.4M more than our previous paper), our heuristics iden-67

tified 4,585 possible referenced bug-fixing commits. To further increase the68

quality of our dataset, we manually validated such commits, aiming at verify-69

ing whether the commit message was clearly documenting the bug-inducing70

commit. Besides, we annotated possible issues from the issue-tracker explic-71

itly referenced by developers since such a piece of information is exploited72

by some SZZ variants. In the end, we obtained a dataset including 2,304 ref-73
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erenced bug-fixing commits (i.e., 22% more than our previous paper), with74

212 also including information about the fixed issue(s).75

After manually analyzing cases in which all SZZ variants failed to detect76

the correct BIC, we found two main limitations of existing approaches: (i)77

they do not take into account added lines, but only deleted lines, since those78

are the ones on which it is possible to use the blame command; (ii) they are79

confused by revert commits, which reset previous changes not allowing SZZ80

to find the actual BICs. Therefore, we introduce two novel heuristics that81

aim at overcoming such limitations. In the first, given the set of added lines,82

we detect the lines directly affected by them by relying on Definition-Use83

chains. Then, we detect changes that introduced such lines. In the second84

heuristic, we detect revert commits by using NLP-based heuristics, and we85

discard them when they are selected as candidate BICs.86

We tested the new heuristics we introduced in isolation, to understand to87

what extent they affect the accuracy. Our results show that the Definition-88

Use heuristic allows finding BICs in cases in which other SZZ variants do89

not work. On the other hand, the revert-ignoring heuristic provides a small90

advantage in terms of precision (+1%), without paying any price in terms of91

recall.92

To summarize, the novel contributions provided in this paper with respect93

to our previous paper (Rosa et al., 2021) are the following:94

1. We extended the dataset by including 9 additional development months95

on GitHub, resulting in 4.4M additional commits analyzed and 421 new96

instances in the final dataset;97

2. We replicated our experiments on the new dataset;98

3. Based on our finding, we introduced and evaluated two new SZZ vari-99

ants, showing that both of them slightly improve the effectiveness of100

SZZ.101

2. Background and Related Work102

We start by presenting several variants of the SZZ algorithm (Śliwerski103

et al., 2005) proposed in the literature over the years. Then, we discuss how104

those variants have been used in SE research community.105

2.1. SZZ Variants106

Table 1 presents the SZZ variants proposed in the literature. We report107

for each of them its name and reference, the approach it builds upon (i.e.,108
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Approach name Reference Based on Used by Oracle type # Projects # Bug Fixes

B-SZZ Śliwerski et al. (2005) (Palomba et al., 2018; Pascarella et al., 2019; Çaglayan and
Bener, 2016; Wen et al., 2016; Posnett et al., 2013; Kim
et al., 2008; Tan et al., 2015; Kononenko et al., 2015; We-
haibi et al., 2016; Lenarduzzi et al., 2020a)

// // //

AG-SZZ Kim et al. (2006) B-SZZ (Tufano et al., 2017; Bernardi et al., 2018; Hata et al., 2012;
Rahman et al., 2011; Eyolfson et al., 2014; Misirli et al.,
2016; Canfora et al., 2011; Prechelt and Pepper, 2014; Bird
et al., 2009a)

Manually defined (researchers) 2 301

DJ-SZZ Williams and Spacco (2008a) AG-SZZ (Marinescu et al., 2014; Borg et al., 2019; Bavota and
Russo, 2015; Tóth et al., 2016; Fan et al., 2019; Karampat-
sis and Sutton, 2020; Rodŕıguez-Pérez et al., 2020, 2018)

Manually defined (researchers) 1 25

L-SZZ & R-SZZ Davies et al. (2014) AG-SZZ (Da Costa et al., 2016) Manually defined (researchers) 3 174
MA-SZZ Da Costa et al. (2016) AG-SZZ (Fan et al., 2019; Neto et al., 2018, 2019; Tu et al., 2020;

Aman et al., 2019; Chen and Jiang, 2019)
Automatically computed metrics 10 2,637

RA-SZZ Neto et al. (2018) MA-SZZ (Fan et al., 2019; Neto et al., 2018; Yan et al., 2020) Manually defined (researchers) 10 365
RA-SZZ* Neto et al. (2019) RA-SZZ None Manually defined (researchers) 10 365
A-SZZ Sahal and Tosun (2018) B-SZZ None Manually defined (researchers) 2 251

Table 1: Variants of the SZZ algorithm. For each one, we specify (i) the algorithm on
which it is based, (ii) references of works using it, (iii) the oracle used in the evaluation
(how it was built, number of projects and bug fixes considered).

the starting point on which the authors provide improvements), some refer-109

ences to works that used it, and information about the oracle used for the110

evaluation. Specifically, we report how the oracle was built and the number111

of projects/bug reports considered.112

All the approaches that aim at identifying bug-inducing commits (BICs)113

rely on two elements: (i) the revision history of the software project, and (ii)114

an issue tracking system (optional, needed only by some SZZ implementa-115

tions).116

The original SZZ algorithm was proposed by Śliwerski et al. (2005) (we117

refer to it as B-SZZ, following the notation provided by Da Costa et al.118

(2016)). B-SZZ takes as input a bug report from an issue tracking system,119

and tries to find the commit that fixes the bug. To do this, B-SZZ uses a two-120

level confidence level: syntactic (possible references to the bug ID in the issue121

tracker) and semantic (e.g., the bug description is contained in the commit122

message). B-SZZ relies on the CVS diff command to detect the lines123

changed in the fix commit and the annotate command to find the commits124

in which the lines were modified. Using this procedure, B-SZZ determines125

the earlier change at the location of the fix. Potential bug-inducing commits126

performed after the bug was reported are always ignored.127

Kim et al. (2006) noticed that B-SZZ has limitations mostly related128

to formatting/cosmetic changes (e.g., moving a bracket to the next line).129

Such changes can deceive B-SZZ: B-SZZ (i) can report as BIC a revision130

which only changed the code formatting, and (ii) it can consider as part of131

a bug-fix a formatting change unrelated to the actual fix. They introduce a132

variant (AG-SZZ) in which they used an annotation graph, a data structure133

associating the modified lines with the containing function/method. AG-134
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SZZ also ignores the cosmetic parts of the bug-fixes to provide more precise135

results.136

Williams and Spacco (2008a) improved the AG-SZZ algorithm in two137

ways: first, they use a line-number mapping approach (Williams and Spacco,138

2008b) instead of the annotation graph introduced by Kim et al. (2006);139

second, they use DiffJ (Pace, 2007), a Java syntax-aware diff tool, which140

allows their approach (which we call DJ-SZZ) to exclude non-executable141

changes (e.g., import statements).142

Davies et al. (2014) propose two variations on the criterion used to select143

the BIC among the candidates: L-SZZ uses the largest candidate, while144

R-SZZ uses the latest one. These improvements were done on top of the145

AG-SZZ algorithm.146

MA-SZZ, introduced by Da Costa et al. (2016), excludes from the candi-147

date BICs all the meta-changes, i.e., commits that do not change the source148

code. This includes (i) branch changes, which are copy operations from one149

branch to another, (ii) merge changes, which consist in applying the changes150

performed in a branch to another one, and (iii) property changes, which only151

modify file properties (e.g., permissions).152

To further reduce the false positives, two new variants were introduced153

by Neto et al., RA-SZZ (Neto et al., 2018) and RA-SZZ* (Neto et al.,154

2019). Both exclude from the BIC candidates the refactoring operations,155

i.e., changes that should not modify the behavior of the program. Both ap-156

proaches use state-of-the-art tools: RA-SZZ uses RefDiff (Silva and Valente,157

2017), while RA-SZZ* uses Refactoring Miner (Tsantalis et al., 2018), with158

the second one being more effective (Neto et al., 2019).159

The presented variants of SZZ do not parse lines added in bug-fixing160

commits (e.g., an added if statement checking for null values). This is161

because a line added does not have a change history when processed by162

SZZ using the Annotation Graph (Kim et al., 2006) or the Line-Number163

mapping (Śliwerski et al., 2005). As we discussed in our previous work (Rosa164

et al., 2021), there are however cases in which lines added while fixing a165

bug can point to the correct bug-inducing change. Sahal and Tosun (2018)166

proposed the first approach to include in SZZ support for added lines (from167

here on A-SZZ). Specifically, when the bug-fixing changes add new lines, A-168

SZZ identifies the code blocks encapsulating them. Then, A-SZZ considers169

the set of lines in the block and discards the cosmetic changes and comment170

lines. Finally, it runs the original SZZ algorithm as if the remaining lines of171

the block were modified in the commit.172
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Concerning the empirical evaluations performed in the literature, the orig-173

inal SZZ was not evaluated (Śliwerski et al., 2005). Instead, all its variants,174

except MA-SZZ, were manually evaluated by their authors. One of them,175

RA-SZZ* (Neto et al., 2019), used an external dataset, i.e., Defect4J (Just176

et al., 2014). MA-SZZ was evaluated using automated metrics, namely earli-177

est bug appearance, future impact of a change, and realism of bug introduction178

(Da Costa et al., 2016).179

Tool name Approach Public repository

SZZ Unleashed (Borg et al., 2019) ∼DJ-SZZ (Williams and Spacco, 2008a) https://github.com/wogscpar/SZZUnleashed

OpenSZZ (Lenarduzzi et al., 2020b) ∼B-SZZ (Śliwerski et al., 2005) https://github.com/clowee/OpenSZZ

PyDriller (Spadini et al., 2018) ∼AG-SZZ (Śliwerski et al., 2005) https://github.com/ishepard/pydriller

Table 2: Open-source tools implementing SZZ.

In Table 2 we list the open-source implementations of SZZ. SZZ Unleashed180

(Borg et al., 2019) partially implements DJ-SZZ: it uses line-number map-181

ping (Williams and Spacco, 2008a) but it does not rely on DiffJ (Pace, 2007)182

for computing diffs, also working on non-Java files. It does not take into183

account meta-changes (Da Costa et al., 2016) and refactorings (Neto et al.,184

2019).185

OpenSZZ (Lenarduzzi et al., 2020b) implements the basic version of the186

approach, B-SZZ. Since it is based on the git blame command, it implicitly187

uses the annotated graph (Kim et al., 2006).188

PyDriller (Spadini et al., 2018), a general purpose tool for analyzing189

git repositories, also implements B-SZZ. It uses a simple heuristic for ignoring190

C- and Python-style comment lines, as proposed by Kim et al. (2006). We191

do not report in Table 2 a comprehensive list of all the SZZ implementations192

that can be found on GitHub, but only the ones presented in papers.193

2.2. SZZ in Software Engineering Research194

The original SZZ algorithm and its variations were used in a plethora of195

studies. We discuss some examples, while for a complete list we refer to the196

extensive literature review by Rodŕıguez-Pérez et al. (2018), featuring 187197

papers.198

SZZ has been used to run several empirical investigations having different199

goals (Çaglayan and Bener, 2016; Lenarduzzi et al., 2020a; Wehaibi et al.,200

2016; Tufano et al., 2017; Bernardi et al., 2018; Eyolfson et al., 2014; Misirli201

et al., 2016; Canfora et al., 2011; Prechelt and Pepper, 2014; Bird et al.,202
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2009a; Rodŕıguez-Pérez et al., 2018; Aman et al., 2019; Chen and Jiang, 2019;203

Posnett et al., 2013; Karampatsis and Sutton, 2020; Bavota and Russo, 2015;204

Kononenko et al., 2015; Palomba et al., 2018). For example, Aman et al.205

(2019) studied the role of local variable names in fault-introducing commits206

and they used SZZ to retrieve such commits, while Palomba et al. (2018)207

focused on the impact of code smells, and used SZZ to determine whether an208

artifact was smelly when a fault was introduced. Many studies also leverage209

SZZ to evaluate defect prediction approaches (Kim et al., 2008; Tan et al.,210

2015; Hata et al., 2012; Rahman et al., 2011; Tóth et al., 2016; Tu et al.,211

2020; Wen et al., 2016; Yan et al., 2020; Fan et al., 2019; Pascarella et al.,212

2019).213

Looking at Table 1 it is worth noting that, despite its clear limitations214

(Kim et al., 2006), many studies, even recent ones, still rely on B-SZZ215

(Palomba et al., 2018; Pascarella et al., 2019; Çaglayan and Bener, 2016;216

Wen et al., 2016; Posnett et al., 2013; Kim et al., 2008; Tan et al., 2015;217

Kononenko et al., 2015; Wehaibi et al., 2016; Lenarduzzi et al., 2020a) (the218

approaches that use git implicitly use the annotation graph defined by Kim219

et al. (2006)). Improvements are only slowly adopted in the literature, possi-220

bly due to the fact that some of them are not released as tools and that the221

two standalone tools providing a public SZZ implementation were released222

only recently (Lenarduzzi et al., 2020b; Borg et al., 2019).223

The studies most similar to ours are the one by Da Costa et al. (2016),224

the one by Rodŕıguez-Pérez et al. (2020) and the one by Herbold et al.225

(2022). Both report a comparison of different SZZ variants. Da Costa et al.226

(2016) defined and used a set of metrics for evaluating SZZ implementations227

without relying on a manually defined oracle. However, they specify that,228

ideally, domain experts should be involved in the construction of the dataset229

(Da Costa et al., 2016), which motivated our study. Rodŕıguez-Pérez et al.230

(2018) introduced a model for distinguishing bugs caused by modifications to231

the source code (the ones that SZZ algorithms can detect) and the ones that232

are introduced due to problems with external dependencies. They also used233

the model to define a manually curated dataset on which they evaluated SZZ234

variants. Their dataset is created by researchers and not domain experts. In235

our study, instead, we rely on the explicit information provided by domain236

experts in their commit messages. Herbold et al. (2022) conducted an empir-237

ical analysis on the defect labels (i.e., bugfix commits) identified by SZZ and238

the impact on commonly used features for defect prediction. Their results,239

evaluated on a dataset of 38 Apache projects, show that SZZ is able to cor-240

8



Commit 
Selection

Word-based  
Filtering

Syntax-aware
Filtering

Duplicate 
Deletion Filtering Bug Report 

Search

Push events from
Github Archive

Remove if  
it does not contain: 

bug-related 
world 

fix-related 
world 

Remove if 
it does not contain a
commit reference hj 

or is a Revert commit 

Use a coarse Filter 
"introduced by" is an

ancestor of hj 

Use a fine Filter
"introduced by" is not

an ancestor of hj 

Remove if  
it is a copy 

Remove if  
it is from a  

forked repository 

H1 H2 H3    
  Remove if   

it is not  
a bug-fixing  

commit 

reference hj  
ambiguous

Add issue 
URLs

Add issue 
crreation times

1 2 3 4 5 6

Figure 1: Process used for building the dataset. Steps 5 and 6 are the result of a manual
evaluation.

rectly identify only half of the bug fixing commits, and using more features241

is not significant for defect prediction. In our study, we mainly focus on the242

construction of an evaluation dataset for SZZ, comparing the main variants243

proposed in literature.244

3. Defining a Developer-informed Dataset for SZZ245

In this section, we present a methodology to build a dataset of bug-246

inducing commits by exploiting information provided by developers when247

fixing bugs. Our methodology reduces the manual effort required for building248

such a dataset and more important, does not assume technical knowledge of249

the involved source code on the researchers’ side.250

The proposed methodology involves two main steps: (i) automatic min-251

ing from open-source repositories of bug-fixing commits in which developers252

explicitly indicate the commit(s) that introduced the fixed bug, and (ii) a253

manual filtering aimed at improving the dataset quality by removing am-254

biguous commit messages that do not give confidence in the information255

provided by the developer. In the following, we detail these two steps. The256

whole process is depicted in Fig. 1.257

3.1. Mining Bug-fixing and Bug-inducing Commits258

There are two main approaches proposed in the literature for selecting259

bug-fixing commits. The first one relies on the linking between commits260

and issues (Bissyande et al., 2013): issues labeled with “bug”, “defect”, etc.261

are mined from the issue tracking system, storing their issue ID (e.g., sys-262

temd#17772 ). Then, commits referencing the issue ID are mined from the263
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versioning system and identified as bug-fixing commit. While such a heuris-264

tic is fairly precise, it has two important drawbacks that make it unsuitable265

for our work. First, the link to the issue tracking system must be known and266

a specific crawler for each different type of issue tracker (e.g., Jira, Bugzilla,267

GitHub, etc.) must be built.268

Second, projects can use a customized set of labels to indicate bug-related269

issues. Manually extracting this information for a large set of repositories is270

expensive. The basic idea behind this first phase is to use the commit mes-271

sages to identify bug-fixing commits: we automatically analyze bug-fixing272

commit messages searching for those explicitly referencing bug-inducing com-273

mits.274

As a preliminary step, we mined GH Archive (Grigorik, 2012) which275

provides, on a regular basis, a snapshot of public events generated on GitHub276

in the form of JSON files.277

We mined the time period going from March 1st 2011 to January 28th278

20211, extracting 24,042,335 commits performed in the context of push events:279

such events gather the commits done by a developer on a repository before280

performing the push action. Considering the goal of building an oracle for281

SZZ algorithms, we are not interested in any specific programming language.282

We performed three steps to select a candidate set of commits to manually283

analyze in the second phase: (i) we selected a first candidate set of bug-fixing284

commits, (ii) we used syntax-aware heuristics to refine such a set, and (iii)285

we removed duplicates.286

3.1.1. Word-Based Selection of Bug-Fixing Commits287

To identify bug-fixing commits, we first apply a lightweight regular ex-288

pression on all the commits we gathered, as done in previous work (Fischer289

et al., 2003; Tufano et al., 2019). We mark as potential bug-fixes all com-290

mits accompanied by a message including at least a fix-related word2 and a291

bug-related word3. We exclude the messages that include the word merge to292

ignore merge commits. Note that we do not need such a heuristic to be 100%293

precise, since two additional and more precise steps will be performed on the294

identified set of candidate fixing commits to exclude false positives (i.e., a295

NLP-based step and a manual analysis).296

1 As compared to the ICSE’21 paper (Rosa et al., 2021) this manuscript extends, we
analyze nine additional months of development, resulting in 4.4M additional commits.
2 fix or solve 3 bug, issue, problem, error, or misfeature
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3.1.2. Syntax-Aware Filtering of Referenced Bug-Fixing Commits297

We needed to select from the set of candidate bug-fixing commits only298

the ones in which developers likely referenced the bug-inducing commit(s)299

(i.e., referenced bug-fixing commits). We used the syntax-aware heuristics300

described below to do this. The first author defined such heuristics through301

a trial-and-error procedure, taking a 1-month time period of events on GH302

Archive to test and refine different versions of the heuristics, manually in-303

specting the achieved results after each run. The final version has been304

consolidated with the feedback of two additional authors.305

As a preliminary step, we used the doc.sents function of the spaCy4
306

Python module for NLP to extract the set Sc of sentences composing each307

commit message c.308

For each sentence si ∈ Sc, we used spaCy to build its word dependency309

tree ti, i.e., a tree containing the syntactic relationships between the words310

composing the sentence. Fig. 2 provides an example of ti generated for the311

sentence “fixes a search bug introduced by 2508e12”.312

bug

fix

introduced

by

commit

22915a8

with

DataFrame

empty

Figure 2: Example of word dependency tree built by spaCy.

By navigating the word dependency tree, we can infer that the verb “fix”313

refers to the noun “bug”, and that the verb “introduced” is linked to commit314

id 2508e12 through the “by” apposition.315

H1: Exclude Commits Without Reference and Reverts. We split316

each si ∈ Sc into words and we select all its commit hashes H(si) using317

4 https://spacy.io/
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a regular expression5. We ignore all the si for which H(si) is empty (i.e.,318

which do not mention any commit hash). Similarly, we filter out all the si319

that either (i) start with a commit hash, or (ii) include the verb “revert”320

referring to any hj ∈ H(si). We keep all the remaining si. We exclude the321

commits that do not contain any valid sentence as for this heuristic. We use322

the H(si) extracted with this heuristic also for the following heuristics.323

H2: Coarsely Filter Explicit Introducing References. If one of the324

ancestors of hj is the verb “introduce” (in any declension), as it happens in325

Fig. 2, we consider this as a strong indication of the fact that the developer326

is indicating hj as (one of) the bug-inducing commit(s). In this case, we327

check if hj also includes at least one of the fix-related words2 and one of the328

bug-related words3 as one of its ancestors or children. At least one of the329

two words (i.e., the one indicating the fixing activity or the one referring330

to a bug) must be an ancestor. We do this to avoid erroneously selecting331

sentences such as “Improving feature introduced in 2508e12 and fixed a bug”,332

in which both the fix-related and the bug-related word are children of hj.333

For example, the hj in Fig. 2 meets this constraint since it has among its334

ancestors both fix and bug. We also exclude the cases in which the words335

attempt or test (again, in different declensions) appear as ancestors of hj. We336

do this to exclude false positives observed while experimenting with earlier337

versions of this heuristic.338

For example, the sentence “Remove attempt to fix error introduced in339

2f780609” belongs to a commit that aims at reverting previous changes. Sim-340

ilarly, the sentence “Add tests for the fix of the bug introduced in 2f780609”341

most likely belongs to the message of a test-introduction commit.342

H3: Finely Filter Non-Explicit Introducing References. If hj343

does not contain the verb “introduce” as one of its ancestors, we apply a344

finer filtering heuristic: both a word indicating a fixing activity and a word345

indicating a bug must appear as one of hj’s ancestors. Also, we define a list346

of stop-words that must not appear either in the hj’s ancestor as well as in347

the dependencies (i.e., ancestors and children) of the “fixing activity” word.348

Such a stop-word list, derived through a trial-and-error procedure, includes349

eight additional words (was, been, seem, solved, fixed, try, trie (to capture350

tries and tried), and by), besides attempt and test also used in H2. This351

allows, for example, to exclude sentences such as “This definitely fixes the352

bug I tried to fix in commit 26f3fe2”, meets all selection criteria for H3, but353

5 [0-9a-f]{6,40}
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it is a false positive.354

3.1.3. Deletion of Duplicate Commits355

We saved the list of commits including at least one sentence si meeting356

H1 and either H2 or H3 in a MySQL database. Since we analyzed a large357

set of projects, it was frequent that some commits were duplicated due to358

the fact that different forks of a given project are available. As a final step,359

we removed such duplicates, keeping only the commit of the main project360

repository.361

Out of the 24,042,335 parsed commits, the automated filtering selected362

4,585 commits. Our goal with the above described process is not to be363

exhaustive, i.e., we do not want to identify all bug-fixing commits in which364

developers indicated the bug-inducing commit(s), but rather to obtain a high-365

quality dataset of commits that were certainly of the bug-inducing kind. The366

quality of the dataset is then further increased during the subsequent step of367

manual analysis.368

3.2. Manual Filtering369

Four of the authors (from now on, evaluators) manually inspected the370

4,585 commits produced by the previous step. The evaluators have differ-371

ent backgrounds (graduate student, faculty member, junior and a senior re-372

searcher with two years of industrial experience). The goal of the manual373

validation was to verify (i) whether the commit was an actual bug-fix, and374

(ii) if it included in the commit message a non-ambiguous sentence clearly375

indicating the commit(s) in which the fixed bug was introduced. For both376

steps the evaluators mostly relied on the commit message and, if available,377

on possible references to the issue tracker. Those references could be issue378

IDs or links that the evaluators inspected to (i) ensure that the fixed issue379

was a bug, and (ii) store for each commit the links to the mentioned issues380

and, for each issue, its opening date.381

The latter is an information that may be required by an SZZ implemen-382

tation (e.g., SZZ Unleashed (Borg et al., 2019) and OpenSZZ (Lenarduzzi383

et al., 2020b) require the link to the issue) to exclude from the candidate384

list of bug-inducing commits those performed after the opening of the fixed385

issue.386

Indeed, if the fixed bug has been already reported at date di, a commit387

performed on date dj > di cannot be responsible for its introduction. Since388

the commits to inspect come from a variety of software systems, they rely389
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on different issue trackers. When an explicit link was not available, but an390

issue was mentioned in the commit message (e.g., see the commit message391

shown in the introduction), the evaluators searched for the project’s issue392

tracker, looking on the GitHub repository for documentation pointing to393

it (in case the project did not use the GitHub issue tracker itself). If no394

information was found, an additional Google search was performed, looking395

for the project website or directly searching for the issue ID mentioned in396

the commit message.397

The manual validation was supported by a web-based application we de-398

veloped that assigns to each evaluator the candidate commits to review,399

showing for each of them its commit message and a clickable link to the400

commit GitHub page. Using a form, the evaluator indicated whether the401

commit was relevant for the oracle (i.e., an actual bug-fix documenting the402

bug-inducing commit) or not, and listing mentioned issues together with403

their opening date. Each commit was assigned by the web application to two404

different evaluators, for a total of 8,231 evaluations. To be more conserva-405

tive and to have higher confidence in our oracle, we decided to not resolve406

conflicts (i.e., cases in which one evaluator marked the commit as relevant407

and the other as irrelevant): we excluded from our oracle all commits with408

at least one “irrelevant” flag.409

3.3. The Resulting SZZ Oracle410

Out of the 4,585 manually validated commits, 2,304 (50%) passed our411

manual filtering, of which 212 include references to a valid issue (i.e., an issue412

labeled as a bug that can be found online). For these, we also automatically413

checked if the issue date is valid considering the extracted bug commit (i.e.,414

the bug commit date must be before the issue date). This indicates that SZZ415

implementations that rely on information from issue trackers can only be run416

on a minority of bug-fixing commits. Indeed, the 2,304 instances we report417

have been manually checked as true positive bug-fixes, and only 212 of these418

(13%) mention the fixed issue. The dataset is available in our replication419

package (Rosa et al., TBD).420

These 2,304 commits and their related bug-inducing commits impact files421

written in many different languages. All the implementations of the SZZ al-422

gorithm (except for B-SZZ) perform some language-specific parsing to ignore423

changes performed to code comments.424

In our study (Section 4.1) we experimented several versions of the SZZ425

including those requiring the parsing of comments. We implemented sup-426
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port for the top-8 programming languages present in our oracle (i.e., the427

ones responsible for more code commits): C, C++, C#, Java, JavaScript,428

Ruby, PHP, and Python. This led to the creation of the dataset we use in429

our experimentation, only including bug-fixing/inducing commits impacting430

files written in one of the eight programming languages we support. This431

dataset is also available in our replication package (Rosa et al., TBD). Ta-432

ble 3 summarizes the main characteristics of the overall dataset and of the433

language-filtered one. Note that the language-filtered dataset contains a lower434

number of instances also for repositories having as a main language one of435

the eight supported ones because some of their commits were related to un-436

supported languages (e.g., fixing a bug in a Maven pom file).437

Overall Language-filtered
Language #Repos #Commits #Issues #Repos #Commits #Issues

C 406 520 62 343 430 43
Python 311 348 43 276 307 29
C++ 187 223 25 159 189 19
JS 186 207 29 138 155 16
Java 92 106 14 74 83 8
PHP 65 73 6 57 64 3
Ruby 47 52 6 40 42 5
C# 31 38 3 25 32 1
Others 833 1077 99 0 0 0

Total 1,854 2,364 246 1,059 1,258 119

Table 3: Features of the language-filtered/overall datasets.

It is worth noting that a repository or even a commit can involve several438

programming languages: for this reason, the total may be lower than the439

sum of the per-language values (i.e., a repository can be counted in two or440

more languages).441

Besides sharing the datasets as JSON files, we also share the cloned repos-442

itories from which the bug-fixing commits have been extracted. This enables443

the replication of our study and the use of the datasets for the assessment of444

future SZZ improvements.445

4. Study 1: Evaluating SZZ Variants446

In this section we report the updated results of our first study, in which447

we use the oracle we built to evaluate state-of-the-art SZZ variants and tools.448
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4.1. Study Design449

The goal of this study is to experiment different variants of the SZZ450

algorithm. The perspective is that of researchers interested in assessing the451

effectiveness of the state-of-the-art implementations and identify possible im-452

provements that can be implemented to further improve the accuracy of the453

SZZ algorithm. To achieve such a goal, we aim to answer the following454

research question:455

Table 4: Characteristics of the SZZ implementations we compare in the context of RQ1.
We mark with a “⋄” our re-implementations.

Acronym Fix Line Filtering BIC Identification
Method

BIC Filtering BIC Selec-
tion

Differences w.r.t. the original paper

B-SZZ // Annotation Graph(Kim
et al., 2006)

// // We use git blame instead of the CVS annotate,
i.e., we implicitly use an annotation graph (Kim
et al., 2006). We do not filter BICs based on the
issue creation date.⋄

AG-SZZ Cosmetic changes(Kim
et al., 2006)

Annotation Graph(Kim
et al., 2006)

// // No differences.⋄

MA-SZZ Cosmetic changes(Kim
et al., 2006)

Annotation Graph(Kim
et al., 2006)

Meta-
Changes(Da Costa
et al., 2016)

// No differences.⋄

L-SZZ Cosmetic
Changes(Kim et al.,
2006)

Annotation Graph(Kim
et al., 2006)

Meta-
Changes(Da Costa
et al., 2016)

Largest
(Davies et al.,
2014)

We filter meta-changes (Da Costa et al., 2016).⋄

R-SZZ Cosmetic
Changes(Kim et al.,
2006)

Annotation Graph(Kim
et al., 2006)

Meta-
Changes(Da Costa
et al., 2016)

Latest (Davies
et al., 2014)

We filter meta-changes (Da Costa et al., 2016).⋄

RA-SZZ* Cosmetic
Changes(Kim et al.,
2006) Refactor-
ings(Neto et al., 2019)

Annotation Graph(Kim
et al., 2006)

Meta-
Changes(Da Costa
et al., 2016)

// We use Refactoring Miner 2.0 (Tsantalis et al.,
2020).⋄

SZZ@PYD Cosmetic
Changes(Kim et al.,
2006)

Annotation Graph(Kim
et al., 2006)

// // We implement a wrapper for PyDriller (Spa-
dini et al., 2018).

SZZ@UNL Cosmetic
Changes(Kim et al.,
2006)

Line-number Map-
ping(Williams and Spacco,
2008a)

Issue-
date(Śliwerski
et al., 2005)

// We implement a wrapper for SZZ Unleashed
(Borg et al., 2019).

SZZ@OPN // Annotation Graph(Kim
et al., 2006)

// // We implement a wrapper for OpenSZZ (Lenar-
duzzi et al., 2020b).

RQ1: How do different variants of SZZ perform in identifying456

bug-inducing changes? With this research question we want to457

compare the various state-of-the-art SZZ implementations using458

our dataset.459

4.1.1. SZZ Implementations Compared460

We used for our experiment different variants of the SZZ algorithm.461

Specifically, re-implemented all the main approaches available in the liter-462

ature (presented in Section 2) in a publicly available tool named pyszz6463

6 https://github.com/grosa1/pyszz
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which also includes an adapted version of the PyDriller SZZ implemen-464

tation (Spadini et al., 2018). Moreover, we adapted existing Open Source465

tools (i.e., SZZ Unleashed (Borg et al., 2019), and OpenSZZ (Lenarduzzi466

et al., 2020b)) to work with our dataset. We provide a replication package467

(Rosa et al., TBD) containing all the tools involved in the experiment with468

instructions on how to run them.469

We report the details about all the implementations we compare in Ta-470

ble 4 and, for each of them, we explicitly mention (i) how it filters the lines471

changed in the fix (e.g., it removes cosmetic changes), (ii) which method-472

ology it uses for identifying the preliminary set of bug-inducing commits473

(e.g., annotation graph), (iii) how it filters such a preliminary set (e.g., it474

removes meta-changes), and (iv) if it uses a heuristic for selecting a single475

bug-inducing commit and, if so, which one (e.g., most recent commit). We476

also explicitly mention any difference between our implementations and the477

approaches as described in the original papers presenting them.478

As most of the bug-fix pairs in our dataset do not contain the reference to479

the bug-report (∼91%), all our re-implementations are independent from the480

issue-tracker systems. This is the reason why we did not set the “Issue-date”481

as a default BIC filtering technique, despite it is reported in the respective482

papers (e.g., for B-SZZ). However, since we have extracted this information483

where present, we experiment all techniques with and without such a filtering484

applied. Note that git tracks both the author’s date (i.e., when the commit485

was performed in the first place) and the commit’s date, which the latter486

changing every time the commit is being modified (e.g., due to a rebasing487

of the branch). For the issue date filter we use the author’s date since the488

commit’s date might make SZZ erroneously filter out some legit bug-inducing489

commits. For example, let us consider an issue I reported at a date dI , and490

its bug-inducing commit C having an author’s date daC < dI and a commit’s491

date dcC > dI . This indicates a situation in which the issue was reported492

after the change was performed in the first place, but before C has been493

modified due, for example, to a rebase. If we considered the commit’s date,494

we would have discarded C as a bug-inducing commit as performed after the495

issue was reported.496

For the Open Source tools, instead, we did not modify their implemen-497

tation of the BIC-finding procedures: e.g., we did not remove the filtering498

by issue date from SZZ Unleashed. However, our wrappers for such tools499

allow to run them with our dataset. For example, SZZ Unleashed depends500

on a specific issue-tracker system (i.e., Jira) for filtering commits done after501
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the bug-report was opened. We made it independent from it by adapting502

our datasets to the input it expects (i.e., Jira issues in JSON format). It is503

worth noting that, despite the complexity of such files, SZZ Unleashed only504

uses the issue opening date in its implementation. For this reason, we only505

provide such field and we set the others to null.506

Note that some of the original implementations listed in Table 4 can507

identify bug-fixing commits. In our study, we did not want to test such a508

feature: we test a scenario in which the implementations already have the509

bug-fixing commits for which they should detect the bug-inducing commit(s).510

4.1.2. Study Context511

To evaluate the described implementations, we defined two version of512

the datasets extracted from the language-filtered dataset: (i) the oracleall513

dataset, featuring 1,258 bug-fixes, which includes both the ones with and514

without issue information, and (ii) the oracle issues dataset, featuring 119 in-515

stances, which includes only instances with issue information. Moreover,516

we defined two additional datasets, oracleJall (81 instances) and oracleJissues517

(8 instances), obtained by considering only Java-related commits from the518

oracleall and oracle issues , respectively. We did this because two implemen-519

tations, i.e., RA-SZZ*7 and OpenSZZ, only work on Java files.520

4.1.3. Experimental Procedure521

To answer RQ1, we ran all the implementations on all the datasets on522

which they can be executed. This means that we run all the state-of-the-art523

SZZ implementations and tools (Table 4) on oracleall and oracle issues , except524

for RA-SZZ* and OpenSZZ that are executed on the datasets including Java525

files only.526

Another exception is for SZZ Unleashed, that requires the issue date in527

order to work. Since it would not be possible to run it on the oracleall528

dataset, we simulated the best-case-scenario for such commits: we pretended529

that an issue about the bug was created few seconds after the last bug-530

inducing commit was done. Consider the bug-fixing commit BF without531

issue information and its set of bug-inducing commits BIC; we assumed532

that the issue mentioned in BF had maxb∈BIC (date(b)) + δ as opening date,533

where δ is a small time interval (we used 60 seconds).534

7 It relies on Refactoring Miner (Tsantalis et al., 2020) which only works on Java files.
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Such an experimental design allows us to compare all the implementations535

in two scenarios: (i) the realistic scenario (oracle issues ), in which the issue536

date is real, i.e., it may be quite far from the BIC dates; (ii) the best-case537

scenario (i.e., oracleall) in which real issue information would be available538

only for a very small percentage of the bug-fixes instances, while the oth-539

ers are simulated. Thus, when experimenting the variants of the techniques540

not using the issue opening date, the results we achieve are those one would541

achieve in reality. Instead, when testing the approaches exploiting the issue542

opening date information, we are showing what would be the hypothetical543

effectiveness of such techniques in the best case scenario in which all com-544

mits refer to an issue having an identifiable opening date and, for most of545

the commits, the opening of the related issue immediately follows the bug546

introduction.547

In the end, we obtained a set of bug-inducing commits detected by the548

experimented implementations. Based on the oracle from our datasets, we549

evaluated their accuracy by using three widely-adopted metrics: recall, pre-550

cision, and F-measure (Baeza-Yates and Ribeiro-Neto, 1999).551

In detail, we computed the such metrics using the following formulas:552

recall =
|correct ∩ identified |

|correct |
%

precision =
|correct ∩ identified |

|identified |
%

553

where correct and identified represent the set of true positive bug-inducing554

commits (those indicated by the developers in the commit message) and555

the set of bug-inducing commits detected by the experimented algorithm,556

respectively. As an aggregate indicator of precision and recall, we report the557

F-measure (Baeza-Yates and Ribeiro-Neto, 1999), defined as the harmonic558

mean of precision and recall. Such metrics were also used in previous works559

for evaluating SZZ variants (e.g., Neto et al. (2019)).560

Given the set of experimented SZZ variants/tools SZZexp = {v1, v2, . . . vn},561

we also analyze their complementarity, by computing the following metrics562

for each vi (Oliveto et al., 2010):563

correctvi∩vj =
|correctvi ∩ correctvj |
|correctvi ∪ correctvj |

correctvi\(SZZ exp\vi) =
|correctvi \ correct(SZZ exp\vi)|
|correctvi ∪ correct(SZZ exp\vi |

where correctvi represents the set of correct bug-inducing commits detected564

by vi and correct (SZZexp\vi) the correct bug-inducing commits detected by565

all other techniques but vi. correctvi∩vj measures the overlap between the566
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set of correct bug-inducing commits identified by two given implementa-567

tions: we computed it between the pairs of experimented SZZ variants and568

present the results using a heatmap to better visualize the overlap metrics.569

correctvi\(SZZ exp\vi), instead, measures the correct bug-inducing commits iden-570

tified only by technique vi and missed by all others experimented in RQ1. It571

is worth clarifying that, when we compute the overlap metrics, we compare572

all the implementations among them on the same dataset. This means, for573

example, that we do not compute the overlap between a variant tested on574

oracleall and another variant tested on oracle issues .575

As a last step, we compute the set of bug-fixing commits for which none of576

the experimented techniques was able to correctly identify the bug-inducing577

commit(s). Then, we qualitatively discuss these cases to understand (i) the578

weak points of the applied heuristics and (ii) if it is possible to refine these579

heuristics to cover particular cases.580

4.2. Study Results581

Table 5: Precision, recall, and F-measure calculated for all SZZ algorithms in the context
of RQ1. † means Java only files.

Algorithm
oracleall oracleissue

Recall Precision F1 Recall Precision F1

N
o
is
su

e
d
a
te

fi
lt
er

B-SZZ 0.68 0.39 0.49 0.69 0.37 0.48
AG-SZZ 0.60 0.45 0.52 0.62 0.45 0.52
L-SZZ 0.45 0.52 0.49 0.43 0.50 0.46
R-SZZ 0.57 0.66 0.61 0.55 0.63 0.59
MA-SZZ 0.63 0.36 0.46 0.66 0.35 0.46

†RA-SZZ* 0.49 0.22 0.31 0.50 0.22 0.31
SZZ@PYD 0.67 0.39 0.49 0.69 0.39 0.50
SZZ@UNL 0.67 0.09 0.15 0.71 0.06 0.11
†SZZ@OPN 0.20 0.33 0.25 0.12 0.50 0.20

W
it
h
d
a
te

fi
lt
er

B-SZZ 0.68 0.42 0.52 0.69 0.38 0.49
AG-SZZ 0.60 0.49 0.54 0.62 0.46 0.53
L-SZZ 0.47 0.55 0.51 0.45 0.51 0.48
R-SZZ 0.62 0.73 0.67 0.57 0.66 0.61
MA-SZZ 0.63 0.39 0.49 0.66 0.36 0.47

†RA-SZZ* 0.49 0.26 0.34 0.50 0.22 0.31
SZZ@PYD 0.67 0.42 0.52 0.69 0.41 0.51
SZZ@UNL 0.67 0.09 0.15 0.71 0.06 0.11
†SZZ@OPN 0.20 0.34 0.25 0.12 0.50 0.20
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Table 5 reports the results achieved by the experimented SZZ variants582

and tools. The top part of the table shows the results when the issue date583

filter has not been applied, while the bottom part relates to the application of584

the date filter. With “issue date filter” we refer to the process through which585

we remove from the list of candidate bug-inducing commits returned by a586

given technique all those performed after the issue documenting the bug has587

been opened. Those are known to be false positives. For this reason, such a588

filter is expected to never decrease recall (since the discarded bug-inducing589

commits should all be false positives) while increasing precision. The left590

part of Table 5 shows the results achieved on oracleall, while the right part591

focuses on oracleissue.592

R-SZZ achieves the highest F-Measure (61%) when not using the issue593

date filtering (top part). Our implementation of R-SZZ uses the annotation594

graph, ignores cosmetic changes and meta-changes (as MA-SZZ), and only595

considers as bug-inducing commits the latest change that impacted a line596

changed to fix the bug. Thanks to that combination of heuristics, R-SZZ597

also achieves the highest precision on both oracles, achieving a precision score598

of 66% on oracleall and 63% on oracleissue.599

B-SZZ, the simplest SZZ version, exhibits the highest recall score of 68%600

on oracleall and 69% on oracleissue, followed by PyDriller and SZZ@UNL.601

Nonetheless, B-SZZ pays in precision, making it the fourth algorithm to-602

gether with the PyDriller implementation for oracleall and the sixth for603

oracleissue. Due to the similarity between B-SZZ and the PyDriller im-604

plementation, also their performances are quite similar.605

Despite the recall/precision tradeoff, R-SZZ and B-SZZ are not heavily606

affected in terms of recall score compared to SZZ@UNL (SZZ Unleashed). It607

achieves 66% of recall on oracleall and 67% on oracleissue datasets, with a very608

low precision of 9% and 6%, respectively. We investigated the reasons behind609

such a low precision, finding that it is mainly due to a set of outlier bug-fixing610

commits for which SZZ@UNL identifies a high number of (false positive) bug-611

inducing commits. For example, three bug-fixing commits are responsible for612

72 identified bug-inducing commits, out of which only three are correct. We613

analyzed the distribution of bug-inducing commits reported by SZZ@UNL for614

the different bug-fixing commits. Cases for which more than 20 bug-inducing615

commits are identified for a single bug-fix can be considered outliers. By616

ignoring those cases, the recall and precision of SZZ@UNL are 66% and 17%,617

respectively on oracleall, and 71% and 16% on oracleissue. By lowering the618

outlier threshold to 10 bug-inducing, the precision grows in both datasets619
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to 22%. We believe that the low precision of SZZ@UNL may be due to620

misbehavior of the tool in few isolated cases.621

Two implementations (i.e., RA-SZZ* and SZZ@OPN) only work with622

Java files. In this case, we compute their recall and precision by only con-623

sidering the bug-fixing commits impacting Java files. Both of them exhibit624

limited recall and precision. While this is due in part to limitations of the625

implementations, it is also worth noting that the number of Java-related626

commits in our datasets is quite limited (i.e., 81 in oracleall and only 8627

in oracleissue). Thus, failing on a few of those cases penalizes in terms of628

performance metrics.629

AG-SZZ, L-SZZ, and MA-SZZ exhibit, as compared to others, good630

performance for both recall and precision. These algorithms provide a good631

balance between recall and precision, as also shown by their F-Measure632

(∼50%).633

The bottom of Table 5 shows the results achieved by the same algorithms634

when using the issue data filter.635

As expected, the recall remains, for the most of the cases, equal to the636

previous scenario with marginal improvements in precision (thanks to the637

removal of some false positives). While most of the algorithms improve their638

precision by 1%-4%, R-SZZ obtain substantial improvements in the oracleall639

dataset R-SZZ (+6%). This boosts the latter to a very good 73% precision640

on oracleall, and 66% on oracleissue (+3%).641

To summarize the achieved results: We found that R-SZZ is the most642

precise variant on our datasets, with a precision ∼70% when the issue date643

filter is applied. Thus, we recommend it when precision is more important644

than recall (e.g., when a set of bug-inducing commits must be mined for645

qualitative analysis). If the focus is on recall, the current recommendation646

is to rely on B-SZZ, using, for example, the implementation provided by647

PyDriller. Finally, looking at Table 5, it is clear that there are still margins648

of improvement for the accuracy of the SZZ algorithm.649

Table 6 shows the correctvi\(SZZ exp\vi) metric we computed for each SZZ650

variant vi. This metric measures the correct bug-inducing commits identified651

only by technique vi and missed by all the others.652

Fig. 3a and Fig. 3b depict the correctvi∩vj metric computed between653

each pair of SZZ variants when not filtering based on the issue date, while654

Fig. 4a and Fig. 4b show the same metric when the issue filter has been655

applied. Given the metric definition, the depicted heatmaps will be symmet-656

ric. To improve the readability, we keep only the lower triangular matrix657
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Figure 3: Overlap between SZZ variants, evaluated in RQ1, when no issue date filter is
applied.
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Figure 4: Overlap between SZZ variants, evaluated in RQ1, when the issue date filter is
applied.

(i.e., correctvi∩vj = correctvj∩vi). The only technique able to identify bug-658

inducing commits missed by all others SZZ implementations is SZZ@UNL (19659

on oracleall and 2 on oracleissue) – Table 6. This is not surprising considering660

the high SZZ@UNL recall and the high number of bug-inducing commits it661

returns for certain bug-fixes. The main difference with the other evaluated662

SZZ variants is the BIC identification method used (i.e., Line-number Map-663
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Table 6: Bug inducing commits correctly identified exclusively by the vi algorithm. † Java
only files.

Algorithm
No date filter With date filter

oracleall oracleissue oracleall oracleissue

B-SZZ 1/898 0/86 1/898 0/86
AG-SZZ 0/898 0/86 0/898 0/86
L-SZZ 0/898 0/86 0/898 0/86
R-SZZ 0/898 0/86 0/898 0/86
MA-SZZ 0/898 0/86 0/898 0/86

†RA-SZZ* 0/56 0/5 0/56 0/5
SZZ@PYD 0/898 0/86 0/898 0/86
SZZ@UNL 19/898 (2%) 2/86 (2%) 19/898 (2%) 2/86 (2%)
†SZZ@OPN 0/56 0/5 0/56 0/5

ping(Williams and Spacco, 2008a)). This can be the reason why none of664

the other implementations identifies such bug-inducing commits: Given 898665

as cardinality of the intersection of the true positives identified by all SZZ666

techniques, SZZ@UNL correctly retrieves 842 of them.667

Looking at the overlap metrics in Fig. 3 and Fig. 4, two observations can668

be made. First, the overlap in the identified true positives is substantial.669

Excluding SZZ@OPN, 24 of the 28 comparisons have an overlap in the iden-670

tified true positives ≥70% and the lower values are still in the range 60-70%.671

The low overlap values observed for SZZ@OPN are instead due to the its low672

recall. Second, the complementarity between the different SZZ variants is673

quite low, which indicates that there is a set of bug-fixing commits for which674

all of the variants fail in identifying the correct bug-inducing commit(s). We675

manually analyzed those cases to derive possible improvements to the SZZ676

that we distill in the following.677

The buggy line is not always impacted in the bug-fix. In some678

cases, fixing a bug introduced in line l may not result in changes performed to679

l. An example in Java is the addition of an if guard statement checking for680

null values before accessing a variable. In this case, while the bug has been681

introduced with the code accessing the variable without checking whether682

it is null, the bug-fixing commit does not impact such a line, it just adds683

the needed if statement. An example from our dataset is the bug-fixing684

commit from the thcrap repository8 in which line 289 is modified to fix a bug685

8 https://github.com/thpatch/thcrap/commit/29f1663
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introduced in commit b67116d, as pointed by the developer in the commit686

message. However, the bug was introduced with changes performed on line687

290. Thus, running git blame on line 289 of the fix commit will retrieve688

a wrong bug-inducing commit. Defining approaches to identify the correct689

bug-inducing commit in these cases is far from trivial. Also, in several bug-690

fixing commits we inspected, the implemented changes included both added691

and modified/deleted lines. SZZ implementations focus on the latter, since692

there is no way to blame a newly added line. However, we found cases in693

which the added lines were responsible for the bug-fixing, while the modi-694

fied/deleted ones were unrelated. An example is commit ca11949 from the695

snake repository9, in which two lines are added and two deleted to fix a bug.696

The deleted lines, while being the target of SZZ, are unrelated to the bug-697

fix, as clear from the commit message pointing to commit 315a64b10 as the698

one responsible for the bug introduction. In the bug-inducing commit, the699

developer refactored the code to simplify an if condition. While refactoring700

the code, she introduced a bug (i.e., she missed an else branch). The fixing701

adds the else branch to the sequence of if/else if branches introduced702

in the bug-inducing commit. In this case, by relying on static analysis, it703

should be possible to link the added lines, representing the else branch, to704

the set of if/else if statements preceding it. While the added lines cannot705

be blamed, lines related to them (e.g., acting on the same variable, being706

part of the same “high-level construct” like in this case) could be blamed to707

increase the chances of identifying the bug-inducing commit.708

SZZ is sensible to history rewriting. Bird et al. (2009b) highlighted709

some of the perils of mining git repositories, among which the possibility710

for developers to rewrite the change history. This can be achieved through711

rebasing, for example: using such a strategy can have an impact on mining712

the change history (Kovalenko et al., 2018), and, therefore, on the perfor-713

mance of the SZZ algorithm. Besides rebasing, git allows to partially rewrite714

history by reverting changes introduced in one or more commits in the past.715

This action is often performed by developers when a task they are working716

on leads to a dead end. The revert command results in new commits in717

the change history that turn back the indicated changes. Consequently, SZZ718

can improperly show one of these commits as candidate bug-inducing. For719

9 https://github.com/krmpotic/snake/commit/ca11949
10 https://github.com/krmpotic/snake/commit/315a64b
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example, in the message of commit 5d8cee1 from the xkb-switch project11,720

the developer indicates that the bug she is fixing has been introduced in721

commit 42abcc. By performing a blame on the fix commit, git returns as a722

bug-inducing commit 8b9cf2912, which is a revert commit. By performing723

an additional blame step, the correct bug-inducing commit pointed by the724

developer can be retrieved13.725

5. New Heuristics for Improving SZZ726

Based on the discussed limitations, we propose two new heuristics aimed727

at improving SZZ. In the first one, HDU , we use data flow analysis to process728

added lines in bug-fixing commits in order to identify unchanged lines that729

might be the actual buggy lines on which the blame must be performed730

to correctly retrieve the bug-inducing commits. In the second one, HR, we731

propose a heuristic that allows SZZ to be aware of reverted changes, i.e.,732

changes that result in new commits that undo previous changes. While both733

heuristics can be combined with any SZZ variant, we experiment them with734

MA-SZZ and R-SZZ, providing four new variants that we implement in our735

pyszz tool.736

5.1. HDU : Handling Added Lines737

As outlined in Section 4.2, developers might add new lines to fix bugs,738

but such lines are ignored by all SZZ variants. To overcome such a limitation,739

it would be necessary to (i) identify the instructions functionally impacted740

by the added lines and (ii) run the SZZ on those lines, assuming that some741

of them induced the bug.742

To achieve this goal, we define HDU , a heuristic that relies on Definition-743

Use Chains (DUCs) to process added lines. We report below the steps for744

running HDU :745

Step 1: Building Definition-Use Chains. A Definition-Use Chain746

(DUC) is a data structure that links the definition of a variable to all its uses.747

DUCs can be statically extracted from source code. To extract the DUCs748

from a given file, we first identify all the declared functions or methods. Then,749

for each of them, we parse each line and we assign the label defv if it assigns750

11 https://github.com/grwlf/xkb-switch/commit/5d8cee1
12 https://github.com/grwlf/xkb-switch/commit/8b9cf29
13 https://github.com/grwlf/xkb-switch/commit/42abcc0
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Figure 5: Example workflow of HDU heuristic.

the variable v and the labels usev if it uses variable v. For example, the line751

int a = b + c is marked with the labels defa, useb, and usec. Finally, for752

each variable v, we link all the instruction that use v (marked with usev) to753

the nearest instruction that precedes and defines it (i.e., marked with defv).754

It is worth noting that for each instruction we keep the line number in which755

it appears. Therefore, we transform the instructions into line numbers, and756

determine which lines are related by definition-use relationships. The output757

of this step is a map DUM that associates each def line with its respective758

use lines.759

Step 2: Finding Related Lines. Given the list of added lines La in760

the bug-fixing commit, we aim at finding related lines in DUM . We find761

for all the line numbers La their reference in DUM , where we extract the762
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DUCs containing La. From the selected DUCs, for each def , we select the763

use line at distance k = 1. As a result, we obtain a set of def − use pairs,764

from which we extract the referenced line numbers. Pairs involving the lines765

added in the bug-fixing commits are ignored, since it would not be possible766

to run SZZ on them due to the lack of a change history.767

Step 3: Running SZZ. As a final step, we use SZZ on all the lines768

identified in the previous step, as if they were modified in the commit. The769

assumption is that the commit that introduced/modified such lines was prob-770

ably responsible for the introduction of the bug.771

Fig. 5 shows an example of our HDU heuristic. We implemented a pro-772

totype implementation of HDU for the C programming language, given the773

need to perform language-dependent static analysis. We choose C because774

it is the programming language with the largest number of instances in our775

dataset. It is worth noting, however, that our methodology can be adapted776

to other languages. We used SrcML14 to parse the input files and convert777

them in XML-like format to support the static analysis.778

5.2. HR: Filtering Revert Commits779

The second heuristic that we introduce is a filter for reverting changes.780

As we found in our first study, SZZ is sensible to history rewritings: Rebase781

operations and revert commits might be erroneously selected as bug-inducing782

commits.783

When a rebase operation is performed, the change history is entirely784

wiped up to a specific commit. In such cases, it is impossible to go back to785

the previous version of the history. In other words, rebase operations can786

not be treated. Revert commits, instead, are additional commits that apply787

inverse changes up to a given point. Therefore, revert commit explicitly788

appear in the revision history. Similarly to what done in MA-SZZ, we789

filter the SZZ output to ignore revert commits and reduce the number of790

false positives. Therefore, we implemented HR, a heuristic that leverages791

the commit message to identify reverted commits and ignore them. Such a792

filter consists in a simple string match using two patterns. With the first793

one, we skip commit that contain the sequence “This reverts commit” in794

the message. With the second pattern, we skip commits that start with795

the sequence “Revert”. We define these two pattern taking into account the796

14 https://www.srcml.org/doc/c_srcML.html

28

https://www.srcml.org/doc/c_srcML.html


default reverting commit message provided by git. This means that HR can797

not identify reverting commits having a customized commit message.798

6. Study 2: Evaluating the Proposed SZZ Heuristics799

In this section we report our second study, in which we evaluate the two800

novel heuristics we introduced.801

6.1. Study Design802

The goal of this study is to evaluate whether the two new heuristics we803

propose, HDU and HR, allow to improve the accuracy of the SZZ algorithm.804

In particular, we aim to answer the following research questions:805

• RQ2: Does HDU improve the accuracy of SZZ? With this research806

question, we want to evaluate the effectiveness of the heuristic we de-807

fined for handling added lines.808

• RQ3: Does HR improve the accuracy of SZZ? In this research question,809

we aim to experiment our heuristic that allows SZZ to be aware of810

reverting commits.811

6.1.1. Study Context812

We reply on the previously described oracleall and oracle issues dataset.813

Since the implementation of our HDU heuristic performs data flow analysis814

for functions written in C, we defined two additional datasets: oracleCall (397815

instances) and oracleCissues (40 instances), obtained by considering only C-816

related commits from the oracleall (1,258 instances) and oracle issues (119817

instances), respectively. That means we selected all the bug-fix commits818

impacting only .c and .h source files.819

6.1.2. Experimental Procedure820

To answer RQ2, we compare HDU with the approach defined by Sahal821

and Tosun (2018). As reported in Section 2, such a heuristic runs SZZ on822

all the lines belonging to the same blocks of the added lines. Since no tool823

implementing such a heuristic is available, we re-implemented the approach824

by Sahal et al.. Similarly to HDU , we implemented such a heuristic to work825

on C code. To understand if HDU allows to improve the accuracy of SZZ,826

we combine it (and also the baseline heuristic) with two SZZ variants: MA-827

SZZ (i.e., the implementation adopting the most complete set of filtering828
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heuristics, excluding RA-SZZ that only works for Java code), and R-SZZ829

(i.e., the one that achieved the best results in our first study).830

In total, we define four new variants: MA-SZZ@DU, MA-SZZ@A, R-831

SZZ@DU, and R-SZZ@A. Note that the variants starting with “DU-” are832

those adopting our HDU heuristic, while those starting with “A-” are those833

using the approach defined by Sahal and Tosun (2018). We run such variants834

on the oracleCall and the oracleCissues datasets. As a reference baseline, we also835

run the original SZZ implementation on these datasets. We use the same836

experimental design and performance metrics adopted in our first study.837

To answer RQ3, similarly to RQ2, we combine HR with MA-SZZ and R-838

SZZ. Thus, we define two new variants: MA-SZZ@REV andR-SZZ@REV.839

Since such an implementation supports any programming language, we run840

it on oracleall and oracle issues . Again, as a reference, we compare the results841

with the ones obtained on MA-SZZ, R-SZZ, and B-SZZ.842

As a last step, we compute the set of bug-fixing commits for which none of843

the experimented techniques was able to correctly identify the bug-inducing844

commit(s). Then, we qualitatively discuss these cases to understand (i) the845

weak points of the applied heuristics and (ii) if it is possible to further refine846

these heuristics to cover corner cases we did not consider.847

6.2. Study Results848

6.2.1. RQ2: Does HDU improve the accuracy of SZZ?849

Table 7 reports the resulting metrics for the six variants we compare based850

on R-SZZ and MA-SZZ.851

When no issue date filter is applied, R-SZZ@DU is the best performing852

on oracleCall , followed by R-SZZ. Considering oracleCissues , both R-SZZ@DU853

and R-SZZ achieve an F-measure score of 53%. The same is true for Preci-854

sion. R-SZZ@A is the worst performing variant, with an F-measure of 53%855

on oracleCall , which goes down to 40% for oracleCissues . However, MA-SZZ re-856

mains the best compared to its two variants regarding Recall and F-measure857

score. MA-SZZ@A have the lowest F-measure and Precision, obtaining the858

highest Recall of 73% and 68% on the two datasets. This is a consequence859

of the selection heuristic used where the entire code block encapsulating the860

added lines is returned.861

The observed differences are related to the underlying BIC selection862

heuristic behind R-SZZ. With R-SZZ@A, the resulting BICs are filtered,863

selecting, for each instance, only the most recent commit, thus effectively re-864

ducing the disadvantage it has with MA-SZZ in terms of Precision, which,865
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Table 7: Precision, recall, and F-measure calculated for the SZZ algorithms evaluated in
the context of RQ2.

Algorithm
oracleCall oracleCissue

Recall Precision F1 Recall Precision F1

N
o
fi
lt
er

R-SZZ@A 0.51 0.54 0.53 0.40 0.40 0.40
R-SZZ@DU 0.55 0.64 0.59 0.50 0.57 0.53
R-SZZ 0.54 0.63 0.58 0.50 0.57 0.53

MA-SZZ@A 0.73 0.06 0.12 0.68 0.03 0.06
MA-SZZ@DU 0.62 0.28 0.38 0.57 0.20 0.29
MA-SZZ 0.60 0.35 0.44 0.57 0.25 0.35

Is
su

e
d
a
te

fi
lt
er

R-SZZ@A 0.68 0.73 0.70 0.42 0.42 0.42
R-SZZ@DU 0.60 0.72 0.66 0.53 0.60 0.56
R-SZZ 0.59 0.72 0.65 0.53 0.60 0.56

MA-SZZ@A 0.73 0.07 0.12 0.68 0.03 0.06
MA-SZZ@DU 0.62 0.33 0.43 0.57 0.23 0.32
MA-SZZ 0.60 0.37 0.46 0.57 0.26 0.35

instead, does not filter the BICs. The same is true for R-SZZ@DU and866

MA-SZZ@DU, where the BIC filtering procedure used in R-SZZ (most867

recent commit) gives the same advantage to R-SZZ@A. However, as HDU868

is more conservative than the heuristic by Sahal and Tosun (2018), the im-869

pact on Precision is always acceptable. For example, considering oracleCall ,870

MA-SZZ identifies a total of 688 bug-inducing changes against the 883 of871

MA-SZZ@DU and 4575 of MA-SZZ@A.872

When the issue date filter is applied, similarly to RQ1, there is a gen-873

eral improvement in the Precision score due to the reduced number of false-874

positive BICs.875

In general, combining SZZ with heuristics that can process added lines876

improves SZZ. Therefore, both the heuristics work well when combined with877

R-SZZ and less well when combined with MA-SZZ.878

6.2.2. RQ3: Does HR improve the accuracy of SZZ?879

We report in Table 8 the resulting metrics of our experiment. Both MA-880

SZZ@REV and R-SZZ@REV perform similar to MA-SZZ and R-SZZ,881

achieving a small improvement (~ 1%) with and without the issue date filter.882

When the issue date filter is applied, there is a general improvement in terms883

of Precision, as seen for RQ1.884
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Table 8: Precision, recall, and F-measure calculated for the SZZ algorithms evaluated in
the context of RQ3.

Algorithm
oracleall oracleissue

Recall Precision F1 Recall Precision F1

N
o
fi
lt
er

MA-SZZ 0.63 0.36 0.46 0.66 0.35 0.46
MA-SZZ@REV 0.64 0.36 0.46 0.66 0.36 0.47

R-SZZ 0.57 0.66 0.61 0.55 0.63 0.59
R-SZZ@REV 0.58 0.66 0.62 0.57 0.65 0.61

W
it
h
fi
lt
er

MA-SZZ 0.63 0.39 0.48 0.66 0.36 0.47
MA-SZZ@REV 0.64 0.39 0.49 0.66 0.37 0.47

R-SZZ 0.62 0.73 0.67 0.57 0.66 0.61
R-SZZ@REV 0.63 0.74 0.68 0.59 0.67 0.63

We can conclude that HR only has a positive effect when combined with885

R-SZZ, where the BIC selection heuristic picks only one commit as a BIC886

candidate. As a consequence, the effectiveness of the revert commit filter is887

concrete only for some SZZ variants. Another point to consider is that the888

effectiveness of the heuristic directly depends on the presence of cases where889

there are revert commits. However, our heuristic never reduced the efficacy890

of the baselines: This means that HR can be safely used on top of any SZZ891

variant, and we found no drawbacks in including it.892

7. Results Discussion893

In summary, our first and second studies show that (i) R-SZZ generally894

achieves the best results, and (ii) by considering added lines and revert com-895

mits, the accuracy of SZZ improves. Interestingly, however, we found such896

an advantage (mostly, the ones related to added lines) dependent on the con-897

text. Some variants might work better in some cases, while some others in898

other cases. To check this intuition, we measure, for each commit, what is899

the best performing SZZ variant in terms of correctly identified BICs. To do900

this, for each variant vj and commit Ci, we compute the precision score for901

each bugfix commit as follows:902

F
vj
Ci

=
|identifiedvj

Ci
∩ correctCi

|

|identifiedvj
Ci

|

where identified
vj
Ci

is the set of BICs returned by vj for commit Ci, and903
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Table 9: Correctness ratio computed among all evaluated SZZ approaches.

Algorithm
No issue date filter With issue date filter

oracleCall oracleCissues oracleCall oracleCissues

B-SZZ 19/397 (0.05) 4/40 (0.10) 17/397 (0.04) 3/40 (0.08)
AG-SZZ 17/397 (0.04) 2/40 (0.05) 2/397 (0.01) 2/40 (0.05)
MA-SZZ 2/397 (0.01) 0/40 0/397 0/40
L-SZZ 4/397 (0.01) 0/40 0/397 0/40
R-SZZ 2/397 (0.01) 20/40 (0.50) 1/397 (0.00) 21/40 (0.53)
MA-SZZ@A 10/397 (0.03) 2/40 (0.05) 3/397 (0.01) 2/40 (0.05)
R-SZZ@A 32/397 (0.08) 1/40 (0.03) 269/397 (0.68) 1/40 (0.03)
MA-SZZ@DU 0/397 0/40 0/397 0/40
R-SZZ@DU 218/397 (0.55) 0/40 12/397 (0.03) 0/40
MA-SZZ@REV 0/397 0/40 0/397 0/40
R-SZZ@REV 0/397 0/40 0/397 0/40

correctCi
| is the set of BICs correctly identified by vj for the commit Ci.904

The higher the score, the more the given variant is suitable for the commit.905

For each commit Ci, we award a point to the SZZ variant(s), achieving the906

highest score for Ci. Then, we sum such scores. In case there are more SZZ907

implementations with the same score, we assign the point to the one that908

also achieves the highest F-measure score on the entire dataset. We identify909

the final resulting score as correctness ratio. In Table 9 we report the cor-910

rectness ratio score. When the issue date filter is not applied, R-SZZ@DU911

achieves the highest score for oracleCall , while for oracleCissues the best per-912

forming is R-SZZ. The SZZ variants that are less effective, without earning913

any points on both datasets, are MA-SZZ@DU, R-SZZ@REV, and MA-914

SZZ@REV. When the issue date filer is applied, R-SZZ@A achieves the915

highest correctness ratio score (68%)on oracleCall , while looking at oracleCissues916

the top performer is still R-SZZ (53%). This confirms what we stated in917

RQ2, that the best combination of line processing heuristic, BIC selection918

techniques and filters for SZZ depend on a specific bug-fixing context (i.e., fix919

pattern). As the proposed heuristics give the best improvement to R-SZZ,920

we can also conclude that not all the SZZ heuristics are compatible, but some921

work better in combination with others. To verify this, for each commit, we922

pick only the best performing SZZ implementation to compare the result-923

ing F-measure scores to the highest achieved in the context of RQ2.Thus,924

we obtain an overall score of 0.71 (+0.12) for the dataset oracleCall and 0.63925

(+0.10) for oracleCissues , without applying the issue date filter. When the926

issue date filter is applied, we achieve 0.75 (+0.05) and 0.65 (+0.09), re-927
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spectively. Surprisingly, both R-SZZ@REV and MA-SZZ@REV does not928

gain any points with and without filtering by issue date. This because the929

uniquely identified commits, looking at the results from RQ3, do not impact930

C source files. Thus, the HR does not give any advantage over the other SZZ931

implementations considering the C-only dataset.932

There are still bug-inducing changes that the improved SZZ implementa-933

tion can not identify. A first example is commit b0f795 from the libMesh/libmesh934

project15, where the C file extension is used for a C++ source file and only935

added lines are present as fixing change. Our SZZ implementations can not936

correctly process such files as they only work for C source code. Another937

example is commit d6ef40 from the repository gxt/QEMU 16. In that case,938

the bug and the fix impact different files (cpu-all.h and main.c, respec-939

tively). It is interesting to notice that, in such a case, the commit message940

of the bug-fixing commit contains a reference to the file involved in the bug-941

inducing commit: “...but we need to at least define the reserved va global942

so that cpu-all.h’s RESERVED VA macro will work correctly.”. A similar943

observation can be done for commit aebda6 from OpenChannelSSD/linux 17:944

To identify the bug-inducing change, SZZ has to process lines that are not945

related to those impacted by the fix (e.g., line 548). In this case, the commit946

message contains information about the method impacted by the fix: “...to947

fix the issue, as we have to do is make sure that our start config issued948

flag gets reset whenever we receive a SetInterface request.” This shows949

that it can be possible to use NLP-based techniques to extract information950

about code artifacts indirectly affected by a commit, using such a piece of951

information to improve SZZ variants.952

8. Threats to Validity953

Construct validity. During the manual validation, the evaluators mainly954

relied on the commit message and the linked issue(s), when available, to con-955

firm that a mined commit was a bug-fixing commit. Misleading information956

in the commit message could result in the introduction of false positive in-957

stances in our dataset. However, all commits have been checked by at least958

two evaluators and doubtful cases have been excluded, privileging a conser-959

vative approach. To build our dataset, we considered all the projects from960

15 https://github.com/libMesh/libmesh/commit/b0f7953
16 https://github.com/gxt/QEMU/commit/d6ef40b
17 https://github.com/OpenChannelSSD/linux/commit/aebda61
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GitHub, without explicitly defining criteria to select only projects that are961

invested in software quality. Our assumption is that the fact that developers962

take care of documenting the bug-introducing commit(s) is an indication that963

they care about software quality. To ensure that the commits in our dataset964

are from projects that take quality into account, we manually analyzed 123965

projects from our dataset, which allowed us to cover a significant sample of966

commits (286 out of 1,115, with 95%±5% confidence level). For each of them,967

we checked if they contained elements that indicate a certain degree of at-968

tention to software quality, i.e., (i) unit test cases, (ii) code reviews (through969

pull requests), (iii) and continuous integration pipelines. We found that in970

95% of the projects, developers (i) wrote unit test cases, and (ii) conducted971

code reviews through pull requests. Also, we found CI pipelines in 75% of972

the projects.973

Internal validity. There is a possible subjectiveness introduced of the974

manual analysis, which has been mitigated with multiple evaluators per bug-975

fix. Also, we reimplemented most of the experimented SZZ approaches, thus976

possibly introducing variations as compared to what proposed by the original977

authors. We followed the description of the approaches in the original papers,978

documented in Table 4 any difference between our implementations and the979

original proposals, and share our implementations (Rosa et al., TBD). Also,980

note that the differences documented in Table 4 always aim at improving981

the performance of the SZZ variants and, thus, should not be detrimental982

for their performance. Another point is that our new implementations of983

HDU and A-SZZ can have critical point or exceptional cases actually not984

handled. For example, when construct Definition-Use chains only at method985

level, thus as discussed in Section 7 there are some cases where our heuristic986

can not identify the correct BIC. Also, for MA-SZZ@A and R-SZZ@A,987

currently we do not apply the BICs filter described in the paper, where they988

select at most 4 commits as BIC. This because we replaced that filter with989

the filtering heuristic of R-SZZ.990

External validity. While it is true that we mined millions of commits to991

build our dataset, we used very strict filtering criteria that resulted in 2,304992

instances for our oracle. Also, the SZZ implementations have been experi-993

mented on a smaller dataset of 1,258 instances that is, however, still larger994

than those used in previous works. Finally, our dataset represents a subset995

of the bug-fixes performed by developers. This is due to our design choice,996

where we used strict selection criteria when building our oracle to prefer qual-997

ity over quantity. It is possible that our dataset is biased towards a specific998
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type of bug-fixing commits: there might be an inherent difference between999

the bug fixes for which developers document the bug-inducing commit(s)1000

(i.e., the only ones we considered) and other bug fixes.1001

While, to date, this is the largest dataset to evaluate SZZ implementa-1002

tions, additional mining and different filtering heuristics could help in im-1003

proving the generalizability of our findings.1004

9. Conclusion and Future Works1005

SZZ is a widely studied and adopted algorithm in the context of software1006

engineering research for defect analysis and prediction and also for tasks1007

of Mining Software Repositories (MSR). Exploring new way to improve the1008

effectiveness of SZZ can be always a precious contribution. Also, the creation1009

of a platform to perform a sound and rightful comparison of the various1010

state-of-the-art variant of SZZ is still an issue. The contributions of our1011

work are for first an extensive dataset of developer informed bug-fix commit1012

pairs to evaluate SZZ, where we performed a thorough comparison of the1013

existing SZZ variants including two new heuristics, namely HDU and HR. As1014

a result, the best performing SZZ variant is R-SZZ considering the classical1015

definition of the algorithm. When we consider bug-fixing changes having1016

added lines, one of our new implementation based on Definition-Use chains1017

(R-SZZ@DU) achieves good results together with R-SZZ and R-SZZ@A.1018

Moreover, the new heuristic HR, applied to R-SZZ and MA-SZZ, also gives1019

a slight improvement to SZZ.1020

The discussion of the results highlights additional points to explore. A1021

first point to explore is to find the optimal combination of filters and heuris-1022

tics for SZZ considering the bug-fixing pattern in the context of fixing. More-1023

over, the commit message can help to obtain the missing link between bug1024

and fix, when they impact different locations of the source code. Also, ex-1025

ploring different combinations with static analysis techniques, such as our1026

heuristic HDU , can improve the effectiveness of SZZ.1027

10. Data Availability1028

The complete study material, data, and source code of our re-implementations1029

are fully available in our replication package (Rosa et al., TBD).1030

36



Acknowledgment1031

This project has received funding from the European Research Council1032

(ERC) under the European Union’s Horizon 2020 research and innovation1033

programme (grant agreement No. 851720). We are grateful for the support1034

by the Swiss National Science foundation (SNF) and JSPS (Project “SEN-1035

SOR”).1036

References1037

Aman, H., Amasaki, S., Yokogawa, T., Kawahara, M., 2019. Empirical study1038

of fault introduction focusing on the similarity among local variable names,1039

in: QuASoQ@ APSEC, pp. 3–11.1040

Baeza-Yates, R., Ribeiro-Neto, B., 1999. Modern Information Retrieval.1041

Addison-Wesley.1042

Bavota, G., Russo, B., 2015. Four eyes are better than two: On the impact of1043

code reviews on software quality, in: 2015 IEEE International Conference1044

on Software Maintenance and Evolution (ICSME), IEEE. pp. 81–90.1045

Bernardi, M.L., Canfora, G., Di Lucca, G.A., Di Penta, M., Distante, D.,1046

2018. The relation between developers’ communication and fix-inducing1047

changes: An empirical study. Journal of Systems and Software 140, 111–1048

125.1049

Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V.,1050

Devanbu, P., 2009a. Fair and balanced? bias in bug-fix datasets, in:1051

Proceedings of the 7th joint meeting of the European Software Engineering1052

Conference and the ACM SIGSOFT Symposium on the Foundations of1053

Software Engineering, pp. 121–130.1054

Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu,1055

P., 2009b. The promises and perils of mining git, in: 2009 6th IEEE1056

International Working Conference on Mining Software Repositories, IEEE.1057

pp. 1–10.1058

Bissyande, T.F., Thung, F., an?d D. Lo, S.W., Jiang, L., Reveillere, L., 2013.1059

Empirical evaluation of bug linking, in: 2013 17th European Conference1060

on Software Maintenance and Reengineering, pp. 89–98.1061

37



Borg, M., Svensson, O., Berg, K., Hansson, D., 2019. Szz unleashed: an open1062

implementation of the szz algorithm-featuring example usage in a study1063

of just-in-time bug prediction for the jenkins project, in: Proceedings of1064

the 3rd ACM SIGSOFT International Workshop on Machine Learning1065

Techniques for Software Quality Evaluation, pp. 7–12.1066
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