
Capturing and Understanding the Drift Between Design,
Implementation, and Documentation

Joseph Romeo
REVEAL @ Software Institute – USI, Lugano, Switzerland

joseph.romeo@alumni.usi.ch

Marco Raglianti
REVEAL @ Software Institute – USI, Lugano, Switzerland

marco.raglianti@usi.ch

Csaba Nagy
REVEAL @ Software Institute – USI, Lugano, Switzerland

csaba.nagy@usi.ch

Michele Lanza
REVEAL @ Software Institute – USI, Lugano, Switzerland

michele.lanza@usi.ch

ABSTRACT
UML artifacts constitute a key (but often neglected) asset supporting
the comprehension of a system. Design documents “bind” devel-
opers in implementation phases and close the loop as documenta-
tion of the implemented system itself. Nevertheless, the intended
system (design), its current version (implementation), and its docu-
mentation, naturally tend to drift apart, negatively impacting the
usefulness of UML diagrams contained in such artifacts.

We present a novel approach to capture and understand the
Design–Implementation–Documentation (DID) drift. We connect
UML references in human-readable text-based UML formats (e.g.,
PlantUML) to the corresponding source code entities (e.g., Java
classes), implementing novel metrics to capture the UML coverage
of the system. We analyze project and file coverage evolution across
releases and commits, with overall, method-level, and attribute-
level detailedness, showing how they support DID drift analysis.
We present interesting case studies exemplifying how through
Drifter, the visual exploration tool we developed to validate our
approach, we identify DID drift and ways to tackle it in the future.

CCS CONCEPTS
• Software and its engineering → Designing software; Docu-
mentation; Abstraction, modeling and modularity.

KEYWORDS
design implementation documentation drift, DID drift, UML
ACM Reference Format:
Joseph Romeo, Marco Raglianti, Csaba Nagy, and Michele Lanza. 2024.
Capturing and Understanding the Drift Between Design, Implementation,
and Documentation. In 32nd IEEE/ACM International Conference on Program
Comprehension (ICPC ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3643916.3644399

Acknowledgments. This work is supported by the Swiss Na-
tional Science Foundation project “INSTINCT” (Project No. 190113).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPC ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0586-1/24/04. . . $15.00
https://doi.org/10.1145/3643916.3644399

1 INTRODUCTION

©Joseph Romeo, Marco Raglianti, Csaba Nagy, and Michele Lanza. 2024. This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version was published in the proceedings of the 32nd IEEE/ACM International Conference on Program Comprehension, https://doi.org/10.1145/3643916.3644399.

The Unified Modeling Language (UML) [13] is a visual modeling
language that provides a standard way to describe (not only) soft-
ware systems through a number of specialized diagrams. UML is
used for design and documentation, providing a guideline for sys-
tem development and evolution, thus constituting a fundamental
support for the comprehension of the system’s architecture and
behavior, especially at higher levels of abstraction.

As software systems evolve and grow in size and complexity, they
naturally diverge from their intended architecture. In the literature
we can find multiple definitions circumscribing this phenomenon:
Architecture erosion [4, 9, 19–21], architecture degradation [15],
architecture consistency [2, 23], or architecture recovery [10] when
attempting to mitigate the effect of an inevitable drift between the
intended architecture and the implementation of the system.

These definitions miss an important aspect of the software de-
velopment lifecycle. When a system is implemented, its current
state must be documented and, although documentation is often an
afterthought [1], design artifacts are the starting point for a high
level comprehension. In practice, what distinguishes a design UML
diagram from one to document the system, is time: Design-phase
artifacts precede implementation, for example to describe a new
feature, while a UML artifact conceptually becomes documentation
only after it reflects the implemented architecture.

We investigate the relationships between design, implementa-
tion, and documentation. We model entities in two domains, UML
diagrams and source code, to analyze how their artifacts drift apart,
creating a gap between the UML representation and the actual
implementation (e.g., classes covered by a diagram). We leverage
the ease of parsing and the popularity of PlantUML, a text-based
human-readable UML format, to associate Java entities (e.g., classes,
interfaces) with the UML diagrams mentioning them.

Structural relationships among entities and temporal relation-
ships among activities on artifacts of the two domains (e.g., file
commits in the repository), are a form of drift “in space and time”,
providing insights on the nature, origin, and extent of the phenom-
enon we call Design–Implementation–Documentation (DID) drift.

2 DID DRIFT
We define Design–Implementation–Documentation (DID) drift as
the distance between design and implementation and that between
implementation and documentation. There are two types of DID
drift: Space DID drift, stemming from the coverage metrics between
UML and source code entities, and time DID drift, when we consider

https://orcid.org/0009-0003-3664-1344
https://orcid.org/0000-0002-6878-5604
https://orcid.org/0000-0001-8109-3293
https://orcid.org/0000-0003-4391-0197
https://doi.org/10.1145/3643916.3644399
https://doi.org/10.1145/3643916.3644399
https://doi.org/10.1145/3643916.3644399

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Joseph Romeo, Marco Raglianti, Csaba Nagy, and Michele Lanza

the temporal difference between modifications to artifacts that alter
such coverage metrics, trying to capture how drift evolves.

We distinguish between overall coverage, and two detailedness
metrics capturing finer-grained information: Attribute-level de-
tailedness, and method-level detailedness.

Overall Coverage. The percentage of Java entities (classes, in-
terfaces, enums) present in at least one UML diagram.

Attribute-level Detailedness. The percentage of attributes in
a Java class present in at least one UML diagram.

Method-level Detailedness. The percentage of methods in a
Java class present in at least one UML diagram.

For detailedness, if a method or attribute is covered in multi-
ple diagrams, the percentage can be the minimum, maximum, or
average of the respective detailedness for each UML diagram.

3 DATASET
Using the SEART GitHub Search (GHS) tool [7] we selected projects,
excluding forks, with at least 2,000 commits, 10 contributors, 100
stars, and 10k cloc [8] LOCs to remove toy projects. We had a
starting dataset of 13,152 repositories, which we cloned locally.

UML File Tagging. File extensions are an efficient way to dis-
criminate file types, but not sufficient to uniquely identify UML dia-
grams. Thus, to identify UML artifacts, we combined: Import/export
extensions from tools returned by searching for “top UML diagram-
ming tools” on Google, all extensions with “uml” in the name and all
extensions in any file path with “uml” in the name, when present
in at least two repositories. We removed any known non-UML
extension (e.g., .java, .jar, .am). We implemented strategies to man-
ually find examples and counter-examples of UML diagrams for
each extension. For each potential UML file extension, we devised
heuristics based on regular expressions to tag the files that contain
UML semi-automatically. After identifying UML extensions and
tagging UML files, we obtain the final dataset of 552 repositories
containing UML diagrams. Table 1 summarizes descriptive statistics
of the projects we present as examples and case studies.

Table 1: Statistics of the Case Studies

Project Com-
mits

Contrib-
utors

Latest Release
Parsed
Files

Java
Entities

UML Di-
agrams

orekit 8,594 52 1,344 1,215 55
teammates 18,369 609 475 450 15
dataverse 27,492 179 811 806 13

4 DID DRIFT ANALYSIS
The git log contains information about Java and PlantUML files
for each commit.1 After extracting from the log information about
all .java, .puml, and .plantuml file modifications, we employ two
parsers to analyze their content in all the versions. We parse Java
files with the javalang library.2 To optimize the parsing we adopt
a differential parsing strategy by considering only the differences
between two commits. We parse PlantUML files with the plantuml-
parser3 to extract references to Java entities from UML diagrams.
1Linearized history, commits in topological order (git log --topo-order)
2See https://github.com/c2nes/javalang
3See https://github.com/Enteee/plantuml-parser

We end up with two instances of similar models, one for Java and
one for UML, both having packages, classes, interfaces, enums, refer-
ences, methods, fields, and arguments. To accommodate for UML’s
flexibility and get closer to the representation of Java systems, we
need to disambiguate parameter types in UML method signatures,
based on type separators (colon) and capitalization. We connect ref-
erences in UML to entities in source code in an undirected graph (see
Section 4.2). We extract information about releases4 from GitHub,
through its REST API, and add it to the cloned projects summaries.

The resulting tool is Drifter, an interactive explorer to capture
DID drift in Java projects on GitHub. Drifter allows to analyze
a project and select a GitHub release or a git commit. It presents
four data visualizations, each pertaining to a different aspect of DID
drift: Coverage and detailedness, relationships between UML and
source code, and coverage evolution at project and file level.

4.1 Package Visualization
Figure 1 shows UML overall coverage andmethod-level detailedness
(Section 2) of the cs-si/orekit GitHub project. Each innermost circle
represents a Java entity (e.g., class). Entities covered (i.e.,mentioned)
by at least one UML diagram are green, those with only an imple-
mentation are white. Java entities are contained in outer circles
corresponding to packages and their containment relationships.

0% Method Detailedness

0% < Method Detailedness < 100%

100% Method Detailedness

Uncovered Entities

Covered Entity

Outer Package
(org.orekit.forces)

Inner Package
(org.orekit.forces.maneuvers)

Overall Coverage

Method-level
Detailedness

Figure 1: Package Visualization

Method-level detailedness coverage goes more in depth by con-
sidering the percentage of methods implemented in a class that
is covered by the corresponding UML reference. Since multiple
diagrams can contain partial references, we provide different ag-
gregation types for detailedness metrics (e.g., min, max, average).
4Releases correspond to git tags but are mined from the GitHub API separately.

https://github.com/c2nes/javalang
https://github.com/Enteee/plantuml-parser

Capturing and Understanding the Drift Between Design, Implementation, and Documentation ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Example Insights. While we can find some packages with a
good overall coverage (i.e., most classes are green), a low method-
level detailedness of the same classes reveals that the use of UML
is partial and oriented to an overview of the system architecture.
When classes in some packages have 0% method-level detailedness
but most of them are shown as covered in the overall coverage
visualization, it likely indicates the presence of a package diagram,
only mentioning the involved classes without detailing them.

4.2 UML–Source Graph
Figure 2 shows Drifter’s UML–Source graph, where references
in UML diagrams (green) are connected to the corresponding Java
entities (blue). Graph connectivity visually represents how many
diagrams a Java entity is referenced by, and how many references
to Java entities are contained in each UML diagram. Undocumented
Java entities are represented by unconnected nodes in the graph.

UML Diagram and
Covered Java Entities

Documented Core

UML Diagram

Enum

Interface

Abstract Class

Class

UML
Java

Figure 2: UML–Source Graph

4.3 Coverage History
The package and UML–Source graph visualizations are useful for
exploring a specific commit of a repository, but they lack support
for understanding the evolution of UML coverage, especially at a
higher level. Figure 3 shows coverage history percentage over time
with respect to the total number of classes in the system.

C
ov

er
ag

e

0

0.2

0.4

0.6

0.8

1

N
um

be
r o

f C
la

ss
es

Coverage Number of Classes
1,500

1200

900

600

300

0
2017 2018 2019 2020 2021 2022 2023

Figure 3: Coverage History Chart — Release View

Release view supports a coarse-grained representation which
abstracts from single commits and low-level details of the develop-
ment workflow. Commit-level coverage history is more fine-grained
and can be leveraged to assess the current status and guide the de-
velopment workflow and resource allocation. If, for example, the
coverage drops significantly, to avoid increasing undocumented
classes, existing diagrams should be updated or new ones should
be created. Release view tends to be more consistent thanks to the
fact that, when there is a release, the project should be in a good,
stable, buildable, and therefore more reliably parsable state.

4.4 File History
Another relevant evolutionary aspect is how a single file changes
over commits and releases. We compare the evolution of Java source
code files with that of the UML diagrams containing a reference to
the same entities (i.e., the corresponding Java class).

Figure 4 shows a zoomed-in view of the file history for Instruc-
tor.java in the teammates/teammates repository. The symbols mark
the commit indexwhere each file has been added (squares), modified
(circles), or removed (diamonds). A red line for Java files indicates a
lack of coverage for the Java entity in the corresponding commits.

docs/diagrams/StorageClassDiagram.puml

docs/diagrams/StorageClassDiagram.puml

docs/diagrams/Actors.puml

src/main/java/teammates/…/Instructor.java

Java Source File

UML Files

No Coverage Period

File Added

File Modified

File Deleted
Commit Index 90 100 110 120 130

Figure 4: File History for Instructor.java

Example Insights. The Java source file history has a period
of no coverage (red line, top-left). The Instructor class was not
mentioned in any UML diagram until it appeared in the new file
StorageClassDiagram.puml in commit 94 (April 20215). The file was
removed and added again in two subsequent commits, temporarily
leaving the Instructor class uncovered. We can also notice how 11
modifications to the Instructor class after commit 96 did not have a
corresponding modification to the StorageClassDiagram.puml file,
indicating that either only implementation details were changed
or the UML documentation could have become outdated. Finally,
in commit 135, Actors.puml mentions the class which is therefore
referenced in two different UML diagrams.

5 CASE STUDIES
We present in two case studies how we capture and understand
DID drift from the interaction of multiple aspects in our characteri-
zation of the phenomenon, how our time-based approach allows
identifying systems where design precedes implementation, but
also contrasting wishes and reality of UML artifacts’ maintenance.

Teammates. Teammates is a web-based peer feedback manage-
ment system for students and teachers used by more than 800,000
users from over 1,110 universities around the world.6 We used the
Teammates project to present example insights elicited by the file
history analysis (Section 4.4). Nowwe focus on the coverage history
of Teammates in the last 2.5 years (Figure 5).

With the release 7.15, the project’s documentation was migrated
to PlantUML files. The chart shows an increase in coverage to 6% (22
classes out of 368) in aminor release and does not increase thereafter.
In fact it reaches 5% when the system comprises up to 446 classes.
In version 8.25.0, the same 22 classes are covered by 4 PlantUML
diagrams, as can be confirmed by the UML–Java class graph. In the
last two years, not a single class has been documented in a .puml
file, despite the decision to, paraphrasing from the discussion in the
migration issue, adopt PlantUML for being free and usable without
the need of specialized software, version control friendly, and better
supporting a more consistent use of UML notation.
5Drifter supports tooltip-based commit inspection (e.g., date, committer, message).
6See https://teammatesv4.appspot.com/web/front/home

https://teammatesv4.appspot.com/web/front/home

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Joseph Romeo, Marco Raglianti, Csaba Nagy, and Michele Lanza

V7.15 (migration to PlantUML)

Coverage Number of Classes

0
0.1
0.2
0.3
0.4
0.5

2021 2022 2023
0
100
200
300
400
500

C
ov

er
ag

e

N
um

be
r o

f C
la

ss
es

Figure 5: Teammates Release Coverage History

Similar motivations are found in another case study, cs-si/orekit,
and are a possible reason why PlantUML is becoming popular.
Nevertheless, these motivations did not correspond to an increase
in the documentation effort. We also performed an analysis of the
maintenance and maintainers of existing UML diagrams but this is
outside the scope of the presented work.

Dataverse. Since the late adoption of PlantUML in the Team-
mates case study limits our analysis of the DID drift, especially in
the early phases of the project where we assume a higher focus on
design, we found another project that started with .puml files as its
form of system documentation. Dataverse is a software platform
for sharing, finding, citing, and preserving research data, and it is
managed by the Institute for Quantitative Social Science (IQSS) at
Harvard University. The iqss/dataverse project is the perfect exam-
ple of “design before coding” approach.

The commit-level coverage history highlights 3 “coverage events”
(spikes in coverage percentage, detailed in Figure 6). We perform
an analysis of the Java files and UML Java references added in the
commits constituting two of these events.

Coverage
Event 3

08.15.2014
277

36

Date
References
Covered

08.04.2014
252

2

Date
References
Covered

08.31.2017
624

26

Date
References
Covered

09.07.2017
644

37

Date
References
Covered

Coverage
Event 2

Coverage
Event 1

Figure 6: Dataverse Commit-Level Coverage History

Coverage event 2 sees the addition of 25 new Java classes that
increase the overall coverage, indicating that those classes were
already present in some UML diagrams as a design of the sys-
tem that has been subsequently implemented. Nonetheless, there
are 9 additions to UML diagrams contributing to the coverage in-
crease by documenting previously undocumented classes. Coverage
event 3 is more balanced in terms of design versus documentation,
with 5 newly covered classes in UML diagrams and 6 new class
implementations already covered by design. The Workflow class
is documented and implementations of its collaborating classes
WorkflowContext, WorkflowStep, WorkflowStepData, Workflow-
StepResult, and WorkflowStepSPI are added to the source code.

Discussion. The case studies highlight the relevance of evolu-
tionary analysis to assess DID drift. Manual analysis is supported
by the proposed approach in highlighting points of interest in the
development history. We also provide an interpretative framework
to formulate hypotheses on the three-way interactions between
design, implementation, and documentation leading to drift.

The example of theWorkflow- classes in the Dataverse case study
indicates a discussion about the design, persisted in a UML artifact,
before starting the actual implementation. The procedure to identify
these “design-first” approaches could be automated to perform a
large scale study on UML practices, to empirically evaluate its
usefulness and usage preferences as design or documentation tool.

6 RELATEDWORK
High-quality documentation increases the success chances of a
software project [11, 18, 26]. UML diagrams, although with some
notable exceptions [14, 25], support developers by promoting ac-
tive discussion in teams [17] and by making them achieve better
functional correctness when changes can leverage accurate and up-
to-date diagrams [3, 11]. We focus on human-readable text-based
UML formats because of their increasing popularity in teaching and
practice (for example, see Carruthers et al. [6] and Jasser et al. [16]).

Model-Driven Reverse Engineering (MDRE) [22] reconstructs
model descriptions of existing systems, for example, for documenta-
tion, migration, and evolution of legacy systems (see the approach
of Favre [12] or tools like MoDisco, from Brunelière et al. [5]).
Sabir et al. investigated how to generate UML diagrams from ex-
isting Java source code with MDRE techniques [24]. While MDRE
focuses on creating new diagrams from code, our approach lever-
ages existing UML artifacts to analyze the status and the evolution
of design, implementation, and documentation of a software project,
especially in the early phases of a design-first project.

The natural divergence between architecture and implementa-
tion has been extensively studied. Architecture erosion [4, 9, 19–21],
degradation [15], and consistency [2, 23] assume a design-first ap-
proach where the focus is on the effect of development on the
intended architecture of the system. In our work, we show how
UML can also be used as a posteriori documentation and we con-
sider the role of design documents fulfilled when they become
documentation for the comprehension of the implemented system.

To the best of our knowledge, our work is the first to consider a
complete development iteration, from design, through implementa-
tion, to documentation, highlighting the evolution of the gap that
naturally tends to affect artifacts produced in the three phases.

7 CONCLUSION
Coverage and detailedness provide information about UML as doc-
umentation but also when UML is used for design. The tempo-
ral relationships between UML and source code entities indicate
whether UML is used for design or documentation. The presented
project-level evolutionary analysis hints at how to make DID drift
actionable to improve the quality and usefulness of UML artifacts,
in turn improving system comprehension.

More needs to be done to exploit the potential of DID drift anal-
ysis. For example, evolutionary analysis to distinguish between
UML for design versus UML for documentation needs to be made
automatic. Support for languages other than Java and PlantUML
can also improve the applicability of our approach. This work con-
stitutes a necessary first step towards a better understanding of the
interactions between UML for design and documentation, its drift
from implementation, and how to mitigate it efficiently.

Capturing and Understanding the Drift Between Design, Implementation, and Documentation ICPC ’24, April 15–16, 2024, Lisbon, Portugal

The authors would like to thank the Swiss Group for Original and
Outside-the-box Software Engineering (CHOOSE) for sponsoring
the trip to the conference.

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documen-
tation Issues Unveiled. In Proceedings of ICSE 2019 (International Conference on
Software Engineering). IEEE, 1199–1210. https://doi.org/10.1109/ICSE.2019.00122

[2] Nour Ali, Sean Baker, Ross O’Crowley, Sebastian Herold, and Jim Buckley. 2018.
Architecture Consistency: State of the Practice, Challenges and Requirements.
Empirical Software Engineering 23, 1 (2018), 224–258. https://doi.org/10.1007/
s10664-017-9515-3

[3] Erik Arisholm, Lionel C. Briand, Siw Elisabeth Hove, and Yvan Labiche. 2006.
The Impact of UML Documentation on Software Maintenance: An Experimental
Evaluation. IEEE Transactions on Software Engineering 32, 6 (2006), 365–381.
https://doi.org/10.1109/TSE.2006.59

[4] Ahmed Baabad, Hazura Binti Zulzalil, Sa’adah Hassan, and Salmi Binti Baharom.
2022. Characterizing the Architectural Erosion Metrics: A Systematic Mapping
Study. IEEE Access 10 (2022), 22915–22940. https://doi.org/10.1109/ACCESS.2022.
3150847

[5] Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, and FrédéricMadiot. 2014. MoDisco:
A Model Driven Reverse Engineering Framework. Information and Software
Technology 56, 8 (2014), 1012–1032. https://doi.org/10.1016/j.infsof.2014.04.007

[6] Sarah Carruthers, Amber Thomas, Liam Kaufman-Willis, and Aaron Wang. 2023.
Growing an Accessible and Inclusive Systems Design Course with PlantUML. In
Proceedings of SIGCSE 2023 (Technical Symposium on Computer Science Education).
ACM, 249–255. https://doi.org/10.1145/3545945.3569786

[7] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In Proceedings of MSR 2021 (International Conference
on Mining Software Repositories). IEEE/ACM, 560–564. https://doi.org/10.1109/
MSR52588.2021.00074

[8] Albert Danial. 2021. cloc: v1.92. Zenodo. https://doi.org/10.5281/zenodo.5760077
[9] Lakshitha de Silva and Dharini Balasubramaniam. 2012. Controlling Software

Architecture Erosion: A Survey. Journal of Systems and Software 85, 1 (2012),
132–151. https://doi.org/10.1016/j.jss.2011.07.036

[10] Stephane Ducasse and Damien Pollet. 2009. Software Architecture Reconstruc-
tion: A Process-Oriented Taxonomy. IEEE Transactions on Software Engineering
35, 4 (2009), 573–591. https://doi.org/10.1109/TSE.2009.19

[11] Wojciech J. Dzidek, Erik Arisholm, and Lionel C. Briand. 2008. A Realistic
Empirical Evaluation of the Costs and Benefits of UML in Software Maintenance.
IEEE Transactions on Software Engineering 34, 3 (2008), 407–432. https://doi.org/
10.1109/TSE.2008.15

[12] Liliana Favre. 2008. Formalizing MDA-Based Reverse Engineering Processes.
In Proceedings of SERA 2008 (International Conference on Software Engineering
Research, Management and Applications). IEEE, 153–160. https://doi.org/10.1109/
SERA.2008.21

[13] Martin Fowler. 2018. UML Distilled: A Brief Guide to the Standard Object Modeling
Language (3rd ed.). Addison-Wesley.

[14] Carmine Gravino, Giuseppe Scanniello, and Genoveffa Tortora. 2015. Source-
Code Comprehension Tasks Supported by UML Design Models: Results From

a Controlled Experiment and a Differentiated Replication. Journal of Visual
Languages and Computing 28 (2015), 23–38. https://doi.org/10.1016/j.jvlc.2014.
12.004

[15] Sebastian Herold, Martin Blom, and Jim Buckley. 2016. Evidence in Architecture
Degradation and Consistency Checking Research: Preliminary Results from a
Literature Review. In Proccedings of ECSA 2016 (European Conference on Software
Architecture Workshops). ACM, Article 20, 7 pages. https://doi.org/10.1145/
2993412.3003396

[16] Muhammed Basheer Jasser, Lee Ming Zhen, Bayan Issa, Ling Mee Hong, and
Ismail Ahmed Al-Qasem Al-Hadi. 2023. Quantifying Object-Oriented System
Complexity: Introducing a Powerful Measurement Tool. In Proceedings of ICSET
2023 (International Conference on System Engineering and Technology). IEEE, 221–
226. https://doi.org/10.1109/ICSET59111.2023.10295081

[17] Rodi Jolak, Maxime Savary-Leblanc, Manuela Dalibor, Juraj Vincur, Regina Hebig,
Xavier Le Pallec, Michel Chaudron, Sébastien Gérard, Ivan Polasek, and Andreas
Wortmann. 2022. The Influence of Software Design Representation on the Design
Communication of Teams with Diverse Personalities. In Proceedings of MOD-
ELS 2022 (International Conference on Model Driven Engineering Languages and
Systems). ACM, 255–265. https://doi.org/10.1145/3550355.3552398

[18] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. 2003. How Software
Engineers Use Documentation: The State of the Practice. IEEE Software 20, 6
(2003), 35–39.

[19] Ruiyin Li, Peng Liang, Mohamed Soliman, and Paris Avgeriou. 2021. Under-
standing Architecture Erosion: The Practitioners’ Perceptive. In Proceedings of
ICPC 2021 (International Conference on Program Comprehension). IEEE, 311–322.
https://doi.org/10.1109/ICPC52881.2021.00037

[20] Ruiyin Li, Peng Liang, Mohamed Soliman, and Paris Avgeriou. 2022. Understand-
ing Software Architecture Erosion: A Systematic Mapping Study. Journal of Soft-
ware: Evolution and Process 34, 3 (2022), e2423. https://doi.org/10.1002/smr.2423

[21] Ruiyin Li, Mohamed Soliman, Peng Liang, and Paris Avgeriou. 2022. Symptoms
of Architecture Erosion in Code Reviews: A Study of Two OpenStack Projects.
In Proceedings of ICSA 2022 (International Conference on Software Architecture).
IEEE, 24–35. https://doi.org/10.1109/ICSA53651.2022.00011

[22] Claudia Raibulet, Francesca Arcelli Fontana, and Marco Zanoni. 2017. Model-
Driven Reverse Engineering Approaches: A Systematic Literature Review. IEEE
Access 5 (2017), 14516–14542. https://doi.org/10.1109/ACCESS.2017.2733518

[23] Jacek Rosik, Andrew Le Gear, Jim Buckley, Muhammad Ali Babar, and Dave
Connolly. 2011. Assessing Architectural Drift in Commercial Software Devel-
opment: A Case Study. Software: Practice and Experience 41, 1 (2011), 63–86.
https://doi.org/10.1002/spe.999

[24] Umair Sabir, Farooque Azam, Sami Ul Haq, Muhammad Waseem Anwar,
Wasi Haider Butt, and Anam Amjad. 2019. A Model Driven Reverse Engineering
Framework for Generating High Level UMLModels From Java Source Code. IEEE
Access 7 (2019), 158931–158950. https://doi.org/10.1109/ACCESS.2019.2950884

[25] Giuseppe Scanniello, Carmine Gravino,Marcela Genero, Jose’ A. Cruz-Lemus, and
Genoveffa Tortora. 2014. On the Impact of UML Analysis Models on Source-Code
Comprehensibility and Modifiability. ACM Transactions on Software Engineering
andMethodology 23, 2, Article 13 (2014), 26 pages. https://doi.org/10.1145/2491912

[26] Eirik Tryggeseth. 1997. Report from an Experiment: Impact of Documentation
on Maintenance. Empirical Software Engineering 2, 2 (1997), 201–207. https:
//doi.org/10.1109/MS.2003.1241364

Received 22 Nov 2023; revised 28 Jan 2024; accepted 10 Jan 2024

https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1007/s10664-017-9515-3
https://doi.org/10.1007/s10664-017-9515-3
https://doi.org/10.1109/TSE.2006.59
https://doi.org/10.1109/ACCESS.2022.3150847
https://doi.org/10.1109/ACCESS.2022.3150847
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1145/3545945.3569786
https://doi.org/10.1109/MSR52588.2021.00074
https://doi.org/10.1109/MSR52588.2021.00074
https://doi.org/10.5281/zenodo.5760077
https://doi.org/10.1016/j.jss.2011.07.036
https://doi.org/10.1109/TSE.2009.19
https://doi.org/10.1109/TSE.2008.15
https://doi.org/10.1109/TSE.2008.15
https://doi.org/10.1109/SERA.2008.21
https://doi.org/10.1109/SERA.2008.21
https://doi.org/10.1016/j.jvlc.2014.12.004
https://doi.org/10.1016/j.jvlc.2014.12.004
https://doi.org/10.1145/2993412.3003396
https://doi.org/10.1145/2993412.3003396
https://doi.org/10.1109/ICSET59111.2023.10295081
https://doi.org/10.1145/3550355.3552398
https://doi.org/10.1109/ICPC52881.2021.00037
https://doi.org/10.1002/smr.2423
https://doi.org/10.1109/ICSA53651.2022.00011
https://doi.org/10.1109/ACCESS.2017.2733518
https://doi.org/10.1002/spe.999
https://doi.org/10.1109/ACCESS.2019.2950884
https://doi.org/10.1145/2491912
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1109/MS.2003.1241364

	Abstract
	1 Introduction
	2 DID Drift
	3 Dataset
	4 DID Drift Analysis
	4.1 Package Visualization
	4.2 UML–Source Graph
	4.3 Coverage History
	4.4 File History

	5 Case Studies
	6 Related Work
	7 Conclusion
	References

