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The generalization of barycentric coordinates to arbitrary simple polygons with more than three 
vertices has been a subject of study for a long time. Among the different constructions proposed, 
mean value coordinates have emerged as a popular choice, particularly due to their suitability 
for the non-convex setting. Since their introduction, they have found applications in numerous 
fields, and several equivalent formulas for their evaluation have been presented in the literature. 
However, so far, there has been no study regarding their numerical stability. In this paper, we aim 
to investigate the numerical stability of the algorithms that compute mean value coordinates. We 
show that all the known methods exhibit instability in some regions of the domain. To address 
this problem, we introduce a new formula for computing mean value coordinates, explain how 
to implement it, and formally prove that our new algorithm provides a stable evaluation of mean 
value coordinates. We validate our results through numerical experiments.

1. Introduction

Mean value coordinates were initially introduced as a generalization of barycentric coordinates to polygons and polyhe-

dra (Floater, 2003; Floater et al., 2005; Hormann and Floater, 2006; Ju et al., 2005). Since then, they have emerged as a valuable 
tool in a wide range of domains, such as interpolation, curve and surface modeling in computer graphics, mesh parameterization, 
the finite element method, and various other fields. Moreover, they stand out for their capability to extend barycentric coordinates 
to the non-convex setting, unlike other commonly used coordinates. For more details about generalized barycentric coordinates, we 
refer to Hormann and Sukumar (2017).

Let 𝑃 ⊂ℝ2 be a simple planar polygon with 𝑛 ≥ 3 vertices 𝑣1, … , 𝑣𝑛 arranged in anticlockwise ordering and 𝑣 ∈ℝ2 be an arbitrary 
point in the interior of 𝑃 . The mean value coordinates (Floater, 2003) of 𝑣 with respect to 𝑃 are defined as

𝜆𝑖(𝑣) =
𝑤𝑖(𝑣)∑𝑛

𝑗=1𝑤𝑗 (𝑣)
, 𝑤𝑖(𝑣) =

1
𝑟𝑖

(
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖

2

)
, 𝑖 = 1,… , 𝑛, (1)

with 𝛼𝑖 ∈ (−𝜋, 𝜋) denoting the signed angle at 𝑣 in the triangle [𝑣, 𝑣𝑖, 𝑣𝑖+1] and 𝑟𝑖 = ‖𝑣− 𝑣𝑖‖. Note that indices are considered 
cyclically with respect to the range [1, 2, … , 𝑛]; for example, 𝑣𝑛+1 = 𝑣1 and 𝛼0 = 𝛼𝑛.

Floater (2003) shows that the coordinate functions 𝜆𝑖 form a partition of unity,

𝑛∑
𝑖=1

𝜆𝑖(𝑣) = 1
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and can be used to express 𝑣 as an affine combination of the vertices of 𝑃 ,

𝑛∑
𝑖=1

𝜆𝑖(𝑣)𝑣𝑖 = 𝑣,

which is also referred to as the barycentric property. Besides these defining properties of generalized barycentric coordinates, they can 
be extended continuously to the boundary of 𝑃 and this extension satisfies the Lagrange property

𝜆𝑖(𝑣𝑗 ) = 𝛿𝑖𝑗 =

{
1, 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗,
𝑖, 𝑗 = 1,… , 𝑛,

which makes them particularly useful for interpolating data given at the vertices of 𝑃 . Moreover, they are actually well-defined for 
all 𝑣 ∈ ℝ2 ⧵ 𝜕𝑃 , positive inside the kernel of 𝑃 , invariant to similarity transformations of 𝑃 , and their extension is linear along the 
edges of 𝑃 and smooth except at the vertices 𝑣𝑖, where it is only 𝐶0 (Hormann and Floater, 2006).

While many alternative formulas that are mathematically equivalent to (1) have been proposed in the literature over the years, a 
comprehensive investigation of their numerical stability is currently lacking. The aim of this paper is to change this and to discuss the 
numerical stability of algorithms that compute mean value coordinates. After reviewing the related work on mean value coordinates 
and recalling the various methods that have been introduced for their computation (Section 2), we show that each formulation can 
exhibit numerical instability in certain situations (Appendix C). To address this issue, we introduce a new formula for expressing 
mean value coordinates and explain how to properly implement it, so as to prevent potential numerical issues (Section 3). We then 
recall the mathematical definition of numerical stability, specifically in the case of mean value coordinates, and we prove that our 
new formula provides a stable way to compute the functions 𝜆𝑖 (Section 4 and Appendix B). Finally, we validate our results with 
numerical experiments and compare the various methods both in terms of numerical stability and efficiency (Section 5).

2. Existing methods for computing the mean value coordinates

Floater et al. (2006) note that mean value coordinates are a particular member of a family of three-point coordinates for convex 
polygons, which can be derived by normalizing a set of weight functions 𝑤𝑖 that each depend on three consecutive vertices of 𝑃 . In 
this context, they show that mean value coordinates can be expressed as

𝜆𝑖(𝑣) =
𝑤𝑖(𝑣)∑𝑛

𝑗=1𝑤𝑗 (𝑣)
, 𝑤𝑖(𝑣) =

𝑟𝑖−1𝐴𝑖,𝑖+1 − 𝑟𝑖𝐴𝑖−1,𝑖+1 + 𝑟𝑖+1𝐴𝑖−1,𝑖

2𝐴𝑖−1,𝑖𝐴𝑖,𝑖+1
, 𝑖 = 1,… , 𝑛, (2)

where 𝐴𝑖,𝑗 = det(𝑣𝑖 − 𝑣, 𝑣𝑗 − 𝑣)∕2 denotes the signed area of the triangle [𝑣, 𝑣𝑖, 𝑣𝑗 ]. The advantage of this formula over the original 
definition in (1) is that it avoids the computation of the angles 𝛼𝑖 and that it gets by without the use of trigonometric functions.

While mean value coordinates were initially considered only for points inside the kernel of star-shaped polygons (Floater, 2003), 
Hormann and Floater (2006) prove that they are well-defined for any 𝑣 ∈ ℝ and (sets of) arbitrary planar polygons without self-

intersection. They also propose another way of evaluating mean value coordinates that avoids trigonometric functions. In particular, 
denoting the dot product of 𝑣𝑖 − 𝑣 and 𝑣𝑗 − 𝑣 by 𝐷𝑖,𝑗 = (𝑣𝑖 − 𝑣) ⋅ (𝑣𝑗 − 𝑣), using the half-angle formula for the tangent, tan(𝛼𝑖∕2) =
(1 − cos𝛼𝑖)∕ sin𝛼𝑖, and recalling that 𝐷𝑖,𝑖+1 = 𝑟𝑖𝑟𝑖+1 cos𝛼𝑖 and 2𝐴𝑖,𝑖+1 = 𝑟𝑖𝑟𝑖+1 sin𝛼𝑖, they conclude that the mean value coordinates 
in (1) can be written as

𝜆𝑖(𝑣) =
𝑤𝑖(𝑣)∑𝑛

𝑗=1𝑤𝑗 (𝑣)
, 𝑤𝑖(𝑣) =

1
𝑟𝑖

(
𝑟𝑖−1𝑟𝑖 −𝐷𝑖−1,𝑖

2𝐴𝑖−1,𝑖
+

𝑟𝑖𝑟𝑖+1 −𝐷𝑖,𝑖+1

2𝐴𝑖,𝑖+1

)
, 𝑖 = 1,… , 𝑛. (3)

The advantage of implementing this formula over (2) is that it allows to easily “catch” the case when 𝑣 is on the boundary of 𝑃 , say 
𝑣 = (1 − 𝜇)𝑣𝑘 + 𝜇𝑣𝑘+1 for some 𝜇 ∈ [0, 1] and some 𝑘 ∈ {1, … , 𝑛}, as this happens if and only if 𝐴𝑘,𝑘+1 = 0 and 𝐷𝑘,𝑘+1 ≤ 0. In this 
case, the mean value coordinates of 𝑣 are just 𝜆𝑘(𝑣) = 1 − 𝜇, 𝜆𝑘+1(𝑣) = 𝜇, and 𝜆𝑖(𝑣) = 0 for 𝑖 ≠ 𝑘, 𝑘 + 1.

One potential problem with the formulas in (2) and (3) is that the coordinates 𝜆𝑖(𝑣) are not well-defined if 𝐴𝑘,𝑘+1 = 0 for some 
𝑘, that is, if 𝑣 is on the line supporting the edge [𝑣𝑘, 𝑣𝑘+1] of 𝑃 . We can overcome this problem by using the alternative half-angle 
formula for the tangent, tan(𝛼𝑖∕2) = sin𝛼𝑖∕(1 + cos𝛼𝑖), to obtain

𝜆𝑖(𝑣) =
𝑤𝑖(𝑣)∑𝑛

𝑗=1𝑤𝑗 (𝑣)
, 𝑤𝑖(𝑣) =

1
𝑟𝑖

( 2𝐴𝑖−1,𝑖

𝑟𝑖−1𝑟𝑖 +𝐷𝑖−1,𝑖
+

2𝐴𝑖,𝑖+1

𝑟𝑖𝑟𝑖+1 +𝐷𝑖,𝑖+1

)
, 𝑖 = 1,… , 𝑛. (4)

This formula gives rise to an implementation that has the same advantages as the one derived from (3), but is well-defined even if 
𝐴𝑘,𝑘+1 = 0 for some 𝑘.

All the formulas above have the limitation that they are not well-defined on the boundary of the polygon 𝑃 and, moreover, (2)

and (3) can be used only if all 𝐴𝑖,𝑖+1 ≠ 0. This motivated Floater (2014) to introduce yet another formula for mean value coordinates, 
which is also valid on the boundary, namely

𝜆 (𝑣) =
𝑤̂𝑖(𝑣)

, 𝑤̂ (𝑣) = 𝜎

√
𝑟 𝑟 −𝐷

∏ √
𝑟 𝑟 +𝐷 , 𝑖 = 1,… , 𝑛, (5)
2

𝑖 ∑𝑛

𝑗=1 𝑤̂𝑗 (𝑣)
𝑖 𝑖 𝑖−1 𝑖+1 𝑖−1,𝑖+1

𝑗≠𝑖−1,𝑖
𝑗 𝑗+1 𝑗,𝑗+1
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Fig. 1. Plots of the absolute and relative errors on a log10 scale made by the algorithms that implement formulas (1)–(5) and (8) to evaluate the mean value coordinate 
𝜆𝑘 related to the vertex 𝑣𝑘 (magenta dot) for an arbitrary pentagon. (For interpretation of the colors in the figures, the reader is referred to the web version of this 
article.)

where 𝜎𝑖 ∈ {+1, −1} is a sign related to the weight function 𝑤̂𝑖. Initially, this formula was presented without 𝜎𝑖, which limits its 
applicability to points 𝑣 inside convex polygons, but Anisimov (2017, Section 3.2.4) demonstrates how to define 𝜎𝑖, such that it can 
be used for any 𝑣 ∈ ℝ2 and arbitrary simple polygons. The disadvantage of this formula is that its implementation requires 𝑂(𝑛2)
instructions, while the formulas (1)–(4) give rise to 𝑂(𝑛) algorithms.

Let us now focus on understanding the circumstances under which the implementations of the formulas above may exhibit 
stability problems. One potential problem is the fact that they are rational, which can lead to the issue of vanishing denominators. 
This is actually not a problem for the 𝜆𝑖, since the sum of the weights 𝑤𝑖 in (1)–(4) never vanishes for any 𝑣 ∈ ℝ2 ⧵ 𝜕𝑃 (Hormann 
and Floater, 2006) and likewise for the sum of the weights 𝑤̂𝑖 in (5). But what about the weights themselves? Considering some 
fixed 𝑘 ∈ {1, … , 𝑛}, the weight 𝑤𝑘 in (1) or (4) is not well-defined, if either 𝛼𝑘−1 or 𝛼𝑘 is equal to ±𝜋, or if 𝑣 = 𝑣𝑘, which happens 
only if 𝑣 lies on the edges [𝑣𝑘−1, 𝑣𝑘] or [𝑣𝑘, 𝑣𝑘+1]. On the other hand, when computing 𝑤𝑘 with (2) or (3), we could potentially have 
problems even inside the polygon. In fact, the areas 𝐴𝑘−1,𝑘 and 𝐴𝑘,𝑘+1 vanish not only on the edges [𝑣𝑘−1, 𝑣𝑘] or [𝑣𝑘, 𝑣𝑘+1], but also 
on the entire lines supporting them. Based on this initial analysis, it is reasonable to expect that the computation of mean value 
coordinates is sensitive to rounding errors near the regions where they are not well-defined mathematically. Regarding instead the 
weight 𝑤̂𝑘 in (5), even though it is well-defined for any 𝑣 ∈ℝ2, problems can still arise, for example when subtracting two nearby 
numbers. This may happen if 𝐷𝑘−1,𝑘+1 is approximately equal to 𝑟𝑘−1𝑟𝑘+1 or if 𝐷𝑗,𝑗+1 is close to −𝑟𝑗𝑟𝑗+1, for some 𝑗 ≠ 𝑘 − 1, 𝑘, that 
is, whenever 𝛼𝑘−1 + 𝛼𝑘 is close to zero or some 𝛼𝑗 approaches ±𝜋. In other words, we expect the weights 𝑤̂𝑘 to be unstable when 𝑣
approaches the set 𝑍𝑘 = {𝑣 ∈ ℝ2 ∶ 𝑤̂𝑘(𝑣) = 𝜆𝑘(𝑣) = 0}, which consists of the edges that are not adjacent to 𝑣𝑘 and the line through 
𝑣𝑘−1 and 𝑣𝑘+1, except for the (open) segment (𝑣𝑘−1, 𝑣𝑘+1) itself.

To determine if such scenarios can indeed occur in practice, we examine the behavior of the mean value coordinates for a specific 
polygon and visualize the numerical errors introduced by each of the previously mentioned formulas. For a given index 𝑘 ∈ {1, … , 𝑛}, 
we compute the absolute error

𝐸𝑎(𝑣) = |fl(𝜆𝑘(𝑣)) − 𝜆𝑘(𝑣)|, (6)

where 𝜆𝑘(𝑣) is the “exact” value computed in multiple-precision (1024 bit) floating-point arithmetic using the MPFR library (Fousse 
et al., 2007) and fl(𝜆𝑘(𝑣)) is the result of the standard double precision implementation. Let us consider the pentagon in Fig. 1 and 
the index 𝑘 ∈ {1, 2, 3, 4, 5} of the vertex 𝑣𝑘 marked by the magenta dot. We examine the values 𝐸𝑎(𝑣) in (6) across a uniform grid of 
dimension 500 × 500 containing the polygon. The results are obtained for 𝜆𝑘(𝑣) computed with all the formulas (1)–(5) and with our 
new formula (8), which will be introduced in Section 3. If 𝐸𝑎(𝑣) is on the order of the machine epsilon, which is approximately 10−16
in double precision, then it means that the method is stable for 𝑣, otherwise it suggests a potential instability. The plots in Fig. 1 show 
that the original formula in (1) seems to be the only one among the already known formulas that is stable everywhere. This outcome 
is particularly surprising, because it suggests that this method can effectively handle the division by small numbers in the weights 
𝑤𝑖, 𝑖 = 1, … , 5, contrary to our initial expectations. Instead, computing 𝜆𝑘(𝑣) with (2) or (3), we observe numerical issues around 
the lines supporting the edges, but not close to the edges themselves. While this partially aligns with our prediction of encountering 
issues along the entire lines, the theoretical analysis on the stability of these formulas explains why we do not have any problems 
near the edges. In particular, it turns out that the numerical errors introduced by (2) and (3) are bounded when 𝑣 approaches the 
edges, that is, when some 𝛼𝑖 is close to ±𝜋 (see Corollaries 9 and 10). Then, as expected, the method resulting from (4) has numerical 
problems near the boundary of the polygon. Finally, formula (5) appears to be the least stable as it exhibits a substantial absolute 
3

error close to all sets 𝑍𝑖, 𝑖 = 1, … , 5, which also aligns with our initial considerations.
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We further extend the stability analysis and also consider the relative error

𝐸𝑟(𝑣) =
|fl(𝜆𝑘(𝑣)) − 𝜆𝑘(𝑣)||𝜆𝑘(𝑣)| , (7)

which, although not mathematically defined on the set 𝑍𝑘 , provides valuable insights into the stability compared to the actual 
magnitude of |𝜆𝑘|. This metric offers a zoomed-in view of the domain region where |𝜆𝑘| becomes notably small and indicates how 
close we can approach 𝑍𝑘 before encountering significant relative errors. In fact, examining the values of 𝐸𝑟 in Fig. 1, we observe 
that all methods exhibit relatively high errors in the vicinity of the set 𝑍𝑘 , but with different divergence rate. In particular, it appears 
that (1) may have potential instability over a wider region near 𝑍𝑘 compared to (2) and (3), while (4) and (5) confirm to be the 
worst also in relative terms. Additionally, we observe that the relative error aligns with the information provided by the absolute 
error in the remaining part of the domain.

To summarize, the original formula (1) is the most robust in terms of numerical stability. In fact, despite some suggestions of 
instability close to 𝑍𝑘 given by the relative error plot, the formula yields absolutely stable results across the entire domain. However, 
there exist situations where even the original formula (1) can be unstable, and we give an example in Section 5.

3. A new stable formula for mean value coordinates

After observing that all known methods for computing mean value coordinates have some flaw in terms of numerical stability, 
the goal of our work is to derive a new formula that is potentially stable everywhere. Like Floater (2014), we aim to ensure that 
this new method is defined not only in the interior, but also along the boundary of the polygon. To achieve this, we first employ a 
similar trick and multiply both the numerator and denominator of the 𝜆𝑖 in (1) by a common constant, which is then included into 
the redefined weights. In addition, we focus on minimizing operations that are more likely to introduce instability in the results, such 
as square roots and summations. We now present the new formula and explain how to implement it in a stable way.

Theorem 1. The mean value coordinates can be expressed as

𝜆𝑖(𝑣) =
𝑤̃𝑖(𝑣)∑𝑛

𝑗=1 𝑤̃𝑗 (𝑣)
, 𝑤̃𝑖 = sin

𝛼𝑖−1 + 𝛼𝑖

2
∏
𝑗≠𝑖

𝑟𝑗

∏
𝑗≠𝑖−1,𝑖

cos
𝛼𝑗

2
, 𝑖 = 1,… , 𝑛, (8)

and this formula is well-defined for all 𝑣 ∈ ℝ2, as long as the signed angle 𝛼𝑖 is defined as 𝜋 or −𝜋 for 𝑣 ∈ (𝑣𝑖, 𝑣𝑖+1) and in some arbitrary 
way for 𝑣 ∈ {𝑣𝑖, 𝑣𝑖+1}.

Proof. Starting from (1), using the fact that tan(𝛼𝑖∕2) = sin(𝛼𝑖∕2)∕ cos(𝛼𝑖∕2), and applying the angle sum identity for the sine 
function, we have

𝑤𝑖 = sin
𝛼𝑖−1 + 𝛼𝑖

2

/(
𝑟𝑖 cos

𝛼𝑖−1
2

cos
𝛼𝑖

2

)
.

We can now eliminate the zeros in the denominator by multiplying all 𝑤𝑖 by 𝐹 =
∏𝑛

𝑖=1 𝑟𝑖 cos(𝛼𝑖∕2) and, denoting the result by 𝑤̃𝑖, 
we obtain the new formula (8).

This formula is well-defined for any 𝑣 ∈ ℝ2 ⧵ 𝜕𝑃 , because both the sum of the 𝑤𝑖 and 𝐹 do not vanish, and the denominator of 
𝜆𝑖(𝑣) in (8) is just 

∑𝑛

𝑗=1 𝑤̃𝑗 (𝑣) = 𝐹
∑𝑛

𝑗=1𝑤𝑗 (𝑣) ≠ 0. Moreover, the formula also works if 𝑣 ∈ 𝜕𝑃 . On the one hand, if 𝑣 is a vertex of 
𝑃 , that is, 𝑣 = 𝑣𝑘 for some 𝑘 ∈ {1, … , 𝑛}, then 𝑟𝑘 = 0 and 𝑟𝑗 ≠ 0 for 𝑗 ≠ 𝑘, so the only non-vanishing weight is 𝑤̃𝑘 and consequently 
𝜆𝑘(𝑣) = 1 and 𝜆𝑖(𝑣) = 0 for 𝑖 ≠ 𝑘. On the other hand, if 𝑣 lies on an (open) edge of 𝑃 , say 𝑣 = (1 − 𝜇)𝑣𝑘 + 𝜇𝑣𝑘+1 for some 𝜇 ∈ (0, 1)
and some 𝑘 ∈ {1, … , 𝑛}, then 𝛼𝑘 = ±𝜋, so that sin(𝛼∕2) = ±1 as well as cos(𝛼𝑘∕2) = 0 and cos(𝛼𝑗∕2) ≠ 0 for 𝑗 ≠ 𝑘. Therefore, all 𝑤̃𝑖

vanish, except for 𝑤̃𝑘 and 𝑤̃𝑘+1, which turn out to be

𝑤̃𝑘 = 𝑟𝑘+1𝑆, 𝑤̃𝑘+1 = 𝑟𝑘𝑆, 𝑆 = sin
𝛼𝑘

2
∏

𝑗≠𝑘,𝑘+1
𝑟𝑗

∏
𝑗≠𝑘

cos
𝛼𝑗

2
.

Since 𝑟𝑘 = 𝜇𝑒𝑘 and 𝑟𝑘+1 = (1 −𝜇)𝑒𝑘, where 𝑒𝑘 = ‖𝑣𝑘+1 − 𝑣𝑘‖, it follows that 𝜆𝑘(𝑣) = 1 −𝜇, 𝜆𝑘+1(𝑣) = 𝜇 and 𝜆𝑖(𝑣) = 0 for 𝑖 ≠ 𝑘, 𝑘 +1. □

Comparing our new formula in (8) to the one in (5), we observe that it also leads to an 𝑂(𝑛2) algorithm for computing mean 
value coordinates, but we successfully eliminated all square roots, which can compromise the precision and the efficiency of the 
method, and we minimized the use of sum operations, as they can introduce numerical cancellation errors. In fact, the only sum 
in (8) is 𝛼𝑖−1 +𝛼𝑖 ∈ [−2𝜋, 2𝜋], but we can actually avoid computing this sum by noting that it is equal to the angle at 𝑣 in the triangle 
[𝑣, 𝑣𝑖−1, 𝑣𝑖+1], denoted by 𝛼𝑖−1,𝑖+1.

In our implementation (see Algorithm 1), we compute the signed angle 𝜃 between two vectors 𝑎 = (𝑎𝑥, 𝑎𝑦) and 𝑏 = (𝑏𝑥, 𝑏𝑦)
using the ATAN2 function as 𝜃 = ATAN2(𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥, 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦) ∈ [−𝜋, 𝜋]. This is fine for all angles 𝛼𝑖, but a bit more care is 
needed in the case of 𝛼𝑖−1,𝑖+1. Indeed, if |𝛼𝑖−1 + 𝛼𝑖| > 𝜋, then the ATAN2 function returns 𝛼𝑖−1,𝑖+1 = 𝛼𝑖−1 + 𝛼𝑖 − 2𝜋 ⋅ sign(𝛼𝑖−1 + 𝛼𝑖). 
However, this “mismatch” by ±2𝜋 is detected easily, because the signs of 𝛼𝑖−1 +𝛼𝑖 and 𝛼𝑖−1,𝑖+1 differ whenever it happens. And since 
4

sin((𝛼𝑖−1 + 𝛼𝑖)∕2) = sin(−𝛼𝑖−1,𝑖+1∕2) in this case, we can resolve this problem by changing the sign of 𝛼𝑖−1,𝑖+1 (cf. lines 11 and 12 in 
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Algorithm 1 Stable implementation of formula (8) for computing the mean value coordinates 𝜆1, … , 𝜆𝑛.

1: function MVC(𝑣, 𝑣1, … , 𝑣𝑛)
2: 𝑊 ∶= 0
3: for 𝑖 = 1, … , 𝑛 do ⊳ indices are defined cyclically over [1, … , 𝑛], e.g., 𝑣𝑛+1 = 𝑣1
4: 𝛽𝑖 ∶= ANGLE(𝑣𝑖+1 − 𝑣𝑖, 𝑣 − 𝑣𝑖) ⊳ ANGLE((𝑎1, 𝑎2), (𝑏1, 𝑏2)) returns ATAN2(𝑎1𝑏2 − 𝑎2𝑏1, 𝑎1𝑏1 + 𝑎2𝑏2)
5: 𝛾𝑖 ∶= ANGLE(𝑣𝑖 − 𝑣𝑖+1, 𝑣 − 𝑣𝑖+1)
6: 𝑠𝑖 ∶= 𝛽𝑖 + 𝛾𝑖
7: 𝑟𝑖 ∶= ‖𝑣𝑖 − 𝑣‖
8: for 𝑖 = 1, … , 𝑛 do

9: 𝛼𝑖−1,𝑖+1 ∶= ANGLE(𝑣𝑖−1 − 𝑣, 𝑣𝑖+1 − 𝑣)
10: 𝑠𝑖−1,𝑖+1 ∶= 𝜋 ⋅ [sign(𝑠𝑖−1) + sign(𝑠𝑖)] − 𝑠𝑖−1 − 𝑠𝑖 ⊳ 𝑠𝑖−1,𝑖+1 = 𝛼𝑖−1 + 𝛼𝑖
11: if sign(𝛼𝑖−1,𝑖+1) ≠ sign(𝑠𝑖−1,𝑖+1) then ⊳ in this case, 𝛼𝑖−1,𝑖+1 = 𝑠𝑖−1,𝑖+1 − 2𝜋 ⋅ sign(𝑠𝑖−1,𝑖+1)
12: 𝛼𝑖−1,𝑖+1 ∶= −𝛼𝑖−1,𝑖+1 ⊳ sin((𝛼𝑖−1 + 𝛼𝑖)∕2) = sin(−𝛼𝑖−1,𝑖+1∕2)
13: 𝑤𝑖 ∶= 𝑟𝑖−1 ⋅ sin(𝛼𝑖−1,𝑖+1∕2)
14: for 𝑗 = 1, … , 𝑛 do

15: if 𝑗 ≠ 𝑖 − 1, 𝑖 then

16: 𝑤𝑖 ∶=𝑤𝑖 ⋅ 𝑟𝑗 ⋅ sin(|𝑠𝑗 |∕2)
17: 𝑊 ∶=𝑊 +𝑤𝑖

18: for 𝑖 = 1, … , 𝑛 do

19: 𝜆𝑖 ∶=𝑤𝑖∕𝑊
20: return 𝜆1, … , 𝜆𝑛

Algorithm 1). Note that the same problem can occur if |𝛼𝑖−1 + 𝛼𝑖| = 𝜋, because ATAN2 may return 𝜋 or −𝜋 in this case, but it can be 
fixed in the same manner.

Yet, there might still be concerns related to the instability of the cosine function for arguments near zero. To prevent this, denoting 
by 𝛽𝑖 and 𝛾𝑖 the signed angles at 𝑣𝑖 and 𝑣𝑖+1, respectively, in the triangle [𝑣, 𝑣𝑖, 𝑣𝑖+1], we use the fact that

cos
𝛼𝑖

2
= sin

𝜋 − |𝛼𝑖|
2

= sin
|𝛽𝑖 + 𝛾𝑖|

2
(cf. line 16 in Algorithm 1) and recall that the sine function is stable for arguments near 𝜋∕2. Note that computing the sum 𝑠𝑖 = 𝛽𝑖+ 𝛾𝑖
is not a problem, because both angles are guaranteed to have the same sign, so that there is no risk of cancellation errors. The price 
for the improved stability is that we have to compute the 2𝑛 angles 𝛽𝑖 and 𝛾𝑖 and their sums 𝑠𝑖. Note that we still need the angles 𝛼𝑖
for determining whether it is necessary to change the sign of 𝛼𝑖−1,𝑖+1 or not, but once we know 𝛽𝑖 and 𝛾𝑖 we can compute them as 
𝛼𝑖 = 𝜋 ⋅ sign(𝑠𝑖) − 𝑠𝑖 (cf. line 10 in Algorithm 1).

The numerical stability of this algorithm can be observed in Fig. 1, which confirms that our new formula performs best, even if 
compared to the result using (1), especially close to the region 𝑍𝑘.

So far, we have discussed the numerical stability of the different formulas and supported our claims only with empirical evidence. 
In the next section, we conduct a mathematical analysis on the numerical stability of mean value coordinates and provide a more 
formal explanation for our observations.

4. Theoretical analysis of the numerical stability

A common procedure to theoretically analyse the numerical stability of an algorithm is to establish an upper bound on the relative 
forward error and to examine its magnitude. In the specific context of mean value coordinates, we need to study the error 𝐸𝑟 in (7). 
To this end, we recall a result by Fuda et al. (2022, Theorem 1), regarding an upper bound for any function that can be expressed in 
the form

𝑟(𝑥) =
∑𝑛

𝑖=0 𝑎𝑖(𝑥)𝑓𝑖∑𝑚

𝑗=0 𝑏𝑗 (𝑥)
(9)

for some data values 𝑓𝑖 and functions 𝑎𝑖 and 𝑏𝑗 , 𝑖 = 0, … , 𝑛 and 𝑗 = 0, … , 𝑚. It is worth noting that bounding 𝐸𝑟 from above also 
gives an upper bound on the absolute error in (6), because

𝐸𝑎(𝑣) =𝐸𝑟(𝑣)|𝜆𝑘(𝑣)|.
Theorem 2. Suppose that there exist 𝛼0, … , 𝛼𝑛 ∈ℝ with

fl(𝑎𝑖(𝑥)) = 𝑎𝑖(𝑥)(1 + 𝛼𝑖), |𝛼𝑖| ≤𝐴𝜖 +𝑂(𝜖2), 𝑖 = 0,… , 𝑛

and 𝛽0, … , 𝛽𝑚 ∈ℝ with
5

fl(𝑏𝑗 (𝑥)) = 𝑏𝑗 (𝑥)(1 + 𝛽𝑗 ), |𝛽𝑗 | ≤𝐵𝜖 +𝑂(𝜖2), 𝑗 = 0,… ,𝑚
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for some constants 𝐴 and 𝐵. Then, assuming that the data 𝑓𝑖 are given as floating-point numbers, the relative forward error of 𝑟 in (9)

satisfies|fl(𝑟(𝑥)) − 𝑟(𝑥)||𝑟(𝑥)| ≤ (𝑛+ 2 +𝐴)𝛼(𝑥)𝜖 + (𝑚+𝐵)𝛽(𝑥)𝜖 +𝑂(𝜖2),

where

𝛼(𝑥) =
∑𝑛

𝑖=0 |𝑎𝑖(𝑥)𝑓𝑖||∑𝑛

𝑖=0 𝑎𝑖(𝑥)𝑓𝑖| and 𝛽(𝑥) =
∑𝑚

𝑗=0 |𝑏𝑗 (𝑥)||∑𝑚

𝑗=0 𝑏𝑗 (𝑥)| ,
for 𝜖 small enough.

We can use this result also for the mean value coordinates

𝜆𝑖(𝑣) =
𝑤𝑖(𝑣)∑𝑛

𝑗=1𝑤𝑗 (𝑣)
, 𝑖 = 1,… , 𝑛, (10)

as their formula fits the expression in (9) for 𝑛 = 0, 𝑎0 =𝑤𝑖, 𝑓0 = 1, 𝑚 = 𝑛 − 1 and 𝑏𝑗 = 𝑤𝑖+1. Before proceeding, we note that this 
stability analysis does not account for any errors arising from the initial rounding of the given values to floating-point numbers.

Corollary 3. Assume that there exist 𝛿1, … , 𝛿𝑛 ∈ℝ with

fl(𝑤𝑖(𝑣)) =𝑤𝑖(𝑣)(1 + 𝛿𝑖), |𝛿𝑖| ≤𝐷𝜖 +𝑂(𝜖2), 𝑖 = 1,… , 𝑛 (11)

for some constant 𝐷. Then, assuming that the input values 𝑣𝑖 and 𝑣 are given as floating-point numbers, the relative forward error of the 
mean value coordinates in (10) satisfies|fl(𝜆𝑖(𝑣)) − 𝜆𝑖(𝑣)||𝜆𝑖(𝑣)| ≤ (1 +𝐷)𝜖 + (𝑛− 1 +𝐷)𝑊 (𝑣)𝜖 +𝑂(𝜖2), (12)

where

𝑊 (𝑣) =
∑𝑛

𝑖=1 |𝑤𝑖(𝑣)||∑𝑛

𝑖=1𝑤𝑖(𝑣)| , (13)

for 𝜖 small enough.

Hence, the numerical stability of the mean value coordinates depends on the constant 𝐷 and the function 𝑊 . As the latter is the 
same for all the different formulas, what distinguishes their performance in terms of numerical stability is the upper bound 𝐷 on 
the relative error associated with the weights 𝑤𝑖. Considering the new formula, it can be proven that the constant 𝐷 related to the 
weights 𝑤̃𝑖 is always small (see Appendix B). In contrast, for all the other formulas, the related 𝐷 can be large (see Appendix C), 
which agrees with what we observed in Section 2.

5. Numerical experiments

We investigated various examples to compare the different approaches for computing mean value coordinates based on the 
formulas in (1)–(5) and (8). Overall, we found that our new formula (8) consistently provides the most stable results, followed by 
the original formula (1), which usually performs much better than the other formulas and is often almost as stable as (8). However, 
as shown in Section 5.1, there are specific cases where our new Algorithm 1 beats the implementation of the original formula by 
a considerable margin. In Section 5.2, we further provide a comprehensive study of the efficiency of all methods. We implemented 
all algorithms with double precision in C++ and computed the “exact” values of 𝜆𝑘 in multiple-precision (1024 bit) floating-point 
arithmetic using the MPFR library (Fousse et al., 2007) for determining the relative and the absolute errors. All tests were run on a 
Windows 10 laptop with 1.8 GHz Intel Core i7-10510U processor and 16 GB RAM.

5.1. Stability comparison

Let us begin by comparing the performance of the original and the new formula for the 8-vertex polygon with vertices (1, 1), 
(−1, 1), (−1, −1), (−𝜖, −1), (−𝜖, 0), (𝜖, 0), (𝜖, −1), and (1, −1), shown in Fig. 2 (left), where 𝜖 indicates the distance between the two 
vertical edges in the middle. Specifically, we investigate the case 𝜖 = 0.0001 and turn our focus on the coordinate 𝜆𝑘 associated with 
the vertex marked by the magenta dot. In the plots of the absolute error 𝐸𝑎 and the relative error 𝐸𝑟, which were computed on 
a uniform 500 × 500 grid that contains the polygon, we observe that problematic regions with numerical instability exist near the 
edges [𝑣𝑘−1, 𝑣𝑘] and [𝑣𝑘, 𝑣𝑘+1], but that Algorithm 1 handles them better. One reason for the relatively big errors is the function 𝑊
in (13), which influences the upper bound on the relative error in (12) for both formulas and obtains values on the order of 103 in 
this region. The other reason is the constant 𝐷, which is about two orders of magnitude bigger for the formula in (1) than for our 
6

new formula in (8).
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Fig. 2. Plots of the absolute and relative errors on a log10 scale made by the original (1) and the new formula (8) to evaluate the mean value coordinate 𝜆𝑘 related to 
the vertex 𝑣𝑘 (magenta dot) for the polygon on the left with 𝜖 = 0.0001.

Fig. 3. Comparison of the absolute errors on a log-log scale for computing 𝜆𝑘 with the formulas (1)–(5) and (8) close to the points marked by the red cross (left) and 
the blue cross (right) in Fig. 2. The plots show 𝐸𝑎(𝑣) for the different algorithms for 𝑣 at a horizontal distance of 𝛿 = 10−20, 10−19, … , 10−1 from the considered points. 
Some values are not shown for very small 𝛿, because the algorithms return NAN as a result.

Fig. 4. Same as Fig. 1, but for a square spiral polygon.

We also analysed the performance of the other formulas for this example, and Fig. 3 (left) shows that the implementations of (2)

and (3) are as stable as Algorithm 1 close to the edge [𝑣𝑘, 𝑣𝑘+1]. However, both formulas are very unstable close to the extension 
of this line, where instead the implementations of (1) and (4) are stable (see Fig. 3, right). Interestingly, the worst case for our new 
formula, in terms of stability, does not occur extremely close to the edge [𝑣𝑘, 𝑣𝑘+1], but at a distance of about 10−2 to 10−3, which is 
again due to the behavior of the function 𝑊 in (13), and similar for the formulas in (2) and (3). In contrast, the worst case for the 
formula in (5) happens at a distance of 10−8 to 10−9, that is, at roughly

√
𝜖.

Fig. 4 compares the errors of the different evaluation procedures for a square spiral polygon. As before, the plots show the absolute 
errors 𝐸𝑎 and the relative errors 𝐸𝑟 sampled on a uniform grid of 500 × 500 points that contains the polygon. Note that the black 
7

pixels in the lower left and the upper right of the relative error plots indicate points 𝑣 for which 𝐸𝑟(𝑣) is not well-defined, because 
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Fig. 5. Same as Fig. 1, but for a star-shaped polygon.

Fig. 6. Average time in seconds (right) needed by the implementations of the formulas in (1)–(5) and (8) to evaluate all 𝑛 mean value coordinates for a concave test 
polygon (left) with 𝑛 = 6𝑖 + 2 vertices for 𝑖 = 1, … , 20.

𝜆𝑘(𝑣) = 0. Otherwise, these plots confirm the behavior that we already observed in Fig. 1: the new formula (8) achieves the best 
result and the original one (1) is second-best, except close to the boundary of the polygon in relative terms. However, since 𝜆𝑘 is 
very small in these regions, it makes more sense to focus on the absolute errors. These indicate that (1) and (8) produce very similar 
results, but still the new Algorithm 1 is better near the edges [𝑣𝑘−1, 𝑣𝑘] and [𝑣𝑘, 𝑣𝑘+1]. As in Fig. 1, we further note that (2) and (3)

exhibit numerical instability along the extensions of the polygon’s edges, especially for those related to [𝑣𝑘−1, 𝑣𝑘] and [𝑣𝑘, 𝑣𝑘+1], 
while (4) behaves similarly to (1), but with bigger errors close to the boundary. Finally, (5) is unstable in the vicinity of all sets 𝑍𝑖. 
Fig. 5 shows very similar results for a star-shaped polygon.

5.2. Efficiency comparison

To compare the efficiency of the different implementations, we conducted a first experiment using a set of 20 concave polygons, 
with an increasing number of vertices 𝑛, specifically with 𝑛 = 6𝑖 + 2 for 𝑖 = 1, … , 20. The pattern of the polygons is shown in Fig. 6

(left) for 𝑖 = 1, 2, 3. The timings are obtained by evaluating the coordinates 𝜆1, … , 𝜆𝑛 at 90000 points and taking the average. The 
plots in Fig. 6 (right) clearly indicate the linear time complexity of the algorithms derived from the formulas in (1)–(4) and the 
quadratic time complexity of the one that implements formula (5) as well as the new Algorithm 1, with the latter being roughly 25% 
faster. However, despite the unfavourable time complexity, the stable Algorithm 1 is at most twice as expensive as the linear-time 
algorithms for 𝑛 ≤ 30 and only about four times slower for 𝑛 = 100.

In a second experiment, we focus on comparing the efficiency of the different methods for significantly larger values of 𝑛. 
Specifically, we construct the test polygons in Fig. 7 (left) by sampling an epitrochoid curve at 𝑛 = 2𝑖 points, 𝑖 = 3, … , 13, and then 
measure and plot (right) the average running time of all algorithms for computing all 𝑛 mean value coordinates at 100 evaluation 
points. In this setting, we gain a more comprehensive understanding of the asymptotic computational cost associated with the 
8

implementation of the various formulas, further confirming our previous observations. In fact, formulas (1)–(4) demonstrate a 
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Fig. 7. Average time in seconds (right) on a log-log scale for the implementations of the formulas in (1)–(5) and (8) to evaluate all 𝑛 mean value coordinates for a test 
polygon (left) inscribed to an epitrochoid (red curve) with 𝑛 = 2𝑖 vertices for 𝑖 = 3, … , 13.

computational complexity of 𝑂(𝑛), while (5) and Algorithm 1 exhibit an asymptotic running time on the order of 𝑂(𝑛2). To conclude, 
although (5) and Algorithm 1 have similar behavior, our new implementation consistently proves to be faster in practice, especially 
for polygons with less than a thousand vertices.

6. Conclusion

Our investigations regarding the stable and efficient evaluation of mean value coordinates reveal the following, partially surprising 
insights. First, among the four formulas in (1)–(4), which give rise to efficient 𝑂(𝑛) algorithms, the original expression in (1) generally 
performs best in terms of stability and is as fast as the others. This is contrary to the common belief that using the ATAN2 function 
(for computing the angles 𝛼𝑖) and the TAN function (for evaluating tan(𝛼𝑖∕2)) is slow. At least on our platform, we did not notice any 
computational disadvantage.

Second, the implementation of the original formula works well, even if 𝑣 is on one of the edges of the polygon, say 𝑣 = (1 −
𝜇)𝑣𝑘 +𝜇𝑣𝑘+1 for some 𝑘 and 𝜇 ∈ (0, 1), despite the fact that 𝛼𝑘 = ±𝜋 in this case, hence tan(𝛼𝑘∕2) is mathematically not well-defined. 
Since common floating-point implementations cannot represent ±𝜋∕2 exactly, the TAN function does not return NAN in this case, 
but rather a number that is extremely big in absolute value, and the mean value coordinates 𝜆𝑖 happen to be correct, up to machine 
precision, in the end. However, we observed major numerical problems for polygons with edges that are very close to each other 
(see Fig. 2). In the vicinity of such edges, two of the values tan(𝛼𝑖∕2) are very big, which eventually leads to a loss of precision.

Third, our new Algorithm 1 handles even such extreme cases and is generally the most stable of all methods. It also works if 𝑣 is 
a vertex of the polygon, a case that needs to be detected in the linear-time algorithms by checking if some 𝑟𝑖 equals zero. The only 
other method that does not require any exceptions for handling points on the boundary of the polygon is the one based on (5), but 
it turns out to be slower and less stable than our approach, especially near the sets 𝑍𝑖.
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Appendix

This appendix provides the mathematical proof that computing mean value coordinates with the new formula (8) is always stable, 
as long as the function 𝑊 in (13) does not affect the upper bound in (12). In other words, we demonstrate that the constant 𝐷 in (11)

related to the weights 𝑤̃𝑖 is always small (Appendix B). In addition, we show that the constants 𝐷 related to the weights 𝑤𝑖 in (1)–(4)

and 𝑤̂𝑖 in (5) cannot be bounded (Appendix C). Before going into these details, we present some preliminary facts that we later use 
in our analysis.

Appendix A. Preliminaries

We consider a computer that uses a set 𝔽 of floating-point numbers with the corresponding machine epsilon 𝜖 and let fl∶ ℝ → 𝔽 be 
the rounding function that maps each 𝑥 ∈ℝ to the closest floating-point approximation fl(𝑥) ∈ 𝔽 . We recall (Trefethen and Bau, 1997, 
Lecture 13) that for any 𝑥 ∈ ℝ, 𝑥 ≠ 0, the relative error is bounded from above by the machine epsilon 𝜖, or, equivalently, we can 
always find some 𝛿 ∈ℝ with |𝛿| < 𝜖, such that

fl(𝑥) = 𝑥(1 + 𝛿).

The same holds for any arithmetic operation ∗∈ {+, −, ×, ÷} between two arbitrary floating-point numbers 𝑥, 𝑦 ∈ 𝔽 , that is, there 
exists some 𝛿 ∈ℝ with |𝛿| < 𝜖, such that

fl(𝑥 ∗ 𝑦) = (𝑥 ∗ 𝑦)(1 + 𝛿).

This property can also be extended to cases involving multiple operations, such as sums or products, where the upper bound on |𝛿|
depends on the number of operations performed; for more detailed information, we refer the interested reader to Fuda et al. (2022, 
Section 2).

Regarding instead the elementary function implementations in standard libraries, such as the trigonometric functions, we do not 
have general results on their numerical stability, but some libraries give information about the maximum relative errors in their 
specific implementations, such as the CUDA programming model (NVIDIA, 2024) and the GNU library (Loosemore et al., 2023). In 
our analysis, we investigate the numerical stability of the values 𝑤̃𝑖 by assuming that we have stable algorithms to evaluate the square 
root, the sine, and the arctangent functions. In other words, we assume that, for any 𝑥 ∈ 𝔽 , there exist some 𝛿sqrt , 𝛿sin, 𝛿arctan, 𝛿tan ∈ℝ, 
such that

fl
(√

𝑥

)
=
√
𝑥(1 + 𝛿sqrt ), |𝛿sqrt | ≤𝐷sqrt𝜖 +𝑂(𝜖2), (14)

fl(sin𝑥) = sin𝑥(1 + 𝛿sin), |𝛿sin| ≤𝐷sin𝜖 +𝑂(𝜖2), (15)

fl(arctan𝑥) = arctan𝑥(1 + 𝛿arctan), |𝛿arctan| ≤𝐷arctan𝜖 +𝑂(𝜖2) (16)

fl(tan𝑥) = tan𝑥(1 + 𝛿tan), |𝛿tan| ≤𝐷tan𝜖 +𝑂(𝜖2) (17)

for some constants 𝐷sqrt , 𝐷sin, 𝐷arctan, and 𝐷tan. For example, for the IEEE standard 754 floating-point arithmetic (IEEE Computer 
Society, 2019), it is known (Rump, 2019) that |𝛿sqrt | ≤ 1 − 1∕

√
1 + 2𝜖, hence, by Taylor expansion, 𝐷sqrt = 1.

While the bounds in (14)–(16) assume that the argument 𝑥 is a floating-point number, let us now derive the bounds for an 
arbitrary argument 𝑦 ∈ℝ, which is first rounded to a floating-point value 𝑧 = fl(𝑦).

Lemma 4. Let 𝑧 = 𝑦(1 + 𝛾) ∈ 𝔽 , where 𝑦 ∈ ℝ and 𝛾 ∈ ℝ satisfies |𝛾| ≤ 𝐶𝜖, for some 𝐶 > 0, and 𝑓 be a differentiable function at 𝑦. If 
𝑓 (𝑦) ≠ 0, then there exists some 𝛾 ′ ∈ℝ such that1

𝑓 (𝑧) = 𝑓 (𝑦)(1 + 𝛾 ′), |𝛾 ′| ≤ |𝑓 ′(𝑦)𝑦||𝑓 (𝑦)| 𝐶𝜖 +𝑂(𝜖2).

Proof. The statement follows immediately from the Taylor expansion of 𝑓 around 𝑦, that is,

𝑓 (𝑧) = 𝑓 (𝑦) + 𝑓 ′(𝑦)𝑦𝛾 +𝑂(𝜖2) = 𝑓 (𝑦)
(
1 + 𝑓 ′(𝑦)𝑦

𝑓 (𝑦)
𝛾 +𝑂(𝜖2)

)
. □

Corollary 5. Let 𝑧 = 𝑦(1 + 𝛾) ∈ 𝔽 , where 𝑦 ∈ℝ and 𝛾 ∈ℝ satisfies |𝛾| ≤ 𝐶𝜖, for some 𝐶 > 0. If sin𝑦 ≠ 0 and arctan𝑦 ≠ 0, then there exist 
some 𝛿′sin, 𝛿

′
arctan ∈ℝ, such that

fl(sin𝑧) = sin𝑦(1 + 𝛿′sin), |𝛿′sin| ≤ (|cot 𝑦||𝑦|𝐶 +𝐷sin)𝜖 +𝑂(𝜖2), (18)

fl(arctan𝑧) = arctan𝑦(1 + 𝛿′arctan), |𝛿′arctan| ≤ (𝐶 +𝐷arctan)𝜖 +𝑂(𝜖2). (19)
10

1 Note that the quantity |𝑓 ′(𝑦)𝑦|∕|𝑓 (𝑦)| is the relative condition number 𝜅𝑓 (Trefethen and Bau, 1997) of the function 𝑓 .
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If 𝑦 ∉ {(2𝑘 + 1)𝜋∕2, 𝑘 ∈ℤ} and tan𝑦 ≠ 0, then there exists some 𝛿′tan ∈ℝ, such that

fl(tan𝑧) = tan𝑦(1 + 𝛿′tan), |𝛿′tan| ≤ (2|𝑦|∕|sin 2𝑦|𝐶 +𝐷tan)𝜖 +𝑂(𝜖2). (20)

If 𝑦 > 0, then there exists some 𝛿′sqrt ∈ℝ, such that

fl
(√

𝑧

)
=
√
𝑦(1 + 𝛿′sqrt ), |𝛿′sqrt | ≤ (𝐶∕2 +𝐷sqrt )𝜖 +𝑂(𝜖2). (21)

Proof. Equations (18), (20) and (21) follow directly from (15), (17) and (14), respectively, and Lemma 4. Regarding (19), Lemma 4

and (16) give

fl(arctan𝑧) = arctan𝑦(1 + 𝛿′arctan), |𝛿′arctan| ≤(|||| 𝑦

(1 + 𝑦2) arctan𝑦
||||𝐶 +𝐷arctan

)
𝜖 +𝑂(𝜖2).

We note that 𝑔(𝑦) = 𝑦∕[(1 + 𝑦2) arctan𝑦] is always positive, because 𝑦 and arctan𝑦 have the same sign. So, to complete the proof, it 
remains to show that 𝑔(𝑦) ≤ 1 for all 𝑦 > 0. The first derivative of 𝑔 is given by

𝑔′(𝑦) = arctan𝑦− 𝑦2 arctan𝑦− 𝑦

[(1 + 𝑦2) arctan𝑦]2
.

Since ℎ(𝑦) = arctan𝑦 − 𝑦 is a decreasing function, we have ℎ(𝑦) < ℎ(0) = 0 and therefore 𝑔′(𝑦) < 0. This means that 𝑔 is a strictly 
decreasing function. Additionally, we know that lim𝑥→0 arctan𝑥∕𝑥 = 1 and conclude

𝑔(𝑦) < lim
𝑥→0

𝑔(𝑥) = lim
𝑥→0

𝑥

(1 + 𝑥2) arctan𝑥
= 1. □

Finally, we consider two arbitrary vectors 𝑎 = (𝑎𝑥, 𝑎𝑦) and 𝑏 = (𝑏𝑥, 𝑏𝑦) and present the upper bounds on the relative forward errors 
of some quantities that we frequently use.

1. Considering the radius 𝑟𝑖 = ‖𝑣− 𝑣𝑖‖ for some 𝑖 ∈ {1, … , 𝑛}, it follows from Theorem 2 and (21) that there exists some 𝜌𝑖 ∈ ℝ, 
such that fl(𝑟𝑖) = 𝑟𝑖(1 + 𝜌𝑖) with

|𝜌𝑖| ≤ (2 +𝐷sqrt )𝜖 +𝑂(𝜖2), 𝑖 = 1,… , 𝑛. (22)

2. Considering the dot product 𝐷𝑎,𝑏 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 between 𝑎 and 𝑏, it follows from Theorem 2 that there exists some 𝛿𝑎,𝑏 ∈ℝ, such 
that fl(𝐷𝑎,𝑏) =𝐷𝑎,𝑏(1 + 𝛿𝑎,𝑏) with

|𝛿𝑎,𝑏| ≤ 𝑢(𝐷𝑎,𝑏)𝜖 +𝑂(𝜖2), 𝑢(𝐷𝑎,𝑏) = 4
|𝑎𝑥𝑏𝑥|+ |𝑎𝑦𝑏𝑦||𝐷𝑎,𝑏| . (23)

It is important to note that the relative forward error becomes unreliable when the computed quantity approaches zero, as 
dividing by a small value can result in a significantly large error. In such cases, the right quantity to consider is the absolute 
forward error, which is given by |𝐷𝑎,𝑏𝛿𝑎,𝑏| and, since |𝑎𝑥𝑏𝑥|+ |𝑎𝑦𝑏𝑦| ≤ 2‖𝑎‖‖𝑏‖, it is bounded from above by 8‖𝑎‖‖𝑏‖𝜖 +𝑂(𝜖2). 
Hence, it is reasonable to expect that the computation of 𝐷𝑎,𝑏 is generally stable, although its upper bound on the forward error 
may increase when the values ‖𝑎‖ and ‖𝑏‖ become large.

3. Considering the 2D cross product 𝐶𝑎,𝑏 = (𝑎𝑥𝑏𝑦 − 𝑎𝑥𝑏𝑦) between 𝑎 and 𝑏, which is twice the signed area of the triangle [0, 𝑎, 𝑏], it 
follows from Theorem 2 that there exists some 𝛾𝑎,𝑏 ∈ℝ, such that fl(𝐶𝑎,𝑏) = 𝐶𝑎,𝑏(1 + 𝛾𝑎,𝑏) with

|𝛾𝑎,𝑏| ≤ 𝑢(𝐶𝑎,𝑏)𝜖 +𝑂(𝜖2), 𝑢(𝐶𝑎,𝑏) = 4
|𝑎𝑥𝑏𝑦|+ |𝑎𝑦𝑏𝑥||𝐶𝑎,𝑏| . (24)

As in the case of the dot product, it may happen that this upper bound is big when the values ‖𝑎‖ and ‖𝑏‖ are large, but in 
general we assume that the computation of 𝐶𝑎,𝑏 is stable.

4. Considering the signed angle 𝜃𝑎,𝑏 = arctan(𝐷𝑎,𝑏∕𝐶𝑎,𝑏) between 𝑎 and 𝑏, it follows from Theorem 2, the previous observations, 
and (19) that there exists some 𝜎𝑎,𝑏 ∈ℝ, such that fl(𝜃𝑎,𝑏) = 𝜃𝑎,𝑏(1 + 𝜎𝑎,𝑏) with

|𝜎𝑎,𝑏| ≤ 𝑢(𝜃𝑎,𝑏)𝜖 +𝑂(𝜖2), 𝑢(𝜃𝑎,𝑏) = 𝑢(𝐷𝑎,𝑏) + 𝑢(𝐶𝑎,𝑏) + 1 +𝐷arctan. (25)

Appendix B. Error analysis of the formula in (8)

We now observe that the weights 𝑤̃𝑖(𝑣) can be written in the general form

𝑤(𝑣) =
𝐽∏ 𝐾∑

𝑥 (𝑣), (26)
11

𝑗=1 𝑘=1
𝑗,𝑘
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for some 𝐽, 𝐾 ∈ ℕ. Thus, we first derive a general bound on the relative forward error for the function 𝑤 in (26) and then apply this 
result in the specific case of the weights 𝑤̃𝑖 in (8). It is worth noting that, since the expressions of the weights 𝑤𝑖 in (1)–(4) and 𝑤̂𝑖

in (5) are all of the type (26), the result presented below can be applied to these methods as well (see Appendix C).

Theorem 6. Suppose that there exist 𝜒𝑗,𝑘 ∈ℝ, 𝑗 = 1, … , 𝐽 and 𝑘 = 1, … , 𝐾 , with

fl(𝑥𝑗,𝑘(𝑣)) = 𝑥𝑗,𝑘(𝑣)(1 + 𝜒𝑗,𝑘), |𝜒𝑗,𝑘| ≤𝑋𝑗,𝑘𝜖 +𝑂(𝜖2),

for some positive constants 𝑋𝑗,𝑘, 𝑗 = 1, … , 𝐽 and 𝑘 = 1, … , 𝐾 . Then there exists some 𝛿 ∈ ℝ, such that 𝑤 in (26) satisfies fl(𝑤(𝑣)) =
𝑤(𝑣)(1 + 𝛿) and |𝛿| ≤𝐷𝜖 +𝑂(𝜖2), where

𝐷 =
𝐽∑
𝑗=1

∑𝐾

𝑘=1 |𝑥𝑗,𝑘(𝑣)|(𝐾 − 1 +𝑋𝑗,𝑘)|||∑𝐾

𝑘=1 𝑥𝑗,𝑘(𝑣)
||| + 𝐽 − 1.

Proof. We first notice that fl(𝑤(𝑣)) is given by

fl(𝑤(𝑣)) =
𝐽∏
𝑗=1

𝐾∑
𝑘=1

[𝑥𝑗,𝑘(𝑣)(1 + 𝜒𝑗,𝑘)(1 + 𝛿+
𝑗,𝑘
)](1 + 𝛿×),

where 𝛿+
𝑗,𝑘

and 𝛿× are the relative errors introduced by the 𝐾 − 1 sums and the 𝐽 − 1 products, respectively, so they satisfy

|𝛿+
𝑗,𝑘
| ≤ (𝐾 − 1)𝜖 +𝑂(𝜖2) and |𝛿×| ≤ (𝐽 − 1)𝜖 +𝑂(𝜖2). (27)

Consequently, there exist some 𝜂𝑗,𝑘 ∈ℝ with

|𝜂𝑗,𝑘| ≤ (𝐾 − 1 +𝑋𝑗,𝑘)𝜖 +𝑂(𝜖2), 𝑗 = 1,… , 𝐽 , 𝑘 = 1,… ,𝐾, (28)

such that

fl(𝑤(𝑣)) =
𝐽∏
𝑗=1

𝐾∑
𝑘=1

[𝑥𝑗,𝑘(𝑣)(1 + 𝜂𝑗,𝑘)](1 + 𝛿×) =
𝐽∏
𝑗=1

[
𝐾∑
𝑘=1

𝑥𝑗,𝑘(𝑣)
(
1 +

∑𝐾

𝑘=1 𝑥𝑗,𝑘(𝑣)𝜂𝑗,𝑘∑𝐾

𝑘=1 𝑥𝑗,𝑘(𝑣)

)]
(1 + 𝛿×)

=𝑤(𝑣)

(
1 +

𝐽∑
𝑗=1

∑𝐾

𝑘=1 𝑥𝑗,𝑘(𝑣)𝜂𝑗,𝑘∑𝐾

𝑘=1 𝑥𝑗,𝑘(𝑣)
+ 𝛿× +𝑂(𝜖2)

)
.

Therefore, 𝛿 =
∑𝐽

𝑗=1
∑𝐾

𝑘=1 𝑥𝑗,𝑘(𝑣)𝜂𝑗,𝑘∕ 
∑𝐾

𝑘=1 𝑥𝑗,𝑘(𝑣) + 𝛿× +𝑂(𝜖2), and the statement follows immediately by using the triangle inequal-

ity, (27), and (28). □

Corollary 7. For any 𝑣 ∈ 𝔽 2 and 𝑣1, … , 𝑣𝑛 ∈ 𝔽 2, there exist 𝛿1, … , 𝛿𝑛 ∈ ℝ, such that the 𝑤̃𝑖 in (8) satisfy fl(𝑤̃𝑖(𝑣)) = 𝑤̃𝑖(𝑣)(1 + 𝛿𝑖) and |𝛿𝑖| ≤𝐷𝜖 +𝑂(𝜖2) for 𝑖 = 1, … , 𝑛, where

𝐷 = max
𝑖=1,…,𝑛

𝜋

2

(
𝑢(𝛼𝑖−1,𝑖+1) +

∑
𝑗≠𝑖−1,𝑖

(max{𝑢(𝛽𝑗 ), 𝑢(𝛾𝑗 )} + 1)
)
+ (𝑛− 1)(2 +𝐷sqrt +𝐷sin) + 2𝑛− 3.

Proof. We note that the 𝑤̃𝑖 in (8) can be written as in (26) for 𝐽 = 2𝑛 − 2, 𝐾 = 1 and

𝑥𝑗,1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

sin 𝛼𝑖−1,𝑖+1
2 , 𝑗 = 1

𝑟𝑗−1, 𝑗 = 2,… , 𝑖,

𝑟𝑗 , 𝑗 = 𝑖+ 1,… , 𝑛,

sin 𝛽𝑗−𝑛+𝛾𝑗−𝑛
2 , 𝑗 = 𝑛+ 1,… , 𝑛+ 𝑖− 2,

sin 𝛽𝑗−𝑛+2+𝛾𝑗−𝑛+2
2 , 𝑗 = 𝑛+ 𝑖− 1,… ,2𝑛− 2.

It then follows from (18), (22), and (25) that fl(𝑥𝑗,1) = 𝑥𝑗,1(1 + 𝜒𝑗,1) with |𝜒𝑗,1| ≤𝑋𝑗,1𝜖 +𝑂(𝜖2) and

𝑋𝑗,1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

|||cot 𝛼𝑖−1,𝑖+1
2

|||||| 𝛼𝑖−1,𝑖+12
|||𝑢(𝛼𝑖−1,𝑖+1) +𝐷sin, 𝑗 = 1,

2 +𝐷sqrt , 𝑗 = 2,… , 𝑛,|||cot 𝛽𝑗−𝑛+𝛾𝑗−𝑛
2

|||||| 𝛽𝑗−𝑛+𝛾𝑗−𝑛2
|||(max{𝑢(𝛽𝑗−𝑛), 𝑢(𝛾𝑗−𝑛)} + 1) +𝐷sin, 𝑗 = 𝑛+ 1,… , 𝑛+ 𝑖− 2|||cot 𝛽𝑗−𝑛+2+𝛾𝑗−𝑛+2

2
|||||| 𝛽𝑗−𝑛+2+𝛾𝑗−𝑛+22

|||(max{𝑢(𝛽𝑗−𝑛+2), 𝑢(𝛾𝑗−𝑛+2)} + 1) +𝐷sin, 𝑗 = 𝑛+ 𝑖− 1,… ,2𝑛− 2.
12

Therefore, we can use Theorem 6 to get fl(𝑤̃𝑖(𝑣)) = 𝑤̃𝑖(𝑣)(1 + 𝛿𝑖) with |𝛿𝑖| ≤𝐷𝑖𝜖 +𝑂(𝜖2) and
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𝐷𝑖 =𝑋1,1 + (𝑛− 1)(2 +𝐷sqrt ) +
2𝑛−2∑
𝑗=𝑛+1

𝑋𝑗,1 + 2𝑛− 3.

Since |𝑥|∕|sin𝑥| ≤ 𝜋∕2 for any 𝑥 ∈ [−𝜋∕2, 𝜋∕2] and 𝛼𝑖−1,𝑖+1, 𝛽𝑗 + 𝛾𝑗 ∈ [−𝜋∕2, 𝜋∕2], we get

𝐷𝑖 ≤
𝜋

2

(
𝑢(𝛼𝑖−1,𝑖+1) +

∑
𝑗≠𝑖−1,𝑖

(max{𝑢(𝛽𝑗 ), 𝑢(𝛾𝑗 )} + 1)
)
+ (𝑛− 1)𝐷sin + (𝑛− 1)(2 +𝐷sqrt ) + 2𝑛− 3,

which proves the statement. □

Appendix C. Error analysis of the formulas in (1)–(5)

As mentioned before, also the weights 𝑤𝑖 in (1)–(4) and 𝑤̂𝑖 in (5) are of type (26), so that we can apply Theorem 6 in the specific 
case of these formulas.

Corollary 8. For any 𝑣 ∈ 𝔽 2 and 𝑣1, … , 𝑣𝑛 ∈ 𝔽 2, there exist 𝛿1, … , 𝛿𝑛 ∈ ℝ, such that the 𝑤𝑖 in (1) satisfy fl(𝑤𝑖(𝑣)) = 𝑤𝑖(𝑣)(1 + 𝛿𝑖) and |𝛿𝑖| ≤𝐷𝜖 +𝑂(𝜖2) for 𝑖 = 1, … , 𝑛, where

𝐷 = max
𝑖=1,…,𝑛

𝐹𝑖(1 + 𝜋𝑢(𝛼𝑖) +𝐷tan) + 5 +𝐷sqrt (29)

and

𝐹𝑖 =max
𝑣∈𝔽 2

||||sin 𝛼𝑖−1 + 𝛼𝑖

2
cos

𝛼𝑖−1
2

cos
𝛼𝑖

2
||||
−1
.

Proof. We note that 𝑤𝑖 in (1) can be written as in (26) for 𝐽 =𝐾 = 2 and

𝑥1,1 = tan
𝛼𝑖−1
2

, 𝑥1,2 = tan
𝛼𝑖

2
,

𝑥2,1 =
1
𝑟𝑖
, 𝑥2,2 = 0.

It then follows from (22), (25), and (20) that fl(𝑥𝑗,𝑘) = 𝑥𝑗,𝑘(1 + 𝜒𝑗,𝑘) with |𝜒𝑗,𝑘| ≤𝑋𝑗,𝑘𝜖 +𝑂(𝜖2) and

𝑋1,1 =
|𝛼𝑖−1||sin𝛼𝑖−1|𝑢(𝛼𝑖−1) +𝐷tan, 𝑋1,2 =

|𝛼𝑖||sin𝛼𝑖|𝑢(𝛼𝑖) +𝐷tan,

𝑋2,1 = 3 +𝐷sqrt , 𝑋2,2 = 0.

Therefore, we can use Theorem 6 to obtain fl(𝑤𝑖(𝑣)) =𝑤𝑖(𝑣)(1 + 𝛿𝑖) with |𝛿𝑖| ≤𝐷𝑖𝜖 +𝑂(𝜖2) and

𝐷𝑖 =
|𝑥1,1|(1 +𝑋1,1) + |𝑥1,2|(1 +𝑋1,2)|𝑥1,1 + 𝑥1,2| +𝑋2,1 + 2

=

∑
𝑗=𝑖−1,𝑖

|tan(𝛼𝑗∕2)|(1 +
|𝛼𝑗 ||sin𝛼𝑗 | 𝑢(𝛼𝑗 ) +𝐷tan

)
|tan(𝛼𝑖−1∕2) + tan(𝛼𝑖∕2)| + 5 +𝐷sqrt

≤

∑
𝑗=𝑖−1,𝑖

|tan(𝛼𝑗∕2)||sin𝛼𝑗 | (1 + |𝛼𝑗 |𝑢(𝛼𝑗 ) +𝐷tan)

|tan(𝛼𝑖−1∕2) + tan(𝛼𝑖∕2)| + 5 +𝐷sqrt

≤

∑
𝑗=𝑖−1,𝑖

|tan(𝛼𝑗∕2)||sin𝛼𝑗 ||tan(𝛼𝑖−1∕2) + tan(𝛼𝑖∕2)| (1 + 𝜋max{𝑢(𝛼𝑖−1), 𝑢(𝛼𝑖)} +𝐷tan) + 5 +𝐷sqrt .

Finally, we use the double-angle formula for the sine function and get∑
𝑗=𝑖−1,𝑖

|tan(𝛼𝑗∕2)||sin𝛼𝑗 ||tan(𝛼𝑖−1∕2) + tan(𝛼𝑖∕2)| = 1
2

cos2(𝛼𝑖−1∕2) + cos2(𝛼𝑖∕2)|sin(𝛼𝑖−1 + 𝛼𝑖)∕2 cos(𝛼𝑖−1∕2) cos(𝛼𝑖∕2)| ≤ 𝐹𝑖,

which gives 𝐷𝑖 ≤𝐷 for 𝐷 in (29). □

For the following statements, let 𝑑𝑘 = 𝑣𝑘 − 𝑣, 𝑘 = 1, … , 𝑛 and let 𝐶𝑖,𝑗 denote the cross product of 𝑑𝑖 and 𝑑𝑗 , which we denoted by 
13

𝐶𝑑𝑖,𝑑𝑗
in Appendix A.
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Corollary 9. For any 𝑣 ∈ 𝔽 2 and 𝑣1, … , 𝑣𝑛 ∈ 𝔽 2, there exist 𝛿1, … , 𝛿𝑛 ∈ ℝ, such that the 𝑤𝑖 in (2) satisfy fl(𝑤𝑖(𝑣)) = 𝑤𝑖(𝑣)(1 + 𝛿𝑖) and |𝛿𝑖| ≤𝐷𝜖 +𝑂(𝜖2) for 𝑖 = 1, … , 𝑛, where

𝐷 = max
𝑖=1,…,𝑛

3
4
𝐹𝑖

(
5 +𝐷sqrt + max{𝑢(𝐶𝑖,𝑖+1), 𝑢(𝐶𝑖−1,𝑖+1), 𝑢(𝐶𝑖−1,𝑖)}

)
+ 𝑢(𝐶𝑖,𝑖+1) + 𝑢(𝐶𝑖−1,𝑖) + 8 (30)

and

𝐹𝑖 =max
𝑣∈𝔽 2

||||sin 𝛼𝑖−1 + 𝛼𝑖

2
sin

𝛼𝑖−1
2

sin
𝛼𝑖

2
||||
−1
.

Proof. We note that the 𝑤𝑖 in (2) can be written as in (26) for 𝐽 = 3, 𝐾 = 3 and

𝑥1,1 = 𝑟𝑖−1𝐴𝑖,𝑖+1, 𝑥1,2 = −𝑟𝑖𝐴𝑖−1,𝑖+1, 𝑥1,3 = 𝑟𝑖+1𝐴𝑖−1,𝑖,

𝑥2,1 =
1

𝐴𝑖−1,𝑖
, 𝑥2,2 = 0, 𝑥2,3 = 0,

𝑥3,1 =
1

𝐴𝑖,𝑖+1
, 𝑥3,2 = 0, 𝑥3,3 = 0.

It then follows from (22) and (24) that fl(𝑥𝑗,𝑘) = 𝑥𝑗,𝑘(1 + 𝜒𝑗,𝑘) with |𝜒𝑗,𝑘| ≤𝑋𝑗,𝑘𝜖 +𝑂(𝜖2) and

𝑋1,1 = 3 +𝐷sqrt + 𝑢(𝐶𝑖,𝑖+1), 𝑋1,2 = 3 +𝐷sqrt + 𝑢(𝐶𝑖−1,𝑖+1), 𝑋1,3 = 3 +𝐷sqrt + 𝑢(𝐶𝑖−1,𝑖),

𝑋2,1 = 1 + 𝑢(𝐶𝑖−1,𝑖), 𝑋2,2 = 0, 𝑋2,3 = 0,

𝑋3,1 = 1 + 𝑢(𝐶𝑖,𝑖+1), 𝑋3,2 = 0, 𝑋3,3 = 0.

Therefore, we can use Theorem 6 to obtain fl(𝑤𝑖(𝑣)) =𝑤𝑖(𝑣)(1 + 𝛿𝑖) with |𝛿𝑖| ≤𝐷𝑖𝜖 +𝑂(𝜖2) and

𝐷𝑖 =
|𝑥1,1|(2 +𝑋1,1) + |𝑥1,2|(2 +𝑋1,2) + |𝑥1,3|(2 +𝑋1,3)|𝑥1,1 + 𝑥1,2 + 𝑥1,3| +𝑋2,1 +𝑋3,1 + 6

≤

∑
𝑘=1,3 |𝑥1,𝑘||∑𝑘=1,3 𝑥1,𝑘| (5 +𝐷sqrt + max{𝑢(𝐶𝑖,𝑖+1), 𝑢(𝐶𝑖−1,𝑖+1), 𝑢(𝐶𝑖−1,𝑖)}) + 𝑢(𝐶𝑖,𝑖+1) + 𝑢(𝐶𝑖−1,𝑖) + 8.

Finally, we use some trigonometric identities to obtain∑
𝑘=1,3 |𝑥1,𝑘||∑𝑘=1,3 𝑥1,𝑘| = |sin𝛼𝑖−1|+ |sin(𝛼𝑖−1 + 𝛼𝑖)|+ |sin𝛼𝑖||sin𝛼𝑖−1 − sin(𝛼𝑖−1 + 𝛼𝑖) + sin𝛼𝑖|

≤
3|sin𝛼𝑖−1 − sin(𝛼𝑖−1 + 𝛼𝑖) + sin𝛼𝑖|

= 3
4|sin((𝛼𝑖 + 𝛼𝑖−1)∕2) sin(𝛼𝑖−1∕2) sin(𝛼𝑖∕2)| = 3

4
𝐹𝑖,

which gives 𝐷𝑖 ≤𝐷 for 𝐷 in (30). □

Corollary 10. For any 𝑣 ∈ 𝔽 2 and 𝑣1, … , 𝑣𝑛 ∈ 𝔽 2, there exist 𝛿1, … , 𝛿𝑛 ∈ℝ, such that the 𝑤𝑖 in (3) and (4) satisfy fl(𝑤𝑖(𝑣)) =𝑤𝑖(𝑣)(1 +𝛿𝑖)
and |𝛿𝑖| ≤𝐷𝜖 +𝑂(𝜖2) for 𝑖 = 1, … , 𝑛, where

𝐷 = max
𝑖=1,…,𝑛

𝐹𝑖 max
𝑗=𝑖−1,𝑖

(
1 +max{7 + 2𝐷sqrt ,2 + 𝑢(𝐷𝑗,𝑗+1)} + 𝑢(𝐶𝑗,𝑗+1)

)
+ 5 +𝐷sqrt (31)

with

𝐹𝑖 =max
𝑣∈𝔽 2

⎧⎪⎨⎪⎩
|||sin 𝛼𝑖−1 + 𝛼𝑖

2
sin

𝛼𝑖−1
2

sin
𝛼𝑖

2
|||−1, for 𝑤𝑖 in (3),

2|||sin 𝛼𝑖−1 + 𝛼𝑖

2
cos

𝛼𝑖−1
2

cos
𝛼𝑖

2
(1 + cos𝛼𝑖−1)(1 + cos𝛼𝑖)

|||−1, for 𝑤𝑖 in (4).

Proof. The proof is carried out for the computation of 𝑤𝑖(𝑣) with formula (3), but similar arguments can be applied to the case of 
the weights 𝑤𝑖(𝑣) in (4).

We note that 𝑤𝑖 in (3) can be written as in (26) for 𝐽 =𝐾 = 2 and

𝑥1,1 =
𝑟𝑖−1𝑟𝑖 −𝐷𝑖−1,𝑖

2𝐴𝑖−1,𝑖
, 𝑥1,2 =

𝑟𝑖𝑟𝑖+1 −𝐷𝑖,𝑖+1

2𝐴𝑖,𝑖+1
,

𝑥2,1 =
1
, 𝑥2,2 = 0.
14

𝑟𝑖
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It then follows from Theorem 2 and (22)–(24) that fl(𝑥𝑗,𝑘) = 𝑥𝑗,𝑘(1 + 𝜒𝑗,𝑘) with |𝜒𝑗,𝑘| ≤𝑋𝑗,𝑘𝜖 +𝑂(𝜖2) and

𝑋1,1 =
𝑟𝑖−1𝑟𝑖(7 + 2𝐷sqrt ) + |𝐷𝑖−1,𝑖|(2 + 𝑢(𝐷𝑖−1,𝑖))|𝑟𝑖−1𝑟𝑖 −𝐷𝑖−1,𝑖| + 𝑢(𝐶𝑖−1,𝑖),

𝑋1,2 =
𝑟𝑖𝑟𝑖+1(7 + 2𝐷sqrt ) + |𝐷𝑖,𝑖+1|(2 + 𝑢(𝐷𝑖,𝑖+1))|𝑟𝑖𝑟𝑖+1 −𝐷𝑖,𝑖+1| + 𝑢(𝐶𝑖,𝑖+1),

𝑋2,1 = 3 +𝐷sqrt ,

𝑋2,2 = 0.

Therefore, we can use Theorem 6 to obtain fl(𝑤𝑖(𝑣)) =𝑤𝑖(𝑣)(1 + 𝛿𝑖) with |𝛿𝑖| ≤𝐷𝑖𝜖 +𝑂(𝜖2) and

𝐷𝑖 =
|𝑥1,1|(1 +𝑋1,1) + |𝑥1,2|(1 +𝑋1,2)|𝑥1,1 + 𝑥1,2| +𝑋2,1 + 2

=

∑
𝑗=𝑖−1,𝑖

|||| 𝑟𝑗𝑟𝑗+1 −𝐷𝑗,𝑗+1

2𝐴𝑗,𝑗+1

||||
(
1 +

|𝑟𝑗𝑟𝑗+1|(7 + 2𝐷sqrt ) + |𝐷𝑗,𝑗+1|(2 + 𝑢(𝐷𝑗,𝑗+1))|𝑟𝑗𝑟𝑗+1 −𝐷𝑗,𝑗+1| + 𝑢(𝐶𝑗,𝑗+1)
)

|(𝑟𝑖−1𝑟𝑖 −𝐷𝑖−1,𝑖)∕(2𝐴𝑖−1,𝑖) + (𝑟𝑖𝑟𝑖+1 −𝐷𝑖,𝑖+1)∕(2𝐴𝑖,𝑖+1)| + 5 +𝐷sqrt

≤

∑
𝑗=𝑖−1,𝑖

𝑟𝑗𝑟𝑗+1 + |𝐷𝑗,𝑗+1|
2|𝐴𝑗,𝑗+1|

(
1 +max{7 + 2𝐷sqrt ,2 + 𝑢(𝐷𝑗,𝑗+1)} + 𝑢(𝐶𝑗,𝑗+1)

)
|(𝑟𝑖−1𝑟𝑖 −𝐷𝑖−1,𝑖)∕(2𝐴𝑖−1,𝑖) + (𝑟𝑖𝑟𝑖+1 −𝐷𝑖,𝑖+1)∕(2𝐴𝑖,𝑖+1)| + 5 +𝐷sqrt

=

∑
𝑗=𝑖−1,𝑖

1 + |cos𝛼𝑗 ||sin𝛼𝑗 |
(
1 +max{7 + 2𝐷sqrt ,2 + 𝑢(𝐷𝑗,𝑗+1)} + 𝑢(𝐶𝑗,𝑗+1)

)
|(1 − cos𝛼𝑖−1)∕ sin𝛼𝑖−1 + (1 − cos𝛼𝑖)∕ sin𝛼𝑖| + 5 +𝐷sqrt .

Finally, we use some trigonometric identities and observe that∑
𝑗=𝑖−1,𝑖

1 + |cos𝛼𝑗 ||sin𝛼𝑗 ||(1 − cos𝛼𝑖−1)∕ sin𝛼𝑖−1 + (1 − cos𝛼𝑖)∕ sin𝛼𝑖| ≤ 4|sin𝛼𝑖−1 + sin𝛼𝑖 − sin(𝛼𝑖−1 + 𝛼𝑖)|
= 1|sin((𝛼𝑖 + 𝛼𝑖−1)∕2) sin(𝛼𝑖−1∕2) sin(𝛼𝑖∕2)| = 𝐹𝑖,

which gives 𝐷𝑖 ≤𝐷 for 𝐷 in (31). □

Corollary 11. For any 𝑣 ∈ 𝔽 2 and 𝑣1, … , 𝑣𝑛 ∈ 𝔽 2, there exist 𝛿1, … , 𝛿𝑛 ∈ℝ, such that the 𝑤̂𝑖 in (5) satisfy fl(𝑤̂𝑖(𝑣)) = 𝑤̂𝑖(𝑣)(1 + 𝛿𝑖) and |𝛿𝑖| ≤𝐷𝜖 +𝑂(𝜖2) for 𝑖 = 1, … , 𝑛, where

𝐷 = max
𝑖=1,…,𝑛

𝐹𝑖max{7 + 2𝐷sqrt ,2 + 𝑢(𝐷𝑖−1,𝑖+1),2 + max
𝑗≠𝑖−1,𝑖

𝑢(𝐷𝑗,𝑗+1)} + (𝑛− 1)𝐷sqrt + 𝑛− 2 (32)

and

𝐹𝑖 =max
𝑣∈𝔽 2

(|1 − cos(𝛼𝑖−1 + 𝛼𝑖)|−1 + ∑
𝑗≠𝑖−1,𝑖

|1 + cos𝛼𝑗 |−1).

Proof. We note that the 𝑤̂𝑖 in (5), neglecting the signs 𝛿𝑖, can be written as in (26) for 𝐽 = 𝑛 − 1, 𝐾 = 1 and

𝑥𝑗,1 =
⎧⎪⎨⎪⎩
√
𝑟𝑖−1𝑟𝑖+1 −𝐷𝑖−1,𝑖+1, 𝑗 = 1√
𝑟𝑗−1𝑟𝑗 +𝐷𝑗−1,𝑗 , 𝑗 = 2,… , 𝑖− 1,√
𝑟𝑗𝑟𝑗+1 +𝐷𝑗,𝑗+1, 𝑗 = 𝑖+ 1,… , 𝑛.

It then follows from Theorem 2 and (21)–(23) that fl(𝑥𝑗,1) = 𝑥𝑗,1(1 + 𝜒𝑗,1) with |𝜒𝑗,1| ≤𝑋𝑗,1𝜖 +𝑂(𝜖2) and

𝑋𝑗,1 =

⎧⎪⎪⎨⎪⎪⎩

𝑟𝑖−1𝑟𝑖+1(7+2𝐷sqrt )+|𝐷𝑖−1,𝑖+1|(2+𝑢(𝐷𝑖−1,𝑖+1))
2|𝑟𝑖−1𝑟𝑖+1−𝐷𝑖−1,𝑖+1| +𝐷sqrt , 𝑗 = 1,

𝑟𝑗−1𝑟𝑗 (7+2𝐷sqrt )+|𝐷𝑗−1,𝑗 |(2+𝑢(𝐷𝑗−1,𝑗 ))
2|𝑟𝑗−1𝑟𝑗+𝐷𝑗−1,𝑗 | +𝐷sqrt , 𝑗 = 2,… , 𝑖− 1,

𝑟𝑗 𝑟𝑗+1(7+2𝐷sqrt )+|𝐷𝑗,𝑗+1|(2+𝑢(𝐷𝑗,𝑗+1))
2|𝑟𝑗 𝑟𝑗+1+𝐷𝑗,𝑗+1| +𝐷sqrt , 𝑗 = 𝑖+ 1,… , 𝑛.
15

Therefore, we can use Theorem 6 to get fl(𝑤̂𝑖(𝑣)) = 𝑤̂𝑖(𝑣)(1 + 𝛿𝑖) with |𝛿𝑖| ≤𝐷𝑖𝜖 +𝑂(𝜖2) and
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𝐷𝑖 =
𝑛∑

𝑗=1
𝑋𝑗,1 + 𝑛− 2

≤
𝑟𝑖−1𝑟𝑖+1 + |𝐷𝑖−1,𝑖+1|
2|𝑟𝑖−1𝑟𝑖+1 −𝐷𝑖−1,𝑖+1| max{7 + 2𝐷sqrt ,2 + 𝑢(𝐷𝑖−1,𝑖+1)}

+
∑

𝑗≠𝑖−1,𝑖

𝑟𝑗 𝑟𝑗+1 + |𝐷𝑗,𝑗+1|
2|𝑟𝑗𝑟𝑗+1 +𝐷𝑗,𝑗+1| max{7 + 2𝐷sqrt ,2 + 𝑢(𝐷𝑗,𝑗+1)} + (𝑛− 1)𝐷sqrt + 𝑛− 2

=
1 + |cos(𝛼𝑖−1 + 𝛼𝑖)|
2|1 − cos(𝛼𝑖−1 + 𝛼𝑖)| max{7 + 2𝐷sqrt ,2 + 𝑢(𝐷𝑖−1,𝑖+1)}

+
∑

𝑗≠𝑖−1,𝑖

1 + |cos𝛼𝑗 |
2|1 + cos𝛼𝑗 | max{7 + 2𝐷sqrt ,2 + 𝑢(𝐷𝑗,𝑗+1)} + (𝑛− 1)𝐷sqrt + 𝑛− 2

≤
max{7 + 2𝐷sqrt ,2 + 𝑢(𝐷𝑖−1,𝑖+1)}|1 − cos(𝛼𝑖−1 + 𝛼𝑖)| +

∑
𝑗≠𝑖−1,𝑖

max{7 + 2𝐷sqrt ,2 + 𝑢(𝐷𝑗,𝑗+1)}|1 + cos𝛼𝑗 | + (𝑛− 1)𝐷sqrt + 𝑛− 2,

which proves the statement. □

The important difference between the constants 𝐷 in the upper bounds on the relative errors of the weights in Corollaries 8–11, 
compared to 𝐷 in Corollary 7, is that the former all depend on 𝐹𝑖. In all cases, 𝐹𝑖 is the maximum, over the finite set 𝔽 2, of some 
function that diverges to infinity, either at the edges of 𝑃 , along the lines that support them, or at the sets 𝑍𝑖, which explains the big 
relative errors of the mean value coordinates 𝜆𝑖 close to those regions. Surprisingly, for the original formula in (1), the potentially 
big relative errors of the weights usually cancel out “magically” during the normalization and do not affect the relative errors of the 
𝜆𝑖, except in the cases discussed in Section 5.
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