
A High-Performance Computing Approach
to Approximate Bayesian Inference

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Lisa Gaedke-Merzhäuser

under the supervision of

Prof. Olaf Schenk

June 2024





Dissertation Committee

Prof. Ernst Wit Università della Svizzera italiana, Switzerland
Prof. Michael Multerer Università della Svizzera italiana, Switzerland
Prof. Håvard Rue King Abdullah University of Science and Technology,

Thuwal, Saudi Arabia
Prof. Gerhard Wellein Friedrich-Alexander-Universität, Erlangen-Nürnberg,

Germany

Dissertation accepted on 17 June 2024

Research Advisor PhD Program Director

Prof. Olaf Schenk Prof. Walter Binder, Prof. Stefan Wolf

i



I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Lisa Gaedke-Merzhäuser
Lugano, 17 June 2024

ii



Tutti noi sentiamo che se una sala
ha una buona metà del suo
pavimento sgombro, essa dà un
senso di sollievo: sembra che ci
prometta la confortante possibilità
di muoverci.

We all know the sense of comfort
of which we are conscious when a
good half of the floor space in a
room is unencumbered; this seems
to offer us the agreeable possibility
of moving about freely.

Maria Montessori, 1917
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Abstract

There is a growing demand for performing large-scale Bayesian inference tasks,
arising from greater data availability and higher-dimensional model parameter
spaces. The methodology of integrated nested Laplace approximations (INLA)
provides a popular and reliable paradigm for performing inference applicable to
a large subclass of additive Bayesian hierarchical models. The work presented in
this thesis is dedicated to the integration and development of high-performance
computational methods for the INLA framework. The main focus is twofold. The
first objective is to improve the performance of the computational bottleneck op-
erations, which consist of Cholesky factorizations, solving linear systems, and
selected matrix inversions. We present two numerical solvers to handle these
operations, a sparse CPU-based library and a novel blocked GPU-accelerated ap-
proach. Second, we establish parallelization strategies that target multi-core ar-
chitectures (single node), making use of nested thread-level parallelism. For par-
ticularly large-scale applications, which arise in the context of spatio-temporal
phenomena, we additionally put forward a performant distributed memory vari-
ant (multi node), capable of handling models with millions of latent parameters.
We showcase the accuracy and performance of our proposed works on synthetic
as well as real-world applications.
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Chapter 1

Introduction

The overarching aim of this thesis is to build bridges between the realms of
Bayesian statistics and high-performance computing. There is a growing demand
for performing large-scale Bayesian inference tasks, arising from greater data
availability and higher-dimensional model parameter spaces. Bayesian statistics
offers a systematic approach to quantify uncertainty and combining prior knowl-
edge with new data. From the statistical side, the main focus of this thesis is
on the methodology of integrated nested Laplace approximations (INLA) [1],
which offers a flexible framework for performing complex Bayesian inference
tasks [2, 3, 4]. INLA is applicable to a wide subclass of additive Bayesian hier-
archical models. Among its broad range of applications are climate and weather
modeling [5], disease mapping [6, 7], medical image analysis [8, 9], traffic man-
agement [10, 11], environmental changes [12, 13, 14] and social disparity stud-
ies [15, 16]. Since its inception, combining computational efficiency with a high
level of accuracy has been its main objective. A crucial aspect is its focus on
sparse precision, i.e., inverse covariance, instead of covariance matrices. From
a theoretical standpoint, they contain the same information, as one can directly
be derived from the other. While covariance matrices store general dependency
structures between random variables, the entries of a precision matrix encode
conditional dependencies. This can bring advantages from a modeling viewpoint
as it not only lays out which variables influence each other but also comprises
information on how they are connected. Due to the type of information they
contain, precision matrices are often naturally sparse or can be approximated as
such, bearing the potential for large computational advantages.

From a computational or algorithmic viewpoint, the INLA methodology poses
an interesting challenge with manifold opportunities. The first step to obtaining
inference estimates entails solving a nonlinear optimization problem. Its objec-
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2 1.1 Bayesian Inference

tive function is computationally expensive to evaluate and its gradient not easily
accessible. The computational bottleneck in the evaluation of the objective func-
tion consists of (high-dimensional) Cholesky decompositions of sparse matrices
with recurring sparsity patterns. After determining the optimum, a fundamen-
tal step consists of estimating the posterior marginal variances. This induces an
additional bottleneck as it requires the selected inversion of (high-dimensional)
matrices with the same sparsity patterns. A recurring characteristic is the abun-
dant repetition of the computational bottleneck operations with changing nu-
merical values while the overall sparsity patterns remain the same. This allows
for sophisticated preprocessing and the introduction of parallelism on various
levels.

The following thesis explores these challenges and opportunities in detail and
provides more scalable and performant implementations of the INLA methodol-
ogy which allow for modeling more realistic and thus more complex phenomena
at shorter run times. In the first chapter, a brief introduction to Bayesian statistics
will be presented, followed by an overview of different inference methods. We
also discuss their associated challenges, identifying computational (in)feasibility
as a major concern. This chapter concludes with a general outline of the subse-
quent thesis.

1.1 Bayesian Inference

Bayesian inference originates from the work of Thomas Bayes and Pierre-Simon
Laplace during the 18th century. According to Jaynes [17], Bayesian statistics of-
fers a systematic approach to update beliefs and make predictions in the presence
of uncertainty. At its core, it revolves around Bayes’ theorem which establishes
a relationship between conditional probabilities, allowing for the adaptation of
prior beliefs in the presence of new evidence or data. In contrast with frequen-
tist statistics, where model parameters are assumed to be fixed but unknown,
the Bayesian approach treats all parameters as random variables with associated
probability distributions, which provides a natural way to quantify uncertainty.
More concretely, this means given a prior distribution p(x ) which encapsulates
existing beliefs; a likelihood function p(y |x ), describing the probability of ob-
serving data given a set of parameter values; and the marginal likelihood or
evidence p(y), representing the probability of observing the data over all pos-
sible parameter values; we can obtain the posterior distribution p(x |y), which
denotes the updated beliefs after incorporating the new data, as given in the
following equation
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p(x |y) =
p(x )p(y |x )

p(y)
. (1.1.1)

Adopting a Bayesian approach is especially valuable in scenarios where the
observed data is limited, or prior information is available. From Chapter 2 on-
ward we will be considering Bayesian hierarchical models, which comprise two
types of parameters, latent variables which correspond to x as defined above and
hyperparameters θ which influence p(x ) and p(y |x ). This will also be reflected
in an extended version of Bayes’ theorem that we will consider instead, where
the general principle remains, however, exactly the same. From a theoretical per-
spective, obtaining p(x |y) from 1.1.1 is relatively straight-forward, as all terms
on the right-hand side are well-defined. Deducing the posterior marginal distri-
butions is, in practice, however, often a challenge. The mathematical equation
describing the posterior distribution is often complicated, not existing in closed
form, difficult to evaluate as well as high-dimensional, thus making direct in-
ference impossible [18]. It is typically also only known up to a constant term
which is independent of the unknown parameters. In particular, the marginal
likelihood p(y) is usually not available in closed form, but computed by inte-
grating the likelihood over all possible parameter values. This integral is often
analytically intractable, thus requiring numerical integration, which is, however,
complicated for high-dimensional parameter spaces. Therefore, Bayesian statis-
tics requires specialized solution methods in order to perform inference after all.

1.2 Related Works

The most used class of Bayesian inference methods are Markov Chain Monte
Carlo (MCMC) methods [18]. Their beginnings date back to the middle of the
20th century [19] but they did not gain wide popularity until the 1990s with the
surge of compute power [20]. The basic underlying idea is to construct a Markov
chain which has the desired posterior distribution as its equilibrium. A sequence
or chain of correlated samples is produced, where each new sample, as the term
Markov chain suggests, only depends on its predecessor. Once the chain has
converged to its stationary distribution, an estimate of the posterior is obtained
using Monte Carlo integration, which is a stochastic technique for approximating
integrals using random sampling. From a theoretical viewpoint, MCMC methods
become arbitrarily accurate when sampling for long enough [18]. Exploring the
solution space efficiently is, however, non-trivial. Instead of computing the joint
posterior distribution, it can be advantageous to focus on the marginal poste-
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rior distributions of each individual parameter, which are obtained by integrat-
ing over the remaining parameters. Among the most common transition ker-
nels for generating a sequence of random samples are various variations of the
Metropolis-Hastings [19, 21] algorithm which iteratively proposes a new sam-
ple based on the current one (Markov property). This sample is then, with some
probability, either accepted or rejected for the next iteration. One particular vari-
ant is Hamiltonian Monte Carlo (HMC) [22, 23] which makes use of gradient
information of the target distribution to propose more efficient parameter up-
dates. It uses Hamiltonian dynamics by extending the state space using auxiliary
“momentum” variables and volume-preserving numerical integration. Another
possibility is particle filtering [24, 25, 26], also known as sequential Monte Carlo.
It approximates the posterior densities of interest using a swarm of weighted par-
ticles, where each particle represents a sample from the posterior distribution.
The particles are sequentially updated as new observations become available us-
ing importance sampling techniques to readjust the weights. A comprehensive
overview of MCMC algorithms can e.g. be found in [27, 28]. Various MCMC-
based software packages are available today. They have heavily contributed to
the increased adoption of Bayesian statistics across many scientific disciplines,
by enabling applied users to perform more complex inference tasks. Among the
most popular packages are BUGS [29], JAGS [30], PyMC [31] and Stan [32].

A popular class of approximate Bayesian methods, especially prevalent in the
field of machine learning, is variational inference, see e.g. [33, 34, 35] for an
overview. The principal idea is to posit a family of simpler or variational distri-
butions over the parameters of interest to approximate the true posterior. Multi-
variate normal distributions are a standard choice, where one often additionally
assumes that some (or all) variables are independent of each other. Then an opti-
mization problem is constructed over the set of unknown variational parameters
whose optimum is the “closest” member in the family to the true distribution of
interest. Closeness is defined in terms of the Kullback-Leibler divergence, whose
minimization is equivalent to maximizing the Evidence Lower Bound. During
the optimization, the parameters are iteratively updated until convergence. The
quality of the approximation and the complexity of the involved computations
depend on the choice of family of variational distributions. The aim is to choose
a family that is flexible enough to adequately approximate the true posterior,
while remaining simple enough to allow for efficiently solving the optimization
problem. A known issue of variational inference is its tendency to underestimate
the posterior variance [35].

MCMC and variational approaches are the most frequently used methodolo-
gies for performing inference. INLA, like the latter, is an approximate Bayesian
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inference method. INLA is applicable to the class of latent Gaussian models
(LGMs), which will be formally introduced in Section 2.1.3, making it less gen-
eral than the previous two. LGMs, nevertheless, comprise a large variety of
commonly used statistical models. The INLA methodology and its underlying
concepts will be discussed in detail in the following chapter. There additionally
exist a number of popular empirical Bayesian approaches. For example empirical
Bayes’ methods, which lie at the intersection of frequentist and Bayesian statis-
tics, as they estimate prior probabilities from the data, which contradicts the fully
Bayesian perspective, but are often used as an approximation. Among them are
Laplace approximations, which are also used within the INLA paradigm. Espe-
cially in spatial statistics, Gaussian process regression, also known as Kriging,
is a popular interpolation method using Gaussian processes [36, 37]. As the
name suggests, one assumes the parameter as well as the data to be normally
distributed. This makes the problem tractable (or leads to an optimization prob-
lem when hyperparameters are present in the hierarchical modeling case). The
results obtained by INLA1 will coincide with those obtained by Gaussian process
regression and be exact up to a constant, as it is a special case of INLA’s larger
framework. For an exhaustive overview of various Bayesian inference methods,
we e.g. refer to [38, 39, 40].

1.3 Computational Challenges

While Bayes’ theorem dates back to the 18th century, for a long time Bayesian
statistics was restricted to relatively simple models. These models relied on cases
where analytical solutions were available, conjugate priors were used or the num-
ber of parameters was very limited, due to the difficulty of performing calcula-
tions involving high-dimensional integrals or complex probability distributions.
The rapid technological advancements over the last decades have allowed for
performing previously unthinkable inference tasks. At the same time, greater
data availability and more sophisticated models with higher-dimensional param-
eter spaces continue to create a growing demand for performing larger scale
inference tasks. Thus, computational complexity remains the major challenge
in Bayesian statistics, while the specific computational bottlenecks depend on
the particular method employed. This is especially true for spatial and spatio-
temporal models, where the dimension of the parameter space or the number of

1of course only if the exact same model is chosen which is typically not the case, as INLA
usually works with an SPDE approach for spatial models which we will be discussed in detail in
Section 2.2.4 while standard Kriging approaches often work with a Gaussian similarity kernel.
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observations quickly grows with the space or space-time domain.

Especially, MCMC methods are known for their notoriously bad scaling [20].
The rate of convergence exhibited by MCMC methods often slows down as the
space of possible solutions increases. One requires large numbers of consecutive
samples, leading to long run times. Many remedies have been proposed to alle-
viate this problem, which nevertheless persists to exist. Some operations can be
parallelized, but the sampling within each chain remains largely sequential.

Variational inference methods generally scale much better than MCMC ap-
proaches, but this typically comes with a loss in accuracy, as the improved scal-
ability is a result of choosing simpler variational distributions. Classical vari-
ational inference methods often give rise to large dense systems of equations
which scale cubically with the number of observations [41] leading to large as-
sociated computational cost. A plethora of ideas has been proposed to overcome
this computational burden. We will restrict our brief overview to different ap-
proaches tailored to spatial and spatio-temporal data. A simple but very common
technique is to only consider separable space-time covariance functions, which
result in space-time covariance matrices that are assembled as Kronecker prod-
ucts of purely temporal and spatial matrices. This restriction limits the choice
to simplistic models but allows to dramatically reduce the associated computa-
tional cost through this separability. Purely spatial covariance matrices can be
efficiently approximated using hierarchical matrices [42, 43, 44]. A different
perspective is taken by state-space approaches which avoid working with dense
covariance matrices altogether, by considering the temporal dynamics [45]. They
are, however, restricted in the class of available models as they do not accommo-
date for global variables. The stochastic partial differential equation (SPDE) ap-
proach [46, 47, 48], which will be presented in Section 2.2.4, derives the spatio-
temporal precision matrix (inverse covariance matrix) from an SPDE which is
discretized using the finite element method. The resulting precision matrices
are naturally sparse (in contrast to their dense inverses) while still allowing for
fixed effects. We consider a non-separable spatio-temporal model based on [49],
which estimates the considered time span jointly, directly incorporating all avail-
able observations, while also easily allowing for time–independent fixed effects.
This SPDE-based model formulation of the spatio-temporal random field gives
rise to high-dimensional sparse precision matrices and thus aligns well with the
overall INLA framework, whose computational challenges and opportunities will
be discussed extensively throughout this thesis.
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1.4 Outline

The next chapter introduces the relevant statistical concepts involved, as well as
the fundamental ideas behind the INLA methodology and an algorithmic overview
of the essential steps. This lays the ground for an in-depth analysis from the
computational side. We examine how important concepts from both fields are
interconnected, although usually formulated very differently. Further, we discuss
how these connections can be leveraged to facilitate more efficient algorithmic
designs and make better use of recent hardware developments. This includes a
discussion of the arising computational bottleneck operations which will be pre-
sented in Chapter 3 along with novel implementations of how to handle them.
In Chapter 4 we present opportunities for parallelism and put forward different
multi-layer parallel schemes that operate on multi-core as well as distributed ar-
chitectures. We showcase different applications which include medical imaging
data, a drug efficiency study and air temperature prediction, utilizing our newly
proposed or redesigned algorithms and analyze the results in Chapter 5. Our
performance analysis includes strong scaling studies, a detailed examination of
the computational bottleneck operations, as well as spatial and temporal scaling
studies. This thesis concludes with a short summary and discussion in Chapter 6.



Chapter 2

Integrated Nested Laplace
Approximations

This chapter begins with an introduction of essential statistical concepts that are
relevant for the INLA paradigm. Foremost, we discuss the notion of conditional
independence, and how it relates to sparse matrix structures, as well as, multi-
variate normal distributions. Subsequently, we delve into the Bayesian hierar-
chical model class of latent Gaussian models, which are applicable to INLA, and
explore how they rely on conditional independence properties. With this in mind,
the main ideas behind the INLA methodology are introduced before looking at
it from an algorithmic perspective, providing a brief overview of the main steps.
This includes a presentation of how spatial and spatio-temporal models are for-
mulated in INLA using stochastic partial differential equations (SPDEs) and the
finite element method. The last part of this chapter is dedicated to laying out the
objectives of this thesis, fusing the statistical concepts with state-of-the-art ap-
proaches from high-performance computing. Finally, an overview of how this is
realized in terms of implementation is given, for the long-standing R-INLA pack-
age using a shared memory approach as well as the distributed–shared memory
implementation INLADIST targeting spatio-temporal models. The theorems and
definitions provided in the next sections follow [50].

2.1 Background

2.1.1 Conditional Independence

Let x = (x1, x2, . . . , xn)T be a vector of random variables following a multivari-
ate normal distribution with mean µ and symmetric positive definite covariance

8
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x3

x1 x2

Figure 2.1: Conditional dependence graph G(V, E) of p(x1, x2|x3) =
p(x1|x3)p(x2|x3), where each node represents a random variable.

matrix Σ, denoted by Σ> 0. Its probability density function is then defined as

p(x ) = (2π)−n/2|Σ|−1/2 exp
�

−
1
2
(x −µ)TΣ−1(x −µ)

�

, x ∈ Rn. (2.1.1)

The elements of Σ describe the (marginal) variances Var(x i) = Σii and covari-
ances Cov(x i, x j) = Σi j, respectively. The former quantifies the dispersion from
the mean of a single variable x i by integrating over the remaining parameters.
From the covariances one can compute the correlation coefficients Corr(x i, x j) =
Σi j/

p

ΣiiΣ j j which measure the standardized linear dependence between x i and
x j. Two random variables x1, x2 are called independent if and only if their prob-
ability densities satisfy p(x1, x2) = p(x1)p(x2). In addition to the concept of
independent random variables, we introduce the concept of conditional inde-
pendence, which will be fundamental to this thesis.

Definition 2.1.1 (Conditional Independence) Two random variables x1, x2 are
called conditionally independent given x3 if and only if for their conditional proba-
bility densities it holds that

p(x1, x2|x3) = p(x1|x3)p(x2|x3). (2.1.2)

This can equivalently be denoted by x1 ⊥ x2 | x3.

In a graphical model using the labelled graph G(V, E), with nodes V and edges
E this relationship is expressed as shown in Figure 2.1, where the random vari-
ables x1 and x2 are connected through x3. Thus, by fixing x3, the other two be-
come conditionally independent. This simple sounding concept is astonishingly
powerful and allows for expressing relationships between variables. Let us for
example assume that x1 represents the water level in a lake, while x2 expresses
plant growth in a nearby area. We assume a positive dependence between larger
plant growth and higher water levels and vice versa, implying that they are not
independent. If x3 now expresses the amount of rain over a period of time,
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it is reasonable to assume that x3 influences, both, the water level in the lake
and plant growth in the surrounding region. But once the amount of rain that
has fallen is known, the lake water level and plant growth become conditionally
independent, as they can be assumed to not directly influence each other. For
multivariate normal distributions information on conditional independence can
be found in the inverse covariance, the precision matrix as follows.

Theorem 2.1.1 Let x be a normally distributed random vector with mean µ and
precision matrix Q > 0. Then we have that for i 6= j,

x i ⊥ x j | x−i j ⇐⇒ Q i j = 0. (2.1.3)

The proof follows from separating the components involving x i and x j from
the rest using Equation 2.1.1 and Definition 2.1.1 and can also be found in Sec-
tion 2.2 in [50]. This implies that the nonzero pattern of the precision matrix Q
corresponds to its conditional dependence graph.

2.1.2 Gaussian Markov Random Fields

With this in mind, we introduce the notion of Gaussian Markov Random fields
(GMRFs).

Definition 2.1.2 (GMRF) A vector of random variables x = (x1, ..., xn)T ∈ Rn is
called a Gaussian Markov Random field with respect to the labeled graph G = (V, E)
with mean µ and precision matrix Q = Σ−1 > 0 if and only if its probability density
has the form

p(x ) =
|Q|1/2

(2π)n/2
exp (−

1
2
(x −µ)T Q(x −µ)) (2.1.4)

and
Q i j 6= 0 ⇐⇒ {i, j} ∈ E for all i 6= j (2.1.5)

Every normal distribution with a symmetric positive definite covariance ma-
trix1 is also a GMRF and vice versa. We are, however, mainly interested in cases
where Q is sparse, as this is where the concept of GMRFs becomes advantageous.
Sparsity in the precision matrix Q does not induce sparsity in the covariance ma-
trix Σ, as the inverse of a sparse matrix is generally dense. This also makes sense
from a statistical perspective, since the modeled variables are usually not inde-
pendent from each other. The term Markov in GMRF relates to the fact that all

1as Σ> 0 ⇐⇒ Q > 0
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variables (or nodes) are conditionally independent from each other if they are
not neighbors, that is, if there is no edge E connecting them in the associated
graph G(V, E).

In the next section, we will see how GMRFs are employed within the Bayesian
hierarchical model formulation of latent Gaussian models.

2.1.3 Latent Gaussian Models

Latent Gaussian models (LGMs) comprise a subclass of hierarchical Bayesian ad-
ditive models among which there are many of the frequently used statistical mod-
els, like regression, mixed or spatio-temporal models as well as many others,
see e.g. [51, 2] for details. LGMs are characterized by three layers; the hyper-
parameters, the latent Gaussian field, and the observations with an associated
likelihood. Starting from the latter, each observation yi is assumed to belong
to a distribution from the exponential family and is associated with the additive
linear predictor ηi through a link function g(·). The linear predictor is defined
as

ηi = β
T Z i + u i(w i), for i = 1, . . . , m. (2.1.6)

It has fixed effects β with associated covariates Z i and random effects u i with
associated covariates w i such as temporal, spatial or spline effects, and m de-
notes the number of observations. We let x = (u,β) which allows us to rewrite
the linear predictor in matrix form such that

η= Ax , (2.1.7)

where A is a sparse design or projection matrix that links the latent variables x
to the linear predictor [52]. The observations are assumed to be conditionally
independent given the parameters, such that

y | η,θ ∼
m
∏

i=1

p(yi|ηi,θ ), (2.1.8)

where θ are the hyperparameters of the model. Typical likelihoods include
Gaussian, Gamma, exponential, Weibull, Cox, binomial, Poisson and negative
binomial distributions [3]. The latent parameters x form a Gaussian Markov
random field (GMRF) with zero mean and sparse precision matrix Qx (θ ), i.e.,
x ∼N (0,Q−1

x (θ )), as described in the previous section. In addition, one adopts
a prior p(θ ) for the hyperparameters θ , which can influence both, the likeli-
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hood and the latent parameters. Thus, forming a three-stage model consisting
of the hyperparameter distribution, the latent field and the likelihood. For a
more exhaustive description of latent Gaussian models see e.g. [1, 3, 52], in-
stead we conclude with a descriptive example. In Section 5.2.2, we apply INLA
to model atmospheric air temperature. In this case study, the model encompasses
the following components. The observations y are temperature measurements
at different locations over time, where the likelihood is assumed to be normally
distributed. The latent variables x consist of fixed effects β which encode effects
such as elevation, distance to coastline or seasonal effects, and random effects u
which are associated with different space-time locations, capturing the particu-
larities the respective location. The hyperparameters θ characterize effects like
the noisiness of the data or the spatial range, which describes the distance over
which spatial dependence is present. Using this model formulation, the aim is to
update the prior beliefs p(θ ) and p(x |θ ) using the data y to provide posterior
inference estimates. How this is done will be discussed in the next section.

2.2 Methodology

2.2.1 Core Concepts

The INLA methodology leverages an analytic approximation scheme to provide
estimates of the posterior marginal distributions for the hyperparameters p(θi|y)
for all i and of the latent parameters p(x j|y) for all j. Other relevant statistics,
such as credibility intervals and quantiles, can subsequently be derived. It gen-
erally holds that

p(θi|y) =
∫∫

p(x ,θ |y) dx dθ−i =

∫

p(θ |y) dθ−i, for all i, (2.2.1)

p(x j|y) =
∫∫

p(x ,θ |y) dx− j dθ =

∫

p(x j|θ , y)p(θ |y) dθ , for all j. (2.2.2)

where θ−i denotes all hyperparameters except for the i-th one, and respectively
for x− j. The integral over x is often very high-dimensional, due to the potentially
large number of latent parameters x , while the integral over the underlying hy-
perparameters θ is assumed to be of much lower dimension [2]. The equations
above reformulate the problem such that only an integration over θ is necessary,
assuming that p(θ |y) and p(x j|θ , y) are known for all j. INLA approximates the
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former, i.e., the joint posterior of the hyperparameters, as

p(θ |y) =
p(x ,θ |y)
p(x |θ , y)

∝
p(θ )p(x |θ )p(y |x ,θ )

p(x |θ , y)

≈
p(θ )p(x |θ )p(y |x ,θ )

pG(x |θ , y)

�

�

�

�

x=x ∗(θ )

:= p̃(θ |y),
(2.2.3)

where pG(x |θ , y) denotes a Laplace approximation to p(x |θ , y) and will be de-
scribed in detail below. The above equations can be derived from left to right as
follows. The first identity is obtained through the chain rule, i.e., by rearranging
the definition of conditional probability. The proportionality holds by Bayes’ rule,
admitting the normalizing constant p(y), which is independent of θ . The dis-
tribution pG represents a Gaussian approximation to p(x |θ , y), centered at the
mode x ∗(θ ) of the true conditional p(x |θ , y) for a fixed vector θ . The precision
matrix of pG is defined as the curvature, i.e., the negative Hessian of p at x ∗(θ ).
More specifically, we assume that

pG(x |θ , y) = (2π)−n/2|Qx |y(θ )|1/2 exp(−
1
2
(x ∗(θ )− x )T Qx |y(x

∗(θ )− x )), with

Qx |y(θ ) := Qx (θ ) + AT DA, with A= [Ã,Z].
(2.2.4)

Here D denotes a diagonal matrix which is derived from a second order Taylor
expansion of the negative log-likelihood evaluated at the mode x ∗(θ ) and A is
a projection matrix, mapping the latent variables x to the linear predictor η.
Further details on this will be presented in Section 2.2.3. If the likelihood is
normally distributed, x ∗(θ ) can be determined directly by solving a linear system
involving Qx |y(θ ), otherwise it is approximated iteratively [52].

The mode θ ∗ of p̃(θ |y) is not known a priori but of great interest to construct
good approximations to Equation 2.2.1 as well as 2.2.2 and finding it poses an
optimization problem. It can be found using a quasi-Newton method maximiz-
ing over θ , which, in each iteration, requires the evaluation of Equation 2.2.3
and Equation 2.2.4 using the current value of θ . Once θ ∗ is determined, an
exploration of p̃(θ |y) around the mode is performed to set up an approxima-
tion scheme, using evaluation points {θ k}Kk=1, from which the marginal distribu-
tions p(θi|y) for all i, are computed, similar to a numerical integration scheme
discretizing Equation 2.2.1. The posterior marginals of the latent parameters
p(x j|y) for all j, are determined using Equation 2.2.2, where now the only miss-
ing components are the p(x j|θ , y) for all j. There are a number of possibilities
how to approximate them, each one presenting a different trade-off between
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accuracy and computational cost. The fastest but crudest strategy, known as em-
pirical Bayes, uses only one evaluation point θ k, namely at the mode θ ∗. For
more involved models this can, however, fail to capture skewness sufficiently or
can generate bias. One strategy to improve the accuracy is through using ad-
ditional evaluation points, where pG(x |θ

k, y) is constructed for each of them.
Additionally, it is possible to improve this approximation at every θ k using vari-
ational inference. Here, the mean of each pG(x |θ

k, y) is updated by adding a
correction term that is determined through solving a variational problem [53],
see Section 2.2.3 for details.

The posterior marginal distributions p(x j|y) are computed using information
from each evaluation point {θ k}Kk=1 and the respectively chosen approximations
of p(x j|θ , y).

2.2.2 Algorithmic Overview

After introducing the main statistical concepts and ideas, we provide a more
algorithmic overview of the INLA methodology that discusses the arising com-
putational key components and indicates different opportunities for parallelism.
We denote by p̃(θ |y) the approximation to p(θ |y) and respectively for other dis-
tributions. The main steps are listed below and subsequently described in further
detail.

0. Construct approximation to evaluate p̃(θ |y) for fixed θ .

1. Solve optimization problem given by Equation 2.2.3 for θ , to determine
the mode θ ∗ of p̃(θ |y).

2. Compute the negative Hessian at the mode θ ∗.

3. Locate evaluation points in the neighborhood of θ ∗ using the Hessian. Use
a numerical integration free algorithm to approximate p̃(θi|y).

4. Approximate densities p̃(x j|θ , y) for each evaluation point.

5. Combine the information from each evaluation point to obtain p̃(x j|y) sim-
ilarly to Step 3.

To ease the notation, we will define the function f (θ ) as

f (θ ) := − log p̃(θ |y), (2.2.5)

see Equation 2.2.3, where we consider the observations y as fixed in the current
model.
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Step 0: Evaluating f (θ ), and thus p̃(θ |y), efficiently for a fixed vector θ is
fundamental to the overall method and ubiquitous in the subsequent steps. The
evaluation of f is split into its individual subcomponents, see Equation 2.2.3,
that become additive through the introduced log-scale. While the likelihood and
the prior of the hyperparameters are usually computationally cheap to evaluate,
the prior p(x |θ ) as well as the conditional distribution pG(x |θ , y) of the latent
parameters are much more costly to compute. They give rise to three kernel
operations which depend on θ and particularly stand out: The computation of
the log determinant of the precision matrix of Qx (θ ), as part of p(x |θ ), the
log determinant of the precision matrix from the conditional distribution in the
denominator, Qx |y(θ ) as part of pG(x |θ , y), as well as the computation of its
conditional mean, which gives rise to the before-mentioned inner iteration to
determine x ∗ and requires solving linear systems involving Qx |y(θ ). Thus, every
evaluation of f (θ ), i.e., Equation 2.2.5, comprises an inner iteration. As these
precision matrices are symmetric positive definite, it is most efficient to perform
a Cholesky decomposition, use the diagonal entries of the factors to compute the
log determinant and then, if required, perform a forward–backward substitution,
to solve the linear systems. In the spatio-temporal case, the dimension of the
latent parameter vector x , and thus the dimension of Qx |y , are directly related
to the spatio-temporal discretization of the problem which grow quickly with
increasing number of time steps or a finer resolution of the spatial domain.

Step 1: To find the minimum of f , or equivalently the maximum of Equa-
tion 2.2.3, a BFGS algorithm [54] is employed. As any quasi-Newton method,
it requires gradient information in every iteration to determine the next search
direction. We estimate the gradient ∇ f using a finite difference approximation,
as the analytical solution is not easily computable and would result in a loss of
sparsity. Thus, every iteration l of the optimization scheme does not only require
a single function evaluation of f (θ l) for the current iterate θ l but also necessi-
tates the evaluation of many θ l ± εi that arise from the finite difference scheme
to approximate the i-th directional derivative. The exact number of required
function evaluations depends on the dimension of θ , d(θ ), as well as the cho-
sen finite difference scheme. In [55] a “smart” gradient approach was proposed,
improving the numeric stability of the directional derivatives.

Step 2: The negative Hessian at the mode θ ∗ is approximated using a sec-
ond order finite difference scheme. This requires further evaluations of Equa-
tion 2.2.1 which can be computed in parallel if resources allow.

Step 3: Approximation of the marginal posteriors of the hyperparameters
p̃(θi|y). The space around the mode θ ∗ is explored according to the chosen in-
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tegration strategy. The inverse of the negative Hessian at the mode corresponds
to a Gaussian approximation of the covariance matrix of θ . To correct for devia-
tions from this Gaussian approximation, information from additional evaluation
points can be employed, in a numerical integration free algorithm following [51].

Step 4: Approximation of the conditional distributions p(x j|θ , y). When
the empirical Bayes integration strategy is used, the marginal means µ j are di-
rectly deduced from the Gaussian approximation pG(x |θ

∗, y) at the mode. The
marginal variances are the diagonal entries of the inverse of the precision ma-
trix Qx |y(θ

∗) of pG, i.e., Σ j j = (Q
−1
x |y(θ

∗)) j j for all j. The marginal variances of
the observations Var(y) can be deduced from AQ−1

x |y(θ
∗)AT , see Appendix C for

details. When an integration strategy is used that utilizes multiple evaluation
points {θ k}Kk=1, selected inversions are performed for each θ k, and then used to
construct p(x j|θ , y).

Step 5: The marginal posterior distributions p(x j|y) are computed using the
previously determined subcomponents p(θ k|y) and p(x j|θ

k, y) for all k.

2.2.3 Laplace Approximation and Variational Bayes Correction

INLA approximates the true conditional distribution p(x |θ , y), arising in Equa-
tion 2.2.3, which is generally not normally distributed, using a normal distri-
bution pG(x |θ , y). It is centered at the true mode and its precision matrix is
chosen to match the curvature, i.e., negative Hessian, at the mode, as described
in Section 2.2.1 and in particular Equation 2.2.4. Thus, pG is a Laplace approxi-
mation [56, 53] which is constructed using

p(x |θ , y)∝ p(x |θ )p(y |x ,θ ) = exp
�

−
1
2

x T Qx (θ ) x
�

·
m
∏

i=1

p(yi|(Ax )i,θ ),

(2.2.6)
where the prior of the latent parameters is by assumption Gaussian, while the
likelihood is generally not. We approximate it using a second order Taylor expan-
sion, resulting in a multivariate normal distribution which, in log-scale, equates
to a quadratic functional. In log-scale, the product in the above equation becomes
a sum of one-dimensional quadratics that can be rewritten in matrix format as

log (pG(x |θ , y)) = −
1
2

x T Qx (θ ) x +
m
∑

i=1

�

bi(Ax )i −
1
2

di(Ax )2i

�

+ c

= −
1
2

x T (Qx (θ ) + AT DA)x − bT Ax + c,

(2.2.7)
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where b = (b1, . . . , bm)T and D is a diagonal matrix with Dii = di for all i =
1, . . . , m and c is a constant independent of x . The entries of bi, di are coeffi-
cients derived from the Taylor series expansion. Equation 2.2.7 is equivalent to
Equation 2.2.4 but unnormalized, in log-scale and canonical representation. The
location of the mode cannot be computed directly but is found iteratively through
an inner optimization scheme2. We employ Newton’s method to determine the
mode x ∗(θ ). In every iteration this requires solving a linear system involving
Qx |y(θ ) = Qx (θ ) + AT DA and b, where D and b depend on the current iterate
of x , for details see e.g. [57].

Variational Correction

For many years, using a Laplace approximation to define pG has been the stan-
dard approach in the R-INLA package to fit the conditional distributions during
the optimization process, at and around the mode of θ ∗ as described in Step 4,
see e.g., [1, 51, 57]. And while a Laplace approximation appears to be an intu-
itive choice for approximating the true conditional p(x |θ , y), there is no reason
why this is the “best” possible Gaussian approximation. Especially since it is not
clear how “better” or “best” are exactly defined in this context. An alternative
approach was suggested in [53] which is based on a fundamental concept from
Zellner [58], where the author establishes Bayes’ theorem as an optimal informa-
tion processing rule. They show that utilizing information from the prior p(x )
and the conditional likelihood p(y |Ax ), it is possible to deduce the marginal
likelihood of the data p(y) and the conditional posterior p(x |y) of the unknown
latent parameters3. To use the available input information optimally, they then
find the latter to be the minimizer of

q∗(x ) = arg minq∈P(x )

�

−Eq(x )[log p(y |Ax )] + KLD (q(x )||p(x ))
�

(2.2.8)

where P(x ) is the set of all probability distributions on x , Eq(x ) denotes the ex-
pectation and KLD the Kullback-Leibler divergence. The true posterior will be
recovered in Equation 2.2.8 if it is contained in the set P(x ). Similar to other
variational frameworks, the idea is, however, to choose P(x ) to be a family of
simpler distributions. We restrict P(x ) to the set of Gaussian distributions with
fixed precision matrix Qx |y . Therefore, one only performs a correction of the

2where finding the optimum of Equation 2.2.5 is the “outer“ optimization problem
3the dependency on θ is explicitly omitted here as well as for the remainder of this section,

as θ remains constant throughout the subsequent derivations



18 2.2 Methodology

mean [53], simplifying Equation 2.2.8 to

δ∗ = arg minδ(Ex∼N (x ∗+δ,Q−1
x |y )
[−log p(y |Ax )]

︸ ︷︷ ︸

g1(δ)

+KLD (φ(x ; x ∗ +δ,Q−1
x |y))||p(x ))

︸ ︷︷ ︸

g2(δ)

)

(2.2.9)
whereφ(x ;µ,Σ) denotes a normal probability density function with mean µ and
covariance Σ. The optimization over δ in Equation 2.2.9 can be done iteratively
and has a computational cost that scales with the number of latent parameters
n. For ease of notation we define

g(δ) := g1(δ) + g2(δ). (2.2.10)

It is assumed that the mode of the Laplace approximation x ∗, was previously
determined using a Newton iteration as described above. We first consider g2(δ),
where the Kullback-Leibler divergence is computed between two multivariate
normal distributions. As the variance remains constant and p(x ) has zero mean,
this reduces to

g2(δ) = KLD (φ(x |x ∗ +δ,Q−1
x |y)) || p(x )) =

1
2
(x ∗ +δ)T Qx (x

∗ +δ), (2.2.11)

where we note that Qx is the prior precision matrix of the latent parameters x .
For the expected negative log-likelihood g1(δ), we have that

g1(δ) = Ex∼N (x ∗+δ,Q−1
x |y )
[−log p(y |Ax )] = Eη∼N (A(x ∗+δ),AQ−1

x |y AT )[−log p(y |η)].
(2.2.12)

with η = Ax , see Equation 2.1.7. This reformulation is advantageous since by
model assumption the data are conditionally independent given the linear pre-
dictor (see Equation 2.1.8). Thus one can rewrite the above as

Eη∼N (A(x ∗+δ),AQ−1
x |y AT )[−log p(y |η)] = −Eη∼N (A(x ∗+δ),AQ−1

x |y AT )

�

m
∑

i=1

log p(yi|ηi)

�

=
m
∑

i=1

Eηi
[− log p(yi|ηi)]

=−
m
∑

i=1

∫

log p(yi|ηi)φ
�

ηi; (A(x
∗ +δ))i, (AQ−1

x |y AT )ii
�

dηi.

(2.2.13)
The final equality, thus, consists of a sum of univariate expectations, which can
be evaluated efficiently as presented in the next section.
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Gauss-Hermite Quadrature

A short excursion to Gauss-Hermite quadrature is presented to approximate uni-
variate integrals of the form 2.2.13. We additionally discuss how to derive the
first and second order derivatives of g(δ), which are used in a Newton itera-
tion to determine the optimal value δ∗. Gauss-Hermite quadrature is used to
approximate integrals involving Gaussian functions of the following type

∫ ∞

−∞
exp(−v2) f (v) dv ≈

K
∑

i=1

wk f (vk). (2.2.14)

where wk are quadrature weights and vk quadrature points of the Hermite poly-
nomials for k = 1, . . . , K . Given a function f (v) with v ∼N (µ,σ2), the expecta-
tion of f is

Ev[ f (v)] =

∫ ∞

−∞

1
p

2πσ
exp

�

−
(v −µ)

2σ2

�

f (v) dv. (2.2.15)

This does not exactly match the form Equation 2.2.14 until after applying a
change of variables which results in

Ev[ f (v)] =

∫ ∞

−∞

1
p
π

exp
�

−z2
�

f (
p

2σz +µ) dz with v =
p

2σz +µ. (2.2.16)

Considering Equation 2.2.16 as a function of the mean µ we define4

I(µ) :=

∫ +∞

−∞

1
p
π

exp
�

−z2
�

f (
p

2σz +µ) dz. (2.2.17)

Additionally, we derive the first and second order derivatives of I(µ)with respect
toµ, as they are needed for the Newton iteration. Their full derivation is provided
in Appendix A and equate to

d
dµ

I(µ) =

∫ +∞

−∞

1
p
π

exp(−z2)
z
σ

f (
p

2σz +µ) dz (2.2.18)

d2

dµdµ
I(µ) =

∫ +∞

−∞

1
p
π

exp(−z2)
z2 − 1
σ2

f (
p

2σz +µ) dz. (2.2.19)

4as this is what Equation 2.2.9 has to be optimized for
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With these results in place we return to evaluating Equation 2.2.13 by combin-
ing it with Equation 2.2.17, where subsequently we obtain after the change of
variables

g1(δ) =

∫

−
m
∑

i=1

log p(yi|(AQ−1
x |y AT )1/2ii z + (A(x ∗ +δ))i)φ(z)dz. (2.2.20)

While g2(δ) is a quadratic functional and can thus be easily differentiated, for
g1(δ) we make use of Equation 2.2.18 and 2.2.19. Due to the conditional inde-
pendence property, the partial derivatives with respect to the linear predictor can
be computed separately, resulting in a diagonal matrix for the Hessian. The gradi-
ent ∇g1 and Hessian ∇2 g1, employing the above change of variables and using
the Hermitian quadrature nodes z1, . . . , zK and quadrature weights w1, . . . , wK ,
are

σi = (AQ−1
x |y AT )1/2ii , (2.2.21)

vk =
p

2σizk + (A(x
∗ +δ))i, (2.2.22)

∂

∂ µi
g1(µ) = −

1
p
π

K
∑

k=1

wk
zk

σi
exp(−z2

k) log p(yi|vk), (2.2.23)

∂ 2

∂ µi∂ µi
g1(µ) = −

1
p
π

K
∑

k=1

wk

z2
k − 1

σ2
i

exp(−z2
k) log p(yi|vk). (2.2.24)

The sum over k is over the different quadrature points, while each i relates to
a different observation yi with i = 1, . . . , m. We can observe that in order to
compute ∇g1 and ∇2 g1 we do not have to differentiate the log-likelihood, but
instead it is sufficient to evaluate it for each quadrature point vk. The first and
second order derivatives of g2 with respect to δ can easily be computed from
Equation 2.2.11. Putting all components together one finally obtains

∇g = Qx (x
∗ +δ) + AT∇g1 (2.2.25)

∇2 g = Qx + AT∇2 g1 A, (2.2.26)

which provides a way to approximate the necessary first and second order deriva-
tives for the Newton iteration, and we can thus determine the minimum δ∗ of
Equation 2.2.9, resulting in an updated mean

x VB = x ∗ +δ∗. (2.2.27)
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Low-Rank Variational Correction

This can, however, be computationally expensive as we have to iteratively solve
linear systems of size n × n, as δ∗ ∈ Rn, where n is the number of latent vari-
ables and thus often high-dimensional. Therefore, a low-rank correction is used,
where the linear systems to be solved are much smaller, while still propagating
an update of the mean to all latent variables. Instead of optimizing over δ∗ ∈ Rn

directly, we consider δLR

x VB = x ∗ +δLR with δLR = Q−1
I λ (2.2.28)

where λ ∈ Rp, Q−1
I ∈ R

n×p with p < n. Here, I denotes an index set, containing
a subset I ⊂ {1,2, . . . , n} of the columns of Q−1

x |y . This allows for optimizing
Equation 2.2.9 for λ in dimension p, as

λ∗ = arg minλ (Ex∼N (x ∗+Q−1
I λ,Q−1

x |y )
[−log p(y |Ax )]

+ KLD(φ(x ; x ∗ +Q−1
I λ,Q−1

x |y)||p(x ) ))

= arg minλ (Eη∼N (A(x ∗+Q−1
I λ,),AQ−1

x |y A)[−log p(y |η)]

+ KLD(φ(x ; x ∗ +Q−1
I λ,Q−1

x |y)||p(x ) ))

(2.2.29)

This lowers the computational cost to O(np2) instead of O(n3). Nevertheless,
all latent variables x are updated jointly due to the multiplication with Q−1

I . In
particular, we select a set of indices I ⊂ {1, 2, . . . , n} which are associated with
the most influential model parameters. Those typically include the fixed effects
and random effects which are associated with many observations. Numerical
experiments have shown that it is sufficient to choose relatively small subsets I
with p � n to nevertheless provide corrections of high accuracy [53]. There-
fore, the low-rank variational Bayes correction offers a computationally efficient
approach to improve the Gaussian approximation to the conditional joint poste-
rior p(x |θ , y) and can be used for the approximation of the posterior marginal
distributions of the latent parameters.

2.2.4 The Stochastic Partial Differential Equation Approach

Many statistical applications involve data which are linked to spatial or spatio-
temporal locations. The fundamental as well as intuitive concept of geostatistics
is Tobler’s first law of geography, which states “everything is related to everything
else, but near things are more related than distant things“ [59]. To represent the
connections and particularities of a spatial or spatio-temporal region, additional
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random effects are included in the model. Let u(s) be a Gaussian random field
over a domain D with s ∈ D where u(s) represents a random spatial effect at lo-
cation s. By Tobler’s law, this implies that two locations s1 and s2 which are close
together, have a high probability of showing similar spatial effects u(s1) and u(s2)
as opposed to two locations that are far apart from each other. Mathematically,
this relationship of similarity is expressed through a covariance function. One
option is the Matérn covariance function CM(u(s1), u(s2)), which has been shown
to realistically capture spatial correlation and is the most popular choice in geo-
statistics [49]. In his work [60], Whittle first noted that the stochastic weak
solution u(s) to

γe(γ
2
s −∆)

α
2 u(s) =W(s), s ∈ Rd (2.2.30)

has a Matérn covariance function, assuming γs,α > 0 are constants, ∆ is the
Laplace operator and W represents Gaussian white noise, that is, an indepen-
dent random process with mean zero and an underlying standard normal dis-
tribution. Lindgren et al. show in [47] that Equation 2.2.30 can be solved for
u(s) to find the spatial random effects included in the model. The differential
operator L = (γ2

s −∆)
α
2 directly relates to the precision matrix of the spatial ran-

dom effects. The finite element method, see e.g. [61], is employed to discretize
Equation 2.2.30. This so-called SPDE approach has shown to be very attractive
in spatial modeling, both from a theoretical and a practical point of view. It in-
herits consistent convergence properties and favorable computational aspects,
such as sparsity in the precision matrix for α = 2n, n ∈ N, from the finite ele-
ment method. It implies for example that more involved spatial domains such
as irregular shaped subsets of Rd as well as different manifolds can easily be
accommodated for as Equation 2.2.30 remains well-defined [47]. Additionally,
the finite element method involves a spatial mesh discretization that can be con-
structed separately from the locations of the observations, granting additionally
flexibility.

Rephrasing the previous paragraphs from a different perspective, this means
that to formulate a model which also includes spatial phenomena that are par-
ticular to every location, additional spatial random effects are introduced. This
raises the question of how to define a suitable prior for them. Instead of at-
tempting to directly define a prior precision matrix Qu

5 (or its covariance ma-
trix), which encapsulates the spatial correlation, one forms a precision matrix
from the discretized differential operator of Equation 2.2.30. Hence, the preci-
sion matrix Qu encodes information about the relationship between the spatial

5When considering the complete model, the prior precision matrix Qu is a submatrix of Qx
which relates to the random variables u.
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random effects, where two spatial random effects u(s1) and u(s2) are assumed
to be more similar the closer s1 and s2 are. This intuitively also aligns with the
diffusive behavior of the Laplace operator.

For spatio-temporal models, we have a random field u(s, t) containing the
additional time component t, hence its covariance function C(u(s1, t1), u(s2, t2))
also has a dependency on time t. There are numerous approaches for a tempo-
ral extension of the Matérn covariance function, see e.g. [62, 63]. In all cases,
the additional time dimension adds complexity to the model and therefore, sep-
arable covariance functions are a popular choice, i.e., C(u(s1, t1), u(s2, t2)) =
Cs(s1, s2)Ct(t1, t2), where Cs represents the spatial and Ct the temporal corre-
lation which factor into a product. This simplifies the precision matrix of the
corresponding model. However, separable models have a number of disadvan-
tages, like smoothing property restrictions [63]. Additionally, if one considers
defining a model through the direct definition of its dynamics, a separable model
does not give rise to physically realistic dynamics [49].

A particular focus of this thesis is on non-separable space-time models, and
in particular we rely on the non-separable spatio-temporal model extension as
suggested by Lindgren et al. [49]. The authors present a diffusion-based family of
models as an extension of the Matérn fields that additionally contains a first order
derivative over time and smoothness parameters (αt ,αs,αe)which determine the
order of the differential operators and thus the smoothness of the solution. The
spatio-temporal random effects of the model are then represented as the solution
to the following SPDE

�

γt
∂

∂ t
+ (γ2

s −∆)
�

u(s, t) = EQ,γe
(s, t), (2.2.31)

where we assume αt = 1, αs = 2 and αe = 1. For the general form see Appendix B
as well as [49]. The SPDE has the non-negative scale parameters (γs,γt ,γe), the
time derivative ∂

∂ t , the Laplace operator in space∆ and EQ,γe
(s, t)which describes

Gaussian noise that is uncorrelated in time but has an exponential correlation in
space. The stochastic weak solution of this SPDE gives rise to a Gaussian field
with diffusive behavior. Lindgren et al. [49] argue that the resulting covariance
function is the most natural, as diffusion processes are fundamental to modeling
spatio-temporal phenomena. When restricting Equation 2.2.31 to only its spa-
tial component, one obtains a Matérn covariance function as in Equation 2.2.30.
The differential operator of Equation 2.2.31 directly relates to the precision op-
erator of the random effects of the spatio-temporal model components, and the
parameters (γs,γt ,γe) are contained in the model’s hyperparameters θ . The dis-
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cretization of Equation 2.2.31 uses piece-wise linear basis functions in space and
time. Thus, it gives rise to a continuous space-time solution while the underly-
ing computations rely on sparse linear algebra operations. The induced sparsity
pattern of the precision matrix has a block tridiagonal structure, where each di-
agonal block describes the discretization of a spatial domain at a different time
step. The time steps are coupled through the off-diagonal blocks, similar to an
autoregressive model of order one. A higher order coupling in time translates
to an increased off-diagonal block bandwidth, i.e., second order gives rise to a
block pentagonal structure. A detailed overview of the discretized formulation,
the exact definition of all matrices and the arising sparsity patterns including an
illustrative example can be found in Appendix B, as well as further notes on the
interpretation of the equation.

Separable space-time models give rise to precision matrices which can be ex-
pressed as Kronecker products between the spatial and the temporal component,
i.e., Qu = Qs⊗Qt . This is the key component to the reduced computational com-
plexity, as now these two parts can be handled separately throughout the more
involved operations. For non-separable models this is not the case. Thus, all aris-
ing computational key operations require treating Qu jointly, which is one of the
reasons necessitating advanced linear algebra solution strategies. One faces the
same challenges with other types of large-scale models, that are not reducible
into subcomponents without the loss of information and require performant so-
lution methods.

2.3 Objectives and Contributions: Performing Inference
at Scale

In this section, I want to elucidate the greater aim of this thesis; combining in-
depth knowledge of statistical concepts with expertise from the field of high-
performance computing to allow for larger-scale, more realistic Bayesian mod-
eling at shorter run times. The previous part of this chapter delved into the
particular Bayesian inference method of interest in this thesis, the methodology
of integrated nested Laplace approximations. We also introduced its applicable
model class, discussed the underlying assumptions and started analyzing the re-
quired linear algebra operations. With this in mind, we further explore the com-
putational aspects of the INLA methodology. First by laying out what challenges
arise, and then how these can be addressed by combining domain specific knowl-
edge with state-of-art high-performance computing approaches. This objective is
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pursued along two different main routes. The first one is to identify, isolate, and
subsequently improve the performance of the computational bottleneck opera-
tions. This is achieved through a variety of strategies, one being the development
of algorithms tailored to the specific problem structures. Further, through opti-
mized implementations of the existing algorithms incorporating advances from
the field of linear algebra. And finally, through the use of new hardware ar-
chitectures by putting forward solution strategies that leverage the strengths of
GPU accelerators. The second main route is the introduction of massive par-
allelism. We put forward multi-layer parallel schemes that leverage the power
of modern multi-core as well as multi-node architectures. This introduction of
parallelism allows us to use the often plentiful availability of resources on mod-
ern computers. To guarantee a high degree of efficiency this requires, however,
that operations are independent, separable or only necessitate limited commu-
nication which has to be taken under consideration during the methodological
development and algorithmic design. The majority of this work has been pub-
lished in [64] and [65]. The former presents the advancements realized within
the R-INLA package, while the latter summarizes the work related to large-scale
spatio-temporal modeling with INLADIST.

2.3.1 Performance Considerations

The computational complexity of performing inference with INLA is tightly linked
to the dimension of the latent parameter space and the number of hyperparam-
eters of the associated model but independent of the number of observations6.
We consider Equation 2.2.3 which is to be evaluated for a fixed parameter con-
figuration of θ . The prior of the hyperparameters p(θ ) and the conditional like-
lihood p(y |θ , x ) are typically computationally cheap to evaluate, whereas the
evaluation of p(x |θ ) and pG(x |θ , y) pose the challenge of computing the log-
determinants and solving linear systems. Thus, referring to large-scale applica-
tions implies that the model has a large number of latent parameters or hyperpa-
rameters or both. The required computational bottleneck operations within INLA
involve the symmetric positive-definite precision matrices Qx (θ ) and Qx |y(θ ),
whose dimensions are induced by d(x (θ )), and comprise

(1) Cholesky factorization

(2) Forward-backward substitution

6in terms of computational core operations, not runtime spent on handling the potentially
large associated data structures, etc.
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(3) Selected matrix inversion

The dimension of the hyperparameter space, d(θ ), on the other hand determines
the number of required evaluations of f (θ ) during each BFGS-iteration as the
number of partial derivatives increases with d(θ ) and therefore the number of
finite difference evaluations. Moreover, a larger number of hyperparameters re-
quires more evaluation points around the mode θ ∗, also inducing more selected
matrix inversions. Thus, the importance of optimizing the computational bot-
tleneck operations (1)–(3) is linked to the dimension of the latent parameter
space, whereas the necessity or opportunity for parallelism (outside of the linear
solvers) is more closely tied to the dimension of the hyperparameters θ .

Matrix Sparsity Patterns and Sparse Solvers

For larger models naive implementations such dense Cholesky factorization or
full matrix inversions quickly become prohibitive in terms of computational cost.
Thus, it is necessary to exploit the sparsity of the underlying GMRF. We can,
however, not only utilize general sparse linear algebra operations but make use
of the fact that many of the arising sparsity patterns are recurrent. Foremost, this
includes the precision matrices Qx (θ ) and Qx |y(θ ). They depend on the hyper-
parameters θ and latent parameters x , which iteratively change throughout the
algorithm. In a typical use case, hundreds if not a couple of thousand different
parameter configurations arise, inducing new numerical values of both matrices,
while their respective sparsity patterns remain constant. The majority of neces-
sary matrix factorizations arises within the optimization problem, in the evalua-
tion of f (θ ), as well as its gradient. This allows for various forms of optimization.
Sparse matrices are typically stored in so-called compressed sparse row (CSR) or
compressed sparse column (CSC) format, consisting only of the non-zero val-
ues and two arrays from which the appropriate indices can be deduced. Thus,
changes in Qx (θ ) and Qx |y(θ ) only require updating the numerical values, while
the index arrays remain untouched. For small matrices the time improvement
might be negligible, but for large-scale problems this becomes relevant. Recur-
ring sparsity patterns in the precision matrices also imply that the sparsity pattern
of the associated Cholesky factors remain the same, and are therefore known a
priori (or at least after the very first factorization). When employing an entirely
sparse approach it is therefore advantageous to first perform a separate sym-
bolic factorization to pre-compute the non-zero patterns where the matrices are
reordered to reduce fill-in and allow for more parallelism while computing the
numerical values of the Cholesky factor. The symbolic factorization only needs to
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be computed once. A detailed discussion of how this is achieved and the advan-
tages it entails are presented in Section 3.1.1. To compute the marginal variances
of the latent parameters as well as the observations, see Step 4, we require entries
from the covariance matrix, i.e., the inverse of the precision matrix Q−1

x |y(θ ). The
inverse of a sparse matrix is generally dense, and therefore inversions of large
sparse matrices are computationally expensive, if not infeasible, operations. In
the case at hand, however, we only require particular elements of the full inverse.
More precisely, those related to the marginal variances of the latent variables
and the observations, see also Appendix C. There are specialized strategies to
perform a partial or selected inversion that do not require the computation of all
elements [66, 67]. An efficient and versatile selected inversion routine for sparse
matrices which is based on Cholesky decomposition is known as Takahashi inver-
sion [68] which we make use of and present in Section 3.1.2, thus being able to
dramatically reduce memory requirements as well as computation time. Many
large-scale models include data with a spatial or spatio-temporal component, as
the associated random effects quickly become high-dimensional. The class of
diffusion-based spatio-temporal models discussed in Section 2.2.4 is particularly
high-dimensional due to its non-separable precision matrix structure. It gives,
however, rise to precision matrices with a regular block n-diagonal arrowhead
sparsity pattern, where each diagonal block corresponds to a discretization of
the spatial domain at a different time step. Each of the blocks themselves are
again sparse, as they arise from a spatial finite element discretization. Our ob-
jective is to leverage this additional knowledge of the sparsity structure at hand
and derive tailored solution strategies that perform the computational bottleneck
operations targeting exactly this sparsity pattern. We limit ourselves to this par-
ticular spatio-temporal SPDE model, however, other large-scale applications also
exhibit block n-diagonal arrowhead sparsity patterns. Thus, this work can hope-
fully also serve as a prototype for more general large-scale applications in the
future. The details are presented in Section 3.2, where we develop block dense
algorithms for the required Cholesky decompositions as well as selected matrix
inversion which exhibit linear scaling in time.

Parallelism

In addition to improving the performance of the individual computational bottle-
neck operations, it is crucial to execute them simultaneously whenever possible,
as the scalability of an algorithm is closely tied to its ability to parallelize effi-
ciently. All modern computer architectures heavily rely on parallelism to support
increasingly many as well as increasingly complex operations. This is also a key
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component for amplifying the scalability of INLA. The algorithmic overview in
Section 2.2.2 reveals that many computationally expensive operations within the
INLA methodology can be executed concurrently. Most notably the function eval-
uations of f (θ ) to approximate the gradient in Step 1, the function evaluations
for the Hessian in Step 2 as well as the evaluation of the integration points and
the partial matrix inversions in Step 3 and 4, respectively. The number of parallel
function evaluations depends on the dimension of the hyperparameters θ as well
as the chosen approximation scheme around the mode θ ∗. Thus, we first com-
pute the different necessary parameter configurations of θ and then perform the
associated function evaluations in parallel. In terms of implementation, this is
supported among two routes, a shared memory implementation within R-INLA
and a shared-distributed memory implementation within INLADIST, greatly de-
creasing overall run times as presented in Chapter 5.

Implementation and Compute Architectures

GPU accelerators are becoming increasingly important across all scientific com-
puting domains. They have seen a rapid rise in performance and general adop-
tion over the last decades. This can also be seen by the fact that 9 out of the top
10 supercomputers7 have GPUs as integral compute units who deliver the major-
ity of the arithmetic throughput [69]. Most of the existing Bayesian libraries do
not include GPU support yet, with PyMC [31] and Stan [32] being an exception
for some operations. GPU support in itself does not, however, guarantee accel-
erated computations. GPUs especially excel at large-scale parallel independent
computing tasks involving regular memory access patterns like dense matrix-
matrix multiplication. On the other hand, they may exhibit inferior performance
to CPUs when it comes to more involved tasks that are sequential or have limited
parallelism, simple or small-scale computations, and memory-intensive opera-
tions. To leverage the respective advantages of the different processing units, it
is necessary during algorithm design to keep their particular properties in mind.
For the work done in this thesis, we have thus concluded it to be beneficial em-
ploying entirely sparse approaches on CPU and a block dense approach on GPU
for the computational key operations. Both will be discussed in detail in Chap-
ter 3 with performance comparisons in Chapter 5.

Large-scale clusters using GPU-accelerators are typically organized in parti-
tions with GPGPU (General-Purpose Graphics Purposing Units) nodes where a
many-core central processing unit is attached to multiple GPUs, that are often
additionally interconnected. The number of CPU cores, memory domains, as

7The only exception being Japan’s supercomputer Fugaku.
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well as attached GPUs varies across clusters. A typical setup would be around
64 CPU multi-core processor, 4 or 8 NUMA domains and 4 or 8 GPUs. Archi-
tecture specific knowledge is therefore required for an optimal arrangement. As
the specifications vary across clusters, it is non-trivial to automatically identify
setups that connect the different components most efficiently.

The efforts in this thesis regarding software libraries have been two-fold,
firstly by adding scalability to the R-INLA package and secondly, in the form
of the standalone INLADIST implementation targeting multi-node architectures,
optionally utilizing GPU-accelerators for large-scale spatial and spatio-temporal
models. More detailed overviews of the work conducted on both libraries are
presented in the following two sections.

2.3.2 R-INLA – A shared Memory Implementation

A user-friendly implementation of INLA is available in the form of an R-package
under the same name, referred to as R-INLA [70]. Since its inception, there
have been many papers exploring advancements of theoretical concepts of the
INLA methodology, also leading to a constant evolution of its implementation.
Their collection forms an impressive repertoire for fast, versatile and reliable ap-
proximate Bayesian inference, see e.g. [47, 51], and include a wide variety of
applications, see e.g. [10, 71, 72, 5, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85]. Algorithmic concepts and improvements concerning performance mat-
ters of the continuously growing software library have been discussed much less,
even though they are a key component to INLA’s success. We aim at helping to
close this gap by putting forward a much more performant implementation of
R-INLA making use of multithreaded parallelism and the state-of-the-art sparse
linear solver PARDISO [86]. A two-layer parallel scheme is introduced which,
on the upper or first layer, primarily parallelizes the independent function eval-
uations as described in the previous sections. The original implementation of
R-INLA employs the sparse linear algebra library TAUCS [87] to perform the re-
quired numerically intensive core operations. It is a well-designed and efficient
library which operates, however, sequentially and whose support was discon-
tinued in the early 2000s. Additionally, it does not include a partial inversion
routine which was therefore implemented by the authors of R-INLA, see [88, 1].
While this was done with much thought, effort and consideration, providing re-
liable results, improved parallel implementations have emerged since [89, 90].
The plan of integrating PARDISO into R-INLA was first described by Nierkerk
et al. in [57]. The authors discuss the need for the usage of faster numerical
solvers within R-INLA to support evolving statistical models of higher complex-
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ity and continuously growing availability of data. PARDISO offers a great fit as it
provides multithreaded implementations for all of INLA’s required kernel opera-
tions. Hence, the second layer of parallelism is introduced by PARDISO as well as
other parallelized linear algebra operations like matrix-matrix or matrix-vector
products. We showcase the improved performance of R-INLA on a complex joint
survival model containing 50 hyperparameters [91] and a brain activation model
using fMRI data [92].

2.3.3 INLADIST – A distributed Memory Implementation

In addition to the advancements of the R-INLA package, we put forward an in-
dependent novel hybrid distributed shared memory implementation, referred to
as INLADIST, which is tailored to the previously introduced INLA-SPDE approach
for spatio-temporal modeling [65]. INLADIST is written in C++, makes use of the
Eigen library [93] and the BFGS template library provided by [94]. It comprises
a three-layer parallel scheme employing distributed and shared memory paral-
lelism, which will be described in Chapter 4. To handle the computational key
operations, we integrate two alternative numerical solvers in INLADIST. One op-
tion is the sparse solver PARDISO. This combination of INLADIST will be referred
to as INLAPARDISO. Secondly, we put forward a GPU-accelerated novel block tridi-
agonal arrowhead (BTA) solver which will be presented in Section 3.2, referred
to as INLABTA. The required kernel operations of the BTA solver are performed
by standard state-of-the-art linear algebra libraries, namely by MAGMA [95],
cuBLAS [96] and LAPACK [97]. Depending on the compute infrastructure and
the problem size, the complete Cholesky factor can exceed the GPU memory. To
nevertheless allow for almost arbitrarily large parameter spaces, only the cur-
rently required submatrix blocks are iteratively copied to GPU memory to com-
pute the Cholesky factorization. The log determinants are then directly com-
puted on GPU. When necessary, the complete Cholesky factor is stored in main
memory, in which case the forward-backward substitution is then performed on
CPU. To compute the selected block inversion, the necessary submatrices of the
Cholesky factor are recursively copied back to GPU memory throughout the com-
putation as needed. We present performance studies for INLADIST on a family of
synthetic datasets and apply it to an atmospheric temperature model [98] over
the US main continental area throughout the course of 1 year using more than 1
million latent parameters and 2.5 million observations, see Section 5.2.



Chapter 3

High-Performance Operations in INLA

In this chapter we explore how to handle the linear algebra operations that arise
within the framework of INLA. The first part presents an entirely sparse approach,
and introduces the most important underlying concepts emerging in this context.
This is motivated by the fact that the prevailing precision matrices are part of
sparse GMRFs, and it is, therefore, only natural to rely on sparse solution strate-
gies to perform the computational kernel operations. While sparse Cholesky de-
composition is a widely supported functionality that is part of many sparse linear
algebra libraries (and subsequently solving linear systems), efficient selected in-
version routines are not frequently supported. One possibility is to employ the
state-of-the-art sparse direct solver PARDISO [86]. It performs efficient Cholesky
factorizations through matrix permutations, which allow for internal thread par-
allelization and lead to drastically reduced fill-in. It additionally offers a selected
matrix inversion routine, building on the work of Takahashi [68]. We integrate
PARDISO into the R-INLA package and INLADIST as a CPU-based sparse direct
solver.

The second part of this chapter puts forward a blocked approach for spatio-
temporal models, where the prevailing precision matrices are divided into sub-
blocks that are either completely zero or assumed to be dense. This is possible
due to the particular sparsity pattern induced by the spatio-temporal nature of
the problem. Tailored block algorithms for Cholesky decomposition, solving lin-
ear systems and selected matrix inversion are developed to operate on the aris-
ing block-tridiagonal arrowhead structure. This allows for employing efficient
GPU-accelerated dense matrix kernels for the non-zero subblocks while com-
pletely omitting the zero subblocks of the system. This approach is integrated
into INLADIST, and referred to as block tridiagonal arrowhead (BTA) solver as a
GPU-based block dense direct solver.

31
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3.1 A General Sparse Method

A sparse matrix is simply defined as a matrix, where the majority of its elements
are equal to zero. For sparse matrix algebra, it is customary to only save the non-
zero entries of the matrix in so-called compressed matrix formats, that store the
non-zero values and their corresponding position instead of large quantities of
zero entries. This allows to massively reduce the required memory and compu-
tations but hence, also demands for solvers that are especially tailored to sparse
problems. These arise, however, very commonly and are therefore extensively
researched. For introductory purposes see e.g. [99, 100].

During the first stage of the INLA algorithm, see Section 2.2.2, the log deter-
minant of different precision matrices Q (to obtain the corresponding normaliz-
ing constant) and the solution to linear systems of equations of the form Qx = b
(to obtain the mode of the associated normal distribution) are required. Since
the arising precision matrices are symmetric positive-definite, it is most efficient
to perform a Cholesky decomposition, where the original matrix Q factors into
Q = LLT , with L being a lower-triangular matrix [101]. The log determinant of Q
can easily be computed from the diagonal entries of L as

∑n
i=1 2 log(Lii) and the

system Qx = b can quickly be solved for x using forward-backward substitution.
That means first solving Ly = b for y and then LT x = y for x . These operations
can be executed efficiently due to the lower-triangular structure of L.

3.1.1 Matrix Reordering

Additionally, it is in most cases advantageous to apply a symmetric permuta-
tion to the matrix Q (and hence b, respectively) before computing the Cholesky
decomposition. Even if the matrix Q is very sparse, L can have a large fill-in,
meaning that there are many entries which are non-zero in L but equal to zero
in the lower-triangular part of Q. In the elimination process that is used to com-
pute L, similar to classical Gaussian elimination, one can see how these non-zeros
arise [99]. As an illustrative example, we consider a symmetric positive-definite
arrowhead matrix Q1 whose sparsity pattern can be seen in Figure 3.1. Its cor-
responding Cholesky factor L1 is computed recursively, starting from the first
diagonal entry. To compute the off-diagonal entry (L1)32, we use that (L1)32 =
((Q1)32 − (L1)31(L1)21)/(L1)22. Hence, even if (Q1)32 = 0, (L1)32 is not equal to
zero unless (L1)31 or (L1)21 are. More generally, one can observe a dependency
structure on previous columns of the i-th and j-th row. By applying a symmetric
permutation to Q1, we can obtain Q2. If we now compute L2, we can see that
(L2)32 = 0, since (Q2)32, (L2)21 and (L2)32 are all equal to zero.
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Figure 3.1: Sparsity patterns of the four-by-four symmetric positive-definite arrow-
head matrices Q1 and Q2, where each x stands for a non-zero entry and Q2 is a
symmetric permutation of Q1. The sparsity patterns of their Cholesky factors are
represented by L1 and L2, respectively. The matrix L1 is dense, i.e., exhibits a large
fill-in while L2 preserves the sparsity pattern of Q2.

In general, fill-in can often be drastically reduced by finding a suitable ma-
trix reordering of Q, which then lowers the overall memory and computation
requirements of L.

For each of the different arising precision matrices in INLA, the sparsity pat-
tern does not change during the optimization phase but only the respective nu-
merical values of the non-zero entries. Hence, it is sufficient to only compute
suitable reorderings once throughout the entire algorithm. Finding a favorable
permutation is, however, a challenging task [102] and has hence been, an active
area of research [103, 104].

A simple greedy strategy is the minimum degree ordering, where columns are
successively permuted to minimize the number of non-zero off-diagonal entries
of the current pivot element [105]. Another popular class of reordering strate-
gies called nested dissection employs graph partitioning techniques [106, 104]. A
symmetric matrix can be associated with an undirected graph, where each diago-
nal matrix entry represents a node and each nonzero off-diagonal entry an edge
between the corresponding nodes. The graph is partitioned into two roughly
equal-sized independent subgraphs GA,GB which are only connected through a
separating set GS. The partition is chosen such that the size of the separating
set is minimized. For the corresponding matrix, this means that the associated
submatrices QA and QB can be written as block matrices only connected through
QS. Hence, all fill-in that can occur is within QA,QB and QS, see Figure 3.2.

For large graphs, the computational cost is often too high to compute an
optimal separating set. Therefore, multilevel strategies are used to recursively
coarsen a large graph by merging connected vertices until it is reduced to a
tractable size. For the coarse graph, an edge cut can be defined which is re-
cursively refined while being propagated back to the original large graph. From
the final edge cut, we can deduce a separating set GS [107]. The same strategy of
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Figure 3.2: From left to right: (a) Lower triangular part of the sparsity pattern
of a random symmetric positive definite matrix Q, with 70 non-zero entries. (b)
Cholesky decomposition L of Q, where L has 180 non-zero entries. (c) Permuted
matrix Qperm using (nested) dissection. (d) Cholesky decomposition Lperm of Qperm,
where Lperm has only 88 non-zero entries. We can observe that Q was permuted such
that it is separated in two independent submatrices QA and QB, which are only con-
nected through entries that are now placed in the two rows, which we refer to as QS.
This way there is no fill-in between QA and QB but only within the before-mentioned
submatrices. This reduces the number of non-zeros in the Cholesky factorization of
Qperm. The strategy can be applied recursively to each of the components QA and QB.

finding roughly balanced minimal separating sets can be independently reapplied
to QA and QB, leading to the nested dissection approach. A popular state-of-the-
art library that computes such heuristic matrix reorderings is called METIS [107]
and is used by both, TAUCS as well as PARDISO. While the previously employed
TAUCS library is limited to using fill-in reducing permutations, PARDISO can ad-
ditionally perform much of the Cholesky factorization in parallel, making use of
the independent submatrices arising from the nested dissection reordering. This
will be explained in detail in Section 4.1.3.

3.1.2 Selected Inversion

In Step 4, an estimate for the variances of the posterior marginals of the latent
parameters, i.e., p(x i|y) for all i, is obtained. To do so, INLA uses information
from the Gaussian approximations pG(x |θ

k, y) at the various evaluation points
{θ k}Kk=1. All information about the marginal variances only exists, however, in
the form of the precision matrices. As the variances Σii correspond to (Q−1)ii,
they can only be obtained through matrix inversions. More generally, the entries
Σi j of interest are contained within the set of entries, where Q i j 6= 0, see Ap-
pendix C for details. If the full precision matrices had to be inverted, this would
become very time and memory consuming if not infeasible for high-dimensional
latent parameter spaces as matrix inversions have a complexity of O(n3) for a



35 3.1 A General Sparse Method

matrix of size n × n. Fortunately, there is an alternative method for comput-
ing the marginal variances that is much more efficient. There are two different
approaches to derive this recursive strategy. One is using the conditional inde-
pendence properties of GMRFs and their associated graphical structure, and was
first described by Rue and Martino in [88]. The other one is based on a particular
way of writing matrix identities without a further interpretation but describing
the same recursion and was developed by Takahashi [68] almost 50 years ago.
We will begin by considering the former. The solution x to the problem LT x = z
where z ∼N (0, I) is a sample from a GMRF with zero mean and precision matrix
Q = LLT [50]. Since LT is an upper triangular matrix, we can use a backward
solve and recursively compute

xn =
zn

Lnn

x i =
zi

Lii
−

1
Lii

n
∑

k>i
Lki 6=0

Lki xk

(3.1.1)

for i = n − 1, ..., 1. We exclude all terms Lki from the summation directly that
equate to zero. This way, it becomes clear that the more zeros we have in L,
the less computations are necessary. If we use the known expected value and
variance of z as well as Equation 3.1.1, we can deduce the covariance matrix Σ
of x from first principles, obtaining

Σi j =
δi j

L2
ii

−
1
Lii

n
∑

k>i
Lki 6=0

LkiΣk j, (3.1.2)

where δi j is one if i = j and zero otherwise. The entries can only be computed
recursively starting at i = n, traversing the matrix from the bottom right to the
top left.

Equivalently, we can derive Equation 3.1.2 without using statistical proper-
ties. Instead, we consider the slightly altered decomposition Q = LLT = VDV T ,
i.e. L= VD1/2, where D is a diagonal matrix and V a lower triangular matrix with
ones on the diagonal. The following matrix identity was proposed by Takahashi
in [68],

Σ= D−1V−1 + (I − V T )Σ. (3.1.3)

As Σ is a symmetric matrix, it is enough to compute its upper triangular part.
The term D−1V−1 is lower triangular with (D−1V−1)ii = (D−1)ii, since V has a
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unit diagonal. Writing out Equation 3.1.3 as sums we obtain

Σi j =
δi j

Dii
−
∑

k>i
Vki 6=0

VkiΣk j, for i ≤ j (3.1.4)

which we can compute recursively starting from Σnn and where again, δi j is
equal to one for i = j and zero otherwise. Equation 3.1.2 and 3.1.4 are equal
since L = VD1/2. It is possible to use these recursions to compute all entries
of Σ, however, in this case they do not give us a computational advantage over
traditional inversion algorithms. In both cases, we have a complexity of O(n3).
If we are instead only interested in particular entries of Σ, e.g. only the diagonal,
and if additionally L (and then likewise V) are sparse, a tremendous amount of
computational cost can be saved, as only the entries Σi j for which Li j is non-zero
need to be computed. Hence, the less non-zeros we have in the factor L, the
smaller is the computational demand. This highlights the importance of finding
suitable permutations, as described in the previous section.

PARDISO and INLA’s previous selected inversion routine both employ such a
partial inversion strategy. While the latter is sequential, PARDISO is using par-
allelized computations for a shorter time to solution, exploiting the particular
matrix structure given through the permutation, see Section 4.1.3 for details.
The marginal variances Σii that we obtain are then re-permuted to correspond
to the original ordering of the parameters x . Afterward, they can be used as
described in Step 5 to obtain estimates of the marginal posterior distributions of
the latent parameters.

3.2 A Blocked Dense Method

In contrast to the previously introduced general sparse approach this section puts
forward a customized blocked dense approach tailored to the spatio-temporal
models at hand. We leverage the particular block tridiagonal arrowhead sparsity
pattern of the spatio-temporal random field and present customized algorithms
for the arising computational bottleneck operations. Finally, an analysis of their
asymptotic computational complexity is presented.

3.2.1 Sparsity Pattern of Spatio-Temporal Precision Matrices

For general latent Gaussian models the sparsity patterns of the associated pre-
cision matrices is unknown a priori. Conversely, in the spatio-temporal case,
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following the approach described in Section 2.2.4, a lot of structural information
is known beforehand. We focus on the recurring sparsity patterns that arise in
the precision matrices Qx (θ ) as part of p(x |θ ) and Qx |y(θ ) as part of pG(x |θ , y)
which are induced by the finite element discretization of Equation 2.2.31. For
brevity, we will implicitly assume the dependence of Qx ,Qx |y on θ for from now
on and omit it in the notation. We order the latent parameters x to first contain
the random effects u and then the fixed effectsβ , where u is internally structured
to first accommodate all spatial grid points associated with the first time step, sec-
ondly all spatial grid points associated with the second time step, etc. This gives
rise to a tridiagonal block structure in the precision matrices that relates to the
discretized SPDE, where the off-diagonal blocks represent the coupling between
two subsequent time steps. Each diagonal block refers to one instance of the
discretized spatial domain. Further details on the matrix sparsity pattern can be
found in Appendix B. The prior precision matrix of the latent parameters β is
included in the last block of Qx , see Figure 3.3a. The precision matrix Qx |y addi-
tionally contains covariate information that arises from conditioning on the data
y , as defined in Equation 2.2.4. The sparsity pattern of the prior is preserved
in the spatio-temporal part, but not in rows and columns associated to the fixed
effects β , which generally become dense, see Figure 3.3b. The individual entries
of the arising precision matrices are dependent on θ whereas the sparsity pattern
remains constant for a given set of covariates and spatio-temporal discretization,
throughout the algorithm.

3.2.2 Block Factorization and Inversion

In this section, we develop blocked solution strategies using this structural matrix
information. To compute the log determinants of Qx |y and Qx , respectively, we
perform block-wise Cholesky decompositions. Algorithm 1 describes the block
factorization. A schematic overview of the sparsity pattern of the final Cholesky
factor Lx |y is given in Figure 3.4. For the prior precision matrix Qx , the algo-
rithm simplifies to factorizing a block tridiagonal matrix as the dense rows and
columns referred to as F i are equal to zero, see Figure 3.3a. Therefore, all terms
in Algorithm 1 which relate to F i equate to zero. The blocked approach bears
the advantage that each step of the iterative matrix factorization only requires
the submatrices associated with the current time-step t as well as the subsequent
time-step t + 1 at any given time, and the small final diagonal block Dnt+1.

To efficiently compute the diagonal inverse elements (Q−1
x |y)ii, we derive a

recursive strategy making use of the already computed Cholesky decomposi-
tion Lx |y LT

x |y = Qx |y and its particular nonzero structure. Our approach is sim-
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(a) Sparsity structure of the precision
matrices Qx . Diagonal and off-diagonal
blocks have size ns × ns, where ns is the
#spatial nodes, except for the last one
which is of size nb × nb and contains the
precision matrix of the prior related to the
fixed effects. On the main diagonal are
nt + 1 blocks, where nt is #time steps.
This gives rise to a matrix of size n =
(ns · nt + nb)× (ns · nt + nb).
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(b) Sparsity structure of the precision ma-
trices Qx |y , which are of the same size as
(a), but in addition to the prior precision
matrix Qx also contain information re-
lated to the data. The sparsity structure of
the spatio-temporal component is not af-
fected by conditioning on the data while
sparsity structure related to the fixed ef-
fects generally becomes dense.

Figure 3.3

ilar to methods used in quantum transport simulations where solutions to non-
equilibrium Green’s functions also necessitate selected inversions, see e.g. [108,
90, 109] as well as for Kalman-Bucy filtering [110]. In both cases, the authors de-
rive strategies to efficiently compute the block diagonal elements of the inverse
of block tridiagonal matrices. We extend this to block tridiagonal arrowhead
matrices, starting the derivation from the following identities

Q = Σ−1 = LLT ⇐⇒ Σ= (LLT )−1 ⇐⇒ ΣL= L−T . (3.2.1)

We assume Q to be a symmetric positive-definite block tridiagonal arrowhead
matrix. Its inverse Σ is generally dense but inherits the properties of symmetry
and positive-definiteness. We follow the block notation given in Figure 3.3b and
write Equation 3.2.1 using this submatrix notation. The inverse of an upper
triangular matrix remains upper triangular. The blocks L−T

Di
are the inverses of
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Algorithm 1 Block Cholesky
Factorization

1: for i = 1,2 . . . nt − 1 do
2: LDi

= chol(D i)
3: LEi

= E i · L−T
Di

4: LFi
= F i · L−T

Di

5: D i+1 = D i+1 − LEi
· LT

Ei

6: F i+1 = F i+1 − LFi
· LT

Ei

7: Dnt+1 = Dnt+1 − LFi
· LT

Fi

8: end for
9: LDnt

= chol(Dnt
)

10: LFnt
= F nt

· L−T
Dnt

11: Dnt+1 = Dnt+1 − LFnt
· LT

Fnt

12: LDnt+1
= chol(Dnt+1)

LD1

LD2LE1

LE2

LDnt

LDnt+1
LF1

LF2

Figure 3.4: Left-Panel: Algorithm for Block Cholesky factorization of block tridi-
agonal arrowhead matrices Qx |y . Right-Panel: Corresponding sparsity pattern
and labeled subblocks of the resulting Cholesky factor Lx |y LT

x |y = Qx |y .

the individual block LT
Di

. The ∗ denotes unknown nonzero entries.
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(3.2.2)
Using Equation 3.2.2 we can extract the following identities.

Σnt+1nt+1LDnt+1
= L−T

Dnt+1
⇒ Σnt+1nt+1 = L−T

Dnt+1
L−1

Dnt+1
(3.2.3)

Σnt+1nt
LDnt
+Σnt+1nt+1LFnt

= 0 ⇒ Σnt+1nt
= −Σnt+1nt+1LFnt

L−1
Dnt

(3.2.4)

Σnt nt
LDnt
+Σnt nt+1LFnt

= L−T
Dnt
⇒ Σnt nt

= L−T
Dnt

L−1
Dnt
−Σnt nt+1LFnt

L−1
Dnt

(3.2.5)
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While for all 1≤ i ≤ nt − 1 we can derive the following.

ΣiiLDi
+Σii+1LEi

+Σint+1LFi
= L−T

Di

⇒ Σii = L−T
Di

L−1
Di
−Σii+1LEi

L−1
Di
−Σint+1LFi

L−1
Di

(3.2.6)

Σi+1iLDi
+Σi+1i+1LEi

+Σi+1nt+1LFi
= 0

⇒ Σi+1i = −Σi+1i+1LEi
L−1

Di
−Σi+1n+1LFi

L−1
Di

(3.2.7)

Σnt+1iLDi
+Σnt+1i+1LEi

+Σnt+1nt+1LFi
= 0

⇒Σnt+1i =−Σnt+1i+1LEi
L−1

Di
−Σnt+1nt+1LFi

L−1
Di

(3.2.8)

Taking Equation 3.2.6 and substituting the unknown terms for Equation 3.2.7
and Equation 3.2.8, as well as using the fact that ΣT

i j = Σ ji, one obtains

Σii = L−T
Di

L−1
Di
− (−Σi+1i+1LEi

L−1
Di
−Σi+1nt+1LFi

L−1
Di
)T LEi

L−1
Di

−(−Σnt+1i+1LEi
L−1

Di
−Σnt+1nt+1LFi

L−1
Di
)T LFi

L−1
Di

,
(3.2.9)

and after rearranging

Σii = L−T
Di
(I + LT

Ei
Σi+1i+1LEi

+ LT
Fi
Σnt+1nt+1LFi

+ LT
Fi
Σnt+1i+1LEi

+ LT
Ei
Σi+1nt+1LFi

)L−1
Di

.
(3.2.10)

Using the above equations we can deduce an efficient algorithm, see Algorithm 2,
to recursively compute the blocks Σii starting at i=nt+1, performing an upward
traversal through the matrix. During each iteration i, we make use of the previ-
ously computed diagonal blocks Σi+1i+1 and Σnt+1nt+1. One additionally requires
the off-diagonal blocks Σnt+1i for 2≤ i ≤ nt that are computed recursively using
Equation 3.2.4 and 3.2.8. This blocked approach bears, again, the advantage
that each step of the iterative selected block inversion only requires the subma-
trices associated with the current time-step t as well as the previously computed
time-step t + 1 at any given time, besides the initially computed small diagonal
block Σnt+1nt+1.
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Algorithm 2 Selected Block Inversion

1: Σnt+1nt+1 = L−T
Dnt+1
· L−1

Dnt+1

2: Σnt+1nt
= −Σnt+1nt+1LFnt

L−1
Dnt

3: Σnt nt
= L−T

Dnt
(I + LT

Fnt
Σnt+1nt+1LFnt

)L−1
Dnt

4: for i = nt − 1, nt − 2, . . . , 1 do
5: Σii = L−T

Di
(I + LT

Ei
Σi+1i+1LEi

+ LT
Fi
Σnt+1nt+1LFi

+ LT
Fi
Σi+1nt+1LEi

+
LT

Ei
Σnt+1i+1LFi

)L−1
Di

6: Σnt+1i = −(Σnt+1i+1LEi
+Σnt+1nt+1LFi

)L−1
Di

7: end for

3.2.3 Computational Complexity

We dedicate this section to discussing the computational cost of the proposed
block Algorithms 1 and 2, which we refer to as block tridiagonal arrowhead
(BTA) approach. We compare it to the respective alternatives, entirely dense
routines and entirely sparse approaches as employed in PARDISO. An overview
of Qx ,Qx |y ∈ Rn×n, with n = ns · nt + nb, can be found in Table 3.1. The entirely
dense version of both algorithms scale cubically in n. The BTA approach takes the
block tridiagonal structure of Qx into account, and therefore the cost for the fac-
torization (Algorithm 1) or selected block inversion (Algorithm 2) scales linearly
in nt but cubically in ns. The matrix Qx |y contains the additional arrowhead struc-
ture. Therefore, there is an extra cost associated to those mixed terms, which is,
however, relatively small when nb � ns, as in our case. For PARDISO, we have
that while using planar spatial meshes and by using nested dissection [111] the
matrix Qx can be factorized with a complexity of O((ns · nt)1.5+ n3

b). This nested
dissection method can also be applied to reorder Qx |y , thus resulting in a com-
plexity of O((ns · nt)1.5 + (ns · nt + 1)n3

b).

It is additionally worth noting that the dimension of Qx |y is determined by the
number of latent parameters in the model and does not change with the number
of available observations. Similarly, the sparsity pattern of the spatio-temporal
component remains unaffected with increasing numbers of observations. The
remaining part of the matrix is generally assumed to be dense, and thus the com-
plexity of all approaches, and in particular Algorithm 1 and 2 are independent
of the number of observations.



42 3.3 Contrasting the Two Approaches

DENSE BTA PARDISO

CHOL. / INV. CHOL / BLK. INV. CHOL. / SEL. INV.

Qx O((nsnt + nb)3) O(n3
s nt + n3

b) O((nsnt)3/2 + n3
b)

Qx |y O((nsnt + nb)3) O(n3
s nt + (nsnt + 1)n3

b) O((nsnt)3/2 + (nsnt + 1)n3
b)

Table 3.1: Overview of the computational complexity for the required Cholesky
factorization and matrix inversion of Qx and Qx |y , see Figure 3.3. We compare a
standard dense approach with our proposed BTA approach and the sparse solver
PARDISO. Here, ns denotes the spatial block size, nt the number of time steps and
nb the number of fixed effects.

3.3 Contrasting the Two Approaches

Naturally, the question arises when one solver is preferable over the other. The
CPU-based sparse approach is evidently more versatile, as it is applicable to ar-
bitrary sparsity patterns. It is also less restrictive in terms of hardware require-
ments. Despite the increasing availability of GPU accelerators, many users of
the R-INLA package perform their simulations on their personal laptops or small
work stations which do not meet the necessary hardware specifications of the
blocked approach. Of course, it would also be possible to implement a CPU-
based dense block version. Its implementation would, however, not be compet-
itive compared to the GPU variant, as GPUs excel at dense matrix-matrix opera-
tions [112]. It would, for most models, also be less performant than the sparse
solver.

Thus, the BTA solver is currently a specialized approach designed for large-
scale spatio-temporal inference tasks, or other inference problems whose under-
lying precision matrices share the same sparsity pattern, and whose computa-
tional intensities demand high-performance computing hardware architectures.
The results presented in Chapter 5 will demonstrate its superior performance
over the sparse approach, for exactly these types of models. Developing heuris-
tic permutation schemes which reorder precision matrices with arbitrary spar-
sity patterns in block tridiagonal arrowhead form to make the BTA solver more
broadly applicable, would be a valuable advancement in the future.



Chapter 4

Multi-Layer Parallelism in INLA

The algorithmic design of the INLA methodology offers various opportunities to
leverage parallelism, ranging from algorithm-specific independently executable
tasks to parallelizable linear algebra operations. The work presented in this chap-
ter is dedicated to identifying these opportunities, rethinking the algorithmic de-
sign to create them, as well as discussing how to best utilize them.

Starting from the coarsest or outermost level of parallelism, we can observe
that in various stages of the algorithm, one requires evaluations of f (θ ) for dif-
ferent values of θ , see e.g. Section 2.2.2, Step 1 and 2. The former consists of
the optimization phase, where one requires not only an approximation to Equa-
tion 2.2.5 but also its gradient for every iteration of the quasi-Newton method.
As we use a finite difference approximation to obtain this estimate, we can per-
form the necessary function evaluations in parallel. In Step 2, numerous fur-
ther parallel function evaluations are required for the second order finite differ-
ence approximation of the Hessian at the mode. Subsequently, and depending
on the integration strategy, there are additional parallelizable function evalu-
ations needed around the mode of Equation 2.2.1, i.e., Step 3. Likewise, the
selected matrix inversions can be performed simultaneously in Step 4. In all
cases, the operations are embarrassingly parallel. Further opportunities for par-
allelism present themselves within every function evaluation of f (θ ). In some
cases, the numerator and denominator of f (θ ) can be computed simultaneously,
i.e., allowing for parallel factorizations of Qx and Qx |y . This depends, however,
on the type of likelihood of the model, and will be discussed in more detail in
Section 4.2.1 Additionally, the linear algebra operations of each matrix factor-
ization and selected inversion (as well as additional standard matrix operations)
are parallelized through the employed numerical solvers. We first present the
shared memory model implemented in R-INLA, and subsequently discuss the hy-
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brid shared-memory approach of INLADIST, which also includes a parallel copy-
compute scheme for CPU-GPU data transfers.

4.1 A Shared Memory Approach for R-INLA

We put forward a two-layer multithreaded parallel scheme for R-INLA, which is
realized using OpenMP [113]. The first layer directly corresponds to the coarsest
level of parallelism, and consists of the parallel function evaluations that arise
throughout Step 1–3, the parallel selected matrix inversions throughout Step 4
and a parallel line search scheme. A visual representation can be found in Fig-
ure 4.1.

The second level of parallelism is set within the linear algebra operations.
This is within the PARDISO library, or within matrix-matrix and matrix-vector op-
erations. PARDISO employs the graph-based matrix reordering software METIS
to obtain a matrix permutation that allows for independent, and thus paralleliz-
able, factorizations of submatrices. The same permutation is used to allow for
parallelism during the forward-backward substitution and selected matrix inver-
sion. A detailed description is provided below.

4.1.1 Level 1 – Function Evaluations

During the optimization phase a BFGS algorithm is employed to determine the
optimum θ ∗. A BFGS algorithm is an iterative quasi-Newton method for solv-
ing unconstrained nonlinear optimization problems [54]. Quasi-Newton meth-
ods resemble Newton methods without requiring knowledge of the second order
derivative. Instead, they use gradient information to form an approximation to
the Hessian in every iteration. They exhibit better convergence properties than
first order methods, like gradient descent, at almost no increased cost. Among
them, the BFGS algorithm is the most popular choice [54, Ch. 6]. It minimizes
a differentiable function f (θ ), starting from an initial guess θ 0 by using the fol-
lowing update formulae

θ l+1 = θ
l −αlB−1

l ∇ fθ l . (4.1.1)

Here∇ fθ l denotes the gradient of f at θ l , Bl is the approximation to the Hessian
of f at θ l and 0 < αl < 1 is the step size in iteration l. Information on the
construction of Bl and a general overview can be found in [54, Ch. 6].

In each iteration the gradient∇ fθ l is approximated numerically using a finite
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difference scheme [114], where each partial derivative ∂ f /∂ θi is approximated
using either a first order forward or central difference. As an example we show
the central difference approximation

∂ f
∂ θi
(θ )≈

f (θ + εi)− f (θ − εi)
2 ||εi||

for all i, (4.1.2)

where the vector εi is of the same dimension as θ and contains only zeros except
for the i-th component which contains a small value ε > 0. This way, the finite
difference approximation is computed along the coordinate axes. It is, however,
also easily possible to use other bases. INLA makes use of knowledge from previ-
ous iterations to choose directional derivatives exhibiting more robust numerical
properties and hence faster overall convergence, see [55] for details. Indepen-
dently of the choice of basis, the directional derivatives are computed for each
component of θ and each time entail one or two function evaluations of f .

We can see from Equation 4.1.2 that all function evaluations are independent
from each other. In the new parallelization scheme we are using this to our
advantage by computing the function values, i.e., f (θ + ε1), f (θ − ε1), f (θ +
ε2), ... simultaneously in each iteration, see Figure 4.1. Here, each f (θ l

i) denotes
a different function value f (θ l ± εi) during the l-th iteration.

For a central difference scheme we need two times as many function evalu-
ations as there are hyperparameters, which can now all be computed in parallel
instead of sequentially, while also computing f (θ l) itself. So, if e.g. dim(θ ) = 3,
we can theoretically have a 7-fold speedup during the gradient computation.
This means the introduced parallelism allows the gradient to be computed at al-
most no further cost in addition to the already necessary iterative evaluations of
f (θ ), see Figure 4.1.

There are other methods to obtain gradient information, in particular auto-
matic differentiation [115]. In the ideal case, it offers a highly accurate solution
at runtimes comparable to a single function evaluation [115], similar to the par-
allelized finite difference approximation. It requires, however, an adaptation of
the basic linear algebra operations and then allows for parallelism within these
operations. This is not trivially done for non-standard cases [116] and would
require major changes in the PARDISO software library. Additionally, if the like-
lihood is non-Gaussian we have the inner optimization routine within each func-
tion evaluation, for which we are not aware of existing automatic differentiation
methods.
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Figure 4.1: Simplified overview of the parallelization scheme within INLA through-
out the different phases of the algorithm. Each dashed blue box indicates a region
of level 1 parallelism. Each dotted red box indicates a region of level 2 parallelism
within the parallel level 1 regions. At the end of every parallel region (level 1 &
2) there is an intrinsic synchronization, where execution halts until the assigned
threads have concluded their tasks.
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After the mode of p̃(θ |y) is found, we compute the Hessian at the mode using
a second order finite difference scheme. This requires further function evalua-
tions that can be performed in parallel, see Figure 4.1. Next, we can also perform
the function evaluations at the evaluation points {θ k}Kk=1 in parallel. Finally, we
have to estimate the posterior marginal variances. To do so we compute the par-
tial inverses of the precision matrices Qx |y(θ

k) at the integration points {θ k}Kk=1.
We also implemented this to be executed in parallel, as the arising precision ma-
trices are independent from each other.

Each described set of parallelizable operations are embarrassingly parallel,
meaning that each task is completely independent from the rest. From a theo-
retical perspective, we can therefore ideally expect that the number of employed
threads exactly corresponds to the observed speedup over the sequential version
throughout these parallel regions. There is, of course, a maximum number of
tasks within each of these parallel regions (indicated by the blue dashed boxes
in Figure 4.1), e.g. the number of necessary function evaluations to compute the
gradient using a forward difference, which is d(θ ), in addition to evaluating f
itself. Beyond this number, the increased thread count, is not beneficial anymore
in all phases of the algorithm.

4.1.2 Parallel Line Search

In every iteration of the BFGS algorithm, a value for the step size αl needs to
be chosen. Determining a suitable value for αl is crucial to the convergence of
the method and is done through a line search procedure, see e.g. [54, Ch. 3]
for an overview. The most common approach is to use a mixture of artificially
chosen upper and lower bounds, as well as the value from the previous iteration,
to propose the next step size αl . Then, a check is performed to see if a certain
condition is met to either accept or reject the suggested step size. If it is rejected,
the step size is reduced, and the check is performed again, if it is accepted, θ l is
updated as described in Equation 4.1.1 and one proceeds to the next iteration.
For this check, the function f is evaluated at the potential new candidate which,
as discussed previously, is an expensive operation to perform, but necessary in
order to determine the validity of the new step. Hence, every time a step is
rejected, another sequentially computed function evaluation is required.

To be more efficient, we introduce a parallel line search strategy to make
better use of the available resources. Instead of computing different values for αl

sequentially, we define a search interval I = (θ l ,θ l−γl p l), where p l := B−1
l ∇ fθ l

and γl > 0 is an upper bound to αl . Hence, I contains all possible solutions of
Equation 4.1.1 for 0 < αl ≤ γl . Depending on the number of available threads,
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we define a number of points θ li on I for which we evaluate all f (θ li) in parallel.
The easiest option would be to now choose the candidate θ li that minimizes f
as the next iterate. However, it has shown to be advantageous to fit a second
order polynomial q through the newly evaluated points using robust regression
[117, 118]. This way, slight inaccuracies in the function evaluations (that can
e.g. arise from more complicated likelihoods and require an inner optimization
loop) are counter balanced. We additionally add two more evaluation points in
positive p l direction close to θ l to stabilize the polynomial fitting process close
to the global optimum. This does not increase the overall runtime, as they can be
evaluated in parallel with the other θ li . Robust regression differs from regular
regression in the sense that each pair (θ li , f (θ li)) gets assigned a weight wθ li ,
which will make it more or less influential on the overall fitting process. There
are a number of commonly used weighting functions w. We have chosen to
use the so-called bisquare weighting, as in our experience this has been giving
the best results. After finding the second order polynomial q, its minimum is
determined on I and chosen as the next candidate θ l+1. In Figure 4.2 we can see
an illustration of the new strategy, while Figure 4.1 shows the parallel line search
within the overall parallelization scheme. The advantages of the new strategy are
the mitigation of inherently sequential function evaluations in the reject-accept
check, as well as an improved step size choice. This can lower the number of
required iterations until convergence, and hence also the overall runtime, see
Section 5 for numerical results.

The theoretical speedup that can be obtained is hard to predict, as it highly
depends on the properties of f . If in the sequential case a lot of new stepsize
candidates get rejected, and hence require additional function evaluations or if
there are larger numerical errors, the potential for speedup is higher. However,
this is of course not known a priori. As a rule of thumb one can bear in mind that
the more complicated the model, and in particular the likelihood (or likelihoods
if there are multiple), the more significant is typically the gain through employing
the parallel line search routine.

4.1.3 Level 2 – Sparse Linear Solvers

The PARDISO library offers routines to efficiently provide solutions to various
problems commonly arising in the field of sparse linear algebra [119]. In R-INLA
the PARDISO implementation for Cholesky decomposition, subsequent forward-
backward substitution and partial inversion are invoked. PARDISO is a state-
of-the-art direct solver that has been in active development for many years. To
achieve excellent performance it relies on numerous strategies ranging from thor-
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θ

f (θ )

q

θ l θ l − γl pl

f (θ l)

θ l−2θ l−1 θ l1 θ l2 θ l3θ l+1

f (θ l+1)

f (θ l−2)
f (θ l1) f (θ l3)

Figure 4.2: Illustration of the parallel line search using robust regression. Let θ l be
the current iterate with function value f (θ l), new search direction p l , and search
interval I = (θ l ,θ l − γl p l) on which points θ li are defined, with θ l0 := θ l , and
all f (θ li) are evaluated in parallel. The evaluation points θ l−1 ,θ l−2 in positive p l

direction are added for numerical stabilization. The polynomial q is fitted using
robust regression and its minimum becomes the next iterate θ l+1.

ough algorithm selection to detailed hardware considerations. In this work we
want to solely focus on the employed parallelism and refer the interested reader
to [86] for a comprehensive overview.

As described in Section 3.1.1, a symmetric permutation found through nested
dissection is applied to Q before computing its Cholesky decomposition L. This
reordering technique does not only reduce the arising fill-in but also creates inde-
pendent block matrices QA,QB, see Figure 3.2, that are only connected through
a small submatrix QS. Hence, it is possible to factorize QA and QB in paral-
lel, before factorizing QS. The reordering generated through nested dissection
has a recursive pattern, and thus QA and QB themselves exhibit the same struc-
ture. Both of them, again, contain two independent blocks and a connecting
submatrix which corresponds to the separating set of the associated graph. The
reordered matrix can therefore be factorized in parallel, starting from the set of
smallest block matrices. If sufficient compute resources are available, this intro-
duction of parallelism drastically reduces the computational time and especially
exhibits much better scaling. While it is not possible to give precise bounds on
expected speedup without specifying more graph theoretical concepts and make
assumptions on the sparsity pattern of the matrix, one can see that the recursive
subdivisions induce a logarithmic growth. For details, see [120].

A similar principle can be applied to determine the selected inverse of Q,
for which we have seen in Section 3.1.2 that only the non-zero entries of L are
required. We can compute the same subgraphs in parallel, as in the Cholesky
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decomposition. This time, however, we first compute the values of the subma-
trix connected to the separating set, and referred to as QS in Figure 3.2. Once
we have recursively computed all necessary inverse elements belonging to the
indices of QS, we can determine the inverse elements of Σ with indices belong-
ing to QA and QB in parallel. This is possible since QA and QB are only connected
through QS and these entries have already been computed at this point. Since for
larger matrices, each submatrix QA,QB was again permuted following the same
strategy, we can recursively traverse the matrix, in the opposite direction as in the
Cholesky decomposition, computing the required entries of Σ in many parallel
regions [86].

PARDISO uses OpenMP to carry out the simultaneous computations. Thus,
we obtain a nested OpenMP structure, as we have multiple matrix factorizations
or inversions carried out in parallel, see Section 4.1.1 and 4.1.2. Additionally to
the parallelism within PARDISO, OpenMP is used on the second level to paral-
lelize matrix operations, e.g. during the computation of matrix-matrix or matrix-
vector products and while assembling matrices.

4.2 A Hybrid Memory Approach for INLADIST

The parallel model of the hybrid memory approach of INLADIST is similar to
shared memory approach of R-INLA as it leverages the same parallelizable func-
tion evaluations as R-INLA as well as parallelism within the linear algebra oper-
ations. The coarse level parallelism is realized using MPI [121], i.e. the parallel
function evaluations are executed by different processes. In the Gaussian like-
lihood case, INLADIST allows for an additional layer of parallelism that will be
described in the subsequent section. When the CPU-based sparse solver is em-
ployed, INLADIST uses the same multi-threading approach as provided through
PARDISO as R-INLA. But since each process and thus each function evaluation
can be assigned to a different node, a larger number of threads is available per
matrix factorization. Each node only performs one matrix factorization, instead
of multiple ones as in the shared memory approach. This leads to a perfor-
mance increase, not only due to the increased number of available cores but
also in terms of increased available memory bandwidth per matrix factorization.
When the GPU-based BTA solver is used, there are also parallelizable linear alge-
bra operations. Foremost, many of the dense linear algebra operations that are
performed on each subblock can be executed efficiently in parallel, and in par-
ticular all dense matrix-matrix multiplications which are especially efficient on
GPU accelerators. But also other operations like the triangular solve to update
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the off-diagonal non-zero blocks allow for parallel computations. Additionally, a
considerable amount of host-device memory transfers are necessary during the
matrix factorization and selected matrix inversion. These can, however, mostly
be performed in parallel to the required computations. Section 4.2.2 discusses
the details of how this is achieved.

4.2.1 The Gaussian Likelihood Case

When the associated data of the model is normally distributed, it is possible to
make use of an additional layer of parallelism within INLADIST. Generally, we
require Equation 2.2.3 to be evaluated at the mode x ∗(θ ) of the true conditional
p(x |θ , y) to yield a reasonable approximation. This stems from the fact that a
second order Taylor series expansion around the mode x ∗(θ ) is used to approxi-
mate the likelihood, as part of pG(x |θ , y)which becomes inaccurate when evalu-
ated far from this point. It implies that we first have to determine x ∗(θ ) using the
“inner“ iteration before being able to evaluate the remaining components of f (θ )
in x ∗(θ ), or equivalently Equation 2.2.3. On the other hand, if the likelihood is
Gaussian, pG(x |θ , y) is exact, and therefore we can evaluate Equation 2.2.3 in an
arbitrary configuration x̃ . The evaluation of p(x |θ ) and pG(x |θ , y) in any x̃ the
computation of the Cholesky factorizations of the precision matrices Qx and Qx |y ,
as well as solve a linear system of equations to determine the conditional mean
x ∗(θ ) of pG(x |θ , y). This can, however, be done in parallel, as it is not necessary
to know x ∗(θ ) when evaluating p(x |θ ). This allows for the introduction of an
additional layer of parallelism within the overall algorithmic design of INLADIST,
see Figure 4.3 for a schematic overview. In terms of implementation this is re-
alized as a shared as well as distributed memory approach, and can be chosen
according to individual preferences, depending on the capacity of the available
compute architecture and the size of the precision matrices, Qx and Qx |y .

4.2.2 A Parallel Copy-Compute scheme for GPU

Within INLABTA, and therefore more specifically for the GPU implementation of
the block Cholesky decomposition, described in Algorithm 1 and the selected
block inversion, described in Algorithm 2 intensive memory transfers between
host and device memory are necessary. For large-scale applications, the block-
dense Cholesky factor Lx |y can exceed the available GPU memory, rendering it
necessary to store on host memory. As Lx |y is required for subsequent forward-
backward substitutions as well as potential selected matrix inversions. This im-
plies that instead of initializing the original matrix Qx |y and pre-allocating stor-
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Figure 4.3: Schematic overview of the parallel scheme during one iteration of the
optimization phase (for simplicity, without the line search routine). The finite differ-
ence gradient approximation entails 2·d(θ )+1 independent function evaluations of
f which are executed by separate processes. Each process contains multiple threads
that can execute the Cholesky factorizations of Qx and Qx |y independently of each
other. Alternatively, each function evaluation is executed by 2 processes such that
Qx and Qx |y can be factorized by separate processes. Each factorization itself is then
parallelized by employing parallel linear algebra operations.

age for the Cholesky factor that is to be computed on the device before the start
of the computations, the data transfers are performed column block-wise. For
ease of notation, we will refer to Qx |y as Q and Lx |y as L for the remainder of
this section. For the block Cholesky factorization, this results in the updated
Algorithm 3 including the block-wise memory transfers.

Here Qi denotes the blocks Qi = {D i, E i, F i} and respectively for newly com-
puted column blocks Li of the Cholesky factor. Typically, the original sparse ma-
trix Q only has a fraction of the non-zeros of the blocked Cholesky factor L1.
Therefore, the host to device transfers are relatively cheap to perform, whereas
the device to host transfers involve the entire dense blocks and therefore bear a
larger potential for speedup through parallelism. The implementation is realized
using CUDA streams or MAGMA queues, respectively. It is possible to derive a
similar parallel copy-compute scheme for the selected block inversion. In this
case, the large and therefore time-consuming memory transfers are from host to
device, when copying the previously computed Cholesky factor L back to the GPU
as needed for the computations in the upwards block traversal of Algorithm 2.
The set of selected inverse entries of interest, which we denote by S, are con-
tained within the original sparsity pattern of Q and thus much fewer than the
entire dense block tridiagonal arrowhead structure. This implies that the neces-
sary device to host transfers are less memory intensive. Algorithm 4 shows the

1Exact numbers are provided for the concrete applications provided in Chapter 5
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Algorithm 3 Block Factorization with Parallel Host-Device Memory Transfers
Compute Copy

1: MemCopyHostToDev(Q1,Qnt+1)
2: for i = 1,2 . . . nt − 1 do
3: LDi

= chol(D i) MemCopyHostToDev(Qi+1)
4: LEi

= E i · L−T
Di

5: LFi
= F i · L−T

Di

6: D i+1 = D i+1 − LEi
· LT

Ei
MemCopyDevToHost(Li)

7: F i+1 = F i+1 − LFi
· LT

Ei

8: Dnt+1 = Dnt+1 − LFi
· LT

Fi

9: end for
10: LDnt

= chol(Dnt
) MemCopyHostToDev(Qnt+1)

11: LFnt
= F nt

· L−T
Dnt

12: Dnt+1 = Dnt+1 − LFnt
· LT

Fnt
MemCopyDevToHost(Lnt

)
13: LDnt+1

= chol(Dnt+1)
14: MemCopyDevToHost(Lnt+1

)

updated parallel copy-compute version of the selected block inversion, where
Li = {LD i

, LE i
, LF i
} as before and Σi |S denotes the selected inverse entries of in-

terest in Σi .

Algorithm 4 Selected Block Inversion Parallel Host-Device Memory Transfers
Compute Copy

1: MemCopyHostToDev(Lnt+1)
2: Σnt+1nt+1 = L−T

Dnt+1
· L−1

Dnt+1
MemCopyHostToDev(Lnt

)

3: Σnt+1nt
= −Σnt+1nt+1LFnt

L−1
Dnt

MemCopyDevToHost(Σnt+1|S)

4: Σnt nt
= L−T

Dnt
(I + LT

Fnt
Σnt+1nt+1LFnt

)L−1
Dnt

MemCopyHostToDev(Lnt−1)
5: for i = nt − 1, nt − 2, . . . , 1 do
6: Σii= L−T

Di
(I+LT

Ei
Σi+1i+1LEi

+LT
Fi
Σnt+1nt+1LFi

MemCopyHostToDev(Li−1)
+LT

Fi
Σi+1nt+1LEi

+ LT
Ei
Σnt+1i+1LFi

)L−1
Di

MemCopyDevToHost(Σi+1|S)
7: Σnt+1i = −(Σnt+1i+1LEi

+Σnt+1nt+1LFi
)L−1

Di

8: end for
9: MemCopyDevToHost(Σ1|S)



Chapter 5

Applications

In this chapter, we present various applications of the INLA methodology and
analyze their performances, putting the previous chapters into practice. The first
part focuses on case studies using R-INLA, while the second part is dedicated to
performing inference with INLADIST. For the former three different case studies
are considered, for which we perform strong scaling analyses of the two-layer,
shared memory, parallel scheme. We then examine the effects of the parallel line
search and their combined effects. We also discuss how to best utilize a given
number of available cores respective to the model parameter dimensions. For
INLADIST, we first validate its accuracy by using synthetic datasets, as well as by
comparing it against R-INLA. We also examine its single node performance and
carry out a FLOP analysis. Further, its strong scaling is discussed for both linear
solvers, its temporal and spatial scaling properties and the parallel copy-compute
scheme of the BTA solver. We conclude with a large-scale climate application,
modeling air temperature over the area of the United States.

5.1 Case Studies using R-INLA

We present performance results of the newly introduced parallelization strategies
using previously published real-world applications that make use of the R-INLA
package, and are briefly introduced below. We will not go into the details of the
individual application as all the details can be found in the original publications,
and instead focus on the computational aspects involved. All numerical experi-
ments for Case Study I & II were performed on a single node machine with 755
GB of main memory and 26 dual-socket Intel(R) Xeon(R) Gold 6230R CPU @
2.10GHz, totaling 52 cores. The large number of cores allows us to demonstrate
the full performance gains that can be obtained through parallelism. All numer-

54
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ical experiments for Case Study III were performed on an Apple M1 Mac mini
with 16 GB of memory, 4 performance and 4 efficiency cores. We chose this ma-
chine to illustrate that we also obtain performance gains through parallelism on
regular desktop computers, laptops and notebooks, although to a smaller extent
than on larger computer architectures.

Case Study I: Joint survival modeling of randomized clinical trial. Rus-
tand et al. presented in [91], with R package INLAjoint1, a joint survival model
consisting of multivariate longitudinal markers paired with competing risks of
events. The different submodels are linked to each other through shared or cor-
related random effects. The authors consider a randomized placebo controlled
trial for the treatment of the rare autoimmune disease primary biliary cholan-
gitis (PBC) which affects the liver. They examine how different biomarkers, in
combination with the treatment (medication vs. placebo), affect the competing
risks of death and liver transplantation. Their model setup includes 7 different
correlated likelihoods, which allows them to detect more complex dependency
structures, that go unseen in simpler approaches. The resulting model has a
particularly large number of hyperparameters, with dimension d(θ ) = 50, see
Table 5.1 for details.

Case Study II: Cortical surface modeling of human brain activation. Spencer
et al. show in [92] that functional brain responses can be reliably estimated
using cortical surface-based spatial Bayesian generalized linear models (GLMs).
Functional magnetic resonance imaging (fMRI) data from individual subjects is
used to identify areas of significant activation during a task or stimulus. The au-
thors use the stochastic partial differential equations approach [47, 4, 122] for
manifolds to define a spatial GMRF field on the surface of the brain, employing
geodesic distances. This allows to flexibly encode spatial dependency structures
in the model while maintaining sparsity in the precision matrices. Their ap-
proach defines a GLM that fits the framework presented in 2.1.3. The likelihood
is assumed to follow a Gaussian distribution, and therefore does not require an
inner optimization loop for every function evaluation. More details can be found
in [92, 9] which also includes information about the corresponding R package
BayesfMRI2. For this work we fit a single subject, single repetition set up using
fMRI data for 4 tasks. The dimension of the hyperparameter space d(θ ) = 9,
two for the parameterization of the spatial field of each task and a noise term

1https://github.com/DenisRustand/INLAjoint
2https://github.com/mandymejia/BayesfMRI (ver.0.1.8),
https://github.com/danieladamspencer/BayesGLM_Validation

https://github.com/DenisRustand/INLAjoint
https://github.com/mandymejia/BayesfMRI
https://github.com/danieladamspencer/BayesGLM_Validation
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for the observations. The images are preprocessed for standardization, and the
surface of the brain is discretized using a triangular mesh. We use two different
spatial discretizations that are determined by the resampling size, which subse-
quently influence the dimension of the latent parameter space and the number
of considered observations.

Case Study III: Spatial variation in Leukemia survival data. As a final example
we consider a study on spatial variation in Leukemia survival data from [123, 47].
The additive linear predictor of the hazard function includes 5 fixed effects,
which relate to attributes like age, sex, economic status and inflammatory mark-
ers. To capture the spatial variation, it additionally includes a spatial GMRF ran-
dom field, which induces a three-dimensional hyperparameter space. The fitted
model provides survival estimates given the covariates and spatial locations.

d(θ ) # lat. par. # obs.

CS I Joint Survival Model 50 51 290 27 330
CS II Medium Brain Activation Model 9 35 544 2 541 396
CS II Large Brain Activation Model 9 183 624 13 129 116
CS III Spatial Leukemia Model 3 7 945 6 174

Table 5.1: Overview of the different case studies, showing the parameter dimen-
sions, including the number of hyperparameters (d(θ )), number of latent parame-
ters (# lat. par) and number of observations (# obs.)

5.1.1 Leveraging Parallel Function Evaluations

The level 1 parallelism enables simultaneous function evaluations, as described
in Section 4.1.1. They arise during the gradient computation, the Hessian ap-
proximation at the mode, the objective function evaluations at the evaluation
points and the partial inversion scheme around the mode. The speedup that
can theoretically be obtained through parallelization depends on the number
of hyperparameters. If a forward difference scheme is employed, a maximum
speedup of d(θ ) + 1, is possible during the gradient computation. For a central
difference scheme, it is 2·d(θ ). If not specified otherwise, R-INLA employs a mix
of forward and central difference approximations. The theoretical speedup dur-
ing the Hessian approximation and the partial inversion scheme depends on the
number of integration points, which, however, typically exceed d(θ ) + 1 by far
unless the “empirical Bayes” integration strategy is chosen. While these are the
computationally most costly operations, there are other non-parallelizable steps
required. Additionally, setting up a parallel OpenMP environment always creates
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overhead. Hence, the theoretical speedup can almost never be attained. For rel-
atively small applications, the observed speedup through parallelism is usually
not as significant as for larger problems, because the sequential parts and the in-
duced overhead make up a larger part of the total time. On the other hand, larger
applications using a very large number of threads might not exhibit further speed
up after a certain thread count, as memory management can become the limiting
factor. We will be able to observe both effects when looking at performance re-
sults of parallelizing level 1. In Figure 5.1 we provide scaling results with varying
number of threads on level 1 and a fixed number of threads on level 2 for Case
Studies I & II. Instead of showing the total runtime for each case, we divide it by
the total number of function evaluations of f , as the number of evaluations can
vary a bit depending on randomly set initial values and numerical imprecision
due to different round-off errors. For Case Study I, we observe an almost ideal
reduction in time per f evaluation until 20 threads, yielding an impressive speed
of a factor of 15 at 20 threads compared to the single-threaded version. When
employing more than 20 threads, the parallel efficiency starts to reduce. Case
Study II has fewer hyperparameters, hence the maximum attainable speedup on
level 1 is lower, nevertheless providing significant improvements for up to 10
threads with a speedup of almost 6 compared to the single-threaded version.

# threads level 1 1 2 3 4

time per fn in sec 0.031 0.023 0.017 0.016
speedup 1 1.4 1.8 2

Table 5.2: Effects of using different numbers of threads on level 1 for Case Study
III.

We also analyze the effects of level 1 parallelism for Case Study III. This model
is of much smaller dimension than the first two and hence a larger part of the
overall runtime is dedicated to sequential operations like setting up or the initial-
izations of the parallel regions. Nevertheless, we observe a speedup of a factor
of 2 when using 4 threads over the sequential version, see Table 5.2. The results
confirm the theoretical expectation, that the level 1 parallelism scales close to
linearly, in particular for thread counts smaller than d(θ ) + 1.

5.1.2 Leveraging Parallel Line Search

The accuracy of robust regression depends on the number of available regres-
sors, which in turn is dependent on the number of available threads. In our
experience making use of the parallel line search implementation only becomes
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(a) Joint Survival Model
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(b) Large Brain Activation Model

Figure 5.1: The solid blue line shows the normalized runtime (total runtime divided
by number of function evaluations) over number of threads on level 1 (# threads
level 2 fixed to one). The dashed red line is the speedup over the single-threaded
version. On average a total number of (a) 19253 and (b) 378 function evaluations
were required to fit the respective model.

advantageous if 8 threads or more are in use on level 1. Then there are suffi-
ciently many evaluation points in the search interval I to adequately represent
the original function. In Figure 5.2, we show the total runtime of Case Study
I, using varying numbers of threads on level 1 with and without enabling the
parallel line search. Since this model has a large number of hyperparameters,
the computation of the posterior marginals of the latent parameters using the
simplified Laplace approximation strategy would be the dominating the overall
compute time. In this section we, therefore, used the computationally cheaper
empirical Bayes’ approximation, to be able to put the emphasis on the optimiza-
tion phase of the algorithm, where the parallel line search feature is relevant.
We can see that it lowers the overall time to solution without requiring more
threads. It additionally exhibits a more stable behavior when it comes to reduc-
tion in runtime over an increasing thread count.

5.1.3 Leveraging Scalability of Sparse Linear Solvers

The level 2 parallelism occurs within each call of the PARDISO library as well
as other matrix operations like matrix-matrix multiplications, following the con-
cepts described in Section 4.1.3. The single-threaded version of the PARDISO
library is already very efficient for small to moderate sized problems. The full ef-
fects of the parallelization start becoming visible for the latent parameter spaces
of dimensions in the range of 104 and larger, and in particular for models with a
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Figure 5.2: Runtime for Case Study I, with and without parallel line search over
varying numbers of threads on level 1. The number of threads on level 2 is fixed
to 1. The posterior marginals of the latent parameters are approximated using the
empirical Bayes integration strategy. On average the serial line search required
15286 and the parallel line search 10950 function evaluations.

three-dimensional structure.
We consider both examples of Case Study II in the performance analysis of

Figure 5.3. For a fixed number of threads on level 1, we observe a continuous
speedup for increasing numbers of threads on level 2 up until 8 threads for the
medium-sized Case Study II, leading to a maximum speedup of almost 3 over
the single-threaded version. In turn, the larger-sized Case Study II continues to
exhibit a speedup also beyond 8 threads, showing that larger latent parameter
space benefit more from level 2 parallelism, leading to a speedup of almost 5
at 16 threads over the single-threaded version. As expected from a theoretical
point of view, we do not observe a linear or close to linear speedup for the level 2
parallelism. We can see that a higher dimensional latent parameter space exhibits
a higher speed up for the same number of threads. The large Case Study II also
continues to benefit from higher thread counts when the medium-sized Case
Study II has already reached a saturation point.

5.1.4 Combined Parallelism

In this section, we want to present results for combined parallelization strategies
and discuss how to choose a favorable setup. The ideal approach depends on
the available infrastructure and the problem at hand. In almost all cases, the
number of available cores will be limited. Often this limit will easily be reached
as the total number of threads is equal to (# threads L1) · (# threads L2). This
poses the question of how best utilize the available resources. We have found
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(a) Medium Brain Activation Model
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(b) Large Brain Activation Model

Figure 5.3: The solid blue line shows the normalized runtime for different numbers
of threads on level 2 (# threads level 1 threads fixed to one). The dashed red line
shows the speedup over the single-threaded version. On average a total number of
(a) 378 and (b) 452 function evaluations were required to fit the respective model.
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Figure 5.4: Runtime in seconds for different thread configurations. The first number
represents the threads on level 1, the second number the threads on level 2. The total
number of threads is equal to (# threads level 1) · (# threads level 2).

that hyperthreading often does not significantly increase the performance (or
is even counterproductive) and therefore only consider thread counts that are
within the number of physical cores. In the previous two sections we have seen
that smaller problems benefit less from larger thread counts as the overhead of
thread initialization can overshadow the gain. We can see from both Figure 5.1
and 5.3 that the parallel efficiency is highest for smaller thread counts on both
levels (in cases where d(x ) is sufficiently large). This implies that it is often
favorable to distribute the available number of threads among both levels. This
behavior can be observed empirically in Figure 5.4, where we present the runtime
of the INLA algorithm in seconds for different thread configurations. As a rule



61 5.2 Spatio-Temporal Modeling with INLADIST

of thumb, one might consider always assigning the first d(θ )+1 threads to level
1. As both from a theoretical and empirical point of view has shown to be the
best strategy. If more threads are available, one can either add threads to level
2 or further add to level 1, depending on the dimension of the latent parameter
space.

In general, it becomes clear that the introduction of parallelism leads to a
tremendous reduction in runtime. For Case Study I, we observe speedups of
a factor 20 and more over the single-threaded version. For the medium-sized
Case Study II, we observe a speedup of a factor up to 15. While for the large
Case Study II, we observe a speedup of more than 10 times compared to the
single-threaded version. For sufficiently large multi-core architectures, the newly
introduced updates open the door to previously unfeasible modeling scales, and
drastically reduce waiting times for users.

5.2 Spatio-Temporal Modeling with INLADIST

We present two numerical case studies using INLADIST, a family of synthetic
datasets of varying sizes, and a real-world application concerned with contin-
uous air temperature modeling over the United States. The numerical experi-
ments were carried out at the Erlangen National High Performance Computing
Center (NHR@FAU). The simulations using INLABTA were conducted on GPGPU
nodes, each equipped with 64-core dual chip AMD EPYC 7713 “Milan” proces-
sors @ 2.0 GHz and 8 Nvidia A100 GPUs. The simulations using INLAPARDISO

were conducted on dual socket Intel Xeon Platinum 8360Y “Ice Lake” processors
(36 cores per chip) @ 3.6 GHz. PARDISO was called using 32 threads, as this
represents the most performant choice.

5.2.1 Experiments on Synthetic Data

We generate a family of synthetic datasets based on the model class described in
Section 2.1.3, that is,

y = Zβ + Ãu + ε, where εi ∼N (0,γ−1
n ). (5.2.1)

In the following we outline how the individual components of Equation 5.2.1
were chosen. The vector β contains the fixed effects of the model, which include
an intercept. We chose a random 6-dimensional vector, as the number of fixed
effects is typically small, with values between [−5,5]. We sample covariates Z
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ns nt nb no n

Base Case BC 4002 250 6 2 001 000 1 000 506

Temporal Scaling
TS I 4002 50 6 400 200 200 106
TS II 4002 100 6 800 400 400 206
TS III 4002 500 6 4 002 000 2 001 006

Spatial Scaling

SS I 4002 30 6 240 120 120 066
SS II 10242 30 6 614 520 307 266
SS III 16002 30 6 960 120 480 066
SS IV 20252 30 6 1 215 120 607 566

Table 5.3: Differently sized model problems and their corresponding key dimen-
sions, where ns denotes the number of spatial nodes, nt the number of time steps,
nb the number of fixed effects, no the number of observations and n the number of
latent parameters, thus Qx ,Qx |y ∈ Rn×n with n= ns · nt + nb.

stemming from linear as well as nonlinear functions, with additional random
uniform noise to interact with the fixed effects. The vector u is associated to
the spatio-temporal field. Exemplary, we consider the entire globe as our spatial
domain over equidistant time units. The discretization is done using first order
finite elements as previously described. The random field u is sampled from the
spatio-temporal component of Qx (θ ) with mean zero, as by model definition.
The precision matrix Qx (θ ) is formed by the discretization of Equation 2.2.31
and independent prior variances for each fixed effect. It is parametrized by the
4-dimensional hyperparameter vector θ = (γn,γs,γt ,γe)T , which includes a noise
term for the observations and the scaling parameters of the SPDE. The hyperpa-
rameters are chosen such that they give rise to a realistic system. We sample
random locations over the globe from a uniform distribution to represent the
measurement stations. They generally do not coincide with the nodes of the fi-
nite element mesh. For simplicity, we assume the stations to remain constant
over time, which is, however, not a requirement, as each measurement is pro-
jected onto the finite element mesh using the projection matrix Ã. Twice as many
observations per time step are sampled as there are spatial mesh nodes.

Additionally, we select a prior for the hyperparameters θ . We choose a penal-
ized complexity prior [124] as they are particularly suited for additive models,
allow for explicitly incorporating probability statements on the parameters, and
penalize unnecessary complexity in the model, as its name suggests [122]. We
generate datasets of varying mesh sizes in time and space, thus giving rise to dif-
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Figure 5.5: The x-axis shows the number of iterations over the error on the y-
axis, defined as ‖θ ∗ − θ l‖, where θ ∗ denotes the optimum, θ l refers to the l-th
iterate, and ‖ · ‖ the Euclidean norm. The results for the different spatio-temporal
model sizes from Table 5.3 are shown. The same initial values were chosen for all
datasets. Left-Panel: Model problems related to the temporal scaling, including the
Base Case. Right-Panel: Model problems related to the spatial scaling.

ferently sized problems, see Table 5.3. For both, the Base Case (BC) model and
Temporal Scaling Case III (TS III), we have latent parameter spaces with more
than 1 million unknown parameters and more than 2 million observations.

Validation

To solve the optimization problem described in Section 2.2.2, Step 1, a BFGS-
algorithm in combination with a backtracking line search using Wolfe condition
is employed. In Figure 5.5 we present convergence results for the different cases
from Table 5.3. It can be seen that the overall convergence behavior for each
of the differently sized problems is similar, while the exact number of iterations
varies. In all cases the same initial guess was used.

We also compare our inference estimates to those of the R-INLA package by
computing the ratio of the marginal likelihoods of the two approaches for differ-
ent synthetic datasets. This ratio is called Bayes factor and is used to quantify
the support of one model over another. For numeric stability, we compute the
log marginal likelihoods (LMLs) and later exponentiate their difference. The
LML is computed using the respectively determined modes of the hyperparame-
ters θ ∗RINLA and θ ∗INLADIST and subsequently induced latent parameters x ∗RINLA and
x ∗INLADIST as follows

LML= log p(y) = log p(x ∗|θ ∗) + log p(y |θ ∗, x ∗)− log p(x ∗|θ ∗, y). (5.2.2)

According to Jeffrey’s scale [125], as well as other commonly used metrics [126,
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127], a Bayes factor (BF) between approximately 10−1/2 < BF <
p

10, implies
that the difference in approaches is “barely worth mentioning”, where BF = 1
means that they are identically likely. Figure 5.6 shows the Bayes factor for dif-
ferent datasets. It can be observed that all Bayes factors’ indicate an insignificant
difference between approaches. We also see that for increasingly larger tempo-
ral domains, and thus more independent, identically distributed observations,
the Bayes factor decreases.

Single Node Performance

We are not aware of any distributed software library that supports the model
types treated in this work. The R-INLA package3, however, provides a single node
implementation which, supports nested multi-threading as presented in the pre-
vious section. Therefore, we conduct a performance comparison between R-INLA
and our CPU-based INLAPARDISO implementation, using a set of smaller models but
following the same setup as described in Section 5.2.1, on a single node machine
with 52 cores (26 dual-socket Intel Xeon Gold 6230R CPU) and 755 GB of main
memory, see Figure 5.6. We parallelize both versions to use the same number of
cores, meaning that we cannot leverage the full multi-layer parallel scheme of
our implementation, thus factorizing Qx and Qx |y sequentially. Both algorithms
utilize PARDISO as an underlying solver for the computational kernel operations.
We observe that for the smallest test cases they have almost identical runtimes,
with INLAPARDISO exhibiting more consistent scaling properties as the model pa-
rameter dimensions grow. We consider normalized runtime (total runtime / #
number of function evaluations) instead of absolute runtime because the number
of required function evaluations is dependent on various factors. The implemen-
tation of the objective function 2.2.5 of the optimization problem differs between
INLADIST and R-INLA, while also changing with the problem size, dataset, mesh
discretization, etc. which influences the number of required iterations. Further-
more, the METIS reordering used in PARDISO Additionally, a small total runtime
might simply be attributed to a good initial guess or not very strict convergence
criteria. The largest test case took less than 2 hours for INLAPARDISO and just over
3.5 hours for R-INLA. In the following, we will see that our methods INLAPARDISO

and INLABTA scale well on distributed architectures (with INLABTA outperforming
INLAPARDISO for all larger models), thus making it possible to run much larger
models than the ones employed here within shorter runtimes.

3through the INLAspacetime package (https://github.com/eliaskrainski/INLAspacetime)
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Figure 5.6: Single node comparison of our INLADIST approach and R-INLA for 4
different synthetic datasets, where the spatial grid size is fixed to ns = 812 nodes
with increasing number of time steps nt = 50, 100,200, 500 leading to matrix di-
mensions of n ≤ 4.1 · 105 as shown on the x-axes, and no = 2 · nsnt observations,
respectively. Left-Panel: Bayes Factor (BF), i.e., ratio of the marginal likelihoods
as inferred by INLADIST and R-INLA over n. Bayes factors smaller than 3 (and ≥ 1),
are deemed not significant, with BF = 1, meaning that both models are identi-
cally likely. Right-Panel: Run time comparison. To account for varying number of
BFGS iterations until convergence, we show the normalized runtime, defined as run-
time[sec]/(total # of function evaluations), over the matrix size n for INLAPARDISO

and R-INLA, each using 36 cores.

Kernel Operations and Performance

In Figure 5.7 we show the different contributions to the overall runtime for a sin-
gle function evaluation of f (θ ), for INLABTA and INLAPARDISO, respectively, using
the Base Case from Table 5.3. The evaluation of f is split in numerator, which
entails the factorization of Qx and denominator, which entails the factorization
of Qx |y , and are executed in parallel. Therefore, the overall runtime of a function
evaluation of f is determined by the maximum between the two and corresponds
to 100% for each solver, respectively. The majority of the runtime for both solvers
is made up by the Cholesky factorizations. They are performed on separate GPUs
or nodes, for INLABTA and INLAPARDISO, respectively. The sparse matrix assembly
for Qx |y takes longer as it includes the dense arrowhead structure. All other oper-
ations like the evaluation of the prior of the hyperparameters and the likelihood
take up a negligible amount of time with contributions of a few percent.

Figure 5.8 shows the achieved GFLOP/S (GigaFLOP per Second) of the nu-
merical factorization of Qx and Qx |y , respectively, for the BTA solver and PAR-
DISO. As expected, the former performs many more floating point operations per
second than the latter as it operates entirely on dense submatrices as compared
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Figure 5.7: Computational kernel operations of f (θ ) for the Base Case, see
Table 5.3, and split in the parallel evaluation of numerator and denominator,
see Equation 2.2.3, using (a) INLABTA and (b) INLAPARDISO. For each solver
type max(runtime(numerator), runtime(denominator)) denotes 100%, respec-
tively. The size of the bars is relative to this maximum. The first number next to
the bar denotes the respective absolute runtime in seconds for each task, the second
number denotes the respective percentage. For both solvers the Cholesky decomposi-
tions of Qx (numerator) and Qx |y (denominator) dominate the runtimes. INLABTA

outperforms INLAPARDISO by a factor of 3.5.

to sparse structures. Additionally, we can see how the number of GFLOP/S in-
creases with the number of cores used by PARDISO up to 32 cores, where it peaks.
The rate of increase over the sequential version illustrates its parallel scalability,
as the number of floating point operations is independent of the core count.

Strong Scaling

In this section, we discuss performance results with respect to increasing numbers
of GPUs/cores. The majority of the overall runtime of the algorithm is spent on
solving the optimization problem described in Section 2.2.2, Step 1. In each
iteration of the BFGS solver, 2 d(θ )+1 parallel function evaluations are required
to compute f (θ k) and∇ f (θ k). One can observe in Figure 5.9 that our algorithm
actually exhibits ideal scaling for up to 9 processes (dim(θ ) = 4) as expected.

As previously discussed, further parallelism is introduced by simultaneously
factorizing Qx and Qx |y . Since Qx has less nonzero entries and a simpler sparsity
structure, its factorization takes less time than of Qx |y . Therefore, the theoret-
ical maximum speedup going from sequentially factorizing these two matrices
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Figure 5.8: Left-Panel: BTA Solver. GFLOP/S during the numerical factorization
of Qx and Qx |y , respectively, on an A100 GPU. Right-Panel: PARDISO. GFLOP/S
relative to the number of cores during the numerical factorization of Qx and Qx |y .
It can be seen that using 64 cores no longer increases the performance. The matrices
Qx and Qx |y stem from the Base Case.

to parallel factorizations is less than a factor 2, but rather around a factor 1.6
for INLABTA and 1.8 for INLAPARDISO, see Figure 5.7 for details. This also be-
comes apparent in our numerical experiments. When parallelizing the Cholesky
decompositions within each function evaluation on top of the parallel function
evaluations, we can observe a further speed up that corresponds approximately
to the theoretically achievable factor of 1.6 and 1.8 respectively, as indicated by
the black lines.

In terms of wall-clock time, we can see that INLABTA outperforms PARDISO by
roughly a factor 3-4, independently of the number of processes. To fit the Base
Case model, INLABTA requires just under 1 · 103 seconds, i.e., about 16 minutes,
when using 18 GPUs. INLAPARDISO requires just over 50 minutes when using 576
cores.

Temporal and Spatial Scaling

We will now discuss how our proposed methods scale with increasing numbers
of ns spatial and nt temporal nodes, respectively. The normalized runtimes are
shown with respect to the matrix size in Figure 5.10. We note that for both scaling
studies, the INLABTA outperforms INLAPARDISO by roughly a factor of 3-4 for larger
problems in terms of total runtime. The analysis in Section 3.2.3 showed that
the BTA solver has linear complexity in time for a single matrix factorization
or selected inversion. As these are the dominating subroutines of INLABTA, we
would ideally expect this property to be inherited. We can see that this holds true
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Figure 5.9: Strong scaling plot of fitting the Base Case model. The blue line indicates
the runtime in seconds using different numbers of GPUs or cores, respectively. The
red line indicates the speedup over the respective base version (1 GPU/32 cores). The
black dashed line represents the ideally achievable speed up. Left-Panel: INLABTA.
Right-Panel: INLAPARDISO.

almost perfectly, as indicated in the graph. PARDISO’s complexity with respect to
temporal nodes nt grows with a larger factor, see Table 3.1. This is in line with
the observed temporal scaling behavior of INLAPARDISO. In the spatial scaling
case, the complexity for both solvers is superlinear which is consistent with the
results shown in Figure 5.10b. Due to the sparsity preserving SPDE approach
our method scales independently of the number of observations, i.e., increasing
the number of observations does not increase the runtime, see Section 2.2.1 for
details.

Parallel Copy-Compute

In this section, we explore the impact of overlapping copy-compute operations
within INLABTA compared to a sequential implementation as outlined in Sec-
tion 4.2.2, utilizing two distinct test cases from Table 5.3. We analyze the runtime
distribution within a single loop iteration of Algorithm 3, split into host-device
memory transfers, dense Cholesky factorization of a diagonal block, triangular
solves for updating the matrix rows below, and the matrix-matrix multiplica-
tions for updating subsequent coupled blocks. The results are shown in Fig-
ure 5.11. We can see that for the first example, Base Case I, which has a smaller
spatial domain (ns = 4002), the device to host memory transfer is relatively
larger compared to the Spatial Scaling Case IV, which has a larger spatial domain
(ns = 20252).
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Figure 5.10: The normalized runtime (runtime / (total # of function evaluations))
over the precision matrix dimension n. Left Panel: Fixed spatial grid size of ns =
4002 nodes with increasing number of time steps, corresponding to TS I-II, BC &
TS III from Table 5.3. The black dotted line (coinciding with INLABTA) indicates the
linear complexity in nt as discussed in Table 3.1. Right Panel: Fixed temporal grid
size of nt = 30 nodes with increasing number of spatial nodes, corresponding to SS
I-IV.

First, we discuss how the two case studies compare and where they rela-
tively spend more time. It can be seen that when the spatial domain, and thus
the diagonal block to be factorized, is smaller (BC I), relatively more time is
spent within the Cholesky factorization (POTRF), the memory transfer from de-
vice to host (CpyToHost), and less time within the matrix-matrix multiplication
(GEMM). For a larger spatial domain (SS IV) the matrix-matrix multiplication
becomes the dominating operation whereas the previous two operations require
relatively less time. This is attributed to the fact that the computational com-
plexity of the associated GEMM is approximately 2n3

s , whereas POTRF is also of
cubic complexity but scales with a smaller constant and the number of entries to
be copied scales with 2n2

s . Thus, the former increasingly dominates the overall
runtime as ns increases. Going from the sequential to the parallel copy-compute
version, we can see that in both cases we see a significant improvement through
the parallel copy-compute implementation. In the first case, we see a reduction
of almost 20%, whereas it is about 13% for the second case.

5.2.2 Case Study on Atmospheric Air Temperature

In this section, we utilize our proposed method to model the daily average air
temperatures over the United States for the entire year of 2022. Temperature
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Figure 5.11: Comparison of parallel copy-compute (Algorithm 3) compared to se-
quential (seq.) version (Algorithm 1) for two different case studies. We consider
one loop iteration of diagonal block factorization (POTRF), the triangular solve to
update the rows below (TRSM) and the matrix multiplication to update the coupled
blocks (GEMM). In the parallel version the copy to host (CpyToHost) operation com-
pletely overlaps with the computation (GEMM, POTRF, TRSM). Left-Panel: Base
Case I according to Table 5.3. Right-Panel: Spatial Scaling IV according to Ta-
ble 5.3.

ns nt nb no n

2865 365 4 2 472 561 1 045 729

Table 5.4: Model parameter dimensions for the air temperature dataset, following
the notation of Table 5.3.

measurements from different meteorological stations throughout the country
are supplied by the National Centers of Environmental Information and publicly
available [98]. We define the linear predictor η(s, t) over the spatio-temporal
domain as

η(s, t) = β0 + β1 elevation(s) + β2 z(t) + β3 north(s) + u(s, t), (5.2.3)

where β0 represents an overall temperature mean and β1 is the effect of eleva-
tion at a location s. The term z(t) = sin(πt/365) describes a normalized seasonal
trend and β2 is the effect of this term. The variable β3 represents the effect of the
projected latitude with units in kilometers from the southeast data location, and
u(s, t) is the spatio-temporal field. The unknown posterior parameter distribu-
tions in the linear predictor are the fixed effects β = (β0, ...,β3)T , as well as the
random field u(s, t). The spatio-temporal domain is discretized using first order
finite elements, whose basis functions are defined on the spatio-temporal mesh
nodes, as detailed in [49]. For simplicity, we keep the same spatial discretization
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Figure 5.12: Left-Panel: The stations where measurements were collected. Not
every station collects measurements at every time step. Right-Panel: A map of the
different US states is outlined in blue. The employed spatial discretization is shown
in gray including the coarser peripheral mesh with a total of ns = 2865 mesh nodes.

Figure 5.13: The data shown as time series grouped around its locations and colored
as function of its average from colder (blue) to warmer (red).

at each time step. We embed the contiguous US territory, i.e., omitting Hawaii
and Alaska, in a two-dimensional convex domain that is discretized using a De-
launey triangulation and add a coarser peripheral mesh to buffer boundary ef-
fects. The different measurement locations and the spatial mesh are shown in
Figure 5.12. The temporal mesh consists of nt = 365 nodes, one for each day.
It is worth noting that not all stations have measurements at every time step.
There are about 2.5 million observations available throughout the entire year,
see Figure 5.13. The arising latent parameter space has a dimension of over 1
million, see Table 5.4 for details.

The first inference step is to estimate the hyperparameter distributions of θ ,
as described in Section 2.2.4, which parametrize the noise term and the spatio-
temporal field. From this the posterior mean and standard deviation for the fixed
effects β are derived and presented in Figure 5.16. They give rise to the follow-
ing model interpretation. The estimated temperature in 2022 was 10.6 degrees
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Figure 5.14: The posterior mean and standard deviation for the u(s, t) field for the
first 6 days, that is January 1-6.

Celsius, in the beginning and at the end of the year, at the southeast station
location at sea level. It decreased 3.8 degrees per kilometer of elevation. On
average, the temperature increased by 25.7 degrees by the middle of the year,
and decreases 7.37 degrees per thousand kilometers going north from the most
southeastern point. While general trends are captured by the fixed effects, the
spatio-temporal field u(s, t) describes the local deviations from this overall be-
havior. In Figure 5.14 the estimated posterior mean and standard deviation of
u(s, t) are shown for the first six days of the year 2022. It can be seen that on
January 1st it was around 10 to 20 Celsius degrees warmer, than the fixed ef-
fects would stipulate in the southeastern part of the domain. The warmer region
shrinks in size over the following days, showing the ability of this term to indeed
capture short-term variations. We note that the standard deviation of u(s, t) is
lower in areas with a higher density of measurement stations and larger in areas
with fewer measurement stations, see for example the northeastern part of the
country as well as in some areas of Texas. In Figure 5.15 we show the posterior
mean and standard deviation for u(s, t) for selected days over the year which
are around periods of two months apart. In these far apart in time estimates
we can see a different spatial pattern for the posterior mean as they are related
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Figure 5.15: The posterior mean and standard deviation for the u(s, t) field at
selected times.
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Figure 5.16: Left-Panel: Estimated posterior fixed effects. Right-Panel: Normal-
ized runtime in seconds per function evaluation for INLAPARDISO and INLABTA using
576 cores or 18 GPUs, respectively.

to the weather at these days which are reasonable to be assumed uncorrelated.
We notice that with the spatial resolution used to solve the model, it was able
to capture the local behavior of the weather. The posterior standard deviation
looks similar for each shown time steps, which corresponds to the fact that most
stations record observations daily.

The normalized runtimes are shown in Figure 5.16 using the most performant
configuration for each version, that is 576 cores or 18 GPUs, respectively. The
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overall runtimes were just over 25 for INLAPARDISO and 15 minutes for INLABTA.
The memory footprint for each (permuted) sparse Cholesky factor as computed
by INLAPARDISO equates to 25.4 GB, while the INLABTA approach requires 47.9 GB.



Chapter 6

Conclusion

The work presented in this thesis focuses on combining the methodology of inte-
grated nested Laplace approximations with scalable high performance algorithms
and their implementation for providing accurate, fast and reliable inference es-
timates. The main contributions are

• The conception and development of the high-performance implementation
INLADIST of the INLA methodology for large-scale spatio-temporal models.

• Identifying, developing, enhancing and implementing efficient algorithms
handling the arising computational bottleneck operations within the exist-
ing R-INLA package as well as INLADIST.

• Introduction of massive parallelism through multi–layer parallel schemes,
realized as a shared memory approach in R-INLA and a distributed–shared
memory approach in INLADIST.

The INLA methodology offers a deterministic approximation scheme for es-
timating the posterior marginal distributions of the unknown parameters and is
applicable to the class of latent Gaussian models. From a computational per-
spective, the methodology comprises three main steps. Firstly, it requires identi-
fying the minimum of a non-linear optimization problem, whose objective func-
tion is an approximation to the posterior distribution of the hyperparameters
and computationally expensive to evaluate. Secondly, additional objective func-
tion evaluations in proximity to the optimum are needed when accommodating
non-Gaussian posterior distributions. The arising computational core operations
during the objective function evaluations are Cholesky decomposition and solv-
ing linear systems of high-dimensional symmetric positive definite matrices with
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recurring sparsity patterns. Thirdly, the estimation of the posterior marginal vari-
ances of the latent parameters, which involves computing selected entries of the
full inverse of the associated precision matrices. For the selected matrix inver-
sion, we are interested in the entries of the full inverse that correspond to non-
zero entries in the original sparse matrix. The CPU-based state-of-the-art sparse
direct solver PARDISO was integrated into R-INLA and INLADIST as it provides ef-
ficient routines to perform all computational bottleneck operations, i.e., Cholesky
factorizations, solving linear systems and selected matrix inversions. The sparse
solver leverages intelligent matrix reordering techniques which allow for large
parts of the otherwise sequential computations to be parallelized and employs a
separate symbolic reordering phase which can be reused.

The representation of processes which include spatial or spatio-temporal data
often leads to particularly high-dimensional models. The INLA methodology in
combination with the SPDE approach provide an efficient framework for per-
forming spatio-temporal Bayesian modeling. We rely on a non-separable space-
time model to capture spatio-temporal phenomena, where the spatio-temporal
discretization of the model induces block tridiagonal arrowhead sparsity struc-
ture in its precision matrices. We have derived algorithmic solution strategies
to handle the computational core operations, which are tailored to the recurring
sparsity patterns. In particular, an efficient selected block inversion routine is
proposed to compute the marginal variances of the latent parameters, without
having to compute the full inverse. A GPU-accelerated implementation of these
routines is put forward which is entirely based on dense block operations, while
maintaining sparsity in the overall system.

The multi-layer parallel approaches in R-INLA as well as INLADIST take ad-
vantage of mutually independent objective function evaluations, identify par-
allelizable kernel operations, and exploit concurrency within each subroutine.
During the optimization phase, the parallelizable function evaluations arise in
the finite difference approximation of the gradient. Additionally, a parallel line
search routine is introduced using robust regression, to parallelize and stabilize
the search for each next step size, being able to lower the overall number of
required iterations. Subsequently, parallel function evaluations arise in the ex-
ploration of the posterior distribution of the hyperparameters. The computation
of the marginal variances necessitates the selected matrix inversions in differ-
ent evaluation points, which are embarrassingly parallel operations as they are
independent of each other.

We empirically demonstrate the performance and scalability of the augmented
R-INLA implementation on three case studies. Each of them uses a different type
of model, hence posing different computational challenges. For all larger ap-
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plications, we observed speedups of a factor of 10-25 times compared to the
single-threaded version. Hence, lowering runtimes for some models from al-
most seven hours to less than 30 minutes or from more than two hours to just
over ten minutes. For smaller applications we still observe speedups but to a
smaller extend. In our performance analysis of the high-performance INLADIST

package, we show that it exhibits almost ideal strong scaling up to two times the
hyperparameter dimension. Its blocked GPU-based variant scales linearly with
the number of time steps, and quasilinearly for the sparse CPU-based variant.
We utilize INLADIST for a large-scale air temperature modeling application, using
more than 1 million latent parameters and 2.5 million observations. We exhibit
runtimes in the order of tens of minutes, outperforming existing approaches.

Leveraging the strengths of today’s multi-core, multi-node and GPU-accelerated
computers, these algorithmic advancements allow for performing inference us-
ing more complex models at higher resolution in shorter runtimes, making pre-
viously unfeasible inference tasks feasible.



Appendix A

Variational Bayes Correction –
Derivation of the Derivatives

We derive the first and second order derivatives of I(µ) with respect to µ, i.e.,
Equation 2.2.18 and 2.2.19, including a change of variables. We remind our-
selves that

I(µ) =

∫ +∞

−∞

1
p

2πσ
exp

�

−
(x −µ)2

2σ2

�

f (x) d x . (A.0.1)

For ease of notation we define

h(x ,µ) :=
1

p
2πσ

exp
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−
(x −µ)2

2σ2

�

f (x) (A.0.2)

We assume that h(x ,µ) is continuous and that
∫∞
−∞

∂
∂ µh(x ,µ)d x converges

uniformly on a closed interval J for µ ∈ J as well as that I(µ) converges for all
µ. Then I(µ) is differentiable and we can differentiate under the integral sign.
For details and proofs, see, e.g., Chapter 13 [128] or other standard analysis
textbooks. Thus, we can derive the following
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Assuming that the same regularity assumptions are still satisfied for d
dµ I(µ),

one can differentiate again with respect to µ. Using the product rule, this yields

d2I
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We now perform a change of variables with z = x−µp

2σ
⇐⇒ x =

p
2σz+µ, with

dz
d x =

1p
2σ
⇐⇒ d x =

p
2σdz, for all three functions. For a general discussion on

integration by substitution, see e.g. [129]. This results in
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d2

dµdµ
I(µ) =
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�
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which is equivalent to Equation 2.2.17, 2.2.18 and 2.2.19. One can now eas-
ily apply Gauss-Hermite quadrature to approximate the above integrals, as dis-
cussed in Section 2.2.3. It is worth noting that both derivatives do not require
the differentiation of f .



Appendix B

Discretization and Parameter Scales of
the DEMF Model

Following Lindgren et al. in [49], the general form of Equation 2.2.31, as-
suming appropriate boundary conditions, non-negative smoothness parameters
(αt ,αs,αe) and Ls = (γ2

s −∆) is

�

γt
∂

∂ t
+ Lαs/2

s

�αt

u(s , t) = dEQ,γe
(s , t), (s , t) ∈D×R. (B.0.1)

In Theorem 1 in [49], the authors show that for αt ∈ N, Equation B.0.1 is equiv-
alent to

�

−γ2
t

∂ 2

∂ t2
+ Lαs

s

�αt/2

u(s , t) = dEQ,γe
(s , t), (s , t) ∈D×R. (B.0.2)

For a further theoretical discussion we refer to [49, 46] and instead consider the
DEMF(1,2,1) model of interest in this thesis, i.e., αt = 1,αs = 2,αe = 1, and
discuss various properties more relevant to its implementation and in particu-
lar motivate the arising tridiagonal block structure of the spatio-temporal prior
precision matrix.

Finite Element Discretization

A finite element approach was chosen for the discretization of Equation 2.2.31
(or more generally Equation B.0.2) , as they are computationally efficient, easily
account for unstructured spatial data locations and are well-defined on mani-
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Figure B.1: Left: Spatial mesh with 92 nodes on S2. Right: Temporal equidistant
mesh with 5 nodes and piecewise linear hat functions.

folds. A Kronecker product basis expansion of the form

u(s , t) =
ns
∑

i=1

nt
∑

j=1

ui jψi(s)φ j(t), (B.0.3)

is considered, where {ψi(s) | i = 1, . . . , ns} and {φ j(t) | j = 1, . . . , nt} are sets of
basis functions on a spatial domain D and time interval T = [t0, t1] ⊂ R, respec-
tively, with space-time coefficients ui j. While there are various possible choices
of spatial and temporal basis functions, we restrict ourselves to piecewise linear
basis functions, see [49] for a comprehensive discussion. Therefore, let Ψ(s) =
[ψ1(s), . . . ,ψns

(s)] be a set of spatial basis function on D with
∑ns

i=1ψi(s) ≡ 1.
Similarly, let Φ(t) = [φ1(t), . . . ,φnt

(t)] be a set of one-dimensional temporal
basis function on [t0, t1] with

∑nt

i=1φi(t)≡ 1.

We follow Theorem 2 and its necessary assumptions in [49], for the dis-
cretization of the differential operator. Using the above basis representation and
αt = 1,αs = 2 and αe = 1, this gives rise to the precision matrix Qu for the
spatio-temporal random field with

Qu =γ
2
e

2αt
∑
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J1,0 ⊗ K 3 + γt J1,1/2 ⊗ K 2 + γ
2
t J1,1 ⊗ K 1

�

.
(B.0.4)
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Figure B.2: From left to right: Respective spatial precision matrices from a tri-
angular mesh on a sphere using ns = 92 nodes (a) Lumped mass matrix C (b)
Stiffness matrix G or equivalently K 1 (c) G(2) = GC−1G or equivalently K 2 (d)
G(3) = G(C−1G)(2) or equivalently K 3.

Here all finite element matrices K i relate to the spatial component while the
matrices Jαt ,i are associated with the temporal component. Thus, each addend
is separable, due to the separable basis functions B.0.3, but the overall sum is
not.

In the following, we discuss the sparsity patterns of the matrices arising in
Equation B.0.4. Exemplarily, we consider a space-time domain D×T with D = S2
and T = [1,5], see Figure B.1. The spatial domain is discretized using a trian-
gulation with 92 mesh nodes on which the piecewise linear basis functions are
defined. The temporal mesh assumes 5 equidistant time steps with a step size
of one. The sparsity patterns of the different matrices that arise in the construc-
tion of the discretized precision operator are shown in Figure B.2–B.4. Start-
ing with the spatial component, one can form the lumped mass matrix C with
Cii = 〈ψi, 1〉 and zero otherwise, and stiffness matrix G with Gi j = 〈∇ψi,∇ψ j〉
for i, j = 1, . . . , ns, see also Figure B.2. The discretization of the Whittle-Matérn
operator Lαs

s = (γ
s
s −∆)

αs , as shown in [47], is then given by

K 1 = γ
2
s C +G, (B.0.5)

K 2 = γ
4
s C + 2γ2

s G +G(2) with G(2) = GC−1G, (B.0.6)

K 3 = γ
6
s C + 3γ4

s G + 3γ2
s G(2) +G(3) with G(3) = G(C−1G)(2), (B.0.7)

and more generally for l ∈ N, l > 2,

K l = KC−1K l−2C−1K , with G(k) = G(C−1G)(k−1). (B.0.8)

where l depends on the exponent αs. The discretization of the temporal matrices
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Figure B.3: From left to right: Respective temporal precision matrices using 5
equidistant time steps (a) Lumped one-dimensional mass matrix J1,0 (b) Boundary
matrix J1,1/2 (c) One-dimensional stiffness matrix J1,1

Jαt ,k/2 for odd k, i.e., k = 1,3, . . . , 2αt − 1 is defined as

[Jαt ,k/2]i j =

¨

boundary correction term, if (i, j) ∈ {(1, 1), (nt , nt)}
0, else

(B.0.9)

which imposes temporal Neumann boundary conditions. For even k, i.e., k =
0,2, . . . , 2αt this means

[Jαt ,k/2]i j = 〈(−∆)k/2φi, (−∆)k/2φ j〉. (B.0.10)

Thus, for αt = 1, we consider k = 0, 1,2. For k = 0 we obtain a one-dimensional
mass matrix, for which we perform mass lumping as before, i.e. [Jαt ,0]ii =
〈φi, 1〉. For k = 1, one obtains a zero matrix with Neumann boundary condi-
tions, i.e., in [Jαt ,1/2]11 = [Jαt ,1/2]nt nt

= 1/(2h), where h is the distance between
mesh nodes, otherwise [Jαt ,1/2]i j = 0. For k = 2, we obtain a one-dimensional
stiffness matrix [Jαt ,1]i j = 〈∇φi,∇φ j〉 for i, j = 1, . . . , nt , see also Figure B.3.
The block tridiagonal structure is induced by the Kronecker product between
the tridiagonal temporal stiffness matrix J1,1 and K 1, as shown in Figure B.4.
From this it also becomes clear, that if the temporal process is discretized using a
higher-order scheme that, e.g., induces a pentagonal structure this would result
in a block pentagonal precision matrix Qu . The additional non-zeros in the diag-
onal blocks are induced by the Kronecker product between the diagonal matrix
J1,0 and K 3.

Conditioning on Data

Let E(y) = g−1(η), where E(·) denotes the expected value, g(·) a link function
and η the linear predictor. Let η = Ãu + Zβ , where we assume that u denotes
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Figure B.4: From left to right: The respective sparsity patterns of (a) J1,0⊗ K 3 (b)
J1,1/2 ⊗ K 2 (c) J1,1 ⊗ K 1 (d) Qu = J1,0 ⊗ K 3 + J1,1/2 ⊗ K 2 + J1,1 ⊗ K 1

the spatio-temporal random effects u ∼ N (0,Q−1
u ) as defined previously. The

matrix Z is assumed to contain the covariates related to the fixed effects β . The
projection matrix Ã ∈ Rm×(nsnt ) contains the coefficients of the finite element
representation of the spatio-temporal locations of the observations. Each obser-
vation yi is associated with a time t and a spatial location si. We represent this
in the basis formulation B.0.3 and store the arising coefficients in Ã. Due to the
mesh triangulation of the spatial domain each location si is represented by either
one (if the mesh node and the observation location coincide), two (if si is on an
edge) or three (for all other cases) spatial basis functions. In all cases the sum
of their coefficients is 1. We assume that each measurement is taken at a given
time step and thus associated with exactly one of the nt time steps. Exemplary,
we show the sparsity pattern of a projection matrix Ã for 200 randomly sampled
observations within the previously described spatio-temporal domain. We addi-
tionally assume that the model has nb = 4 fixed effects and Z is a dense matrix.
Then we obtain the following sparsity pattern for projection matrix A = [Ã,Z],
see Figure B.5. If we consider the priors of the fixed effects to be independent,
the prior precision matrix Qβ becomes a diagonal matrix, which we combine
to Qx = blockdiag(Qu ,Qβ). Finally, we construct the conditional posterior pre-
cision matrix Qx |y = Qx + AT DA, where D is a diagonal matrix. We observe
that the sparsity pattern of Qx |y restricted to the spatio-temporal part coincides
with the sparsity pattern of Qu , i.e. no additional non-zeros are introduced by
conditioning on the observations due to the finite element basis representation.
The covariate matrix Z introduces additional non-zeros. This number does, how-
ever, not depend on the number of observations but only on the number of fixed
effects as shown in Figure B.5. This results in a block tridiagonal arrowhead
sparsity structure in Qx |y .
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Figure B.5: From left to right: The respective sparsity patterns of (a) projection
matrix A ∈ Rm×(nsnt ) with m= 200, ns = 92, nt = 5 (b) Qx ∈ Rn×n with n= nsnt +
nb, where nb = 4 (c) Qx |y = Qx +AT DA. One can see the arising block tridiagonal
structure, where each diagonal block refers to a discretized spatial domain at a
different time step.

Model Scale Parameters

The scaling parameters (γs,γt ,γe) naturally arise as part of the SPDE, Equa-
tion B.0.2, and are also convenient from an implementation perspective. They
enter the LGM as part of the hyperparameters, where they do not have an intu-
itive interpretation. For increased model interpretability, one considers instead
(rs, rt ,σst)1. Here, rs represents the spatial correlation range, giving a correla-
tion in space of approximately 0.13 while keeping time fixed. The parameter rt

describes the temporal correlation range which, for a separable model, is defined
as the spatial range. In the non-separable case, the temporal correlation will also
be dependent on the spatial range. And finally, σst which describes the marginal
standard deviation of the spatial-temporal field. The conversion between the two
parameter scales is presented below, where the topology of the domain D has to
be taken into account. We first consider D ⊂ Rd , where we have that

α= αe +αs(αt − 0.5), νs = α− 1,

CR,αt
=
Γ (αt − 1/2)
Γ (αt)(4π)1/2

, CRd ,α =
Γ (α− d/2)
Γ (α)(4π)d/2

,
(B.0.11)

1which also corresponds to the way the DEMF models are implemented in the INLAspacetime
package.
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and where Γ (a) is the Gamma function. The parameters are typically considered
in log-scale. Given (γs,γt ,γe), we compute (rs, rt ,σst) as

rs =

p

8νs

γs
⇐⇒ log(rs) =

1
2

log(8νs)− log(γs),

rt =
γt

q

8(αt −
1
2)

γ
αs
s

⇐⇒ log(rt) = log(γt) +
1
2

log(8(αt −
1
2
))−αs log(γs),

σst =

Æ

CRd ,αCR,αt

γe
p
γtγ

α−d/2
s

⇐⇒ log(σst) =
1
2

log(CRd ,α) +
1
2

log(CR,αt
)− log(γe)

−
1
2

log(γt)− (α−
d
2
) log(γs).

(B.0.12)
Conversely, given (rs, rt ,σst) we can rearrange the above to

γs =

p

8νs

rs
⇐⇒ log(γs) =

1
2

log(8νs)− log(rs),

γt =
rtγ

αs
s

p

8(αt − 1/2)
⇐⇒ log(γt) = log(rt) +αs log(γs)− 0.5 log(8(αt −

1
2
)),

γe =

Æ

CRd ,αCR,αt

σst
p
γtγ

α−d/2
s

⇐⇒ log(γe) =
1
2

log(CRd ,α) +
1
2

log(CR,αt
)− log(σst)

−
1
2

log(γt)− (α−
d
2
) log(γs).

(B.0.13)

If the spatial domain is a compact manifold, e.g. a sphere, that is D = Sd , we
have a change in the constants involving γe and σst , respectively. The constant
CRd ,α/γ

2α−d
s is replaced by CS,α(γs).

CR,αt
=
Γ (αt − 1/2)
Γ (αt)(4π)1/2

, CS,α(γs) =
∞
∑

k=0

2k+ 1
4π(γ2 + k(k+ 1))α

(B.0.14)
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Given (γs,γt ,γe), this results in

σst =

Æ

CR,αt
CS,α(γs)

γe
p
γt

⇐⇒ log(σst) =
1
2

log(CR,αt
) +

1
2

log(CS,α(γs))− log(γe)

−
1
2

log(γt).
(B.0.15)

Or alternatively, given (rs, rt ,σst), we can compute

γe =

Æ

CR,αt
CS,α(γs)

σst
p
γt

⇐⇒ log(γe) =
1
2

log(CR,αt
) +

1
2

log(CS,α(σst))− log(γe)

−
1
2

log(γt).
(B.0.16)



Appendix C

Marginal Variances and Matrix-Matrix
Multiplication

Let Qx |y be the precision matrix of the latent parameters conditioned on the
data, as defined in Equation 2.2.7, for a fixed parameter configuration of θ . We
denote its covariance matrix by Σx |y = Q−1

x |y . The marginal variance of each
latent parameter x i is (Σx |y)ii. Under the assumption that the data is normally
distributed, the expected value of the observations is defined through the linear
predictor E(y) = Ax . This implies that the covariance matrix of the observations
Cov(y) = AΣx |y AT and their marginal variances σ2

i are

σ2
i = (AΣx |y AT )ii. (C.0.1)

While this is relatively straight-forward to derive from a theoretical perspective,
from a computational perspective multiple issues emerge. First, the full inverse
Σx |y is never computed as extensively discussed in Chapter 3. This is due to
the fact that we do not require all entries and the computational cost as well as
memory requirements are prohibitive, especially when considering a multitude
of θ configurations. Second, the matrix AΣx |y AT arising in Equation C.0.1 is
dense and therefore, computationally expensive to compute and store, especially
since its final dimensions are equal to the number of observations and therefore
potentially very large. To address the challenges that would arise in the case of
standard matrix multiplication, we bring forward the following considerations.

Foremost we are interested in the marginal variancesσ2
i and thus only require
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the diagonal values of Equation C.0.1, rewriting them as matrix sums one obtains

(AΣ)ik =
n
∑

j=1

Ai jΣ jk (C.0.2)

(AΣx |y AT )ii =
n
∑

k=1

(AΣ)ikAT
ki =

n
∑

k=1
Aik 6=0







n
∑

j=1
Ai j 6=0

Ai jΣ jk






Aik for all i = 1, . . . , m.

(C.0.3)
This implies that for every entry of interest, we only require the set of entries

of Σ for whose indices ( j, k), there exists i = 1, . . . , m with Ai j 6= 0 and Aik 6= 0.
This dramatically reduces the amount of required computations as they scale with
the number of non-zeros in A, which is typically O(m) where m is the number
of observations. As A is a projection matrix linking the observations through the
linear predictor to the latent variables, we have that the required indices ( j, k)
are contained within in the original sparsity pattern of Qx |y .
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