
Università

della

Svizzera

italiana

Facoltà

di scienze

informatiche

Test Case Generation and Fault
Localization for Data Science Programs

Mohammad Rezaalipour

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Supervised by

Prof. Carlo A. Furia

Dissertation Committee

Prof. Domenico Bianculli University of Luxembourg, Luxembourg
Prof. Gordon Fraser University of Passau, Germany
Prof. Michele Lanza Università della Svizzera italiana, Switzerland
Prof. Paolo Tonella Università della Svizzera italiana, Switzerland

Dissertation accepted on 13 June 2024

Research Advisor
Prof. Carlo A. Furia

Ph.D. Program Co-Director Ph.D. Program Co-Director

Prof. Walter Binder Prof. Stefan Wolf

I certify that except where due acknowledgement has been given, the work presented in this
thesis is that of the author alone; the work has not been submitted previously, in whole or in part, to
qualify for any other academic award; and the content of the thesis is the result of work which has
been carried out since the official commencement date of the approved research program.

Mohammad Rezaalipour
Lugano, 13 June 2024

“Fear is the main source of superstition,
and one of the main sources of cruelty. To
conquer fear is the beginning of wisdom."

— Bertrand Russell

Abstract

Data science refers to inter-disciplinary approaches designed to extract knowledge from vast amounts
of data. It combines techniques from fields such as statistics and machine learning to develop novel
applications for different science and engineering domains. Data science approaches are imple-
mented as programs usually written in languages such as R or Python, collectively referred to as
data science programs. Due to their inter-disciplinary usages, these programs are often written by
domain experts possibly unfamiliar with the best practices of software development, and thus, they
may exhibit low quality. In fact, there is evidence that these programs contain several bugs, often
different in nature compared to those found in traditional programs. As a result, data science pro-
grams challenge conventional debugging techniques such as those from test generation and fault
localization activities, due to the unique nature of bugs found in them. Additionally, being written in
dynamically typed languages such as Python adds to the difficulties of testing and analyzing them.

These challenges call for research into new debugging techniques tailored specifically for these
programs, which is the focus of the current dissertation. Precisely, this thesis aims to understand
the capabilities and limitations of standard test generation and fault localization techniques on data
science programs implemented in dynamic languages such as Python. To achieve this goal, the disser-
tation presents contributions in three areas: i) a test generation technique for neural network (NN)
programs, a wide spread class of data science programs; ii) an empirical study of fault localization
in Python programs; and iii) two debugging tools and a curated dataset of NN bugs.

In the first area, we investigated and identified the limitations of general-purpose test generation
techniques on NN programs, which led to the development of ANNOTEST, a novel test generation tech-
nique tailored for NN programs. We evaluated ANNOTEST on 19 open-source programs, demonstrat-
ing its effectiveness at finding bugs in real-world NN programs. In the second area, we conducted the
first large-scale multi-family empirical study of fault localization in Python programs. Targeting 135
bugs from 13 projects, we studied seven fault localization techniques from four families along with
combinations of them. We considered different fault localization granularity levels and measured
both effectiveness and efficiency in our analyses. In the third area, we developed: i) the ANNOTEST

tool, an implementation of the ANNOTEST approach mentioned above; ii) FAUXPY, to our knowledge,
the first open-source multi-family fault localization tool for Python; and iii) a curated dataset of NN
bugs, for which ANNOTEST was used to generate tests.

Along with supporting the domain with the tools and techniques we developed, we hope our
contributions will be beneficial to inform the development of more effective debugging techniques
for Python data science programs.

v

vi Abstract

Contents

Contents v

I Prologue 1

1 Introduction 3
1.1 Thesis Statement . 4
1.2 Contributions . 4

1.2.1 Test Generation Approach for NN Programs . 4
1.2.2 Empirical Study of Fault Localization in Python Programs 5
1.2.3 Supporting Tools and Dataset . 5

1.3 Outline . 6

2 State of the Art 7
2.1 Data Science Programs . 7

2.1.1 Bugs in Data Science Programs . 7
2.1.2 Bugs in Neural Network Models . 8

2.2 Automated Test Generation . 9
2.2.1 Test-input Generation . 9
2.2.2 Oracles . 10

2.3 Fault Localization . 10
2.4 Conclusions and Open Research Gaps . 11

II Test Generation 13

3 The ANNOTEST Test Generation Approach 15
3.1 Introduction . 16
3.2 An Example of Using ANNOTEST . 18
3.3 How ANNOTEST works . 19

3.3.1 The AN Annotation Language . 20
3.3.2 Annotation Guidelines . 23
3.3.3 Building Custom Generators by Refactoring . 25
3.3.4 Test Generation . 27
3.3.5 Failing Tests and Oracles . 28

3.4 Research Questions . 29
3.5 Experimental Subjects . 29
3.6 Experimental Setup . 30

3.6.1 Project Setup . 30
3.6.2 Experimental Process . 31

3.7 Experimental Results . 32
3.7.1 RQ1: Precision . 32
3.7.2 RQ2: Recall . 33

vii

viii Contents

3.7.3 RQ3: Amount of Annotations . 35
3.7.4 RQ4: Comparison to Generic Test-Case Generators 37
3.7.5 RQ5: Code Coverage . 37

3.8 Threats to Validity . 39
3.9 Conclusions and Future Work . 39

4 The ANNOTEST Tool and Dataset 41
4.1 Introduction . 41
4.2 Using ANNOTEST . 42

4.2.1 General-Purpose Testing Tools . 43
4.2.2 ANNOTEST . 44

4.3 Design and Implementation . 45
4.3.1 The AN Annotation Language . 45
4.3.2 Testable Functions . 46
4.3.3 Strategies . 46
4.3.4 Templates . 46
4.3.5 Executing the Tests . 46
4.3.6 Implementation Limitations . 47

4.4 Curated Dataset of NN Bugs . 47
4.5 Conclusions and Future Work . 47

III Fault Localization 49

5 An Empirical Study of Fault Localization in Python Programs 51
5.1 Introduction . 52
5.2 Fault Localization and FAUXPY . 54

5.2.1 Spectrum-Based Fault Localization . 54
5.2.2 Mutation-Based Fault Localization . 55
5.2.3 Predicate Switching . 56
5.2.4 Stack Trace Fault Localization . 57
5.2.5 FL Granularities . 57
5.2.6 FAUXPY: Features and Implementation . 57

5.3 Research Questions . 58
5.4 Experimental Subjects . 58
5.5 Faulty Locations: Ground Truth . 61
5.6 Classification of Faults . 63
5.7 Evaluation Metrics . 64

5.7.1 Ranking Program Entities . 64
5.7.2 Fault Localization Effectiveness Metrics . 66
5.7.3 Comparison: Statistical Models . 67

5.8 Experimental Methodology . 69
5.8.1 RQ1. Effectiveness . 71
5.8.2 RQ2. Efficiency . 72
5.8.3 RQ3. Kinds of Faults and Projects . 72
5.8.4 RQ4. Combining Techniques . 73
5.8.5 RQ5. Granularity . 74
5.8.6 RQ6. Comparison to Java . 74

5.9 Experimental Results . 75

Contents ix

5.9.1 RQ1. Effectiveness . 75
5.9.2 RQ2. Efficiency . 78
5.9.3 RQ3. Kinds of Faults and Projects . 80
5.9.4 RQ4. Combining Techniques . 84
5.9.5 RQ5. Granularity . 86
5.9.6 RQ6. Comparison to Java . 87

5.10 Discussion . 91
5.10.1 Python vs. Java Comparison . 91
5.10.2 Mutation Testing Operators . 92

5.11 Threats to Validity . 92
5.12 Conclusions . 93

5.12.1 Other Fault Localization Studies . 93
5.12.2 Future Work . 94

6 FAUXPY: an Automated Fault Localization Tool For Python 97
6.1 Introduction . 97
6.2 Using FAUXPY . 98

6.2.1 Spectrum-based and Mutation-based Fault Localization 98
6.2.2 Stack Trace and Predicate Switching Fault Localization 100

6.3 FAUXPY’s Architecture and Implementation . 101
6.3.1 Features and Options . 102
6.3.2 Implementation . 102

6.4 Experiments . 103
6.5 Conclusions . 104

IV Epilogue 105

7 Conclusions and Future Work 107
7.1 Contributions . 107

7.1.1 Test Generation Approach for NN Programs . 108
7.1.2 Empirical Study of Fault Localization in Python Programs 108
7.1.3 Supporting Tools and Dataset . 109

7.2 Future Work . 109
7.2.1 Test Generation . 109
7.2.2 Fault Localization . 110
7.2.3 Automated Program Repair . 111

7.3 Closing Remarks . 111

Bibliography 113

x Contents

Part I
Prologue

1
Introduction

“Data science” is an umbrella term that denotes new inter-disciplinary approaches to analyze vast
amounts of data to extract knowledge from it. First envisioned by database pioneer Jim Gray [16, 49],
data science combines techniques from statistics, machine learning, and information science in a
way that helps science and engineering domains—such as economics, finance, biology, medicine,
and computer science—to develop novel applications with better performance—such as designing
autonomous vehicles, processing natural language, and doing image recognition. Data science tech-
niques are typically implemented in the form of programs: a neural network that recognizes faces,
a complex regressive model that is fitted on epidemiological data, and so on. This dissertation will
target such data science programs with the overall goal of analyzing, improving, and helping develop
them.

Since data science techniques are used to support other scientific disciplines, data science pro-
grams are often written by domain experts who may not be professionally trained programmers
familiar with the best practices of large-scale software development. Therefore, data science pro-
grams are more likely to be poorly designed, insufficiently tested, and hence they tend to contain
numerous bugs.1 For instance, a data science program developed for simulating the spread of the
Coronavirus pandemic [38] has been criticized as being unreliable and buggy. According to some
critics, it was not possible to reproduce the same results using the same code and data [2]. Another
study [139] reports that a large percentage of deep learning (DL) program jobs submitted to Philly—
Microsoft’s deep learning platform—by researchers and developers at Microsoft fail to finish due to
code defects, which leads to the waste of expensive resources such as GPU. The increasing use of
data science programs in safety-critical domains [21, 75] indicates that techniques to help developers
improve the quality of these programs are strongly needed as undetected bugs within such software
may lead to disasters [3].

In traditional software engineering research, there are lots of research results and techniques
targeting the automation of different debugging activities, including detecting [20], locating [131],
and removing [44] bugs. However, data science programs often are of a different nature compared to
traditional programs, which challenges the effectiveness of the existing techniques. Data science pro-
grams are mostly unconventional programs (e.g., neural networks) and often have script-like nature
(e.g., they have poor modularization). According to recent studies [57, 142], the bugs occurring in
the source code of deep learning programs—a broad and important class of data science programs—
are often different from bugs usually found in traditional software. Studies [58, 142] found that
locating these bugs is challenging too, for instance, because the bugs often result in crashes with
little information about their root cause in the program. In addition, study [58] found that the bug
fix patterns required by deep learning programs are different from those of traditional software,

1In this dissertation, we use the terms “fault” and “bug” as synonyms.

3

4 Introduction

and fixing them requires information about the architecture of the models employed within these
programs (something that may not be easily accessible).

Several of these challenges follow from the fact that data science programs are usually written
in dynamic programming languages such as Python and R. Automatic test generation for dynami-
cally typed programming languages is a largely open challenge [78] as most existing techniques for
statically typed languages extensively rely on the typed signatures of tested functions, which is not
usually available in Python or R. All of these challenges indicate that data science programs require
new analysis and debugging techniques specific to them.

1.1 Thesis Statement

Our thesis statement is formulated as follows:

Understanding the capabilities and limitations of standard test generation and fault local-
ization techniques on data science programs implemented in dynamic languages such as
Python informs the development of new techniques that can be more effective.

As indicated in the thesis statement, we focus on two activities: i) test generation [11], and
ii) fault localization [109, 131], which are covered in the first and second parts of this dissertation,
respectively.

Neural network (NN) programs are arguably becoming a widespread class of data science pro-
grams, as, with the help of popular NN development libraries and frameworks such as Keras and
Tensorflow, many engineers and researchers have been using NN in their software products. There-
fore, NN programs exemplify some of the key challenges of testing and debugging such programs.
Generating tests for NN programs is quite challenging given their peculiar characteristics. On the
other hand, the dynamic nature of Python makes this debugging task even more challenging. In the
first part of this dissertation, we focus on analysis of NN programs written in Python, and introduce
a novel test generation technique tailored specifically for Python-based NN programs.

Several of the challenges posed by analyzing NN programs derive from a combination of the
programs’ domain with characteristics of the Python programming language. It is well-known that
Python is one of the most widely used languages to date [5]; its vast ecosystem of heterogeneous
libraries and programs, its fast evolution and adoption, and its interpreted and dynamic nature con-
tribute to several of the challenges that we tackled in this dissertation’s work. Therefore, the sec-
ond part of this dissertation broadens the focus from Python NN programs to Python open-source
programs (including data science and NN libraries, but also including more conventional kinds of
applications and libraries). In this second part, we present an extensive empirical study that investi-
gates fault localization in Python programs, laying the foundation for development of new and more
effective techniques in this domain.

1.2 Contributions

The contributions of this dissertation can be grouped into the three following categories: i) a test
generation technique for NN programs [99]; ii) an empirical study of fault localization in Python
programs [101]; iii) and the supporting tools and dataset developed during this PhD [100, 102].

1.2.1 Test Generation Approach for NN Programs

On the theoretical side, this dissertation proposes an automated test generation technique tailored
for NN programs.

1.2 Contributions 5

NN programs usually work with complicated data types while typing information is not available
in dynamic programming languages. As a result, existing test generation techniques are not effective
on NN programs.

To address this gap, we designed ANNOTEST, an automated technique that generates test inputs
for NN programs written in Python. This technique provides a simple annotation language named AN
to equip a program with information about its valid inputs, required by the test generation process.
Using the information provided by AN, ANNOTEST automatically generates tests for the given program.
We evaluated ANNOTEST’s bug-finding capabilities on 19 open-source NN projects surveyed by Islam
et al. [57], indicating ANNOTEST’s capability at finding widespread bugs in real-world NN programs.2

1.2.2 Empirical Study of Fault Localization in Python Programs

In order to better understand the capabilities of existing fault localization techniques on bugs of
programs written in Python, including both traditional applications and data science frameworks,
this dissertation presents the results of a large-scale empirical study.

Despite the massive amount of work on fault localization and the popularity of the Python pro-
gramming language34, most empirical studies of fault localization target languages like Java or C.
This leaves open the question of whether Python’s characteristics—such as the fact that it is dy-
namically typed, or that it is dominant in certain application domains such as data science—affect
the capabilities of classic fault localization techniques—developed and tested primarily on different
kinds of languages and programs.

This empirical study fills this knowledge gap: to our knowledge, it is the first multi-family large-
scale empirical study of fault localization in real-world Python programs including both data sci-
ence and traditional ones. This study investigates the effectiveness (i.e., localization accuracy), effi-
ciency (i.e., runtime performance), and other features (e.g., different entity granularities) of seven
well-known fault-localization techniques in four families (spectrum-based, mutation-based, predi-
cate switching, and stack-trace based) on 135 faults from 13 open-source Python projects from the
BUGSINPY curated collection [128].

The results of this study help inform future research on the capabilities and limitation of current
fault localization techniques on data science and other programs written in a dynamic programming
language like Python.

1.2.3 Supporting Tools and Dataset

On the practical side and based on the first two contributions listed above (i.e., Section 1.2.1 and
Section 1.2.2), this dissertation presents two tools, ANNOTEST and FAUXPY, developed to support data
science program developers with automated test generation and fault localization:

• The ANNOTEST tool is the implementation of the ANNOTEST technique introduced in Section 1.2.1.
It is an automated unit-test generation tool for NN programs written in Python. The ANNO-
TEST tool is publicly available,5 and its main repository6 includes the tool’s source code and
instructions to use it.

2ANNOTEST also found a previously unknown bug{1} and a documentation inconsistency{2} within PyTorch Vision. Upon
reporting these issues, they were promptly acknowledged and accepted by Vision’s maintainers.

3TIOBE language popularity index: https://www.tiobe.com/tiobe-index/
4Popularity of Programming Language Index: https://pypl.github.io/PYPL.html
5https://pypi.org/project/annotest
6https://github.com/atom-sw/annotest

https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html
https://pypi.org/project/annotest
https://github.com/atom-sw/annotest

6 Introduction

• FAUXPY is a multi-family fault localization tool for Python programs. We developed FAUXPY to
conduct the study introduced in Section 1.2.2. FAUXPY supports seven well-known fault local-
ization techniques in four families: spectrum-based, mutation-based, predicate switching, and
stack trace fault localization. To the best of our knowledge, at the time of writing, FAUXPY is the
only available tool for Python that offers fault localization techniques beyond spectrum-based
ones. FAUXPY is publicly available,7 and its repository8 includes its source code and instructions
to use it.

Furthermore, this dissertation presents a curated collection of real-world reproducible NN bugs,9

which can support further work in this domain. We developed this collection while conducting the
study introduced in Section 1.2.1. This collection includes the source code of 62 bugs in 19 open-
source NN projects surveyed by Islam et al. [57]—which we reproduced using ANNOTEST. We curated
this repository to ensure that each bug is easily reproducible using ANNOTEST—or with any other
Python source-code tool.

1.3 Outline

The rest of this dissertation is structured as follows:

Chapter 2 reviewers the state-of-the-art, specifically, studies regarding bug characteristics, test-case
generation, and fault localization that are relevant to this dissertation.

Chapter 3 presents ANNOTEST, our test generation technique tailored for NN programs, introduced
in Section 1.2.1. This chapter is based on the following publication [99]:

• M. Rezaalipour and C. A. Furia. An annotation-based approach for finding bugs in neural
network programs. Journal of Systems and Software, 201:111669, 2023.

Chapter 4 introduces our automated unit-test generation tool ANNOTEST10 along with the dataset
outlined in Section 1.2.3. This chapter is based on the following publication [100]:

• M. Rezaalipour and C. A. Furia. aNNoTest: An annotation-based test generation tool for
neural network programs. In IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 574–579, 2023.

Chapter 5 presents our extensive multi-family empirical study of fault localization in Python pro-
grams, introduced in Section 1.2.2. This chapter is based on the following publication [101]:

• M. Rezaalipour and C. A. Furia. An empirical study of fault localization in Python programs.
Empirical Software Engineering, 2024. Accepted in March 2024.

Chapter 6 presents FAUXPY, our automated, multi-family fault localization tool for Python programs.

Chapter 7 concludes the current dissertation and outlines potential avenues for future research.
7https://pypi.org/project/fauxpy
8https://github.com/atom-sw/fauxpy
9https://github.com/atom-sw/annotest-subjects

10Both the tool and technique are called ANNOTEST.

https://pypi.org/project/fauxpy
https://github.com/atom-sw/fauxpy
https://github.com/atom-sw/annotest-subjects

2
State of the Art

As highlighted by our thesis statement (Section 1.1), this dissertation aims to better understand the
capabilities and limitations of test generation and fault localization debugging techniques on data
science programs. Consequently, this chapter explores the state-of-the-art in three areas. Section 2.1
explores the nature of data science programs, focusing on the type of bugs they exhibit. Section 2.2
focuses on test generation studies. Section 2.3 highlights fault localization studies relevant to this
dissertation. Finally, Section 2.4 concludes this chapter with a list of main open gaps in these three
areas.

2.1 Data Science Programs

Data science programs—e.g., general machine learning and neural network programs—are often
implemented in Python or R, two dynamically typed programming languages [46]. These languages
provide well-maintained libraries and frameworks for various widely-used data science activities
such as manipulating data and visualizing them. For instance, Python’s extensive ecosystem provides
the TensorFlow framework along with libraries such as NumPy and Pandas, all of which are useful
for data science program development. Python also has a smooth learning curve due to its intuitive
syntax. These characteristics make these languages, particularly Python, an appealing choice for data
science program development as many of the practitioners in this area are experts within domains
other than computer science and may lack traditional programming skills and background.

Like any other programs, data science programs have bugs too. Following the increasing in pop-
ularity of neural network and other forms of machine learning, some recent research has looked into
the nature of bugs that occur in these programs to understand how they differ compared to “tradi-
tional” software. Studying these bugs can provide better understanding of the possible limitations
of different debugging activities applied to data science programs.

2.1.1 Bugs in Data Science Programs

Thung et al. [122] conducted an empirical study on 500 bugs and their corresponding human-written
patches found in Apache Mahout, Lucene, and OpenNLP, which are a data mining library, an informa-
tion retrieval library, and a natural language processing tool, respectively. They manually categorized
these bugs based on their types and investigated the relationship between these bug types and their
attributes such as their severity, bug-fixing duration and bug-fixing effort. According to their results,
most severe bugs in these systems are caused by incorrect implementation of certain algorithms or
functions (e.g., fuzzy search). Sun et al. [119] conducted a similar study on 329 bugs found in the
data analysis library Scikit-learn and two deep learning frameworks, Paddle and Caffe. They report

7

8 State of the Art

that unlike traditional software, compatibility bugs (e.g., conflicts with hardware, operating systems,
and version of dependencies) and variable bugs (e.g., incorrect variable assignments and wrong data
formats) are the most prevalent bug types in these programs.

Zhang et al. [142] studied the source code of several TensorFlow-based programs form Stack
Overflow and GitHub to discover the new debugging challenges specific to deep learning programs.
They report information such as the symptoms and root causes of these bugs and the challenges to
detect and locate them. The root causes reported in this paper (e.g., modeling and parameter mis-
takes, incorrect tensor shapes, and unfamiliarity of users with the underlying computational model
of TensorFlow) are all specific to machine learning programs. This observation indicates that bugs
in such programs are of a peculiar nature. Similar to Zhang et al. [142], Islam et al. [57] conducted
an empirical study on deep learning programs considering more deep learning frameworks and li-
braries, namely Caffe, Keras, Tensorflow, Theano, and Torch. They provide a classification of bug
types occurring in programs using the mentioned frameworks, their root causes, and their symptoms.

Islam et al. conducted a follow-up study [58] later on the same dataset to discover the repair
challenges of deep learning programs. Both of Islam et al.’s studies [57, 58] confirm some of the
results indicated by Zhang et al. [142], and also report that the bug-fix patterns of deep learning
programs are pretty different in nature compared to those found in traditional programs.

Humbatova et al. [53] developed a taxonomy of bugs found in deep learning programs by both
manually analysing an extensive set of GitHub and Stack Overflow software artifacts and interview-
ing several developers and researchers. This taxonomy contains various deep learning specific bug
types such as incorrect/incomplete DL models, wrong shape and types of input data, and training
process issues.

2.1.2 Bugs in Neural Network Models

A neural network (NN) program, such as those reviewed above [53, 57, 58, 142], implements in code
a NN model that is trained on some data, both of which can also be plagued by mistakes. Hence,
traditional software engineering approaches to test generation [120], mutation testing [51, 114],
fault localization [37], and even automated program repair [116] have been applied to NN models
and training data to assess and improve their quality, robustness, and correctness.

Under this paradigm, bugs are revealed by adversarial examples, e.g., two slightly different in-
puts that appear identical to the human eye but result in widely different classification by a trained
model [120]. Adversarial examples correspond to failing tests; and fault localization and fixing
correspond to finding [37] and changing [116] neuron weights in a model. This kind of research
is complementary to this dissertation. However, the focus of this dissertation is on debugging the
kind of bugs reviewed in Section 2.1.1, which are those found in the code implementations of NN
programs.

Summary

The studies reviewed in Section 2.1.1 indicate that bugs found in data science programs are quite
different in nature compared to those found in traditional software. These programs contain plenty of
more traditional bugs too. However, the inputs and tests to trigger these bugs are of a different nature
(Chapter 3). Traditional fault localization techniques may also behave differently on these programs
due to both the unique nature of their bugs and the dynamic nature of the programming languages
that implement them (Chapter 5). In addition, although most of these studies have nice replication
packages, they took bugs from Stack Overflow and older versions of data science programs. Thus,
they do not provide a fully reproducible set of bugs (such as including build files, dependencies, and

2.2 Automated Test Generation 9

test suites). To enable controlled debugging studies in this area, curated collections of reproducible
data science bugs similar to for instance Defects4J [63] are required (Chapter 4).

2.2 Automated Test Generation

Testing a program comprises three main steps [9]. First, selecting concrete inputs (arguments and
pre-state) [11]; second, executing the program under test on those inputs; and third, checking
whether the program behaved as expected while executing—in particular, whether its output (re-
turn values and post-state) is as expected.

This dissertation focuses on the first step, generating valid test inputs that satisfy the validity
constraints (i.e., preconditions) of the program being tested (Chapter 3). The second step is al-
ready addressed by existing unit-testing frameworks such as Pytest. In contrast, addressing the third
step requires an oracle: a mechanism to check the outcome of test execution; thus, the problem of
designing such mechanisms is known as the oracle problem [14, 87, 95, 113], briefly reviewed in
Section 2.2.2. In our study, we can leverage any existing oracles (Section 3.3.5).

2.2.1 Test-input Generation

Randoop [89] and EvoSuite [39] are two of the most popular automatic test generation tools for
object-oriented programs written in Java. Randoop employs random testing to generated random
sequences of method calls to produce tests. While having a simple implementation and being fairly
effective at finding bugs, random testing is known as not to be quite effective at producing test
suites when a certain coverage is needed [88]. EvoSuite attempts to achieve high program coverage
by using a genetic algorithm, while keeping the test suite size as small as possible. EvoSuite is
a particular form of Search-based Testing [8], which encodes the input generation problem as an
optimization problem, and then uses a metaheuristic algorithm [19, 36] to solve it.

For test generation, Randoop and EvoSuite crucially rely on the typing information of methods
provided by the statically typed languages such as Java. Typing information is not available in dy-
namically typed programming languages such as Python and R. Data science programs are mostly
written in dynamically typed programming languages. These languages have fundamental issues
with automatic test generation because of their dynamic nature [78].

In fact, despite Python’s popularity [5], the first widely available tools for automated test-case
generation in Python appeared only in recent years [29, 78, 80]. Pynguin [78] is based on ge-
netic algorithms like EvoSuite, and leverages Python’s type hints [4] for test generation. Hypothe-
sis [80] implements property-based testing, which generates random inputs trying to satisfy some
programmer-written properties. Deal [29] is a Python library for design by contract that provides
decorations to express pre- and postconditions; based on them, Deal supports both static and dy-
namic (i.e., test-case generation) analysis.

All the three mentioned tools leverage additional annotations to generate tests for Python pro-
grams: Pynguin supports type hints (although it can also generate tests without type annotations),
whereas Hypothesis relies on user-provided properties, and Deal exploits pre-conditions for test gen-
eration.

Type hints are a way of providing typing information in Python programs. However, data science
programs work with complicated data types such as NumPy arrays, TensorFlow objects and Keras
models that cannot be specified properly by type hints. For instance, the type of a Keras model
object given to a function as input is simply specified as Sequence in type hints, which omits important
information about the structure of the model, and thus, resulting in the generation of bad test suites—

10 State of the Art

invalid tests (Section 3.2). Hypothesis supports NumPy arrays. However, it does not support more
complex data types such as TensorFlow objects.

Although directly using Pynguin, Hypothesis, or Deal to generate tests for data science programs
might be possible in principle, it would involve plenty of additional manual work to express the
necessary constraints indirectly through a combination of type hints (Pynguin) and testing strategies
(Hypothesis), and to program test-case generation strategies that match them (Deal). In fact, to
generate effective tests for data science programs, more expressive type annotations are required
(Section 3.3.1), which is a clear research gap in the literature.

2.2.2 Oracles

Similarly as for test-input generation, a key research challenge is automating the generation of suit-
able oracles, so as to reduce the required developer effort. The simplest kind of oracles are implicit
oracles, such as the crashing oracles. More expressive automated oracles may be derived from some
kind of formal specification [7], such as assertions [26] and contracts [12], as well from informal or
semi-formal documentation written in natural language [18, 112].

In absence of specifications, a practical option is building regression oracles [134], which check
whether a new version of a program retains the same input/output behavior on the test inputs as
a previous version [132]; test-input generators—like the aforementioned Randoop, EvoSuite, and
Pynguin—are usually capable of building some kind of regression oracles automatically.

Summary

Data science programs are usually written in dynamically typed programming languages, which do
not contain typing information required by currently existing test generation tools. Type hints can
provide such information; but it is not expressive enough considering the complicated data types
used in data science programs. Thus, even with the existence of type hints, current test generation
techniques cannot perform effectively for these programs. As a result, a more expressive set of type
annotations are needed to address this problem and fill the research gap (Chapter 3).

2.3 Fault Localization

Fault localization (FL) has been a widely researched topic for more than two decades [131, 136]. FL
techniques relate program failures—e.g., crashes or assertion violations—to specific faulty locations
within program’s source code. Each FL technique assigns a suspiciousness score to different program
entities—e.g., statements, functions, and files—based on the information collected during the exe-
cution of program’s test suite. The output of a FL technique is a list of program entities along with
their respective suspiciousness scores. Program entities with higher suspiciousness scores are more
likely to be responsible for the failure. Developers or automated program repair techniques [44, 82]
could use this list to decide where the fixes should be applied.

A fault localization family is a group of techniques that utilize the same kind of information to
compute suspiciousness scores. Techniques in the spectrum-based fault localization (SBFL) family [6,
61, 130] compute suspiciousness scores based on program spectra [98], which is the execution trace
of the program as it runs different tests (Section 5.2.1). The mutation-based fault localization (MBFL)
family [83, 91] computes suspiciousness scores relying on mutation analysis [60] (Section 5.2.2).
The predicate switching (PS) family [140] finds buggy predicates by examining how changing the
state of different predicates at runtime affects the output of the program’s failing tests (Section 5.2.3).

2.4 Conclusions and Open Research Gaps 11

The stack trace (ST) family [145] uses the stack trace information of failed tests to localize bugs
(Section 5.2.4).

The Tarantula SBFL technique [61] was one of the earliest, most influential FL techniques, also
thanks to its empirical evaluation showing it is more effective than other competing techniques [25,
97]. The Ochiai SBFL technique [6] improved over Tarantula, and it often still is considered the
“standard” SBFL technique. These earlier empirical studies [6, 61], as well as other contemporary
and later studies of FL [91], used the Siemens suite [54]: a set of seven small C programs with seeded
bugs. Since then, the scale and realism of FL empirical studies has significantly improved over the
years, targeting real-world bugs affecting projects of realistic size. For example, Ochiai’s effectiveness
was confirmed [69] on a collection of more realistic C and Java programs [35]. When Wong et
al. [130] proposed DStar, a new SBFL technique, they demonstrated its capabilities in a sweeping
comparison involving 38 other SBFL techniques (including the “classic” Tarantula and Ochiai). In
contrast, numerous empirical results about fault localization in Java based on experiments with
artificial faults were found not to hold to experiments with real-world faults [94] using the Defects4J
curated collection [63].

With the introduction of novel fault localization families—most notably, MBFL—empirical com-
parison of techniques belonging to different families became more common [83, 91, 94, 145]. The
Muse MBFL technique was introduced to overcome a specific limitation of SBFL techniques: the so-
called “tie set problem”. This occurs when SBFL assigns the same suspiciousness score to different
program entities, simply because they belong to the same simple control-flow block (see Section 5.2.1
for details on how SBFL works). Metallaxis-FL [91] (which we simply call “Metallaxis” in this dis-
sertation) is another take on MBFL that can improve over SBFL techniques.

The comparison between MBFL and SBFL is especially delicate given how MBFL works. As
demonstrated by Pearson et al. [94], MBFL’s effectiveness crucially depends on whether it is applied
to bugs that are “similar” to those introduced by its mutation operators. This explains why the MBFL
studies targeting artificially seeded faults [83, 91] found MBFL to outperform SBFL; whereas studies
targeting real-world faults [94, 145] found the opposite to be the case—a result also confirmed by
the present dissertation in Chapter 5.

Summary

There are many fault localization techniques in the literature, which offer different trade offs between
accuracy and performance [135]. On the other hand, despite Python’s popularity as a programming
language, the vast majority of fault localization empirical studies (which we discussed above) target
other languages—mostly C, C++, and Java. To our knowledge, CharmFL [55, 121] is the only
available implementation of fault localization techniques for Python; the tool is limited to SBFL
techniques.

We could not find any realistic-size empirical study of fault localization using Python programs
comparing techniques of different families on real-world data science or even traditional Python pro-
grams. This is a gap in both the availability of tools [109] (Chapter 6) and the empirical knowledge
about fault localization in Python (Chapter 5).

2.4 Conclusions and Open Research Gaps

In this chapter, we summarized studies regarding three main areas related to our thesis statement:
data science programs, automated test generation techniques, and fault localization techniques. We
also provided an overview of open research gaps within each of these three areas with references to
the respective chapters where we address them. These research gaps are as follows:

12 State of the Art

• Bugs in data science programs, as well as the inputs and tests to trigger them, are different in
nature compared to traditional programs (Chapter 3).

• Traditional fault localization techniques may behave differently when applied to data science
programs (Chapter 5).

• Curated collections of reproducible data science bugs are required to facilitate controlled de-
bugging studies (Chapter 4).

• Test generation for data science programs requires a more expressive set of type annotations
(Chapter 3).

• There are no realistic-size empirical study of fault localization comparing techniques from
different families on real-world data science and traditional Python programs (Chapter 5).

• There are no available open-source fault localization tools for the Python programming lan-
guage to support research in this area (Chapter 6).

Part II
Test Generation

3
The ANNOTEST Test Generation Approach

Neural networks are increasingly being used in safety-critical systems, underscoring crucial needs for
developing effective testing techniques specialized for them. The focus of most studies is on testing
neural-network models (Section 2.1.2); but these models are defined by writing programs, and there
is evidence that these neural-network (NN) programs often exhibit bugs [57, 142]. In this chapter,
we present ANNOTEST, an approach for generating test inputs for this type of programs.

NN programs are typically written in dynamically-typed languages (e.g., Python), which cannot
express detailed constraints about valid function inputs (e.g., matrices with certain dimensions).
Without knowing these constraints, automated test-case generation produces invalid inputs, trig-
gering spurious failures that do not reflect real bugs. To address this challenge, we introduce a
simple annotation language named AN (Section 3.3.1), tailored for concisely expressing valid func-
tion inputs in neural-network programs. ANNOTEST takes as input an annotated program, and uses
property-based testing to generate random inputs that satisfy the validity constraints. Writing AN an-
notations is a manual process; we present some simple guidelines in this chapter to facilitate writing
them (Section 3.3.2).

We evaluated ANNOTEST on 19 open-source NN programs sourced from Islam et al.’s survey [57],
demonstrating ANNOTEST capability at finding widespread bugs in real-world NN programs. Based
on further analyses, we show that the manual effort of annotating programs in AN is reasonable and
tests generated by ANNOTEST have high coverage, comparable to those written by developers.

Structure of the Chapter

The current chapter is organized as follows:

Section 3.1 provides this chapter’s introduction, including its motivation and scope.

Sections 3.2 and 3.3 present how ANNOTEST works.

Sections 3.4–3.6 outline our experimental design.

Sections 3.7 and 3.8 presents our experimental results and the threats to the validity of our exper-
imental evaluation.

Section 3.9 concludes this chapter and highlights possible avenues for future work.

15

16 The ANNOTEST Test Generation Approach

3.1 Introduction

Neural networks have taken the (programming) world by storm. With their capabilities of solving
tasks that remain challenging for traditional software, they have become central components of
software systems implementing complex functionality such as image processing, speech recognition,
and natural language processing, where they can reach performance at or near human level. These
tasks are widely applicable to domains such as automotive and healthcare, where safety, reliability,
and correctness are critical. Therefore, the software engineering (research) community has been
hard at work designing techniques to assess and ensure the dependability of software with neural
network (NN) components.

Testing techniques, in particular, are being extensively developed to cater to the specific require-
ments of NN (and, more generally, machine learning) systems [104]. Most of this research focuses
on testing NN models: instances of a specific NN architecture, trained on some data and then used
to classify or transform new data. Testing a NN model entails assessing qualities such as its robust-
ness and performance as a classifier. However, neural networks are programs too: a NN model is
usually implemented in a programming language like Python, using frameworks such as Keras or
TensorFlow. As also stated in Chapter 1, there is clear evidence that these neural network programs
tend to be buggy [53, 57]; therefore, a technique for finding these bugs would be practically very
useful and complement the extensive work on NN model testing [138]. This chapter presents a novel
contribution in this direction.

NN programs may seem simple by traditional metrics of complexity: for example, the average
project size of the NN projects surveyed by Islam et al. [57] is just 2165 lines of code; and the major-
ity of the bugs they found are relatively simple ones such as crashes and API misuses. Nevertheless,
other characteristics make traditional test-case generation techniques ineffective to test such pro-
grams. NN programs are written in dynamically typed languages like Python, where the type of
variables is unknown statically. Without this information, generating valid inputs is challenging for
generic techniques such as random testing and genetic algorithms [78]. Even if type annotations
were available, NN programs routinely manipulate complex data structures—such as vectors, ten-
sors, and other objects—whose precise “shape” is not expressible with the standard types (integers,
strings, and so on). As we demonstrate in Section 3.2 and Section 3.7.4, without such precise infor-
mation automated test case generation tends to generate many invalid inputs that trigger spurious
failures.

Overview of ANNOTEST

This chapter presents ANNOTEST: an approach to automatically generating bug-finding inputs for NN
program testing. A key component of ANNOTEST (described in Section 3.3) is AN: a simple annotation
language to concisely and precisely express the valid inputs of functions in NN programs. The AN
language supports expressing the kinds of constraints that are needed in NN programs (for example:
a variable should be a vector of size from 2 to 5 with components that are positive integers). AN
is also easily extensible to accommodate other constraints that a specific NN program may need to
encode.

Given an annotated NN program, ANNOTEST automatically generates unit tests for the program
that span the range of valid inputs. To this end, the current implementation of ANNOTEST uses
property-based testing (more precisely, the Hypothesis [80] test-case generator). Using the AN lan-
guage decouples specifying the constraints from the back-end used to generate the actual tests;
therefore, different back-end tools could also be used that better suite the kinds of constraints used
in a project’s annotations.

3.1 Introduction 17

Overview of Experimental Results

Sections 3.4–3.7 describes an extensive experimental evaluation of ANNOTEST, targeting 19 open-
source NN programs, manually analyzed by Islam et al. [57], using some of the most widely used NN
frameworks (Keras, TensorFlow, and PyTorch). After we manually annotated 24 functions, ANNOTEST

generated tests triggering 63 known bugs reported by Islam et al. [57] for these functions, as well
as 31 previously unknown bugs. To experiment with ANNOTEST’s capabilities when used extensively,
we also annotated all functions in two larger NN projects; the total of 330 annotations that we wrote
enabled ANNOTEST to discover 50 bugs with only 6 false positives. These experiments demonstrate
that ANNOTEST can be used both extensively on a whole project, and opportunistically on only a few
selected functions that are critical. Since our evaluation is based on Islam et al. [57]’s extensive
survey, it can assess ANNOTEST’s capabilities of finding relevant bugs in real-world NN programs.

In other experiments, we quantify the amount of annotations needed by ANNOTEST, compare it
to generic (non NN-specific) test-case generators for Python, as well as to developer-written tests,
so as to better understand the trade-off between programmer effort and quality assurance benefits
it offers.

Contributions

In summary, this chapter presents the following contributions:

• ANNOTEST: an approach for test-case generation geared to the characteristics of NN programs.

• AN: a simple annotation language capable of concisely expressing precise constraints on the
valid inputs of functions in NN programs, with basic guidelines to use it.

• An experimental evaluation of ANNOTEST’s bug-finding capabilities on 19 open-source NN
projects surveyed by Islam et al. [57].

• For reproducibility, the implementation of ANNOTEST1 and all experimental artifacts are pub-
licly available.2

Scope

While ANNOTEST is applicable, in principle, to any Python programs—not just NN programs— it
was designed to primarily cater to the characteristics of NN programs. As we will see concretely
with Section 3.2’s example, NN programs often involve complex constraints on their inputs, which
are impossible or highly impractical to express using Python’s type hints annotations. ANNOTEST

provides annotations that go beyond type hints, and hence are especially useful for the kinds of
constraints that we commonly find in NN programs.

On the other hand, being able to express complex constraints is not sufficient to build tests auto-
matically; as we will see in Section 3.7.4, generating inputs that satisfy the constraints is challenging;
simple strategies such as generating input at random and then filtering them using the constraints
are mostly ineffective. ANNOTEST defines suitable generators for each of its constraints, so that valid
inputs can be generated efficiently and automatically even for the complex combinations of input
constraints that are common in NN programs.

1Chapter 6 presents the ANNOTEST tool in details.
2Replication package: doi.org/10.6084/m9.figshare.19082558.v1

doi.org/10.6084/m9.figshare.19082558.v1

18 The ANNOTEST Test Generation Approach

1 def DenseNet(input_shape=None, dense_blocks=3, dense_layers=-1,
2 growth_rate=12, nb_classes=None, dropout_rate=None,
3 bottleneck=False, compression=1.0, weight_decay=1e-4,
4 depth=40):
5 if nb_classes == None:
6 raise Exception(’Please define number of classes’)
7 if compression <= 0.0 or compression > 1.0:
8 raise Exception(’Compression must be between 0.0 and 1.0.’)
9 if type(dense_layers) is list:

10 if len(dense_layers) != dense_blocks:
11 raise AssertionError(’Dense blocks must be the same as layers’)
12 elif dense_layers == -1:
13 dense_layers = (depth - 4) / 3 # Bug: division / returns a float
14 # ... 23 more lines of code ...

Listing 3.1. An excerpt of function DenseNet from project DenseNet. The code has a bug on line 13.

15 @arg(input_shape): tuples(ints(min=20, max=70),
16 ints(min=20, max=70),
17 ints(min=1, max=3))
18 @arg(dense_blocks): ints(min=2, max=5)
19 @arg(dense_layers): anys(-1,
20 ints(min=1, max=5),
21 int_lists(min_len=2, max_len=5, min=2, max=5))
22 @arg(growth_rate): ints(min=1, max=20)
23 @arg(nb_classes): ints(min=2, max=22)
24 @arg(dropout_rate): floats(min=0, max=1,
25 exclude_min=True, exclude_max=True)
26 @arg(bottleneck): bools()
27 @arg(compression): floats(min=0, max=1, exclude_min=True)
28 @arg(weight_decay): floats(min=1e-4, max=1e-2)
29 @arg(depth): ints(min=10, max=100)
30 @require(type(dense_layers) is not list or len(dense_layers) == dense_blocks)

Listing 3.2. AN annotations for function DenseNet in Listing 3.1.

3.2 An Example of Using ANNOTEST

DenseNet{3} is a small Python library that implements densely connected convolutional networks [52]
(a NN architecture where each layer is directly connected to every other layer) on top of the Keras
framework. Listing 3.1 shows a slightly simplified excerpt of function DenseNet—the main entry
point to the library—in an earlier version of the project.{4}

The complete implementation of function DenseNet comprises 34 lines of code (excluding com-
ments and empty lines), and follows a straightforward logic: after checking the input arguments
(code in Listing 3.1), it combines suitable instances of Keras classes to model a densely connected
network, and finally returns a model object to the caller. Listing 3.1’s code, however, has a bug
at line 13—one of the bugs collected in Islam et al. [57]’s survey. The expression assigned to
dense_layers is a floating point number because the division operator / always returns a float
in Python 3; however, if dense_layer is not an integer, a later call in DenseNet’s code to the Keras
library fails. DenseNet’s developers discovered the bug and fixed it (by adding an int conversion at

3.3 How ANNOTEST works 19

line 13) in a later project revision.{5}

DenseNet’s implementation is deceptively simple: despite its small size and linear structure, it
only accepts input arguments in very specific ranges. Argument input_shape, for example, corre-
sponds to a so-called shape tuple of integers; in DenseNet, it should be a triple of integers with first
element at least 20. If the first element is less than 20, DenseNet eventually fails while trying to
create a layer with a negative dimension—which violates an assertion of the Keras library. Another
example is argument dense_layers, which can be an integer or an integer list; if it is the latter, its
length must be equal to argument dense_block, or DenseNet terminates at line 11 with an assertion
violation.

Without knowing all these details about valid inputs, testing DenseNet using a general-purpose
automated test-case generator would trigger lots of spurious failures3 when executing tests that
call DenseNet with invalid inputs. The few failing but valid tests that trigger bugs such as that in
Listing 3.1 would be a needle in the haystack of all invalid tests, thus essentially making automated
test-case generation of little help to speed up the search for bugs.

To precisely and concisely express the complex constraints on valid inputs that often arise in NN
programs, we designed the AN annotation language—which is a central component of the ANNOTEST

approach. Listing 3.2 shows annotations written in AN4 that characterize DenseNet’s valid inputs.
Whereas Section 3.3 will present AN’s features in greater detail, it should not be hard to glean the
meaning of the annotations in Listing 3.2. For example, the first annotation encodes the aforemen-
tioned constraint on input_shape, and the last one expresses the relation between dense_layers

and dense_blocks when the former is a list. It should also be clear that AN’s expressiveness is much
greater than what is allowed by the standard programming-language types—such as Python’s type
hints.

Equipped with the annotations in Listing 3.2, ANNOTEST generates and runs 36 unit tests for
DenseNet in 53 seconds. All the tests are valid, and only one is failing, reaching Listing 3.1’s line 13
and then ending with a failure due to dense_layers being a float that we described above—precisely
revealing the bug.

The experimental evaluation of ANNOTEST—described in Sections 3.4–3.7—will analyze many
more NN programs whose characteristics, input constraints, and faulty behavior are along the same
lines as the example discussed in this section. This will demonstrate ANNOTEST’s capabilities of pre-
cisely testing and finding bugs in NN programs.

3.3 How ANNOTEST works

Figure 3.1 overviews the overall process followed by the ANNOTEST approach. To test a NN program
with ANNOTEST, we first have to annotate its functions (including member functions, that is meth-
ods) using the AN annotation language (Section 3.3.1). This is the only step that is manual, since
the annotations have to encode valid inputs of the tested functions—the same kind of information
that is needed to write unit tests. Section 3.3.2 provides guidelines that help structure the manual
annotation process so that it only requires a reasonable amount of effort; furthermore, users do not
need to annotate a whole program but only those functions that they want to test with ANNOTEST.

Then, the ANNOTEST tool takes as input an annotated program and generates unit tests for it. To
this end, it encodes the constraints expressed by the AN annotations in the form of test templates for

3For example, Pynguin [78] generates 8 tests, all invalid and none triggering the failure at line 13. With type hints
(supported by Pynguin), it generates 5 tests, 4 invalid and none triggering (any) failure. Section 3.7.4 describes more
experiments with Pynguin. (As we discuss in Section 3.5, Pynguin doesn’t work with the version of TensorFlow used by
Listing 3.1’s code; thus, we mocked the relevant library calls in this example.)

4The AN annotations in this dissertation use a pretty-printed and slightly simplified syntax.

20 The ANNOTEST Test Generation Approach

NN program aN annotations

Test templates

Test suite
Ë passing tests
é failing tests

annotate g

ANNOTEST tool

Hypothesis tool

run

Figure 3.1. An overview of how the ANNOTEST approach works.

the property-based test-case generator Hypothesis (Section 3.3.4); then, it runs Hypothesis which
takes care of generating suitable tests. Finally, the generated unit tests can be run as usual to find
which are passing and which are failing—and thus expose some bugs in the NN program (Sec-
tion 3.3.5).

3.3.1 The AN Annotation Language

By writing annotations in the AN language, developers can precisely express the valid inputs of a
function in a NN program.5 To this end, AN provides type annotations and preconditions as well
as an extension mechanism to define arbitrarily complex constraints. In addition, AN offers a few
auxiliary annotations, which encode other kinds of information that is practically useful for test-case
generation.

Type Annotations

A type annotation follows the syntax @arg(v):T , where v is a function argument (parameter), and
T is a type constraint that specifies a set of possible values for v. A type annotation refers to the
function that immediately follows it in the source code. A function can have up to as many type
annotations as it has arguments.

AN supports several different type constraints, which can express a broad range of constraints—
from simple ones, such as those that are also expressible using Python’s type hints, up to complex
instances of special-purpose classes. The simplest, and most specific, type constraint uses keyword
froms6 to enumerate a list of valid values. For example, constraint froms([0, 0.0, None, zero()])

corresponds to any of the four values: integer zero, floating-point zero, None, and what is returned
by the call zero().

Constraints for atomic types specify that an argument is a Boolean (bools), an integer number
(ints), or a floating-point number (floats). Integer arguments can be restricted to a range be-
tween min and max values; for example, Listing 3.2’s line 23 constrains nb_classes to be an integer
between 2 and 22. Floating-point arguments can also be restricted to ranges, and the ranges can be

5Directly annotating the source code, rather than having a separate generator used only when testing, also helps keep
the annotations consistent with the implementation.

6AN type constraints use names that are “pseudo-plurals” (by adding a trailing s) of the corresponding Python types.
This avoids using reserved keywords and also conveys the idea that a type constraint identifies a set of values. This
convention is also customary in property-based testing [24].

3.3 How ANNOTEST works 21

31 @arg(k): ints(min=1, max=1000)
32 @arg(w): ints(min=1, max=1000)
33 @arg(kwargs): dicts(keys=froms(["input_shape"]),
34 values=np_shapes(min_dims=1, max_dims=1))
35 def dim_ordering_reshape(k, w, **kwargs):

Listing 3.3. An example of AN annotations for a function with keyword arguments.

open, closed, or half-open; for example, Listing 3.2’s line 27 constrains compression to be a num-
ber in the half-open interval (0,1] which includes 1 but excludes 0. Floating-point constraints also
support including or excluding the special values NaN and Inf, as well as the precision (in bits) of
the generated floating point values.

Constraints for sequences specify that arguments are Python lists, tuples, or an array in the
NumPy7 library (which is widely used in NN programs, as well as other data-intensive applications).
Lists and tuples can have any number of elements, whose possible values are also constrained using
AN’s type constraints. For example, Listing 3.2’s line 15 specifies a tuple with 3 integer elements:
the first and second one between 20 and 70, and the third one between 1 and 3. AN also includes
shorthands for lists with homogeneous elements: Listing 3.2’s line 21 uses shorthand int_lists to
specify lists of length between 2 and 5, whose elements are integers between 2 and 5.

The shape of a NumPy array is a tuple of positive integers that characterize its size. For example,
the tuple (256, 256, 3) is the shape of a 3-dimensional array whose first two dimensions have
size 256 and whose last dimension has size 3; arrays with this shape can represent 256x256 pixel
color pictures. Type constraint np_shapes specifies arguments that represent shapes with a certain
range of possible dimensions and sizes. For example, np_shapes(min_dims=3, max_dims=3) are
the shapes of all 3-dimensional arrays whose dimensions can have any size.

Type constraint np_arrays specifies NumPy array arguments with any shape and whose elements
have any of the valid NumPy types. The shape can be constrained by an np_shapes annotation
or given directly as a tuple. For example, using the shape mentioned in the previous paragraph,
np_arrays(np_type=dtype("uint32"), shape=(256,256,3)) specifies 256x256x3 arrays whose
components are unsigned 32-bit integers (one of NumPy’s data-types), which could represent ran-
dom color pictures.

Type constraints for maps specify Python’s widely used associative dictionaries: dicts(K,V,
min_size, max_size) corresponds to all subsets of the Cartesian product K × V with between
min_size and max_size elements, where K and V are type constraints that apply to the keys and
values respectively. A typical usage of this is to constraint Python’s optional keyword argument
**kwargs. For example, Listing 3.3 shows how we used dicts to constrain the **kwargs argument
of function dim_ordering_reshape{6} (from a project using NN models to simulate multi-player
games), so that it simply consists of all mappings from string "input_shape" to singletons repre-
senting the shapes of monodimensional arrays.

To express the unions of several type constraints, AN includes the anys type constraint, which
specifies the union of its arguments. For example, Listing 3.2’s line 19 says that dense_layers can
be any of: i) the number −1, ii) an integer between 1 and 5, or iii) an integer list with between 2
and 5 elements that are between 2 and 5.

7NumPy: https://numpy.org

https://numpy.org

22 The ANNOTEST Test Generation Approach

36 @arg(generator): objs(gan_gens)
37 @arg(discriminator): objs(gan_discs)
38 @arg(name): froms(["gan1", "gan2", "gan3", "gan4", "gan5"])
39 def build_gan(generator, discriminator, name="gan"):
40 # ...
41

42 @generator
43 @exclude
44 @arg(latent_dim): ints(min_value=1, max_value=1000)
45 @arg(input_shape): np_shapes(min_dims=2)
46 def gan_gens(latent_dim, input_shape):
47 from examples.example_gan import model_generator
48 generator = model_generator(latent_dim, input_shape)
49 return generator

Listing 3.4. An example of using type constraint objs and a custom generator function.

Custom Generators

While AN’s type annotations can define a broad range of frequently used constraints, they cannot
cover all cases that one may encounter in practice. To support arbitrary type constraints, AN in-
cludes the objs(gen) annotation. This is used as a type constraint, and identifies all values that are
produced by the user-provided generator function gen. Function gen must be visible at the entry of
the functions whose annotations refer to it; gen itself is marked with the annotation @generator.

For instance, Listing 3.4 shows the annotations we wrote for function build_gan{7} (from the
same project as Listing 3.3). The function combines two Keras model instances, generator8 and
discriminator, to build GANs (Generative Adversarial Networks [45]). These instances are com-
plex objects that are built by calls to the Keras library; therefore, we introduced two custom gen-
erators, gan_gens and gan_discs, that construct such instances for testing build_gan. Listing 3.4
shows gan_gens’s implementation: the generator’s input are constrained by using AN’s type annota-
tions as usual; ANNOTEST will use gan_gens’s output as input for build_gan.

Whereas generators such as gan_gens may look daunting to write at first, we found that they
simply encapsulate existing snippets of the project that call the function under test (build_gan in
Listing 3.4). Based on this observation, Section 3.3.3 presents a simple process to build generators
by combining common refactoring steps; this drastically alleviates the effort to write generators,
reducing it to just selecting the right snippets of client code in the project.

Preconditions

Argument annotations constrain each function argument individually. Preconditions may express
constraints that affect multiple arguments simultaneously: @require(P), where P is a Python Boolean
expression, specifies that a function’s arguments must be such that P evaluates to true. A precondi-
tion refers to the function that immediately follows it in the source code. Expression P may refer to
any arguments of the specified function, as well as to any other program element that is visible at the
function’s entry (such as other class members). A function can have any number of preconditions,
all of which constraint the function’s argument. For example, Listing 3.2’s line 30 requires that,
whenever argument dense_layer is a list, it should have as many elements as the value of integer
argument dense_blocks.

8It is just a coincidence that one argument is also named “generator”.

3.3 How ANNOTEST works 23

50 @arg(image_path): froms(["image1.png", "image2.png",
51 "image3.png", "image4.png"])
52 @arg(generator): objs(grids)
53 @arg(cmap): froms([’gray’, ’bone’, ’pink’, ’spring’, ’summer’, ’cool’])
54 @cc_example(["image1.png", grids(3, 6, 6, 3), ’gray’])
55 def __init__(self, image_path, generator, cmap=’gray’):
56 # ...

Listing 3.5. An example of using the cc_example auxiliary annotation on the constructor of class
ImageGridCallback.

Auxiliary Annotations

The AN language includes a few more features to control the test-generation process. Functions
marked with @exclude are not tested (such as generator gan_gens in Listing 3.4). Annotation
@timeout introduces a timeout to the unit tests generated for the function it refers to.

Python modules may include snippets of code that is not inside any functions or methods but
belongs to an implicit “main” environment. ANNOTEST will generate tests for this environment for
any module that is annotated with @module_test. Since modules don’t have arguments, these tests
simply import and execute the main environment. This is a simple feature, but practically useful
since some of the NN program bugs that were surveyed in [57] are located in the main environment.

To test an instance method m, one needs to generate an instance o of m’s class C to use as target
of the call to m. To this end, C’s constructor is called. The constructor may also be equipped with
AN annotations; as a result, testing m entails also testing C’s constructor. This can be a problem if
the constructor has bugs that prevent a correct execution of m. To handle this scenario, AN includes
the annotation @cc_example, which supplies a constructor with a list of concrete inputs for it. If C’s
constructor is equipped with this annotation, ANNOTEST will only call it using the inputs given by
the @cc_example annotation when it needs to create instances to test any methods of C. This way,
one can effectively decouple testing a class’s constructor from testing the class’s (regular) methods,
so that any bugs in the former do not prevent testing of the latter. For example, the constructor of
class ImageGridCallback{8} shown in Listing 3.5 is regularly tested through its type annotations;
however, when it is used to construct instances of the class to test other methods, it is only called
with the more restricted set of inputs specified by the @cc_example annotation. The example also
demonstrates that a generator function (grids in this case) can also be used as a regular function
(second component of @cc_example).

3.3.2 Annotation Guidelines

To test a NN program using ANNOTEST, one must first annotate the functions to be tested using the
language described in Section 3.3.1. Ultimately, writing suitable annotations requires knowledge
about the program’s specification—that is, its intended behavior. The very same knowledge is neces-
sary to write unit tests for the programs; the only difference is that a test supplies individual (valid)
inputs, whereas an annotation can capture a range of possible (valid) inputs.

This entails that the effort of writing annotations (or tests) for a project depends on whether the
programmer already has this knowledge—typically, because they are developers of the project under
test—or is trying to test a project they are not familiar with. In this section, we focus on the latter,
more challenging scenario. To help such a process of “discovery”—figuring out suitable annotations
for NN programs written by others—and to make it cost-effective, we present some simple guidelines
that suggest which artifacts to inspect and in which order. In the experiments described in Sections

24 The ANNOTEST Test Generation Approach

SOURCE ANNOTATIONS

1 calls of f in its project P basic type annotations @arg
2 assertions and exceptions raised

by f’s implementation
refined type annotations @arg,
preconditions @require

3 calls of NN framework functions
in f’s implementation

refined type annotations @arg,
preconditions @require,
custom generators

4 calls of other functions g in P annotations of g

Table 3.1. Guidelines to inspect the implementation of a NN function f to suggest how to annotate it using
AN’s annotation language. Each SOURCE of information in f or elsewhere in f’s project P suggests matching
AN ANNOTATIONS.

3.4–3.7, we followed these guidelines to annotate NN projects systematically and with reasonable
effort—despite our previous lack of familiarity with those codebases.

Consider a Python function f in some NN project P that we would like to test. If f’s behavior (and,
in particular, the constraints on its inputs) is documented in the project, this documentation should
be the first source of information to write AN annotations. However, if f lacks any (precise) docu-
mentation,9 we will have to inspect its implementation. Table 3.1 lists four sources of information
about f’s valid inputs in increasing level of detail.

To bootstrap the process, we inspect any usage of f within the NN program P. Since we focus on
testing programs, not libraries, it’s likely that every major function is called somewhere in P. These
calls of f provide basic examples of valid inputs, which we loosely encode using AN’s type annotations
of Section 3.3.1. In Listing 3.1’s example, looking at usages of DenseNet indicates that input_shape
should be a triple of int, compression should be a float, and so on.10

Next, we look into f’s implementation for any (implicit or explicit) input validation. Often, a
function uses exceptions or assertions to signal invalid input arguments. This information is useful to
refine the basic type annotations, and may also suggest constraint that involve multiple arguments—
which we can encode using AN’s preconditions of Section 3.3.1. In Listing 3.1’s example, DenseNet’s
initial validation clearly indicates, among other things, compression’s precise interval of validity,
and the precondition on line 30 in Listing 3.2.

The library functions from some NN framework used in f’s implementation may also (indirectly)
introduce requirements on f’s inputs or otherwise suggest plausible ranges of variability. Indirect
constraints may be more complex, and may even require custom generators (Section 3.3.3). In
the running example, a call to Keras’s Convolution2D constructor in DenseNet (not in Listing 3.1)
suggests the range for argument weight_decay at line 28 in Listing 3.2.

Whenever f’s implementation calls other functions in the same project, this process can be re-
peated for these other functions, thus ensuring the consistency of the other functions’ and f’s anno-
tations. In the running example, DenseNet calls in a loop another function dense_block in the same
project, passing growth_rate as argument and then incrementing it in each iteration. The input
constraints of dense_block, once figured out, indirectly suggest the validity range for DenseNet’s
growth_rate at line 22 in Listing 3.2.

The guidelines we described are flexible and remain useful even if they are not followed in full.
For example, sometimes we found it useful to start from very narrow annotations (merely encoding
the available examples of usages of f in P) and relax them as we discovered more information—rather

9Many of the NN programs we used in Sections 3.4–3.7’s experiments are sparsely documented.
10For example, the README.md file in DenseNet’s repository presents an example of using function DenseNet where

argument input_shape is set to the triple (28, 28, 1).

3.3 How ANNOTEST works 25

57 @arg(net): objs(generator_G_convblock)
58 def G_convblock(net, num_filter, filter_size, actv, init, pad=’same’,
59 use_wscale=True, use_pixelnorm=True, use_batchnorm=False,
60 name=None):
61 # ... 24 lines of body code ...

Listing 3.6. Signature of project GANS’s function G_convblock, whose first argument net requires a
custom generator.

than going from basic to specific as we did in most examples—since this allowed us to generate some
sample tests early on. The guidelines are also applicable with different levels of exhaustiveness, re-
gardless of whether your goal is to annotate as much as possible in a project, or just test a few selected
functions. In the former case, it is advisable to start annotating the simplest, shortest functions, so
that their annotations can then suggest how to annotate the more complex, longer ones.

3.3.3 Building Custom Generators by Refactoring

As presented in Section 3.3.1, annotation @arg(a): @objs(f) tells ANNOTEST to use a custom gen-
erator function f in order to build suitable inputs for some argument a. In principle, f may be an
arbitrarily complex piece of code; in practice, we found that the very projects we are annotating
already include snippets of code that can be reused as generators of complex objects. In this sec-
tion, we demonstrate, on an example, how to build such generators by applying a few refactoring
operations to the relevant snippets of code. Modern IDEs such as PyCharm11 can automate such
refactoring steps. This drastically reduces the effort of building custom generators to just selecting
the right snippets of code and doing some copy-pasting in the IDE.

Listing 3.6 shows the signature of function G_convblock{9} in project GANS (described in Sec-
tion 3.5); the first function argument net expects objects encoding Keras network architectures. This
complex type is not directly supported by AN’s built-in annotations; thus, we should define a custom
generator function generator_G_convblock that builds valid instances of the type.

To this end, we first look for any client code of G_convblock. Another function Generator in
project GANS, shown in Listing 3.7, calls G_convblock (line 87) after building a suitable network
architecture object (line 85). Thus we can use parts of Generator to build generator_G_convblock:
the “extract function” refactoring12 applied to lines 77–85 in Listing 3.7 outputs Listing 3.8’s gen-
erator function. Now, generator_G_convblock is a new function, which we can annotate like any
other functions that is processed by ANNOTEST.

In this example it was easy to identify a contiguous sequence of statements and extract it into
a generator function. In other cases, the relevant client code may mix statements useful for the
generator with others that pertain to a different functionality. In these cases, we can simply extract a
larger snippets of code, and then refactor it to remove unused statements. In Listing 3.7’s example,
we could extract all lines 67–85 into a new function; then, all statements before line 77 are not used
by the final line 85, and thus can be removed from the generator (leading to the same generator as
in Listing 3.8). In all the experiments of this chapter, these simple refactoring steps were sufficient
to build all necessary custom generator functions.

11The PyCharm Python IDE: https://www.jetbrains.com/pycharm
12Extract function refactoring: https://refactoring.com/catalog/extractFunction.html

https://www.jetbrains.com/pycharm
https://refactoring.com/catalog/extractFunction.html

26 The ANNOTEST Test Generation Approach

62 def Generator(num_channels=1, resolution=32, label_size=0,
63 fmap_base=4096, fmap_decay=1.0, fmap_max=256,
64 latent_size=None, normalize_latents=True, use_wscale=True,
65 use_pixelnorm=True, use_leakyrelu=True,
66 use_batchnorm=False, tanh_at_end=None, **kwargs):
67 R = int(np.log2(resolution))
68 assert resolution == 2 ** R and resolution >= 4
69 cur_lod = K.variable(np.float32(0.0), dtype=’float32’, name=’cur_lod’)
70

71 def numf(stage): return min(int(fmap_base /
72 (2.0 ** (stage * fmap_decay))), fmap_max)
73 if latent_size is None:
74 latent_size = numf(0)
75 (act, act_init) = (lrelu, lrelu_init) if use_leakyrelu else (relu, relu_init)
76

77 inputs = [Input(shape=[latent_size], name=’Glatents’)]
78 net = inputs[-1]
79

80 if normalize_latents:
81 net = PixelNormLayer(name=’Gnorm’)(net)
82 if label_size:
83 inputs += [Input(shape=[label_size], name=’Glabels’)]
84 net = Concatenate(name=’G1na’)([net, inputs[-1]])
85 net = Reshape((1, 1,K.int_shape(net)[1]), name=’G1nb’)(net)
86

87 net = G_convblock(net, numf(1), 4, act, act_init, pad=’full’,
88 use_wscale=use_wscale, use_batchnorm=use_batchnorm,
89 use_pixelnorm=use_pixelnorm, name=’G1a’)
90 # ... 20 more lines of code ...

Listing 3.7. An excerpt of project GANS’s function Generator, a client of Listing 3.6’s function
G_convblock.

91 @generator
92 @exclude
93 @arg(latent_size): ints(min=1)
94 @arg(normalize_latents): bools()
95 @arg(label_size): ints()
96 def generator_G_convblock(label_size, latent_size, normalize_latents):
97 inputs = [Input(shape=[latent_size], name=’Glatents’)]
98 net = inputs[-1]
99 if normalize_latents:

100 net = PixelNormLayer(name=’Gnorm’)(net)
101 if label_size:
102 inputs += [Input(shape=[label_size], name=’Glabels’)]
103 net = Concatenate(name=’G1na’)([net, inputs[-1]])
104 net = Reshape((1, 1, K.int_shape(net)[1]), name=’G1nb’)(net)
105 return net

Listing 3.8. The custom generator for argument net of Listing 3.6’s function G_convblock, built by factoring
out lines 77–85 in Listing 3.7.

3.3 How ANNOTEST works 27

3.3.4 Test Generation

The annotations written in the AN language supply all the information that is needed to generate unit
tests for every annotated function. In principle, we could use any technique for test-case generation
and then filter any generated tests, keeping only those that comply with the annotations. However,
the experiments reported in Section 3.7.4 indicate that such an aimless strategy would be inefficient,
especially given the dynamically typed nature of Python.

Instead, ANNOTEST uses property-based test-case generation to actively match the constraints in-
troduced by AN annotations. More precisely, the current implementation of ANNOTEST uses the Hy-
pothesis property-based test-case generator [80] through its API. To test a Python function using
Hypothesis, we have to write a test template, which consists of a parametric unit test method that
calls a collection of strategies. A strategy is a sort of generator function, which outputs values of a
certain kind. A parametric test method calls some of the strategies, combines their outputs, and uses
them to call the function under test.

ANNOTEST automatically builds a suitable Hypothesis strategy for each @arg annotation. Hypoth-
esis provides built-in strategies that cover basic type annotations, such as Python’s atomic types and
tuples. ANNOTEST reuses the built-in strategies whenever possible, and combines them to generate
values for more complex or specialized constraints (such as int_lists). For instance, Listing 3.9
shows parts of the parametric tests generated by ANNOTEST to encode the annotations in Listing 3.2’s
running example. ANNOTEST reuses Hypothesis’s built-in strategies integers (line 108) and floats

(line 115); and combines Hypothesis strategies lists and integers (lines 131–137) to render AN’s
int_lists type constraint.

To encode arbitrary objs annotations (Section 3.3.1), ANNOTEST first builds strategies for the
annotations of each user-written custom generator function, as if it was testing the generator; then,
it combines them to build a new strategy that follows the generator’s implementation to output the
actual generated objects—used as inputs for the function under test.

To encode @require annotations (preconditions), ANNOTEST uses Hypothesis’s assume function.
When test-case generation reaches an assume, it checks whether its Boolean argument evaluates to
true: if it does, generation continues as usual; if it does not, the current test input is discarded, and
the process restarts with a new test. Thus, assumes can effectively act as filters to further discriminate
between test inputs—a feature that ANNOTEST leverages to enforce precondition constraints where
appropriate in a parametric test. Line 126 in Listing 3.9 shows an example of using assume to encode
the running example’s precondition (line 30 in Listing 3.2).

After translating the annotations into suitable test templates, ANNOTEST simply runs Hypothesis
on those templates. The property-based test-case generator “runs” the templates to build unit tests
that satisfy the encoded properties; it also runs these unit tests, and reports any failure to the user.
Hypothesis’s output is also ANNOTEST’s final output to the user.

Alternative back-ends. ANNOTEST’s current implementation uses Hypothesis as back-end, since property-
based testing is a framework for defining testing properties in a naturally generative way. However,
using other test-input generation engines as back-end is possible in principle. Automatically trans-
lating all AN annotations to preconditions (Boolean predicates) is straightforward, which could be
passed to a tool like Deal [29]. As we demonstrate in Section 3.7.4, Deal is not very effective at
generating inputs that satisfy the preconditions, when these encode the complex combinations of
constraints that are common in NN programs; however, Deal can also use preconditions for static
checking, which would provide a complementary usage of ANNOTEST’s annotations. Pynguin [78]
is a general-purpose test-case generator for Python. In order to use it as a back-end for ANNOTEST,
we could leverage its genetic algorithm, which tries to maximize the branch coverage of the tests it

28 The ANNOTEST Test Generation Approach

106 @given(input_shape=tuples(integers(min_value=20, max_value=70),
107 integers(min_value=20, max_value=70),
108 integers(min_value=1, max_value=3)),
109 dense_blocks=integers(min_value=2, max_value=5),
110 dense_layers=one_of(just(-1),
111 integers(min_value=1, max_value=5),
112 int_lists_an(min_len=2, max_len=5, min=2, max=5)),
113 growth_rate=integers(min_value=1, max_value=20),
114 nb_classes=integers(min_value=2, max_value=22),
115 dropout_rate=floats(min_value=0, max_value=1,
116 exclude_min=True, exclude_max=True),
117 bottleneck=booleans(),
118 compression=floats(min_value=0, max_value=1, exclude_min=True),
119 weight_decay=floats(min_value=0.0001, max_value=0.01),
120 depth=integers(min_value=10, max_value=100))
121 @settings(deadline=None, suppress_health_check=[HealthCheck.filter_too_much,
122 HealthCheck.too_slow])
123 def test_DenseNet(input_shape, dense_blocks, dense_layers, growth_rate,
124 nb_classes, dropout_rate, bottleneck, compression,
125 weight_decay, depth):
126 assume(type(dense_layers) is not list or len(dense_layers) == dense_blocks)
127 DenseNet(input_shape, dense_blocks, dense_layers, growth_rate,
128 nb_classes, dropout_rate, bottleneck, compression,
129 weight_decay, depth)
130

131 @defines_strategy()
132 def int_lists_an(min_len=1, max_len=None, min=1, max=None):
133 if max_len is None:
134 max_len = min_len + 2
135 if max is None:
136 max = min + 5
137 return lists(integers(min, max), min_size=min_len, max_size=max_len)

Listing 3.9. Hypothesis test template built by ANNOTEST for DenseNet’s annotations in Listing 3.2.

generates. As done with EvoSuite (a test-case generation tool for Java that is also based on genetic
algorithms) in related work [40, 43], one could express the input constraints as a series of branches
in the instrumented program, so that Pynguin would be driven to find inputs that “pass” all the
constraints—the valid inputs that we are looking for.

3.3.5 Failing Tests and Oracles

The ANNOTEST approach, and the AN annotation language on which it is based, works independent
of how a test is classified as failing or passing. In other words, ANNOTEST generates test inputs that
are consistent with the annotations; determining whether the resulting program behavior is correct
requires an oracle [14]. In our study, we only ran the tests generated by ANNOTEST with crashing
oracles: an execution is failing when it cannot terminate normally, that is it leads to an assertion
violation, an unhandled exception, or some other low-level abrupt termination.

While crashing bugs are the most frequent ones, NN programs also exhibit other kinds of bugs
such as performance loss, data corruption, and incorrect output [57]. In principle, if we equipped
the NN programs with oracles suitable to detect such kinds of bugs, ANNOTEST could still be used to

3.4 Research Questions 29

generate test inputs. However, some of these bug categories may be easier to identify by testing a NN
at a different level than the bare program code. For example, bugs that lead to poor robustness of a
NN classifier involve testing a fitted model rather than the model’s implementation [51, 114, 120].
Revisiting the ANNOTEST approach to make it applicable to different kinds of oracles belongs to future
work.

3.4 Research Questions

The experimental evaluation in this chapter aims at determining whether the ANNOTEST approach
is effective at detecting real bugs in NN programs, and whether it requires a reasonable annotation
effort. Precisely, we address the following research questions:

RQ1. Does ANNOTEST generate tests that expose bugs with few false positives (invalid tests)?

RQ2. Can ANNOTEST reproduce known, relevant bugs (that were discovered and confirmed by expert
manual analysis)?

RQ3. How many annotations does ANNOTEST need to be effective?

RQ4. How does ANNOTEST compare to other generic (non-NN specific) test-case generation tech-
niques?

RQ5. How does ANNOTEST compare to manual-written tests in terms of coverage?

3.5 Experimental Subjects

To include a broad variety of real-world NN projects, we selected our experimental subjects following
Islam et al. [57]’s extensive survey of bugs and their replication package,13 which collects hundreds of
NN program bugs from Stack Overflow posts and public GitHub projects. The former are unsuitable
to evaluate ANNOTEST, since they usually consist of short, often incomplete, snippets of code that
punctuate a natural-language text. In contrast, the GitHub projects provide useful subjects for our
evaluation.

The survey [57] lists 557 bugs in 127 GitHub projects using the NN frameworks Keras, Tensor-
Flow, PyTorch, Theano, and Caffe. With 350 bugs in 42 projects, Keras is the most popular project in
this list; we target it for the bulk of our evaluation. Starting from all 42 Keras projects, we excluded:
i) 3 projects that were no longer publicly available; ii) 7 projects with no bugs classified as “crash-
ing” (see Section 3.3.5); iii) and 5 projects that still use Python 2. While it could be modified to run
with Python 2, we developed ANNOTEST primarily for Python 3, which is the only supported major
version of the language at the time of writing. We excluded another 4 projects whose repositories
were missing some components necessary to execute them (such as data necessary to train or test
the NN model, or to otherwise run the NN program). Finally, 7 projects did not include any repro-
ducible crashing bugs (see Section 3.6 for how we determined these). This left 16 projects using
Keras, which we selected for our evaluation.

To demonstrate that ANNOTEST is applicable also to other NN frameworks, we also selected 2
projects based on TensorFlow and 1 project based on PyTorch; these are among the largest projects
using those frameworks analyzed by Islam et al. [57]. The leftmost columns of Table 3.3 list all
selected 19 projects used in our evaluation, and their size in lines of code and number of functions.

13Islam et al.’s NN bugs dataset: https://lab-design.github.io/papers/ESEC-FSE-19

https://lab-design.github.io/papers/ESEC-FSE-19

30 The ANNOTEST Test Generation Approach

These projects (and their known bugs) are based on Islam et al. [57]’s detailed survey of real-world
NN bugs; this ensures that our subjects are representative of realistic NN programs and of the bugs
that commonly affect them.

Comparison with Pynguin. To answer RQ4, we want to compare ANNOTEST to Pynguin (a general-
purpose test-case generator for Python programs) on generating tests for realistic NN programs.
Unfortunately, all the NN projects that we use for ANNOTEST’s evaluation are incompatible with
Python 3.8 (mainly because they require TensorFlow 1.x), whereas Pynguin only runs with Python 3.8
(or later versions). Therefore, we considered PyTorch’s machine vision project Vision:14 an actively
maintained open-source NN program that is compatible with Python 3.8 and includes type hints
(used by Pynguin). Pynguin can only generate tests for 40 of Vision’s 104 modules; current limi-
tations15 of its implementation prevent it from running correctly on the other 64 modules. For our
experiments, we selected module mnist{11} in package torchvision.dataset—one of the largest
among those that Pynguin can analyze.

Comparison with manual tests. Manually writing AN annotations, and then letting ANNOTEST gen-
erate tests automatically, is an alternative to the usual approach of writing unit tests manually. Thus,
RQ5 compares manually-written tests to those generated by ANNOTEST in terms of coverage. Unfor-
tunately, none of the 19 projects selected by Islam et al. [57] contains any unit tests.16 Therefore,
we resorted to project Vision again, as it contains an extensive manually-written test suite. For our
experiments, we selected three Vision modules of substantial size that are tested in different ways:
module backbone_utils is among the most thoroughly tested (the project’s test suite reaches 96%
branch coverage); module image is fairly well tested (79% branch coverage, which is an average cov-
erage figure among the project’s modules); and module _video_opt is scarcely tested (16% branch
coverage, and is only tested indirectly by the unit tests of other client modules).

3.6 Experimental Setup

This section describes how we setup each project before applying ANNOTEST; and the experiments
we conducted to answer the RQs.

3.6.1 Project Setup

As first step, we created an Anaconda17 environment for each project in Section 3.5 to configure
and run it independent of the others. Every project has dependencies that involve specific libraries.
Collecting all required dependencies can be tricky: a project may work only with certain library
versions, older versions of a library may no longer be available, and newer backward-compatible
versions may conflict with other dependencies. A handful of projects detail the specific versions
of the libraries they need in a setup.py, requirements.txt, or Jupiter Notebook file—or at least
in a human-readable readme. In many cases, none of these were available, so we had to follow a
trial-and-error process: i) search the source code for import L statements; ii) retrieve the version
of library L that was up-to-date around the time of the project’s analyzed commit; iii) in case that

14Vision (0.11.2): https://github.com/pytorch/vision/tree/v0.11.2
15Including bugs, one of which we reported to Pynguin’s maintainers who fixed it.{10}

16Project ADV includes a single integration test; the other projects include no tests at all.
17Anaconda: https://www.anaconda.com

https://github.com/pytorch/vision/tree/v0.11.2
https://www.anaconda.com

3.6 Experimental Setup 31

version is no longer available or conflicts with other libraries, try a slightly more recent or slightly
older version of L.

NN programs usually need datasets to run. When a suitable dataset was not available in a project’s
repository, we inspected the source code and its comments to find references to public datasets that
could be used, fetched them, and added them to the project’s environment. In a few cases, the
project included functions to generate a sample dataset, which was usually suitable to be able to at
least test the project. For a few projects using very large datasets, we shrank them by removing some
data points so that certain parts of the project’s code ran more efficiently. Whenever we did this,
we ascertained that using the modified dataset did not affect general program behavior in terms of
reachability—which is what matters for detecting the crashing bugs that we target in our evaluation.

Properly setting up all NN programs so that they can be automatically run and tested was quite
time-consuming at times, since several of the projects’ repositories are incomplete, outdated, and
poorly documented. Our replication package includes all required dependencies, which can help
support future work in this area.

3.6.2 Experimental Process

To address RQ1, we selected the latest versions of two projects among the largest and most popular
ones (ADV and GANS in Table 3.2) and followed the guidelines described in Section 3.3.2 to fully
annotate them with AN. “Fully annotate” means that we tried to annotate every function of the
project’s source code, and to write annotations that are as accurate as possible: neither unnecessarily
constraining (skipping some valid inputs) nor too weak (allowing invalid inputs).

To address RQ2, we tried to use ANNOTEST to reproduce the bugs reported by Islam et al. [57] for
the selected projects. More precisely, Islam et al. [57]’s companion dataset identifies each bug b by a
triple (ℓ, b−, b+): line ℓ in commit b− is the faulty statement, which is fixed by the (later) commit b+.
As we mentioned above, Islam et al. [57]’s dataset was collected by manual analysis, and thus some
of the bugs are not (no longer) reproducible, are duplicate, or are otherwise outside ANNOTEST’s
scope. For our evaluation, we selected only unique reproducible crashing bugs: i) “crashing” means
that the fault triggers a runtime program failure, which we use as oracle;18 the crashing location c
may be different from the bug location ℓ; ii) “reproducible” means that we could manually run the
program to trigger the failure; iii) “unique” means that we merged bugs that are indistinguishable by
a crashing oracle (for example, they crash at the same program point, or they fail the same assertion)
or that refer to the very same triple in Islam et al. [57]’s dataset.

Out of all 213 bugs in Islam et al. [57] for the 19 selected projects, we identified 81 unique
reproducible crashing bugs. For each such bug b = (ℓ, c, b−, b+) we annotated the project’s commit
b− starting from the function (or method) f where location ℓ is, and continuing with the other
functions that depend on f. We stopped annotating as soon as the annotations where sufficient
to exercise function f (including, in particular, reaching ℓ and/or crash location c). Then, we ran
ANNOTEST to generate tests for f and any other functions that we annotated. We count bug b as
reproduced if some of the generated tests fails at crashing location c, and doesn’t fail if run on the
patched version b+.

To address RQ3, we measured the annotations we wrote for RQ1’s and RQ2’s experiments; and
we compared the size (in lines of code) of these manually-written annotations to the Hypothesis
code generated automatically by ANNOTEST from the annotations.

To address RQ4, we compared ANNOTEST to Pynguin and Deal. As we discussed in Chapter 2,
Pynguin [78] is a state-of-the-art unit-test generator for Python that leverages type hints to improve

18While Islam et al. [57] classify some bugs as “crashing”, we also included bugs in other categories provided they can
eventually generate a crash.

32 The ANNOTEST Test Generation Approach

its effectiveness (although it also works without type hints); Deal [29] is a Python library for Design
by Contract, supporting annotations such as preconditions, as well as test-case generation and static
analysis based on them. For the comparison with Pynguin, we annotated the functions in Vision’s
module mnist (see Section 3.5) using AN similarly to what done for RQ1, writing 21 regular anno-
tations and 1 generator for 23 functions under test; then, we compared Pynguin’s generated tests
to ANNOTEST’s. For the comparison with Deal, we took all functions in our running examples List-
ings 3.1–3.5 and added preconditions in Deal’s syntax that express the same input constraints as our
annotations in AN’s syntax; then, we compared Deal’s generated tests to ANNOTEST’s.

To address RQ5, we annotated the functions in Vision’s modules backbone_utils, image, and
_video_opt (see Section 3.5) using AN similarly to what done for RQ1. Since the goal is comparing
to manually written tests, we ignored the tests when writing AN annotations, and only considered
examples of function usages in the library implementation or comments. Using tool Coverage.py19

we measured the branch coverage achieved on each module by: i) the manually-written unit tests
in Vision’s test suite; ii) the tests generated by ANNOTEST from the annotations. We used branch
coverage but note that, on these subjects, this metric correlates very strongly (Pearson correlation
coefficient: 0.94) with statement coverage; thus, using either coverage metric would lead to the
same findings.

Annotation effort. As we mentioned in Section 3.3.2, gaining an accurate understanding of a pro-
gram’s behavior is necessary regardless of the approach one follows to build tests. In our experiments,
we found that finding plausible ranges for a function’s inputs requires only modest effort in the ma-
jority of cases. This is in accordance with the so-called locality principle [31], which implies that a
significant part of a program’s behavior often can be understood by observing only a small number
of program inputs [33]. Regardless of whether one is targeting a program that is easy or hard to
test, ANNOTEST can support the tester’s job by providing a means of expressing the input constraints,
of exercising them with automatic test generation.

3.7 Experimental Results

This section presents the experimental results and addresses our research questions outlined in Sec-
tion 3.4.

3.7.1 RQ1: Precision

Table 3.2 shows the results of applying ANNOTEST to the latest commits20 of projects ADV and GANS.
With the goal of annotating the projects as thoroughly as possible, we ended up writing some AN
annotations for 42% of their 249 functions. Most of the functions that we left without annotations do
not need any special constraints to be tested—usually because they either are simple utility functions
that are only called in specific ways by the rest of the project or have no arguments. There are a few
additional cases of functions that are not used anywhere in the project and whose intended usage we
could not figure out in any other way; in these cases, we did not annotate them (and excluded them
from testing). With these annotations, ANNOTEST reported 56 crashes, 50 of which we confirmed as
genuine unique crashing bugs; this corresponds to a precision of 89%.

19Coverage.py v. 6.5.0: https://github.com/nedbat/coveragepy
20The projects are however no longer maintained; therefore, we did not submit any of the found bugs to the projects’

repositories.

https://github.com/nedbat/coveragepy

3.7 Experimental Results 33

PROJECT LOC FUNCTIONS ANNOTATIONS BUGS

#A %F %G TRUE SPURIOUS PRECISION

ADV 1 421 100 1.58 49% 7% 33 5 87%
GANS 2 496 149 1.15 37% 6% 17 1 94%

overall 3 917 249 1.33 42% 7% 50 6 89%

Table 3.2. Two projects fully annotated with ANNOTEST and the found bugs. Each row shows data about
a PROJECT (identified by an acronym; see Table 3.3 for the URL of their GitHub repositories): its size in
lines of code LOC and number of FUNCTIONS (including methods); the average (per function) number #A of
annotations we added to the project, the percentage %F of functions with at least one annotation, and the
percentage %G of annotations that use custom generators; and the number of unique crashing BUGS found
by generating tests based on the templates—split into confirmed TRUE bugs, SPURIOUS bugs (triggered by
invalid inputs), and the corresponding PRECISION = TRUE/(TRUE+ SPURIOUS).

As previously reported [119], bugs due to project dependency conflicts are quite common in
NN programs. An interesting example is a crash that occurs in ADV when it accesses attribute W{12}

in Keras’s class Dense.{13} This attribute was renamed to kernel{14} in Keras version 2.0. Since
ADV explicitly supports this major version of Keras, this crash is a true positive. Another confirmed
bug we found was due to a function in ADV still using tuple parameter unpacking{15}—a Python 2
feature removed in Python 3. The ADV project developers probably forgot to update this one instance
consistently with how they updated the rest of the project,{16} which is indeed designed to work with
Python 3.

A tricky example of false positive occurred in project GANS’s function create_celeba_channel_

last,{17} which creates an HDF521 file for the CelebA dataset [76]. One of the tests generated by
ANNOTEST crashes{18} as it is unable to create a file. However, the failure does not happen if we run
the function manually using the very same inputs; thus, the testing environment is responsible for
the spurious failure.

These experiments suggest that ANNOTEST can be quite effective to pin down bugs, problems,
and inconsistencies in NN programs, thus helping systematically improve their quality.

Applied to two fully-annotated open-source NN programs,
ANNOTEST generated tests revealing 50 bugs with 89% precision.

3.7.2 RQ2: Recall

Table 3.3 shows the results of applying ANNOTEST to detect 81 unique reproducible crashing bugs
in 19 projects surveyed by Islam et al. [57] and selected as explained in Section 3.5. Using the
annotations we provided, ANNOTEST reproduced 63 of these bugs without generating any spurious
failing tests. This corresponds to a 100% precision and 78% recall relative to the unique reproducible
known bugs from Islam et al. [57]. With the same annotations, ANNOTEST also revealed another 31
failures that we confirmed as additional crashing bugs in the same projects.22

While ANNOTEST was quite effective at reproducing the known bugs in these projects, it’s in-
teresting to discuss the issues that prevented it from achieving 100% recall. We identified several
scenarios: i) masking; ii) scripting code; iii) nested functions; iv) lazy features; v) and inaccessible
code.

21HDF5 (Hierarchical Data Format 5) for Python: https://www.h5py.org
22Islam et al. [57]’s survey is not meant to be an exhaustive catalog of all bugs in these projects.

https://www.h5py.org

34 The ANNOTEST Test Generation Approach

PROJECT LOC FUNCTIONS REV ANNOTATIONS BUGS

TOTAL TESTED #A %F %G KNOWN REP OTHER SPURIOUS PRECISION RECALL

K NAAS{19} 140 7 0 2 – 0% 0% 2 2 1 0 100% 100%
K ADV{20} 1 421 100 4 2 1.5 4% 0% 8 6 3 0 100% 75%
K DN{21} 82 5 2 1 14.0 40% 0% 2 2 2 0 100% 100%
K DCF{22} 748 35 1 1 4.0 3% 0% 1 0 0 0 – 0%
K KIS{23} 2 050 92 2 1 1.5 2% 0% 6 5 0 0 100% 83%
K FRCNN{24} 1 643 55 3 1 1.7 5% 0% 6 3 0 0 100% 50%
K CONV{25} 350 20 0 1 – 0% – 1 0 0 0 – 0%
K mCRNN{26} 225 1 0 1 – 0% 0% 1 1 5 0 100% 100%
K IR{27} 306 38 0 1 – 0% – 2 0 0 0 – 0%
K RE{28} 966 25 1 1 15.0 4% 0% 1 1 5 0 100% 100%
K CAR{29} 353 21 1 1 7.0 5% 0% 1 1 1 0 100% 100%
K GANS{30} 2 496 149 2 1 12.5 1% 4% 6 4 5 0 100% 67%
K KAX{31} 227 15 0 1 – 0% – 1 0 0 0 – 0%
K VSA{32} 630 38 2 1 6.0 5% 0% 2 2 4 0 100% 100%
K UN{33} 440 28 3 2 3.3 11% 30% 6 2 1 0 100% 33%
K LSTM{34} 477 27 0 1 – 0% – 1 0 0 0 – 0%
F TC{35} 285 7 0 2 – 0% 0% 9 9 2 0 100% 100%
F TPS{36} 286 2 2 1 4.0 100% 87% 24 24 0 0 100% 100%
T DAF{37} 1 094 70 1 1 9.0 1% 67% 1 1 2 0 100% 100%

overall 14 219 735 24 23 6.0 3% 12% 81 63 31 0 100% 78%

Table 3.3. Bugs from Islam et al. [57] that ANNOTEST could reproduce. Each row shows data about a
PROJECT (identified by an acronym and the URL of its GitHub repository): its DNN framework (Keras,
TensorFlow, Torch), its size in lines of code LOC and the number of TOTAL and TESTED functions (including
methods); the number of its different REVisions that we analyzed, the average (per tested function) num-
ber #A of annotations we added, the percentage %F of functions with at least one annotation, and the
percentage %G of annotations that use custom generators; and the number of crashing BUGS found by
generating tests based on the templates—the number of reproducible KNOWN bugs reported by Islam et
al. [57], how many of these the tests REProduced, how many OTHER confirmed true bugs and SPURIOUS

bugs (triggered by invalid inputs) the tests also reported in the same experiments, and the corresponding
PRECISION = (REP+ OTHERS)/(REP+ OTHERS+ SPURIOUS) and RECALL = REP/KNOWN.

Masking occurs when an earlier crash prevents program execution from reaching the location of
another bug b′. Masking is usually not a problem when the earlier crash is determined by a known
bug b: in this case, we can just run tests on the project commit b+ where b has been fixed, so that
execution can reach the other bug b′. However, if a bug b′ is masked by an unknown bug (column
OTHER in Table 3.3), and we don’t know how to fix the unknown bug to allow the program to
continue, b′ is effectively unreachable. We could not reproduce 4 known bugs because of masking.
One of them occurrs{38} in project GANS, and is masked by an unexpected crash{39} occurring in
the same function Discriminator. In project UN, some missing statements make it impossible to
distinguish three known bugs,{40},{41},{42} since they all crash the same test. Therefore, we consider
1 of them reproduced and 2 not reproduced due to masking. One of the tests produced for project
GANS stopped before finding a known bug,{43} with a SIGKILL (triggered by memory-related issues).

ANNOTEST generates unit tests, which target specific functions in a program’s source code. This
excludes any code snippets in the “main” section of a Python file (under if __name__==’__main__’),
which executes when the file is run as a script from the command line. Therefore, ANNOTEST could

3.7 Experimental Results 35

not reproduce 6 bugs affecting this scripting code, such as one known bug in project CONV.{44} An-
other example is the only known bug{45} in project KAX, which occurs in a function that depends on
command line arguments.

ANNOTEST can test nested functions only indirectly, that is when they are called by a top-level func-
tion as part of testing the latter. It does not support annotating nested functions and generating unit
tests for them since they are not accessible outside their parent functions. We could not reproduce
3 known bugs because they affected nested functions. An example is in project FRCNN’s function
rpn_loss_regr_fixed_num,{46} which is defined inside top-level function rpn_loss_regr.

Functions using Python’s yield statement are lazy, that is their evaluation is delayed. This means
that they may not be executed by ANNOTEST’s unit testing environment (or rather its Hypothesis back-
end’s). We could not reproduce 1 known bug{47} in project KIS because it uses yield to build a lazy
iterator.

As we remarked above, a bug’s crashing location c may differ from the actual error location ℓ in
commit b−. If c is in a portion of the code that is not accessible to the testing environment, ANNOTEST

cannot reproduce the bug even if it is reproducible in principle. This scenario occurred for 3 known
bugs that ANNOTEST didn’t reproduce. Two of them are in project UN{48},{49} and only crash in a
module whose implementation is incomplete in that program revision. Another one{50} occurs in
project IR: we tried to no avail to reproduce it at a different, accessible location.

Finally, we could not reproduce 1 bug{51} in project IR simply because we could not figure out
suitable type constraints to properly exercise the corresponding function.

ANNOTEST generated tests revealing 63 known NN bugs
in 19 NN programs, with a recall of 78%.

3.7.3 RQ3: Amount of Annotations

For the ANNOTEST approach to be practical, it is important that it requires a reasonable amount
of manual annotations. We leave to future work a detailed empirical evaluation of the time and
expertise that is needed to write AN annotations. Here, we discuss quantitative measures of ANNO-
TEST’s annotation overhead. We focus on RQ1’s experiments (Section 3.7.1), which analyzed projects
ADV and GANS in full, as they give a better idea of the effort needed to use ANNOTEST systematically
on whole projects.23

Annotation Amount

The amount of annotations that we wrote was usually limited. In RQ1’s experiments, we wrote 2
annotations24 per project function on average (median); 80% of functions have 3 annotations or less.
Annotations are mostly concise: 96% of them fit a single line, and only 10% (12) of all functions
have annotations that span more than 5 lines (usually decorating functions with several complex
arguments). Figure 3.2 pictures the distributions, overall functions, of number of annotations (left)
and lines of code (LOC, middle) of annotations; since most annotations are a single line, these two
distributions are nearly identical.

The average number of annotations per tested function is higher (6.0) in Table 3.3 since in each
of those experiment we annotated a limited portion of a project focusing on a specific function that
had a known bug; therefore, several of the annotations are duplicated or only slightly modified from

23The figures for RQ2’s experiments are, however, generally similar.
24An annotation is any instance of the kinds presented in Section 3.3.1.

36 The ANNOTEST Test Generation Approach

0

1
2
3
5

9

16

27

46

80

137

annotations LOC annotations LOC Hypothesis
Figure 3.2. Distribution of the number of AN annotations, lines of code (LOC) of AN annotations, and LOC
of generated Hypothesis templates for RQ1’s experiments.

one experiment to the other. If we had fully annotated the projects, we would have likely amortized
some of this annotation effort.

In terms of time, we spent, on average, 10–15 minutes to write the annotations of each function.
This time includes inspecting the project’s source code to become familiar with how it works. As
pointed out in Section 3.6, this effort is amortized over various related functions, and is unevenly
distributed, with a few “complex” functions taking considerably more time to understand than most
“simple” functions. As mentioned in Section 3.3.2, we consider the overall effort comparable to the
time to manually write unit tests for the same functions.

Another way of quantifying the effort-benefit trade-off is measuring the amount of annotations
per detected bugs: this ratio is 6.6 = 330/50 for the fully-annotated projects in Table 3.2 and 1.5
= 145/94 for the experiments in Table 3.3. These are encouraging figures, if we think of the amount
of manually-written tests that may have been necessary to discover the same bugs (see also Sec-
tion 3.7.5).

The percentage of annotations using generators is higher (12%) for the projects in Table 3.3.
More precisely, the two projects in Table 3.2 use 15 generators, 73% (11/15) of which generate
NN models. Among the 16 generators built for the projects in Table 3.3, 31% (5/16) generate NN
models, 37% (6/16) provide TensorFlow’s tensor objects, and 25% (4/16) load datasets from disk.
The one remaining generator function loads an image from hard disk, turns it into a NumPy array
and passes it to a function. As we explained in Section 3.3.3, we built all generators by applying
light refactoring operations to suitable portions of existing client code within the same project.

Hypothesis Overhead

Since ANNOTEST translates AN annotations to Hypothesis templates, we can quantify how concise AN
is compared to directly encoding constraints in Hypothesis. The rightmost plot in Figure 3.2 pictures
the distribution of LOC of generated Hypothesis code. Clearly, Hypothesis code is considerably more
verbose than AN annotations: Hypothesis templates are 5.5 (median overhead) times longer—11.6
times longer in terms of mean overhead—than the AN annotations they encode, which points to the
benefits of using AN’s concise language.

In our experiments, ANNOTEST used 2 annotations per function on average; 96% of all annotations
fit a single line.

3.7 Experimental Results 37

3.7.4 RQ4: Comparison to Generic Test-Case Generators

We designed ANNOTEST not as a general-purpose testing tool but as one specifically geared towards
NN programs. Therefore, we expect ANNOTEST to outperform generic test-case generators for Python
when generating tests for these programs.

As we discussed in Section 3.5, we ran Pynguin on module mnist in project Vision; the module
includes type hints annotations, which Pynguin uses to improve the accuracy of its generated tests.
Pynguin25 generated 19 tests, reporting 6 tests as passing (they terminate without errors), and 13
tests as failing (they throw an exception). By manual inspection, we determined that: i) 2 of the 6
passing tests and 10 of the 13 failing tests are actually invalid, since they call functions with input
values that are not valid according to the functions’ docstring, type hints,26 or other available docu-
mentation; ii) the other 3 failing tests should be classified as passing, since throwing an exception is
the functions’ expected behavior in those cases. In all, 63% ((2+ 10)/19) of the tests generated by
Pynguin are invalid, and 79% ((3+2+10)/19) are misclassified. We cannot expect Pynguin to per-
form better, since it simply lacks the information to precisely characterize valid inputs; in contrast,
leveraging the AN annotations’ information, ANNOTEST generated 11 tests for module mnist: all of
them are valid and passing.27

Deal’s expressive annotation language is capable of concisely encoding most of the AN annota-
tions as preconditions (@deal.pre). Then, Deal’s test-case generation engine draws inputs randomly
and uses preconditions to filter them; therefore, the stronger a precondition is, the more it will strug-
gle to find any valid inputs. In all our examples (Listings 3.1–3.5), Deal could not generate a single
valid input that satisfies all constraints. Even after removing some of the most complex constraints
(for example, the first one in Listing 3.2), Deal’s built-in test-case generator couldn’t generate valid
inputs. Here too, we cannot expect Deal to perform better, since, unlike ANNOTEST, its test-case
generation process is not built around the kinds of complex constraints that arise in NN programs.28

ANNOTEST outperforms other test-case generation techniques
that are not designed specifically for NN programs.

These results are another manifestation of the trade-off between specification accuracy and test
effectiveness: precise tests require precise knowledge of the expected program constraints (and be-
havior), regardless of whether this knowledge is formalized as annotations, as executable code, or
is applied directly by the programmer.

3.7.5 RQ5: Code Coverage

Table 3.4 compares the manually-written tests in three of project Vision’s modules (see Section 3.5)
to those generated by ANNOTEST after annotating the functions in these modules.

Module _video_opt is scarcely tested in Vision: there are no unit tests for this module (column
UNIT in Table 3.4), but tests in other modules still indirectly exercise 16% of its branches (column
INDIRECT). In contrast, ANNOTEST reaches a 76% coverage after annotating 8 functions in this mod-
ule. Vision’s unit tests for module image achieve a 79% coverage; ANNOTEST reaches a higher 84%
coverage. Finally, Vision’s unit tests for module backbone_utils achieve a 82% coverage, the same

25We report experiments that used Pynguin’s default configuration; however, using other generation strategies did not
significantly change the outcome.

26Pynguin may violate type hints whose format it does not support.
27While experimenting with testing the Vision project using ANNOTEST, we found a bug in a module that Pynguin cannot

test. We submitted a fix as a pull request{52} that was promptly accepted. Interestingly, the affected function{53} already
included a developer-written parameterized test,{54} which nonetheless did not detect “our” bug; this further demonstrates
ANNOTEST’s practical effectiveness.

28In addition, Deal focuses on using annotations for static analysis.

38 The ANNOTEST Test Generation Approach

PROJECT TEST SUITE ANNOTEST

COVERAGE #FUNCTIONS TEST SIZE #TESTS COVERAGE ANNOTATION SIZE

MODULE UNIT INDIRECT LOC CHARS ANNOTATED LOC CHARS

_video_opt 0% 16% 0 0 0 8 76% 25 1 566
image 79% 0% 15 359 13 381 11 84% 40 1 858
backbone_utils 82% 14% 9 238 8 478 3 82% 23 1 044

overall 50% 5% 24 597 21 859 22 80% 88 4 468

Table 3.4. A comparison (part of) Vision’s programmer-written test suite and ANNOTEST’s generated tests in
terms of coverage. For each MODULE, the table reports the branch COVERAGE of the programmer-written
PROJECT TEST SUITE on the module (split between UNIT tests directly targeting the module’s functions,
and coverage achieved INDIRECTly by other modules’ tests calling the module); the number of unit test
FUNCTIONS directly exercising the module; and the size of these tests in lines of code LOC and number
of characters CHARS; the number of functions we ANNOTATED; the COVERAGE achieved by ANNOTEST on
these functions; and the size of these annotations in lines of code LOC and number of characters CHARS.

as ANNOTEST. The whole test suite in Vision actually further exercises module backbone_utils, as
tests in other modules indirectly add an additional 14% of coverage. Overall, ANNOTEST-generated
tests achieve a high coverage—comparable to or often higher than that of the programmer-written
test suite.29

In order to achieve this coverage, what is the amount of code (manual tests) or annotations
(ANNOTEST) that is required? Vision’s unit tests for Table 3.4’s three modules consist of 24 tests,
spanning 597 lines of code or 21859 characters; ANNOTEST’s annotations are only needed for 22
functions, and span 88 lines or 4468 characters. This confirms that ANNOTEST’s annotations are
concise—considerably more concise than unit tests achieving a lower coverage. Naturally, the sheer
size of a piece of code is an imperfect measure of the effort needed to produce it; however, AN
annotations encode essentially the same information as parametric tests, and their succinctness is an
advantage.

100% coverage? Neither ANNOTEST nor the programmer-written test suite managed to cover 100%
of the branches in the three modules. In a few cases, increasing the coverage would be possible
by simply writing more unit tests or more general annotations. For instance, none of the manual
tests for module backbone_utils instantiates class BackboneWithFPN by passing argument None to
its constructor’s parameter extra_blocks; the corresponding branch{57} is thus never covered (but
it is by ANNOTEST). Conversely, ANNOTEST does not test function _read_video_from_memory{58}

in module _video_opt because we could not find meaningful examples of its usage.30 In other
cases, however, achieving a 100% coverage is impractical due to constraints in the test execution
environment. For instance, a branch{59} in function decode_jpeg of module image requires running
the module on a machine with a GPU supporting the CUDA API.31 There is actually a manual test{60}

covering this branch, but it was not activated in our experiments since we did not run them with
CUDA. We found a few other examples of this scenario{61},{62} where increasing the test coverage

29While testing module image in these experiments, ANNOTEST detected a failure in function decode_jpeg{55} (which is
already thoroughly tested in the project’s test suite). Reporting this failure{56} to the project maintainers prompted them
to modify the function’s documentation so as to more accurately reflect its intended, implemented behavior.

30As discussed in Section 3.6, we did not consider the manually-written tests when writing AN annotations, so that the
comparison in terms of coverage is fair and meaningful.

31CUDA: https://developer.nvidia.com/cuda-zone

https://developer.nvidia.com/cuda-zone

3.8 Threats to Validity 39

requires specific hardware or system libraries.

Bug density. Users of ANNOTEST write annotations to then generate unit tests automatically. In
RQ1’s experiments, ANNOTEST generated 5649 (valid) tests overall; only 1% of them fail and expose
a bug. Thus, bugs in NN programs are rare [106]. This suggests that directly writing tests that selec-
tively expose these bugs may be challenging even for programmers knowledgeable of the program
under test. The same knowledge is sufficient to write AN annotations and generate tests from them.

ANNOTEST achieves high code coverage,
comparable to that of manually-written test cases.

3.8 Threats to Validity

Identifying valid test inputs, and distinguishing between spurious and authentic bugs, is crucial to
ensure construct validity (i.e., the experimental measures are adequate). Unfortunately, a reliable
and complete ground truth is not available: the documentation of NN programs is often incom-
plete (when it exists), so we had to manually discover the intended behavior of NN programs from
examples, manual code analysis, and background knowledge. Our reference—Islam et al. [57]’s
survey—was also compiled by purely manual analysis; therefore, it does not aim at completeness,
and includes bugs that are not reproducible (see Section 3.6). These limitations imply that we cannot
make claims of completeness (“we found all bugs”); nevertheless, we still have a good confidence in
the correctness of our results (“we found real bugs”): since we focused on bugs detected by crashing
oracles, most bugs we found with ANNOTEST are clear violations of the program’s requirements.

Since ANNOTEST uses manually-written annotations, quantifying the annotation effort is needed
for internal validity (i.e., the experimental results are suitable to support the findings). We mostly re-
ported simple measures (number of annotations, number of functions that require annotations, etc.)
which are unambiguous. In contrast, we do not make any strong claims about the time and relative
effort needed by programmers to annotate: these heavily depend on a programmer’s knowledge of
the NN program and of the domain; precisely assessing them would require controlled experiments
and user studies, which are outside our study’s scope. However, we remark that expressing AN an-
notations requires a knowledge of the program under test of the same kind that is needed to write
effective unit tests.

Picking experimental subjects from Islam et al. [57]’s extensive survey of real-world NN bugs
helps external validity (i.e., the findings generalize). As we discussed in Section 3.5, we excluded
some projects for practical reasons (e.g., no longer available or incomplete) and we focused on those
using the Keras NN framework. While this focus does not seem especially restrictive (the majority of
projects in the survey uses Keras, and we also analyzed projects using other frameworks), applying
ANNOTEST to very different kinds of NN programs may require different kinds of annotations or other
changes in the approach. The AN annotation language is extensible with generators (Section 3.3.1),
which can further help generalizability. Furthermore, in addition to Islam et al. [57]’s subjects, we
also extensively analyzed the latest versions of projects ADV and GANS (Section 3.7.1), so that our
evaluation did not only include projects with known bugs.

3.9 Conclusions and Future Work

The chapter presented the ANNOTEST approach to generate inputs that test NN programs written in
Python. ANNOTEST relies on code annotations that precisely and succinctly describe the range of

40 The ANNOTEST Test Generation Approach

valid inputs for the functions under test. Using this information, ANNOTEST can generate tests that
avoid spurious failures, and thus have a good chance of exposing actual bugs. In an experimental
evaluation targeting 19 open-source NN programs, ANNOTEST was able to reveal 94 bugs (including
63 previously known ones) with an overhead of 6 annotations per tested function on average.

Future work

A natural continuation of the work on ANNOTEST is extending AN to support more kinds of constraints.
As discussed in Section 3.7.3, most of the generator functions we wrote for our experiments generate
complex NN model objects such as tensors; being able to specify such objects concisely would further
increase the applicability and convenience of using ANNOTEST.

This chapter’s contributions address the test-input generation problem, which is largely indepen-
dent of the test-oracle problem (see Section 3.3.5 and Section 2.2.2). In future work, we may extend
ANNOTEST to add support for other kinds of oracles. Since ANNOTEST is based on annotations—a form
of lightweight formal specification—adding postconditions would be a natural way to do so. Unlike
the annotations currently supported by ANNOTEST, which act as constraints on the pre-state and
hence require a matching generation mechanism, postconditions are evaluated on a test’s post-state,
and hence can simply be evaluated to determine whether the test is passing or failing.

Regression oracles are another kind of oracles that are commonly supported by test generation
tools such as Pynguin [78]; ANNOTEST could add support for a similar mechanism to generate re-
gression tests, whose assertion capture the post-state of the program under test, and can be re-run
on future versions of the program to determine whether its expected behavior has changed. Given
ANNOTEST’s focus, it could target regression oracles that capture NN-specific properties [34, 85, 137].

4
The ANNOTEST Tool and Dataset

We proposed ANNOTEST in Chapter 3, our novel test generation technique tailored for neural network
(NN) programs, highlighting its capabilities at finding NN bugs. We demonstrated that using ANNO-
TEST’s domain-specific annotation language AN, instead of directly writing Hypothesis templates and
strategies, has advantages in terms of conciseness and better alignment with the characteristics of
NN programs.

This chapter discusses more details about the tool, also called ANNOTEST, that implements the
testing technique, including some elements of its design, and a few practical details from a user’s
perspective. Furthermore, we also present a curated dataset of NN bugs collected and prepared
during the research detailed in Chapter 3, and explain how this artifact can be a useful resource for
further studies in the field.

Structure of the Chapter

The current chapter is organized as follows:

Section 4.1 provides the motivation behind developing the ANNOTEST tool.

Section 4.2 overviews how to use ANNOTEST, using a simple example.

Section 4.3 highlights details of ANNOTEST’s design and implementation.

Section 4.4 introduces a curated dataset of NN bugs we sourced from [57]’s survey.

Section 4.5 concludes this chapter.

4.1 Introduction

As neural network (NN) programs are increasingly deployed in safety-critical systems, developing
techniques to effectively test them becomes paramount. Most of the research on NN testing focused
on exercising model-level properties like robustness and training performance [70, 104]. However,
additional challenges come from the way in which NN programs are usually written.

NN programs are often developed by domain experts, written in dynamic programming lan-
guages such as Python, using libraries and frameworks such as Keras or TensorFlow. There is evi-
dence that such NN programs are prone to suffer from various defects [57, 142], including low-level
bugs—such as type errors and other kinds of runtime failures—that derive from the dynamically
typed nature of Python but would be caught by the compiler in a statically-typed language. Python’s
dynamic type system is also a challenge for automated test-case generation tools, which tend to be

41

42 The ANNOTEST Tool and Dataset

more novel and less developed than for statically-typed languages like Java [39, 66, 89]. The few
Python test-generation tools that exist—such as Pynguin [78]—are general-purpose, and hence may
not be effective to generate tests for NN programs.

As we demonstrate in Section 4.2, using a general-purpose test-case generation tool on a NN pro-
gram is likely to generate many invalid inputs, which trigger spurious crashes without finding any
actual bug. General-purpose tools implement several approaches to mitigate the challenges of tar-
geting a dynamically typed language like Python—for instance, leveraging type hints [4]. However,
NN programs manipulate complex, precisely-constrained objects such as tensors and vectors, which
compounds the challenges of dealing with a dynamically typed language and makes general-purpose
annotations such as type hints insufficient for precise test-input generation.

To address these challenges, we present ANNOTEST: a unit-test generation tool for NN programs
written in Python. ANNOTEST [99] relies on a simple, domain-specific annotation language called
AN, which one can use to precisely and concisely express the complex input constraints of a NN
program’s functions to be tested. Given some annotations, ANNOTEST automatically generates unit
tests with high precision. The ANNOTEST tool is available as open source. The simplest way to use
it is by installing it from PyPI1 with pip install annotest. ANNOTEST’s main repository2 includes
the tool’s source code and instructions to use it. A short demo of ANNOTEST is available on Youtube.3

4.2 Using ANNOTEST

In this section, we briefly demonstrate how to use ANNOTEST to generate unit tests that can expose
bugs in neural-network programs written in Python. We also discuss how ANNOTEST is more effec-
tive than other, general-purpose test-generation tools for Python when testing NN programs with
their particular constraints on inputs. To this end, we discuss using ANNOTEST in comparison with
Pynguin [78] and Deal [29]—the only general-purpose state-of-the-art automated test generation
tools for Python available at the time of writing. As we will demonstrate in the rest of this chapter,
ANNOTEST is designed as complementary to these two tools: while its annotations are applicable, in
principle, to any Python program, ANNOTEST is primarily a specialized tool for NN programs; Pynguin
and Deal are general-purpose tools suitable for all sorts of Python programs.

Consider function model_discriminator from project ADV (Keras Adversarial Models) [1]whose
implementation is in Listing 4.1. When Python 3’s interpreter evaluates the expression on line 145,
the execution crashes, because hidden_dim / 2 returns a float but the constructor Dense only
works correctly if its first argument is an int.4 This bug was among those surveyed by Islam et
al. [57], and was eventually fixed with an explicit int conversion in a later revision of the ADV
project. We selected this example because it is simple, yet realistic; using it makes for a clearer pre-
sentation, but we stress that the challenges that we highlight become much more problematic as soon
as one target larger and more complex examples (such as those that we discussed in Section 3.5).

On the face of it, generating valid tests that exercise function model_discriminator, and trigger
the bug, should be straightforward: the function’s implementation is short, consists of straight-line
code (no branching), and only takes four arguments. Furthermore, every valid input would trigger
the bug, and valid input values for three out of four arguments are provided as defaults. And yet,
automatically generating several valid inputs for this function turns out to be surprisingly hard for
general-purpose testing tools—as we now discuss in detail.

1https://pypi.org/project/annotest/
2https://github.com/atom-sw/annotest
3A demo of ANNOTEST: https://youtu.be/3Y1sraVajIA
4The function has a similar bug on line 147; we focus on line 145’s bug, which masks the bug on line 147.

https://pypi.org/project/annotest/
https://github.com/atom-sw/annotest
https://youtu.be/3Y1sraVajIA

4.2 Using ANNOTEST 43

4.2.1 General-Purpose Testing Tools

Pynguin

Consider Pynguin [78], a general-purpose automated test generation tool for Python. Pynguin’s test-
generation strategy is based on a genetic algorithm that tries to maximize branch coverage. For a
simple, straight-line function like model_discriminator, Pynguin only generates5 one test input
consisting of string "!b)p" as actual value for argument input_shape. This input is invalid, since
input_shape must be a shape—basically, a tuple of nonnegative integers that denote the dimensions
of a multi-dimensional array.

It should be no surprise that Pynguin is ineffective on this example: Python does not require
function arguments to be annotated with their intended types, and this crucial piece of information
is thus not available to the test-case generation tool. Unfortunately, even if model_discriminator
were annotated using Python’s type hints—which Pynguin partially supports—these are not expres-
sive enough to precisely encode the range of model_discriminator’s valid inputs. The best we can
do is annotating input_shape with type Tuple[int, int], hidden_dim with type int, reg with
type Callable, and output_activation with type Literal. These constraints are both too loose to
identify valid inputs only, and not fully compatible with Pynguin’s generation algorithm. As a result,
Pynguin generates two test inputs, both invalid: in one, input_shape is the lone integer -1262; in
another one, it is the tuple (345, True); neither of them is a valid shape.

Deal

Encoding arbitrarily complex constraints is possible using a tool like Deal [29], which offers an ex-
pressive language to encode function preconditions (as well as other design-by-contract annotations).

Using Deal’s annotation language, we can precisely express model_discriminator’s input con-
straints, which we can elicit from examples of client code in other parts of project ADV (as well as
from the default values for some of the arguments). In particular, input_shape should be a two-
element tuple of integers in the range 1–28,6 and hidden_dim should be a positive integer, typically
in the range 1024–2048. For simplicity, we can tentatively ignore the more complex constraints on
arguments reg and output_activation, and simply use the default values of those two arguments.

Even though we can precisely express the constraints on input_shape and hidden_dim, Deal still
fails to generate any valid inputs for model_discriminator. This is because Deal’s input generation
algorithm produces random inputs, and then uses the constraints/preconditions to filter a posteriori
the random inputs. Thus, it’s exceedingly unlikely that a random value (among all possible Python
types) happens to satisfy detailed constraints such as those required by model_discriminator.

In hindsight, it is unsurprising that Pynguin and Deal—two state-of-the-art general-purpose test-
case generation tools for Python—are ineffective on this deceptively simple example. NN programs
often consist of structurally simple, usually short, functions with complex constraints on their numer-
ous input arguments [58]. In order to generate valid tests for these programs, we need a specialized
approach which supports both i) concisely expressing the complex input constraints; and ii) using
those constraints to drive the generation of possible valid inputs. This is what ANNOTEST is designed
for.

5We ran Pynguin 0.33.0 (the latest version at the time of writing) with its default configuration: DynaMOSA for test-
suite generation and MUTATION_ANALYSIS for assertion generation.

6Precisely, the tuple’s components would be valid even if they were larger than 28, but the 1–28 range is sufficient to
generate a wide variety of valid inputs that reflect typical usage.

44 The ANNOTEST Tool and Dataset

138 def model_discriminator(input_shape, hidden_dim=1024,
139 reg=lambda: l1l2(1e-5, 1e-5),
140 output_activation="sigmoid"):
141 return Sequential([
142 Flatten(name="discriminator_flatten", input_shape=input_shape),
143 Dense(hidden_dim, name="discriminator_h1", W_regularizer=reg()),
144 LeakyReLU(0.2),
145 Dense(hidden_dim / 2, name="discriminator_h2", W_regularizer=reg()), # bug
146 LeakyReLU(0.2),
147 Dense(hidden_dim / 4, name="discriminator_h3", W_regularizer=reg()),
148 LeakyReLU(0.2),
149 Dense(1, name="discriminator_y", W_regularizer=reg()),
150 Activation(output_activation)], name="discriminator")

Listing 4.1. Function model_discriminator from project ADV (Keras Adversarial Models).

151 @arg(input_shape): np_shapes(min_dims=2, max_dims=2, min=1, max=28)
152 @arg(hidden_dim): ints(min=1024, max=2048)

Listing 4.2. Annotations for function model_discriminator in Listing 4.1. The annotations’ syntax is
slightly simplified for readability.

4.2.2 ANNOTEST

ANNOTEST is a unit-test generation tool specifically designed to be effective on Python implementa-
tions of NN programs. To this end, it offers AN: a simple annotation language suitable to concisely
express the typical constraints on function inputs in such programs.

Annotations

Listing 4.2 shows some AN annotations for function model_discriminator, which precisely charac-
terize valid input values for arguments input_shape and hidden_dim, as we discussed them above.
Users of ANNOTEST can decide how much annotation effort to spend, depending on which functions
they want to focus on testing, and on how thorough the testing should be.

Concretely, ANNOTEST’s distribution includes a module an_language.py with concrete syntax for
the AN annotation language. To annotate a function, users of ANNOTEST import this module, and
then use the imported decorators just before each function to be annotated, directly in the source
code.

In this example, we did not annotate two arguments, and just relied on their default values. If we
wanted a more extensive test generation process, we could provide sets of possible suitable functions
(argument reg) and library function names (argument output_activation), and constrain ANNO-
TEST to pick input values from these sets.

Test generation

Writing annotations is the only manual part of using ANNOTEST. After adding function Listing 4.2’s
annotations to the source code, we call ANNOTEST with annotest <program_root>. The tool scans
through the whole program and generates tests for all annotated functions.

When an argument is left without AN annotations, ANNOTEST uses the argument’s default value.
Thus, ANNOTEST can only test a function if all its arguments have some AN annotations or a default

4.3 Design and Implementation 45

An→ @arg(var): TypeConstr | @require(BooleanExpr)
TypeConstr→ froms(list) | bools() | ints(min=-Inf,max=+Inf)

| floats

min=-Inf,max=+Inf,exclude_min=False,
exclude_max=False,exclude_NaN=True,
exclude_Inf=True

| tuples(TypeConstr∗)
| np_shapes(min_dims=1,max_dims=1,min=1,max=1)
| int_lists(min=-Inf,max=+Inf,min_len=0,max_len=10)
| np_arrays(np_type,shape=TypeConstr)
| dicts(keys=TypeConstr,

values=TypeConstr,min_size=0,max_size=+Inf)
| anys(TypeConstr+) | objs(function)

Figure 4.1. The main annotations supported by ANNOTEST.

value. In the running example, arguments reg and output_activation are not annotated; thus,
ANNOTEST always sets reg to l1l2(1e-05, 1e-05) and output_activation to "sigmoid" (see List-
ing 4.1).

ANNOTEST generates Hypothesis test templates [80] using the format recognized by Python’s
unittest testing framework, which can be used to actually expand and run the tests. In our running
example, ANNOTEST generates test templates nearly instantaneously; running them with unittest

takes 0.3 seconds, and produces 14 distinct valid test inputs (one of which triggers the bug at List-
ing 4.1’s line 145).

4.3 Design and Implementation

ANNOTEST inputs an annotated NN program and outputs Hypothesis test templates that encode all the
information to generate unit tests that satisfy the annotated constraints. This section first describes
the main features of the AN annotation language, and then how ANNOTEST aggregates the annotation
information and uses it to generate tests.

4.3.1 The AN Annotation Language

Figure 4.1 shows the main kinds of annotations supported by ANNOTEST’s AN annotation language.
The largest class of constraints are type constraints: @arg(var): TypeConstr constrains argument var
to values of a specific type and range. These can be subsets of booleans, integers, and floating points
(bools, ints, floats), as well as compound types such as tuples and dictionaries (tuples, dicts).
Type constraints np_shapes, int_lists, and np_arrays specify lists and tuples of numeric values
(including those supported by the NumPy library), which feature frequently in NN programs. Finally,
froms supplies a list of concrete values to sample from; anys is the union of multiple type constraints;
and objs introduces custom generator functions to generate arbitrarily complex objects.

Preconditions are constraints that involve multiple arguments at once or need to be conditional.7

In AN, @require(p) specifies a precondition p, where p is an arbitrary Python Boolean expression

7Even though ANNOTEST’s preconditions are similar to Deal’s, the bulk of NN annotations can be expressed using ANNO-
TEST’s type constraints and other, simpler annotations that crucially support the efficient generation of input values.

46 The ANNOTEST Tool and Dataset

involving the annotated function’s arguments. The AN language includes a few other annotations
(which we do not discuss here for brevity), such as to skip testing certain functions, to add a test
timeout, and to use constructors in test code (Section 3.3.1).

4.3.2 Testable Functions

By default, ANNOTEST generates tests for all functions in a NN program about which it has sufficient
information—either through user-provided annotations or through default values.

More precisely, an argument a of a function f is testable if at least one of the following conditions
holds: i) f includes an AN annotation that constrains a; ii) a has a default value (it is an optional
argument); iii) a is self, and the enclosing class C has a constructor that is testable. iv) a is a
non-keyword (*args) or keyword (**kwargs) variable-number argument. Thus, if a is testable, it
means that ANNOTEST knows how to generate at least one valid value for it: one that satisfies an
annotation, a default, one that can be constructed, or that can simply be omitted. A function f is
testable if all its arguments are testable.

4.3.3 Strategies

For each testable argument, ANNOTEST generates a suitable Hypothesis strategy: a custom object-
generating function. Several of AN’s type constraints match some of Hypothesis’s built-in strategies.
For instance, Hypothesis strategies array_shapes and integers are suitable to easily encode AN’s
constraints np_shapes and ints used in Listing 4.2’s running example. ANNOTEST can also reuse the
default values of arguments using Hypothesis’s just strategy.

More complex type constraints do not have a one-to-one matching Hypothesis strategy. In these
cases, ANNOTEST automatically combines available strategies or even generates new strategies. For
example, this is the case of constraint int_lists, which ANNOTEST encodes into a generator function
for integer lists with suitable characteristics.

Another interesting case are objs(gen) type annotations, where gen is a user-defined function
that should be used to generate values. In this case, ANNOTEST embeds and adapts gen’s implemen-
tation into Hypothesis code, so that it can be used as a generation strategy for the corresponding
argument.

4.3.4 Templates

For each testable function f, ANNOTEST combines the strategies for each of f’s arguments—built as
discussed in the previous section—into a test template. For a function f that is an instance method
of some class C, ANNOTEST generates a template that first instantiates object o of class C using C’s
constructor and the strategies recursively assigned to the constructor’s argument. Then, it calls
o.f(...) passing the values obtained by the strategies of f’s other arguments. To encode @require

annotations (preconditions), ANNOTEST uses Hypothesis’s assume function.

4.3.5 Executing the Tests

The final output of a run of ANNOTEST consists of several Hypothesis test templates—one for each
testable function in the analyzed NN program. ANNOTEST uses unittest’s format to encode the test
templates. Thus, users invoke unittest to pass ANNOTEST’s output to Hypothesis, which actively
generates concrete input values using the strategies, runs the tested functions, and reports any test
failure.

4.4 Curated Dataset of NN Bugs 47

4.3.6 Implementation Limitations

ANNOTEST cannot test nested functions—functions that are defined within other functions. This
limitation, which also applies to manually written tests, is simply due to the fact that a nested function
is invisible outside its host function; hence, we cannot test the nested function unless we also test
the host function.

ANNOTEST’s implementation relies on the Python ast library to extract information from a project’s
source code; thus, ANNOTEST can only process code that is syntactically valid. If a module fails a syn-
tax check, ANNOTEST skips it and provides a warning message.

4.4 Curated Dataset of NN Bugs

In Chapter 3, Table 3.3 presented findings about the bugs we reproduce using ANNOTEST as described
in Sections 3.5 and 3.6. We started with 19 open-source NN projects surveyed by Islam et al. [57];
but, we managed to reproduce bugs in 14 projects as indicated by column REP in Table 3.3. We pre-
pared a repository8 including the source code of 62 bugs within these 14 open-source NN projects.9

We curated this repository to ensure that each bug is easily reproducible using ANNOTEST—or
with any other Python source-code tool. In particular, each bug comes with an installation script
that creates a virtual environment with all dependencies, our AN annotations, the bug-triggering
tests generated by ANNOTEST, and scripts to rerun the tests or ANNOTEST on the program. Besides
documenting several realistic examples of using ANNOTEST, this repository can support further work
in this area, by providing a curated collection of real-world reproducible NN bugs.

4.5 Conclusions and Future Work

In this chapter, we described ANNOTEST: an automated test generation tool for NN programs. We
provided the motivation behind ANNOTEST, and outlined how to use it. ANNOTEST is fundamentally
oracle agnostic: it can use any user-provided oracle to identify faults. The experiments we con-
ducted so far (Sections 3.4–3.6) mostly use implicit crash oracles, or library assertion failures; this is
consistent with the focus on NN bugs, where low-level failures and crashes are widespread [58]. As
future work, we may extend ANNOTEST with oracle-generation capabilities. Given its current design,
a natural choice would be extending AN with syntax for postconditions, which can be used as oracles
of correctness. Another interesting direction would be generating regression tests, similarly to what
tools such as Pynguin (or Java’s Evosuite [39]) already do.

8https://github.com/atom-sw/annotest-subjects
9ANNOTEST’s current release at the time of writing is version 0.1; this is a more recent version than the one used for

the experiments in Chapter 3 that presented the ANNOTEST technique [99], which fixes several minor bugs and introduces
minor improvements to its functionality. However, this newer version, which is the version we introduced in this chapter,
cannot reproduce one bug in project Visual_Semantic_Alignments (referred to as VSA in Table 3.3). Consequently, instead
of 63 bugs as indicated in Table 3.3, the current version of our curated dataset contains 62 bugs.

https://github.com/atom-sw/annotest-subjects

48 The ANNOTEST Tool and Dataset

Part III
Fault

Localization

5
An Empirical Study of Fault Localization in Python
Programs

Python is one of the most popular programming languages these days,12 especially in novel domains
like data science programs. However, there is comparatively little research about fault localization
that targets Python. Even though it is plausible that several findings about programming languages
like C/C++ and Java—the most common choices for fault localization research—carry over to other
languages, whether the dynamic nature of Python and how the language is used in practice affect
the capabilities of classic fault localization approaches remain open questions to investigate.

In this chapter, we broaden the dissertation’s focus from Python neural network programs to
Python open-source programs by presenting the first multi-family large-scale empirical study of fault
localization on real-world Python programs and faults. Using Zou et al.’s recent large-scale empirical
study of fault localization in Java [145] as the basis of our study, we investigate the effectiveness
(i.e., localization accuracy), efficiency (i.e., runtime performance), and other features (e.g., dif-
ferent entity granularity levels) of seven well-known fault-localization techniques in four families
(spectrum-based, mutation-based, predicate switching, and stack-trace based) on 135 faults from
13 open-source Python projects from the BUGSINPY curated collection [128]. The results replicate for
Python several results known about Java, and shed light on whether Python’s peculiarities affect the
capabilities of fault localization.

Structure of the Chapter

The current chapter is organized as follows:

Section 5.1 highlights the introduction and motivation of the chapter.

Section 5.2 provides the details of various fault localization families used in our study along with
a brief overview of FAUXPY, the fault localization tool we developed to conduct this chapter’s
empirical study.

Sections 5.3–5.8 outline our experimental design.

Sections 5.9–5.11 present our experimental results and discussions, along with any limitations and
threats to the validity of our findings.

Section 5.12 concludes this chapter with a high-level discussion of the main results and presents
possible avenues for future research.

1TIOBE language popularity index: https://www.tiobe.com/tiobe-index/
2Popularity of Programming Language Index: https://pypl.github.io/PYPL.html

51

https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html

52 An Empirical Study of Fault Localization in Python Programs

5.1 Introduction

It is commonplace that debugging is an activity that takes up a disproportionate amount of time and
resources in software development [81]. This also explains the popularity of fault localization as a
research subject in software engineering: identifying locations in a program’s source code that are
implicated in some observed failures (such as crashes or other kinds of runtime errors) is a key step
of debugging. This chapter contributes to the empirical knowledge about the capabilities of fault
localization techniques, targeting the Python programming language.

Despite Python’s popularity as a programming language, the vast majority of fault localization
empirical studies target other languages—mostly C, C++, and Java. To our knowledge, CharmFL [55,
121] is the only available implementation of fault localization techniques for Python; the tool is lim-
ited to spectrum-based fault localization (SBFL) techniques. We could not find any realistic-size
empirical study of fault localization using Python programs comparing techniques of different fam-
ilies. This gap is in both the availability of tools [109] and the empirical knowledge about fault
localization in Python.

This chapter fills this knowledge gap: to our knowledge, it is the first multi-family large-scale
empirical study of fault localization in real-world Python programs. The starting point is Zou et
al.’s recent extensive study [145] of fault localization for Java. This chapter’s main contribution is
a differentiated conceptual replication [65] of Zou et al.’s study, sharing several of its features: i) it
experiments with several different families (spectrum-based, mutation-based, predicate switching,
and stack-trace-based) of fault localization techniques; ii) it targets a large number of faults in re-
al-world projects (135 faults in 13 projects); iii) it studies fault localization effectiveness at different
granularities (statement, function, and module); iv) it considers combinations of complementary
fault localization techniques. The fundamental novelty of our replication is that it targets the Python
programming language; furthermore, i) it analyzes fault localization effectiveness of different kinds
of faults and different categories of projects; ii) it estimates the contributions of different fault lo-
calization features by means of regression statistical models; iii) it compares its main findings for
Python to Zou et al.’s [145] for Java.

The main findings of our Python fault localization study are as follows:

1. Spectrum-based fault localization techniques are the most effective, followed by mutation-
based fault localization (MBFL) techniques.

2. Predicate switching (PS) and stack-trace (ST) fault localization are considerably less effective,
but they can work well on small sets of faults that match their characteristics.

3. Stack-trace is by far the fastest fault localization technique, predicate switching and mutation-
based fault localization techniques are the most time consuming.

4. Bugs in data-science related projects tend to be harder to localize than those in other categories
of projects.

5. Combining fault localization techniques boosts their effectiveness with only a modest hit on
efficiency.

6. The main findings about relative effectiveness still hold at all granularity levels.

7. Most of Zou et al. [145]’s findings about fault localization in Java carry over to Python.

A practical challenge to carry out a large-scale fault localization study of Python projects was that,
at the time of writing, there were no open-source tools that support a variety of fault localization

5.1 Introduction 53

techniques for this programming language. Thus, to perform this study, we implemented FAUXPY: a
fault-localization tool for Python that supports seven fault localization techniques in four families,
is highly configurable, and works with the most common Python unit testing frameworks (such as
Pytest and Unittest). Note that the study presented in this chapter is not about FAUXPY. We present
FAUXPY in detail in Chapter 6 and briefly in Section 5.2.6. Nevertheless, we make the tool available as
part of this chapter’s replication package—which also includes all the detailed experimental artifacts
and data that support further independent analysis and replicability.3

Scope

As noted earlier, the study presented in this chapter is designed based on Zou et al.’s empirical
comparison of fault localization on Java programs [145]. We chose their study because it is fairly
recent (it was published in 2021), it is comprehensive (it targets 11 fault localization techniques in
seven families, as well as combinations of some of these techniques), and it targets realistic programs
and faults (357 bugs in five projects from the Defects4J curated collection).

We target a comparable number of subjects (135 BUGSINPY [128] bugs vs. 357 Defects4J [63]
bugs) from a wide selection of projects (13 real-world Python projects vs. five real-world Java
projects). We study [145]’s four main fault localization families SBFL, MBFL, PS, and ST, but we
exclude three other families that featured in their study: DS (dynamic slicing [48]), IRBFL (Infor-
mation retrieval-based fault localization [144]), and HBFL (history-based fault localization [96]).

IRBFL and HBFL were shown to be scarcely effective by Zou et al. [144], and rely on different
kinds of artifacts that may not always be available when dynamically analyzing a program as done
by the other “mainstream” fault localization techniques. Namely, IRBFL analyzes bug reports, which
may not be available for all bugs; HBFL mines commit histories of programs. In contrast, our study
only includes techniques that solely rely on tests to perform fault localization; this help make a
comparison between techniques consistent.

Finally, we excluded DS for practical reasons: implementing it requires accurate data- and control-
dependency static analyses [136]. These are available in languages like Java through widely used
frameworks like Soot [68, 123]; in contrast, Python currently offers few mature static analysis tools
(e.g, Scalpel [71]), none with the features required to implement DS for the whole Python language.
Unfortunately, dynamic slicing has been implemented for Python in the past [23] but no implemen-
tation is publicly available; and building it from scratch is outside the present dissertation’s scope.

Deep learning models have recently been applied to the software fault localization problem.
The key idea of techniques such as DeepFL [72], GRACE [77], and DEEPRL4FL [74] is to train a
deep learning model to identify suspicious locations, giving it as input coverage information, as well
as other encoded information about the source code of the faulty programs (such as the data and
control-flow dependencies). While these approaches are promising, we could not include them in our
empirical study since they do not have the same level of maturity as the other “classic” FL techniques
we considered. First, DeepFL and GRACE only work at function-level granularity, whereas the bulk
of FL research targets statement-level granularity. Second, there are no reference implementations
of techniques such as DEEPRL4FL that we can use for our experiments.4 Third, the performance of
a deep learning-based technique usually depends on the training set. Fourth, training a deep learn-
ing model is usually a time consuming process; how to account for this overhead when comparing
efficiency is tricky.

Nevertheless, our empirical study does feature one FL technique that is based on machine learn-
ing: CombineFL, which is Zou et al.’s application of learning to rank to fault localization [145]. The

3Replication package: https://doi.org/10.6084/m9.figshare.23254688
4The replication package of DEEPRL4FL [74] is not available at the time of writing.

https://doi.org/10.6084/m9.figshare.23254688

54 An Empirical Study of Fault Localization in Python Programs

same paper also discusses how CombineFL outperforms other state-of-the-art machine learning-based
fault localization techniques such as MULTRIC [73], Savant [13], TraPT [73], and FLUCCS [117].
Therefore, CombineFL is a valid representative of the capabilities of pre-deep learning machine learn-
ing FL techniques.

Note that numerous recent empirical studies looked into fault localization for deep-learning mod-
els implemented in Python [37, 47, 110, 125, 141, 143]. This is a very different problem, using very
different techniques, than “classic” program-based fault localization, which is the topic of this chap-
ter.

5.2 Fault Localization and FAUXPY

Fault localization techniques [131, 136], an intensely researched topic for over two decades [131],
relate program failures (such as crashes or assertion violations) to faulty locations in the program’s
source code that are responsible for the failures. Concretely, a fault localization technique L assigns
a suspiciousness score LT (e) to any program entity e—usually, a location, function, or module—given
test inputs T that trigger a failure in the program. The suspiciousness score LT (e) should be higher
the more likely e is the location of a fault that is ultimately responsible for the failure. Thus, a list
of all program entities e1, e2, . . . ordered by decreasing suspiciousness score LT (e1)≥ LT (e2)≥ . . . is
fault localization technique L’s overall output.

Let T = P ∪ F be a set of tests partitioned into passing P and failing F , such that F ̸= ;—there is
at least one failing test—and all failing tests originate in the same fault. Tests T and a program p are
thus the target of a single fault localization run. Then, fault localization techniques differ in what
kind of information they extract from T and p to compute suspiciousness scores. A fault localization
family is a group of techniques that combine the same kind of information according to different
formulas.

Sections 5.2.1–5.2.4 describe four common FL families that comprise a total of seven FL tech-
niques. These are the techniques that we used in our experiments. As Section 5.2.5 further explains,
a FL technique’s granularity denotes the kind of program entities it analyzes for suspiciousness—from
individual program locations to functions or files/modules. Some FL techniques are only defined for
a certain granularity level, whereas others can be applied to different granularity levels.

While FL techniques are usually applicable to any programming language, we could not find any
comprehensive implementation of the most common fault localization techniques for Python at the
time of writing. Therefore, we implemented FAUXPY—an automated fault localization tool for Python
implementing several widely used techniques—and used it to perform the empirical study described
in this chapter. Section 5.2.6 outlines FAUXPY’s main features and some details of its implementation.

5.2.1 Spectrum-Based Fault Localization

Techniques in the spectrum-based fault localization (SBFL) family compute suspiciousness scores
based on a program’s spectra [98]—in other words, its concrete execution traces. The key heuristics
of SBFL techniques is that a program entity’s suspiciousness is higher the more often the entity is
covered (reached) by failing tests and the less often it is covered by passing tests. The various
techniques in the SBFL family differ in what formula they use to assign suspiciousness scores based
on an entity’s coverage in passing and failing tests.

Given tests T = P ∪ F as above, and a program entity e: i) P+(e) is the number of passing tests
that cover e; ii) P−(e) is the number of passing tests that do not cover e; iii) F+(e) is the number of
failing tests that cover e; iv) and F−(e) is the number of failing tests that do not cover e. Figure 5.1

5.2 Fault Localization and FAUXPY 55

TarantulaT (e) =
F+(e)/|F |

F+(e)/|F |+ P+(e)/|P|
(5.1)

OchiaiT (e) =
F+(e)

p

|F | × (F+(e) + P+(e))
(5.2)

DStarT (e) =
(F+(e))2

P+(e) + F−(e)
(5.3)

Figure 5.1. SBFL formulas to compute the suspiciousness score of an entity e given tests T = P ∪ F
partitioned into passing P and failing F . All formulas compute a score that is higher the more failing tests
F+(e) cover e, and lower the more passing tests P+(e) cover e—capturing the basic heuristics of SBFL.

MetallaxisT (m) =
F k
∼(m)

Æ

|F | × (F k
∼(m) + Pk(m))

MetallaxisT (e) = max
m∈M

m mutates e

MetallaxisT (m) (5.4)

MuseT (m) =
F k(m)− Pk(m)×

∑

n∈M F k(n)/
∑

n∈M Pk(n)
|F |

MuseT (e) = mean
m∈M

m mutates e

MuseT (m) (5.5)

Figure 5.2. MBFL formulas to compute the suspiciousness score of a mutant m given tests T = P ∪ F
partitioned into passing P and failing F . All formulas compute a score that is higher the more failing tests
F k(m) kill m, and lower the more passing tests Pk(m) kill m—capturing the basic heuristics of mutation
analysis. On the right, MBFL formulas to compute the suspiciousness score of a program entity e by
aggregating the suspiciousness score of all mutants m ∈ M that modified e in the original program.

shows how Tarantula [61], Ochiai [6], and DStar [130]—three widely used SBFL techniques [94]—
compute suspiciousness scores given this coverage information. DStar’s formula (5.3), in particular,
takes the second power of the numerator, as recommended by other empirical studies [130, 145].5

5.2.2 Mutation-Based Fault Localization

Techniques in the mutation-based fault localization (MBFL) family compute suspiciousness scores
based on mutation analysis [60], which generates many mutants of a program p by applying random
transformations to it (for example, change a comparison operator< to≤ in an expression). A mutant
m of p is thus a variant of p whose behavior differs from p’s at, or after, the location where m differs
from p. The key idea of mutation analysis is to collect information about p’s runtime behavior based
on how it differs from its mutants’. Accordingly, when a test t behaves differently on p than on m
(for example, p passes t but m fails it), we say that t kills m.

5Suspiciousness score formulas are typically expressed as ratios; when a denominator is zero, this leads to an unde-
fined score. There are different strategies to account for suspiciousness scores in these degenerate cases [109]. In our
experiments, we implicitly add a small constant ε= 0.1 to the denominator of every suspiciousness score formula. When
the denominator is not zero, adding ε is practically irrelevant; when the denominator is zero and the numerator is also
zero, adding ε gives a very low suspiciousness of zero (which reflects that the entity is hardly covered by any tests); when
the denominator is zero and the numerator is positive, adding ε gives a large suspiciousness (which reflects that the entity
is only covered by failing tests).

56 An Empirical Study of Fault Localization in Python Programs

To perform fault localization on a program p, MBFL techniques first generate a large number of
mutants M = {m1, m2, . . .} of p by systematically applying each mutation operator to each statement
in p that is executed in any failing test F . Then, given tests T = P ∪ F as above, and a mutant
m ∈ M : i) Pk(m) is the number of tests that p passes but m fails (that is, the tests in P that kill
m); ii) F k(m) is the number of tests that p fails but m passes (that is, the tests in F that kill m);
iii) and F k

∼(m) is the number of tests that p fails and behave differently on m, either because they
pass on m or because they still fail but lead to a different stack trace (this is a weaker notion of tests
that kill m [91]). Figure 5.2 shows how Metallaxis [91] and Muse [83]—two widely used MBFL
techniques—compute suspiciousness scores of each mutant in M .

Metallaxis’s formula (5.4) is formally equivalent to Ochiai’s—except that it is computed for each
mutant and measures killing tests instead of covering tests. In Muse’s formula (5.5),

∑

n∈M F k(n) is
the total number of failing tests in F that kill any mutant in M , and

∑

n∈M Pk(n) is the total number
of passing tests in P that kill any mutant in M (these are called f2p and p2f in Muse’s paper [83]).

Finally, MBFL computes a suspiciousness score for a program entity e by aggregating the sus-
piciousness scores of all mutants that modified e in the original program p; when this is the case,
we say that a mutant m mutates e. The right-hand side of Figure 5.2 shows Metallaxis’s and Muse’s
suspiciousness formulas for entities: Metallaxis (5.4) takes the largest (maximum) mutant score,
whereas Muse (5.5) takes the average (mean) of the mutant scores.

5.2.3 Predicate Switching

The predicate switching (PS) [140] fault localization technique identifies critical predicates: branch-
ing conditions (such as those of if and while statements) that are related to a program’s failure.
PS’s key idea is that if forcibly changing a predicate’s value turns a failing test into passing one, the
predicate’s location is a suspicious program entity.

For each failing test t ∈ F , PS starts from t ’s execution trace (the sequence of all statements exe-
cuted by t), and finds t ’s subsequence bt

1 bt
2 . . . of branching statements. Then, by instrumenting the

program p under analysis, it generates, for each branching statement bt
k, a new execution of t where

the predicate (branching condition) c t
k evaluated by statement bt

k is forcibly switched (negated) at
runtime (that is, the new execution takes the other branch at bt

k). If switching predicate c t
k makes

the test execution pass, then c t
k is a critical predicate. Finally, PS assigns a (positive) suspiciousness

score to all critical predicates in all tests F : PSF (c t
k) is higher, the fewer critical predicates are eval-

uated between c t
k and the failure location when executing t ∈ F [145].6 For example, the most

suspicious program entity e will be the location of the last critical predicate evaluated before any test
failure.

PS has some distinctive features compared to other FL techniques. First, it only uses failing tests
for its dynamic analysis; any passing tests P are ignored. Second, the only program entities it can
report as suspicious are locations of predicates; thus, it usually reports a shorter list of suspicious
locations than SBFL and MBFL techniques. Third, while MBFL mutates program code, PS dynami-
cally mutates individual program executions. For example, suppose that a loop while c:B executes
its body B twice—and hence, the loop condition c is evaluated three times—in a failing test. Then,
PS will generate three variants of this test execution: i) one where the loop body never executes (c
is false the first time it is evaluated); ii) one where the loop body executes once (c is false the second
time it is evaluated); iii) one where the loop body executes three or more times (c is true the third
time it is evaluated).

6The actual value of the suspiciousness score is immaterial, as long as the resulting ranking is consistent with this
criterion. In our experiments, PSF (c t

k) = 1/10d , where d is the number of critical predicates other than c t
k evaluated after

c t
k in t.

5.2 Fault Localization and FAUXPY 57

5.2.4 Stack Trace Fault Localization

When a program execution fails with a crash (for example, an uncaught exception), the language
runtime usually prints its stack trace (the chain of methods active when the crash occurred) as de-
bugging information to the user. In fact, it is known that stack trace information helps developers
debug failing programs [17]; and a bug is more likely to be fixed if it is close to the top of a stack
trace [111]. Based on these empirical findings, Zou et al. [145] proposed the stack trace fault local-
ization technique (ST), which uses the simple heuristics of assigning suspiciousness based on how
close a program entity is to the top of a stack trace.

Concretely, given a failing test t ∈ F , its stack trace is a sequence f1 f2 . . . of the stack frames of all
functions that were executing when t terminated with a failure, listed in reverse order of execution;
thus, f1 is the most recently called function, which was directly called by f2, and so on. ST assigns
a (positive) suspiciousness score to any program entity e that belongs to any function fk in t ’s stack
trace: STt(e) = 1/k, so that e’s suspiciousness is higher, the closer to the failure e’s function was
called.7 In particular, the most suspicious program entities will be all those in the function f1 called
in the top stack frame. Then, the overall suspiciousness score of e is the maximum in all failing tests
F : STF (e) =maxt∈F STt(e).

5.2.5 FL Granularities

Fault localization granularity refers to the kinds of program entity that a FL technique ranks. The
most widely studied granularity is statement-level, where each statement in a program may receive
a different suspiciousness score [94, 130]. However, coarser granularities have also been consid-
ered, such as function-level (also called method-level) [13, 133] and module-level (also called file-
level) [107, 144].

In practice, implementations of FL techniques that support different levels of granularity focus on
the finest granularity (usually, statement-level granularity), whose information they use to perform
FL at coarser granularities. Namely, the suspiciousness of a function is the maximum suspiciousness
of any statements in its definition; and the suspiciousness of a module is the maximum suspiciousness
of any functions belonging to it [145].

5.2.6 FAUXPY: Features and Implementation

Despite its popularity as a programming language, we could not find off-the-shelf implementations
of fault localization techniques for Python at the time of writing [109]. The only exception is
CharmFL [55]—a plugin for the PyCharm IDE—which only implements SBFL techniques. Therefore,
to conduct an extensive empirical study of FL in Python, we implemented FAUXPY: a fault localization
tool for Python programs.

FAUXPY supports all seven FL techniques in four families described in Sections 5.2.1–5.2.4, which
are the spectrum-based (SBFL) techniques DStar [130], Ochiai [6], and Tarantula [61]; the mutation-
based (MBFL) techniques Muse [83] and Metallaxis [91]; and the predicate switching (PS) [140] and
stack trace (ST) [145] fault localization families/techniques. FAUXPY can localize faults at the level
of statements, functions, or modules (Section 5.2.5). To make FAUXPY a flexible and extensible tool,
easy to use with a variety of other commonly used Python development tools, we implemented it as
a stand-alone command-line tool that works with tests in the formats supported by Pytest, Unittest,
and Hypothesis [80]—three popular Python testing frameworks.

7As in PS, the actual value of the suspiciousness score is immaterial, as long as the resulting ranking is consistent with
this criterion.

58 An Empirical Study of Fault Localization in Python Programs

While running, FAUXPY stores intermediate analysis data in an SQLite database; upon completing
a FL localization run, it returns to the user a human-readable summary—including suspiciousness
scores and ranking of program entities. The database improves performance (for example by caching
intermediate results) but also facilitates incremental analyses—for example, where we provide dif-
ferent batches of tests in different runs.

FAUXPY’s implementation uses Coverage.py [15]—a popular code-coverage measurement library—
to collect the execution traces needed for SBFL and MBFL. It also uses the state-of-the-art mutation-
testing framework Cosmic Ray [27] to generate mutants for MBFL; since Cosmic Ray is easily con-
figurable to use some or all of its mutation operators—or even to add new user-defined mutation
operators—FAUXPY’s MBFL implementation is also fully configurable. To implement PS in FAUXPY, we
developed an instrumentation library that can selectively change the runtime value of predicates in
different runs as required by the PS technique. Chapter 6 focuses on FAUXPY as a tool, providing a
thorough examination of its features and implementation.

5.3 Research Questions

Our experiments assess and compare the effectiveness and efficiency of the seven FL techniques sup-
ported by FAUXPY (see Section 5.2.6), as well as of their combinations, on real-world Python programs
and faults. To this end, we target the following research questions:

RQ1. How effective are the fault localization techniques?
RQ1 compares fault localization techniques according to how accurately they identify program
entities that are responsible for a fault.

RQ2. How efficient are the fault localization techniques?
RQ2 compares fault localization techniques according to their running time.

RQ3. Do fault localization techniques behave differently on different faults?
RQ3 investigates whether the fault localization techniques’ effectiveness and efficiency depend
on which kinds of faults and programs it analyzes.

RQ4. Does combining fault localization techniques improve their effectiveness?
RQ4 studies whether combining the information of different fault localization techniques for
the same faults improves the effectiveness compared to applying each technique in isolation.

RQ5. How does program entity granularity impact fault localization effectiveness?
RQ5 analyzes the relation between effectiveness and granularity: does the relative effective-
ness of fault localization techniques change as they target coarser-grained program entities?

RQ6. Are fault localization techniques as effective on Python programs as they are on Java pro-
grams?
RQ6 compares our overall results to Zou et al. [145]’s, exploring similarities and differences
between Java and Python programs.

5.4 Experimental Subjects

To have a representative collection of realistic Python bugs, we used BUGSINPY [128], a curated
dataset of real bugs collected from real-world Python projects, with all the information needed to
reproduce the bugs in controlled experiments. Table 5.1 overviews BUGSINPY’s 501 bugs from 17
projects.

5.4 Experimental Subjects 59

PROJECT KLOC |F| |M| BUGS SUBJECTS TESTS TEST KLOC CATEGORY DESCRIPTION

ansible 82.6 3 713 493 18 0 1 830 103.1 DEV IT automation platform
black 93.5 421 27 23 13 153 6.8 DEV Code formatter
cookiecutter 1.6 62 18 4 4 218 4.1 DEV Developer tool
fastapi 4.7 160 40 16 13 595 16.8 WEB Web framework for building

APIs
httpie 3.5 197 34 5 4 217 2.4 CL Command-line HTTP client
keras 6.7 150 119 45 18 616 13.6 DS Deep learning API
luigi 22.0 2 004 120 33 13 1 508 21.2 DEV Pipelines of batch jobs man-

agement tool
matplotlib 99.6 5 526 147 30 0 2 484 34.9 DS Plotting library
pandas 128.0 5 466 234 169 18 12 226 200.9 DS Data analysis toolkit
PySnooper 0.7 60 7 3 0 49 3.9 DEV Debugging tool
sanic 7.3 462 61 5 3 466 8.3 WEB Web server and web frame-

work
scrapy 15.7 1 509 179 40 0 1 572 24.5 WEB Web crawling and web

scraping framework
spaCy 97.2 852 415 10 6 986 13.4 DS Natural language processing

library
thefuck 4.7 604 203 32 16 614 7.3 CL Console command tool
tornado 17.9 1 124 35 16 4 926 13.1 WEB Web server
tqdm 3.3 200 28 9 7 120 2.7 CL Progress bar for Python and

CLI
youtube-dl 125.0 3 078 818 43 16 237 5.1 CL Video downloader

total 714.0 25 588 2 978 501 135 24 817 482.1

Table 5.1. Overview of projects in BUGSINPY. For each PROJECT, the table reports the project’s overall size
in KLOC (thousands of non-empty non-comment lines of code, excluding tests), the number |F| of func-
tions (excluding test functions), the number |M| of modules (excluding test modules), the number of BUGS

included in BUGSINPY, how many we selected as SUBJECTS for our experiments, the corresponding number
of TESTS (i.e., test functions), their size in kLOC (TEST KLOC, thousands of non-empty non-comment lines
of test code), the CATEGORY the project belongs to (CL: command line; DEV: development tools; DS: data
science; WEB: web tools), and a brief DESCRIPTION of the project. Consistently with what done by the
authors of BUGSINPY [128], the project statistics reported here refer to the latest version of the projects on
2020-06-19.

Project category. Columns CATEGORY in Table 5.1 and Table 5.2 partition all BUGSINPY projects into
four non-overlapping categories:

Command line (CL) projects consist of tools mainly used through their command line interface.

Development (DEV) projects offer libraries and utilities useful to software developers.

Data science (DS) projects consist of machine learning and numerical computation frameworks.

Web (WEB) projects offer libraries and utilities useful for web development.

We classified the projects according to their description in their respective repositories, as well as
how they are presented in BUGSINPY. Like any classification, the boundaries between categories may
be somewhat fuzzy, but the main focus of most projects is quite obvious (such as DS for keras and
pandas, or CL for youtube-dl).

60 An Empirical Study of Fault Localization in Python Programs

Unique bugs. Each bug b = 〈p−b , p+b , Fb, Pb〉 in BUGSINPY consists of: i) a faulty version p−b of the
project, such that tests in Fb all fail on it (all due to the same root cause); ii) a fixed version p+b of
the project, such that all tests in Fb ∪ Pb pass on it; iii) a collection of failing Fb and passing Pb tests,
such that tests in Pb pass on both the faulty p−b and fixed p+b versions of the project, whereas tests in
Fb fail on the faulty p−b version and pass on the fixed p+b version of the project.

Bug selection. Despite BUGSINPY’s careful curation, several of its bugs cannot be reproduced be-
cause their dependencies are missing or no longer available; this is a well-known problem that
plagues reproducibility of experiments involving Python programs [84]. In order to identify which
BUGSINPY bugs were reproducible at the time of our experiments on our infrastructure, we took the
following steps for each bug b:

i) Using BUGSINPY’s scripts, we generated and executed the faulty p−b version and checked that
tests in Fb fail whereas tests in Pb pass on it; and we generated and executed the fixed p+b
version and checked that all tests in Fb∪ Pb pass on it. Out of all of BUGSINPY’s bugs, 120 failed
this step; we did not include them in our experiments.

ii) Python projects often have two sets of dependencies (requirements): one for users and one for
developers; both are needed to run fault localization experiments, which require to instrument
the project code. Another 39 bugs in BUGSINPY miss some development dependencies; we did
not include them in our experiments.

iii) Two bugs resulted in an empty ground truth (Section 5.5): essentially, there is no way of
localizing the fault in p−b ; we did not include these bugs in our experiments.

This resulted in 501− 120− 39− 2= 340 bugs in 13 projects (all but ansible, matplotlib, PySnooper,
and scrapy) that we could reproduce in our experiments.

However, this is still an impractically large number: just reproducing each of these bugs in
BUGSINPY takes nearly a full week of running time, and each FL experiment may require to rerun
the same tests several times (hundreds of times in the case of MBFL). Thus, we first discarded 27
bugs that each take more than 48 hours to reproduce. We estimate that including these 27 bugs in the
experiments would have taken over 14 CPU-months just for the MBFL experiments—not counting
other FL techniques, nor the time for setup and dealing with unexpected failures.

Running all the fault localization experiments for each of the remaining 313 = 340 − 27 bugs
takes approximately eleven CPU-hours, for a total of nearly five CPU-months. We selected 135 bugs
out of the 313 using stratified random sampling with the four project categories as the “strata”,
picking: 43 bugs in category CL, 30 bugs in category DEV, 42 bugs in category DS, and 20 bugs
in category WEB. This gives us a still sizable, balanced, and representative8 sample of all bugs in
BUGSINPY, which we could exhaustively analyze in around two CPU-months worth of experiments.
In all, we used this selection of 135 bugs as our empirical study’s subjects. Table 5.2 gives some
details about the selected projects and their bugs.

As a side comment, note that our experiments with BUGSINPY were generally more time consum-
ing than Zou et al.’s experiments with Defects4J. For example, the average per-bug running time
of MBFL in our experiments (15 774 seconds in Table 5.6) was 3.3 times larger than in Zou et al.’s
(4800 seconds in [145, Table 9]). Even more strikingly, running all fault localization experiments on
the 357 Defects4J bugs took less than one CPU-month;9 in contrast, running MBFL on just 27 “time

8For example, this sample size is sufficient to estimate a ratio with up to 5.5% error and 90% probability with the most
conservative (i.e., 50%) a priori assumption [28].

9The sum of column AVERAGE in [145, Table 9] multiplied by 357 gives 2.04 million seconds or 0.79 months.

5.5 Faulty Locations: Ground Truth 61

CATEGORY PROJECT BUGS (SUBJECTS) TESTS GROUND TRUTH

C P C P C P

CL

httpie

43

4

1188

217

139

12
thefuck 16 614 55
tqdm 7 120 22
youtube-dl 16 237 50

DEV

black
30

13
1879

153
300

208
cookiecutter 4 218 19
luigi 13 1508 73

DS

keras
42

18
13828

616
186

111
pandas 18 12226 64
spaCy 6 986 11

WEB

fastapi
20

13
1987

595
174

156
sanic 3 466 6
tornado 4 926 12

total 135 135 18882 18882 799 799

Table 5.2. Selected BUGSINPY bugs used in this chapter’s experiments. The PROJECTs are grouped by
CATEGORY; the table reports—for each project individually (column P), as well as for all projects in the
category (column C)—the number of BUGS selected as SUBJECTS for our experiments, the corresponding
number of TESTS (i.e., test functions), and the total number of program locations that make up the GROUND

TRUTH (described in Section 5.5).

consuming” bugs in BUGSINPY takes over 14 CPU-months. This difference may be partly due to the
different characteristics of projects in Defects4J vs. BUGSINPY, and partly to the dynamic nature of
Python (which is run by an interpreter).

5.5 Faulty Locations: Ground Truth

A fault localization technique’s effectiveness measures how accurately the technique’s list of suspi-
cious entities matches the actual fault locations in a program—fault localization’s ground truth. It
is customary to use programmer-written patches as ground truth [94, 145]: the program locations
modified by the patches that fix a certain bug correspond to the bug’s actual fault locations.

Concretely, here is how to determine the ground truth of a bug b = 〈p−b , p+b , Fb, Pb〉 in BUGSINPY.
The programmer-written fix p+b consists of a series of edits to the faulty program p−b . Each edit can
be of three kinds: i) add, which inserts into p+b a new program location; ii) remove, which deletes a
program location in p−b ; iii) modify, which takes a program location in p−b and changes parts of it,
without changing its location, in p+b . Take, for instance, the program in Figure 5.3b, which modifies
the program in Figure 5.3a; the edited program includes two adds (lines 175, 184), one remove
(line 188), and one modify (line 181).

Bug b’s ground truthF (b) is a set of locations in p−b that are affected by the edits, determined as
follows. First of all, ignore any blank or comment lines, since these do not affect a program’s behavior
and hence cannot be responsible for a fault. Then, finding the ground truth locations corresponding
to removes and modifies is straightforward: a location ℓ that is removed or modified in p+b exists by
definition also in p−b , and hence it is part of the ground truth. In Figure 5.3, line 162 is modified and
line 169 is removed by the edit that transforms Figure 5.3a into Figure 5.3b; thus 162 and 169 are

62 An Empirical Study of Fault Localization in Python Programs

153 a = 3
154

155

156

157

158 c = 5
159

160 # Function foo
161 def foo(y):
162 if y > 3:
163 a = y
164 y = y * 2
165

166

167 # Function bar
168 def bar(z):
169 z = z + 2
170 return z
171

(a) Faulty program version. Lines with colored
background are the ground truth locations. Ex-
tra blank lines are added for readability.

172 a = 3
173

174 # Global variable b
175 b = None # add
176

177 c = 5
178

179 # Function foo
180 def foo(y):
181 if y >

:::
100: # modify

182 a = y
183 y = y * 2
184 a = y # add
185

186 # Function bar
187 def bar(z):
188 z = z + 2 # remove
189 return z
190

(b) Fixed program version, which edits Fig-
ure 5.3a’s program with two adds, one

:::::
modify,

and one remove.

Figure 5.3. An example of program edit, and the corresponding ground truth faulty locations.

part of the example’s ground truth.
Finding the ground truth locations corresponding to adds is more involved [109], because a

location ℓ that is added to p+b does not exist in p−b : b is a fault of omission [94].10 A common solu-
tion [94, 145] is to take as ground truth the location in p−b that immediately follows ℓ. In Figure 5.3,
line 158 corresponds to the first non-blank line that follows the assignment statement that is added
at line 175 in Figure 5.3b; thus 158 is part of the example’s ground truth. However, an add at ℓ is
actually a modification between two other locations; therefore, the location that immediately pre-
cedes ℓ should also be part of the ground truth, since it identifies the same insertion location. In
Figure 5.3, line 153 precedes the assignment statement that is added at line 175 in Figure 5.3a; thus
153 is also part of the example’s ground truth.

A location’s scope poses a final complication to determine the ground truth of adds. Consider
line 184, added in Figure 5.3b at the very end of function foo’s body. The (non-blank, non-comment)
location that follows it in Figure 5.3a is line 168; however, line 168 marks the beginning of another
function bar’s definition. Function bar cannot be the location of a fault in foo, since the two functions
are independent—in fact, the fact that bar’s declaration follows foo’s is immaterial. Therefore, we
only include a location in the ground truth if it is within the same scope as the location ℓ that has
been added. If ℓ is part of a function body (including methods), its scope is the function declaration;
if ℓ is part of a class outside any function (e.g., an attribute), its scope is the class declaration; and
otherwise ℓ’s scope is the module it belongs to. In Figure 5.3, both lines 153 and 158 are within
the same module as the added statement at line 175 in Figure 5.3a. In contrast, line 168 is within a
different scope than the added statement at line 184 in Figure 5.3a. Therefore, lines 153, 158, and
164 are part of the ground truth, but not line 168.

Our definition of ground truth refines that used in related work [94, 145] by including the lo-

10In BUGSINPY, 41% of all fixes include at least one add edit.

5.6 Classification of Faults 63

predicate mutable

crashing

4 19

20

29

16
3 10

34
all bugs

Figure 5.4. Classification of the 135 BUGSINPY bugs used in our experiments into three categories.

cation that precedes an add, and by considering only locations within scope. We found that this
definition better captures the programmer’s intent and their corrective impact on a program’s behav-
ior.

How to best characterize bugs of omissions (fixed by an add) in fault localization remains an open
issue [109]. Pearson et al.’s study [94] proposed the first viable solution: including the location
following an add. Zou et al. [145] followed the same approach, and hence we also include the
location following an add in our ground truth computation. We also noticed that, by also including
the location preceding an add, and by taking scope into account, our ground truth computation
becomes more comprehensive; in particular, it also works for statements added at the very end of a
file—a location that has no following lines.

While our approach is usually more precise, it is not necessarily the preferable alternative in
all cases. Consider again, for instance, the add at line 184 in Figure 5.3; if we ignored the scope
(and the preceding statement), only line 168 would be included in its ground truth. If this fault
localization information were consumed by a developer, it could still be useful and actionable even
if it reports a line outside the scope of the actual add location: the developer would use the location
as a starting point for their inspection of the nearby code; and they may prefer a smaller, if slightly
imprecise, ground truth to a larger, redundant one. However, our study’s focus is strictly evaluating
the effectiveness of FL techniques as rigorously as possible—for which our stricter ground truth
computation is more appropriate.

5.6 Classification of Faults

Bug kind. The information used by each fault localization technique naturally captures the behavior
of different kinds of faults. Stack trace fault localization analyzes the call stack after a program
terminates with a crash; predicate switching targets branching conditions as program entities to
perform fault localization; and MBFL crucially relies on the analysis of mutants to track suspicious
locations.

Correspondingly, we classify a bug b = 〈p−b , p+b , Fb, Pb〉 as:

Crashing bug if any failing test in Fb terminates abruptly with an unexpected uncaught exception.

Predicate bug if any faulty entity in the ground truth F (b) includes a branching predicate (such as
an if or while condition).

64 An Empirical Study of Fault Localization in Python Programs

Mutable bug if any of the mutants generated by MBFL’s mutation operators mutates any locations
in the ground truthF (b). Precisely, a bug b’s mutability is the percentage of all mutants of p−b
that mutate locations in F (b); and b is mutable if its mutability is greater than zero.

The notion of crashing and predicate bugs is from Zou et al. [145]. We introduced the notion of
mutable bug to try to capture scenarios where MBFL techniques have a fighting chance to correctly
localize bugs. Since MBFL uses mutant analysis for fault localization, its capabilities depend on the
mutation operators that are used to generate the mutants. Therefore, the notion of mutable bugs
is somewhat dependent on the applied mutation operators.11 Our implementation of FAUXPY uses
the standard operators offered by the popular Python mutation testing framework Cosmic Ray [27].
As we discuss in Section 5.10.2, Cosmic Ray features a set of mutation operators that are largely
similar to several other general-purpose mutation testing frameworks—all based on Offut et al.’s
well known work [86]. These strong similarities between the mutation operators offered by most
widely used mutation testing frameworks suggest that our definition of “mutable bug” is not strongly
dependent on the specific mutation testing framework that is used. Correspondingly, bugs that we
classify as “mutable” are likely to remain amenable to localization with MBFL provided one uses
(at least) this standard set of core mutation operators. Conversely, we expect that devising new,
specialized mutation operators may extend the number of bugs that we can classify as “mutable”,
and hence that are more likely to be amenable to localization with MBFL techniques.

Figure 5.4 shows the kind of the 135 BUGSINPY bugs we used in the experiments, consisting of 49
crashing bugs, 52 predicate bugs, 74 mutable bugs, and 34 bugs that do not belong to any of these
categories.

Project category. Another, orthogonal classification of bugs is according to the project category they
belong to, explained in Section 5.4. We classify a bug b as a CL, DEV, DS, or WEB bug according to
the category of project (Table 5.2) b belongs to.

5.7 Evaluation Metrics

In this section, we detail the evaluation metrics used in our experiments, including both established
classic metrics from the literature and our custom-designed metrics. We also provide insights into
our statistical analysis methodologies.

5.7.1 Ranking Program Entities

Running a fault localization technique L on a bug b returns a list of program entities ℓ1,ℓ2, . . ., sorted
by their decreasing suspiciousness scores s1 ≥ s2 ≥ The programmer (or, more realistically, a
tool [44, 92]) will go through the entities in this order until a faulty entity (that is an ℓ ∈ F (b)
that matches b’s ground truth) is found. In this idealized process, the earlier a faulty entity appears
in the list, the less time the programmer will spend going through the list, the more effective fault
localization technique L is on bug b. Thus, a program entity’s rank in the sorted list of suspicious
entities is a key measure of fault localization effectiveness.

11In this sense, “mutable” is a qualitatively different attribute than “crashing” and “predicate”. Whether a bug b is
“crashing” exclusively depends on the failing tests that trigger the bug; whether b is a “predicate” bug depends on the
branching syntactic structure of b’s program and how it relates to b. In contrast, whether b is a “mutable” bug depends
on the mutation operators used to analyze b, and on whether they can change the program so as to effectively affect b’s
buggy behavior.

5.7 Evaluation Metrics 65

PROGRAM ENTITY ℓ

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10

suspiciousness score s of ℓ 10 7 4 4 4 3 3 2 2 2
ℓ ∈ F (b)? é é é é

start(ℓ) 1 2 3 3 3 6 6 8 8 8
ties(ℓ) 1 1 3 3 3 2 2 3 3 3
faulty(ℓ) 0 1 1 1 1 0 0 2 2 2

Ib(ℓ, 〈ℓ1, s1〉 . . . 〈ℓn, sn〉) 1.0 2.0 4.0 4.0 4.0 6.0 6.0 8.3 8.3 8.3

Table 5.3. An example of calculating the Einspect metric Ib(ℓ, 〈ℓ1, s1〉 . . . 〈ℓn, sn〉) for a list of 10 suspicious
locations ℓ1, . . . ,ℓ10 ordered by their decreasing suspiciousness scores s1, . . . , s10 . For each location ℓ,
the table reports its suspiciousness score s, and whether ℓ is a faulty location ℓ ∈ F (b); based on this
ranking of locations, it also shows the lowest rank start(ℓ) of the first location whose score is equal to ℓ’s,
the number ties(ℓ) of locations whose score is equal to ℓ’s, the number of faulty locations among these,
and the corresponding Einspect value Ib(ℓ, L)—computed according to (5.6).

Computing a program entity ℓ’s rank is trivial if there are no ties between scores. For example,
consider Table 5.3’s first two program entities ℓ1 and ℓ2, with suspiciousness scores s1 = 10 and
s2 = 7. Obviously, ℓ1’s rank is 1 and ℓ2’s is 2; since ℓ2 is faulty (ℓ2 ∈ F (b)), its rank is also a measure
of how many entities will need to be inspected in the aforementioned debugging process.

When several program entities tie the same suspiciousness score, their relative order in a ranking
is immaterial [30]. Thus, it is a common practice to give all of them the same average rank [109,
118], capturing an average-case number of program entities inspected while going through the fault
localization output list. For example, consider Table 5.3’s first five program entities ℓ1, . . . ,ℓ5; ℓ3,
ℓ4, and ℓ5 all have the same suspiciousness score s = 4. Thus, they all have the same average rank
4 = (3+ 4+ 5)/3, which is a proxy of how many entities will need to be inspected if ℓ4 were faulty
but ℓ2 were not.

Capturing the “average number of inspected entities” is trickier still if more than one entity is
faulty among a bunch of tied entities. Consider now all of Table 5.3’s ten program entities; entities
ℓ8, ℓ9, and ℓ10 all have the suspiciousness score s = 2; ℓ8 and ℓ9 are faulty, whereas ℓ10 is not. Their
average rank 9= (8+9+10)/3 overestimates the number of entities to be inspected (assuming now
that these are the only faulty entities in the output), since two entities out of three are faulty, and
hence it is more likely that the faulty entity will appear before rank 9.

To properly account for such scenarios, Zou et al. [145] introduced the Einspect metric, which ranks
a program entity ℓ within a list 〈ℓ1, s1〉 . . . 〈ℓn, sn〉 of program entities ℓ1, . . . ,ℓn with suspiciousness
scores s1 ≥ . . .≥ sn as:

Ib(ℓ, 〈ℓ1, s1〉 . . . 〈ℓn, sn〉) = start(ℓ) +
ties(ℓ)−faulty(ℓ)
∑

k=1

k

�ties(ℓ)−k−1
faulty(ℓ)−1

�

� ties(ℓ)
faulty(ℓ)

�
(5.6)

In (5.6), start(ℓ) is the position k of the first entity among those with the same score as ℓ’s; ties(ℓ) is
the number of entities (including ℓ itself) whose score is the same as ℓ’s; and faulty(ℓ) is the number
of entities (including ℓ itself) that tie ℓ’s score and are faulty (that is ℓ ∈ F (b)). Intuitively, the
Einspect rank Ib(ℓ, 〈ℓ1, s1〉 . . . 〈ℓn, sn〉) is thus an average of all possible ranks where tied and faulty
entities are shuffled randomly. When there are no ties, or only one entity among a group of ties
is faulty, (5.6) coincides with the average rank. Henceforth, we refer to a location’s Einspect rank
Ib(ℓ, 〈ℓ1, s1〉 . . . 〈ℓn, sn〉) as simply its rank.

66 An Empirical Study of Fault Localization in Python Programs

Better vs. worse ranks. A clarification about terminology: a high rank is a rank that is close to
the top-1 rank (the first rank), whereas a low rank is a rank that is further away from the top-1
rank. Correspondingly, a high rank corresponds to a small numerical ordinal value; and a low rank
corresponds to a large numerical ordinal value. Consistently with this standard usage, the rest of
the chapter refers to “better” ranks to mean “higher” ranks (corresponding to smaller ordinals); and
“worse” ranks to mean “lower” ranks (corresponding to larger ordinals).

5.7.2 Fault Localization Effectiveness Metrics

Einspect effectiveness. Building on the notion of rank—defined in Section 5.7.1—we measure the
effectiveness of a fault localization technique L on a bug b as the rank of the first faulty program entity
in the list L(b) = 〈ℓ1, s1〉 . . . 〈ℓn, sn〉 of entities and suspiciousness scores returned by L running on
b—defined as Ib(L) in (5.7). Ib(L) is L’s Einspect rank on bug b, which estimates the number of
entities in L’s one has to inspect to correctly localize b.

Generalized Einspect effectiveness. What happens if a FL technique L cannot localize a bug b—
that is, b’s faulty entities F (b) do not appear at all in L’s output? According to (5.6) and (5.7),
Ib(L) is undefined in these cases. This is not ideal, as it fails to measure the effort wasted going
through the location list when using L to localize b—the original intuition behind all rank metrics.
Thus, we introduce a generalization L’s Einspect rank on bug b as follows. Given the list L(b) =
〈ℓ1, s1〉 . . . 〈ℓn, sn〉 of entities and suspiciousness scores returned by L running on b, let L∞(b) =
〈ℓ1, s1〉 . . . 〈ℓn, sn〉 〈ℓn+1, s0〉〈ℓn+2, s0〉 . . . be L(b) followed by all other entities ℓn+1,ℓn+1, . . . in program
p−b that are not returned by L, each given a suspiciousness s0 < sn lower than any suspiciousness
scores assigned by L.

With this definition, Ib(L) = eIb(L) whenever L can localize b—that is some entity from F (b)
appears in L’s output list. If some technique L1 can localize b whereas another technique L2 cannot,
eIb(L2) > eIb(L1), thus reflecting that L2 is worse than L1 on b. Finally, if neither L1 nor L2 can

localize b, eIb(L2) > eIb(L1) if L2 returns a longer list than L1: all else being equal, a technique
that returns a shorter list is “better” than one that returns a longer list since it requires less of the
user’s time to inspect the output list. Accordingly, eIb(L) denotes L’s generalized Einspect rank on bug
b—defined as in (5.7).

Exam score effectiveness. Another commonly used effectiveness metric is the exam score Eb(L)
[129], which is just a FL technique L’s Einspect rank on bug b over the number of program entities
|p−b | of the analyzed buggy program p−b —as in (5.7). Just like Ib(L), Eb(L) is undefined if L cannot
localize b.

Effectiveness of a technique. To assess the overall effectiveness of a FL technique over a set B of
bugs, we aggregate the previously introduced metrics in different ways—as in (5.8). The L@Bn
metric counts the number of bugs in B that L could localize within the top-n positions (according to
their Einspect rank); n= 1, 3,5,10 are common choices for n, reflecting a “feasible” number of entities
to inspect. Then, the L@Bn%= 100 · L@Bn/|B| metric is simply L@Bn expressed as a percentage of
the number |B| of bugs in B. eIB(L) is L’s average generalized Einspect rank of bugs in B. And EB(L)
is L’s average exam score of bugs in B (thus ignoring bugs that L cannot localize).

Location list length. The |Lb|metric is simply the number of suspicious locations output by FL tech-
nique L when run on bug b; and |LB| is the average of |Lb| for all bugs in B. The location list length

5.7 Evaluation Metrics 67

Ib(L) = min
ℓ∈L(b)∩F (b)

Ib(ℓ, L(b)) eIb(L) = min
ℓ∈L∞(b)∩F (b)

Ib(ℓ, L∞(b)) Eb(L) =
Ib(L)
|p−b |

(5.7)

L@Bn =
�

�

�

b ∈ B | Ib(L)≤ n
	�

�
eIB(L) =

1
|B|

∑

b∈B

eIb(L) EB(L) =
1
|B|

∑

b∈B

Eb(L) (5.8)

Figure 5.5. Definitions of common FL effectiveness metrics. The top row shows two variants I , eI of the
Einspect metric, and the exam score E , for a generic bug b and fault localization technique L. The bottom row

shows cumulative metrics for a set B of bugs: the “at n” metric L@Bn, and the average eI and E metrics.

metric is not, strictly speaking, a measure of effectiveness; rather, it complements the information
provided by other measures of effectiveness, as it gives an idea of how much output a technique
produces to the user. All else being equal, a shorter location list length is preferable—provided it
is not empty. In practice, we’ll compare the location list length to other metrics of effectiveness, in
order to better understand the trade-offs offered by each FL technique.

Different FL families use different kinds of information to compute suspiciousness scores; this is
also reflected by the entities that may appear in their output location list. SBFL techniques include all
locations executed by any tests Tb (passing or failing) even if their suspiciousness is zero; conversely,
they omit all locations that are not executed by the tests. MBFL techniques include all locations
executed by any failing tests Fb, since these locations are the targets of the mutation operators. PS
includes all locations of predicates (branching conditions) that are executed by any failing tests Fb
and that are critical (as defined in Section 5.2.3). ST includes all locations of all functions that appear
in the stack trace of any crashing test in Fb.

Effectiveness metrics: limitations. Despite being commonly used in fault localization research, the
effectiveness metrics presented in this section rely on assumptions that may not realistically capture
the debugging work of developers. First, they assume that a developer can understand the charac-
teristics of a bug and devise a suitable fix by examining just one buggy entity; in contrast, debugging
often involves disparate activities, such as analyzing control and data dependencies and inspect-
ing program states with different inputs [93]. Second, debugging is often not a linear sequence of
activities [67] as simple as going through the ranked list of entities produced by fault localization
techniques. Despite these limitations, we still rely on this section’s effectiveness metrics: on the
one hand, they are used in practically all related work on fault localization (in particular, Zou et
al. [144]); thus, they make our results comparable to others. On the other hand, there are no viable,
easy-to-measure alternative metrics that are also fully realistic; devising such metrics is outside this
dissertation’s scope and belongs to future work.

5.7.3 Comparison: Statistical Models

To quantitatively compare the capabilities of different fault localization techniques, we consider sev-
eral standard statistics.

Pairwise comparisons. Let Mb(L) be any metric M measuring the capabilities of fault-localization
technique L on bug b; M can be any of Section 5.7.2’s effectiveness metrics, or L’s wall-clock
running time Tb(L) on bug b as performance metric. Similarly, for a fault-localization family F ,
Mb(F) denotes the average value

∑

k∈F Mb(k)/|F | of Mb for all techniques in family F . Given a

68 An Empirical Study of Fault Localization in Python Programs

set B = {b1, . . . , bn} of bugs, we compare the two vectors MB(F1) = 〈Mb1
(F1) . . . Mbn

(F1)〉 and
MB(F2) = 〈Mb1

(F2) . . . Mbn
(F2)〉 using three statistics:

Correlation τ between MB(F1) and MB(F2) computed using Kendall’s τ statistics. The absolute
value |τ| of the correlation τ measures how closely changes in the value of metric M for F1
over different bugs are associated to changes for F2 over the same bugs: if 0 ≤ |τ| ≤ 0.3 the
correlation is negligible; if 0.3 < |τ| ≤ 0.5 the correlation is weak; if 0.5 < |τ| ≤ 0.7 the
correlation is medium; and if 0.7< |τ| ≤ 1 the correlation is strong.

P-value p of a paired Wilcoxon signed-rank test—a nonparametric statistical test comparing MB(F1)
and MB(F2). A small value of p is commonly taken as evidence against the “null-hypothesis”
that the distributions underlying MB(F1) and MB(F2) have different medians:12 usually, p ≤
0.05, p ≤ 0.01, and p ≤ 0.001 are three conventional thresholds of increasing strength.

Cliff’s δ effect size—a nonparametric measure of how often the values in MB(F1) are larger than
those in MB(F2). The absolute value |δ| of the effect size δ measures how much the values of
metric M differ, on the same bugs, between F1 and F2 [105]: if 0≤ |δ|< 0.147 the differences
are negligible; if 0.145 ≤ |δ| < 0.33 the differences are small; if 0.33 ≤ |δ| < 0.474 the
differences are medium; and if 0.474≤ |δ| ≤ 1 the differences are large.

Regression models. To ferret out the individual impact of several different factors (fault localiza-
tion family, project category, and bug kind) on the capabilities of fault localization, we introduce two
varying effects regression models with normal likelihood and logarithmic link function.
�

Eb
Tb

�

∼ MVNormal
��

eb
tb

�

, S
�

log(eb) = α+αfamily[b] +αcategory[b] log(tb) = β + βfamily[b] + βcategory[b] (5.9)

Eb ∼ Normal (eb, σ) log(eb) =

α + αfamily[b] +αcategory[b]
+ cfamily[b] crashingb
+ pfamily[b] predicateb
+ mfamily[b] log(1+mutabilityb)

(5.10)

Model (5.9) is multivariate, as it simultaneously captures effectiveness and runtime cost of fault
localization. For each fault localization experiment on a bug b, (5.9) expresses the vector [Eb, Tb]
of standardized13 Einspect metric Eb and running time Tb as drawn from a multivariate normal dis-
tribution whose means eb and tb are log-linear functions of various predictors. Namely, log(eb) is
the sum of a base intercept α; a family-specific intercept αfamily[b], for each fault-localization family
SBFL, MBFL, PS, and ST; and a category-specific intercept αcategory[b], for each project category CL,
DEV, DS, and WEB. The other model component log(tb) follows the same log-linear relation.

Model (5.10) is univariate, since it only captures the relation between bug kinds and effective-
ness. For each fault localization experiment on a bug b, (5.10) expresses the standardized Einspect
metric Eb as drawn from a normal distribution whose mean eb is a log-linear function of a base in-
tercept α; a family-specific intercept αfamily[b]; and a category-specific intercept αcategory[b]; a varying
intercept cfamily[b]crashingb, for the interactions between each family and crashing bugs; a varying
intercept pfamily[b]predicateb, for the interactions between each family and predicate bugs; and a

12The practical usefulness of statistical hypothesis tests has been seriously questioned in recent years [10, 41, 126];
therefore, we mainly report this statistics for conformance with standard practices, but we refrain from giving it any
serious weight as empirical evidence.

13We standardize the data since this simplifies fitting the model; for the same reason, we also log-transform the running
time in seconds.

5.8 Experimental Methodology 69

varying slope mfamily[b] log(1+mutabilityb), for the interactions between each family and bugs with
different mutability.14 Variables crashing and predicate are indicator variables, which are equal to
1 respectively for crashing or predicate-related bugs, and 0 otherwise; variable mutability is instead
the mutability percentage defined in Section 5.6.

Completing regression models (5.9) and (5.10) with suitable priors and fitting them on our ex-
perimental data15 gives a (sampled) distribution of values for the coefficients α’s, c, p, m, and β ’s,
which we can analyze to infer the effects of the various predictors on the outcome. For example, if
the 95% probability interval of αF ’s distribution lies entirely below zero, it suggests that FL family
F is consistently associated with below-average values of Einspect metric I ; in other words, F tends
to be more effective than techniques in other families. As another example, if the 95% probability
interval of βC ’s distribution includes zero, it suggests that bugs in projects of category C are not con-
sistently associated with different-than-average running times; in other words, bugs in these projects
do not seem either faster or slower to analyze than those in other projects.

5.8 Experimental Methodology

To answer Section 5.3’s research questions, we ran FAUXPY using each of the 7 fault localization tech-
niques described in Section 2.3 on all 135 selected bugs (described in Section 5.4) from BUGSINPY

v. b4bfe91, for a total of 945= 7×135 FL experiments. Henceforth, the term “standalone techniques”
refers to the 7 classic FL techniques described in Section 5.2; whereas “combined techniques” refers
to the four techniques introduced for RQ4.

Test selection. The test suites of projects such as keras (included in BUGSINPY) are very large and
can take more than 24 hours to run even once. Without a suitable test selection strategy, large-scale
FL experiments would be prohibitively time consuming (especially for MBFL techniques, which rerun
the same test suite hundreds of times). Therefore, we applied a simple test selection strategy to only
include tests that directly target the parts of a program that contribute to the failures.16

As we mentioned in Section 5.4, each bug b in BUGSINPY comes with a selection of failing tests
Fb and passing tests Pb. The failing tests are usually just a few, and specifically trigger bug b. The
passing tests, in contrast, are much more numerous, as they usually include all non-failing tests
available in the project. In order to cull the number of passing tests to only include those that
expressly target the failing code, we applied a simple dependency analysis: for each BUGSINPY bug
b used in our experiments, we built the module-level call graph G(b) for the whole of b’s project;17

each node in G(b) is a module of the project (including its tests), and each edge xm → ym means
that module xm directly uses some entities defined in module ym. Consider any of b’s project test
module tm; we run the tests in tm in our experiments if and only if: i) tm includes at least one of
the failing tests in Fb; ii) or, G(b) includes an edge tm → fm, where fm is a module that includes
at least one of b’s faulty locations F (b) (see Section 5.5). In other words: we include all failing
tests for b, as well as the passing tests that directly exercise the parts of the project that are faulty.
This simple heuristics substantially reduced the number of tests that we had to run for the largest
projects, without meaningfully affecting the fault localization’s scope.

14We log-transform mutability in this term, since this smooths out the big differences between mutability scores in
different experiments (in particular, between zero and non-zero), which simplifies modeling the relation statistically. We
add one to mutability before log-transforming it, so that the logarithm is always defined.

15The replication package includes all details about the regression models, as well as their validation [42].
16The Defects4J curated collection also includes a selection of so-called relevant tests [64].
17To build the call graph we used Python static analysis framework Scalpel [71], which in turn relies on PyCG [108] for

this task.

70 An Empirical Study of Fault Localization in Python Programs

Our test selection strategy does not include test modules that indirectly involve failing locations
(unless they include any failing tests): if the tests in a module tm only call directly an application
module xm, and then some parts of module xm call another application module ym (i.e., tm→ xm→
ym in the module-level call graph), xm does not include any faulty locations, and ym does include
some faulty locations, then we do not include the tests in tm in our test suite; instead, we will include
other test modules um that directly call ym (i.e., um→ ym).

To demonstrate that our more aggressive test selection strategy does not exclude any relevant
tests, and is unlikely to affect the quantitative fault localization results, we first computed, for each
bug b used in our experiments: i) the set S0

b of tests selected using the strategy described above;
and ii) the set S+b ⊇ S0

b of tests selected by including also indirect dependencies (i.e., by taking the
transitive closure of the module-level use relation). For 48% of the 135 bugs used in our experiments,
S+b = S0

b, that is both test selection strategies select the same tests. However, there remain a long
tail of bugs for which including indirect dependencies leads to many more tests being selected; for
example, for 40 bugs in 7 projects, considering indirect dependencies leads to selecting more than
50 additional tests—which would significantly increase the experiments’ running time. Thus, we
randomly selected one bug for each project among those 40 bugs for which indirect dependencies
would lead to including more than 50 additional tests. For each bug b in this sample, we performed
an additional run of our fault localization experiments with SBFL and MBFL techniques18 using all
tests in S+b , for a total of 35 new experiments. We found that none of the key fault localization
effectiveness metrics significantly changed compared to the same experiments using only tests in
S0

b.19 This confirms that our test selection strategy does not alter the general effectiveness of fault
localization, and hence we adopted it for the rest of the experiments.

Table 5.4 shows statistics about the fraction of tests that we selected for our experiments ac-
cording to the test selection strategy. Those data indicate that test selection has a disproportionate
impact on projects that have very large test suites, such as those in the DS category. In these projects,
it happens often that the vast majority of tests are irrelevant for the portion of the project where a
failure occurred; therefore, excluding these tests from our experiments is instrumental in drastically
bringing down execution times without sacrificing experimental accuracy.

Experimental setup. Each experiment ran on a node of USI’s HPC cluster,20 each equipped with
20-core Intel Xeon E5-2650 processor and 64 GB of DDR4 RAM, accessing a shared 15 TB RAID
10 SAS3 drive, and running CentOS 8.2.2004.x86_64. We provisioned three CPython Virtualenvs
with Python v. 3.6, 3.7, and 3.8; our scripts chose a version according to the requirements of each
BUGSINPY subject. The experiments took more than two CPU-months to complete—not counting the
additional time to setup the infrastructure, fix the execution scripts, and repeat any experiments that
failed due to incorrect configuration.

This chapter’s detailed replication package includes all scripts used to ran these experiments,
as well as all raw data that we collected by running them. The rest of this section details how we
analyzed and summarized the data to answer the various research questions.21

18Since PS and ST only use failing tests, their behavior does not change as S0
b always includes the same failing tests as

S+b .
19Precisely, in 20 of these 35 experiments the Einspect score did not change at all. As for the remaining experiments, the

Einspect score changed but only for bugs that were not effectively localized: the bugs localized in the top-1, top-3, top-5,
and top-10 positions did not change, except for a single bug whose Ib(Metallaxis) went from 13 to 9 when we added the
extra tests.

20Managed by USI’s Institute of Computational Science (https://intranet.ics.usi.ch/HPC).
21Research questions RQ1, RQ2, RQ3, RQ4, and RQ6 only consider statement-level granularity; in contrast, RQ5 consid-

ers all granularities (see Section 5.2.5).

https://intranet.ics.usi.ch/HPC

5.8 Experimental Methodology 71

CATEGORY PROJECT MIN MEDIAN MEAN MAX

C P C P C P C P

% # % # % # % # % # % # % # %

CL

httpie

1 0.6

1 0.8

17.0 15.2

7.0 4.7

40.6 17.9

8.0 7.2

126 100.0

17 100.0
thefuck 3 0.6 5.0 1.7 7.4 2.0 18 5.4
tqdm 1 1.7 63.0 95.2 47.9 82.1 77 100.0
youtube-dl 15 14.3 89.5 51.0 78.7 43.8 126 55.8

DEV

black
2 0.2

16 88.5
80.0 27.6

91.0 91.0
80.8 19.9

83.3 91.2
198 93.5

129 93.5
cookiecutter 11 5.2 44.0 26.3 39.8 20.9 60 28.0
luigi 2 0.2 91.0 11.3 90.8 11.6 198 33.2

DS

keras
1 0.0

18 3.0
67.5 3.2

58.0 10.5
112.8 2.1

76.6 13.9
1 036 51.6

288 51.6
pandas 1 0.0 91.5 0.8 159.8 1.4 1036 8.9
spaCy 13 1.4 75.0 7.8 80.5 8.6 152 16.9

WEB

fastapi
1 0.3

1 0.3
32.0 4.5

5.0 1.5
139.6 25.7

37.6 8.8
787 76.7

282 49.9
sanic 98 21.2 265.0 56.5 220.3 47.3 298 64.2
tornado 32 3.4 411.5 40.5 410.5 41.9 787 76.7

overall 1 0.0 1 0.0 53.0 8.9 53.0 8.9 86.6 4.6 86.6 4.6 1 036 100.0 1 036 100.0

Table 5.4. Tests used in the fault localization experiments with the bugs of Table 5.2. Following the procedure
described in Section 5.8, we selected sb tests out of the tb BUGSINPY tests for each bug b among the 135
bugs used in our experiments. For each PROJECT, the table reports the MINimum, MEDIAN, MEAN, and
MAXimum percentage 100 · sb/tb % of selected tests among bugs b in the project (columns P); similarly,
columns # report the same statistics the MINimum, MEDIAN, MEAN, and MAXimum number of selected
tests sb among all bug b in the project. Finally, columns C report the same statistics among all bugs in
projects of the same CATEGORY; and the bottom row reports the overall statistics among all 135 bugs.

5.8.1 RQ1. Effectiveness

To answer RQ1 (fault localization effectiveness), we report the L@B1%, L@B3%, L@B5%, and L@B10%
counts, the average generalized Einspect rank eIB(L), the average exam score EB(L), and the average
location list length |LB| for each technique L among Section 5.2’s seven standalone fault localization
techniques; as well as the same metrics averaged over each of the four fault localization families.
These metrics measure the effectiveness of fault localization from different angles. We report these
measures for all 135 BUGSINPY bugs B selected for our experiments.

To qualitatively summarize the effectiveness comparison between two FL techniques A and B,
we consider their counts A@1% ≤ A@3% ≤ A@5% ≤ A@10% and B@1% ≤ B@3% ≤ B@5% ≤
B@10% and compare them pairwise: A@k% vs. B@k%, for the each k among 1, 3, 5, 10. We say
that:

A≫ B: “A is much more effective than B”, if A@k%> B@k% for all ks, and A@k%−B@k%≥ 10 for
at least three ks out of four;

A> B: “A is more effective than B”, if A@k%> B@k% for all ks, and A@k%−B@k%≥ 5 for at least
one k out of four;

A≥ B: “A tends to be more effective than B”, if A@k% ≥ B@k% for all ks, and A@k% > B@k% for
at least three ks out of four;

A≃ B: “A is about as effective as B”, if none of A≫ B, A> B, A≥ B, B≫ A, B > A, and B ≥ A holds.

72 An Empirical Study of Fault Localization in Python Programs

To visually compare the effectiveness of different FL families, we use scatterplots—one for each
pair F1, F2 of families. The scatterplot comparing F1 to F2 displays one point at coordinates (x , y)
for each bug b analyzed in our experiments. Coordinate x = eIb(F1), that is the average generalized
Einspect rank that techniques in family F1 achieved on b; similarly, y = eIb(F2), that is the average
generalized Einspect rank that techniques in family F2 achieved on b. Thus, points lying below the
diagonal line x = y (such that x > y) correspond to bugs for which family F2 performed better
(remember that a lower Einspect score means more effective fault localization) than family F1; the
opposite holds for points lying above the diagonal line. The location of points in the scatterplot
relative to the diagonal gives a clear idea of which family performed better in most cases.

To analytically compare the effectiveness of different FL families, we report the estimates and
the 95% probability intervals of the coefficients αF in the fitted regression model (5.9), for each FL
family F . If the interval of values lies entirely below zero, it means that family F ’s effectiveness tends
to be better than the other families on average; if it lies entirely above zero, it means that family F ’s
effectiveness tends to be worse than the other families; and if it includes zero, it means that there is
no consistent association (with above- or below-average effectiveness).

5.8.2 RQ2. Efficiency

To answer RQ2 (fault localization efficiency), we report the average wall-clock running time TB(L),
for each technique L among Section 5.2’s seven standalone fault localization techniques, on bugs in
B; as well as the same metric averaged over each of the four fault localization families. This basic
metric measures how long the various FL techniques take to perform their analysis. We report these
measures for all 135 BUGSINPY bugs B selected for our experiments.

To qualitatively summarize the efficiency comparison between two FL techniques A and B, we
compare pairwise their average running times T (A) and T (B), and say that:

A≫ B: “A is much more efficient than B”, if T (A)> 10 · T (B);

A> B: “A is more efficient than B”, if T (A)> 1.1 · T (B);

A≃ B: “A is about as efficient as B”, if none of A≫ B, A> B, B≫ A, and B > A holds.

To visually compare the efficiency of different FL families, we use scatterplots—one for each pair
F1, F2 of families. The scatterplot comparing F1 to F2 displays one point at coordinates (x , y) for
each bug b analyzed in our experiments. Coordinate x = Tb(F1), that is the average running time of
techniques in family F1 on b; similarly, y = Tb(F2), that is the average running time of techniques
in family F2 on b. The interpretation of these scatterplots is as those considered for RQ1.

To analytically compare the efficiency of different FL families, we report the estimates and the
95% probability intervals of the coefficients βF in the fitted regression model (5.9), for each FL
family F . The interpretation of the regression coefficients’ intervals is similar to those considered for
RQ1: βF ’s lies entirely above zero when F tends to be slower (less efficient) than other families; it
lies entirely below zero when F tends to be faster; and it includes zero when there is no consistent
association with above- or below-average efficiency.

5.8.3 RQ3. Kinds of Faults and Projects

To answer RQ3 (fault localization behavior for different kinds of faults and projects), we report the
same effectiveness metrics considered in RQ1 (F@X 1%, F@X 3%, F@X 5%, and F@X 10% percent-
ages, average generalized Einspect ranks eIX (F), average exam scores EX (F), and average location list
length |F X |), as well as the same efficiency metrics considered in RQ2 (average wall-clock running

5.8 Experimental Methodology 73

time TX (F)) for each standalone fault localization family F and separately for i) bugs X of different
kinds: crashing bugs, predicate bugs, and mutable bugs (see Figure 5.4); ii) bugs X from projects of
different category: CL, DEV, DS, and WEB (see Section 5.6).

To visually compare the effectiveness and efficiency of fault localization families on bugs from
projects of different category, we color the points in the scatterplots used to answer RQ1 and RQ2
according to the bug’s project category.

To analytically compare the effectiveness of different FL families on bugs of different kinds, we
report the estimates and the 95% probability intervals of the coefficients cF , pF , and mF in the fitted
regression model (5.10), for each FL family F . The interpretation of the regression coefficients’ inter-
vals is similar to those considered for RQ1 and RQ2: cF , pF , and mF characterize the effectiveness of
family F respectively on crashing, predicate, and mutable bugs, relative to the average effectiveness
of the same family F on other kinds of bugs.

Finally, to understand whether bugs from projects of certain categories are intrinsically harder
or easier to localize, we report the estimates and the 95% probability intervals of the coefficients
αC and βC in the fitted regression model (5.9), for each project category C . The interpretation of
these regression coefficients’ intervals is like those considered for RQ1 and RQ2; for example if αC ’s
interval is entirely below zero, it means that bugs of projects in category C are easier to localize
(higher effectiveness) than the average of bugs in any project. This sets a baseline useful to interpret
the other data that answer RQ3.

5.8.4 RQ4. Combining Techniques

To answer RQ4 (the effectiveness of combining FL techniques), we consider two additional fault
localization techniques: CombineFL and AvgFL—both combining the information collected by some of
Section 5.2’s standalone techniques from different families.

CombineFL was introduced by Zou et al. [145]; it uses a learning-to-rank model to learn how to
combine lists of ranked locations given by different FL techniques. After fitting the model on labeled
training data,22 one can use it like any other fault localization technique as follows: i) Run any
combination of techniques L1, . . . , Ln on a bug b; ii) Feed the ranked location lists output by each
technique into the fitted learning-to-rank model; iii) The model’s output is a list ℓ1,ℓ2, . . . of locations,
which is taken as the FL output of technique CombineFL. We used Zou et al. [145]’s replication package
to run CombineFL on the Python bugs that we analyzed using FAUXPY.

To see whether a simpler combination algorithm can still be effective, we introduced the com-
bined FL technique AvgFL, which works as follows: i) Each basic technique Lk returns a list 〈ℓk

1, sk
1〉 . . .

〈ℓk
nk

, sk
nk
〉 of locations with normalized23 suspiciousness scores 0≤ sk

j ≤ 1; ii) AvgFL assigns to location

ℓx the weighted average
∑

k wksk
x , where k ranges over all of FL techniques supported by FAUXPY but

Tarantula, and wk is an integer weight that depends on the FL family of k: 3 for SBFL, 2 for MBFL,
and 1 for PS and ST;24 iii) The list of locations ranked by their weighted average suspiciousness is
taken as the FL output of technique AvgFL.

Finally, we answer RQ4 by reporting the same effectiveness metrics considered in RQ1 (the
L@B1%, L@B3%, L@B5%, and L@B10% counts, the average generalized Einspect rank eIB(L), the
average exam score EB(L), and the average location list length |LB|) for techniques CombineFL and
AvgFL. Precisely, we consider two variants A and S of CombineFL and of AvgFL, giving a total of four
combined fault localization techniques: variants A (CombineFLA and AvgFLA) use the output of all

22Since the training time is negligible, we ignore it in all measures of running time—consistently with Zou et al. [145].
23We used min-max normalization, also known as feature scaling [56].
24These weights roughly reflect the relative effectiveness and applicability of FL techniques suggested by our experi-

mental results.

74 An Empirical Study of Fault Localization in Python Programs

FL techniques supported by FAUXPY but Tarantula—which was not considered in [145]; variants S
(CombineFLS and AvgFLS) only use the Ochiai, DStar, and ST FL techniques (excluding the more time-
consuming MBFL and PS families).

5.8.5 RQ5. Granularity

To answer RQ5 (how fault localization effectiveness changes with granularity), we report the same
effectiveness metrics considered in RQ1 (the L@B1, L@B3, L@B5, and L@B10 counts, the average
generalized Einspect rank eIB(L), the average exam score EB(L), and the average location list length
|LB|) for all seven standalone techniques, and for all four combined techniques, but targeting func-
tions and modules as suspicious entities. Similar to Zou et al. [145], for function-level and module-
level granularities, we define the suspiciousness score of an entity as the maximum suspiciousness
score computed for the statements in them.

5.8.6 RQ6. Comparison to Java

To answer RQ6 (comparison between Python and Java), we quantitatively and qualitatively compare
the main findings of Zou et al. [145]—whose empirical study of fault localization in Java was the
basis for our Python replication—against our findings for Python.

For the quantitative comparison of effectiveness, we consider the metrics that are available in
both studies: the percentage of all bugs each technique localized within the top-1, top-3, top-5,
and top-10 positions of its output (L@1%, L@3%, L@5%, and L@10%); and the average exam
score. For Python, we consider all 135 BUGSINPY bugs we selected for our experiments; the data for
Java is about Zou et al.’s experiments on 357 bugs in Defects4J [63]. We consider all standalone
techniques that feature in both studies: Ochiai and DStar (SBFL), Metallaxis and Muse (MBFL),
predicate switching (PS), and stack-trace fault localization (ST).

We also consider the combined techniques CombineFLA and CombineFLS . The original idea of the
CombineFL technique was introduced by Zou et al.; however, the variants used in their experiments
combine all eleven FL techniques they consider, some of which we did not include in our replication
(see Section 5.1 for details). Therefore, we modified [145]’s replication package to extract from
their Java experimental data the rankings obtained by CombineFLA and CombineFLS combining the
same techniques as in Python (see Section 5.8.4). This way, the quantitative comparison between
Python and Java involves exactly the same techniques and combinations thereof.

Since we did not re-run Zou et al.’s experiments on the same machines used for our experiments,
we cannot compare efficiency quantitatively. Anyway, a comparison of this kind between Java and
Python would be outside the scope of our studies, since any difference would likely merely reflect
the different performance of Java and Python—largely independent of fault localization efficiency.

For the qualitative comparison between Java and Python, we consider the union of all findings
presented in Section 5.9 or in Zou et al. [145]; we discard all findings from one study that are
outside the scope of the other study (for example, Java findings about history-based fault localization,
a standalone technique that we did not implement for Python; or Python findings about AvgFL, a
combined technique that Zou et al. did not implement for Java); for each within-scope finding, we
determine whether it is confirmed Ë (there is evidence corroborating it) or refuted é (there is
evidence against it) for Python and for Java.

5.9 Experimental Results 75

FAMILY TECHNIQUE L eIB(L) L@B1% L@B3% L@B5% L@B10% EB(L) |LB|

F T F T F T F T F T F T F T

MBFL
Metallaxis

6710
6 706

8
10

22
25

27
30

34
37

0.0029
0.0035

113.9
113.9

Muse 6714 6 19 25 32 0.0023 113.9

PS 11 945 11945 3 3 5 5 7 7 7 7 0.0001 0.0001 1.0 1.0

SBFL
DStar

1584
1 583

12
11

30
30

43
42

54
54

0.0042
0.0042

2 521.3
2 521.3

Ochiai 1 583 12 30 43 54 0.0042 2 521.3
Tarantula 1586 12 30 43 54 0.0042 2 521.3

ST 9 810 9810 0 0 4 4 6 6 13 13 0.0024 0.0024 42.9 42.9

Table 5.5. Effectiveness of standalone fault localization techniques at the statement-level granularity on
all 135 selected bugs B. Each row reports a TECHNIQUE L’s average generalized Einspect rank eIB(L);
the percentage of all bugs it localized within the top-1, top-3, top-5, and top-10 positions of its output
(L@B1%, L@B3%, L@B5%, and L@B10%); its average exam score EB(L); and its average suspicious
locations length |LB|. Columns F report the same metrics averaged for all techniques that belong to the
same FAMILY. Highlighted numbers denote the best technique according to each metric.

5.9 Experimental Results

This section summarizes the experimental results that answer the research questions detailed in Sec-
tion 5.8. All results except for Section 5.9.5’s refer to experiments with statement-level granularity;
results in Sections 5.9.1–5.9.3 only consider standalone techniques. To keep the discussion focused,
we mostly comment on the @n% metrics of effectiveness, whereas we only touch upon the exam
score, Einspect, and location list length when they complement other results.

5.9.1 RQ1. Effectiveness

Family effectiveness. Among standalone techniques, the SBFL fault localization family achieves the
best effectiveness according to several metrics. Table 5.5 shows that all SBFL techniques have better
average Einspect rank eI ; and higher percentages of faulty locations in the top-1, top-3, top-5, and
top-10. The advantage over MBFL—the second most-effective family—is consistent and conspicuous.
According to the same metrics, the MBFL fault localization family achieves clearly better effectiveness
than PS and ST. Then, PS tends to do better than ST, but only according to some metrics: PS has
better @1%, @3%, and @5%, and location list length, whereas ST has better Einspect and @10%.

Finding 1.1: SBFL is the most effective standalone fault localization family.

Finding 1.2: Standalone fault localization families ordered by effectiveness: SBFL > MBFL≫ PS ≃ ST,
where > means better,≫ much better, and ≃ about as good.

Contrary to these general trends, PS achieves the best (lowest) exam score and location list length
of all families; and ST is second-best according to these metrics. As Section 5.9.3 will discuss in more
detail, PS and ST are techniques with a narrower scope than SBFL and MBFL: they can perform very
well on a subset of bugs, but they fail spectacularly on several others. They also tend to return shorter
lists of suspicious locations, which is also conducive to achieving a better exam score: since the exam
score is undefined when a technique fails to localize a bug at all (as explained in Section 5.7.2), the
average exam score of ST and, especially, PS is computed over the small set of bugs on which they
work fairly well.

76 An Empirical Study of Fault Localization in Python Programs

Corr: 0.07
p−value: 0.00***

Effect: 0.70***

Corr: −0.01
p−value: 0.00***

Effect: 0.45**

Corr: 0.15

p−value: 0.01*

Effect: −0.18*

Corr: 0.54**
p−value: 0.01**

Effect: −0.18*

Corr: 0.06

p−value: 0.00***

Effect: −0.78***

Corr: 0.07

p−value: 0.00***

Effect: −0.56***

MBFL PS ST SBFL

M
B

F
L

P
S

S
T

S
B

F
L

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 20 130 210 290 400

0%
25%
50%
75%

100%

0
100
200
300
400

0
100
200
300
400

0
100
200
300
400

CL DEV DS WEB

Figure 5.6. Pairwise visual comparison of four FL families for effectiveness. Each point in the scatterplot at
row labeled R and column labeled C has coordinates (x , y), where x is the generalized Einspect rank eIb(C)
of FL techniques in family C and y is the rank eIb(R) of FL techniques in family R on the same bug b. Thus,
points below (resp. above) the diagonal line denote bugs on which R had better (resp. worse) Einspect ranks.
Points are colored according to the bug’s project category. The opposite box at row labeled C and column
labeled R displays three statistics (correlation, p-value, and effect size, see Section 5.7.3) quantitatively
comparing the same average generalized Einspect ranks of C and R; negative values of effect size mean that
R tends to be better, and positive values mean that C tends to be better. Each bar plot on the diagonal at
row F , column F is a histogram of the distribution of eIb(F) for all bugs. Horizontal axes of all diagonal plots
have the same Einspect scale as the bottom-right plot’s (SBFL); their vertical axes have the same 0–100%
scale as the top-left plot (MBFL).

Finding 1.3: PS and ST are specialized fault localization techniques, which may work well only on a small
subset of bugs, and thus often return short lists of suspicious locations.

Figure 5.6’s scatterplots confirm SBFL’s general advantage: in each scatterplot involving SBFL,
all points are on a straight line corresponding to low ranks for SBFL but increasingly high ranks for
the other family. The plots also indicate that MBFL is often better than PS and ST, although there are
a few hard bugs for which the latter are just as effective (points on the diagonal line). The PS-vs-ST
scatterplot suggests that these two techniques are largely complementary: on several bugs, PS and
ST are as effective (points on the diagonal); on several others, PS is more effective (points above the
diagonal); and on others still, ST is more effective (points below the diagonal).

Figure 5.7a confirms these results based on the statistical model (5.9): the intervals of coefficients
αSBFL and αMBFL are clearly below zero, indicating that SBFL and MBFL have better-than-average
effectiveness; conversely, those of coefficients αPS and αST are clearly above zero, indicating that PS
and ST have worse-than-average effectiveness.

Figure 5.7a’s estimate of αSBFL is below that of αMBFL, confirming that SBFL is the most effective

5.9 Experimental Results 77

−4

−2

0

2

MBFL PS SBFL ST
fault localization family

α f
am

ily
 /

β f
am

ily

All bugs Einspect Time

(a) Estimates and 95% probability intervals for the coeffi-
cients αfamily and βfamily in model (5.9) fitted on all bugs,
for each FL family MBFL, PS, SBFL, and ST.

−2

−1

0

1

2

CL DEV DS WEB
project category

α c
at

eg
or

y /
 β

ca
te

go
ry

All bugs Einspect Time

(b) Estimates and 95% probability intervals for the coef-
ficients αcategory and βcategory in model (5.9) fitted on all
bugs, for each project category CL, DEV, DS, and WEB.

Figure 5.7. Point estimates (boxes) and 95% probability intervals (lines) for the regression coefficients of
model (5.9). The scale of the vertical axes is over standard deviation log-units.

family overall. The bottom-left plot in Figure 5.6 confirms that SBFL’s advantage can be conspicuous
but is observed only on a minority of bugs—whereas SBFL and MBFL achieve similar effectiveness
on the majority of bugs. In fact, the effect size comparing SBFL and MBFL is −0.18—weakly in favor
of SBFL.

Finding 1.4: SBFL and MBFL often achieve similar effectiveness; however, SBFL is strictly better than
MBFL on a minority of bugs.

Technique effectiveness. FL techniques of the same family achieve very similar effectiveness. Ta-
ble 5.5 shows nearly identical results for the 3 SBFL techniques Tarantula, Ochiai, and DStar. The
plots and statistics in Figure 5.8 confirm this: points lie along the diagonal lines in the scatterplots,
and Einspect ranks for the same bugs are strongly correlated and differ by a vanishing effect size.

Finding 1.5: All techniques in the SBFL family achieve very similar effectiveness.

The 2 MBFL techniques also behave similarly, but not quite as closely as the SBFL ones. Metallaxis
has a not huge but consistent advantage over Muse according to Table 5.5. Figure 5.9 corroborates
this observation: the cloud of points in the scatterplot is centered slightly above the diagonal line;
the correlation between Muse’s and Metallaxis’s data is medium (not strong); and the effect size
suggests that Metallaxis is more effective on around 11% of subjects.

Muse’s lower effectiveness can be traced back to its stricter definition of “mutant killing”, which
requires that a failing test becomes passing when run on a mutant (see Section 5.2.2). As observed
elsewhere [94], this requirement may be too demanding for fault localization of real-world bugs,
where it is essentially tantamount to generating a mutant that is similar to a patch.

78 An Empirical Study of Fault Localization in Python Programs

Corr: 0.99***

p−value: 1.00

Effect: −0.00

Corr: 0.94***

p−value: 0.09

Effect: 0.02

Corr: 0.94***

p−value: 0.06

Effect: 0.02

DStar Ochiai Tarantula

D
S

tar
O

chiai
Tarantula

0 50 100 150 0 50 100 150 10 50 80 120 160

0%

25%

50%

75%

100%

0

50

100

150

0

50

100

150

CL DEV DS WEB

Figure 5.8. Pairwise visual comparison of 3 SBFL techniques for effectiveness. The interpretation of the
plots is the same as in Figure 5.6.

Corr: 0.62**

p−value: 0.00**

Effect: 0.11

Metallaxis Muse

M
etallaxis

M
use

0 50 100 150 200 10 70 120 160 220

0%

25%

50%

75%

100%

0

50

100

150

200

CL DEV DS WEB

Figure 5.9. Pairwise visual comparison of 2 MBFL techniques for effectiveness. The interpretation of the
plots is the same as in Figure 5.6.

Finding 1.6: The techniques in the MBFL family achieve generally similar effectiveness, but Metallaxis
tends to be better than Muse.

5.9.2 RQ2. Efficiency

As demonstrated in Table 5.6, the four FL families differ greatly in their efficiency—measured as
their wall-clock running time. ST is by far the fastest, taking a mere 2 seconds per bug on average;
SBFL is second-fastest, taking around 10 minutes on average; PS is one order of magnitude slower,

5.9 Experimental Results 79

FAMILY TECHNIQUE L ALL CRASHING PREDICATE MUTABLE CL DEV DS WEB

MBFL
Metallaxis

15 774 18 278 19671 17 744 3770 18694 29799 7753
Muse

PS 9751 11 419 17287 12 932 528 20210 15972 828

SBFL
DStar

589 890 1284 521 30 38 1 726 231Ochiai
Tarantula

ST 2 2 2 2 2 1 2 1

Table 5.6. Efficiency of fault localization techniques at the statement-level granularity. Each row reports a
TECHNIQUE L’s per-bug average wall-clock running time TX (L) in seconds on: ALL 135 bugs selected for
the experiments (X = B); CRASHING, PREDICATE-related, and MUTABLE bugs; bugs in projects of category
CL, DEV, DS, and WEB (see Section 5.6). The running time is the same for all techniques of the same
FAMILY. Highlighted numbers denote the fastest technique for bugs in each group.

taking approximately 2.7 hours on average; and MBFL is slower still, taking over 4 hours per bug on
average.

Finding 2.1: Standalone fault localization families ordered by efficiency: ST≫ SBFL≫ PS > MBFL,
where > means faster, and≫ much faster.a

aAs we discuss at the end of Section 5.9.2, these results are largely expected given how the different fault localization techniques
work algorithmically.

Figure 5.10’s scatterplots confirm that ST outperforms all other techniques, and that SBFL is
generally second-fastest. It also shows that MBFL and PS have similar overall performance but can
be slower or faster on different bugs: a narrow majority of points lies below the diagonal line in
the scatterplot (meaning PS is faster than MBFL), but there are also several points that are on the
opposite side of the diagonal—and their effect size (0.34) is medium, lower than all other pairwise
effect sizes in the comparison of efficiency.

Finding 2.2: PS is more efficient than MBFL on average; however, the two families tend to be faster or
slower on different bugs.

Based on the statistical model (5.9), Figure 5.7a clearly confirms the differences of efficiency: the
intervals of coefficients βST and βSBFL are well below zero, indicating that ST and SBFL are faster than
average (with ST the fastest, as its estimated βST is lower); conversely, the intervals of coefficients
βMBFL and βPS are entirely above zero, indicating that MBFL and PS stand out as slower than average
compared to the other families.

These major differences in efficiency are unsurprising if one remembers that the various FL fam-
ilies differ in what kind of information they collect for localization. ST only needs the stack-trace
information, which only requires to run once the failing tests; SBFL compares the traces of passing
and failing runs, which involves running all tests once. PS dynamically tries out a large number
of different branch changes in a program, each of which runs the failing tests; in our experiments,
PS tried 4 588 different “switches” on average for each bug—up to a whopping 101 454 switches
for project black’s bug #6. MBFL generates hundreds of different mutations of the program under
analysis, each of which has to be run against all tests; in our experiments, MBFL generated 461
mutants on average for each bug—up to 2 718 mutants for project black’s bug #6. After collecting
this information, the additional running time to compute suspiciousness scores (using the formulas
presented in Section 5.2) is negligible for all techniques—which explains why the running times of

80 An Empirical Study of Fault Localization in Python Programs

Corr: 0.56**
p−value: 0.00***

Effect: −0.34**

Corr: 0.18
p−value: 0.00***

Effect: −1.00***

Corr: 0.09

p−value: 0.00***

Effect: −0.96***

Corr: 0.59**
p−value: 0.00***

Effect: −0.77***

Corr: 0.32*

p−value: 0.00***

Effect: −0.49***

Corr: 0.20

p−value: 0.00***

Effect: 0.86***

MBFL PS ST SBFL

M
B

F
L

P
S

S
T

S
B

F
L

0 1000 2000 0 1000 2000 0 1000 2000 100 900 1500 2100 2800

0%
25%
50%
75%

100%

0

1000

2000

0

1000

2000

0

1000

2000

CL DEV DS WEB

Figure 5.10. Pairwise visual comparison of four FL families for efficiency. Each point in the scatterplot at
row labeled R and column labeled C has coordinates (x , y), where x is the average per-bug wall-clock
running time of FL techniques in family C and y average per-bug wall-clock running time of FL techniques
in family R. Points are colored according to the bug’s project category. The opposite box at row labeled C
and column labeled R displays three statistics (correlation, p-value, and effect size, see Section 5.7.3)
quantitatively comparing the same per-bug average running times of C and R; negative values of effect size
mean that R tends to be better, and positive values that C tends to be better.

techniques of the same family are practically indistinguishable.

5.9.3 RQ3. Kinds of Faults and Projects

Project category: effectiveness. Figure 5.7’s intervals of coefficients αcategory in model (5.9) indi-
cate that fault localization tends to be more accurate on projects in categories DEV and WEB, and less
accurate on projects in categories CL and DS.

This finding is consistent with the observations that data science programs, their bugs, and their
fixes are often different compared to traditional programs [57, 58]. For instance, bug #38 in project
keras is an example of what Islam et al. call “structural data flow” bugs [57]: its root cause is passing
an incorrect input shape setting to a neural network layer. These characteristics also determine
long spectra (i.e., execution traces) that span several functions—which are required to construct the
various layer objects; as a result, SBFL techniques struggle to effectively localize this bug. Bugs #68
and #137 in project pandas are instead examples of API bugs, whose root causes are incorrect import
statements. While such bugs may occur in any kind of project, they are common in data science
programs [57] due to their complex dependencies. In Python, import statements are usually top-
level declarations; therefore, FL techniques that can only target locations inside functions end up
being ineffective at localizing these API bugs. As yet another example, the overall mutability of bugs
in DS projects is 0.7%, whereas it is 1.3% for bugs in other categories of projects. This indicates that

5.9 Experimental Results 81

BUGS X FAMILY F eIX (F) F@X 1% F@X 3% F@X 5% F@X 10% EX (F) |F X |

ALL

MBFL 6710 8 22 27 34 0.0029 113.9
PS 11 945 3 5 7 7 0.0001 1.0

SBFL 1584 12 30 43 54 0.0042 2521.3
ST 9 810 0 4 6 13 0.0024 42.9

CRASHING

MBFL 7806 7 21 27 34 0.0018 104.4
PS 15 607 0 0 0 0 – 0.3

SBFL 897 14 31 43 53 0.0025 3147.5
ST 5 273 0 10 16 37 0.0024 118.1

PREDICATE

MBFL 1891 11 33 40 52 0.0031 146.5
PS 8 425 8 13 17 17 0.0001 1.3

SBFL 374 12 23 38 50 0.0065 3 041.5
ST 9 194 0 2 6 17 0.0007 47.2

MUTABLE

MBFL 489 14 41 50 63 0.0029 138.7
PS 10 081 5 9 12 12 0.0001 1.1

SBFL 524 12 35 50 57 0.0042 2 396.2
ST 9 304 0 4 5 19 0.0007 35.3

CL

MBFL 2910 9 33 38 45 0.0032 34.3
PS 8 667 2 5 5 5 0.0002 0.3

SBFL 2356 9 42 60 74 0.0056 687.1
ST 9 124 0 9 9 14 0.0084 19.9

DEV

MBFL 4720 12 25 28 40 0.0045 160.6
PS 7 768 3 7 10 10 0.0001 2.1

SBFL 2081 20 33 37 47 0.0053 1431.5
ST 8 279 0 0 10 13 0.0028 12.4

DS

MBFL 14519 4 12 19 24 0.0006 169.3
PS 22 847 2 5 7 7 0.0000 1.0

SBFL 827 6 23 30 43 0.0018 5775.4
ST 15 174 0 0 0 12 0.0003 97.7

WEB

MBFL 1465 8 18 20 25 0.0042 98.7
PS 2 362 5 5 5 5 0.0002 1.1

SBFL 770 15 15 40 45 0.0049 1266.4
ST 2 319 0 5 5 15 0.0014 22.7

Table 5.7. Effectiveness of fault localization families at the statement-level granularity on different kinds of
bugs and categories of projects. Each row reports a FAMILY F ’s average generalized Einspect rank eIX (F);
the percentage of all bugs it localized within the top-1, top-3, top-5, and top-10 positions of its output
(F@X 1%, F@X 3%, F@X 5%, and F@X 10%); its average exam score EX (F) and the length |F X | of the
output list of locations on different groups X of bugs: ALL bugs selected for the experiments (same results
as in Table 5.5); bugs of different kinds (CRASHING, PREDICATE-related, and MUTABLE bugs); and bugs
from projects of different categories (CL, DEV, DS, and WEB). Highlighted numbers denote the best family
on each group of bugs according to each metric.

the standard mutation operators, used by MBFL, are a poor fit for the kinds of bugs that are most
commonly found in data science projects.

Finding 3.1: Bugs in data science projects challenge fault localization’s effectiveness (that is, they are
harder to localize correctly) more than bugs in other categories of projects.

82 An Empirical Study of Fault Localization in Python Programs

The data in Table 5.7’s bottom section confirm that SBFL remains the most effective FL family,
largely independent of the category of projects it analyzes. MBFL ranks second for effectiveness in
every project category; it is not that far from SBFL for projects in categories DEV and CL (for example,
MBFL and SBFL both localize 9% of CL bugs in the first position; and both localize over 40% of DEV

bugs in the top-10 positions). In contrast, SBFL’s advantage over MBFL is more conspicuous for
projects in categories DS and WEB. Given that bugs in categories CL are generally harder to localize,
this suggests that the characteristics of bugs in these projects seem to be a good fit for MBFL. As we
have seen in Section 5.9.2, MBFL is the slowest FL family by far; since it reruns the available tests
hundreds, or even thousands, of times, projects with a large number of tests are near impossible
to analyze efficiently with MBFL. As we’ll discuss below, MBFL is considerably faster on projects in
category CL than on projects in other categories; this is probably the main reason why MBFL is also
more effective on these projects: it simply generates a more manageable number of mutants, which
sharpen the dynamic analysis.

Finding 3.2: SBFL remains the most effective standalone fault localization family on all categories of
projects.

Figure 5.6’s plots confirm some of these trends. In most plots, we see that the points positioned
far apart from the diagonal line correspond to projects in the CL and DS categories, confirming that
these “harder” bugs exacerbate the different effectiveness of the various FL families.

Project category: efficiency. Figure 5.7’s intervals of coefficients βcategory in model (5.9) indicate
that fault localization tends to be more efficient (i.e., faster) on projects in category CL, and less
efficient (i.e., slower) on projects in category DS (βDS barely touches zero). In contrast, projects in
categories DEV and WEB do not have a consistent association with faster or slower fault localization.
Table 5.2 shows that projects in category DS have the largest number of tests by far (mostly because
of outlier project pandas); furthermore, some of their tests involve training and testing different
machine learning models, or other kinds of time-consuming tasks. Since FL invariably requires to
run tests, this explains why bugs in DS projects tend to take longer to localize.

Finding 3.3: Bugs in data science projects challenge fault localization’s efficiency (that is, they take longer
to localize) more than bugs in other categories of projects.

The data in Table 5.6’s right-hand side generally confirm the same rankings of efficiency among
FL families, largely regardless of what category of projects we consider: ST is by far the most efficient,
followed by SBFL, and then—at a distance—PS and MBFL. The difference of performance between
SBFL and ST is largest for projects in category DS (three orders of magnitude), large for projects in
category WEB (two orders of magniture), and more moderate for projects in categories CL and DEV

(one order of magnitude). PS is slower than MBFL only for projects in category DEV, although their
absolute difference of running times is not very big (around 7.5%); in contrast, it is one order of
magnitude faster for projects in categories CL and WEB.

Finding 3.4: The difference in efficiency between MBFL and SBFL is largest for data science projects.

In most of Figure 5.10’s plots, we see that the points most frequently positioned far apart from the
diagonal line correspond to projects in category DS, confirming that these bugs take longer to analyze
and aggravate performance differences among techniques. In the scatterplot comparing MBFL to PS,
points corresponding to projects in categories WEB and CL are mostly below the diagonal line, which
corroborates the advantage of PS over MBFL for bugs of projects in these two categories.

5.9 Experimental Results 83

−3

−2

−1

0

1

2

MBFL PS SBFL ST
fault localization family

c f
am

ily

Crashing bugs Einspect

(a) Estimates and 95% probability in-
tervals for the coefficients cfamily in
model (5.10), for each FL family
MBFL, PS, SBFL, and ST.

−1

0

1

MBFL PS SBFL ST
fault localization family

p f
am

ily

Predicate bugs Einspect

(b) Estimates and 95% probability in-
tervals for the coefficients pfamily in
model (5.10), for each FL family
MBFL, PS, SBFL, and ST.

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

MBFL PS SBFL ST
fault localization family

m
fa

m
ily

Mutable bugs Einspect

(c) Estimates and 95% probability in-
tervals for the coefficients mfamily in
model (5.10), for each FL family
MBFL, PS, SBFL, and ST.

Figure 5.11. Point estimates (boxes) and 95% probability intervals (lines) for the regression coefficients of
model (5.10). The scale of the vertical axes is over standard deviation log-units.

Crashing bugs: effectiveness. According to Figure 5.11a, both FL families ST and MBFL are more
effective on crashing bugs than on other kinds of bugs. Still, their absolute effectiveness on crashing
bugs remains limited compared to SBFL’s, as shown by the results in Table 5.7’s middle part; for
example, @CRASHING10% is 37% for ST, 34% for MBFL, and 53% for SBFL, whereas ST localizes zero
(crashing) bugs in the top rank. Remember that ST assigns that same suspiciousness to all statements
within the same function (see Section 5.2.4); thus, it cannot be as accurate as SBFL even on the
minority of crashing bugs.

Finding 3.5: ST and MBFL are more effective on crashing bugs than on other kinds of bugs (but they
remain overall less effective than SBFL even on crashing bugs).

On the other hand, PS is less effective on crashing bugs than on other kinds of bugs; in fact, it
localizes zero bugs among the top-10 ranks. PS has a chance to work only if it can find a so-called
critical predicate (see Section 5.2.3); only three of the crashing bugs included critical predicates, and
hence PS was a bust.

Finding 3.6: PS is the least effective on crashing bugs.

Predicate-related bugs: effectiveness. Figure 5.11b says that no FL family achieves consistently
better or worse effectiveness on predicate-related bugs. Table 5.7 complements this observation;
the ranking of families by effectiveness is different for predicate-related bugs than it is for all bugs:
MBFL is about as effective as SBFL, whereas PS is clearly more effective than ST.

Finding 3.7: On predicate-related bugs, MBFL is about as effective as SBFL, and PS is more effective than
ST.

84 An Empirical Study of Fault Localization in Python Programs

This outcome is somewhat unexpected for PS: predicate-related bugs are bugs whose ground
truth includes at least a branching predicate (see Section 5.6), and yet PS is still clearly less effective
than SBFL or MBFL. Indeed, the presence of a faulty predicate is not sufficient for PS to work: the
predicate must also be critical, which means that flipping its value turns a failing test into a passing
one. When a program has no critical predicates, PS simply returns an empty list of locations. In con-
trast, when a program has a critical predicate, PS is highly effective: PS@χ1% = 14%, PS@χ3% =
24%, and PS@χ5%= 31% for PS on the 29 bugs χ with a critical predicate—even better than SBFL’s
results for the same bugs (SBFL@χ1%= 13%, SBFL@χ3%= 16%, and SBFL@χ5%= 20%). In all,
PS is a highly specialized FL technique, which works quite well for a narrow category of bugs, but is
inapplicable in many other cases.

Finding 3.8: On the few bugs that it can analyze successfully, PS is the most effective standalone fault
localization technique.

Mutable bugs: effectiveness. According to Figure 5.11c, FL family MBFL tends to be more effective
on mutable bugs than on other kinds of bugs: mMBFL 95% probability interval is mostly below zero
(and the 87% probability interval would be entirely below zero). Furthermore, Table 5.7 shows that
MBFL is the most effective technique on mutable bugs, where it tends to outperform even SBFL.
Intuitively, a bug is mutable if the syntactic mutation operators used for MBFL “match” the fault in a
way that it affects program behavior. Thus, the capabilities of MBFL ultimately depend on the nature
of faults it analyzes and on the selection of mutation operators it employs.

Finding 3.9: MBFL is more effective on mutable bugs than on other kinds of bugs; in fact, it is the most
effective standalone fault localization family on these bugs.

Figure 5.11c also suggests that PS and ST are less effective on mutable bugs than on other kinds
of bugs. Possibly, this is because mutable bugs tend to be more complex, “semantic” bugs, whereas
ST works well only for “simple” crashing bugs, and PS is highly specialized to work on a narrow
group of bugs.

Finding 3.10: PS and ST are less effective on mutable bugs than on other kinds of bugs.

Bug kind: efficiency. Table 5.6 does not suggest any consistent changes in the efficiency of FL
families when they work on crashing, predicate-related, or mutable bugs—as opposed to all bugs. In
other words, for every kind of bugs: ST is orders of magnitude faster than SBFL, which is one order
of magnitude faster than PS, which is 14–37% faster than MBFL. As discussed above, the kind of
information that a FL technique collects is the main determinant of its overall efficiency; in contrast,
different kinds of bugs do not seem to have any significant impact.

Finding 3.11: The relative efficiency of each fault localization family does not depend on the kinds of bugs
that are analyzed.

5.9.4 RQ4. Combining Techniques

Effectiveness. Table 5.8 clearly indicates that the combined FL techniques AvgFL and CombineFL
achieve high effectiveness—especially according to the fundamental @n% metrics. CombineFLA and
AvgFLA, combining the information from all other FL techniques, beat every other technique. For
example, AvgFLA localizes in the top position 18% of all bugs, CombineFLA localizes 20% of all bugs,
whereas the next-best technique is SBFL, which localizes 12% of all bugs (Table 5.5). CombineFLS

5.9 Experimental Results 85

TECHNIQUE L eIB(L) L@B1% L@B3% L@B5% L@B10% EB(L) |LB| TB(L)

AvgFL
AvgFLA 1575 18 36 47 59 0.0033 2 548.4 26116
AvgFLS 1585 12 33 44 56 0.0040 2 548.4 591

CombineFL
CombineFLA 1580 20 39 49 60 0.0033 2 548.4 26116
CombineFLS 1584 12 32 41 56 0.0039 2 548.4 591

Table 5.8. Effectiveness and efficiency of fault localization techniques AvgFL and CombineFL at the
statement-level granularity on all 135 selected bugs B. Each row reports a TECHNIQUE L’s average gener-
alized Einspect rank eIB(L); the percentage of all bugs it localized within the top-1, top-3, top-5, and top-10
positions of its output (L@B1%, L@B3%, L@B5%, and L@B10%); its average exam score EB(L); its av-
erage suspicious locations length |LB|; and its average per-bug wall-clock running time TB(L) in seconds.
The four rows correspond to two variants AvgFLA and CombineFLA that combine the information of all FL
techniques but Tarantula, and two variants AvgFLS and CombineFLS that combine the information of SBFL
and ST techniques but Tarantula. Highlighted numbers denote the best technique according to each metric.

and AvgFLS , combining the information from only SBFL and ST techniques, do at least as well as
every other standalone technique.

Finding 4.1: Combined fault localization techniques AvgFLA and CombineFLA, which combine all baseline
techniques, achieve better effectiveness than any other techniques.

While CombineFLA is strictly more effective than AvgFLA, their difference is usually modest (at
most three percentage points). Similarly, the difference between CombineFLS , AvgFLS , and SBFL is
generally limited; however, SBFL tends to be less effective than AvgFLS , whereas CombineFLS is never
strictly more effective than AvgFLS . In all, AvgFL is a simpler approach to combining techniques than
CombineFL, but both are quite successful at boosting FL effectiveness.

Finding 4.2: Fault localization families ordered by effectiveness:
CombineFLA ≥ AvgFLA > CombineFLS ≃ AvgFLS > SBFL > MBFL≫ PS ≃ ST,
where > means better, ≥ better or as good,≫ much better, and ≃ about as good.

The suspicious location length is the very same for AvgFL and CombineFL, and higher than for
every other technique. This is simply because all variants of AvgFL and CombineFL consider a location
as suspicious if and only if any of the techniques they combine considers it so. Therefore, they end
up with long location lists—at least as long as any combined technique’s.

Efficiency. The running time of AvgFL and CombineFL is essentially just the sum of running times of
the FL families they combine, because merging the output list of locations and training CombineFL’s
machine learning model take negligible time. This makes AvgFLA and CombineFLA the least efficient
FL techniques in our experiments; and AvgFLS and CombineFLS barely slower than SBFL.

Finding 4.3: Combined fault localization techniques AvgFLA and CombineFLA, which combine all baseline
techniques, achieve worse efficiency than any other techniques.

Combining these results with those about effectiveness, we conclude that AvgFLA and CombineFLA
exclusively favor effectiveness; whereas AvgFLS and CombineFLS promise a modest improvement in
effectiveness in exchange for a modest performance loss.

Finding 4.4: Fault localization families ordered by efficiency:
ST≫ SBFL ≥ AvgFLS ≃ CombineFLS ≫ PS > MBFL > AvgFLA ≃ CombineFLA,
where > means faster, ≥ faster or as fast,≫ much faster, and ≃ about as fast.

86 An Empirical Study of Fault Localization in Python Programs

FAMILY TECHNIQUE L eIB(L) L@B1% L@B3% L@B5% L@B10% EB(L) |LB|

F T F T F T F T F T F T F T

AvgFLA 66
66

53
53

71
71

77
76

84
84

0.0129
0.0130

296.3
296.3

CombineFLA 66 53 70 77 84 0.0128 296.3

AvgFLS 67
66

44
44

64
64

73
73

79
79

0.0153
0.0153

296.3
296.3

CombineFLS 67 44 64 73 79 0.0154 296.3

MBFL
Metallaxis

95
93

31
34

51
56

61
64

67
70

0.0150
0.0135

30.7
30.7

Muse 97 27 46 57 64 0.0166 30.7

PS 618 618 8 8 13 13 13 13 15 15 0.0025 0.0025 0.6 0.6

SBFL
DStar

67
67

37
37

61
61

72
72

79
79

0.0156
0.0156

296.3
296.3

Ochiai 67 38 61 72 79 0.0156 296.3
Tarantula 67 36 61 71 78 0.0156 296.3

ST 451 451 21 21 27 27 27 27 29 29 0.0045 0.0045 1.0 1.0

Table 5.9. Effectiveness of fault localization techniques at the function-level granularity on all 135 selected
bugs B. The table reports the same metrics as Table 5.5 and Table 5.8 but targeting functions as suspicious
entities. Highlighted numbers denote the best technique according to each metric.

5.9.5 RQ5. Granularity

Function-level granularity. Table 5.9’s data about function-level effectiveness of the various FL
techniques and families lead to very similar high-level conclusions as for statement-level effective-
ness: combination techniques CombineFLA and AvgFLA achieves the best effectiveness, followed by
CombineFLS and AvgFLS , then SBFL, and finally MBFL; differences among techniques in the same
family are modest (often negligible).

ST is the only technique whose relative effectiveness changes considerably from statement-level
to function-level: ST is the least effective at the level of statements, but becomes considerably better
than PS at the level of functions. This change is no surprise, as ST is precisely geared towards
localizing functions responsible for crashes—and cannot distinguish among statements belonging to
the same function. ST’s overall effectiveness remains limited, since the technique is simple and can
only work on crashing bugs.

Module-level granularity. Table 5.10 leads to the same conclusions for module-level granularity:
the relative effectiveness of the various techniques is very similar as for statement-level granularity,
except that ST gains effectiveness simply because it is designed for coarser granularities.

Finding 5.1: ST is more effective than PS both at the function-level and module-level granularity; however,
it remains considerably less effective than other fault localization techniques even at these
coarser granularities.

Comparisons between granularities. It is apparent that fault localization’s absolute effectiveness
strictly increases as we target coarser granularities—from statements, to functions, to modules. This
happens simply because the number of entities at a coarser granularity is considerably less than
the number of entities at a finer granularity: each function consists of several statements, and each
module consists of several functions. Therefore, it does not make sense to directly compare the same

5.9 Experimental Results 87

FAMILY TECHNIQUE L eIB(L) L@B1% L@B3% L@B5% L@B10% EB(L) |LB|

F T F T F T F T F T F T F T

AvgFLA 2
2

70
70

89
89

93
93

99
99

0.0339
0.0338

20.9
20.9

CombineFLA 2 70 89 93 99 0.0340 20.9

AvgFLS 2
2

64
64

87
87

93
93

98
98

0.0362
0.0363

20.9
20.9

CombineFLS 2 64 87 93 98 0.0362 20.9

MBFL
Metallaxis

6
6

52
57

80
82

86
87

90
92

0.0406
0.0366

5.6
5.6

Muse 7 47 77 85 87 0.0446 5.6

PS 67 67 13 13 17 17 21 21 28 28 0.0234 0.0234 0.4 0.4

SBFL
DStar

2
2

60
61

86
87

92
93

98
98

0.0369
0.0365

20.9
20.9

Ochiai 2 61 87 93 98 0.0365 20.9
Tarantula 2 59 84 91 98 0.0375 20.9

ST 61 61 29 29 33 33 36 36 41 41 0.0284 0.0284 0.6 0.6

Table 5.10. Effectiveness of fault localization techniques at the module-level granularity on all 135 selected
bugs B. The table reports the same metrics as Table 5.5 and Table 5.8 but targeting modules (files in
Python) as suspicious entities. Highlighted numbers denote the best technique according to each metric.

effectiveness metric measured at two different granularity levels, since each granularity level refers
to different entities—and inspecting different entities involves incomparable effort.

We do not discuss efficiency (i.e., running time) in relation to granularity: the running time
of our fault localization techniques does not depend on the chosen level of granularity, which only
affects how the collected information is combined (see Section 5.2.5).

5.9.6 RQ6. Comparison to Java

Table 5.11 collects the main quantitative results for Python fault localization effectiveness that we
presented in detail in previous parts of the chapter, and displays them next to the corresponding re-
sults for Java. The results are selected so that they can be directly compared: they exclude any tech-
nique (e.g., Tarantula) or family (e.g., history-based fault localization) that was not experimented
within both our study and Zou et al. [145]; and the rows about CombineFL were computed using
[145]’s replication package so that they combine exactly the same techniques (DStar, Ochiai, Metal-
laxis, Muse, PS, and ST for CombineFLA; and DStar, Ochiai, and ST for CombineFLS).

Then, Table 5.12 lists all claims about fault localization made in our study or in [145] that are
within the scope of both studies, and shows which were confirmed or refuted for Python and for Java.
Most of the findings (25/28) were confirmed consistently for both Python and Java. Thus, the big
picture about the effectiveness and efficiency of fault localization is the same for Python programs
and bugs as it is for Java programs and bugs.

There are, however, a few interesting discrepancies; let’s discuss possible explanations for them.
The most marked difference is about the effectiveness of ST, which was mediocre on Python pro-
grams but competitive on Java programs (row 3 in Table 5.12). We think the main reason for these
differences is that there were more Java experimental subjects that were an ideal target for ST:
20 out of the 357 Defects4J bugs used in [145]’s experiments consisted of short failing methods
whose programmer-written fixes entirely replaced or removed the method body.25 In these cases,

25For example, project Chart’s bug #17 in Defects4J v1.0.1.

88 An Empirical Study of Fault Localization in Python Programs

FAMILY TECHNIQUE L L@1% L@3% L@5% L@10% E (L)

Python Java Python Java Python Java Python Java Python Java

CombineFL
CombineFLA 20 19 39 33 49 42 60 52 0.0033 0.0186
CombineFLS 12 10 32 23 41 30 56 40 0.0039 0.0265

MBFL
Metallaxis 10 6 25 22 30 29 37 36 0.0035 0.1180

Muse 6 7 19 12 25 16 32 19 0.0023 0.3040

PS 3 1 5 4 7 6 7 6 0.0001 0.3310

SBFL
DStar 11 5 30 24 42 31 54 43 0.0042 0.0330

Ochiai 12 4 30 23 43 31 54 44 0.0042 0.0330

ST 0 6 4 9 6 11 13 11 0.0024 0.3110

Table 5.11. Effectiveness of fault localization techniques in Python and Java. Each row reports a TECH-
NIQUE L’s percentage of all bugs it localized within the top-1, top-3, top-5, and top-10 positions of its output
(L@1%, L@3%, L@5%, and L@10%); and its average exam score E (L). Python’s data corresponds to
the experiments discussed in the rest of this chapter on the 135 bugs from BugsInPy; Java’s data is taken
from Zou et al.’s empirical study [145] or computed from its replication package. Highlighted numbers de-
note each language’s best technique according to each metric.

the ground truth consists of all locations within the method; thus, ST easily ranks the fault location
at the top by simply reporting all lines of the crashing method with the same suspiciousness. As a
result, Table 5.11 shows that ST was consistently more effective than PS in the Java experiments—
whereas there was no consistent difference between ST and PS in our Python experiments. For the
same reason, the difference between Java and Python is even more evident on crashing bugs: ST
outperformed all other techniques on such bugs in Java but not in Python (row 19 in Table 5.12).
We still confirmed that ST works better on crashing bugs than on other kinds of bugs in Python as
well, but the nature of our experimental subjects did not allow ST to reach an overall competitive
effectiveness on crashing bugs.

Other findings about MBFL were different in Python compared to Java, but the differences were
more nuanced in this case. In particular, Zou et al. found that the correlation between the effective-
ness of SBFL and MBFL techniques is negligible, whereas we found a medium correlation (τ= 0.54).
It is plausible that the discrepancy (reflected in Table 5.12’s row 23) is simply a result of several de-
tails of how this correlation was measured: we use Kendall’s τ, they use the coefficient of determi-
nation r2; we use a generalized Einspect measure eI that applies to all bugs, they exclude experiments
where a technique completely fails to localize the bug (I); we compare the average effectiveness
of SBFL vs. MBFL techniques, they pairwise compare individual SBFL and MBFL techniques. Even if
the correlation patterns were actually different between Python and Java, this would still have lim-
ited practical consequences: MBFL and SBFL techniques still have clearly different characteristics,
and hence they remain largely complementary. The same analysis applies to the other correlation
discrepancy (reflected in Table 5.12’s row 25): in Python, we found a medium correlation between
the effectiveness of the Metallaxis and Muse MBFL techniques (τ = 0.62); in Java, Zou et al. found
negligible correlation.

Finally, a clarification about the finding that “On predicate-related bugs, MBFL is about as effective
as SBFL”, which Table 5.12 reports as confirmed for both Python and Java. This claim hinges on
the definition of “about as effective”, which we rigorously introduced in Section 5.8.1. To clarify the
comparison, Table 5.13 displays the Python and Java data about the effectiveness of MBFL and SBFL
on predicate bugs. On Python predicate-related bugs (left part of Table 5.13), MBFL achieves better

5.9 Experimental Results 89

FINDING PYTHON JAVA

1 SBFL is the most effective standalone fault localization
family.

Ë f 1.1 Ë [145, f 1.1]

2 Standalone fault localization families ordered by effective-
ness:
SBFL > MBFL≫ PS, ST

Ë f 1.2 Ë [145, T 3]

3 Regarding effectiveness, PS ≃ ST. Ë f 1.2 é T 5.11

4 All techniques in the SBFL family achieve very similar ef-
fectiveness.

Ë f 1.5 Ë [145, T 3]

5 The techniques in the MBFL family achieve generally sim-
ilar effectiveness.

Ë f 1.6 Ë [145, T 3]

6 Metallaxis tends to be better than Muse. Ë f 1.6 Ë [145, T 3]

7 Standalone fault localization families ordered by effi-
ciency:
ST≫ SBFL > PS > MBFL

Ë f 2.1 Ë [145, f 4.2]

8 PS is more efficient than MBFL on average. Ë f 2.2 Ë [145, T 9]

9 ST is more effective on crashing bugs than on other kinds
of bugs.

Ë f 3.5 Ë [145, f 1.3]

10 MBFL is more effective on crashing bugs than on other
kinds of bugs.

Ë f 3.5 Ë [145, T 3] , [145, T 4]

11 PS is the least effective on crashing bugs. Ë f 3.6 Ë [145, T 4]

12 On predicate-related bugs, MBFL is about as effective as
SBFL.

Ë T 5.13 , f 3.7 Ë T 5.13 , [145, T 5]

13 On predicate-related bugs, PS tends to be more effective
than ST.

Ë f 3.7 Ë [145, T 5]

14 Combined fault localization technique CombineFLA, which
combines all baseline techniques, achieves better effective-
ness than any other techniques.

Ë f 4.1 Ë T 5.11

15 Fault localization families ordered by effectiveness:
CombineFLA > CombineFLS > SBFL > MBFL≫ PS, ST

Ë f 4.2 Ë T 5.11

16 Combined fault localization technique CombineFLA, which
combines all baseline techniques, achieves worse effi-
ciency than any other technique.

Ë f 4.3 Ë [145, T 10]

17 Fault localization families ordered by efficiency:
ST≫ SBFL ≥ CombineFLS > PS > MBFL > CombineFLA

Ë f 4.4 Ë [145, T 10]

18 ST is more effective than PS at the function-level granu-
larity; however, it remains considerably less effective than
other fault localization techniques even at this coarser
granularity.

Ë f 5.1 Ë [145, T 11]

19 ST is the most effective technique for crashing bugs. é T 5.7 Ë [145, f 1.3]

20 PS is not the most effective technique for predicate-related
faults.

Ë T 5.7 Ë [145, f 1.4]

Table 5.12. A comparison of findings about fault localization in Python vs. Java. Each row lists a FINDING

discussed in this chapter or in Zou et al. [145], whether the finding was confirmed Ë or refuted é for
PYTHON and for JAVA, and the reported evidence that confirms or refutes it (a reference to a numbered
finding, Figure, or Table in this chapter or in [145]).

90 An Empirical Study of Fault Localization in Python Programs

FINDING PYTHON JAVA

21 Different correlation patterns exist between the effectiveness of
different pairs of techniques.

Ë F 5.6 , F 5.8 Ë [145, f 2.1]

22 The effectiveness of most techniques from different families is
weakly correlated.

Ë F 5.6 Ë [145, f 2.2]

23 The SBFL family’s effectiveness has medium correlation with
the MBFL family’s.

Ë F 5.6 é [145, T 6]

24 The effectiveness of SBFL techniques is strongly correlated. Ë F 5.8 Ë [145, T 6]

25 The effectiveness of MBFL techniques is weakly correlated. é F 5.9 Ë [145, T 6]

26 Techniques with strongly correlated effectiveness only exist in
the same family.

Ë F 5.6 , F 5.8 , F 5.9 Ë [145, f 2.3]

27 Not all techniques in the same family have strongly correlated
effectiveness.

Ë F 5.8 , F 5.9 Ë [145, f 2.3]

28 The main findings about the relative effectiveness of fault lo-
calization families at statement-level granularity still hold at
function-level granularity.

Ë T 5.9 Ë [145, f 5.1]

Table 5.12. Continued

PYTHON JAVA

FAMILY F F@1% F@3% F@5% F@10% F@1% F@3% F@5% F@10%

MBFL 11 33 40 52 9 21 29 34
SBFL 12 23 38 50 4 18 26 37

Table 5.13. A comparison of MBFL’s and SBFL’s effectiveness on Python and Java predicate-related bugs.
The left part of the table reports a portion of the same data as Table 5.7: each column @k% reports the
average percentage of the 52 predicate bugs in BUGSINPY Python projects used in our experiments that
techniques in the MBFL or SBFL family ranked within the top-k. The right part of the table averages some
of the data in [145, Table 5] by family: each column @k% reports the average percentage of the 115
predicate bugs in Defects4J Java projects used in Zou et al.’s experiments that techniques in the MBFL or
SBFL family ranked within the top-k. Highlighted numbers denote each language’s best family according to
each metric.

@3%, @5%, and @10% than SBFL but a worse @1% (by only one percentage point); similarly, on
Java predicate-related bugs (right part of Table 5.13), MBFL achieves better @1%, @3%, and @5%
than SBFL but a worse @10% (by three percentage points). In both cases, MBFL is not strictly better
than SBFL, but one could argue that a clear tendency exists. Regardless of the definition of “more
effective” (which can be arbitrary), the conclusion we can draw remain very similar in Python as in
Java.

Finding 6.1: Our experiments confirmed for Python programs most of Zou et al. [145]’s findings about
fault localization techniques on Java programs.

5.10 Discussion 91

5.10 Discussion

In this section, we discuss two aspects. In Section 5.10.1, we outline the differences between our
study and another empirical study of fault localization in Python [127], discussing why we did not
compare our findings to theirs. In Section 5.10.2, we examine the role of mutation operators in
MBFL effectiveness, discussing why it is meaningful to compare experiments with mutation testing
techniques.

5.10.1 Python vs. Java Comparison

To our knowledge, Widyasari et al.’s recent empirical study of spectrum-based fault localization [127]
is the only currently available large-scale study targeting real-world Python projects. Like our work,
they use the bugs in the BUGSINPY curated collection as experimental subjects [128]; and they com-
pare their results to those obtained by others for Java [94]. Besides these high-level similarities,
the scopes of our study and Widyasari et al.’s are fundamentally different: i) We are especially in-
terested in comparing fault localization techniques in different families; they consider exclusively
five spectrum-based techniques, and drill down into the relative performance of these techniques.
ii) Accordingly, we consider orthogonal categorization of bugs: we classify bugs (see Section 5.6)
according to characteristics that match the capabilities of different fault-localization families (e.g.,
stack-trace fault localization works for bugs that result in a crash); they classify bugs according to
syntactic characteristics (e.g., multi-line vs. single-line patch). iii) Most important, even though both
our study and Widyasari et al.’s compare Python to Java, the framing of our comparisons is quite
different: in Section 5.9.6, we compare our findings about fault localization in Python to Zou et
al. [145]’s findings about fault localization in Java; for example, we confirm that SBFL techniques
are generally more effective than MBFL techniques in Python, as they were found to be in Java.
In contrast, Widyasari et al. directly compare various SBFL effectiveness metrics they collected on
Python programs against the same metrics Pearson et al. [94] collected on Java programs; for exam-
ple, Widyasari et al. report that the percentage of bugs in BUGSINPY that their implementation of the
Ochiai SBFL technique correctly localized within the top-5 positions is considerably lower than the
percentage of bugs in Defects4J that Pearson et al.’s implementation of the Ochiai SBFL technique
correctly localized within the top-5.

It is also important to note that there are several technical differences between ours and Widyasari
et al.’s methodology. First, we handle ties between suspiciousness scores by computing the Einspect
rank (described in Section 5.7.2); whereas they use average rank (as well as other effectiveness
metrics). Even though we also take our subjects from BUGSINPY, we carefully selected a subset of
bugs that are fully analyzable on our infrastructure with all fault localization techniques we consider
(Section 5.4, Section 5.8); whereas they use all BUGSINPY available bugs. The selection of subjects
is likely to impact the value of some metrics more than others (see Section 5.7.2); for example, the
exam score is undefined for bugs that a fault localization technique cannot localize, whereas the
top-k counts are lower the more faults cannot be localized. These and numerous other differences
make our results and Widyasari et al.’s incomparable and mostly complementary. A replication of
their comparison following our methodology is an interesting direction for future work, but clearly
outside the present study’s scope. In Section 5.12.1 we present some additional data, and outline a
few directions for future work that are directly inspired by Widyasari et al.’s study [127].

92 An Empirical Study of Fault Localization in Python Programs

5.10.2 Mutation Testing Operators

MBFL techniques rely on mutation testing to generate mutants of a faulty program that may help
locate the fault. Therefore, the selection of mutation operators that are used for mutation testing
impacts the effectiveness of MBFL techniques.

Research in mutation testing has grown considerably in the last decade, developing a large variety
of mutation operators tailored to specific programming languages, applications, and faults [90].
Despite these recent developments, the fundamental set of mutation operators introduced in Offut
et al.’s seminal work [86] remains the basis of basically every application to mutation testing. These
fundamental operators generate mutants by modifying or removing arithmetic, logical, and relational
operators, as well as constants and variables in a program, and hence are widely applicable and
domain-agnostic.

Notably, the Cosmic Ray [27] Python mutation testing framework (used in our implementation
of FAUXPY), the two other popular Python mutation testing frameworks MutPy [32] and mutmut,26 as
well as the popular Java mutation testing frameworks Pitest27, MuJava [79] and Major [62] (the
latter used in Zou et al.’s MBFL experiments [145]) all offer Offut et al.’s fundamental operators.
This helps make experiments with mutation testing techniques meaningfully comparable.

5.11 Threats to Validity

Construct validity refers to whether the experimental metrics adequately operationalize the quanti-
ties of interest. Since we generally used widely adopted and well-understood metrics of effectiveness
and efficiency, threats of this kind are limited.

The metrics of effectiveness are all based on the assumption that users of a fault localization
technique process its output list of program entities in the order in which the technique ranked
them. This model has been criticized as unrealistic [92]; nevertheless, the metrics of effectiveness
remain the standard for fault localization studies, and hence are at least adequate to compare the
capabilities of different techniques and on different programs.

Using BUGSINPY’s curated collection of Python bugs helps reduce the risks involved with our se-
lection of subjects; as we detail in Section 5.4, we did not blindly reuse BUGSINPY’s bugs but we first
verified which bugs we could reliably reproduce on our machines.

Internal validity can be threatened by factors such as implementation bugs or inadequate statistics,
which may jeopardize the reliability of our findings. We implemented the tool FAUXPY (detailed in
Chapter 6) to enable large-scale experimenting with Python fault localization; we applied the usual
best practices of software development (testing, incremental development, refactoring to improve
performance and design, and so on) to reduce the chance that it contains fundamental bugs that
affect our overall experimental results. To make it a robust and scalable tool, FAUXPY’s implementation
uses external libraries for tasks, such as coverage collection and mutant generation, for which high-
quality open-source implementations are available.

The scripts that we used to process and summarize the experimental results may also include
mistakes; we checked the scripts several times, and validated the consistency between different data
representations.

We did our best to validate the test-selection process (described in Section 5.8), which was neces-
sary to make feasible the experiments with the largest projects; in particular, we ran fault localization

26https://mutmut.readthedocs.io
27https://pitest.org

https://mutmut.readthedocs.io
https://pitest.org

5.12 Conclusions 93

experiments on about 30 bugs without test selection, and checked that the results did not change
after we applied test selection.

Our statistical analysis (Section 5.7.3) follows best practices [42], including validations and com-
parisons of the chosen statistical models (detailed in the replication package). To further help future
replications and internal validity, we make available all our experimental artifacts and data in a
detailed replication package.

External validity is about generalizability of our findings. Using bugs from real-world open-source
projects substantially mitigates the threat that our findings do not apply to realistic scenarios. Pre-
cisely, we analyzed 135 bugs in 13 projects from the curated BUGSINPY collection, which ensures a
variety of bugs and project types.

As usual, we cannot make strong claims that our findings generalize to different application
scenarios, or to different programming languages. Nevertheless, our study successfully confirmed a
number of findings about fault localization in Java [145] (see Section 5.9.6), which further mitigates
any major threats to external validity.

Zou et al.’s study used the Defects4J [63] curated collection of real-world Java faults as their ex-
perimental subjects; we used the BUGSINPY [128] curated collection of real-world Python faults. This
invariably limits the generalizability of our findings to all Python programs, and the generalizability
of our comparison to all Python vs. Java programs: the two curated collections of bugs may not
represent all programs and faults in Python or Java. While there is always a risk that any selection
of experimental subjects is not fully representative of the whole population, choosing standard well-
known benchmarks such as Defects4J and BUGSINPY helps mitigate this threat. First, BUGSINPY was
explicitly inspired by Defects4J, and was built following a very similar approach but applied to real-
world open-source Python programs. Second, BUGSINPY projects were “selected as they represent the
diverse domains [. . .] that Python is used for” [128, Sec. 1], which bodes well for generalizability.
Third, BUGSINPY and Defects4J are extensible frameworks, which have been and will be extended
with new projects and bugs; thus, using them as the basis of FL studies helps to make future re-
search in this area comparable to previous results. While BUGSINPY and Defects4J are only imperfect
proxies for a fully general comparison of FL in Java and Python, they are a sensible basis given the
current state of the art.

5.12 Conclusions

This chapter described an extensive empirical study of fault localization in Python, based on a differ-
entiated conceptual replication of Zou et al.’s recent Java empirical study [145]. Besides replicating
for Python several of their results for Java, we shed light on some nuances, and released detailed
experimental data that can support further replications and analyses.

As a concluding discussion, let’s highlight a few points relevant for possible follow-up work.
Section 5.12.1 discusses a different angle for a comparison with other studies, suggested by Widyasari
et al.’s recent work [127]. Section 5.12.2 describes broader ideas to improve the capabilities of fault
localization in Python.

5.12.1 Other Fault Localization Studies

As we discussed in Section 5.10.1, Widyasari et al.’s recent work [127] is the only other large-scale
study targeting fault localization in real-world Python projects. We also explained how our study’s
goals and methodology is quite different from theirs; as a result, we cannot directly compare most

94 An Empirical Study of Fault Localization in Python Programs

of their findings to ours. In the following, we discuss how Widyasari et al.’s methodology suggests
future work that complements our own.

Widyasari et al. directly compare FL effectiveness metrics (such as exam score) between their
experiments on Python subjects from BUGSINPY and Pearson et al.’s experiments on Java subjects
from Defects4J [94]. Table 5.14a displays the key results of their comparison, alongside a roughly
similar comparison between our experiments on Python subjects from BUGSINPY and Zou et al.’s
experiments on Java subjects from Defects4J [145].

The picture that emerges from these comparisons is somewhat inconclusive: in our comparison,
there is a significant difference, with large effect size, between Python and Java with respect to exam
scores, but not with respect to the Einspect metric; conversely, in their comparison, there is a significant
difference, with large/medium effect size, between Python and Java with respect to the top-k ranks
in the best-case debugging scenarios (roughly analogous to the Einspect ranking metric), whereas the
differences with respect to exam scores are significant but with small effect sizes. Furthermore, the
sign of the effect sizes is opposite: in our comparison, fault localization is more effective on Python
programs (negative effect sizes); in their comparison, it is more effective on Java programs (positive
effect sizes). It is plausible to surmise that these inconsistencies reflect differences between the effec-
tiveness metrics, how they are measured in each study, and—most important—differences between
the experimental subjects; the exam score metric, in particular, also depends on the size of the pro-
grams under analysis. As we discussed in Section 5.11, even though both benchmarks BUGSINPY and
Defects4J are carefully curated and of significant size, there is the risk that they do not necessarily
represent all Python and Java real-world projects and their faults. This suggests that follow-up stud-
ies targeting different projects in Python and Java (or different selections of projects from BUGSINPY

and Defects4J) could help validate the generalizability of any results. Conversely, applying stricter
project and bug selection criteria could also be useful not to generalize findings, but to strengthen
their validity in more specific settings (for example, with projects of certain characteristics). With-
out provisioning stricter experimental controls, directly comparing, fault localization effectiveness
metrics on sundry programs in two different programming languages, as we did in Table 5.14a for
the sake of illustration, is unlikely to lead to clear-cut, robust findings.

Even though Widyasari et al.’s study found some statistically significant differences of effective-
ness between SBFL techniques, those differences tend to be modest or insignificant. As shown in
Table 5.14b, this is largely consistent with our findings: even though we found some weakly statis-
tically significant differences between SBFL techniques (between DStar and Tarantula for p < 0.1,
and between Ochiai and Tarantula for p < 0.06) these have little practical consequence as the effect
sizes of the differences are vanishing small.

Our study did not consider two dimensions of analysis that play an important role in Widyasari
et al.’s study: different debugging scenarios, and a classification of faults according to their syntactic
characteristics. Debugging scenarios determine how we classify a fault as localized when it affects
multiple lines. In our study, we only considered the “best-case” scenario: as long as any of the ground-
truth locations is localized, we consider the fault localized. Widyasari et al. also consider other
scenarios such as the worst-case scenario (all ground-truth locations must be localized). While they
did not find any significant differences in the various findings under different debugging scenarios,
investigating the robustness of our empirical findings in different scenarios remains a viable direction
for future work.

5.12.2 Future Work

One of the dimensions of analysis that we included in our empirical study was the classification of
projects (and their bugs) in categories, which led to the finding that faults in data science projects

5.12 Conclusions 95

THIS CHAPTER [127]

METRIC TECHNIQUE L p EFFECT p EFFECT REFERENCE

E (L) DStar 0.0000 −0.64 L 0.000000 0.32 S [127, Tab. 5]
Ochiai 0.0000 −0.64 L 0.000093 0.15 S

I(L) DStar 0.0000 −0.27 S 0.000000 0.54 L [127, Tab. 3]
Ochiai 0.0000 −0.28 S 0.000000 0.41 M

(a) Comparison of SBFL techniques on Python vs. Java programs. Each row compares the same SBFL TECHNIQUE

L applied to Python and to Java programs, reporting the p-value of a Wilcoxon rank-sum test, and Cliff’s delta EFFECT

size; a letter gives a qualitative assessment of the effect size: N for negligible, S for small, M for medium, and L for
large. The data for THIS CHAPTER is each technique L’s exam score E (L) and Einspect rank I(L) for each bug among
all 135 Python bugs used in the rest of this chapter’s experiments, and for each Java bug in Zou et al.’s replication
package data [145]; to reflect the behavior on all bugs in these statistics, bugs that were not localized are assigned
an I rank and an exam score of −1 (unlike the rest of this chapter where this value is undefined). The statistics of
[127] (in the four rightmost columns) are taken from its Table 5 (exam score, which they compute based on their top-k
ranks) and Table 3 (best-case debugging scenario top-k ranks).

THIS CHAPTER [127, Tab. 14]

TECHNIQUE L1 TECHNIQUE L2 p EFFECT EFFECT

DStar Ochiai 0.584 0.00 N 0.14 N

DStar Tarantula 0.093 −0.01 N 0.19 S

Ochiai Tarantula 0.056 −0.01 N 0.04 N

(b) Pairwise comparison of SBFL techniques according to exam score. Each row compares the exam scores of two
TECHNIQUEs L1 and L2 for significant differences, reporting the p-value of a Wilcoxon signed-rank test, and Cliff’s
delta EFFECT size; a letter gives a qualitative assessment of the effect size: N for negligible, S for small, M for medium,
and L for large. The data for THIS CHAPTER is each technique L’s exam score E (L) for each bug among all 135
Python bugs used in the rest of this chapter’s experiments; to reflect the behavior on all bugs in these statistics, bugs
that were not localized are assigned an exam score of−1 (unlike the rest of this chapter where this value is undefined).
The statistics of [127] (in the two rightmost columns) are taken from its Table 14.

Table 5.14. A summary of some data presented in Widyasari et al.’s fault localization study [127] vis-à-vis
analogous data presented in this chapter.

tend to be harder and take longer to localize. This is not a surprising finding if we consider the sheer
size of some of these projects (and of their test suites). However, it also highlights an important cat-
egory of projects that are much more popular in Python as opposed to more “traditional” languages
like Java. In fact, a lot of the exploding popularity of Python in the last decade has been connected
to its many usages for statistics, data analysis, and machine learning. Furthermore, there is grow-
ing evidence that these applications have distinctive characteristics—especially when it comes to
faults [53, 57, 99]. Thus, investigating how fault localization can be made more effective for certain
categories of projects is an interesting direction for related work.

It is remarkable that SBFL techniques, proposed nearly two decades ago [61], still remain formidable
in terms of both effectiveness and efficiency. As we discussed in Section 2.3, MBFL was introduced
expressly to overcome some limitations of SBFL. In our experiments (similarly to Java projects [145])
MBFL performed generally well but not always on par with SBFL; furthermore, MBFL is much more
expensive to run than SBFL, which may put its practical applicability into question. Our empirical
analysis of “mutable” bugs (Section 5.9.3) indicated that MBFL loses to SBFL usually when its muta-
tion operators are not applicable to the faulty statements (which happened for nearly half of the bugs
we used in our experiments); in these cases, the mutation analysis will not bring relevant information

96 An Empirical Study of Fault Localization in Python Programs

about the faulty parts of the program. These observations raise the question of whether it is possible
to predict the effectiveness of MBFL based on preliminary information about a failure; and whether
one can develop new mutation operators that extend the practical capabilities of MBFL to new kinds
of bugs. More generally, one could try to relate the various kinds of source-code edits (add, remove,
modify) [115] introduced to fix a fault to the effectiveness of different fault localization algorithms.
We leave answering these questions to future research in this area.

6
FAUXPY: an Automated Fault Localization Tool For
Python

In Chapter 5, we conducted a large-scale empirical study of fault localization (FL) in Python pro-
grams. In our experiments, we included seven FL techniques from four families and used bugs from
real-world Python projects as subjects. As noted in that chapter, we did not find any multi-family FL
tool for Python; thus, we developed FAUXPY to conduct our study. To our knowledge, FAUXPY is the first
open-source FL tool for Python that supports multiple FL families.

In this chapter, we provide a detailed explanation of FAUXPY by showcasing how to use it on two
illustrative examples and discussing its main features and capabilities from a user’s perspective. The
experiments in Chapter 5 demonstrate that FAUXPY is applicable to analyze Python projects of realistic
size as we ran it on projects from BUGSINPY curated dataset of Python bugs [128]. In this chapter, we
present a different summary of the same FL experiments discussed in Chapter 5.

Structure of the Chapter

The current chapter is organized as follows:

Section 6.1 provides the motivation behind developing FAUXPY.

Section 6.2 overviews how to use FAUXPY through two illustrative examples.

Section 6.3 highlights details of FAUXPY’s architecture and its implementation.

Section 6.4 presents some experimental results.

Section 6.5 concludes this chapter.

6.1 Introduction

Starting from around the 1990s [131], there has been a growing interest in automated fault local-
ization techniques for programs, which spurred the development of increasingly sophisticated and
effective techniques. Nowadays, fault localization techniques are widely used both on their own,
and as components of more complex (dynamic) program analyses—for example, as ingredients of
automated program repair.

Like with every program analysis technique, practical adoption of fault localization critically re-
quires that reusable, flexible tool implementations are available, so that trying out new research
ideas and applications does not require to re-implement from scratch techniques that are already

97

98 FAUXPY: an Automated Fault Localization Tool For Python

known to work. Although there exists several fault localization tools [22, 50, 59, 103] in the liter-
ature, they are mostly developed for programming languages such as Java, C/C++, and the .NET
languages. To our knowledge, CharmFL [55] is the only publicly available fault localization tool for
Python. CharmFL, implemented as a plugin of the PyCharm IDE, only supports spectrum-based fault
localization (SBFL) techniques.

To address this deficiency, this chapter describes FAUXPY (read: “foh pie”): a fault localization
tool for Python. To our knowledge, FAUXPY is the only available Python fault localization tool that
supports multiple fault localization families (spectrum based, mutation based, stack-trace based, and
predicate switching). The immediate motivation for implementing FAUXPY was to carry out the large
scale empirical study of fault localization in Python, which we described in Chapter 5. Nevertheless,
we designed and implemented FAUXPY with the broader goal of making it a flexible, reusable stand-
alone tool for all applications of fault localization in Python.

The current chapter presents, focusing on the user’s perspective, the tool FAUXPY, some of its
concrete usage scenarios (Section 6.2), and its main features and implementation (Section 6.3).
FAUXPY supports seven fault localization techniques, and two localization granularities (statement
and function); it can use tests written for the most popular Python unit testing frameworks such as
Pytest and Unittest; it can be extended with support for new techniques. To demonstrate that FAUXPY

is applicable to real-world projects, we also summarize some of the results of the empirical study
presented in Chapter 5 from a different perspective—grouping the data by project.

FAUXPY is available as open source; users can easily install FAUXPY from PyPI1, using pip install

fauxpy. FAUXPY’s source code is also publicly available.2 In addition, a companion repository3 makes
available the complete dataset of our related empirical study [101] presented in Chapter 5. A short
demo of FAUXPY is also available on Youtube.4

6.2 Using FAUXPY

This section overviews using FAUXPY on two simple examples, from the perspective of Moe—a non-
descript user.

6.2.1 Spectrum-based and Mutation-based Fault Localization

To practice programming in Python, Moe has implemented function equilateral_area in List-
ing 6.1. The function takes as input the length side of an equilateral triangle’s side, and returns
its area computed using the formula side2 ×

p
3/4. Unfortunately, Moe inadvertently introduced a

bug on line 196, which sums variables const and term instead of multiplying them. Fortunately, the
bug does not go unnoticed thanks to the tests that Moe also wrote (see Listing 6.2); in particular, the
assertion in test test_ea_fail fails, indicating that equilateral_area does not work as intended.

To help him debug equilateral_area, Moe runs our fault localization tool FAUXPY. All fault
localization techniques implemented by FAUXPY are dynamic (i.e., based on tests); therefore, Moe
points FAUXPY to the location of equilateral_area’s implementation, as well as of its tests. By default,
FAUXPY performs spectrum-based fault localization (SBFL)—a family of widely used fault localization
techniques based on the idea of comparing program traces (“spectra”) of passing and failing runs of
a program (see Section 5.2.1). FAUXPY currently supports three techniques (DStar [130], Ochiai [6],
Tarantula [61]) that belong to the SBFL family; since they only differ in the formula used to aggregate

1https://pypi.org/project/fauxpy
2https://github.com/atom-sw/fauxpy
3https://github.com/atom-sw/fauxpy-experiments
4A demo of FAUXPY: https://youtu.be/O4T7w-U8rZE

https://pypi.org/project/fauxpy
https://github.com/atom-sw/fauxpy
https://github.com/atom-sw/fauxpy-experiments
https://youtu.be/O4T7w-U8rZE

6.2 Using FAUXPY 99

191 def equilateral_area(side):
192 const = math.sqrt(3) / 4
193 if side == 1:
194 return const
195 term = math.pow(side, 2)
196 area = const + term # bug
197 return area

Listing 6.1. Python function equilateral_area computes the area of an equilateral triangle given its side
length; this implementation has a bug at line 196.

198 def test_ea_fail():
199 area = equilateral_area(side=3)
200 assert area == pytest.approx(9 * math.sqrt(3) / 4)
201

202 def test_ea_pass():
203 area = equilateral_area(side=1)
204 assert area == pytest.approx(math.sqrt(3) / 4)

Listing 6.2. Tests for function equilateral_area in Listing 6.1. Library function pytest.approx checks
equality of floating points within some tolerance.

the information about traces, FAUXPY reports the output for all SBFL techniques with a single analysis
run.

SBFL runs quite fast, taking only 0.3 seconds on this example. The output, like for every fault
localization technique, is a list of program locations (identified by line numbers) ranked by their
suspiciousness score; the absolute value of the suspiciousness score does not matter, what matters
is the rank of a location: the higher its rank, the more likely the location is implicated with the
failure triggered by the tests. As shown in Table 6.1, all three SBFL techniques correctly assign
the top rank to the fault location (line 196 in Listing 6.1); however, they also assign the top rank
to some nearby locations (lines 195 and 197) which tie the faulty location’s suspiciousness score.
This example highlights a fundamental limitation of SBFL techniques: since they compare traces in
different executions, they cannot distinguish between locations that are in the same basic block (a
portion of code without branches).

Mutation-based fault localization (MBFL) techniques use a different approach, which is capable
of distinguishing between locations in the same basic block (Section 5.2.2). As the name suggests,
MBFL techniques are based on mutation testing: given a program to analyze, they generate many
different mutants—syntactic mutations obtained by systematically applying a number of mutation
operators. The intuition is that if mutating the code at a certain program location changes the
program behavior (a test passes on the original program and fails on the mutant, or vice versa), then
the program location is likely to be implicated with the fault.

To run MBFL with FAUXPY, Moe simply adds the option --family mbfl. FAUXPY currently supports
two techniques (Metallaxis [91] and Muse [83]) that belong to the MBFL family; just like for SBFL
techniques, a single analysis run of FAUXPY computes the output of both MBFL techniques. MBFL is
notoriously time consuming; in fact, it takes 15.9 seconds on Listing 6.1’s example (over 50 times
longer than SBFL). As shown in Table 6.1, the two MBFL techniques achieve quite different results
despite using the same 32 mutants for analysis: Muse is very accurate, as it singles out line 196 as
the most suspicious location; Metallaxis also ranks it at the top, but together with two other locations

100 FAUXPY: an Automated Fault Localization Tool For Python

Listing 6.1 Listing 6.3

FAMILY TECHNIQUE TIME [seconds] TOP-RANK LOCATIONS TIME [seconds] TOP-RANK LOCATIONS

MBFL
Metallaxis

15.9
193 195 196

18.4
207, 208, 210

Muse 196 207, 208, 210

SBFL
DStar

0.3
195, 196, 197

0.1
206, 207, 208, 210

Ochiai 195, 196, 197 206, 207, 208, 210
Tarantula 195, 196, 197 206, 207, 208, 210

PS 1.2 – 0.2 –

ST 0.2 – 0.1 206, 207, 208

Table 6.1. A summary of running FAUXPY on the two examples in Listing 6.1 (equilateral_area) and List-
ing 6.3 (isosceles_area). For each fault localization technique (grouped by family), the table reports the
running TIME of FAUXPY in seconds, and the program locations (line numbers) with the highest suspicious-
ness (TOP-RANK). A colored background highlights the actual location of the bug in each example. Since
the running time of all techniques in a family is the same, it is only reported once per family.

205 def isosceles_area(leg, base):
206 def height():
207 t1, t2 = math.pow(base, 2), math.pow(leg, 2) / 4 # bug
208 return math.sqrt(t1 - t2)
209

210 area = 0.5 * base * height()
211 return area

Listing 6.3. Python function isosceles_area computes the area of an isosceles triangle given its leg and
base lengths; this implementation has a bug at line 207.

that are not responsible for the fault.

6.2.2 Stack Trace and Predicate Switching Fault Localization

FAUXPY supports two other fault-localization families: stack-trace (ST [145]) fault localization and
predicate switching (PS [140]).5 Moe tries them out on equilateral_area but the results are dis-
appointing: both techniques return the empty list of locations, meaning that they could not gather
any evidence of suspiciousness. The reason for ST’s failure in this case is quite obvious: ST analyzes
the stack trace dumped after a program crash (usually, an uncaught exception); since all tests in
Listing 6.2 terminate without crashing, ST is completely ineffective on this example (Section 5.2.4).

In order to try an example where ST may stand a chance, Moe considers another little Python
program he wrote: function isosceles_area returns the area of an isosceles triangle computed as
base/2×
p

leg2 − base2/4.6 The implementation in Listing 6.3 erroneously swaps base and leg;
thus, when executing test test_ia_crash, expression t1 - t2 in Listing 6.3 evaluates to a negative
number, which crashes the program with an uncaught ValueError exception raised by math.sqrt.

Executing FAUXPY with option --family st on Listing 6.3’s example terminates quickly (around
0.1 seconds) and ranks the three locations 206, 207, 208 as top suspiciousness. Even this simple

5Unlike SBFL and MBFL, there is only one implementation of ST and one of PS—hence, ST and PS denote both families
and individual techniques.

6The legs of an isosceles triangle are the two sides of equal length; the third side is called base.

6.3 FAUXPY’s Architecture and Implementation 101

212 def test_ia_crash():
213 area = isosceles_area(leg=9, base=4)
214 assert area == pytest.approx(2 * math.sqrt(77))
215

216 def test_ia_pass():
217 area = isosceles_area(leg=4, base=4)
218 assert area == pytest.approx(2 * math.sqrt(12))

Listing 6.4. Tests for function isosceles_area in Listing 6.3. Library function pytest.approx checks
equality of floating points within some tolerance.

example showcases ST’s key features: first, it is usually very fast, since it does not have to collect
any information other than the stack trace of crashing tests. Second, it can be quite effective with
crashing bugs (after all, the fault location 207 is ranked at the top), but fundamentally operates at the
level of whole functions: a stack trace reports the list of functions that were active when the program
crashed; hence, ST fault localization cannot distinguish between the suspiciousness of locations that
belong to the same function (height in the example, which consists of three lines). Still, on this
example, ST is a bit more accurate than SBFL (which also ranks line 210 in the top position), and
arguably somewhat better than MBFL (which also reports three locations at the top rank, but one
of them is line 210, which is the call location of height, and hence not really responsible for the
fault). The running time of ST and SBFL is practically indistinguishable on this simple example; in
general, however, SBFL takes more time than ST because the latter only runs failing tests and does
not require any tracing when executing the tests. As usual, MBFL takes considerably longer (18.4
seconds) to generate several mutants (48 mutants) and to execute all tests on each mutant.

As a last experiment of FAUXPY’s capabilities, Moe runs PS fault localization on isosceles_area.
Just like on equilateral_area, PS fails to localize the bug and returns an empty list of locations.
Once again, the program features explain why these examples are a poor match for PS’s capabilities.
As the name suggests, PS is based on the idea of forcefully changing the outcome of a program
conditional branch dynamically during different test executions; the intuition is that if switching
a predicate (branch condition) turns a failing test into a passing one, then the predicate may be
responsible for the fault. Clearly, if a program has no conditionals (like isosceles_area), or its
conditionals are unrelated to the locations of failure (like equilateral_area), PS is unlikely to be
of any help to locate the bug (Section 5.2.3).

In all, this section’s simple examples gave a concrete idea of FAUXPY’s capabilities, showcasing the
variety of fault localization techniques that it supports and how they can be applied.

6.3 FAUXPY’s Architecture and Implementation

FAUXPY is an automated fault localization tool for Python. The current version of FAUXPY supports seven
fault localization techniques in four families: the spectrum-based (SBFL) techniques DStar [130],
Ochiai [6], and Tarantula [61]; the mutation-based (MBFL) techniques Muse [83] and Metallaxis [91];
and the predicate switching (PS) [140] and stack trace (ST) [145] fault localization families/tech-
niques.

FAUXPY can perform fault localization with two granularities: statement-level and function-level.
That is, the granularity determines what program entities are localized: the locations of individual
statements in the source code, or the functions that compose the programs.

FAUXPY is a command-line tool, implemented as a plugin of the popular Pytest testing framework.

102 FAUXPY: an Automated Fault Localization Tool For Python

As essential input, FAUXPY takes the location of the source code of a Python project where to perform
fault localization, as well as the location of a test suite. FAUXPY accepts tests in the formats of Pytest,
as well as Unittest (another widely used Python testing framework) and Hypothesis (a property-
based Python testing tool, which supports the definition of parametric tests). As output, FAUXPY

returns a CSV file listing program entities ranked by their suspiciousness score; the higher an entity’s
suspiciousness score, the more likely the entity is the location of the fault.

6.3.1 Features and Options

The only mandatory command line argument to use FAUXPY is --src PACKAGE, which runs SBFL at
the statement granularity on the Python package in directory PACKAGE, using any tests discovered by
Pytest within the project’s source files.

Flags --family and --granularity respectively select the fault localization family (SBFL, MBFL,
ST, and PS) and the granularity (statement and function) at which to perform fault localization.
As mentioned in Section 6.2, FAUXPY simultaneously runs all techniques that belong to the selected
family, since it is able to reuse the output of the same underlying analysis.

Using Pytest’s command line options, users can select specific tests to be used by FAUXPY. For
example, you can run a test selection algorithm to identify a subset of the tests, and then feed its
output to FAUXPY. The command line option --failing-list explicitly asks FAUXPY to only use the
given list of failing tests. Normally, FAUXPY runs all available tests, and figures out which are passing
and which are failing. However, a technique like ST only needs to run failing tests; thus, if those
are given to FAUXPY explicitly, ST can run much faster by simply ignoring all passing tests. Another
scenario where selecting failing tests is useful is whenever a test suite includes multiple failing tests
that trigger different bugs; localizing one bug at a time is likely to increase the effectiveness of fault
localization techniques—whose heuristics usually assume that all failures refer to the same fault.

6.3.2 Implementation

Figure 6.1 overviews the workflow of FAUXPY. The first step of FAUXPY’s dynamic analysis is always
running the available tests. Then, different components collect different kind of information required
by the selected fault localization technique.

SBFL techniques rely on coverage information; to this end, FAUXPY runs Coverage.py [15], a pop-
ular coverage library for Python. MBFL techniques generate several mutants of the input program;
to this end, FAUXPY uses state-of-the-art mutation framework Cosmic Ray [27]. By default, FAUXPY ap-
plies the framework’s default mutation operators, but users can also provide other custom operators.
FAUXPY includes a module ps_inst that we developed to generate the kind of instrumentation needed
by PS fault localization; our implementation is based on Python’s ast library. FAUXPY’s support of ST
fault localization parses the dumped output of all crashing tests, reconstructs the stack trace, and
then locates the corresponding functions in the program’s source code.

FAUXPY outputs the results of its fault localization analysis in CSV format, encoding a ranked list
of program entities and their suspiciousness scores. For performance reason, FAUXPY stores all the
intermediate results (the outcome of running the various analyses and tools) of its analysis in an
SQLite database file. This SQLite database remains available to the user after FAUXPY terminates
executing, which can be useful both for debugging and to perform additional analyses on the large
amount of data collected by FAUXPY’s dynamic analysis.

6.4 Experiments 103

instrument
predicates

ps_inst

ç

PS

run tests
Pytest

Ë é

ST

tests

py �

calculate
coverage

Coverage.py

⋔

SBFL
ranked

suspicious
locations

csv

program

py

generate
mutants

Cosmic Ray

MBFL

FAUXPY

Figure 6.1. An overview of FAUXPY’s architecture.

6.4 Experiments

Table 6.2 presents a different summary of the same FL experiments discussed in Chapter 5: in par-
ticular, it groups data by project. These experiments involved 135 bugs from 13 open-source Python
projects taken from the BUGSINPY curated collection of real-world Python bugs [128]. Each bug b in
BUGSINPY consists of two revisions Bb, Fb of a Python project complete with its programmer-written
tests; the first revision Bb includes a bug exposed by the tests, and the second revision Fb is the
programmer-written fix. Overall, these experiments involve over half a million lines of code and
over 15 thousand test functions.

For each bug b, we ran FAUXPY on each buggy revision Bb, and used the fixed revision Fb to de-
termine whether FAUXPY localized the actual bug locations (i.e., where the programmer edited the
program to fix it). As key metric of fault localization accuracy (effectiveness), Table 6.2 reports the
@5 count for each fault localization technique: the number of bugs that the technique correctly
localized within the top-5 ranks of its output. This is a common metric of fault localization effec-
tiveness, which is based on a scenario where the user only inspects a few (i.e., five) locations in the
output, and ignores any other locations that are ranked lower. Table 6.2 indicates that SBFL tech-
niques (DStar, Ochiai, Tarantula) are the most effective ones according to this metric, followed by
MBFL techniques (Metallaxis, Muse). As we explained intuitively in Section 6.2, PS and ST are more
specialized techniques that are only applicable to bugs that involve branching predicates (PS) or that
result in a crash (ST); in fact, they are accurate only for a fraction of the bugs in the experiments.

The average running time of FAUXPY on each bug (also reported in Table 6.2) confirms on a much
larger scale the same trends that Section 6.2’s toy examples demonstrated in the small. Namely, ST
is by far the fastest technique, since it just runs failing tests (usually, only a handful of a whole test
suite); SBFL is still nimble but has to run all tests while collecting coverage information; PS and MBFL
take considerably more time, since they have to run all tests on several variants of the programs. We

104 FAUXPY: an Automated Fault Localization Tool For Python

PROJECT KLOC TESTS FAULTS

@5 COUNT ON PROJECT AVERAGE TIME/FAULT [sec]

MBFL PS SBFL ST
MBFL PS SBFL ST

Metallaxis Muse PS DStar Ochiai Tarantula ST

black 93.5 153 13 5 1 2 4 4 4 1 28936 45149 62 1
cookiecutter 1.6 218 4 0 0 0 2 2 2 0 51 13 9 1
fastapi 4.7 595 13 3 3 1 5 5 5 1 592 745 7 1
httpie 3.5 217 4 0 3 1 1 1 1 0 646 116 9 1
keras 6.7 616 18 6 4 0 6 7 7 0 31330 2977 196 4
luigi 22.0 1 508 13 7 4 1 5 5 5 2 14188 1486 22 1
pandas 128.0 12226 18 2 1 2 3 3 3 0 36561 29653 3810 1
sanic 7.3 466 3 0 0 0 1 1 1 0 11772 365 209 0
spaCy 97.2 986 6 1 2 1 3 3 3 0 4 920 13 916 60 0
thefuck 4.7 614 16 7 7 0 15 15 15 1 73 49 6 1
tornado 17.9 926 4 1 1 0 2 2 2 0 28013 1445 976 1
tqdm 3.3 120 7 1 0 0 4 4 4 2 7 154 192 42 1
youtube-dl 125.0 237 16 7 8 1 6 6 6 1 6 767 1 257 54 4

total 515.4 18882 135 40 34 9 57 58 58 8 15774 9751 589 2

Table 6.2. Overview of FAUXPY’s experimental evaluation on an ample selection of bugs from BUGSINPY [128].
For each PROJECT, the table shows its size in KLOC (thousands of non-empty non-comment lines of code,
excluding tests), number of TESTS (i.e., test functions), number of FAULTS analyzed with FAUXPY, and how
many of them each technique correctly localized within the top-5 positions (@5 COUNT), and the AVERAGE

TIME per fault taken by FAUXPY (by fault localization family, since all techniques in a family take the same
time). Consistently with what done by the authors of BUGSINPY [128] and similar to Table 5.1, the project
statistics reported here refer to the latest version of the projects on 2020-06-19.

refer interested readers to Chapter 5 for many more details about the practical capabilities of different
fault localization techniques on Python programs.

6.5 Conclusions

This chapter presented FAUXPY, an automated fault localization tool for Python programs. We ex-
plained the motivation behind developing FAUXPY, its implementation details, and simple examples of
usage. We presented a summary of Chapter 5’s experimental results—from a different perspective—
to emphasize that FAUXPY is a flexible tool, usable on projects of considerable size.

Part IV
Epilogue

7
Conclusions and Future Work

In this dissertation, we investigated the capabilities and limitations of state-of-the-art test generation
and fault localization techniques on data science programs implemented in Python with the aim of
laying the foundation for development of new debugging techniques that are more effective on these
programs.

We started the first part of the dissertation with analyzing the effectiveness of general-purpose
test generation techniques on neural network (NN) programs, a wide spread class of data science
programs. Based on this analysis, we proposed ANNOTEST—a novel test generation technique tailored
for NN programs—to address the limitations of general-purpose techniques (Chapter 3). We then
presented the ANNOTEST tool—an implementation of the ANNOTEST technique—along with a curated
collection of NN bugs to provide tool support for developers and researchers in the field (Chapter 4).

Broadening our focus from data science programs to open-source Python programs, we contin-
ued the dissertation in the second part by conducting a large scale multi-family empirical study of
fault localization in Python programs (Chapter 5). The empirical knowledge achieved in this study
is beneficial for both researchers and developers working on the debugging of Python programs, in-
cluding data science programs. Finally, we finished the second part of the dissertation by introducing
FAUXPY, a multi-family automated fault localization tool for Python programs (Chapter 6). In the rest
of this chapter, we provide a summary of our contributions throughout the entire dissertation and
highlight possible avenues for further work to continue this research.

Structure of the Chapter

The current chapter is organized as follows:

Section 7.1 highlights the contributions and accomplishments made throughout the dissertation.

Section 7.2 outlines potential avenues for future research.

Section 7.3 concludes this chapter with closing remarks.

7.1 Contributions

The contributions described in this dissertation fit in three groups: i) the test generation technique,
ANNOTEST, tailored for NN programs written in Python (Chapter 3); ii) the multi-family large scale
empirical study of fault localization in Python programs (Chapter 5); iii) and the tools ANNOTEST

and FAUXPY, as well as the curated dataset of NN bugs (Chapters 4 and 6). This section provides a
summary of these contributions.

107

108 Conclusions and Future Work

7.1.1 Test Generation Approach for NN Programs

We started Chapter 3 by investigating the effectiveness of general-purpose test generation tools on
neural network (NN) programs, and then, we proposed ANNOTEST, a novel test generation technique
tailored specifically for NN programs written in Python. NN programs usually work with complicated
data types while typing information is not available in dynamically typed language such as Python.
As a result, general-purpose test generation tools such as Pynguin [78] and Deal [29] are ineffective
on NN programs. To address this issue, ANNOTEST relies on AN, a simple annotation language that
can express the kinds of constraints found in NN programs, concisely and precisely; ANNOTEST can
generate tests for programs that are annotated with AN.

We experimentally evaluated ANNOTEST on 19 open-source programs we curated from Islam et
al. [57]’s survey of NN bugs. These programs use some of the popular NN frameworks such as
Keras, TensorFlow, and PyTorch. Upon annotating 24 functions in these programs using AN, ANNO-
TEST reproduced 63 known bugs along with 31 previously unknown bugs in them. To also evaluate
ANNOTEST when used comprehensively, we fully annotated the latest version of two of these 19 open-
source programs, adding 330 annotations. In this experiment, ANNOTEST found 50 bugs with only
6 false positives. These two experiments indicate that ANNOTEST can be used for an entire program,
or opportunistically on only a few selected functions that are critical.

While ANNOTEST generates tests for programs annotated with AN, annotating remains a manual
process. In our experiments, we added 2 annotations per function on average, 96% of which fit
a single line. These statistics indicate that the manual effort required by ANNOTEST is reasonable
compared to the number of bugs it can find in NN programs. Furthermore, ANNOTEST generated
tests with high coverage, comparable to that of developer written tests. Chapter 3 is based on our
following publication [99]:

• M. Rezaalipour and C. A. Furia. An annotation-based approach for finding bugs in neural
network programs. Journal of Systems and Software, 201:111669, 2023.

7.1.2 Empirical Study of Fault Localization in Python Programs

In Chapter 5, we presented the first multi-family large-scale empirical study of fault localization (FL)
in Python programs to better understand the capabilities of fault localization on both Python and
data science programs. This study is a differentiated conceptual replication [65] of Zou et al. [145]’s
work on Java.

In our empirical study, we considered seven FL techniques from four families as well as their com-
binations. As subjects, we included 135 bugs across 13 well-known projects from the BUGSINPY [128]
collection of Python project bugs. We classified these bugs based on both their project categories and
bug types; we studied fault localization across three different levels of granularity—statement, func-
tion, and module—while measuring both the effectiveness and efficiency of FL techniques in our
analysis.

Our empirical study provides several findings, which we presented in Chapter 5. Having com-
pared our findings to those from Zou et al. [145], we confirmed that most of Zou et al. [145]’s
findings about FL in Java also apply to Python. Furthermore, our study indicated that bugs in data
science projects tend to be harder to localize compared to other categories of projects. Chapter 5 is
based on our following publication [101]:

• M. Rezaalipour and C. A. Furia. An empirical study of fault localization in Python programs.
Empirical Software Engineering, 2024. Accepted in March 2024.

7.2 Future Work 109

7.1.3 Supporting Tools and Dataset

In order to conduct the studies outlined in Section 7.1.1 and Section 7.1.2, we developed two tools
and a curated collection of NN bugs. The first tool we developed was ANNOTEST, the implementation
of the ANNOTEST technique detailed in Chapter 3. We presented the details of this tool in Chapter 4.
ANNOTEST provides a library of annotations, which users can import into their Python modules to
annotate functions and methods in their code. ANNOTEST also provides a test generator engine,
which takes the path to an annotated program and outputs Hypothesis [80] test templates for the
annotated sections of the source code. Users can then run these Hypothesis templates to generate
concrete inputs for their projects and find bugs.

Along with the ANNOTEST tool, we also presented a curated collection of NN bugs in Chapter 4,
which we sourced from Islam et al. [57]’s survey of NN bugs. We spent substantial effort in collecting
this dataset to make sure it contains all the required dependencies and the bugs are all reproducible.
Chapter 3 is based on our following publication [100]:

• M. Rezaalipour and C. A. Furia. aNNoTest: An annotation-based test generation tool for
neural network programs. In IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 574–579, 2023.

To conduct our empirical study of fault localization (FL) outlined in Chapter 5, we developed
FAUXPY, a multi-family FL tool for Python programs. Chapter 6 presents an in-depth exploration of
FAUXPY’s architecture. FAUXPY supports seven FL techniques across four families—spectrum-based,
mutation-based, predicate switching, and stack-trace based FL—and operates at two levels of granu-
larity: statement and function. It works with tests written for Unittest, Pytest, and Hypothesis, three
well-known Python testing frameworks. We designed FAUXPY to be extensible. For instance, FAUXPY

can be extended to support more spectrum-based ranking metrics. Using Cosmic Ray [27]—a well-
known mutation testing framework—as backend for mutation-based FL techniques enables FAUXPY

to support new custom-designed mutation operators. FAUXPY is also designed to be efficient. We
achieved efficiency by storing each technique’s intermediate data in an SQLite database file to reuse
them in different FL tasks. This approach also enables further analysis as this stored data provides
detailed information about the different steps each FL technique takes.

7.2 Future Work

The current section explores potential future avenues to extend the work presented in this disser-
tation. In this regard, Section 7.2.1 explores future work on our test generation study, particularly,
focusing on the enhancement of ANNOTEST; Section 7.2.2 discusses how to further extend our FL
study; Section 7.2.3 focuses on opportunities for automated program repair studies built upon our
dissertation.

7.2.1 Test Generation

We can think of three potential avenues as future work of our test generation study (i.e., ANNOTEST),
which we outline below.

Type constraints expansion. The current version of AN supports several type constraints. However,
as discussed in Section 3.7.3, we had to write a few custom generators as some of the function
parameters in our subjects were of complex types such as NN model objects and tensors. Extending

110 Conclusions and Future Work

AN to support such complex type constraints enhances the convenience and applicability of using
ANNOTEST.

Postconditions integration. ANNOTEST’s main contribution is that it generates valid test inputs, ac-
cording to the input constraints specified by the annotations. In our experiments, detailed in Chap-
ter 3, we exclusively considered implicit oracles (i.e., the crashing oracle). However, extending
ANNOTEST to support other types of oracles is feasible. Since AN is based on annotations—a form
of lightweight formal specification—adding postconditions can extend ANNOTEST to support custom-
made oracles. This feature can be implemented by checking whether the postconditions hold at the
end of test functions to determine whether the tests pass or fail.

Regression testing expansion. The primary objective of the ANNOTEST technique proposed in this
dissertation is to find bugs, i.e., generating failing tests. However, there exists potential for extend-
ing ANNOTEST to also generate regression tests. Test generation tools such as EvoSuite [39] and
Pynguin [78] specialize in generating regression tests, using regression oracles. Such tools leverage
the post-state of the program under test as regression oracle to formulate assertions for the tests they
generate. Regression tests can be run on future versions of the same program to detect regression
bugs. Considering ANNOTEST’s focus, it could be extended to target regression oracles that capture
NN-specific properties [34, 85, 137] and generate regression tests.

7.2.2 Fault Localization

There are three potential directions to extend our work on fault localization. We outline these direc-
tions in the following.

Data-science program fault localization. In our Chapter 5’s empirical study, we explored fault lo-
calization effectiveness and efficiency across different project categories. Our study revealed that lo-
calizing faults in data science projects is more challenging compared to projects from other domains,
a finding consistent with existing studies [57, 58] that attribute these challenges to the distinctive
nature of these programs. It is an interesting direction to investigate strategies for improving fault
localization for certain categories of projects such as data science programs.

Enhancements on mutation-based fault localization. As discussed in Section 2.3, MBFL techniques
were designed to address the limitations of SBFL techniques. However, our Chapter 5’s study, as well
as other fault localization studies [94, 145] showed that although MBFL techniques perform generally
well, they do not consistently outperform SBFL techniques. This observation puts MBFL’s practical
applicability into question as it is more expensive than SBFL. However, our empirical analysis of
“mutable” bugs (Section 5.9.3) revealed that MBFL’s effectiveness diminishes when its mutation
operators are not applicable to the faulty statements (which happened for nearly half of the bugs we
used in our experiments). In such cases, mutation analysis fails to provide insights about the buggy
statements within the program. This observation raises the question of whether devising strategies to
predict MBFL effectiveness based on some information about the failure is possible. Employing such
strategies would allow users to know in advance whether to spend resources in MBFL or use SBFL,
the more efficient family. Another future direction can be to investigate the feasibility of proposing
new mutation operators specific to project categories or bug types in order to address this issue.

7.3 Closing Remarks 111

Exploring debugging scenarios. In addition to our Chapter 5’s empirical study of fault localization
in Python, Widyasari et al. [127] also conducted an study that targets real-world Python projects.
While we considered four FL families in our study, their focus was only on SBFL. Section 5.10.1 out-
lines all the methodological differences between our study and Widyasari et al.’s; their methodology
offers another potential avenue to continue our research. In their study, Widyasari et al. considered
two analysis dimensions that we did not include in our study: different debugging scenarios, and a
classification of faults according to their syntactic characteristics. Debugging scenarios specify when
a bug is considered localized by a FL technique in cases where the bug affects multiple lines, i.e.,
when the ground-truth (Section 5.5) contains multiple faulty locations. Widyasari et al. included
three debugging scenarios in their study: i) best-case scenario, where a bug is consider localized if
the FL technique finds any of its faulty statements; ii) average-case scenario, where the technique
must find half of the faulty statements; iii) worst-case scenario, where the technique must find all
faulty statements. Similar to [145], the best-case was the only debugging scenario we considered in
our Chapter 5’s study. While Widyasari et al. did not find any significant differences in the various
findings across different debugging scenarios, investigating the robustness of our empirical findings
under different scenarios is an interesting avenue for future work.

7.2.3 Automated Program Repair

In this dissertation, we introduced ANNOTEST (Chapter 3), a test generation technique designed for
NN programs. Using ANNOTEST, we curated a dataset of NN bugs, presented in Chapter 4. Addition-
ally, we developed FAUXPY (Chapter 6)—a multi-family fault localization tool for Python programs—
using which, we conducted the empirical study presented in Chapter 5.

An interesting next step to continue our research is to integrate these contributions to investigate
automated program repair (APR) [44, 82] of NN bugs. As we repeatedly mentioned [53, 57], the
type of bugs found in NN programs are different in nature compared to traditional programs. On the
other hand, the fix patterns of these bugs are also different from those found in other programs [58],
which makes general-purpose APR techniques ineffective on them.

While some recent studies attempted to provide fix suggestions [124] or even totally fix [141]
structural bugs occurring at the training phase of NN programs, there exist evidence [53, 57] indi-
cating that NN programs contain other types of bugs along with structural bugs. These other bug
types can be the target of a new APR study. We can use FAUXPY and the empirical knowledge from
Chapter 5 for the fault localization activity and our curated dataset of NN bugs, as well as bugs from
other frameworks like BUGSINPY, as subjects for APR research. Furthermore, we can use information
such as the architecture of models to provide fix suggestions for the targeted bug types.

7.3 Closing Remarks

We started this dissertation with the goal of enhancing our understanding about the capabilities and
limitations of standard test generation and fault localization techniques on data science programs
to provide foundational knowledge for the development of more effective debugging techniques
tailored for data science programs. To this end, we started by investigating how standard test gen-
eration techniques work on neural network (NN) programs. Upon identifying the limitations of
standard techniques on NN programs, we designed ANNOTEST, a novel test generation technique
tailored for NN programs in Python.

We also conducted an extensive empirical study of fault localization in Python programs as some
of the debugging challenges posed by data science programs are rooted in Python as a dynamically
typed language. Additionally, we introduced two open-source tools ANNOTEST and FAUXPY as well as a

112 Conclusions and Future Work

curated collection of NN bugs. Along with listing several potential avenues for researchers to extend
this dissertation, we hope our results will be beneficial for both researchers and practitioners in the
domain.

Bibliography

[1] Keras adversarial models. https://github.com/bstriner/keras-adversarial/.

[2] Modeling behind lockdown was an unreliable buggy mess, claim experts, (accessed October 22,
2020). https://www.wandisco.com/storage/app/media/documents/articles/Sunday
_Telegraph_051720.pdf.

[3] Some Recent Software Failures Caused by Software Bugs!, (accessed October 22, 2020). http:
//www.sereferences.com/software-failure-list.php.

[4] PEP 484 – Type Hints, (accessed October 8, 2020). https://www.python.org/dev/peps/pe
p-0484/.

[5] The Top Programming Languages 2019, (accessed October 8, 2020). https://spectrum.iee
e.org/computing/software/the-top-programming-languages-2019/.

[6] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of spectrum-based fault
localization. In Proceedings of the Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION, pages 89–98, 2007.

[7] B. K. Aichernig. Automated black-box testing with abstract vdm oracle. In Computer Safety,
Reliability and Security, pages 250–259, 1999.

[8] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A systematic review of the
application and empirical investigation of search-based test case generation. IEEE Transactions
on Software Engineering, 36(6):742–762, 2010.

[9] P. Ammann and J. Offutt. Introduction to Software Testing Edition 2. Cambridge University
Press, New York, NY, 2017.

[10] V. Amrehin, S. Greenland, and B. McShane. Scientists rise up against statistical significance.
Nature, 567:305–307, 2019.

[11] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman, M. J.
Harrold, P. McMinn, A. Bertolino, J. Jenny Li, and H. Zhu. An orchestrated survey of
methodologies for automated software test case generation. Journal of Systems and Software,
86(8):1978–2001, 2013.

[12] W. Araujo, L. C. Briand, and Y. Labiche. On the effectiveness of contracts as test oracles in
the detection and diagnosis of race conditions and deadlocks in concurrent object-oriented
software. In International Symposium on Empirical Software Engineering and Measurement,
pages 10–19, 2011.

[13] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske. A learning-to-rank based fault localization ap-
proach using likely invariants. In Proceedings of the 25th International Symposium on Software
Testing and Analysis, pages 177—-188, 2016.

113

https://github.com/bstriner/keras-adversarial/
https://www.wandisco.com/storage/app/media/documents/articles/Sunday_Telegraph_051720.pdf
https://www.wandisco.com/storage/app/media/documents/articles/Sunday_Telegraph_051720.pdf
http://www.sereferences.com/software-failure-list.php
http://www.sereferences.com/software-failure-list.php
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019/
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019/

114 Bibliography

[14] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in software
testing: A survey. IEEE Transactions on Software Engineering, 41(5):507–525, 2015.

[15] N. Batchelder. Coverage.py. https://coverage.readthedocs.io/, 2023. [Online; accessed
6-April-2023].

[16] G. Bell, T. Hey, and A. Szalay. Beyond the data deluge. Science, 323(5919):1297–1298, 2009.

[17] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann. What makes
a good bug report? In Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 308–318, 2008.

[18] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, and S. D. Castellanos. Trans-
lating code comments to procedure specifications. ISSTA 2018, page 242–253, New York, NY,
USA, 2018. Association for Computing Machinery.

[19] I. BoussaïD, J. Lepagnot, and P. Siarry. A survey on optimization metaheuristics. Information
Sciences, 237:82–117, 2013.

[20] G. Candea and P. Godefroid. Automated software test generation: Some challenges, solutions,
and recent advances. In B. Steffen and G. J. Woeginger, editors, Computing and Software
Science - State of the Art and Perspectives, volume 10000 of Lecture Notes in Computer Science,
pages 505–531. Springer, 2019.

[21] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. DeepDriving: Learning affordance for direct
perception in autonomous driving. In IEEE International Conference on Computer Vision, pages
2722–2730, 2015.

[22] C. Chen and N. Wang. Unitfl: A fault localization tool integrated with unit test. In Proc.
ICCSNT, pages 136–142, 2016.

[23] Z. Chen, L. Chen, Y. Zhou, Z. Xu, W. C. Chu, and B. Xu. Dynamic slicing of Python programs.
In 2014 IEEE 38th Annual Computer Software and Applications Conference, pages 219–228,
2014.

[24] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of Haskell
programs. In M. Odersky and P. Wadler, editors, Proceedings of the Fifth ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP ’00), Montreal, Canada, September
18-21, 2000, pages 268–279. ACM, 2000.

[25] H. Cleve and A. Zeller. Locating causes of program failures. In Proceedings of the 27th Inter-
national Conference on Software Engineering, pages 342–351, 2005.

[26] D. Coppit and J. Haddox-Schatz. On the use of specification-based assertions as test oracles.
In 29th Annual IEEE/NASA Software Engineering Workshop, pages 305–314, 2005.

[27] Cosmic Ray: mutation testing for Python. https://cosmic-ray.readthedocs.io/, 2019.
[Online; accessed 6-April-2023].

[28] W. W. Daniel. Biostatistics: A Foundation for Analysis in the Health Sciences. Wiley, 7 edition,
1999.

[29] Deal: A Python library for design by contract. https://github.com/life4/deal, 2018.

https://coverage.readthedocs.io/
https://cosmic-ray.readthedocs.io/
https://github.com/life4/deal

Bibliography 115

[30] V. Debroy, W. E. Wong, X. Xu, and B. Choi. A grouping-based strategy to improve the effec-
tiveness of fault localization techniques. In 2010 10th International Conference on Quality
Software, pages 13–22, 2010.

[31] P. J. Denning. The locality principle. Commun. ACM, 48(7):19–24, 2005.

[32] A. Derezińska and K. Hałas. Analysis of mutation operators for the Python language. In
W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, editors, Proceedings
of the 9th International Conference on Dependability and Complex Systems, pages 155–164,
2014.

[33] C. Ding and Y. Zhong. Predicting whole-program locality through reuse distance analysis. In
R. Cytron and R. Gupta, editors, Proceedings of the ACM SIGPLAN 2003 Conference on Pro-
gramming Language Design and Implementation 2003, San Diego, California, USA, June 9-11,
2003, pages 245–257. ACM, 2003.

[34] J. Ding, X. Kang, and X.-H. Hu. Validating a deep learning framework by metamorphic testing.
In IEEE/ACM 2nd International Workshop on Metamorphic Testing (MET), pages 28–34, 2017.

[35] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Softw. Engg., 10(4):405–
435, 2005.

[36] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar. A survey on new generation meta-
heuristic algorithms. Computers & Industrial Engineering, 137:106040, 2019.

[37] H. F. Eniser, S. Gerasimou, and A. Sen. Deepfault: Fault localization for deep neural networks.
In R. Hähnle and W. van der Aalst, editors, Fundamental Approaches to Software Engineering,
pages 171–191, Cham, 2019. Springer International Publishing.

[38] N. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia,
A. Boonyasiri, Z. Cucunubá, G. Cuomo-Dannenburg, et al. Report 9: Impact of non-
pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand.
Technical report, Imperial College London, 2020.

[39] G. Fraser and A. Arcuri. EvoSuite: automatic test suite generation for object-oriented soft-
ware. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software En-
gineering (FSE-19) and ESEC’11: 13th European Software Engineering Conference (ESEC-13),
Szeged, Hungary, September 5-9, 2011, pages 416–419. ACM, 2011.

[40] G. Fraser and A. Arcuri. 1600 faults in 100 projects: automatically finding faults while achiev-
ing high coverage with evosuite. Empir. Softw. Eng., 20(3):611–639, 2015.

[41] C. A. Furia, R. Feldt, and R. Torkar. Bayesian data analysis in empirical software engineering
research. IEEE Transactions on Software Engineering, 47(9):1786–1810, September 2021.

[42] C. A. Furia, R. Torkar, and R. Feldt. Applying Bayesian analysis guidelines to empirical software
engineering data: The case of programming languages and code quality. ACM Transactions
on Software Engineering and Methodology, 31(3):40:1–40:38, July 2022.

[43] J. P. Galeotti, C. A. Furia, E. May, G. Fraser, and A. Zeller. Inferring loop invariants by mu-
tation, dynamic analysis, and static checking. IEEE Transactions on Software Engineering,
41(10):1019–1037, October 2015.

116 Bibliography

[44] L. Gazzola, D. Micucci, and L. Mariani. Automatic software repair: A survey. IEEE Transactions
on Software Engineering, 45(1):34–67, 2019.

[45] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2, pages 2672–2680, 2014.

[46] S. Gossett. 12 Data Science Programming Languages to Know, (accessed May 16, 2024). https:
//builtin.com/data-science/data-science-programming-languages.

[47] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen. Audee: Automated testing for
deep learning frameworks. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, pages 486–498, 2020.

[48] C. Hammacher. Design and implementation of an efficient dynamic slicer for Java. Bachelor’s
Thesis, Nov. 2008.

[49] T. Hey, A. Hey, S. Tansley, and K. Tolle. The Fourth Paradigm: Data-intensive Scientific Discovery.
Microsoft Research, 2009.

[50] F. Horváth, A. Beszédes, B. Vancsics, G. Balogh, L. Vidács, and T. Gyimóthy. Experiments with
interactive fault localization using simulated and real users. In Proc. ICSME, pages 290–300,
2020.

[51] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao. Deepmutation++: A mutation testing frame-
work for deep learning systems. In 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1158–1161, 2019.

[52] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger. Convolutional networks
with dense connectivity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

[53] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and P. Tonella. Taxonomy
of real faults in deep learning systems. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pages 1110–1121, 2020.

[54] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness of
dataflow- and control-flow-based test adequacy criteria. In Proceedings of 16th International
Conference on Software Engineering, pages 191–200, 1994.

[55] Q. Idrees Sarhan, A. Szatmári, R. Tóth, and A. Beszédes. CharmFL: A fault localization tool
for Python. In IEEE 21st International Working Conference on Source Code Analysis and Manip-
ulation (SCAM), pages 114–119, 2021.

[56] M. J. Islam, S. Ahmad, F. Haque, M. B. I. Reaz, M. A. S. Bhuiyan, and M. R. Islam. Application
of min-max normalization on subject-invariant emg pattern recognition. IEEE Transactions on
Instrumentation and Measurement, 71:1–12, 2022.

[57] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan. A comprehensive study on deep learning bug
characteristics. In Proceedings of the 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 510–520, 2019.

[58] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan. Repairing deep neural networks: Fix patterns
and challenges. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, pages 1135–1146, 2020.

https://builtin.com/data-science/data-science-programming-languages
https://builtin.com/data-science/data-science-programming-languages

Bibliography 117

[59] T. Janssen, R. Abreu, and A. J. van Gemund. Zoltar: a spectrum-based fault localization tool.
In Proc. SINTER, pages 23–30, 2009.

[60] Y. Jia and M. Harman. An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering, 37(5):649–678, 2011.

[61] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic fault-
localization technique. In Proceedings of the 20th IEEE/ACM International Conference on Au-
tomated Software Engineering, pages 273–282, 2005.

[62] R. Just. The major mutation framework: Efficient and scalable mutation analysis for java. In
Proceedings of the International Symposium on Software Testing and Analysis, pages 433–436,
2014.

[63] R. Just, D. Jalali, and M. D. Ernst. Defects4j: A database of existing faults to enable controlled
testing studies for java programs. In Proceedings of the International Symposium on Software
Testing and Analysis, pages 437–440, 2014.

[64] R. Just, D. Jalali, and other Defects4J contributors. Defects4J repository. https://github.c
om/rjust/defects4j#export-version-specific-properties, 2023.

[65] N. J. Juzgado and O. S. Gómez. Replication of software engineering experiments. In Empirical
Software Engineering and Verification – International Summer Schools, LASER 2008-2010, Elba
Island, Italy, Revised Tutorial Lectures, volume 7007 of Lecture Notes in Computer Science, pages
60–88. Springer, 2010.

[66] M. Kessel and C. Atkinson. Diversity-driven unit test generation. Journal of Systems and
Software, 193:111442, 2022.

[67] A. J. Ko and B. A. Myers. Debugging reinvented: asking and answering why and why not
questions about program behavior. In W. Schäfer, M. B. Dwyer, and V. Gruhn, editors, 30th
International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18,
2008, pages 301–310. ACM, 2008.

[68] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot framework for Java program analysis:
a retrospective. In Cetus Users and Compiler Infrastructure Workshop (CETUS 2011), Oct. 2011.

[69] T.-D. B. Le, F. Thung, and D. Lo. Theory and practice, do they match? a case with spectrum-
based fault localization. In IEEE International Conference on Software Maintenance, pages
380–383, 2013.

[70] S. Lee, S. Cha, D. Lee, and H. Oh. Effective white-box testing of deep neural networks with
adaptive neuron-selection strategy. In Proc. ISSTA, pages 165–176, 2020.

[71] L. Li, J. Wang, and H. Quan. Scalpel: The Python static analysis framework. arXiv preprint
arXiv:2202.11840, 2022.

[72] X. Li, W. Li, Y. Zhang, and L. Zhang. DeepFL: Integrating multiple fault diagnosis dimensions
for deep fault localization. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 169–180, 2019.

[73] X. Li and L. Zhang. Transforming programs and tests in tandem for fault localization. Proc.
ACM Program. Lang., 1(OOPSLA):1–30, 2017. Replication package: https://github.com/d
eeprl4fl2021icse/deeprl4fl-2021-icse.

https://github.com/rjust/defects4j#export-version-specific-properties
https://github.com/rjust/defects4j#export-version-specific-properties
https://github.com/deeprl4fl2021icse/deeprl4fl-2021-icse
https://github.com/deeprl4fl2021icse/deeprl4fl-2021-icse

118 Bibliography

[74] Y. Li, S. Wang, and T. N. Nguyen. Fault localization with code coverage representation learn-
ing. In Proceedings of the 43rd International Conference on Software Engineering, pages 661–
673, 2021.

[75] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak,
B. van Ginneken, and C. I. Sánchez. A survey on deep learning in medical image analysis.
Medical Image Analysis, 42:60–88, 2017.

[76] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV), 2015.

[77] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and L. Zhang. Boosting coverage-based
fault localization via graph-based representation learning. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 664–676, 2021.

[78] S. Lukasczyk, F. Kroiß, and G. Fraser. Automated unit test generation for python. In Proceedings
of the 12th Symposium on Search-based Software Engineering, pages 9–24, 2020.

[79] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: an automated class mutation system. Software
Testing, Verification and Reliability, 15(2):97–133, 2005.

[80] D. MacIver, Z. Hatfield-Dodds, and M. Contributors. Hypothesis: A new approach to property-
based testing. Journal of Open Source Software, 4(43):1891, 2019.

[81] S. McConnell. Code Complete. Microsoft Press, 2nd edition, 2004.

[82] M. Monperrus. Automatic software repair: A bibliography. ACM Comput. Surv., 51(1), 2018.

[83] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the mutants: Mutating faulty programs for fault
localization. In IEEE Seventh International Conference on Software Testing, Verification and
Validation, pages 153–162, 2014.

[84] S. Mukherjee, A. Almanza, and C. Rubio-González. Fixing dependency errors for Python build
reproducibility. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 439–451, 2021.

[85] M. Nejadgholi and J. Yang. A study of oracle approximations in testing deep learning libraries.
In 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
785–796, 2019.

[86] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimental determination
of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol., 5(2):99–118, apr 1996.

[87] R. A. Oliveira, U. Kanewala, and P. A. Nardi. Chapter three - automated test oracles: State
of the art, taxonomies, and trends. volume 95 of Advances in Computers, pages 113–199.
Elsevier, 2014.

[88] A. Orso and G. Rothermel. Software testing: A research travelogue (2000–2014). In Future
of Software Engineering Proceedings, pages 117–132, 2014.

[89] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test generation.
In 29th International Conference on Software Engineering, pages 75–84, 2007.

Bibliography 119

[90] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman. Chapter six - mutation
testing advances: An analysis and survey. volume 112 of Advances in Computers, pages 275–
378. 2019.

[91] M. Papadakis and Y. Le Traon. Metallaxis-fl: Mutation-based fault localization. Softw. Test.
Verif. Reliab., 25(5–7):605–628, 2015.

[92] C. Parnin and A. Orso. Are automated debugging techniques actually helping programmers?
In M. B. Dwyer and F. Tip, editors, Proceedings of the 20th International Symposium on Software
Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, pages 199–209.
ACM, 2011.

[93] C. Parnin and A. Orso. Are automated debugging techniques actually helping programmers?
In Proceedings of the 2011 International Symposium on Software Testing and Analysis, pages
199–209, 2011.

[94] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang, and B. Keller. Evalu-
ating and improving fault localization. In Proceedings of the 39th International Conference on
Software Engineering, pages 609–620, 2017.

[95] M. Pezzè and C. Zhang. Chapter one - automated test oracles: A survey. volume 95 of Advances
in Computers, pages 1–48. Elsevier, 2014.

[96] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu. Bugcache for inspections: Hit or
miss? In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, pages 322–331, 2011.

[97] M. Renieres and S. Reiss. Fault localization with nearest neighbor queries. In Proceedings of
18th IEEE International Conference on Automated Software Engineering, pages 30–39, 2003.

[98] T. Reps, T. Ball, M. Das, and J. Larus. The use of program profiling for software maintenance
with applications to the year 2000 problem. In Proceedings of the 6th European SOFTWARE
ENGINEERING Conference Held Jointly with the 5th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 432–449, 1997.

[99] M. Rezaalipour and C. A. Furia. An annotation-based approach for finding bugs in neural
network programs. Journal of Systems and Software, 201:111669, 2023.

[100] M. Rezaalipour and C. A. Furia. aNNoTest: An annotation-based test generation tool for neural
network programs. In IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 574–579, 2023.

[101] M. Rezaalipour and C. A. Furia. An empirical study of fault localization in Python programs.
Empirical Software Engineering, 2024. Accepted in March 2024.

[102] M. Rezaalipour and C. A. Furia. Fauxpy: A fault localization tool for python, 2024.

[103] H. L. Ribeiro, R. P. A. de Araujo, M. L. Chaim, H. A. de Souza, and F. Kon. Jaguar: A spectrum-
based fault localization tool for real-world software. In Proc. ICST, pages 404–409, 2018.

[104] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and P. Tonella. Testing machine
learning based systems: a systematic mapping. Empir. Softw. Eng., 25(6):5193–5254, 2020.

120 Bibliography

[105] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek. Should we really be using t-test
and Cohen’s d for evaluating group differences on the NSSE and other surveys? In Annual
meeting of the Florida Association of Institutional Research, 2006.

[106] S. Roy, A. Pandey, B. Dolan-Gavitt, and Y. Hu. Bug synthesis: Challenging bug-finding tools
with deep faults. In Proceedings of the 2018 ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, pages 224–234. ACM, 2018.

[107] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. Improving bug localization using structured
information retrieval. In 28th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pages 345–355, 2013.

[108] V. Salis, T. Sotiropoulos, P. Louridas, D. Spinellis, and D. Mitropoulos. PyCG: Practical call
graph generation in Python. In Proceedings of the 43rd International Conference on Software
Engineering, pages 1646–1657, 2021.

[109] Q. I. Sarhan and A. Beszédes. A survey of challenges in spectrum-based software fault local-
ization. IEEE Access, 10:10618–10639, 2022.

[110] E. Schoop, F. Huang, and B. Hartmann. Umlaut: Debugging deep learning programs using
program structure and model behavior. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, 2021.

[111] A. Schroter, A. Schröter, N. Bettenburg, and R. Premraj. Do stack traces help developers fix
bugs? In 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010),
pages 118–121, 2010.

[112] R. Schwitter. English as a formal specification language. In Proceedings. 13th International
Workshop on Database and Expert Systems Applications, pages 228–232, 2002.

[113] S. R. Shahamiri, W. M. N. W. Kadir, and S. Z. Mohd-Hashim. A comparative study on automated
software test oracle methods. In Fourth International Conference on Software Engineering Ad-
vances, pages 140–145, 2009.

[114] W. Shen, J. Wan, and Z. Chen. Munn: Mutation analysis of neural networks. In 2018 IEEE In-
ternational Conference on Software Quality, Reliability and Security Companion (QRS-C), pages
108–115, 2018.

[115] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and M. de Almeida Maia. Dissection of
a bug dataset: Anatomy of 395 patches from Defects4J. In R. Oliveto, M. D. Penta, and
D. C. Shepherd, editors, 25th International Conference on Software Analysis, Evolution and
Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018, pages 130–140. IEEE
Computer Society, 2018.

[116] J. Sohn, S. Kang, and S. Yoo. Search based repair of deep neural networks, 2019.

[117] J. Sohn and S. Yoo. FLUCCS: Using code and change metrics to improve fault localization.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 273–283, 2017.

Bibliography 121

[118] F. Steimann, M. Frenkel, and R. Abreu. Threats to the validity and value of empirical assess-
ments of the accuracy of coverage-based fault locators. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 314–324, 2013.

[119] X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, and B. Li. An empirical study on real bugs for machine
learning programs. In 24th Asia-Pacific Software Engineering Conference, pages 348–357, 2017.

[120] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore. Structural test coverage
criteria for deep neural networks. ACM Trans. Embed. Comput. Syst., 18(5s), 2019.

[121] A. Szatmári, Q. I. Sarhan, and A. Beszédes. Interactive fault localization for Python with
CharmFL. In Proceedings of the 13th International Workshop on Automating Test Case Design,
Selection and Evaluation, pages 33–36, 2022.

[122] F. Thung, S. Wang, D. Lo, and L. Jiang. An empirical study of bugs in machine learning
systems. In IEEE 23rd International Symposium on Software Reliability Engineering, pages
271–280, 2012.

[123] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundaresan. Soot – a Java
bytecode optimization framework. In S. A. MacKay and J. H. Johnson, editors, Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collaborative Research, November
8-11, 1999, Mississauga, Ontario, Canada, page 13. IBM, 1999.

[124] M. Wardat, B. D. Cruz, W. Le, and H. Rajan. Deepdiagnosis: Automatically diagnosing faults
and recommending actionable fixes in deep learning programs. In The 44th International
Conference on Software Engineering, 2022.

[125] M. Wardat, W. Le, and H. Rajan. Deeplocalize: Fault localization for deep neural networks.
In ICSE’21: The 43nd International Conference on Software Engineering, 2021.

[126] R. L. Wasserstein and N. A. Lazar. The ASA statement on p-values: Context, process, and
purpose. The American Statistician, 70(2):129–133, 2016. https://www.amstat.org/asa/f
iles/pdfs/P-ValueStatement.pdf.

[127] R. Widyasari, G. A. A. Prana, S. A. Haryono, S. Wang, and D. Lo. Real world projects, real
faults: Evaluating spectrum based fault localization techniques on Python projects. Empirical
Softw. Engg., 27(6), 2022.

[128] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee, J. E. Tan, Y. Yieh, B. Goh,
F. Thung, H. J. Kang, T. Hoang, D. Lo, and E. L. Ouh. BugsInPy: A database of existing bugs
in Python programs to enable controlled testing and debugging studies. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1556–1560, 2020.

[129] E. Wong, T. Wei, Y. Qi, and L. Zhao. A crosstab-based statistical method for effective fault
localization. In 1st International Conference on Software Testing, Verification, and Validation,
pages 42–51, 2008.

[130] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The DStar method for effective software fault
localization. IEEE Transactions on Reliability, 63(1):290–308, 2014.

[131] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software fault localization.
IEEE Transactions on Software Engineering, 42(8):707–740, 2016.

https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf
https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf

122 Bibliography

[132] T. Xie. Augmenting automatically generated unit-test suites with regression oracle checking.
In ECOOP 2006 – Object-Oriented Programming, pages 380–403, 2006.

[133] J. Xuan and M. Monperrus. Learning to combine multiple ranking metrics for fault localiza-
tion. In 2014 IEEE International Conference on Software Maintenance and Evolution, pages
191–200, 2014.

[134] S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: A survey.
Softw. Test. Verif. Reliab., 22(2):67–120, 2012.

[135] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman. No pot of gold at the end of program
spectrum rainbow: Greatest risk evaluation formula does not exist. Res. Note RN/14/14,
University College London, London, England, 2014.

[136] A. Zeller. Why Programs Fail – A Guide to Systematic Debugging, 2nd Edition. Academic Press,
2009.

[137] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei. Search-based inference of
polynomial metamorphic relations. In Proceedings of the 29th ACM/IEEE International Confer-
ence on Automated Software Engineering, pages 701–712, 2014.

[138] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine learning testing: Survey, landscapes and
horizons. IEEE Transactions on Software Engineering, 48(1):1–36, 2022.

[139] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang. An empirical study on program
failures of deep learning jobs. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, pages 1159–1170, 2020.

[140] X. Zhang, R. Gupta, and N. Gupta. Locating faults through automated predicate switching.
In Software Engineering, International Conference on, pages 272–281, 2006.

[141] X. Zhang, J. Zhai, S. Ma, and C. Shen. Autotrainer: An automatic dnn training problem
detection and repair system. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pages 359–371, 2021.

[142] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang. An empirical study on tensorflow
program bugs. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 129–140, 2018.

[143] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie. Detecting numerical bugs
in neural network architectures. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 826–837, 2020.

[144] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? more accurate information
retrieval-based bug localization based on bug reports. In 34th International Conference on
Software Engineering (ICSE), pages 14–24, 2012.

[145] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang. An empirical study of fault localization
families and their combinations. IEEE Transactions on Software Engineering, 47(2):332–347,
2021.

URL References

1. https://github.com/pytorch/vision/issues/5209

2. https://github.com/pytorch/vision/issues/6607

3. DenseNet project page: https://github.com/cmasch/densenet/

4. https://github.com/cmasch/densenet/blob/70ee31d0f6f800324fbe98ea687122395248d39e/densenet.py

5. https://github.com/cmasch/densenet/commit/693d772ae9dcdb4d524b25d7d2f6428de4a524ff#diff-81308
6a9be01b05b352f0111384c48e74735b009e22f4bab1f3dcaa06e2303c2R68

6. https://github.com/bstriner/keras-adversarial/blob/master/examples/image_utils.py#L34

7. https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/adversarial_utils
.py#L10

8. https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/image_grid_callba
ck.py#L7

9. https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/model
.py#L21

10. https://github.com/se2p/pynguin/issues/20

11. https://github.com/pytorch/vision/blob/v0.11.2/torchvision/datasets/mnist.py

12. https://github.com/bstriner/keras-adversarial/blob/master/examples/example_rock_paper_scissor
s.py#L62

13. https://github.com/keras-team/keras/blob/keras-1/keras/layers/core.py#L588

14. https://github.com/keras-team/keras/blob/keras-2/keras/layers/core.py#L823

15. https://github.com/bstriner/keras-adversarial/blob/master/examples/example_aae_cifar10.py#L69
-L70

16. https://github.com/bstriner/keras-adversarial/blob/master/examples/example_aae.py#L46-L47

17. https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/h5too
l3.py#L500

18. https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/h5too
l3.py#L520

19. https://github.com/anastassia-b/neural-algorithm-artistic-style

20. https://github.com/bstriner/keras-adversarial

21. https://github.com/cmasch/densenet

22. https://github.com/csvance/deep-connect-four

23. https://github.com/dhkim0225/keras-image-segmentation

24. https://github.com/dishen12/keras_frcnn

25. https://github.com/heuritech/convnets-keras

26. https://github.com/jamesmf/mnistCRNN

27. https://github.com/javiermzll/Image-Recognition

28. https://github.com/katyprogrammer/regularization-experiment

29. https://github.com/michalgdak/car-recognition

30. https://github.com/naykun/TF_PG_GANS

31. https://github.com/notem/keras-alexnet

32. https://github.com/Spider101/Visual-Semantic-Alignments

33. https://github.com/taashi-s/UNet_Keras

123

https://github.com/pytorch/vision/issues/5209
https://github.com/pytorch/vision/issues/6607
https://github.com/cmasch/densenet/
https://github.com/cmasch/densenet/blob/70ee31d0f6f800324fbe98ea687122395248d39e/densenet.py
https://github.com/cmasch/densenet/commit/693d772ae9dcdb4d524b25d7d2f6428de4a524ff#diff-813086a9be01b05b352f0111384c48e74735b009e22f4bab1f3dcaa06e2303c2R68
https://github.com/cmasch/densenet/commit/693d772ae9dcdb4d524b25d7d2f6428de4a524ff#diff-813086a9be01b05b352f0111384c48e74735b009e22f4bab1f3dcaa06e2303c2R68
https://github.com/bstriner/keras-adversarial/blob/master/examples/image_utils.py##L34
https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/adversarial_utils.py##L10
https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/adversarial_utils.py##L10
https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/image_grid_callback.py##L7
https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/image_grid_callback.py##L7
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/model.py#L21
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/model.py#L21
https://github.com/se2p/pynguin/issues/20
https://github.com/pytorch/vision/blob/v0.11.2/torchvision/datasets/mnist.py
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_rock_paper_scissors.py##L62
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_rock_paper_scissors.py##L62
https://github.com/keras-team/keras/blob/keras-1/keras/layers/core.py##L588
https://github.com/keras-team/keras/blob/keras-2/keras/layers/core.py##L823
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_aae_cifar10.py##L69-L70
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_aae_cifar10.py##L69-L70
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_aae.py##L46-L47
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/h5tool3.py#L500
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/h5tool3.py#L500
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/h5tool3.py#L520
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/h5tool3.py#L520
https://github.com/anastassia-b/neural-algorithm-artistic-style
https://github.com/bstriner/keras-adversarial
https://github.com/cmasch/densenet
https://github.com/csvance/deep-connect-four
https://github.com/dhkim0225/keras-image-segmentation
https://github.com/dishen12/keras_frcnn
https://github.com/heuritech/convnets-keras
https://github.com/jamesmf/mnistCRNN
https://github.com/javiermzll/Image-Recognition
https://github.com/katyprogrammer/regularization-experiment
https://github.com/michalgdak/car-recognition
https://github.com/naykun/TF_PG_GANS
https://github.com/notem/keras-alexnet
https://github.com/Spider101/Visual-Semantic-Alignments
https://github.com/taashi-s/UNet_Keras

124 Bibliography

34. https://github.com/yagotome/lstm-ner

35. https://github.com/dennybritz/cnn-text-classification-tf

36. https://github.com/iwyoo/tf_ThinPlateSpline

37. https://github.com/zzsdsgdtc/BiDAF_PyTorch

38. https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2ad
d825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL196-L197

39. https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2ad
d825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL187

40. https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e
1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R51

41. https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e
1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R52

42. https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e
1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R53

43. https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2ad
d825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL35

44. https://github.com/heuritech/convnets-keras/commit/b1b472ccf59bfc3edb7ad033299875c905bf8e37#d
iff-4a9f068fbd6ab76d347ca7772f3da3f100db338cd6c8fb3900adef38ab9dff20L325

45. https://github.com/notem/keras-alexnet/commit/94638c596ca6f3f474241e8a058fd893e1f5ffaa#diff-2
3de837fc8b40e270ddb47d0ae913f55e8d31635b80daa5618273535b9d3cd28L198

46. https://github.com/dishen12/keras_frcnn/commit/d91c0adc5ccd34f6e346fdeddc0a2ce7085a4ffb#diff
-a3429d56d560ec95c6b119754a121d183b32f8a4b73786f8760d083353914efbL18

47. https://github.com/dhkim0225/keras-image-segmentation/commit/992685cde39c3d53ea881d22b9cb26e
84963d4bb#diff-d0ff8417443a18c35cc6c3183197d82f48cee72d735133ff901da033d0e32242L89

48. https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e
1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L31

49. https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e
1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L35

50. https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b
5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46

51. https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b
5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46

52. https://github.com/pytorch/vision/pull/5238

53. https://github.com/pytorch/vision/blob/v0.11.2/torchvision/models/detection/backbone_utils.p
y#L49

54. https://github.com/pytorch/vision/blob/v0.11.2/test/test_backbone_utils.py#L25

55. https://github.com/pytorch/vision/blob/main/torchvision/io/image.py#L127

56. https://github.com/pytorch/vision/issues/6607

57. https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/
models/detection/backbone_utils.py#L44

58. https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/
io/_video_opt.py#L265

59. https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/
io/image.py#L160

60. https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/test/test_im
age.py#L382

61. https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/
io/image.py#L12

62. https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/
io/_video_opt.py#L14

https://github.com/yagotome/lstm-ner
https://github.com/dennybritz/cnn-text-classification-tf
https://github.com/iwyoo/tf_ThinPlateSpline
https://github.com/zzsdsgdtc/BiDAF_PyTorch
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL196-L197
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL196-L197
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL187
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL187
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R51
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R51
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R52
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R52
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R53
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R53
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL35
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL35
https://github.com/heuritech/convnets-keras/commit/b1b472ccf59bfc3edb7ad033299875c905bf8e37#diff-4a9f068fbd6ab76d347ca7772f3da3f100db338cd6c8fb3900adef38ab9dff20L325
https://github.com/heuritech/convnets-keras/commit/b1b472ccf59bfc3edb7ad033299875c905bf8e37#diff-4a9f068fbd6ab76d347ca7772f3da3f100db338cd6c8fb3900adef38ab9dff20L325
https://github.com/notem/keras-alexnet/commit/94638c596ca6f3f474241e8a058fd893e1f5ffaa#diff-23de837fc8b40e270ddb47d0ae913f55e8d31635b80daa5618273535b9d3cd28L198
https://github.com/notem/keras-alexnet/commit/94638c596ca6f3f474241e8a058fd893e1f5ffaa#diff-23de837fc8b40e270ddb47d0ae913f55e8d31635b80daa5618273535b9d3cd28L198
https://github.com/dishen12/keras_frcnn/commit/d91c0adc5ccd34f6e346fdeddc0a2ce7085a4ffb#diff-a3429d56d560ec95c6b119754a121d183b32f8a4b73786f8760d083353914efbL18
https://github.com/dishen12/keras_frcnn/commit/d91c0adc5ccd34f6e346fdeddc0a2ce7085a4ffb#diff-a3429d56d560ec95c6b119754a121d183b32f8a4b73786f8760d083353914efbL18
https://github.com/dhkim0225/keras-image-segmentation/commit/992685cde39c3d53ea881d22b9cb26e84963d4bb#diff-d0ff8417443a18c35cc6c3183197d82f48cee72d735133ff901da033d0e32242L89
https://github.com/dhkim0225/keras-image-segmentation/commit/992685cde39c3d53ea881d22b9cb26e84963d4bb#diff-d0ff8417443a18c35cc6c3183197d82f48cee72d735133ff901da033d0e32242L89
https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L31
https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L31
https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L35
https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L35
https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46
https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46
https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46
https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46
https://github.com/pytorch/vision/pull/5238
https://github.com/pytorch/vision/blob/v0.11.2/torchvision/models/detection/backbone_utils.py##L49
https://github.com/pytorch/vision/blob/v0.11.2/torchvision/models/detection/backbone_utils.py##L49
https://github.com/pytorch/vision/blob/v0.11.2/test/test_backbone_utils.py##L25
https://github.com/pytorch/vision/blob/main/torchvision/io/image.py#L127
https://github.com/pytorch/vision/issues/6607
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/models/detection/backbone_utils.py#L44
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/models/detection/backbone_utils.py#L44
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/_video_opt.py#L265
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/_video_opt.py#L265
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/image.py#L160
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/image.py#L160
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/test/test_image.py#L382
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/test/test_image.py#L382
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/image.py#L12
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/image.py#L12
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/_video_opt.py#L14
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/_video_opt.py#L14

	Contents
	I Prologue
	Introduction
	Thesis Statement
	Contributions
	Test Generation Approach for NN Programs
	Empirical Study of Fault Localization in Python Programs
	Supporting Tools and Dataset

	Outline

	State of the Art
	Data Science Programs
	Bugs in Data Science Programs
	Bugs in Neural Network Models

	Automated Test Generation
	Test-input Generation
	Oracles

	Fault Localization
	Conclusions and Open Research Gaps

	II Test Generation
	The [0.5]aNNoTest Test Generation Approach
	Introduction
	An Example of Using [0.5]aNNoTest
	How [0.5]aNNoTest works
	The [0.5]aN Annotation Language
	Annotation Guidelines
	Building Custom Generators by Refactoring
	Test Generation
	Failing Tests and Oracles

	Research Questions
	Experimental Subjects
	Experimental Setup
	Project Setup
	Experimental Process

	Experimental Results
	RQ1: Precision
	RQ2: Recall
	RQ3: Amount of Annotations
	RQ4: Comparison to Generic Test-Case Generators
	RQ5: Code Coverage

	Threats to Validity
	Conclusions and Future Work

	The [0.5]aNNoTest Tool and Dataset
	Introduction
	Using [0.5]aNNoTest
	General-Purpose Testing Tools
	[0.5]aNNoTest

	Design and Implementation
	The [0.5]aN Annotation Language
	Testable Functions
	Strategies
	Templates
	Executing the Tests
	Implementation Limitations

	Curated Dataset of NN Bugs
	Conclusions and Future Work

	III Fault Localization
	An Empirical Study of Fault Localization in Python Programs
	Introduction
	Fault Localization and FauxPy
	Spectrum-Based Fault Localization
	Mutation-Based Fault Localization
	Predicate Switching
	Stack Trace Fault Localization
	FL Granularities
	FauxPy: Features and Implementation

	Research Questions
	Experimental Subjects
	Faulty Locations: Ground Truth
	Classification of Faults
	Evaluation Metrics
	Ranking Program Entities
	Fault Localization Effectiveness Metrics
	Comparison: Statistical Models

	Experimental Methodology
	RQ1. Effectiveness
	RQ2. Efficiency
	RQ3. Kinds of Faults and Projects
	RQ4. Combining Techniques
	RQ5. Granularity
	RQ6. Comparison to Java

	Experimental Results
	RQ1. Effectiveness
	RQ2. Efficiency
	RQ3. Kinds of Faults and Projects
	RQ4. Combining Techniques
	RQ5. Granularity
	RQ6. Comparison to Java

	Discussion
	Python vs. Java Comparison
	Mutation Testing Operators

	Threats to Validity
	Conclusions
	Other Fault Localization Studies
	Future Work

	FauxPy: an Automated Fault Localization Tool For Python
	Introduction
	Using FauxPy
	Spectrum-based and Mutation-based Fault Localization
	Stack Trace and Predicate Switching Fault Localization

	FauxPy's Architecture and Implementation
	Features and Options
	Implementation

	Experiments
	Conclusions

	IV Epilogue
	Conclusions and Future Work
	Contributions
	Test Generation Approach for NN Programs
	Empirical Study of Fault Localization in Python Programs
	Supporting Tools and Dataset

	Future Work
	Test Generation
	Fault Localization
	Automated Program Repair

	Closing Remarks

	Bibliography

