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Abstract

A notional machine is a pedagogic device that abstracts away details of the
semantics of a programming language to focus on some aspects of interest. A
notional machine should be sound: it should be consistent with the corresponding
programming language, and it should be a proper abstraction. Notional machines
found in the computer science education literature are usually not evaluated
with respect to their soundness. To address this problem, we first introduce a
formal definition of soundness for notional machines. The definition is based
on the construction of a commutative diagram that relates the notional machine
and the aspect of the programming language the notional machine is focused
on. Leveraging this formalism, we present a methodology for constructing sound
notional machines and a similar methodology to reveal potential inconsistencies
in existing notional machines. We apply these methodologies to build sound-by-
construction notional machines and find inconsistencies in existing ones as well
as propose solutions to these inconsistencies. Finally, we show that the same
commutative diagram that describes a notional machine can be used also to design
experiments to evaluate that notional machine as an educational assessment
instrument.
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Chapter 1

Introduction

Programs are expressed in a programming language (be it a text-based language
or not) so learning to program involves learning the syntax and semantics of a
programming language (or at least part of it). For novices, the semantics of a
program is often not obviously apparent from the program itself. Instructors then
often use a notional machine [Fincher et al., 2020] to help teach some particular
aspect of programs or programming, and also to assess students’ understanding
of said aspect.

1.1 Definition of Notional Machine

The term notional machine was coined by Du Boulay [1986], who defined it as
“the idealised model of the computer implied by the constructs of the programming
language”. This definition was part of the work on LOGO and their efforts to
teach it to children and teachers [Du Boulay and O’Shea, 1976]. The modern use
of the term notional machine, which somewhat differs from du Boulay’s original
definition, is due to two prominent works in the field of computing education.
Both refer to du Boulay’s work but Robins et al. [2003] define a notional machine
to be a “model of the computer as it relates to executing programs”, while Sorva
[2013] defines a notional machine to be “an abstraction of the computer in the
role of executor of programs of a particular kind”.

In 2020, a working group of prominent researchers in the field of computing
education, including du Boulay, conducted an extensive literature review on the
topic of notional machines [Fincher et al., 2020] while capturing and cataloguing
examples of notional machines in use. They first distinguished between (i) men-
tal models, which are internal, personal to a learner, idiosyncratic, incomplete,
unstable, (ii) conceptual models, which are precise and complete representations

1
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consistent with scientifically accepted knowledge, and (iii) notional machines that
are a special kind of conceptual model. The authors then establish a definition of
notional machine, which is the one we will adopt here:

A notional machine is a pedagogic device to assist the understanding
of some aspect of programs or programming.

They refine the definition with a set of definitional characteristics of notional
machines:

Pedagogical Purpose: The purpose of a notional machine is for use in teaching
to support student learning of computational concepts. A crucial aspect of
a notional machine is that it should simplify an actual concept or skill as an
aid to understanding.

Function: The generic function of a notional machine is to uncover something
about programming, computers or computation, or to draw attention to
something, that is not obviously apparent in the artefact the student is
using.

Focus: A notional machine typically focuses on a particular aspect of programs
and their behaviour. As well as programs, a notional machine’s focus can
also be concerned with computers as places where programs can be built,
run, and stored.

Representation: A notional machine will have a representation and this repre-
sentation will draw attention to certain aspects of the focus and possibly
ignore others.

Two of these aspects are of particular importance for our work: (i) a notional
machine focuses on some aspect of programs and (ii) it has a representation that
draws attention to this aspect under focus.

1.2 Examples of Notional Machines

The LOGO manual [Du Boulay and O’Shea, 1976] contains what are probably
the first examples of notional machines. Figure 1.1 shows part of it, where a list
is explained by an analogy with a stack of boxes.

As part of the effort by Fincher et al. [2020] to systematically capture and
catalog examples of notional machines, they collected over 50 notional machines1,

1The entire collection is kept up to date on a website: https://notionalmachines.github.
io/notional-machines.html

https://notionalmachines.github.io/notional-machines.html
https://notionalmachines.github.io/notional-machines.html
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capturing each one using a template card with mandatory elements. Two notional
machine examples described using this template are shown in Figure 1.2. The one
on the left is the “Expression as Tree” notional machine, focused on “expression
structure, how evaluation proceeds, how types are determined”. The one on the
right is the “Recursion Role Play” notional machine, an example of a notional
machine that is not a diagram but is meant to be enacted with the students in
the class. Notice in both examples the correspondence between concepts in the
programming language (PL) and elements in the representation of the notional
machine (NM), something critically important for our work.

Figure 1.1. Excerpt taken from the LOGO manual [Du Boulay and O’Shea,
1976]

1.3 Quality of Notional Machines

Given the extensive use of notional machines, and that they are intended to help
students when learning, it is important to look at their quality. Obviously, a
notional machine should be tested in practice to answer questions such as “how
well do students understand a particular aspect after studying it using a particular
notional machine?” and “what is the cost associated with introducing the notional
machine (how much time had to be invested to obtain a benefit)?”. But even
before experimenting with a notional machine, one should make sure that the
notional machine is sound: it is in some sense a faithful representation of the
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Figure 1.2. The “Expression as Tree” notional machine and the “Recursion Role
Play” notional machine captured by [Fincher et al., 2020].

aspect of programs it is meant to represent. Anecdotal evidence of using unsound
representations in education goes back a long way. Richard Feynman eloquently
stated [Feynman, 1985], after reviewing “seventeen feet” of new mathematics
schoolbooks for the California State Curriculum Commission:

[The books] would try to be rigorous, but they would use examples
(like automobiles in the street for “sets”) which were almost OK, but
in which there were always some subtleties. The definitions weren’t
accurate. Everything was a little bit ambiguous

Ambiguously specified notional machines and notional machines with imperfect
analogies to programming concepts are a problem. Educators may mischaracterize
language features and students may end up with misconceptions [Chiodini et al.,
2021] instead of profoundly understanding the language.
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Figure 1.3. The “Array as Row of Spaces in Parking Lot” notional machine
captured by [Fincher et al., 2020].

For example, Fincher et al. [2020] describe the “Array as Row of Spaces
in Parking Lot” notional machine, summarised in Figure 1.3. Let’s consider a
language like Java. In Java, when an array of objects is allocated, all its slots
contain null, which means these slots don’t contain a reference to any object. This
would be reasonably represented in the notional machine as an empty parking lot.
But if instead of an array of objects, we have an array of ints, for example, then
when we instantiate an array, all its slots contain 0, which is not the absence of a
number but a number like any other. A student could also reasonably question
whether one can park a car in a slot that is already occupied by another car, or
whether one has to remove a car from a spot to park another car in the same spot.
In fact, the authors point out that, “The effectiveness of the analogy depends on
[...] how well that models the semantics of the programming language.”
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1.4 Soundness of Notional Machines

To avoid these issues, we need to make sure that a notional machine is indeed an
accurate abstraction. Although the definition of notional machines as “pedagogic
devices to assist the understanding of some aspect of programs or programming”
makes no direct reference to programming languages, programs are expressed
with programming languages so we will look at these “aspects of programs”
through the lens of how they are realized by some programming language2. If a
notional machine represents a part of the operational semantics of a programming
language, for example, then this representation should be sound, in the sense that
steps in the notional machine correspond to steps in the operational semantics of
the programming language. We say, informally, that a notional machine is sound
if it is:

• a proper abstraction: it represents one or more aspects of the programming
language and no superfluous aspects;

• consistent with the corresponding programming language: steps in the
notional machine correspond to steps in the language semantics, and lead
to similar results.

To show the soundness of a notional machine, or the lack of it, we need (1) a formal
description of the programming language (or aspect of it), (2) a formal description
of the notional machine, and (3) a formal description of the relationship between
them. Notional machines that are heavily used in practice are rarely based on a
comprehensive formal definition. One of the contributions of this research is the
introduction of an approach to design sound notional machines by using formal
descriptions.

Showing the soundness of a notional machine amounts to demonstrating that
the notional machine simulates (in the sense described by Milner [1971]) the
aspect of programs under the focus of the notional machine. This aspect under
focus can be, for example, the operational semantics of a programming language.
This property can be given in the form of a commutative diagram. We will present
several such diagrams throughout this work.

Milner’s simulation was also used by Hoare [1972] to establish a definition
of the correctness of an ‘abstract’ data type representation with respect to its

2That is not to say that we will only restrict ourselves to notional machines focused on program
execution but that we will restrict our analysis to aspects of programs that can be expressed
in terms of the syntax or semantics of a programming language. Later, we will clarify that our
approach to soundness of notional machines is, in principle, even more general.
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corresponding ‘concrete’ data type representation. There are two interesting
things about this interpretation of simulation: (1) it also captures the relationship
between a notional machine and the underlying programming language because
a notional machine is indeed an abstraction over some aspect of interest, and
(2) it hints at the generality of the approach as a way to formally describe any
notional machine.

1.5 From Theory to Practice

The definition of soundness for notional machines that we provide is valuable not
only as a measure of the quality of a notional machine but also because it gives us a
principled approach to reason about the relationship between a notional machine
and the aspect of programs under its focus. We will show many applications of
this reasoning framework, from the design and analysis of notional machines
to the implementation of tools to support teaching using notional machines,
and even the evaluation of the effectiveness of notional machines as assessment
instruments.

Although we try to keep these applications well grounded in the theory, many
of them stem from using this reasoning framework to reason informally about
notional machines and instructors are certainly not required to write formal
proofs to benefit from reasoning about notional machines using this reasoning
framework.

1.6 Contributions

The contributions of this research are as follows:

• A formal definition of sound notional machine.

This definition, presented in Section 2.1.2, gives us a principled way to
reason about notional machines and their relationship with the aspect of
the programming language they focus on.

This formalism gives rise to three methodologies (M1, M2, and M3 below).

• A methodology (M1) for designing notional machines that are sound by
construction.

In Chapter 2, we show how we can use the formal definition of sound
notional machine to systematically design sound notional machines. We
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demonstrate the methodology by applying it to a combination of various
notional machines, small programming languages with well-known formal-
izations, and aspects of programming language semantics.

• A methodology (M2) for analyzing notional machines with respect to their
soundness.

In Chapter 3, we demonstrate the methodology by analyzing existing no-
tional machines, pointing out inconsistencies, and suggesting directions
for improvement. Then in Chapter 4, we apply the methodology to Ex-
pressionTutor: a family of notional machines focused on various aspects
of expressions. Differently from the previous chapters which used small
programming languages for their arguments, there we use Java.

• A complete description of expression constructs in Java 11.

Although there exist several formal descriptions of various subsets of Java,
there seems to be no complete and concise description of Java’s expression
constructs (up to Java 11), which we describe in Chapter 4 as part of the
analysis and refinement of ExpressionTutor.

• A methodology (M3) for evaluating the effectiveness of a notional machine
as an educational assessment instrument.

Experiments to evaluate the effectiveness of a notional machine as an
assessment instrument can be systematically derived from the commutative
diagram that defines the notional machine. In Chapter 5, we demonstrate
the methodology by applying it to the design of a pilot study to evaluate
ExpressionTutor for Java.

Finally, Chapter 6 briefly discusses related work, Chapter 7 outlines various
directions for future work, and Chapter 8 concludes.



Chapter 2

Designing Sound Notional Machines

A notional machine draws attention to a particular aspect of a programming
language. So we can only begin to talk about the soundness of a notional machine
if we have a formal description of the programming language the notional machine
is focused on. We consider a set of small programming languages with well-
known formalizations described in Pierce [2002] that explore different aspects of
programming language semantics. Throughout this chapter, these languages are
used in various examples that explore different aspects of the design of notional
machines. Table 2.1 lists the notional machines we use in this chapter as well
as the corresponding programming language and aspect of the semantics of the
programming language that the notional machine focuses on.

We model each programming language and notional machine in Haskell. The
models are executable, so they include implementations of the programming
languages (including parsers, interpreters, and type-checkers), the notional ma-
chines, and the relationship between them1. The soundness proofs presented in
this chapter are done using equational reasoning [Gibbons, 2002; Bird, 1989].

1 The artefact is at https://github.com/LuCEresearchlab/sound-notional-machines.

Section Notional Machine Programming Language Focus

2.1 EXPTREE UNTYPEDLAMBDA Evaluation
2.3 EXPTUTORDIAGRAM UNTYPEDLAMBDA Evaluation
2.4 TAPLMEMORYDIAGRAM TYPEDLAMBDAREF References
2.5 EXPTUTORDIAGRAM TYPEDARITH Types

Table 2.1. Notional machines, programming languages, and notional machine
focuses used throughout the chapter.

9

https://github.com/LuCEresearchlab/sound-notional-machines
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Step 2Step 1Step 0

Figure 2.1. Evaluation of (λx . λy. x) a b in programming language (top) and
ExpTree notional machine (bottom).

2.1 Isomorphic Notional Machines

As a first straightforward example, let’s look at a notional machine for teaching
how evaluation works in the untyped lambda-calculus (we will refer to this
language as UNTYPEDLAMBDA2). While most research papers discuss the lambda-
calculus using its textual representation, textbooks sometimes illustrate it using
tree diagrams [Pierce, 2002, p. 54]. We use this as an opportunity to define a
simple notional machine which we call EXPTREE3.

2.1.1 Illustrative Example

Figure 2.1 uses EXPTREE to demonstrate the evaluation of a specific lambda
expression, which happens in two reduction steps. The top of the figure shows
the terms in the traditional textual representation of the programming language,
while the bottom shows the terms as a tree.

Whether or not using this notional machine indeed helps in teaching how
terms in the untyped lambda-calculus get evaluated is an open question. It could
be that the cost of introducing an additional (visual) representation is bigger than
the benefit such a notation might provide. This question is valid also for richer
and more complex notional machines. However, independent of how effective

2The syntax and reduction rules for UNTYPEDLAMBDA are reproduced in Appendix A.1.
3 We use capitalized typesetting whenever we are referring to formally defined programming

languages and notional machines.
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ANM BNM

APL BPL

fNM

fPL

αA αB

αB ◦ fPL ≡ fNM ◦αA (2.1)

Figure 2.2. The soundness condition for notional machines shown both as a
commutative diagram and in algebraic form.

they might be, notional machines are used in practice. Here we instead focus on
a different question: how does one know whether a given notional machine is
sound, and how does one design a sound notional machine.

2.1.2 Soundness via Commutative Diagrams

In general, a notional machine is sound if the diagram in Figure 2.2 commutes.
We call the commutativity of this diagram the soundness condition for a notional
machine. In this diagram, the vertices are types and the edges are functions.

The bottom layer (APL, fPL, BPL) represents the aspect of a programming lan-
guage4 we want to focus on. APL is an abstract representation of a program in that
language. In our example, that is the abstract syntax of UNTYPEDLAMBDA (given
by the type TermUλ). The function fPL is an operation the notional machine is
focusing on. In our example, that would be step, a function that performs a reduc-
tion step in the evaluation of a program according to the operational semantics
of the language, which in this case also produces a value of type TermUλ.

The top layer of the diagram (ANM, fNM, BNM) represents the notional machine.
ANM is an abstract representation of the notional machine (its abstract syntax).
In our simple example, that is a type ExpTree trivially isomorphic to TermUλ via a
simple renaming of constructors. The function fNM is an operation on the notional
machine which should correspond to fPL. Connecting the bottom layer to the

4Although we refer to the bottom layer of the diagram as the programming language layer
and we restrict ourselves to analyzing aspects of the syntax and semantics of programming
languages, for which we have well-established formalizations, that is not an intrinsic restriction of
the approach. In principle, the bottom level of the diagram can be whatever aspects of programs
or programming the notional machine is focused on.
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top layer, there are the functions αA and αB from the abstract representation of
a program in the programming language to the abstract representation of the
notional machine. α is also called an abstraction function.

Definition. Given the notional machine (ANM, BNM, fNM :: ANM → BNM), focused
on the aspect of a programming language given by (APL, BPL, fPL :: APL → BPL),
the notional machine is sound iff there exist two functions αA :: APL→ ANM and
αB :: BPL→ BNM such that αB ◦ fPL ≡ fNM ◦αA

If the abstract representation of the programming language (APL) is isomorphic
to the abstract representation of the notional machine (ANM), we can construct
an inverse mapping α−1

A such that α−1
A ◦ αA ≡ id ≡ αA ◦ α−1

A (we use the symbol
≡ to denote equivalence, as opposed to the symbol = used for definitions). In
that case, we can always define a correct-by-construction operation fNM on ANM in
terms of an operation fPL on APL:

fNM :: ANM→ BNM

fNM = αB ◦ fPL ◦α−1
A

In such cases, the diagram always commutes and therefore the notional machine
is sound:

fNM ◦αA ≡ αB ◦ fPL ◦α−1

A ◦αA ≡ αB ◦ fPL (2.2)

Instantiating the commutative diagram for EXPTREE and UNTYPEDLAMBDA

yields the diagram in Figure 2.3. A dashed line indicates a function that is
implemented in terms of the other functions in the diagram and/or standard
primitives.

We call these isomorphic notional machines because they are isomorphic to
the aspect of the programming language they focus on. Of course not every
notional machine is isomorphic so throughout the next sections we will move
further away from this simple example, arriving at various other instantiations of
this commutative diagram.

2.2 Interlude: Abstract vs. Concrete Syntax of No-
tional Machines

The example we have shown of EXPTREE in Figure 2.1 uses concrete images to
represent the trees. But there is a distinction between the data structure that
represents the notional machine and how it is visualized as well as a difference
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ExpTree ExpTree

TermUλ TermUλ

α ◦ step ◦ α−1

α−1

step

α α

Figure 2.3. Instantiation of the commutative diagram in Figure 2.2 for the
notional machine ExpTree and the programming language UntypedLambda.

between the operations on that data structure and how those transformations
are enacted. Those differences are akin to the difference between the concrete
and the abstract syntax of a language. Like a programming language, a notional
machine has a concrete and an abstract syntax as well. We also refer to those
as concrete and abstract representations of a notional machine. Notice that the
concrete representation of a notional machine may not only be a diagram or
image that can be depicted on paper but it could also be made of physical entities
in the case of notional machines that are enacted in the real world. In fact, many
notional machines are ludic in nature or are built around a metaphor, so the
concrete representation of a notional machine is very important.

Table 2.2 shows the different layers at play here. The term (λa.a) b is
shown using the concrete and abstract syntax of UNTYPEDLAMBDA. The abstract
syntax is a value aPL :: TermUλ. The abstract representation of EXPTREE, in the
notional machine layer, is the corresponding value aNM = α (aPL) :: ExpTree and
the concrete representation is the visual representation of aNM.

In this visual representation, function applications are made explicit and
there is a visual distinction between places where names are introduced, shown
with a gray background, and places where names are used, shown with a white
background.

We will explore further concrete representations of notional machines in
Section 3.3, where we describe an existing notional machine with two different
concrete representations.
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Programming Language Notional Machine
Concrete
Syntax

Abstract
Syntax

Abstract
Representation

Concrete
Representation

(λa.a) b

App
(Lambda
"a"

(Var "a"))
(Var "b")

AppBox
(LambdaBox
"a"

(Box "a"))
(Box "b")

Table 2.2. Abstract and concrete representations of a programming language
and a notional machine.

2.3 Monomorphic Notional Machines

Notional machines can also serve as the basis for so-called “visual program sim-
ulation” [Sorva et al., 2013] activities, where students manually construct rep-
resentations of the program execution. This effort often is supported by tools,
such as interactive diagram editors, that scaffold the student’s activity. Obviously,
instructors will want to see their students creating correct representations. How-
ever, to prevent students from blindly following a path to a solution prescribed by
the tool, the visual program simulation environment should also allow incorrect
representations.

ExpressionTutor5 is such an educational tool to teach the structure, typing,
and evaluation of expressions in programming courses. ExpressionTutor allows,
among other things, for students to interactively construct expression tree dia-
grams given a source code expression. The tool is language agnostic so each node
can be freely constructed (by the instructor or the student) to represent nodes
of the abstract syntax tree of any language. Nodes can contain any number of
holes that can be used to connect nodes to each other. Each hole corresponds to
a place in an abstract syntax tree node where an expression would go. The tool
allows for nodes to be connected in a variety of ways, deliberately allowing for
incorrect structures that not only may not be valid abstract syntax trees of a given
programming language but may not even be trees. Even the root node (labeled

5expressiontutor.org

http://expressiontutor.org
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(λx.x x) (λx.x x)

Figure 2.4. The omega combinator in UntypedLambda (top) and (incorrect)
representations in ExpTutorDiagram notional machine (bottom).

with a star) has to be explicitly labeled by the student, so it is not guaranteed to
exist in every diagram.

We define the notional machine EXPTUTORDIAGRAM, which models the behav-
ior of ExpressionTutor. The fact that ExpressionTutor allows students to construct
incorrect expression tree diagrams means that the abstraction function α is not bi-
jective, as was the case of EXPTREE’s α. Such incorrect diagrams do not correspond
to programs, thus α is deliberately not surjective.

2.3.1 Illustrative Example

Figure 2.4 uses EXPTUTORDIAGRAM to represent the omega combinator. The top
shows the textual form on the level of the programming language. Below that
are three different incorrect representations students could produce. The left tree
collapses the x x applications into the lambda abstraction. The middle tree
similarly does this, but it preserves the structure of the lambda abstraction node,
while violating the well-formedness of the tree by plugging two children into the
same hole. The right tree shows a different problem, where the definition of the
name is pulled out of the lambda abstraction and represented as a variable node
instead.

2.3.2 Commutative Diagram

In general, if the mappingαA, from the abstract representation of the programming
language (APL) to the abstract representation of the notional machine (ANM), is an
injective but non-surjective function, we can still define the operations on ANM in
terms of the operations on APL. For this we define a function α◦A ::ANM→Maybe APL
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to be a left inverse of αA such that α◦A ◦αA ≡ return (we use return and fmap to
refer to the unit and map operations on monads). Here we modeled the left
inverse using a Maybe but another monad could be used, for example, to capture
information about the values of type ANM that do not have a corresponding value
in APL. The top-right vertex of the square (BNM) in this case is the type Maybe B′NM

and the mapping αB can be implemented in terms of a mapping α′B :: BPL→ B′NM

like so:

αB :: BPL→ BNM

αB = return ◦α′B

Using the left inverse α◦A and α′B, we define the operation on ANM as follows:

fNM :: ANM→ BNM

fNM = fmap α′B ◦ fmap fPL ◦α◦A

This square commutes like so:

fNM ◦αA

≡ { definition of fNM }
fmap α′B ◦ fmap fPL ◦α◦A ◦αA

≡ { α◦A is left inverse of αA }
fmap α′B ◦ fmap fPL ◦ return

≡ { third monad law }
fmap α′B ◦ return ◦ fPL

αB ◦ fPL

≡ { definition of αB }
return ◦α′B ◦ fPL

≡ { third monad law }
fmap α′B ◦ return ◦ fPL

We can use this result to instantiate the commutative diagram of Figure 2.2 for
EXPTUTORDIAGRAM and UNTYPEDLAMBDA, shown in Figure 2.5. APL is defined to
be the type ExpTutorDiagram, which essentially implements a graph. Each node
has a top plug and any number of holes, which contain plugs. Edges connect
plugs. That allows for a lot of flexibility in the way nodes can be connected.
ExpressionTutor is language agnostic but we can only talk about soundness of a
notional machine with respect to some language and some aspect of that language.

Here we use ExpressionTutor as a notional machine focused on evaluation
but ExpressionTutor can also be used, with small modifications, to focus on other
aspects of programming languages. In Section 2.5 we will show how to use it to
focus on types and in Section 4.4 we will use it to focus on parsing. Using our
definition, one notional machine focuses on one aspect (corresponding to one
function) so ExpressionTutor is what we call a family of notional machines, that
we have to “instantiate” for a given aspect of focus and a given programming
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ExpTutorDiagram Maybe ExpTutorDiagram

Maybe TermUλ Maybe TermUλ

TermUλ TermUλ

fmap α ◦ fmap step ◦ α◦

α◦

fmap step

fmap α

step

α

return

fmap α ◦ return

return

Figure 2.5. Instantiation of the commutative diagram in Figure 2.2 for the
notional machine ExpTutorDiagram

language. The language considered here is again UNTYPEDLAMBDA (denoted
again by the type TermUλ) with fPL again equal to step.

The construction of a mapping α :: TermUλ → ExpTutorDiagram is straight
forward because a term t::TermUλ forms a tree and from it we can always construct
a corresponding ExpressionTutor diagram d :: ExpTutorDiagram (a graph). For
each possible term in TermUλ, we need to define a pattern for the content of the
corresponding ExpTutorDiagram node which will help the student identify the kind
of node. The construction of the left inverse mapping α◦ :: ExpTutorDiagram→
Maybe TermUλ requires more care. We need to make sure that the diagram forms a
proper tree and that the pattern formed by the contents of each ExpTutorDiagram
node corresponds to a possible TermUλ node, besides making sure that they are
connected in a way that indeed corresponds to a valid TermUλ tree. Using pattern
synonyms [Pickering et al., 2016], we can make sure that the same patterns used
to determine the contents of an ExpTutorDiagram node for a given TermUλ node
(used in the implementation of α) are also used to implement the left inverse
mapping α◦.

In the next section, we construct another commutative diagram where fNM

is defined using fPL and a left inverse mapping α◦A. To emphasize that point and
simplify the diagrams, we will depict the left inverse in the diagram as a dotted
line pointing from ANM to APL (even though α◦A is of type ANM → Maybe APL and
not ANM→ APL) and omit the path via Maybe APL as shown in Figure 2.6.

We call these monomorphic notional machines because there is a monomor-
phism (injective homomorphism) between the notional machine and the aspect of
the programming language it focuses on. This is the case here by design, to allow
students to make mistakes by constructing wrong diagrams that don’t correspond
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ExpTutorDiagram Maybe ExpTutorDiagram

TermUλ TermUλ

fmap α ◦ fmap step ◦ α◦

α◦

step

α return ◦ α

Figure 2.6. Simplified version of the commutative diagram for the notional
machine ExpTutorDiagram shown in Figure 2.5

to programs. In general, this will be the case whenever there are values of ANM

(the abstract syntax of the notional machine) that have no correspondence in the
abstract representation of the language (APL). That’s often the case in memory
diagrams [Holliday and Luginbuhl, 2004; Dalton and Kreahling, 2010; Dragon
and Dickson, 2016] (notional machines used to show the relationship between
programs and memory) because they typically allow for the representation of
memory states that cannot be produced by legal programs. We show an example
of such a notional machine in the next section.

2.4 A Notional Machine to Reason About State

A common use of notional machines is in the context of reasoning about state6.
An example of the use of a visual notation to represent state can be found in one
of the most widely used programming language foundations textbooks, Pierce’s
Types and Programming Languages (TAPL) [Pierce, 2002, p. 155]. In Chapter 13
(“References”), the book extends the simply typed lambda-calculus with references
(a language we will refer to as TYPEDLAMBDAREF7). It explains references and
aliasing by introducing a visual notation to highlight the difference between
a reference and the cell in the store that is pointed to by that reference. We
will refer to this notation, which we will develop into a notional machine, as
TAPLMEMORYDIAGRAM. In this notation, references are represented as arrows
and cells are represented as rounded rectangles containing the representation of

629 of the 57 notional machines presented on https://notionalmachines.github.io/notional-
machines.html at the time of this writing refer to the concept of variable or array element.

7The syntax and reduction rules for TYPEDLAMBDAREF are reproduced in Appendix A.3.

notionalmachines.github.io
notionalmachines.github.io
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the value contained in the cell. Before designing the notional machine, we need
to see the context in which this notation is used in the book.

The book first uses this notation to explain the effect of creating a reference.
It shows that when we reduce the term ref 13 we obtain a reference (a store
location) to a store cell containing 13. The book then represents the result of
binding the name r to such a reference with the following diagram:

13

r =

In the book, this operation is written as r = ref 13, but as we will see in the
next Section, this form of name binding (name = term) exists only in a REPL-like
context which is not part of the language.

The book continues explaining that we can “make a copy of r” by binding its
value to another variable s (with s = r ) and shows the resulting diagram:

13

r = s =

The book then explains that one can verify that both names refer to the same
cell by assigning a new value to s and reading this value using r (for example, the
term s := 82; !r would evaluate to 82). Right after, the book suggests to the
reader an exercise to “draw a similar diagram showing the effects of evaluating the
expressions a = {ref 0, ref 0} and b = (λx:Ref Nat.{x, x}) (ref 0) .”
Although we understand informally the use of this diagram in this context, how
can we know what a correct diagram would be in general for any given program?
This is what we aim to achieve by designing a notional machine based on this
notation.

2.4.1 Designing a Notional Machine

Let’s see how we would turn that kind of diagram into a sound notional machine.
We want to construct a commutative diagram where APL is an abstract represen-
tation of the state of a TYPEDLAMBDAREF program execution, ANM is an abstract
representation of the diagram presented in the book, and fPL is an operation that
affects the state of the store during program execution.

In a first attempt, let’s choose fPL to be an evaluation step and APL to be
modeled as close as possible to the presentation of a TYPEDLAMBDAREF program
as described in the book. In that case, APL is the program’s abstract syntax tree
together with a store, a mapping from a location (a reference) to a value.



20 2.4 A Notional Machine to Reason About State

Problem: Beyond the Language

The first challenge is that the name-binding mechanism used in the examples
above (written as name = term ) exists only in a REPL-like context in the book
used for the convenience of referring to terms by name. It is actually not part
of the language (TYPEDLAMBDAREF) so it is not present in this representation of
APL and as a result it cannot be mapped to ANM (the notional machine). We will
avoid this problem by avoiding this name-binding notation entirely and writing
corresponding examples fully in the language. The only mechanism actually in
the language to bind names is by applying a lambda to a term. Let’s see how we
can write a term to express the behavior described in the example the book uses
to introduce the diagram (shown earlier), where we:

1. Bind r to the result of evaluating ref 13

2. Bind s to the result of evaluating r

3. Assign the new value 82 to s

4. Read this new value using r

Using only the constructs in the language, we express this with the following
term:

(λr:Ref Nat.(λs:Ref Nat.s := 82; !r) r) (ref 13)

Problem: Direct Substitution

The problem now is that if we model APL and evaluation as described in the book,
the result of reducing a term (λx.t1) t2 is the term obtained by replacing all free
occurrences of x in t1 by t2 (modulo alpha-conversion), so we don’t actually
keep track of name binding information. What we have in APL at each step is an
abstract syntax tree and a store. But we have no information about which names
are bound to which values, because the names were already substituted in the
abstract syntax tree. We need to change APL and step to capture this information,
keeping not only a store but an explicit name environment that maps names
to values, and only substituting the corresponding value when we evaluate a
variable. Like the definition of application in terms of substitution, we have to be
careful to avoid variable capture by generating fresh names when needed.

Strictly speaking, we could have kept APL as just a term and a store (without
the name environment). In fact, that’s enough to do Exercise 13.1.1, for example,
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00 0

a = {ref 0, ref 0}; b = (\x: Ref Nat. {x, x}) (ref 0);

a = { , } b = { , }

Figure 2.7. TAPLMemoryDiagram for TypedLambdaRef for TAPL Exercise
13.1.1

whose solution is shown in Figure 2.7. But the absence of the name environment
makes it less suitable to talk about aliasing, because even though a term may
contain, at any given point during evaluation, multiple occurrences of the same
location (represented by multiple arrows pointing to the same store cell), it is
not possible to know if these locations correspond to different names, and one
may need to trace several reduction steps back to find out when a name was
substituted by a location.

2.4.2 Illustrative Example

Figure 2.8 shows two variations of the notional machine being used to explain
the evaluation of the term we had described before. It shows the state after each
reduction step, on the left without an explicit name environment and on the right
with an explicit name environment. Between each step, a line with the name of
the applied reduction rule is shown. Notice that the representation with a name
environment requires extra name lookup steps.

In both variations, the representation of the program (the term) being eval-
uated appears first (with gray background). Each term is actually an abstract
syntax tree, which we represent here, like in the book, with a linearized textual
form. Location terms are represented as arrows starting from where they appear
in the abstract syntax tree and ending in the store cell they refer to.

The naming environment is shown as a table from variable names to terms.
Store cells also contain terms. This means the textual representation of terms
that appear both inside name environments and inside cells may also contain
arrows to other cells.

2.4.3 Commutative Diagram

Similar to the abstract representation of the program execution, the abstract
representation of the notional machine contains three parts: one for the program
being evaluated, one for the name environment, and one for the store.
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E-RefV

E-AppAbs
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E-Assign

E-SeqNext

E-DerefLoc

lookup
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Figure 2.8. Trace of (λr:Ref Nat.(λs:Ref Nat.s := 82; !r) r) (ref 13)

in TAPLMemoryDiagram for TypedLambdaRef
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TAPLMemoryDiagram Maybe TAPLMemoryDiagram

(TermUλ, EnvUλ, StoreUλ) Maybe (TermUλ, EnvUλ, StoreUλ)

fmap α ◦ step ◦M α
◦

α◦

step

α fmap α

Figure 2.9. Instantiation of the commutative diagram in Figure 2.2 for
the notional machine TAPLMemoryDiagram and the programming language
TypedLambdaRef.

data TAPLMemoryDiagram l= TAPLMemoryDiagram {
memDiaTerm :: DTerm l,
memDiaNameEnv :: Map Name (DTerm l),
memDiaStore :: Map (DLocation l) (DTerm l)}

The type DLocation corresponds to arrow destinations (arrow endpoints). A
term is represented as a rose tree of Strings augmented with a case for location.

data DTerm l= Leaf String
| Branch [DTerm l]
| TLoc (DLocation l)

The concrete representation of a DTerm can be in linearized text form or as
a tree akin to that shown in Section 2.1. The representation of the nodes in a
DTerm tree that are TLoc are shown as arrow starting points. These arrows end in
the cell corresponding to the DLocation in each TLoc. The concrete representation
of the store relates the visual position of each cell with the DLocation of each cell.
That leads to the commutative diagram in Figure 2.9, where we use the symbol
◦M to denote monadic function composition (the fish operator <=< in Haskell).

The process of reworking APL and fPL to expose an explicit name environment
shows that if a given choice of types (APL) and functions (fPL) doesn’t allow for
the construction of the commutative diagram for a notional machine, that doesn’t
mean the notional machine is necessarily unsound. The soundness of a given
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ExpTutorDiagram Maybe TypeExpTutor

TermTyArith Maybe TypeTyArith

fmap αType ◦ typeof ◦M α
◦
Term

α◦Term

typeof

αTerm fmap αType

Figure 2.10. First attempt at instantiating the commutative diagram in Fig-
ure 2.2 for a notional machine that focuses on type-checking using the program-
ming language TypedArith.

notional machine is predicated on the existence of an APL and fPL compatible
with the semantics of the language, but the construction of the specific types and
functions that make the diagram commute may not be trivial.

2.5 A Notional Machine to Reason About Types

So far we have seen examples of commutative diagrams where fPL is step (a
function that performs a reduction step) but in principle, fPL could be any operation
on APL that is the focus of a given notional machine. Let’s look at an example
of notional machine where we do not focus on evaluating but on typing an
expression. The language this notional machine focuses on is TYPEDARITH8, a
language of typed arithmetic expression, which is the simplest typed language
introduced in TAPL [Pierce, 2002, p. 91]. We will try two approaches.

In the first approach, represented in the diagram in Figure 2.10, the data type
used for the notional machine (ANM) is ExpTutorDiagram, used in Section 2.3. We
represent a program in TYPEDARITH with the type TermTyArith and the operation
we focus on is typeof :TermTyArith→Maybe TypeTyArith, a function that gives the type
of a term (for simplicity we use a Maybe here to capture the cases where a term is
not well-typed). As in Section 2.3, the abstraction function has a left inverse, here
αTerm and α◦Term respectively, which we use to produce fNM. The notional machine
operation fNM produces a notional machine-level representation of maybe the
type of a term.

8The syntax and typing rules for TYPEDARITH are reproduced in Appendix A.2.
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ExpTutorDiagram Maybe ExpTutorDiagram

TyTermTyArith Maybe TyTermTyArith

fmap αTyTerm ◦ typeof1 ◦M α
◦
TyTerm

α◦TyTerm

typeof1

αTyTerm fmap αTyTerm

Figure 2.11. Second attempt at instantiating the commutative diagram in
Figure 2.2 for a notional machine that focuses on type-checking using the
language TypedArith. The notional machine now exposes the inner workings
of the typing algorithm.

As is, a student may benefit from the notional machine’s representation of the
program’s abstract syntax tree and that may be helpful to reason about typing
but the notional machine doesn’t expose to the student the inner workings of the
process of typing a term.

The second approach, represented in the diagram in Figure 2.11, tackles this
issue by enriching the notional machine in a way that allows it to go step-by-step
through the typing algorithm. The idea is that fNM now doesn’t produce a type
but gradually labels each subtree with its type as part of the process of typing a
term. For this, ExpTreeDiagram has to be augmented so that each node may have
an associated type label. For convenience, we still want to write fNM in terms of
fPL. The key insight that enables this is to change fPL from typeof to typeof1. The
difference between typeof and typeof1 is akin to the difference between big-step
and small-step semantics: typeof1 applies a single typing rule at a time. As a result,
we have to augment our representation of a program by bundling each term with
a possible type (captured in type TyTermTyArith). The abstraction function and
its left inverse are updated accordingly. The resulting diagram for the notional
machine is shown in Figure 2.12.

Interestingly, given an expression e, once we label all nodes in the Expres-
sionTutor diagram of e with their types, the depiction of the resulting diagram is
similar to the typing derivation tree of e.

Note that types are themselves trees but here we’re representing them in a
simplified form as textual labels because the primary goal of ExpressionTutor is
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typeOf1

Figure 2.12. One step in the notional machine ExpTutorDiagram as it types the
term if iszero 0 then succ 0 else succ succ 0 in the language TypedArith.

to represent the structure of terms, not the structure of types. Representing the
structure of types remains future work.

2.6 Conclusion

In this chapter, we have defined sound notional machines and shown how we
can use the definition to devise a methodology to design notional machines that
are sound by construction. We used the methodology to design different notional
machines that focus on various aspects of multiple programming languages. In
the next chapter, we will use the definition to devise a methodology for analyzing
existing notional machines.



Chapter 3

Analyzing Existing Notional Machines

So far we have seen examples where we constructed fNM using fPL and functions
that convert between APL and ANM. Now let’s look at two notional machines
where that is not the case. Here an informal ANM and α are given together with a
description of fNM completely in terms of ANM. The idea is to use these descriptions
to construct a commutative diagram that relates the notional machine and the
corresponding programming language and in the process uncover inconsistencies
in the notional machine as well as suggest improvements that eliminate those
inconsistencies.

We will show two kinds of problems that may arise during the construction of
the commutative diagram: (1) it may not be possible to construct a mapping α
from APL to ANM, because a certain construct in APL cannot be expressed in ANM

(i.e. α is not total), which we show in Section 3.1; (2) even though we may be
able construct the types of the commutative diagram and connect them with total
functions, there may be values flowing between these functions for which the
diagram doesn’t commute, which we show in Section 3.2.

Section Notional Machine Programming Language Focus

3.1 REDUCT UNTYPEDLAMBDA Evaluation
3.2 ALLIGATOR UNTYPEDLAMBDA Evaluation

Table 3.1. The two notional machines used in this chapter, both described here
focusing on evaluation of untyped lambda calculus terms. In the original paper,
Reduct focuses on JavaScript. For simplicity, here we use untyped lambda
calculus.

27
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3.1 Reduct

Notional machines can serve as a basis for educational games. One such ex-
ample is Reduct, an online game to teach “core programming concepts which
include functions, Booleans, equality, conditionals, and mapping functions over
sets” Arawjo et al. [2017]. Reduct aims to represent a subset of JavaScript ES2015.
The gameplay of Reduct tightly interleaves program construction and program
evaluation. Each level of the game has a goal: to reduce terms to an expected
value. Within a level, at any point in time, the canvas contains a given number
of independent game pieces that correspond to terms in JavaScript. The player
clicks and drops these game pieces on each other both to compose them and to
"reduce" them (reduce the terms they correspond to).

Like other notional machines, REDUCT employs metaphors to allow learners
to reuse their understanding of the real world when learning the semantics of
the programming language. Table 3.2 shows some of REDUCT’s metaphors1. Star,
square, and triangle shapes represent the literal String values "star", "square",
and "rectangle". A key represents the Boolean value true, and a broken key
represents false. A lock that protects a term represents a conditional operator.
The lock’s keyhole takes on a condition (a term that produces a key). The term
protected by the lock corresponds to the term to evaluate if the condition holds;
the value produced if the condition does not hold, null, is not visually represented.
A reflecting glass, with space for a term on either side, represents the equality
operator. A metal plate represents a lambda abstraction: the circular hole on
its left represents the variable binding, and the other hole on its right holds the
lambda’s body. A pipe that sticks out of the canvas represent variable use. A
value dropped in the metal plate’s circular hole materializes in each of the pipes
connected to the plate.

While a metal plate with a hole and a pipe are two separate constructs in
some levels of the Reduct game, most often they are inseparably connected. We
will refer to this combination of one or more pipes connected to a plate with a
hole as a HolePipe.

1Reduct introduces the idea of “concreteness fading”: while progressing through the levels
of the game, the pieces a player gets to use become gradually more abstract. At the start, at the
most concrete end of the spectrum, Reduct uses the metaphors described above. In the end, at
the most abstract end of the spectrum, it uses blocks that essentially contain JavaScript code.
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Programming Language Notional Machine
JavaScript terms Reduct pieces

Literal value "star", "triangle", and "square" , , and

Boolean true or false
or

Conditional x ? y : null

Comparison x == y

Variable x

Abstraction x => t

Variations on Abstraction

x => x

x => [t1, t2]

x => [x, x]

x => [x, x, x]

x => x == x

Table 3.2. Metaphors used in Reduct
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3.1.1 Illustrative Example

Figure 3.1 shows the step-by-step solution of level 17 of the Reduct game2. In
Step 1, the canvas contains three independent pieces: a HolePipe, a star, and a
reflecting glass. The goal of this level, shown in the top left corner, is to produce
a key. To make progress, the player should grab the star and drop it into the
HolePipe’s hole. This results in the HolePipe and the star disappearing, and two
stars (one for each pipe) appearing. That step is supposed to correspond to the
application of a lambda to a term. This correspondence is not accurate, as we will
show. In steps 2 and 3, the player should plug the stars into the holes around the
reflecting glass, which triggers the evaluation of the comparison and produces
a key. That step corresponds to reducing the term "star" == "star" to obtain
true.

3.1.2 Commutative Diagram

The first step is to define ANM, APL, and a mapping α from APL to ANM. APL should
be a type representing the terms of a subset of JavaScript as described in the
paper, but for convenience, we will focus on a subset of terms that is effectively
equivalent to the untyped lambda-calculus. Because of that, we can define APL to
be TermUλ. Let’s define ANM to be ReductTerm, a type representing the constructs
in REDUCT. We will consider just the constructs that correspond (as closely as
possible) to the terms represented with TermUλ. Our first construct to consider is
the HolePipe, which corresponds to a lambda abstraction.

The first thing to notice is that a HolePipe can contain multiple pipes next to
each other, as shown in Figure 3.1. The effect of these pipes is simply to create
more occurrences of the term that is dropped in the hole. This construct has
no direct equivalent in the lambda-calculus, because placing a term in front of
another means application in lambda-calculus and not "multiple returns". Perhaps
pipes next to each other could correspond to some kind of list term on the language
level so we would have to augment the language to add a term for that. But
we don’t need to worry about this mismatch. In itself, this mismatch is not a
problem. It is still possible to have a commutative diagram if there are constructs
in ANM that cannot be directly mapped to APL. What is really missing in Reduct is a
construct corresponding to function application. The intention of the authors was
to represent function application by dropping a term into the hole of a HolePipe
construct. When a term is dropped in the hole of a HolePiple, the HolePiple
and the dropped term are replaced by as many copies of the dropped term as

2https://www.therottingcartridge.com/games/programming/?level=17

https://www.therottingcartridge.com/games/programming/?level=17
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Step Programming Language Notional Machine

1 x => x x, "star",
y == z

drag and drop star into plate’s round hole

2 "star", "star",
y == z

drag and drop star into hole left of reflecting glass

3 "star", "star" == z

drag and drop star into hole right of reflecting glass

4 "star" == "star"

click on reflecting glass

5 true

Figure 3.1. Evaluation in programming language (left) and Reduct notional
machine (right).
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there are pipes in the HolePipe. That would correspond to application, but more
precisely it corresponds to the operational behavior of an application, not to the
construction of an application term. Constructing an application term is not the
same as applying it immediately.

Without an application term, it is impossible to write several kinds of programs.
The Y-combinator, for example, which is used to construct recursive programs,
contains application terms, and an essential part of its behavior is that, during
execution, the terms that are part of these application terms will be substituted
to different terms as the recursion unfolds. In general, there are several kinds of
programs that contain application terms t1 t2 where t1 and t2 cannot be statically
known but depend on the runtime behavior of the program.

Notably, this mismatch between the notional machine and the programming
language is not evident because the only “programs” one can write using Reduct
are the ones made out of the building blocks provided in each level of the game.
Effectively, the gameplay is a form of “puzzle solving” that corresponds to a mix
of constructing and reducing terms. In a programming language, however, one
does not modify the program during its execution.

To solve this mismatch, we need to not only add a construct in Reduct that
corresponds to application, but we need also to adapt the way the player interacts
with the game to “solve the puzzle”. Adding a construct in Reduct is simple.
More challenging is adapting the gameplay. Part of the challenge is that once
programs are constructed, the only way a player should be able to interact with
it to produce a given final result is by providing inputs. At the same time, we
don’t want to lose the stepwise reduction of terms triggered by the player, which
can be very instructive. For this, there should be a way to distinguish between
the moment when a program is built and the moment the program is run. This
distinction could be directly controlled by the player, who could explicitly say
when the program is ready. If a program doesn’t depend on inputs, it can be run
directly by clicking on the term to trigger reduction steps (similar to the current
behavior). Programs that depend on inputs could, for simplicity, be expressed as
terms where the root is a lambda abstraction. To run these programs, the player
would drop a term into the outermost lambda and subsequently click to trigger
the next reduction steps. An important difference from the current gameplay is
that once a term is being executed it cannot be changed and a “reset” button
would be needed to show the initial state of the program in case the desired final
term is not reached.

In essence, it is not possible to construct a mapping α from TermUλ to an
abstract representation of REDUCT because a lambda application node doesn’t
have an adequate correspondence in REDUCT.
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3.2 Alligator Eggs

Alligator Eggs3 is a game conceived by Bret Victor to introduce the lambda-
calculus in a playful way. It is essentially a notional machine for the untyped
lambda-calculus. The game has three kinds of pieces and is guided by three rules.

Pieces The pieces are hungry alligators, old alligators, and eggs. Old alligators
are white, while hungry alligators and eggs are colored with colors other than
white. The pieces are placed in a plane and their relative position with respect to
each other determines their relationship. All pieces placed under an alligator are
said to be guarded by that alligator. An alligator together with the pieces that may
be guarded by it form a family. Families placed to the right of another family may
be eaten by the guardian of the family on the left, depending on the applicability
of the gameplay rules. Every egg must be guarded by an alligator with the same
color (this must be a hungry alligator because eggs cannot be white).

Rules There are three rules that determine what we can call the “evolution of
families" over time: the old age rule, the color rule, and the eating rule.

• Old age rule: If an old alligator is guarding only one egg or one family
(which itself may be composed of multiple families), then the old alligator
dies and is removed.

• Eating rule: If there is a family guarded by a hungry alligator in the plane
and there is a family or egg to its right, then the hungry alligator eats the
entire family (or egg) to its right and the pieces of the eaten family are
removed. The alligator that ate the pieces dies and the eggs that were
guarded by this alligator and that have the same color of this alligator are
hatched and are replaced by a copy of what was eaten by the alligator.

• Color rule: Before a hungry alligator A can eat a family B, if a color appears
both in A’s proteges and in B, then that color is changed in one of the
families to another color different from the colors already present in these
families.

Gameplay A few suggestions of gameplay are provided. An option would be
to build a series of puzzles that challenge the player to find out, given a set of
families organized in the plane, what should be the color of some of the pieces

3http://worrydream.com/AlligatorEggs/

http://worrydream.com/AlligatorEggs/
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Step 2Step 1Step 0

Figure 3.2. Evaluation of (λt.(λf.t)) a b in the untyped lambda calculus
(top) and Alligator notional machine (bottom).

for the families to evolve into another given family. Similarly, the player could
be asked to devise a family that when fed X produces Y . These puzzles could be
embedded into a board game, where the player needs to solve puzzles to make
progress.

According to their description, the way ALLIGATOR relates to the untyped
lambda-calculus is as follows: “A hungry alligator is a lambda abstraction, an old
alligator is parentheses, and eggs are variables. The eating rule corresponds to
beta-reduction. The color rule corresponds to (over-cautious) alpha-conversion.
The old age rule says that if a pair of parentheses contains a single term, the
parentheses can be removed”. Although very close, this relation is not completely
accurate. We will identify the limitations and propose solutions.

3.2.1 Illustrative Example

Figure 3.2 shows a representation of the evaluation of the lambda-calculus term
(λt.(λf.t)) a b using the ALLIGATOR notional machine. Step 0 shows the

original term, consisting of two alligators for the two lambdas, a red egg for the
term t, and a green and purple egg for the terms a and b respectively. In the first
step, the red alligator eats the green egg: the alligator disappears, and its red egg
is replaced by a green egg. In the second step, the grey alligator eats the purple
egg: the alligator disappears, and given that there was no gray egg below the
alligator, the purple egg is consumed without leaving any trace. We are left with
the green egg.
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Figure 3.3. Old alligator in (λa.y) ((λb.b) c)

3.2.2 Commutative Diagram

To build a commutative diagram for ALLIGATOR, we need to build the abstract
representation of the notional machine ANM, which corresponds to the game
pieces and the game board, the abstraction function α : TermUλ→ ANM, and an
fNM function, which correspond to the rules that guide the evolution of alligator
families. First, we analyse the game pieces to model ANM and look more precisely at
their correspondence with TermUλ. Although ANM and TermUλ are not isomorphic,
that in itself doesn’t prevent the construction of a commutative diagram:

• An egg corresponds to a variable use and its color corresponds to the variable
name.

• A hungry alligator somewhat corresponds to a lambda abstraction with its
color corresponding to the name of the variable introduced by the lambda
(a variable definition) and the pieces guarded by the hungry alligator cor-
responding to the body of the lambda abstraction. But differently from
a lambda abstraction, a hungry alligator doesn’t have to be guarding any
pieces, which has no direct correspondence with the lambda calculus be-
cause a lambda abstraction cannot have an empty body.

• An old alligator somewhat corresponds to parentheses but not exactly. The
lambda abstraction in the term (λt.λf.t) a b requires parentheses
because conventionally the body of a lambda abstraction extends as far
to the right as possible, so without the parentheses its body would be
t a b instead of t. However the corresponding alligator families shown

in Figure 3.2 don’t require an old alligator. On the other hand, if we want
to represent the term a (b c) , then we need an old alligator. Figure 3.3
shows an example of a term that requires an old alligator. Like parentheses,
old alligators are used to disambiguate an abstract syntax tree.

Now let’s look at the kinds of terms in the untyped lambda-calculus. If
hungry alligators are lambda abstractions and eggs are variables then what is an
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application? Applications are formed by the placement of pieces on the game
board. When an alligator family or egg (corresponding to a term t1) is placed to
the left of another family or egg (corresponding to a term t2), then this corresponds
to the term t1 applied to t2 (in lambda calculus represented as t1 t2).

Notice that because every egg must be guarded by a hungry alligator with the
same color, strictly speaking, an egg cannot appear all by itself. That corresponds
to the fact that all values in the untyped lambda-calculus are lambda terms so
a term cannot really have an unbound variable. Textbooks of course widely use
examples with unbound variables but these are actually metavariables that stand
for an arbitrary term. As a result, for convenience, we will consider an egg by
itself as also forming a family.

We can then model an alligator family as the type AlligatorFamily, and a game
board as just a list of alligator families.

data AlligatorFamily = HungryAlligator Color [AlligatorFamily]
| OldAlligator [AlligatorFamily]
| Egg Color

The abstraction function α :: TermUλ→ [AlligatorFamily] relies on some func-
tion nameToColor that can map from a variable name to a color.

α :: TermUλ → [AlligatorFamily]
α (Var name) = [Egg (nameToColor name)]
α (Lambda name e) = [HungryAlligator (nameToColor name) (α e)]
α (App e1 e2@(App )) = α e1++ [OldAlligator (α e2)]
α (App e1 e2) = α e1++α e2

Having covered the pieces of the game (the structure of terms), let’s now turn
to the evolution rules, which will constitute fNM.

3.2.3 From Proof to Property-Based Testing

The commutativity of the diagrams presented in Chapter 2 was demonstrated using
equational reasoning. Here instead, we implement the elements that constitute
the commutative diagram and use property-based testing to test if the diagram
commutes. This approach is less formal and it doesn’t prove the notional machine
correct, but it is lightweight and potentially more attractive to users that are not
familiar with equational reasoning or mechanised proofs. We will see here that,
despite its limitations, this approach can go a long way in revealing issues with a
notional machine.
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[AlligatorFamily] [AlligatorFamily]

TermUλ TermUλ

fNM

step

α α

Figure 3.4. First attempt at instantiating the commutative diagram in Figure 2.2
for the notional machine Alligator.

The commutative diagram we would be aiming for is shown in Figure 3.4.
With the property-based testing approach, a generator generates terms ti ::TermUλ

and checks that

(fNM ◦α) ti ≡ (α ◦ step) ti

de Bruijn Alligators

The first challenge is that we need to compare values of type [AlligatorFamily] that
were produced using fNM with values produced using step. As we have seen, the
colors in AlligatorFamily correspond to variable names but the way step generates
fresh names (which then are turned into colors) may be different from the way
fNM will generate fresh colors. In fact, the original description of ALLIGATOR

anticipates the challenge of comparing alligator families. In the description of
possible gameplays, they clarify that to compare alligator families we need to take
into account that families with the same "color pattern" are equivalent. This can
be achieved by using a de Bruijn representation [de Bruijn, 1972] of Alligators. We
turn AlligatorFamily into AlligatorFamilyF Color and before comparing families we
transform them into AlligatorFamilyF Int following the de Bruijn indexing scheme.
The commutative diagram we are moving towards is shown in Figure 3.5.

Evaluation Strategy

With this setup in place, the next step is to implement fNM in terms of the game
rules. The eating rule (together with the color rule) somewhat corresponds to
beta-reduction but under what evaluation strategy? The choice of evaluation
strategy turns out to affect not only the eating rule but also the old age rule.
According to the original description, any hungry alligator that has something to
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[AlligatorFamilyF Color] [AlligatorFamilyF Color] [AlligatorFamilyF Int]

[AlligatorFamilyF Color]

TermUλ TermUλ

fNM deBruijn

deBruijn

eval

α

α

Figure 3.5. Second attempt at instantiating the commutative diagram in
Figure 2.2 for the notional machine Alligator.

eat can eat and one of the original examples shows a hungry alligator eating an
egg even when they are under another hungry alligator. That would correspond
to a full beta-reduction evaluation strategy but we will stick to a call-by-value
lambda-calculus interpreter so we will adapt the rules accordingly. The old age
rule has to be augmented to trigger the evolution of an old alligator family
that follows a topmost leftmost hungry alligator and families under a topmost
leftmost old alligator. The eating rule should be triggered only for the topmost
leftmost hungry alligator, unless it is followed by an old alligator (in which case
the augmented old age rule applies).

The color rule plays an important role in the correct behavior of the eating
rule as a correspondence to beta-reduction. That’s because indeed "the color rule
corresponds to (over-cautious) alpha-conversion", so it is responsible for avoiding
variable capture.

With all the rules implemented, we can define a function evolve that applies
them in sequence. We will then use evolve in the definition of fNM.

evolve :: (Enum a, Eq a)⇒ [AlligatorFamilyF a]→ [AlligatorFamilyF a]
evolve= applyRules [oldAgeRule, colorRule, eatingRule]

where applyRules [ ] a = a
applyRules (f : fs) a | f a≡ a = applyRules fs a

| otherwise= f a

One application of evolve corresponds to one step in the notional machine
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layer but that step doesn’t correspond to a step in the programming language
layer. For example, The main action of the old age rule (to remove old alligators)
doesn’t have a correspondence in the reduction of terms in UNTYPEDLAMBDA.
In terms of simulation theory, in this case the simulation of the programming
language by the notional machine is not lock-step. To adapt our property-based
testing approach, instead of making fPL equal to step, we will simply reduce the
term all the way to a value (leading to the use of eval as fPL in Figure 3.5) and
correspondingly define fNM to be the successive applications of evolve until we
reach a fixpoint.

Problem: Substitution of Bound Variables

Now we have all the building blocks of the commutative diagram. We can put
them together by running the property-based tests to try to uncover issues in the
diagram and indeed we do. According to the eating rule, after eating, a hungry
alligator dies and if she was guarding any eggs of the same color, each of those
eggs hatches into what she ate. So the family corresponding to (λa.(λa.a)) b

would evolve to λa.b instead of λa.a . This issue corresponds to a well-known
pitfall in substitution: we cannot substitute bound occurrences of a variable, only
the ones that are free. The solution is to refine the eating rule. When a hungry
alligator with color ci eats a family, the only eggs that should hatch are the ones
with color ci that are not already guarded by another alligator with that color.

In essence, we were able to construct the types and functions of the commu-
tative diagram, but even though these functions were total, there were values
of TermUλ for which the diagram didn’t commute. We detected the issue using
property-based testing and fixed the specification of ALLIGATOR and our imple-
mentation accordingly.

3.3 The Concrete Syntax of Alligators

The ALLIGATOR notional machine we have seen uses concrete images to represent
alligators and eggs. Figure 3.6 illustrates how the concrete representation of
a notional machine relates to the components of the commutative diagram we
have seen so far. At its center, is the α function that maps from programming
to notional machine concepts. However, on both sides, we have a concrete as
well as an abstract representation. On the programming side, the parse function
converts from the concrete code (a string) to the abstract representation (an
abstract syntax tree). On the notional machine side, the toDiagram function maps
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concrete
representation

parse toDiagram⍺

abstract
representation

abstract
representation

concrete
representation

program

String

"\t. \f. t"

HungryAlligator (MkColor red) [
HungryAlligator (MkColor grey) [

Egg (MkColor red)
]

]

Lambda "t" (
Lambda "f" (

Var "t"
)

)

TermUL [AlligatorFamilyF Color] Diagram B

notional machine

Figure 3.6. Both program and notional machine have abstract and concrete
representations

from the abstract notional machine representation to a concrete representation,
e.g., in the form of an actual diagram. In the case of ALLIGATOR, we use the
diagrams library Yates and Yorgey [2015]; Yorgey [2012] to construct the concrete
representation so toDiagram produces a value of type Diagram B, for a given
backend B determining the output format (e.g. SVG).

The data structure that describes ALLIGATOR is its abstract syntax whereas the
specific images used to depict the alligators and the eggs in the previous section
are its concrete syntax. The Alligator Eggs web page also describes another
concrete syntax that it calls “Schematic Form”. This concrete representation is
suitable for working with the notional machine using pencil and paper. Figure 3.7
shows the Church numeral two (the term λf.λx.f (f x) ), represented with
images of alligators and eggs (a graphical representation), with the Schematic
Form (taken directly from the website), and with an ASCII-art representation
similar to the Schematic Form. Our implementation automatically generates both
the graphical representation and the ASCII-art representation from the exact same
abstract ALLIGATOR representation.

In the schematic representation, colors are presented with variable names. An
alligator is drawn as a line ending with a < for a mouth, and is preceded by a
variable name corresponding to its color. An old alligator is drawn with a line
without a mouth. An egg is drawn just with the variable name corresponding to
its color.

3.3.1 Designing a Concrete Representation

In principle, the abstract representation of a notional machine should contain
all the information necessary for operating with the notional machine, whereas
the concrete representation adds information that is inessential for the operation
of the notional machine. In the case of ALLIGATOR, the number of teeth in the
alligator’s mouth, for example, is inessential so this information is contained only
in the concrete representation.
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f-------<

x-----<

f ---

f x

Figure 3.7. Different concrete representations of the same Alligator family in
the Alligator notional machine.

Figure 3.8. Confusion due to suboptimal concrete representation in the Alligator
notional machine.

Good care should be taken when designing the concrete representation of
a notional machine to avoid introducing misconceptions. For instance, in the
graphical representation of ALLIGATOR let’s focus on the size of the depiction of
alligators and eggs. This information is not present in the abstract representation
and indeed it does not seem to be important for the operation of the notional
machine. The original description of ALLIGATOR doesn’t prescribe a size for
alligators and eggs. The examples shown on the Alligator Eggs web page are
not consistent in terms of the size: sometimes they reduce the size of pieces that
are guarded by other pieces and sometimes they do not. A closer look, though,
reveals that in fact, the relative size of pieces is important because the relative
position of alligators and eggs determines the relationship between them (pieces
guarded by other pieces are placed under them and pieces that may eat other
pieces are placed in front of them). Depending on the size of the pieces, it may
not be obvious who is supposed to eat whom.

Figure 3.8 shows two concrete representations for the same abstract represen-
tation of a board of alligator families. On the left, all pieces have the same size.
In that concrete representation, it looks like the light blue alligator should eat
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the gray alligator4. But in fact, the light blue and the gray alligator are not “on
the same level”: the light blue alligator is being guarded by the green alligator,
while the gray alligator is being guarded by the pink alligator. This confusion
can be solved by scaling the sizes of alligators. In the concrete representation
shown on the right of Figure 3.8, pieces are resized proportionally depending on
their relationship with other pieces. The width of the pieces directly under an
alligator adds up to 90% of the width of the alligator guarding them and at the
same time the height of the pieces (alligators and eggs) on the same level should
be the same. The effect in this case is that it is easier to see that the light blue
alligator does not threaten the grey alligator. The relative sizes also help to show
that the topmost alligator of each family is the one that can eat another family:
the green alligator would first eat the pink alligator and its family.

Interestingly, looking at the schematic concrete representation (middle of
Figure 3.7), we see that the author was aware of the importance of the relative
size of pieces. In our ASCII-art representation (right of Figure 3.7), we not only
made sure that the pieces guarded by an alligator “fit” under that alligator but
also that the width of pieces guarded by an alligator is strictly smaller than the
width of that alligator, so that the topmost alligator is further emphasized.

3.4 Conclusion

In this chapter, we have seen how we can analyze existing notional machines
with respect to their soundness and, as a result, find inconsistencies and improve
them. We also discussed the challenges of designing a concrete representation
for a notional machine.

The analyses in this chapter were made simpler by our use of UNTYPEDLAMBDA

as the programming language under the focus of the notional machines. In
contrast, in the next chapter, we will use essentially the same technique to analyze
and improve a notional machine that is focused on Java, a much larger language.

4 The interpretation that the light blue alligator would eat the gray alligator and the interpre-
tation that the orange alligator would eat the light blue alligator seem equally likely.



Chapter 4

A Family of Notional Machines for
Expressions

Until now, we have seen how to design and analyze notional machines using
as a basis the commutative diagram that relates the abstract representation
of the notional machine with the abstraction that represents the aspect of the
programming language under focus by the notional machine.

To this end, we have always used programming languages with well-known
complete formalizations that were as small as needed to express the aspect
of semantics we were interested in: when we focused on evaluation we used
UNTYPEDLAMBDA, when we focused on references we used TYPEDLAMBDAREFREF,
and for types we used TYPEDARITH. Even though these languages are used
as core calculi for various widely used programming languages, they are not
themselves widely used in industry or in education. Now we will instead use Java,
a programming language widely used both in industry and in education.

There exist many formalizations of core aspects of Java. The most popular of
these minimum core calculi for Java is Featherweight Java [Igarashi et al., 2001].
Typically, each core calculus is focused on a specific aspect of the language (e.g.,
Welterweight Java [Östlund and Wrigstad, 2010] focuses on imperative features
and concurrency, FeatherTrait [Liquori and Spiwack, 2008] focuses on traits).
They are small so proofs written with them are simpler. Here we want to focus

Section Notional Machine Programming Language Focus

4.3 EXPTUTORDIAGRAM JAVA Typing
4.4 EXPTUTORDIAGRAM JAVA Parsing

Table 4.1. The variations of ExpressionTutor for Java shown in this chapter.

43
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on expressions, but we want instead to consider the complete language up to
Java 11. And rather than proving our construction, we will reason informally
using as the basis for this reasoning the formal approach we have developed in
the previous chapters.

On the side of the notional machine, we will again use ExpressionTutor, which
we have introduced in Section 2.3 and then used later in Section 2.5, but here we
will develop it further. When we introduced it, we characterized ExpressionTutor
as a family of notional machines that can be instantiated for a given program-
ming language and given aspect of that language. Before, we instantiated it for
UNTYPEDLAMBDA focusing on program evaluation and TYPEDARITH focusing on
types. In this chapter, we will use Java focusing first on types and then on parsing,
as summarised in Table 4.1.

The use of the commutative diagram in the development of ExpressionTutor
has a direct impact in shaping the implementation of the components of the tool.
As we dive deeper, we will also discuss some facets of this implementation that
are important in making it usable in practice as an educational tool.

We start by motivating why we want to focus on expressions (Section 4.1).
Then, we define which Java constructs are expressions (Section 4.2). We are then
ready to map from Java expression constructs to their diagrams. We put it all
together showing how we can follow the principles we’ve seen so far to develop
and improve a tool for the notional machine (the ExpressionTutor platform) to
help teach and assess students about type-checking (Section 4.3) and parsing
(Section 4.4) Java expressions. An extra benefit of this approach is that an
implementation that follows the commutative diagram essentially results in a tool
that can generate student activities about the focus of the notional machine and
assess the students’ solutions (Section 4.5).

4.1 Why Focus on Expressions?

Expressions1 are syntactic phrases that are constructed compositionally. They
all evaluate to values, and in statically typed languages they all have a type.
Because they are built compositionally, we can understand a bigger expression
by decomposing it into its smaller components2. We can reason about its type

1Authors sometimes use the words term and expression interchangeably. Other times, they use
the word term to refer to expressions that produce values and the word expression in a more
general sense [Pierce, 2002], standing also for phrases in other syntactic categories, including
type expressions and kind expressions. Here we use expression to refer to syntactic phrases that
produce values.

2 In impure languages like Java, side-effects complicate this reasoning.
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and its value by reasoning about the types and values of its subexpressions. This
recursive view of expressions is a prime example of decomposition. It allows
students to learn to evaluate or type expressions in a general and systematic
way [Marceau et al., 2011].

In programming languages that are considered predominantly functional,
expressions are the main building blocks of programs. In programming languages
like Java, which are not predominantly functional, expressions seem to play a less
important role, and this is often also reflected in teaching. Indeed, in 2008 a study
carried out a Delphi process among experts to identify important and difficult
concepts in introductory programming [Goldman et al., 2008]. Expressions only
appear among topics such as “construct/evaluate boolean expressions” and “writ-
ing expressions for conditionals”, both ranked as very important but moderately
difficult. There is no mention of the concept of expressions being treated in a
general form, instead of the narrow view of logic and arithmetic. This impression
is also reflected in textbooks. Chiodini et al. [2022] systematically analyzed the
contents of current Java textbooks to characterize how they present expressions
and found that expressions are neglected in Java programming textbooks, which
do not introduce expressions as a central and general concept.

But contrary to this impression, Chiodini et al. [2022] show that expressions
are in fact prevalent in Java code written by students. The result comes from
an empirical analysis of the use of expressions in Java programs written by
novices performed using the Blackbox dataset, the largest repository of Java code
written by students. Not only this but the authors also argue that expressions
are essential in Java, by analyzing the grammar of the language and showing
how small is the subset of constructs in the language that don’t use expressions.
They also elaborate on how expressions, statements, and definitions in Java are
fundamentally connected to each other.

The general, prevalent, and essential nature of expressions makes them a
prime candidate to be used as the focus of a notional machine.

4.2 Expressions in Java

The Java Language Specification3 (JLS) [?] contains both a formal specification
of the language’s concrete syntax, as well as an informal specification of the
language semantics. The language specification categorizes expressions into the
following six syntactic forms:

3 The version we are considering here is Java 11 (a Long-Term Support version), excluding
modules and annotations.
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(1) expression names

(2) primary expressions

(3) unary operator expressions

(4) binary operator expressions

(5) ternary operator expressions

(6) lambda expressions

But to be able to define an abstraction function that maps from expressions into
the notional machine we need to define exactly which constructs of the language
we are considering as expressions, and we need to define their structure.

4.2.1 Grammar is Not Enough to Identify Constructs

The grammar productions that determine the concrete syntax of the language are
not good candidates to be used as language constructs. A language construct may
have multiple syntactic representations and thus it may correspond to multiple
grammar productions (e.g., array instances may be created with or without array
initializers, which affects whether or not they contain subexpressions denoting
the array dimensions). A grammar production may also correspond to multiple
language constructs when more contextual information is needed to determine
the exact construct. For example, a simple name can be a local variable access or
a field access depending on the context in which it occurs. A grammar production
may even correspond to only part of a language construct, which allows for the
reuse of a grammar production in the definition of different language constructs.
Moreover, grammar productions are sometimes built with the purpose of enforcing
associativity and precedence rules. In essence, the concrete syntax of a language
is not the right level of abstraction to define its constructs. The level of abstraction
that we are looking for is captured by the abstract syntax of a language.

The abstract syntax of Java is not defined in the language specification, so we
will consider the one defined by Eclipse’s Java Development Tools (JDT) [The
Eclipse Foundation, 2022]. Although JDT is closely modeled after the lan-
guage specification, it diverges a little from it, mostly for practical implementa-
tion reasons. For example, it represents deeply nested expressions of the form
L op R op R2 op R3, where the same binary operator appears between all the
operands, with one AST (Abstract Syntax Tree) node holding all the operands.
The language constructs that we will consider to be expressions mostly correspond
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to JDT’s AST nodes that are subtype of Expression, with small modifications
whenever we found aspects that diverge from the language specification.

4.2.2 Java Expression Constructs

The Java expression constructs are shown in Table 4.2. Each row names a language
construct, refers to the main JLS section where it is discussed, and specifies its
structure. We represent the structure of a construct with a grammar.

EBNF Symbols
The bold symbols follow the conventions of EBNF:

•
���

a
���

denotes that a is an optional part of the construct;

•
���

a
			

denotes the absence or presence of one or more occurrences of a in the
construct;

• a
�

�

�

�

�

� b denotes the presence of either a or b in the construct (grouped where
needed with

���

. . .
���

).

Java Tokens
The colored tokens are used to denote tokens of the Java language.

Subexpressions
The meta-variable e denotes a subexpression. Some constructs restrict one of
their subexpressions to only variables (JLS 15.26), represented as evar , which
according to the specification can be “named variables” (e.g., local variables)
or “computed variables” (e.g., field accesses and array accesses). In terms of
the constructs defined in Table 4.2, these are:

• Id - Simple Variable Access;

•
������

e
�

�

�

�

�

�Tr

���

.
���

Id - Field Access;

•
���

Tr .
���

super.Id - Super Field Access;

• e[e] - Array Access.

evar is used in the left-hand side of an Assignment, as an operand of a Postfix
Expression, and as an operand of some Prefix Expressions (the Prefix Increment
Expression and the Prefix Decrement Expression (JLS 15.15.[1-2])).
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Table 4.2. Java expression constructs. The meta-variable e denotes subexpres-
sions. The bold symbols follow the conventions of EBNF. The colored tokens
denote tokens of the Java language. The remaining meta-variables are described
in Table 4.3.

Group Construct Java Spec. Structure

Class Instance Creation Class Instance Creation 15.9
���

e.
���

new
���

<T
���

,T
			

>
���

Tr(
���

e
���

, e
			���

)
���

Block
���

This This Expression 15.8.3
���

Tr .
���

this

Variable

Simple Variable Access 6.5.6.1 Id

Field Access 15.11
������

e
�

�

�

�

�

�Tr
���

.
���

Id

Super Field Access 15.11.2
���

Tr .
���

super.Id

Method Invocation
Method Invocation 15.12

������

e
�

�

�

�

�

�Tr
���

.
������

<T
���

,T
			

>
���

Id(
���

e
���

, e
			���

)

Super Method Invocation 15.12
���

Tr .
���

super.
���

<T
���

,T
			

>
���

Id(
���

e
���

, e
			���

)

Array

Array Access 15.10.3 e[e]

Array Instance
Creation

15.10.1
new T

���

<T
���

,T
			

>
���

[e]
���

[e]
	�	�	�

[]
			

new T
���

<T
���

,T
			

>
���

[]
���

[]
			

ArrayInit

Type Comparison
and Cast

Type Comparison 15.20.2 e instanceof T

Cast Expression 15.16 (T)e

Lambda Lambda 15.27 Params ->
���

Block
�

�

�

�

�

� e
���

Method Reference

Constructor Reference 15.13 Tr::
���

<T
���

,T
			

>
���

new

Method Reference 15.13
���

e
�

�

�

�

�

�Tr
���

::
���

<T
���

,T
			

>
���

Id

Super Method Reference 15.13
���

Tr .
���

super::
���

<T
���

,T
			

>
���

Id

Operator

Conditional Expression 15.25 e ? e : e

Assignment 15.26 evar AssignOp e

Postfix Expression 15.14.2 evar PostfixOp

Prefix Expression 15.15.1 PrefixOp
���

e
�

�

�

�

�

� evar
���

Infix Expression 15.18.2 e InfixOp e

Literal

Boolean Literal 15.8.1 true
�

�

�

�

�

� false

Character Literal 15.8.1 CharacterLiteral

Null Literal 15.8.1 null

Number Literal 15.8.1 IntegerLiteral
�

�

�

�

�

� FloatingPointLiteral

String Literal 15.8.1 StringLiteral

Class Literal 15.8.2
���

T
�

�

�

�

�

�void
���

.class
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Table 4.3. Meaning of MetaVariables used in Table 4.2 with reference to
relevant section(s) of the Java Language Specification.

MetaVariable Meaning Java Spec.
T Any Type 4.1
Tr Reference Type 4.3
Block Code Block 4.2
ArrayInit Array Initializer 10.6
Id Identifier 3.8
Params Lambda Parameters 15.27.1
AssignOp Assignment Operator 15.26
PostfixOp Postfix Operator 15.14
PrefixOp Unary Operator (except cast) 15.15
InfixOp Binary Operator (except instanceof) 15.[17-24]
IntegerLiteral Integer Literal 3.10.1
FloatingPointLiteral Floating-Point Literal 3.10.2
CharacterLiteral Character Literal 3.10.4
StringLiteral String Literal 3.10.5

Auxiliary Productions
The remaining MetaVariables (described in Table 4.3) are auxiliary grammar
productions, mostly corresponding to productions in the JLS grammar with
some simplifications.

Some constructs in this list compound various parts of the language as de-
scribed in the JLS. In particular, Simple Variable Access may be an access to a local
variable or a parameter. A Field Access may be an access to an instance variable,
a class variable, or an enum constant. Another example is Class Instance Creation,
which may be the creation of a class instance, an anonymous class instance, or
even a qualified class instance.

Notice that array initializers (JLS 10.6) are not expressions. Even though
they are used to instantiate arrays (in a field or local variable declaration, or
as part of an Array Instance Creation expression), they cannot by themselves
be evaluated to produce a reference to an array instance. Thus, they cannot be
used wherever a value of an array type is expected. We also do not consider
parenthesized expression (JLS 15.8.5) as a separate expression construct because
they only affect the order of evaluation4.

4Except for a corner case whereby -2147483648 and -9223372036854775808L are legal but
-(2147483648) and -(9223372036854775808L) are illegal because those two decimal literals are
allowed only as an operand of the unary minus operator.
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4.3 ExpressionTutor for Java: A Typing Activity

We first introduced ExpressionTutor5 in Section 2.3. There, we brought up Expres-
sionTutor as an example of a monomorphic notional machine because it allows
students to make mistakes when constructing expression trees. In Section 2.5,
we showed how we can use ExpressionTutor as a notional machine to focus on
types by augmenting the diagram with a type label for each node. Now, we will
start also with typing, but instead of TYPEDARITH we will use Java.

Let’s resort back to the commutative diagram in Figure 2.2 and to our descrip-
tion of the design of a notional machine to reason about types, in Section 2.5.
There we described the notional machine EXPTUTORDIAGRAM focused on typ-
ing expressions in the TYPEDARITH language, whose concrete representation is
depicted in Figure 2.12.

Here, we want to keep the same notional machine EXPTUTORDIAGRAM, also
augmented with type labels, but now the programming language is Java and
we need to restrict ourselves to build diagrams for the subset of constructs in
Java that are expressions. Figure 4.1 shows an instantiation of the diagram in
Figure 2.2 for typing Java expressions. In addition to being an instantiation of
the diagram in Figure 2.2, Figure 4.1 also represents effectively a conceptual view
of the architecture of the tool. Next, we describe the components of the diagram
in more detail.

4.3.1 Programming Language Layer With JDT

Before, the language (TYPEDARITH) was small and we implemented all the com-
ponents of the commutative diagram in Haskell. Now, the language is much
larger so we use the compiler infrastructure provided by JDT (Java Development
Tools) [The Eclipse Foundation, 2022], which is mature and widely used.

Figure 4.1 shows a simplified representation of JDT being used to implement
the programming language layer. After parsing the code, JDT keeps an AST
representation of the program without information about types. Once we resolve
the type bindings, we have essentially a typed AST, which we represent for
simplicity as a tuple (AST, TypeBinding).

4.3.2 From Java Expressions to ExpressionTutor Diagrams

ExpressionTutor provides instructors with various features to create activities
from source code. The source code can be given by the instructor, the case we

5expressiontutor.org

http://expressiontutor.org
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 Maybe ExpTutorDiagram

String Maybe AST

JDT

Maybe (AST,TypeBinding)
parse resolveTypeBindings

AST

(ExpTutorDiagram,CodeCtx)

Student

fmap ( B

⍺A

Activity

exp_id

 Maybe ExpTutorDiagram

exp_id)⍺

Assessment

Figure 4.1. Instantiation of the diagram in Figure 2.2 for ExpressionTutor
focused on typing Java expressions. The diagram serves simultaneously as a
conceptual view of the tool’s architecture.

consider here, or even come from students’ code submitted to GitHub, which we
will explain in Section 4.5.

If the code doesn’t parse, an error is raised to the instructor, otherwise, we can
safely unwrap the AST from its Maybe. The instructor is shown the expressions
in the code they provided so they can select the one they want to use in the
activity. In the Figure, the information that is used to identify the expression is
represented as expid and the abstraction functions (αA and αB) are curried. The
function αA generates the ExpressionTutor diagram for the selected expression
and the function αB does the same, except that it also uses the type binding
information to fill in the type labels in the diagram. The result of αB is used to
assess the student’s answer, as we’ll discuss in Section 4.5.

Ideally, the nodes in the AST provided by JDT would correspond to the ex-
pression constructs in Table 4.2, and in most cases they do, but it’s common for
production compilers to have optimizations that diverge from the conceptual AST.
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Figure 4.2. ExpressionTutor diagram for the expression
"As String: " + new Object(){ int m() { return 1 + 2; } }.toString()

whose AST contains descendants that are not sub-expressions.

For example, JDT represents consecutive applications of the same operator (e.g.
1 + 2 + 3) as a single node with a list of operands, instead of a subtree with
one node for each application of the operator. The abstraction functions have to
account for that.

Non-Expressions Inside Expressions

More tricky are the cases of descendant nodes of an expression node that are not
expressions. We identified three cases where this happens:

(i) Class Instance Creation expressions containing an Anonymous Class Decla-
ration;

(ii) Lambda expressions containing a body (i.e., Block as a child);

(iii) Array Initializers, that are not expressions, as explained in Section 4.2.

These are represented with ellipsis (...) in their parent node. Figure 4.2 shows
an example. Notice that it’s possible for an expression node c to be a descendant
of another expression node p in the AST but not be a sub-expression of p. As an
example, in the expression in the Figure, 1 + 2 is an expression but not a sub-
expression of the expression containing the string concatenation, and therefore
would be represented with another diagram.

ExpressionTutor provides a reference page6 with examples of ExpressionTutor
diagrams for each expression construct in Java, up to Java 11, corresponding to
the constructs in Table 4.2. Figure 4.3 contains an excerpt from the reference
page showing an example of a diagram for a Qualified Class Instance Creation
expression.

6expressiontutor.org/language/Java/expressionReference

https://expressiontutor.org/language/Java/expressionReference
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Figure 4.3. Excerpt of the ExpressionTutor reference page for Java, which
contains examples of diagrams for each expression construct in Java, up to Java
11.

4.3.3 Notional Machine Layer as a Student Activity

An important aspect highlighted in Figure 4.1 is the view of the notional machine
layer as an educational activity to be performed by the student. In this view, fNM

is not a function we implement but a “function” executed by the student. So
aNM :: ANM (in the Figure ANM ≡ (ExpTutorDiagram, CodeCtx)) is the input given
to the student, b′NM :: BNM (in the Figure BNM ≡ Maybe ExpTutorDiagram) is the
output produced by the student, and bNM :: BNM, produced by αB, is the expected
output (the correct answer), which may not be equal to the output produced
by the student (b′NM). The values bNM and b′NM can then be compared in the
assessment module (see Section 4.5).

Figure 4.4 shows the interface that is currently shown to a student for a typing
activity about the expression 1 / 2 / 3, with what the student sees before and
after (or during) answering. While doing the activity, a selected node is shown
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Figure 4.4. Current interface for a typing activity about the expression
1 / 2 / 3.

(a) View before an answer

(b) View after an answer
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highlighted in orange with a removal icon in the top-right corner of the node, and
a panel, used to select or write the type for that node, is revealed to the left of
the diagram. There are currently various usability issues that are being improved.
One of them is the title of all activity pages that currently always shows “Parse”,
whereas for a typing activity, it should be “Types”, for example. Figure 4.5 shows
a prototype for some simple improvements.

Figure 4.5. Improved interface for a typing activity about the expression
1 / 2 / 3.

In terms of soundness, for the diagram in Figure 4.1 to work, we need to make
sure that:
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1. The types of bNM and b′NM are the same.

This seems straightforward but it may not be. For example, type-checking
may fail so BPL is represented with a Maybe and therefore the types of b′NM

and bNM should also be represented with a Maybe (or equivalent type),
but a previous version of ExpressionTutor didn’t have the toggle “CODE
COMPILES INTO TREE BELOW”/“CODE DOES NOT COMPILE” above the
diagram so it didn’t allow for the solution to be a type error. This is an
improvement resulting from our analysis. Although the current interface
allows for the solution to be a type error, there is no way to express what
the error is. Improvements to the platform are being considered to express
that.

2. There is enough information in aNM to produce a b′NM that is equal to bNM.

This is, of course, necessary to make the notional machine sound. Although
we produce bNM :: BNM from JDT, because we are not implementing fNM, one
has to be very careful with the activity input given to the student (aNM ::ANM).
Let’s see the concrete challenges we face here.

Soundness Issue: Insufficient Information in Activity Input

Typing expressions in TYPEDARITH is simple because the type of a term only
depends on identifying the term itself and the type of its subterms (see the
typing rules in Appendix A.2). A language like simply-typed lambda calculus, for
example, is a little more complex because typing a term requires maintaining a
typing map, a mapping from variables to types. In the case of Java, we need not
only a typing map, for the types of parameters, local variables, and this, but we
also need to look up the types of fields and methods. That information is not
present in ExpTutorDiagram, so we need to augment ANM with more information.

Partial fix: typing map We can add a typing map to the diagram. This would
help with the types of parameters, local variables, and this, but it would not
help with looking up the types of fields or methods, which is a more elaborate
process. It would also make the notation heavier. Another important point is that
the typing map is not one static table for the entire expression being typed, but
each sub-expression has its typing map with names potentially being added to it
as the expression is being typed.

Fix: code context Another possibility is to add to the activity the code context
of the expression. This may be simply the code surrounding the expression, if it
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contains information about the types of all the variables and methods used in the
expression. Figure 4.6 shows an example of what an activity could look like in
that case. If that’s not the case, the instructor could explicitly communicate to
the students where to find information about these declarations. This could be in
the form of Java doc documentation, for example.

Figure 4.6. Typing activity showing to the student the code context of the
expression.
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4.3.4 Discussion

It is important to consider, from an educational point of view, what we want the
students to learn at any given point in a course. Activities may be created with
expressions that require different levels of complexity to type. That will help to
determine the amount of information and kind of information the instructor may
want to present together with the diagram. For example, it is possible to determine
the type of some expressions without a typing map. For other expressions, a typing
map may be required but lookups of fields and methods may not be necessary.
Notice that typing a term may require knowledge about how to type programs in
general, as could be the case with a term containing an anonymous inner class,
for example.

Ultimately, we want the students to be able to determine the type of an
expression in practice, which means we want them to be able to identify which
constructs require type lookup and where and how to look up those types.

The soundness issue we identified and the suggested fixes illustrate an im-
portant point: the concrete representation of ANM doesn’t necessarily have to
contain diagrammatic concrete representation of the information necessary to do
the notional machine activity (i.e., to obtain a value of type BNM). In the case of
this typing activity, an instructor may decide to be more or less explicit about the
information needed to type the expression and may require from the student the
ability to identify the information needed to type the expression.

In general, it is for the instructor to opt for a lighter-weight representation for a
notional machine, omitting some information from it and providing proxy sources
for that information or providing other information that can be used by the student
to synthesize the information needed. In this case, the commutative diagram helps
the instructor to identify what information is needed in the notional machine
layer and what simplifications are being made to the notional machine, ultimately
giving the instructor more confidence in the correctness of these simplifications.

4.4 ExpressionTutor for Java: A Parsing Activity

In the previous Section, we have seen ExpressionTutor for typing. There, the input
given to the student is already a tree, which the student has to label with types.
But what about constructing a tree in the first place? In fact, we first introduced
ExpressionTutor7 in Section 2.3, as an example of monomorphic notional machine
because it allows students to make mistakes when constructing expression trees.

7expressiontutor.org

http://expressiontutor.org
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The construction of expression trees from source code is an activity about parsing.
Figure 4.7 shows an instantiation of the commutative diagram in Figure 2.2 for
ExpressionTutor focused on parsing Java expressions. Like in the previous Section,
this diagram is also a conceptual slice of the tool’s architecture for this activity.

String Maybe AST

JDT

parse

Maybe ExpTutorDiagram

⍺A

Activity

exp_id

(Distractors,CodeCtx)

Student

Assessment

 Maybe ExpTutorDiagram

fmap ( B exp_id)⍺

Figure 4.7. Instantiation of the diagram in Figure 2.2 for ExpressionTutor
focused on parsing Java expressions. The diagram is also a conceptual view of
the tool’s architecture.

4.4.1 Commutative Diagram for Parsing

Like in the typing activity, the programming language layer is implemented with
JDT and as in the typing activity, parsing may fail so we need a Maybe type (or
equivalent) both in BPL and BNM. Being able to express in the notional machine
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that parsing an expression may fail is important not only from a theoretical point
of view but also because novices may struggle to identify whether a piece of code
would parse or not. The curated inventory of programming language misconcep-
tions that we have collected as part of prior work [Chiodini et al., 2021] documents
28 misconceptions about expressions. Out of those, 5 refer to expressions that
the students believe to be illegal but that are actually legal. Expression trees may
be a good medium for the students to communicate their misconceptions and
for the instructors to identify them and explain them to the students. The use of
expression trees to detect programming language misconceptions seems to be a
promising direction for future work (see Chapter 7).

Like in the case of type errors, the interface allows for the solution to be “Code
does not compile”, but it is not yet possible to express whether the problem is
a parse error or a type error and what exactly is the problem and where it is
(corresponding to a type that contains more information than Maybe). These
improvements are also being considered for the platform (see Chapter 7).

In the previous chapters, we have not constructed any commutative diagram
for a notional machine that focuses on parsing. An interesting property for the
case of parsing is that, in principle, the input in the notional machine layer could
be the same as the input in the programming language layer: a String of the
program to be parsed. However, that’s not what we have, as you can see in
Figure 4.7, so let’s unpack the reasons that led to the current design.

Code Context is Needed

In a language like TYPEDARITH or UNTYPEDLAMBDA, the entire program is an
expression so APL and ANM could both be Strings of the program to be parsed. In
a language like Java, the instructor must select from the program the expression
for which the student will construct the tree.

It may be tempting then to restrict the input of the notional machine layer to
be a String containing only the expression for which we want to construct the
diagram, but in general, the String of an expression is not enough to correctly
determine the AST of that expression. For example, an identifier to the left of
the dot in a method invocation may or may not be an expression. An identifier
to the left of the dot in an instance method invocation (e.g. o in o.m(...)) is
an expression (the use of a variable that refers to an object that is the target of
the method invocation). However, if the identifier to the left of the dot is a class
name (e.g. Math in Math.max(...)), then we are dealing with a static method
invocation and this identifier is not an expression. The problem here is analogous
to the problem in the typing activity, where the student needs to know the code
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context to be able to do the activity. Besides the code context, the input given to
the student (ANM) also contains distractor nodes.

4.4.2 Distractor Nodes

In terms of the user experience of constructing the tree, once given the nodes, the
user can freely connect them to each other by clicking and dragging connectors
between nodes and the holes inside other nodes. So the only thing missing is
really to construct the nodes. To that end, we could provide the user with:

(i) A language to construct individual nodes, which is currently what we use
internally as instructors. But for students, that would require them to learn
yet another language: a meta-level language used to construct nodes.

(ii) An editor that allows one to interactively construct a node. That wouldn’t
require the students to learn a new language but still requires them to
reason in a meta level about the programming language, something that
may not be educationally adequate in many courses.

To simplify the process, we have instead opted for giving the students a set of
nodes that can be used to construct the tree. This means that the input type is not
String but (String, Set Node). Another benefit of this approach is that it facilitates
the correction of the submissions making it more amenable to automation.

The question that arises at this point is: "how can we determine these nodes
in a way that allows the students to still express the mistakes they would make if
they could freely construct a tree?". For that, we resorted to analyzing questions
in previous years’ exams that asked the students to draw expression trees. The
goal is to identify patterns of mistakes made by students when drawing trees and
use those patterns to generate the nodes we give to the students.

Students’ Mistakes in Paper-Based Expression Trees

We analyzed two questions, one from a midterm exam and one from a final
exam, both from the course “Programming Fundamentals 2” (PF2), a second-year
bachelor course that teaches an introduction to object-oriented programming
offered in the Spring semester of 2022. The questions are shown in Appendix B.
Both questions present a Java class and ask the student to draw the expression
tree for a given expression.

The first question asks: “For the expression to the right of the equals sign (=)
in the run method, draw the expression tree [...]”. The method run contains only
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one equals sign in the line:

String s = publish(make("this"), make("that"));

The second question asks: “Draw the expression tree of the expression to the
right of String s = ”. The class contains only one such fragment of code in the
line:

String s = "a[i] = " + (a == null ? "X" : id(a[i].toString())) + '+' + 0;

We randomly selected one third of the exams from each of the two questions
(the test set) to analyze the students’ answers and categorized each occurrence of
a wrong node. The idea is to generate nodes using those categories as reference
and evaluate our node generation strategy by comparing the generated nodes with
the nodes in the remaining two thirds of the exams (the training set). Table 4.4
contains a short description of each category and two examples of mistakes in that
category, the first example taken from the midterm exam and the second one from
the final exam (except for the category CharAsString, which only happened in
the final exam). Each example shows the content of a node with holes represented
as #. We describe the categories we identified in more detail below:

Inline Node containing token that should be in a child node. Inlining can happen
on multiple levels, not only of a leaf into a branch but also of branches
inside other branches. That’s especially the case for binary operators when
the child and the parent nodes are the same operator.

Extract Node containing token that should be in a parent node. A typical example
is method names, which are not themselves expressions but are sometimes
extracted into a separate node. Another example is conditional expression
node split into two nodes.

EvaluatedExp Node containing the result of evaluating an expression. More
precisely, in terms of operational semantics, for an expression t, these
wrong nodes contain tokens that are part of terms that are present in the
derivation tree resulting from the evaluation of t8.

OtherCode Node containing tokens that are not part of the expression tree and
not used anywhere in the evaluation of the expression. Typically, this

8 In Java, the evaluation of a sub-expression may involve the execution of statements. So in
those situations, some wrong nodes with non-expression tokens may be classified in this category.
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happens when the expression of which we’re drawing the tree appears in a
line where there are tokens that don’t form expressions. For example, in
variable initializations or return statements.

NoParenMethodCall Method call without parenthesis. This is not a severe prob-
lem if the student has the correct high-level understanding of the structure
of the tree. One may argue that it’s just a different notation.

CharAsString Single character delimited by double quotes instead of single
quotes. This may indicate the student doesn’t understand the difference
between a Char and a String.

CodeInString Holes inside a String. This problem happens when there’s a String
that contains a text that looks like source code. Although it could be
considered a special case of Extract, this problem is of a different nature
because the content of the String is not of tokens in the language.

MissingQuotes String literal without quotes. Different then NoParenMethod-
Call, this problem may not be a case of simply overlooking notation but, like
CodeInString, it may indicate a more fundamental problem of confusing
Strings with code in the language.

MissingHoles Node with missing holes. Even though the students were in-
structed in all expression tree exercises during the course to be explicit
about where the holes are in each node, some students drew branch nodes
without drawing the holes. Like NoParenMethodCall, one may argue this
is not a mistake but simply a different notation.

Misc This category is a catch-all for mistakes that don’t fit in any other category.

We classify each wrong node with only one category, so if a node presents
more than one category of mistake we choose one that seems more clear from the
context. Table 4.5 shows the number of wrong nodes we found in each category
(occurrences) and the percentage this number represents of the total number of
wrong nodes. The table includes the mistakes of both exams.

Although our original intention when analyzing these exams was to ground
the generation of distractor nodes, a lot of insight can be gained from the analysis
of expression trees drawn by students in exams. On that direction, Chapter 7
suggests directions for future work.
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Table 4.4. Categories of mistakes made by students when drawing expression
trees in paper-based exams.

Category Description Examples

Inline
Node containing token that
should be in a child node

make("this")

#+#+#+#

Extract
Node containing token that
should be in a parent node

make

#:#

EvaluatedExp
Node containing the result of
evaluating an expression

"made" + #

"D"

OtherCode
Node containing tokens that are
not part of the expression tree

String s =

run()

NoParenMethodCall Method call without parenthesis
make#

id#

CharAsString Single character delimited by dou-
ble quotes instead of single quotes

"+"

CodeInString Holes inside a String
#=#

"a[#] = "

MissingQuotes String literal without quotes
make(this)

a[i] =

MissingHoles Node with missing holes
a[]

+

Misc
Mistakes that we were not able to
categorize

string#

a=null(#,#)

Distractor Generation

Using these patterns of mistakes, we set out to generate a set of distractor nodes
for any given expression by modifying the nodes from the correct expression tree.
The idea is that the set of nodes given to the students to construct the tree should
consist of the nodes in the correct answer, generated by JDT, augmented with the
distractor nodes.

An important constraint is that we want to be able to allow the students to
make the most commonly found mistakes but we want to present the students
with a relatively small set of nodes they can use to construct the tree. To that end,
we have targeted a subset of the categories and developed various heuristics to
generate distractor nodes in these categories:

Inline (a) the content of each child node is inlined into its parents, but not
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Table 4.5. Categories of mistakes and number of occurrences of mistakes in
each category found in two exam questions about expression trees.

Category Occurrences Percentage

Inline 102 37.09%
Extract 41 14.90%
EvaluatedExp 33 12.00%
OtherCode 22 8.00%
Misc 19 6.91%
NoParenMethodCall 17 6.18%
CodeInString 15 5.45%
MissingQuotes 9 3.27%
MissingHoles 9 3.27%
CharAsString 8 2.91%

Total 275 100.00%

recursively;

(b) a fully inlined node is created for every subtree of depth three or less;

(c) for every node, inline its children if they have the same content.

Extract (a) for every name that appears in a node and is not itself an expression,
generate a node with that name and a node with the content of the
original node replacing the name by a hole;

(b) for every ternary operator node we generate two binary operator nodes
(e.g. the node #?#:# gives rise to #?# and #:#).

MissingQuotes (a) for every leaf node with content surrounded by single
quotes, double quotes, or back quotes, generate a node containing
the content between the quotes and another node with the hole sur-
rounded by the quotes.

The remaining categories are not included in the distractor generation: Evalu-
atedExp is not included because we are restricting ourselves to static analysis, at
this point; OtherCode is not included because our analysis is currently generating
only wrong nodes that contain tokens that are part of the expression; Misc doesn’t
seem to follow any noticeable pattern; NoParenMethodCall and MissingHoles
could be the result of imprecise (or different) notation by the student, which we
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want to simply avoid in our tool; CodeInString would require analysis of the
String’s content; and CharAsString happened with low frequency.

Figure 4.8 shows the set of distractor nodes generated for the expression
"a[i] = " + (a == null ? "X" : id(a[i].toString())) + '+' + 0

using the heuristics described above.

Figure 4.8. Distractor nodes generated for the expression
"a[i] = " + (a == null ? "X" : id(a[i].toString())) + '+' + 0

Evaluation of Distractor Nodes

We want to evaluate how “real” our distractor nodes are: how do they compare
to the wrong nodes created by students on paper in the exams we analyzed
previously. Although we were able to generate only 47.27% of the wrong nodes
created by the students on paper, if we consider only the categories that we are
actually trying to generate, 73.68% of the wrong nodes in those categories were
generated. From these, if we consider only the nodes in the test set, we were able
to generate 74.44% of the nodes.

Our strategy to generate distractor nodes is quite primitive and there is a lot
of room for improvement. The first thing would be to include other categories
of mistakes. The primary candidates would be: EvaluatedExp could be targeted
with partial evaluation techniques, for example; OtherCode could be targeted by
analyzing the whole AST of the program and creating nodes with tokens from
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the statement containing the expression (e.g. return statements and variable
initialization). CodeInString could also be targeted, at least in a partial way, by
some simple heuristics, for example by looking into the String for names that
were declared in the program.

We could also analyze more written exams, which could lead to uncovering
more mistakes so the proportions of categories of mistakes could be different.
Or the very classification of mistakes could be improved leading to a different
clustering of mistakes.

It is also possible that with a different user interface (for example with a
toolbar of distractor nodes augmented with a search feature), we could relax the
restrictions on the number of generated distractors allowing for the generation of
more or a bigger variety of distractors.

Ultimately, it is not clear how foundational is the problem of generating
distractor nodes. For a certain audience, creating their own nodes would not
only be feasible but also have an educational value. We should lower the bar for
the user to create their own nodes and investigate the impact of that both in the
usability of the tool and educationally in the mistakes the students make when
constructing expression trees.

On the other hand, the investigation into patterns of mistakes, that we used as
the basis for the generation of distractor nodes may be of greater value. They may
be symptoms of general patterns of mistakes in the understanding of the syntax or
semantics of a programming language: a programming language misconception,
as we define in previous work [Chiodini et al., 2021]. If that’s the case, the
generation of distractors based on these misconceptions may indeed be of more
foundational value. We suggest work in this direction in Chapter 7.

4.5 Automatic Generation and Assessment of Activities

We have shown the typing and parsing activities while describing their respective
commutative diagrams, shown in Figures 4.1 and 4.7, which also double as sim-
plified views of the architecture of the tool. These diagrams show an assessment
module, that we have alluded to before and will describe in more detail here
together with the automatic generation of activities. The key insight is that, by
implementing the components of the commutative diagram that describes the
notional machine, we essentially get the key components of a backend that can
automatically generate and assess activities.
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4.5.1 Single Activity Generation

The input for activities can be created manually by the instructor but that is time-
consuming and error-prone. Using JDT, we can automatically generate activities
which the instructor can then review and configure.

The instructor provides one or more Java classes, we automatically identify
the expressions and, once the instructor selects an expression, we generate the
activity. This includes not only the input for these activities but also the distractor
nodes and the correct answer, which we store and use to automatically correct
the activities and provide feedback to the students. The instructor reviews the
activity and configures various parameters such as the distractor nodes, whether
the students can add type labels or not, whether they can receive automated
feedback or not, and many others.

This kind of automation is useful when the instructor wants to create an
activity for a specific expression, for example, to use in a quiz or exam. But we
can also automate the generation of personalized activities for each student.

4.5.2 Personalized Activity Generation

Students often write code they don’t really understand. The code may be pieced
together from code fragments found online or from other students. With the
growing capabilities and prominence of large language models (LLMs), that
generate code based on user prompts, this issue becomes increasingly significant.
It’s never been easier to produce code. But there’s no guarantee that the code
produced by these models is correct so reasoning about code becomes even more
important. With ExpressionTutor, we can automatically generate activities for
the expressions in the student’s own code submitted to GitHub as part of their
assignments.

For every assignment, the instructor has to define the kind of expression that
should appear in the generated activities. When the students submit their code,
we automatically identify these expressions in their code and generate activities
for them. Each student then receives a link to their personalized activity in
a GitHub issue. Once the activity is completed, the student receives feedback
generated by the assessment module.

4.5.3 Automatic Assessment of Activities

Automatically generating personalized activities is very useful, but to make it
really scalable we also need to be able to automatically assess the students’
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solutions to these activities. That’s the purpose of the assessment module, that
is depicted in Figures 4.1 and 4.7. The information produced by this module is
used to automatically generate (1) feedback to each student about their solution
and (2) reports to instructors to help them make sense of the students’ solutions
both in an individual level (per student) and in an aggregate level (for a set of
students).

The core function of this module is to compare two ExpTutorDiagram data
structures: one produced by the student when answering the activity and the
other produced automatically when the activity was created, representing the
correct answer. The ExpTutorDiagram data structure is a graph, as we explained
in Section 2.3, in order to allow students more freedom to express mistakes. So
in principle, we could use a graph isomorphism algorithm to compare them. But
the graph formed by the data structure is quite particular because the connections
from a node to a hole are restricted by the holes that exist in each node and the
specific hole a node is connected to really matters. So we get better results by
comparing the diagrams using a tree comparison algorithm whenever the diagram
produced by a student is a tree.

Leveraging Tree-edit Distance to Compare Expression Trees

We compare trees mostly using the tree-edit distance algorithm by Zhang and
Shasha [1989]. But instead of producing only a number (the edit distance), we
want to know which nodes are in one tree but not the other and which nodes
are in both trees, taking into account where they appear in the tree, of course.
So we need to find a correspondence between nodes that takes into account the
node and where it shows up in the tree. For this, we explore the way the tree-edit
distance is calculated.

The distance is obtained by first producing a list of operations that when
applied to one tree will produce the other. These operations can be (1) insert a
node, (2) remove a node, or (3) change a node into another (these nodes may or
may not be equal to each other, for some definition of equality). A cost function is
then applied to these operations to produce a total cost, which is the distance (the
distance can be measured also in operations simply by tuning the cost function
appropriately). The algorithm produces a list of operations that minimizes the
total cost.

The idea is to leverage the list of operations produced by the tree-edit distance
algorithm to find which nodes in the student’s submission have equal correspond-
ing nodes in the reference solution (these would be correct nodes) and, from
that, also determine which nodes are wrong in the student submission (either
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because they are not present in the reference solution or because they correspond
to a different node in the reference solution) and which nodes from the reference
solution are missing in the student submission.

This approach is not without its limitations. The resulting tree comparison is
at times different from what one might expect or intuitively do when trying to
compare trees. That’s essentially because the operations that the algorithm uses
to turn one tree into the other don’t include, for example, node swapping or other
kinds of edge manipulation that would correspond to moving around nodes in
the tree, which is something that one could prefer to do when comparing trees.

Even when the diagram is not a tree, we can still collect useful information
by analyzing the structure of the diagram and identifying the reasons why the
diagram is not well-formed. In fact, we collect various other metrics about the
diagrams that are easy to calculate. All this information is used to produce the
feedback that is shown to students after they finish an activity and the assessment
report that is shown to instructors, which aggregates information from multiple
submissions.

Feedback to Students

When creating an activity, an instructor can enable or disable the feedback func-
tionality. Having the feedback disabled is useful when the activity is part of
an exam, for example. When the feedback is enabled, the student can obtain
feedback once the activity is completed.

Figure 4.9 shows an example of feedback generated for a student about the
student’s answer to an activity that was automatically generated based on the
student’s code. On the left, there is a list of incorrect and correct aspects of the
submission with a little explanation text underneath each aspect. These aspects
include well-formedness aspects of the diagram, for example, aspects that are
needed for it to form a tree, and tree-comparison aspects. On the right, the
students submitted answer is shown with nodes and edges that are correct in
green, nodes and edges that are wrong in red, and nodes that are not in the tree
in grey. For tree comparison, we consider the the biggest connected component.
This feedback does not give away the answer but gives a direction of what can be
improved.

Notice that all the incorrect nodes in this student’s submission are instances
of the same mistake: representing method names as expressions, clearly the
symptom of a misconception.
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Figure 4.9. Feedback automatically generated for a student’s answer to an
automatically generated activity based on the student’s code.

Aggregated Assessment to Instructors

The instructor has access to a dashboard where they can see reports about the
students’ submissions. These reports vary depending on whether the submissions
being analyzed are all answers to the same activity, as is the case in a quiz for
example, or if they are answers to personalized activities.

Figure 4.10 and Figure 4.11 show two reports generated about the answers
to a quiz. The first report (Figure 4.10) contains the reference solution and a
small sample of the submissions selected using stratified sampling. The idea is to
show a sample of submissions from different grade brackets. The second report
(Figure 4.11) contains submissions grouped by the incorrect nodes they contain.
The groups are sorted showing incorrect nodes that appeared more frequently at
the top. The nodes are shown with a notation that replaces holes by #.

Figure 4.12 shows a report generated about answers to personalized activities
generated using the students’ solutions to one of the labs. On top, a table view



72 4.5 Automatic Generation and Assessment of Activities

showing various metrics collected about each submission, and on the bottom, a
view of the same page but with one of the rows expanded to reveal a side-by-
side comparison between a student’s submission (on the left) and the reference
solution (on the right). The nodes are colored according to the tree comparison
based on tree-edit distance as described before. So red nodes on the left tree are
wrong in the student’s submission and red nodes on the right tree are nodes that
exist in the reference solution but are missing from the student’s submission.

Figure 4.10. Overview report shown for answers to an activity used in a quiz.
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Figure 4.11. Incorrect nodes report for answers to an activity used in a quiz.
Answers are grouped by wrong nodes.



74 4.5 Automatic Generation and Assessment of Activities

Figure 4.12. Assessment report shown to an instructor about a set of student
submissions.

(a) Table view showing various metrics collected about each submission.

(b) View of one of the rows expanded to reveal a side-by-side comparison between
a student’s submission and the reference solution. Red nodes on the left are wrong
in the student’s submission and red nodes on the right are nodes from the reference
solution that are missing in the student’s submission.
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4.6 Conclusion

In this Chapter, we have used the theoretical framework we have proposed to
reason about notional machines in practice in the analysis and improvement
of ExpressionTutor, a family of notional machines that can be used to focus on
different aspects of expressions, such as parsing and type-checking.

ExpressionTutor is language agnostic but here we use Java as a language
under focus. That stands in contrast to the analysis in Chapter 3, which used
notional machines focused on untyped lambda calculus, a language of mostly
theoretical use. By focusing on Java, we show the applicability and scalability of
our approach to “real world” scenarios.

In addition to the analytical benefit, the commutative diagram that we use to
reason about ExpressionTutor maps directly to components of the real tool. In a
real use by a student, the function that describes the operation in the notional
machine level (fNM), is enacted by the student. Combining this fact with an
implementation of the components of the commutative diagram leads to a tool
that can automate the generation and assessment of educational activities centered
on the notional machine.

Finally, to further ground the development of the tool, we have analyzed
students’ answers to exam questions that required them to draw expression trees
on paper. This analysis had the original purpose of informing practical aspects of
the design and implementation of the tool, but may have the potential to be used
in other educational contexts, which we discuss further as part of suggestions for
future work in Chapter 7.
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Chapter 5

Notional Machines as Assessment
Instruments

Until now, we have used the commutative diagram that defines the soundness of
notional machines as the basis for the design and analysis of notional machines.
But we also would like to investigate actual uses of notional machines and using
essentially the same reasoning framework can help us in this investigation.

We can separate the uses of notional machines into two categories: teaching
and assessment. In the teaching context, a notional machine would typically be
used in instructional materials or in class (they could equivalently be used by
students when studying on their own). Although it is essential to evaluate the
effectiveness of a notional machine for teaching, we will instead focus on uses of
notional machines for assessment. In the assessment context, a notional machine
is an assessment instrument. As such, it would typically be used by students during
an assessment activity and the instructor would then use the students’ answers to
assess their understanding of the aspect of the programming language under focus
by the notional machine. For example, students could be assessed in an exam
with a question that asks them to, given a program, draw a memory diagram that
describes the state of the program at a given point in the execution.

The appeal of assessing students using notional machine questions compared
to traditional question formats is that, when compared with multiple-choice
questions, notional machine questions have a higher information density and,
when compared to open questions, notional machine questions are more precise
and less ambiguous. Another advantage, when compared to open questions, is
that notional machine questions are more amenable to automation.

The use of notional machines as assessment instruments relies on the assump-
tion that students’ usage of a notional machine reflects their understanding of the

77



78 5.1 The Instructor’s Perspective

aspect of the programming language under focus by that notional machine. More
precisely, instructors assume that usage patterns of a notional machine correspond
to patterns in the student’s understanding of the aspect of the programming lan-
guage under focus by that notional machine. In fact, we interviewed instructors
and identified evidence supporting that indeed this assumption is made in practice.
These interviews are described in Section 5.1.

Under this assumption, the effectiveness of a notional machine as an assess-
ment instrument relies on there being a correspondence between the notional
machine and the aspect of the programming language under focus by that no-
tional machine. This correspondence is precisely what the soundness condition
describes. So, we use the soundness condition to devise a methodology to design
experiments that can evaluate the effectiveness of a given notional machine as an
assessment instrument. This methodology is described in Section 5.2. We then
instantiate this methodology to design a pilot study to evaluate ExpressionTutor.
This pilot study is described and its results are analyzed in Section 5.3. A final
discussion is provided in Section 5.4.

5.1 The Instructor’s Perspective

We performed semi-structured interviews with three instructors with the goal of
investigating how instructors use ExpressionTutor as an assessment instrument.
The instructors were first given a text explaining ExpressionTutor as an instrument
to assess the students’ understanding of the structure of expressions. They were
then given ten ExpressionTutor diagrams submitted by students for the same
parsing activity. Their task was to grade each diagram according to how well the
student that submitted the diagram demonstrated to understand the structure of
the expression in the activity. While grading, they were asked to think aloud and
explain their reasoning.

The instructors developed various grading schemes. Although one of the
instructors said that it would be better for grading if students had to submit
explanations together with the trees, for all the instructors, the presence or
absence of specific patterns in the diagram had a measurable impact on the
grade. The instructors justified these choices typically by mentioning what they
believe the presence or absence of those patterns meant in terms of the student’s
understanding of the structure of the expression. For example, Instructor 1 said
when looking at one of the trees: “they are trying to express something... I would
say it’s not completely wrong”. When grading a solution of a typing activity where
some nodes were not labeled with types, Instructor 2 said that if the non-labeled
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nodes mean the student thinks those nodes don’t have types this would mean a
worse understanding of expressions. The same instructor said about the presence
of a return node in one of the solutions: “it’s clear they confuse expression and
statement”.

These interviews provide evidence for our assumption that instructors assume
that usage patterns of a notional machine correspond to patterns in the students’
understanding of the aspect of the programming language under focus by that
notional machine.

5.2 Experiment Design Methodology

This experiment design methodology relies on the relationship between a notional
machine and the aspect of the programming language under its focus described
by the soundness condition.

The idea is that if a notional machine NM focused on an aspect f of a language
PL is used in an assessment activity, then what we’re assessing is the students’
knowledge about f . So we can devise questions about f using the notional machine
NM and compare them with "ground truth" questions about f that do not use
NM. In the context of a course, students should be assessed according to clear
learning goals so one should select an f that is aligned with the learning goals of
the course.

Let’s describe the methodology in more detail. Given a notional machine
NM described by (ANM, BNM, fNM :: ANM→ BNM) and an aspect of a programming
language PL described by (APL, BPL, fPL :: APL→ BPL) under focus by this notional
machine, the steps of the experiment design are as follows:

Design ground truth questions Devise a set of questions QPL such that each
question qiPL

∈ QPL should be formulated in terms of an input viPL
:: APL and

the operation fPL :: APL→ BPL, such that the correct answer can be obtained
with information present in fPL (viPL

) :: BPL.

These questions should be "ground truth" in the sense that they should
be considered more likely (or at least as likely) to be answered correctly
if the students understood the aspect of the programming language un-
der focus. For these questions to have this effect, not only the questions
themselves have to be carefully designed but so must be the educational
intervention into which they are embedded, i.e. the context in which the
questions are asked. One such context could be, for example, that of Mastery
Checks [Bloom, 1968; Guskey, 2010; Wrigstad and Castegren, 2019].
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Design notional machine questions Devise a set of corresponding questions
QNM, in the notional machine space. Each question qiNM

∈ QNM should be
formulated in terms of an input viNM

obtained from the input viPL
to the

corresponding ground truth question (viNM
= αA (viPL

) :: ANM). The correct
answer to this question, resulting from operating the notional machine,
would be given by fNM (viNM

) :: BNM. The idea of this setup is that each
notional machine question should assess the same conceptual knowledge
required to answer the corresponding ground truth question:
fNM (viNM

)≡ αB (fPL (viPL
)).

Compare and analyze answers Compare the answers to the ground truth ques-
tions with the answers to the notional machine questions. The expectation
is that a student would answer the notional machine questions correctly if
and only if they would answer the ground truth questions correctly.

This comparison may be challenging because these two types of questions
may not require exactly the same information to answer. Although we
would like the information contained in both answers to be the same, a
ground truth question would likely have smaller granularity, eliciting only
part of the information captured by fPL. If that’s the case, we can describe
this "part of" information by a query on the abstract representation of the
notional machine or a pattern matching part of this abstract representation.

In the remainder of this chapter, we demonstrate how this methodology
can be applied by designing a pilot study that evaluates the effectiveness of
ExpressionTutor, (we introduced ExpressionTutor in Section 2.3, used it later in
Section 2.5, and expanded it further in Chapter 4) as an assessment instrument.

5.3 Pilot Study Design

We designed and ran a pilot study in the context of a second-semester university
course that uses Java as a programming language to evaluate the effectiveness of
ExpressionTutor as an assessment instrument.

As we have seen in Section 2.3, ExpressionTutor is actually a family of notional
machines, that can be instantiated for different programming languages and
different aspects of these programming languages. In this study, we focus on the
instantiations of ExpressionTutor for Java focusing on parsing.
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5.3.1 Designing Ground Truth and Notional Machine Questions

The pilot study was designed as a quiz administered in the Programming Funda-
mentals 2 (PF2) course, taught in the second semester of the first year. In the next
section, we describe the course context in more detail. After that, we describe the
structure of the quiz and subsequently how its content corresponds to the ground
truth and notional machine questions.

Course Context

The quiz was administered during the Programming Fundamentals 2 (PF2) course,
an introduction to object-oriented programming in Java. The course is taught
in the second semester of the first year of the bachelor’s degree in computer
science. It follows Programming Fundamentals 1 (PF1), which is taught using
the book How to Design Programs (HtDP) by Felleisen et al. [2018] that follows
a sequence of sublanguages of Racket. PF2 picks up where PF1 left off, starting
with a subset of Java that is as close as possible to the subset of Racket used in
PF1. This approach builds upon our experiences in bridging from functional to
object-oriented programming, described in previous work [Santos et al., 2019],
and takes it even further. It also has some commonalities with the approaches
described by Matthias Felleisen et al. [2012]; Gray and Flatt [2003].

Knowledge about the programming language The quiz was administered in
the second week of the course. At that point in the course, the students had
seen only static method calls, static method definitions containing only a single
return statement (and optionally assertions), arithmetic operators, and binary
operators. The programs written in class and in the assignments were all using
JTamaro, a library based on PyTamaro [Chiodini et al., 2023], which is designed
to help teaching programming by focusing on composition and using graphics as
a medium. The library is inspired by the image teachpack from How to Design
Programs (HtDP) [Felleisen et al., 2018] and the Haskell diagrams library [Yates
and Yorgey, 2015; Yorgey, 2012].

Knowledge about the notional machine In the lecture before the quiz, the stu-
dents had been introduced to expression trees. They were shown how expressions
form trees and how we can traverse these trees to evaluate the expression. In
that lecture, the students also did one small in-class exercise to practice. The
explanations and the exercise were done on paper, not using ExpressionTutor.
The students did the quiz in the subsequent lecture, which happened two days
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later. Before doing the quiz, the students were shown how to use ExpressionTutor
to click together expression trees. They were also given an exercise to do using
ExpressionTutor so they could practice before the quiz.

Quiz Structure

The quiz consists of multiple questions administered on Moodle. Figure 5.1 shows
part of a Moodle page with a question. Each question in the quiz contains three
parts:

1. A code context, which contains a fragment of Java source code.

2. An ExpressionTutor activity question, which effectively consists of four parts:

(a) A link to an ExpressionTutor activity to be completed on our platform;

(b) A piece of text that identifies the notional machine input (i.e., the
expression for which the student should provide a tree) either giving
a line number, as shown in Figure 5.1, or repeating the source code of
the expression in the text of the question.

(c) A text that explains which activity should be performed and a set of
reminders about how to operate with the notional machine;

(d) Instructions on how to save their answer. This is necessary because the
ExpressionTutor platform has no Moodle integration so the student
must explicitly click “Save” on the platform and copy the given URL
back into the quiz.

3. Several multiple-choice items. In Figure 5.1, only two multiple-choice items
are shown.

(a) A stem;

(b) A number of options (from which only one can be chosen). To alleviate
the problem of guessing and unserious attempts, we communicated
clearly that the quizzes would not be graded and we added an “I
don’t know” option to every item (on top of the usual possibility of
not answering). In addition to that, every question also had a “Code
Does Not Compile” option because, as shown in Chapter 4, parsing
and typing activities can fail. We decided to add this option to every
question also because it would be consistent with future quizzes.
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(c) A free-text field to write a brief explanation for the answer. The
inclusion of this field follows the suggestions of Chiodini and Hauswirth
[2021], which shows the risks of adopting answers to multiple-choice
questions as a pedagogical instrument without taking into account
student’s explanations for their answers. In Section 5.3.2 we explain
how exactly these explanation, were used.

In Figure 5.1 the ExpressionTutor question is presented before the set of multiple-
choice items but, to mitigate possible learning effects, we swapped this order in
half of the questions. Note that irrespective of the order in which the questions
were presented, we cannot guarantee that the students completed them in this
order.

Quiz Content

Notional machine questions In terms of the methodology presented in Sec-
tion 5.2, each ExpressionTutor question corresponds to a notional machine ques-
tion qiNM

∈ QNM. The operation fNM ::ANM→ BNM is parsing and the input viNM
::ANM

is given by:

(1) the code context;

(2) the information that identifies the expression in the code context (the line
number or the text of the expression);

(3) a set of distractor nodes.

The correct answer is given by fNM (viNM
)::BNM. For example, Figure 5.3 contains the

input and expected solution for the ExpressionTutor question shown in Figure 5.1.

Ground truth questions On the side of the ground truth questions, a question
qiPL
∈ QPL actually correspond, here to a multiple-choice item of a quiz question.

As we have seen in Section 4.4.1, the inputs viPL
and viNM

for a parsing activity can
conceptually be considered the same: the text of the expression to be parsed and
the code context, although in ExpressionTutor we augment viNM

with distractor
nodes.

The stem of each multiple-choice item qiPL
was formulated such that answering

with one of the options corresponds to a pattern on the tree of the corresponding
notional machine question qiNM

. Most multiple-choice items have effectivelly two
options to choose from, in which case, either the correct answer to the multiple-
choice item corresponds to the presence of a pattern in the tree and the wrong
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Figure 5.1. Beginning of the page in the Moodle quiz as shown to students
containing an ExpressionTutor question for a parsing activity.
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Consider the following Java source code:

1 class C {

2 public static int prod(int n) {

3 return 1 * n;

4 }

5 public static int sum() {

6 return prod(2) + 3;

7 }

8 }
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Open this ExpressionTutor activity.

Create the tree corresponding to the expression in line 6.

If the piece of code is not an expression or the code does not compile, select
the "Code Does Not Compile" button instead.

To construct the tree, do the following:

• Connect together the right nodes to form a tree (all the nodes you
might need are already there).

• Mark the root of the tree with a star by double-clicking on that node.

To submit your answer, click the Save button at the bottom of the page, copy
the URL shown in the dialog that will open, and paste it below.

Answer:
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Answer the following multiple-choice questions with respect to the expres-
sion in line 6:

Question A.1: Is return part of the expression?

# Yes

# No

# Code Does Not Compile

# I don’t know

Explain your reasoning:

Question A.2: Is ; part of the expression?

# Yes

# No

# Code Does Not Compile

# I don’t know

Explain your reasoning:

https://expressiontutor.org/activity/do?task=e02851fd-3f65-4ec7-8a17-d7f85a3be10b
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answer corresponds to the absence of the pattern or vice versa (the correct answer
corresponds to the absence of the pattern and the wrong answer corresponds to
the presence of the pattern). For example, consider the multiple-choice item A.1
shown in Figure 5.1, whose stem reads: “Is return part of the expression?”. The
option “Yes” (a wrong answer) corresponds to the presence of a return node in
the tree, and the option “No” (the correct answer) corresponds to the absence
of a return node in the tree. This multiple-choice item is testing if the student
understands that the return keyword is not part of the expression and the idea
is that this knowledge can be assessed both by the answer to this multiple-choice
item and by the presence or absence of a return node in the tree.

Notice that this item has actually four options to choose from and in Sec-
tion 5.3.3 we will see how we deal with this. We also need to incorporate in the
answers the information about student’s explanations, which we discuss in the
next Section.

The content of the questions (the choice of the specific information we were
trying to elicit from the students) was heavily influenced by our previous work
on programming language misconceptions [Chiodini et al., 2021]. Our intention
was to try to ask questions that could reveal that a student has a previously
known programming language misconception. In fact, we believe that it could be
perhaps possible to use notional machines to help detect programming language
misconceptions but that remains to be studied in future work (Chapter 7) and is
not the focus of this research.

For understandability and reproducibility, the entire content of the quiz is
shown together with the analysis of the results in Sections 5.3.4 and 5.3.5.

5.3.2 Analyzing Explanations

We want to compare the answers to the notional machine questions with the
answers to the ground truth questions. Each ground truth question is made of
a multiple-choice item and a textual explanation of the answer. The reliability
of this ground truth instrument depends heavily on our analysis of the expla-
nations provided by the students. Following the recommendations of Chiodini
and Hauswirth [2021], we classified the explanations of the students into four
categories1:

Expl-Correct The explanation shows with enough strength that the student has
the correct understanding required to solve the question.

1We used the same categories as Chiodini and Hauswirth [2021] but the conditions for each
category here diverge a little from the ones the authors use.
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Expl-Wrong The explanation shows with enough strength that the student has
the wrong understanding about the question posed and thus cannot properly
answer the question.

Expl-Imprecise The explanation is insufficient by itself to support a correct
answer.

Expl-Missing No explanation is provided or the text provided is not an explana-
tion.

Let’s see some examples of explanations that fall into each category. Table 5.1
shows answers and explanations given by students for the multiple-choice item
“Is return part of the expression?” classified with each of the categories.

Category Answer Explanation

Expl-Correct
No return is just a command for the method
No Return tells the compiler which expression need

to return in that method, its not part of the inner
expression

No return is a statement

Expl-Wrong
Yes we require a return statement without the return

part we can not have the code
Yes return is part of the method, and therefore is a part

of the expression
Yes Return is a function that says to the program to

stop running and return a value.

Expl-Imprecise
No Because we just construct a tree, we dont need

exactly output
No the expression is what the code should execute
No If I remember correctly, which I might not :D ,

return is not an expression but a method and/or a
statement.

Expl-Missing
No have no clue
Yes i think s, but i am not so sure

Table 5.1. Examples of answers and explanations given by students for the
question “Is return an expression?” classified with each category.

Classifying these explanations is not always straightforward. We briefly discuss
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some of the challenges we faced when classifying the explanations given by
students to their answers.

Explanation That Contradicts the Answer

Sometimes, a student chooses an answer that is correct but provides an expla-
nation that is wrong or vice versa. For example, Table 5.2 shows examples of
correct answers justified with wrong explanations. These answers are particularly
worrisome because not only they are factually wrong (return is not a call, a
method, or a function) but even if they were factually correct (if return was a
call, a method, or a function) that would be a reason for return to actually be
part of the expression, contradicting the answer.

Category Answer Explanation

Expl-Wrong
No Return is a call
No is a method in Java
No return is a function

Table 5.2. Examples of answers and explanations given by students for the
question “Is return an expression?” showing that a wrong explanation can be
given for a correct answer.

When the explanation contradicts the answer, we can more confidently classify
it as Expl-Wrong but when it is not an explanation for the answer or the explanation
is unclear or substantially unrelated to the answer then we classify it as Expl-
Imprecise. Table 5.1 contains some examples.

Same Explanation for Opposite Answers

It is also possible that the same explanation is given both for a correct and a
wrong answer. For example, Table 5.3 shows the same explanation given for both
the correct answer and the wrong answer. To resolve this ambiguity, we don’t
classify the text of the explanation by itself but as a text that justifies the answer.
For example, the explanation “return is a statement” for the answer “No” reads
as “Is return part of the expression? No because return is a statement” and is
classified as Expl-Correct. While the explanation “It’s a return statement” for
the answer “Yes” reads as “Is return part of the expression? Yes because it’s a
return statement”, meaning that statements are expressions, so the explanation
is classified as Expl-Wrong. Of course, it is also possible that the student simply
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made a mistake selecting the wrong option but there’s not enough information in
the explanation to determine that.

Category Answer Explanation
Expl-Correct No it is statement
Expl-Wrong Yes It’s a return statement

Table 5.3. Examples of answers and explanations given by students for the
question “Is return an expression?” showing that the same explanation can be
given for both a correct and a wrong answer.

A Different Interpretation of the Question

With this approach, it is much more likely to classify with explanation Expl-
Wrong a submission with a correct answer than it is to classify with explanation
Expl-Correct a submission with a wrong answer. It is nevertheless possible to
have a submission with a wrong answer and an explanation Expl-Correct. For
example, for the question “Is 1 + 2 + 3 equivalent to (1) + (2) + (3)?”, a
student answered “No” and explained with “It is equivalent to (1 + 2) + 3”. As
we will discuss in Section 5.3.3, although this is a wrong answer for behavioral
equivalence, it is a correct answer for structural equivalence.

Using Explanations to Filter Answers

Because of all this variability in the relationship between answers and explanations,
we are conservative and consider in the results reported in the next section only
(1) correct answers that come with explanations classified as Expl-Correct and
(2) wrong answers that come with explanations classified as Expl-Wrong. The
other answers were filtered out.

5.3.3 Results: Compare and Analyze Answers

The course had 89 students registered for the final exam. The students were asked
at the beginning of the semester for permission to have their quizzes analyzed as
part of a research study and 67 gave their consent2. Of the 67 students who gave
their consent, 54 students participated in the quiz.

2The protocol for this study was approved by the university’s ethics committee.
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The students had at most 45 minutes to answer the questions. Answers
submitted after that time were not considered. To select higher-quality answers,
we not only used the explanations given by students as explained before but also
excluded results with ExpressionTutor diagrams that didn’t form a tree. Because
the students had to explicitly click save on the ExpressionTutor platform and copy
the given URL back into the quiz, there were also some results that had to be
discarded because the student copied the wrong URL (a URL with an expression
tree solution of one question submitted to another question).

The results vary considerably between multiple-choice items so we report the
results of each multiple-choice item individually. For each question, we show
a Figure (e.g. Figure 5.3 for exercise A) containing the input to the question
and the expected solution for the ExpressionTutor question, as we described
before. Remember that part of this input, namely the code context and the
text that identifies the expression of interest in the code context are both inputs
to (1) the ExpressionTutor question and to (2) the multiple-choice items. For
each multiple-choice item, we show a Figure (e.g. Figure 5.5 for exercise A.1)
containing:

(a) The stem with the options that came with it and the correct answer.

(b) A description of the tree pattern that is expected to be associated with the
wrong answer to that multiple-choice item followed by an example of an
answer to the ExpressionTutor question submitted by a student containing
a tree that has this pattern. The pattern could be, for example, the presence
of certain nodes or a certain subtree but could also be the absence of certain
nodes or subtrees.

(c) A table comparing

(1) the correctness of answers to the multiple-choice item (MC answer
rows) with

(2) the correctness of answers to the ExpressionTutor question with respect
to the tree pattern expected to be associated with that multiple-choice
item (Tree pattern columns).

There are four cases and for each case, we report the number of students in
that case (between parenthesis) and the percentage this number represents
of the number of students in the four cases. For example, in the cell in
column "Tree pattern - correct" and in row "MC answer - correct" are students
that submitted trees that don’t contain the wrong pattern and gave the
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ET Question MC Item Stem Results

Figure 5.3

A.1 Is return part of the expression? Figure 5.5
A.2 Is ; part of the expression? Figure 5.6
A.3 Does the expression contain 1 * n? Figure 5.7
A.4 Does the expression contain 1 * 2? Figure 5.8
A.5 Is 2 an expression? Figure 5.9

Figure 5.10
B.1 How many steps is 1 + 2 + 3 evalu-

ated in?
Figure 5.11

B.2 Is 1 + 2 + 3 equivalent to (1) +

(2) + (3)?
Figure 5.12

B.3 To evaluate 1 + 2 + 3, is 2 + 3

evaluated before adding 1?
Figure 5.13

Table 5.4. For each multiple-choice (MC) item, a Figure with the corresponding
ExpressionTutor (ET) question, its stem, and the Figure summarizing the
comparison between the answers to that item and the corresponding expression
trees.

correct answer to the multiple-choice item. Notice that the trees these
students submitted may have other mistakes but they are not relevant for
that comparison. The row "MC answer - wrong" doesn’t include the answer
“I don’t know”, which was included as an option to avoid guessing, and
“Code does not compile”, which was included in every question (as explained
before).

(d) For completeness, we also report a list of exclusion criteria (previously
described) and, for each criterion, the number of students (between paren-
thesis) and the percentage this number represents of the total number of
students that participated in that quiz. Notice that some students may be
in more than one criterion of this list.

Table 5.4 shows the stem of each multiple-choice item, a reference to the
Figure containing the input to the corresponding ExpressionTutor (ET) question
and the correct answer, a reference to the Figure that summarises the results
of the comparison between the answers to that item and the answers to the
ExpressionTutor question. To understand the stems in the multiple-choice items
of question A, we need to know which expression we are referring to. This
information was shown to the students as depicted in Figure 5.1, which shows
the beginning of the Moodle page for the quiz. Before the multiple-choice items,
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Figure 5.2. Correctness of answer to multiple-choice (MC) questions vs. cor-
rectness of answers to ExpressionTutor questions.

0.00%
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50.00%

75.00%

100.00%

A.1 A.2 A.3 A.4 A.5 B.1 B.2 B.3

Wrong MC / Wrong Tree

Wrong MC / Correct Tree

Correct MC / Wrong Tree

Correct MC / Correct Tree

we state “Answer the following multiple-choice questions with respect to the
expression in line 6”.

Result Overview

Figure 5.2 shows a summary of the values in the Result tables (listed in Table 5.4).
The results of each table are shown here in one vertical bar, with the four cases
stacked on top of each other.

The results we would expect are (1) correct answers to multiple-choice items
whenever there are also correct answers to the corresponding ExpressionTutor
questions (with respect to the tree pattern of the corresponding multiple-choice
item), shown in blue, and (2) wrong answers to multiple-choice items whenever
there are also wrong answers to the corresponding ExpressionTutor questions,
shown in green. From the unexpected cases, the most notable was the substantial
occurrence of wrong answers to multiple-choice items paired with correct answers
to the corresponding ExpressionTutor questions, shown in yellow, in the multiple-
choice items of question A.

These results are analyzed in depth in Sections 5.3.4 and 5.3.5.

Student Interviews

We also conducted unstructured interviews with a small number of students
(5 students) who submitted answers to the ExpressionTutor questions in the
form of trees that had patterns that were unexpected given their answers to
the corresponding multiple-choice items. Differently from the quizzes, which
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happened in the first three weeks of the course, these interviews happened at the
end of the semester. By the end of the semester, the students have had much more
practice with expression trees and have even been asked an exam question about it.
In the interviews, the students were first not shown their answers but were simply
asked again to answer the contradicting pair of questions (the ExpressionTutor
question and the multiple-choice item that contradicted it). In most cases, the
students were able to answer both correctly. They then were shown the answers
they gave and asked to further clarify and explain their answers.

In the next Section, we dive deeper into the results of the quiz and analyze
them in light of the insights we gained from the interviews.

5.3.4 Question A

Multiple-Choice Items A.1 and A.2

Motivation for the item From our analysis of previous years’ exam questions
about expression trees (see Section 4.4.2), we know that students often have
difficulty identifying which tokens belong to an expression when non-expression
tokens appear in the same line as the expression. The multiple-choice items A.1
(Figure 5.5) and A.2 (Figure 5.6) were designed to assess that.

Analysis of the results One of the problems with the setup of this question was
that the instructions and information present on the Moodle page were not the
same as the one present on the ExpressionTutor page, where they were drawing
the diagram. Figure 5.4 shows the ExpressionTutor page as seen by students
when they followed the link “this ExpressionTutor activity” shown in the Moodle
page that was reproduced in Figure 5.1. On the ExpressionTutor page the student
is asked to “Construct a tree based on the following Java expression” and shows
the expression prod(2) + 3. On Moodle, the student is given the entire code of
class C and asked to “Create the tree for the expression in line 6”. It is difficult
to say the extent to which this difference in instructions affected the students’
answers but we have some evidence that it did:

(a) during the quiz, two students asked for clarification pointing out this differ-
ence and asking which expression should they draw the diagram for;

(b) one of the submitted explanations seems to refer to that, saying “this is
a piece of code and is not an expression, it is not compiler without first
method (prod) on line 3.”. This student answered “Code coes not compile”.
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Figure 5.3. Information given to students and expected solution to Expression-
Tutor activity in question A.

(a) Code context followed by instructions shown to the students.

1 class C {

2 public static int prod(int n) {

3 return 1 * n;

4 }

5 public static int sum() {

6 return prod(2) + 3;

7 }

8 }

Create the tree corresponding to the expression in line 6.

(b) Distractor nodes that are part of the initial state of the activity.

(c) Expected solution.
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Figure 5.4. ExpressionTutor page as seen by students when coming from the
Moodle question A.

(c) one of the students interviewed clarified that he thought return was part
of the expression and the only reason for not including it in the tree was
that the code shown on the ExpressionTutor page did not include it.

That could explain the high number of cases where the answer to multiple-choice
item A.1 was wrong and the tree did not include the return token. The same
problem could have affected the answers to multiple-choice item A.2, where the
students were asked if the ; token was part of the expression.
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Figure 5.5. Comparison between answers to ExpressionTutor question A and
answers to multiple-choice item A.1.

(a) Multiple-choice item A.1 and its correct answer.

Question A.1 Is return part of the expression?
Options A) Yes

B) No
C) Code Does Not Compile
D) I don’t know

Correct answer No

(b) Submission with tree pattern expected to be associated with the wrong answer.

Wrong tree pattern: Presence of a node containing return.

(c) Comparing correctness of multiple-choice item (MC) answers with correctness
of tree. Showing percentage of submissions and the number of submissions in
parentheses.

Tree pattern
wrong correct

MC answer
correct 6.2% (2) 37.5% (12)
wrong 21.9% (7) 34.4% (11)

(d) Exclusion Results for multiple-choice item A.1

Exclusion Criteria Percent (Count)
Answer is "Code Does Not Compile" 5.1% (2)

Answer is "I don’t know" 2.6% (1)
Diagram is not a tree 7.7% (3)

Diagram of another question 2.6% (1)
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Figure 5.6. Comparison between answers to ExpressionTutor question A and
answers to multiple-choice item A.2.

(a) Multiple-choice item A.2 and its correct answer.

Question A.2 Is ; is part of the expression?
Options A) Yes

B) No
C) Code Does Not Compile
D) I don’t know

Correct answer No

(b) Submission with tree pattern expected to be associated with the wrong answer.

Wrong tree pattern: Presence of a node containing semicolon.

(c) Comparing correctness of multiple-choice item (MC) answers with correctness
of tree. Showing percentage of submissions and the number of submissions in
parentheses.

Tree pattern
wrong correct

MC answer
correct 4.8% (2) 45.2% (19)
wrong 11.9% (5) 38.1% (16)

(d) Exclusion Results for multiple-choice item A.2

Exclusion Criteria Percent (Count)
Answer is "Code Does Not Compile" 2.1% (1)

Answer is "I don’t know" 0.0% (0)
Diagram is not a tree 6.4% (3)

Diagram of another question 2.1% (1)
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Multiple-Choice Items A.3 and A.4

Motivation for the item We also have evidence, from our analysis of previous
years’ exam questions about expression trees (see Section 4.4.2), that students
confuse the static structure of expressions with what happens at runtime when
they are evaluated. A symptom of that is the presence of tokens in the tree that
are not part of the expression but that are part of other expressions that are
evaluated when the first expression is evaluated. The multiple-choice items A.3
(Figure 5.7) and A.4 (Figure 5.8) were designed to assess that. To evaluate the
expression of interest (the one in line 6: prod(2) + 3), the body of the method
prod, which contains a multiplication, has to be evaluated. So we want to look
for the presence of a node containing a multiplication token in the tree.

Analysis of the results Because both questions are essentially trying to detect
the same underlying misconception, we aggregated the results for both questions
in Table 5.5. In this table, results appear in the row "MC answer - correct" if the
student answered correctly to both questions (meaning that the student doesn’t
appear to have the misconception) and in the row "MC answer - wrong" if the
student answered incorrectly to at least one of the questions (meaning that the
student appears to have the misconception).

Table 5.5. Aggregated results for multiple-choice items A.3 (shown and Fig-
ure 5.7) and A.4 (shown and Figure 5.8).

Tree pattern
wrong correct

MC answers
correct 0.0% (0) 23.8% (10)
wrong 11.9% (5) 64.3% (27)

We see that whenever the tree was wrong, the student answered incorrectly
to at least one of the questions. But a correct tree did not always imply a correct
answer to the questions: A surprising number of students drew the tree without a
node containing multiplication but answered Yes to whether the expression con-
tains 1 * n or 1 * 2. Students justified their answers with various explanations
that refer in one way or another to what is essentially the runtime behavior of the
program. For example: “Yes, because it first evaluates prod(2) which contains
1 * n and then adds 3”; “because it is contained in prod(n)”; “Yes, because it
substitutes n in 1 * n by 2 and, therefore, we have 1 * 2”.

One of the students interviewed had answered Yes to one of the multiple-
choice items and, differently from other interviewed students who were able to
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answer the questions correctly during the interview, still said that the expression
contained a multiplication. When asked for further clarification, the student
said that it "contained" because it was "related". This interview was particularly
revealing because during it there were often miscommunications that seemed
to be related to limited knowledge of the natural language being used in the
interview3. This is a valuable experience because it highlights that the sometimes
limited knowledge of the natural language used in the course plays a big role in
the results of the comparison between the answers to the multiple-choice items
and the answers to the ExpressionTutor questions.

Further investigation with the students would be needed to better understand
the high number of wrong multiple-choice answers that did not correspond to
wrong expression trees.

3The interviews were conducted in English, which is neither the mother tongue of the inter-
viewer nor the mother tongue of the student being interviewed, as it’s the case for many students
in the course.
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Figure 5.7. Comparison between answers to ExpressionTutor question A and
answers to multiple-choice item A.3.

(a) Multiple-choice item A.3 and its correct answer.

Question A.3 Does the expression contain 1 * n?
Options A) Yes

B) No
C) Code Does Not Compile
D) I don’t know

Correct answer No

(b) Submission with tree pattern expected to be associated with the wrong answer.

Wrong tree pattern: Presence of a node containing a multiplication.

(c) Comparing correctness of multiple-choice item (MC) answers with correctness
of tree. Showing percentage of submissions and the number of submissions in
parentheses.

Tree pattern
wrong correct

MC answer
correct 0.0% (0) 43.8% (14)
wrong 6.2% (2) 50.0% (16)

(d) Exclusion Results for multiple-choice item A.3

Exclusion Criteria Percent (Count)
Answer is "Code Does Not Compile" 2.4% (1)

Answer is "I don’t know" 9.8% (4)
Diagram is not a tree 7.3% (3)

Diagram of another question 2.4% (1)
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Figure 5.8. Comparison between answers to ExpressionTutor question A and
answers to multiple-choice item A.4.

(a) Multiple-choice item A.4 and its correct answer.

Question A.4 Does the expression contain 1 * 2?
Options A) Yes

B) No
C) Code Does Not Compile
D) I don’t know

Correct answer No

(b) Submission with tree pattern expected to be associated with the wrong answer.

Wrong tree pattern: Presence of a node containing a multiplication.

(c) Comparing correctness of multiple-choice item (MC) answers with correctness
of tree. Showing percentage of submissions and the number of submissions in
parentheses.

Tree pattern
wrong correct

MC answer
correct 0.0% (0) 33.3% (14)
wrong 9.5% (4) 57.1% (24)

(d) Exclusion Results for multiple-choice item A.4

Exclusion Criteria Percent (Count)
Answer is "Code Does Not Compile" 0.0% (0)

Answer is "I don’t know" 2.1% (1)
Diagram is not a tree 6.4% (3)

Diagram of another question 2.1% (1)
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Multiple-Choice Item A.5

Motivation for the item Expressions can sometimes be a single token (for ex-
ample a variable use or an integer literal) and these atoms can, of course, also
be used as sub-expressions. It has been previously documented that students
don’t believe (or don’t identify) these atoms to be expressions (documented by
Chiodini et al. [2021] as NOATOMICEXPRESSION). We also have anecdotal evi-
dence from previous years’ exams that students sometimes draw expression trees
with these atoms inlined. The multiple-choice item A.5 (Figure 5.9) was aimed at
investigating the relationship between these two pieces of evidence.

Analysis of the results We see that when the tree correctly contains a node with
the number 2, in the majority of the cases (69%) the students answered that 2 is
indeed an expression. The surprise here was the two students who answered the
question correctly but still drew the tree with 2 inlined, for which we don’t have
a good explanation.

An important pattern can be seen in the students’ explanations when they
answered the multiple-choice item incorrectly (all associated with correct trees).
In general, they do seem to understand that 2 is an atomic component that is part
of the expression, which is perhaps why they were able to draw the tree correctly,
but 2 cannot be an expression because expressions must be made of multiple
parts. These are some examples of explanations for the wrong answer:

• “is just a value”

• “Its a value, an integer, therefore I dont think of it as being an expression”

• “2 is a value, its not an expression. Integer are natural number, double are
all the numbers. This means that the value is 2 and the type could be both
Int and Double”

• “2 is value and it can be maybe a piece of expression body”

That’s in fact consistent with the NOATOMICEXPRESSION misconception.
If we connect back to the methodology, these results show that there is an

incongruence in the information elicited by the multiple-choice item and the
information required to draw the tree: to create a tree with a node containing 2

it seems that one just needs to identify 2 as a separate atom used to compose the
expression, which doesn’t require 2 to itself be called an expression.
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Figure 5.9. Comparison between answers to ExpressionTutor question A and
answers to multiple-choice item A.5.

(a) Multiple-choice item A.5 and its correct answer.

Question A.5 Is 2 an expression?
Options A) Yes

B) No
C) Code Does Not Compile
D) I don’t know

Correct answer Yes

(b) Submission with tree pattern expected to be associated with the wrong answer.

Wrong tree pattern: Presence of a node with 2 inlined.

(c) Comparing correctness of multiple-choice item (MC) answers with correctness
of tree. Showing percentage of submissions and the number of submissions in
parentheses.

Tree pattern
wrong correct

MC answer
correct 4.5% (2) 65.9% (29)
wrong 0.0% (0) 29.5% (13)

(d) Exclusion Results for multiple-choice item A.5

Exclusion Criteria Percent (Count)
Answer is "Code Does Not Compile" 0.0% (0)

Answer is "I don’t know" 0.0% (0)
Diagram is not a tree 6.2% (3)

Diagram of another question 2.1% (1)
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5.3.5 Question B

Multiple-Choice Item B.1

Motivation for the item Figure 5.11 shows an example of a tree with the pat-
tern we were aiming to identify with this multiple-choice item. We have also
identified similar patterns in trees produced by students in exams, where binary
operators applied to other binary-operator applications are depicted as a single
node, especially when both operators are the same.

Analysis of the results We see that whenever the tree was correct, the student’s
answer to the multiple-choice question was also correct. However an incorrect tree
was not associated with an incorrect answer to the multiple-choice question. In
fact, the majority of the students (44.2%) actually answered the ExpressionTutor
question incorrectly and the multiple-choice question correctly.

An explanation for that may be rooted in the formulation of this question,
which doesn’t appropriately follow the methodology we described. The multiple-
choice question is formulated as “How many steps is 1 + 2 + 3 evaluated in?”.
But evaluation is not the operation that we’re performing when building the tree.
The operation on the ground truth question is different from the operation on
the notional machine. We were aware of that when creating the question. This
formulation came from our attempt to describe the fact that the correct tree has
three levels without referring to the structure of the expression. However this
indirect description led to a multiple-choice question that is not really asking for
the same information as the notional machine question which may have skewed
the results. Hypothetically, the structure of the expression could be flat and, at
the same time, its evaluation could be in two steps.
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Figure 5.10. Information given to students and expected solution to Expres-
sionTutor activity in question B.

(a) Code context followed by instructions shown to the students.

1 class C {

2 public static int m() {

3 return 1 + 2 + 3;

4 }

5 }

Create the tree corresponding to the expression 1 + 2 + 3 in line 3.

(b) Distractor nodes that are part of the initial state of the activity.

(c) Expected solution.
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Figure 5.11. Comparison between answers to ExpressionTutor question B and
answers to multiple-choice item B.1.

(a) Multiple-choice item B.1 and its correct answer.

Question B.1 How many steps is 1 + 2 + 3 evaluated in?
Options A) 1 step

B) 2 steps
C) Code Does Not Compile
D) I don’t know

Correct answer 2 steps

(b) Submission with tree pattern expected to be associated with the wrong answer.

Wrong tree pattern: Presence of a node with two additions.

(c) Comparing correctness of multiple-choice item (MC) answers with correctness
of tree. Showing percentage of submissions and the number of submissions in
parentheses.

Tree pattern
wrong correct

MC answer
correct 44.2% (19) 37.2% (16)
wrong 18.6% (8) 0.0% (0)

(d) Exclusion Results for multiple-choice item B.1

Exclusion Criteria Percent (Count)
Answer is "Code Does Not Compile" 0.0% (0)

Answer is "I don’t know" 0.0% (0)
Diagram is not a tree 2.3% (1)

Diagram of another question 0.0% (0)
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Multiple-Choice Item B.2

Motivation for the item We know that some students inline operands in ex-
pressions like 1 + 2 + 3. Our intention with the multiple-choice item B.2 (Fig-
ure 5.12) was to identify that. The idea was that if a student understands that
1 + 2 + 3 is equivalent to (1) + (2) + (3) then this student would know that
1, 2, and 3 are subexpressions and therefore would not inline them in the tree.

Analysis of the results There are several problems with this multiple-choice
item. One problem is with the idea of "equivalence". Of course, 1 + 2 + 3 is
equivalent to (1) + (2) + (3) in the sense that they reduce to the same value
(behavior equivalence). But typically, when talking about associativity of binary
operations, an instructor would say "1 + 2 + 3 equivalent to (1 + 2) + 3" to
mean that the operation is left-associative. Equivalence in this case means that
the ASTs of both expressions are the same. That’s a different kind of equivalence
than the one asked about in this multiple-choice item. In fact, knowing that
1 + 2 + 3 is equivalent to (1) + (2) + (3) (in the sense that they reduce to
the same value) doesn’t tell us anything about the associativity of the operation.
Interestingly one of the students answered "No" with explanation "It is equivalent
to (1 + 2) + 3", revealing that this student interpreted the question as asking
about associativity. This explanation was classified as Expl-Correct because when
focusing on the idea of associativity, the student is correct and actually demon-
strates more understanding than some of the students who answered "Yes". Here
are some explanations of students who answered "Yes":

Category Answer Explanation

Expl-Imprecise
Yes if we put the parenthes to identify each method it

doesnt change nothing.
Yes because there arent another operations.

Expl-Wrong
Yes yes theyre equivalent because there is no syntax

errors.
Yes it is a commutative expression.

Table 5.6. Table of Answers and Explanations

Another problem, that is also highlighted by these examples, is that essentially
this question is not as tightly related with a pattern in the tree as we would
want. In other words, it is not really strictly following the methodology. Even
considering the meaning of equivalence to be only behavioral equivalence, that
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information doesn’t directly correspond to a query/pattern on the expression tree.
Knowing (or realizing) that 1 + 2 + 3 is equivalent to (1) + (2) + (3) could
perhaps work as a hint or could help to trigger an insight in a student to produce
a tree without the mistake (a tree without inlined numbers). But the information
present in the answer to this question is not the same information present in the
tree.
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Figure 5.12. Comparison between answers to ExpressionTutor question B and
answers to multiple-choice item B.2.

(a) Multiple-choice item B.2 and its correct answer.

Question B.2 Is 1 + 2 + 3 equivalent to (1) + (2) + (3)?
Options A) Yes

B) No
C) Code Does Not Compile
D) I don’t know

Correct answer Yes

(b) Submission with tree pattern expected to be associated with the wrong answer.

Wrong tree pattern: Absence of a non-inlined numbers.

(c) Comparing correctness of multiple-choice item (MC) answers with correctness
of tree. Showing percentage of submissions and the number of submissions in
parentheses.

Tree pattern
wrong correct

MC answer
correct 5.9% (2) 94.1% (32)
wrong 0.0% (0) 0.0% (0)

(d) Exclusion Results for multiple-choice item B.2

Exclusion Criteria Percent (Count)
Answer is "Code Does Not Compile" 5.3% (2)

Answer is "I don’t know" 2.6% (1)
Diagram is not a tree 2.6% (1)

Diagram of another question 0.0% (0)
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Multiple-Choice Item B.3

Motivation for the item Our intention in this multiple-choice item was to detect
another possible tree formulation for the same expression, shown in Figure 5.13.
In this formulation, addition is depicted as a right-associative operation so a
binary addition is applied to 1 and the result of applying addition to 2 and 3.

Analysis of the results In this question, we were more strict and did not include
trees like the ones shown in Figure 5.11, with the binary operators flattened into
a single level. That’s because we wanted to clearly distinguish right-associative
trees from left-associative trees.

Here the results are more clearly what we expected, with only one student
answering the multiple-choice item correctly but producing the wrong tree.

Notice that, like the multiple-choice item B.1, this multiple-choice item does
not strictly follow the methodology because the multiple-choice item also asks
about the runtime behavior of the program. The student needs to not only be
able to produce the correct expression tree but also understand how to evaluate
them. This was something explained and worked on in class when expression
trees were introduced but it’s an additional piece of information that, strictly
speaking, creates a mismatch in the information required to answer the two kinds
of questions.
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Figure 5.13. Comparison between answers to ExpressionTutor question B and
answers to multiple-choice item B.3.

(a) Multiple-choice item B.3 and its correct answer.

Question B.3 To evaluate 1 + 2 + 3, is 2 + 3 evaluated before adding 1?
Options A) Yes

B) No
C) Code Does Not Compile
D) I don’t know

Correct answer No

(b) Submission with tree pattern expected to be associated with the wrong answer.

Wrong tree pattern: Presence of a subtree containing 2 + 3 (with children possibly inlined).

(c) Comparing correctness of multiple-choice item (MC) answers with correctness
of tree. Showing percentage of submissions and the number of submissions in
parentheses.

Tree pattern
wrong correct

MC answer
correct 5.5% (1) 77.8% (14)
wrong 16.7% (3) 0.0% (0)

(d) Exclusion Results for multiple-choice item B.3

Exclusion Criteria Percent (Count)
Answer is "Code Does Not Compile" 0.0% (0)

Answer is "I don’t know" 4.1% (2)
Diagram is not a tree 2.0% (1)

Diagram of another question 0.0% (0)
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5.4 Discussion

Notional machines are often used for assessment (i.e. as assessment instruments).
The idea is to measure the student’s knowledge about an aspect of a programming
language by measuring the students’ uses of a notional machine. We want to take
advantage of the relationship between the notional machine and the programming
language given by the soundness condition to design experiments to evaluate
the effectiveness of a notional machine as an assessment instrument. These
experiments consist of comparing the measurement made with the notional
machine with a ground truth measurement made using another instrument.
There are in principle several points of failure in this experimental design.

Discrepancy Between Notional Machine and Programming Language

It is possible that the notional machine being evaluated doesn’t actually represent
the aspect of the programming language under focus or does so inconsistently.

This issue is addressed by the guarantees provided by the soundness condition
so the abstract representation of a sound notional machine is guaranteed to not
have this issue. It is still possible that there are usability issues with its concrete
representation though, which can’t be guaranteed by the soundness condition.

Insufficient Training With the Notional Machine

It is possible that the students didn’t learn how to map from the programming
language into the notional machine or how to operate with the notional machine.

Indeed, our pilot study suffered from this issue. The quiz was administered
very early in the course and at that time the students had little contact both
with the notional machine and the programming language. In the interviews,
conducted at the end of the semester, some students reported that they weren’t
sure about the trees they had built in the quiz and that after going through
the semester they understood everything better. If we want to evaluate the
effectiveness of a notional machine as an assessment instrument we need to make
sure the students have proper training with the notional machine so they can
properly express themselves with it.

Even with more training, we don’t want to include in the analysis data that
comes from guessing answers. In fact, we added the “I don’t know” option to the
multiple-choice items precisely with that purpose in mind but we didn’t have any-
thing similar for the answers to the ExpressionTutor questions. An improvement
in the experiment design would have been to require the students to provide a
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score of “degree of certainty” to each answer including the ExpressionTree answer.
In its simplest form, this would correspond to an “I don’t know” option also for
the notional machine questions.

Noisy Ground Truth Instrument

It is also possible that the ground truth instrument is badly designed and doesn’t
actually measure correctly the students’ understanding of the aspect of the pro-
gramming language under focus or simply that it measures something different
than what the notional machine is measuring.

In our pilot study, we’ve also experienced this problem. On top of that, issues in
understanding the content knowledge of the course may have been compounded
by issues in understanding the natural language used in the course. This in fact
raises questions about the reliability of the use of multiple-choice questions, even
if augmented with explanations, as a ground truth instrument.

An improvement in the experiment design would have been to include more
interviews to complement the information provided by the multiple-choice ques-
tions. Alternatively, one could replace the multiple-choice questions with Mastery
Checks [Bloom, 1968; Guskey, 2010; Wrigstad and Castegren, 2019] as a ground
truth instrument, although Mastery Checks are difficult to scale.

One could also consider trying alternative designs for the ground truth in-
strument. For example, instead of questions that correspond to the information
present in tree patterns, one could try to design questions that correspond to the
information present in the whole tree. For example, one could ask the students to
parenthesize all sub-expressions of an expression or to spell out all sub-expressions
of an expression. These question formats could come with their own challenges,
which one would have to experimentally verify. Although they could work for
expression trees, they wouldn’t work for other notional machines so Mastery
Checks seem a more general solution.

Even though our own instantiation of the methodology fell short in several
regards, the systematicity of the process may have helped to make these prob-
lems easier to identify. Our intention with the proposed experimental design
methodology is to help to avoid some of these pitfalls by making the process more
systematic and helping to design experiments that follow the structure of the
commutative diagram that describes the relation between the notional machine
and the aspect of the programming language, the very relation on which one is
relying when using a notional machine as assessment instrument.



Chapter 6

Related Work

Most of the related work was discussed through the chapters in the context where
they were mostly relevant. In this chapter, we discuss additional related work
and reiterate some of the key references.

The idea of simulation or representing a program by means of another program
is an old one and was first studied in detail in the 1970s by Milner [1971]
and Hoare [1972]. Many of the notional machines we consider illustrate a
reduction, stepping, or evaluation ‘aspect’ of a programming language. Wadler
et al. [2020] describe how to relate such reduction systems with simulation,
lock-step simulation, and bisimulation. The commutative diagram describing the
desired property of a notional machine appears in many places in the literature
and is a basic concept in Category Theory. Closer to our application is its use as
“promotion condition” [Bird, 1984].

Where computing education researchers capture program behavior through
notional machines, programming language researchers instead use semantics [Kr-
ishnamurthi and Fisler, 2019]. Our work can be seen as a rather standard
approach to show the correctness of one kind of semantics of (part of) a program-
ming language, most often the operational semantics, with respect to another
semantics, often a reduction semantics. An example of such an approach has
been described by Clements et al. [2001], whose Elaboration Theorem describes
a property that is very similar to our soundness requirement. The lack of a formal
approach to showing the soundness of notional machines is also noted by Pollock
et al. [2019], who developed a formal approach to specifying correct program
state visualization tools, based on an executable semantics of the programming
language formulated in the K framework. In our research, we study a much
broader collection of notional machines than just program state visualization
tools, and we apply our approach to study the soundness of notional machines.
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In practice, computing educators use a diverse set of notional machines [Fincher
et al., 2020]. Some notional machines form the basis of automated tools. The
BlueJ IDE, which features prominently in an introductory programming text-
book [Kölling and Barnes, 2017], includes a graphical user interface to visualize
objects, invoke methods, and inspect object state. PythonTutor [Guo, 2013], an
embeddable web-based program visualization system, is used by hundreds of
thousands of users to visualize the execution of code written in Python, Java,
JavaScript, and other programming languages. UUhistle [Sorva and Sirkiä, 2010],
a “visual program simulation” system, takes a different approach: instead of
visualizing program executions, it requires students to perform the execution
steps in a constrained interactive environment. Another example of visual pro-
gram simulation is the Informa clicker system [Hauswirth and Adamoli, 2013], a
software clicker tool where students answer questions by constructing various
kinds of visual representations of programs. When developing such widely used
tools, starting from a sound notional machine is essential.

Dickson et al. [2022] discuss the issues around developing and using a notional
machine in class. They note, amongst others, “that a notional machine must by
definition be correct, but a student’s mental model of the notional machine often is
not”, and that “specifying a notional machine was more difficult than we thought
it would be”. Our work can help in developing a notional machine and pointing
out flaws in it.

Our theoretical analysis of Java is based on the Java Language Specification
(JLS) [?] and Eclipse’s Java Development Tools (JDT) [The Eclipse Foundation,
2022] compiler. Another approach would be to use a well-known formally speci-
fied subset of Java, such as Featherweight Java [Igarashi et al., 2001] or other
subsets based on it. An advantage of using formally specified languages is that the
constructs that are expressions in those languages are unambiguously specified.
On the other hand, because these approaches aim to develop a core calculus
intended to investigate some aspect of the semantics of Java, they cover a subset
of the language that is as small as possible to investigate that aspect. For example,
Middleweight Java [Bierman et al., 2003] is a minimal imperative core calculus
for Java and Welterweight Java [Östlund and Wrigstad, 2010] is a core calculus
with imperative features and concurrency used to formalize ownership. Although
we also cover a subset of Java (the subset of expressions), we aim to be complete
in that subset, including constructs that wouldn’t be considered all together in a
core calculus. There does exist a formalization of the full Java semantics using the
K framework [Bogdănaş, 2015], however, it only covers up to Java 1.4 whereas
we cover all expression constructs up to Java 11.



Chapter 7

Future Work

This research leaves open several avenues for future work. Some of them were
discussed or referred to in context throughout the work. We select some of them
and discuss them a bit more in depth in this chapter. The main threads are: (1) use
our approach with notional machines that describe data structures (Section 7.1);
(2) use mechanized proofs to design and analyze notional machines (Section 7.2);
(3) implement the remaining improvements to ExpressionTutor that we have
identified using our theoretical analysis (Section 7.3); (4) use sound notional
machines to detect programming language misconceptions (Section 7.5).

7.1 Notional Machines for Data Structures

Notional machines are not only used to aid in the understanding of aspects
of programming languages but at times they can focus specifically on a data
structure1. The soundness of these notional machines, with respect to the data
structure they focus on, is as important as the soundness of notional machines
that focus on an aspect of a programming language. In principle, our description
of notional machines in terms of simulation is expressible enough to describe
notional machines that focus on data structures, but demonstrating this is future
work.

The idea is that the bottom of the commutative diagram would have the
abstract representation of a data structure (given by the pair (ADS, BDS), where
ADS and BDS may be the same depending on the situation), instead of the abstract

1In the website https://notionalmachines.github.io/, at least 6 notional machines focus
on data structures. For example, the notional machine "Hash Set as Hanging Folders", that
describes Hash Sets.
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representation of a programming language (APL, BPL). A function fDS would then
describe essentially the evolution of the data structure over time.

Additionally, this may be a great opportunity to investigate an important and
subtle issue in the traditional way of approaching the teaching of data structures
and algorithms. In classic algorithms textbooks [Cormen, 2009], the idea is
to reason abstractly about data structures in a way that is independent of how
they are actually implemented in a given program and programming language.
To that effect, algorithms are often described using pseudocode. There is a
subtle issue though with this approach: there are often hidden assumptions
about a certain computational model and programming language semantics when
one is representing algorithms with pseudocode. Even when the assumptions
are explicitly stated in natural language (for example, Cormen [2009] state
their “Pseudocode conventions” in p. 20), it’s in the nature of being pseudo that
pseudocode has neither a formal definition nor an implementation. By using
our approach, one must first separate the concrete representation of a notional
machine from its abstract representation and from the abstract representation
of that which is the focus of the notional machine, and in that process can make
these assumptions explicit. This may be a particularly useful way to investigate
high-level abstract treatments of data structures because with this approach we
can have both theoretical rigor, reasoning in terms of soundness and proofs, and
produce practical results that can be used in the classroom, via the construction
of notional machines.

7.2 Proven Sound by Construction

We have designed and analyzed several notional machines in the previous chapters.
The confidence we have in our assessment of the soundness (or lack of soundness)
of these notional machines varies with the degree of rigor of the technique that
we have employed in each case. Informal reasoning systematically guided by our
construction can be very useful in spotting mistakes but gives us little confidence
in the overall soundness of a given notional machine. Implementing the notional
machine and testing it and its relationship with the corresponding programming
language increases our confidence. We can raise our confidence even further
by writing this implementation in a language that allows us to equationally
reason about its soundness or by writing this implementation using our sound-by-
construction design methodology. But even then we can not be sure there are no
mistakes in the implementation or in these manual proofs.

The next level would be to mechanize these proofs, for example writing these
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implementations with Agda or Coq. With Agda, we could use agda2hs [Cockx
et al., 2022] to reuse part of the artefacts we have produced in Haskell. agda2hs
can translate a subset of Agda into human-readable Haskell. The idea is to
implement the components of the commutative diagram in that subset and use
full Agda to prove the soundness condition. The translation to Haskell erases
dependent types and proofs and the resulting code can interact with the rest of
the Haskell artifact.

Another possibility, which would be even closer to the artefacts we have
produced, would be to use LiquidHaskell [Rondon et al., 2008; Vazou et al.,
2013]. LiquidHaskell started as a way to embed refinement types into Haskell,
but has evolved into a full-fledged theorem prover for Haskell programs [Vazou
et al., 2017]. Refinement types decorate programs with SMT-decidable predicates
used to verify various safety and correctness properties, such as array bounds
checking. LiquidHaskell now can be used to write not only refinement types but
also general theorems about the program. The proofs of these theorems can be
written in an equational-reasoning style directly inside the program [Vazou et al.,
2018], or even be automatically generated by LiquidHaskell.

7.3 Expression Tutor Improvements

In Chapter 4, we used our theoretical approach in practice to analyze and iden-
tify improvements to ExpressionTutor. Many of these improvements have been
implemented, but others remain.

In Section 4.3.3, we have identified that the information in the activity input
is insufficient to determine the correct answer. We have proposed a solution to
this problem that consisted of adding to the activities more information about the
cold context of the expression, which could be not only the code surrounding the
expression but also references to external documentation about the code. The
interface currently doesn’t support that but a sketch of an improved interface is
shown in Figure 4.6.

As we have discussed in the Chapter, parsing and typing may fail so notional
machines that focus on these aspects should be able to express that. In Expres-
sionTutor, the interface of the parsing activity and the typing activity allow for
the solution to be “Code does not compile”, but it is not yet possible to express
whether the problem is a parse error or a type error and what exactly is the
problem and where it happens in the tree. These improvements are also being
considered for the platform.
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7.3.1 Generalized Automatic Assessment

In ExpressionTutor, we have used tree-edit distance as the basis for the comparison
between the student submissions and the correct answer, which is the basis for
the automated feedback to students and instructors. But in the same way the
commutative diagram that describes a sound notional machine is general for any
notional machine, it would be valuable to use a general approach to compare
students’ submissions with the correct answers for any notional machine.

We can frame this problem as a datatype-generic algorithm that, for any
algebraic datatype T , computes the difference between two values of type T . The
first approach to this problem was proposed by Lempsink et al. [2009]. It also
leverages tree-edit distance but in the meta level, operating on the trees formed
by values of algebraic datatypes. Recently, more efficient approaches have been
proposed by Miraldo and Swierstra [2019] and Erdweg et al. [2021].

7.4 Experiment to Evaluate ExpressionTutor

In Chapter 5, we presented a methodology to design experiments to evaluate
the effectiveness of notional machines as assessment instruments. We showed
how this methodology can be used by applying it to the design of a pilot study to
evaluate ExpressionTutor. In this pilot study, we identified various shortcomings
that we can use to inform the design of a larger-scale experiment to evaluate
ExpressionTutor as an assessment instrument.

Some of these shortcomings are related to the use of multiple-choice questions
and the accompanying explanations as source of ground truth information about
the students’ knowledge. We may be able to mitigate some of these issues by
improving the process of classification of explanations. Even with the effort we
described in systematizing it, the classification of each explanation still depends on
the interpretation of the person doing the classification. To improve the process,
we could use multiple independent classifiers and incorporate into the results an
inter-rater agreement score.

Other issues range from improvements to the ExpressionTutor activity page,
to students’ insufficient training with the notional machine, and even the design
of the question stems and their relationship with the notional machine question.
The discussion Section 5.4 provides a detailed description of these and other
insights gathered during the pilot study that can be used to improve the design of
a larger-scale study.
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7.5 Misconception Detection

Misconceptions are an important topic of research in computer science educa-
tion. In fact, the paper “Identifying student misconceptions of programming”,
by Kaczmarczyk et al. [2010], is the top-ranked paper in the SIGCSE “Top Ten
Symposium Papers of All Time Award”2. However, many studies either use the
word misconception without an explicit definition (e.g., Détienne [1997]; Holland
et al. [1997]; Hristova et al. [2003]; Ragonis and Ben-Ari [2005]), or use a defini-
tion that is too broad (e.g., by Smith III et al. [1994], in the context of science and
mathematics education: “student conceptions that produce a systematic pattern
of errors”; or the one by Sorva [2013]: “understandings that are deficient or
inadequate for many practical programming contexts”).

In previous work [Chiodini et al., 2021], we have proposed a more focused
definition of programming language misconceptions: “A programming language
misconception is a statement that can be disproved by reasoning entirely based
on the syntax and/or semantics of a programming language”. The definition
excludes strategic knowledge (knowledge about the programming process) and
focuses on syntactic and semantic knowledge (the knowledge captured in the
specification of a programming language). Notice that in the same way a notional
machine can only be sound (or not) with respect to a specific programming
language, a given programming language misconception is also tied to a specific
programming language. By tying it to the syntax and semantics of a programming
language, which is completely defined by its specification (be it formal or not) or
by its implementation, one can decide with some certainty whether a student’s
statement is or is not a programming language misconception.

Nevertheless, we are still dependent on the student’s ability to formulate such
a statement or on an instructor’s means to elicit this information. That’s where
notional machines may be valuable. A notional machine that faithfully represents
a given aspect of the programming language under its focus may be the means
for a student to express the way they believe this aspect works. In that way, a
misconception can be seen as some wrong f ′PL, one who’s behavior diverges from
fPL in some particular way. The assumption is that this wrong f ′PL corresponds to
a wrong f ′NM. If we can identify the wrong f ′NM by the wrong value they produce,
which may be the case especially for well-known misconceptions, we could then
devise a misconception detector in the form of queries (or patterns) on those
values in a way somewhat similar to what was described in Section 5.3.1. In the
paper [Chiodini et al., 2021], we also present a curated inventory of programming

2https://www.acm.org/media-center/2019/march/sigcse-top-10-papers

https://www.acm.org/media-center/2019/march/sigcse-top-10-papers
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language misconceptions, which may be a good starting set of misconceptions
to include in such a detector. The inventory is kept up to date on a website3.
Currently, the website also hints at the connection with notional machines when
it classifies some programming language misconceptions as “expressible in” a
notional machine4. The paper doesn’t define what makes a misconception express-
ible in a notional machine. A definition in terms of a sound notional machine not
only seems adequate but may coincide with the detectability of the misconception
by the notional machine sketched here.

Another indication of the connection between this research and programming
language misconceptions comes from our analysis of previous years’ exam ques-
tions about expression trees, which we described in Section 4.4.2. We identified
that 12% of wrong nodes were classified as EvaledExp. This category of wrong
nodes corresponds exactly to the misconception INLINECALLINEXPRESSIONTREE5.
described in the website.

3https://progmiscon.org/
4 These misconceptions were previously referred to as being “About notional machine”, as

described in the paper.
5https://progmiscon.org/misconceptions/Java/InlineCallInExpressionTree/

https://progmiscon.org/
https://progmiscon.org/misconceptions/Java/InlineCallInExpressionTree/


Chapter 8

Conclusion

A notional machine is a pedagogic device to assist the understanding of some
aspect of programs or programming under focus by the notional machine. They
are popular in computer science education, commonly used both by instructors
in their teaching practice as well as by researchers. In spite of their popularity,
there exists currently no consideration of their soundness, which we can think of
informally as a form of correctness or consistency of the notional machine with
respect to the aspect of programs under focus by the notional machine. There
is in fact no definition of what should be this relationship between a notional
machine and the aspect under its focus.

In this research, we started by formally defining a notion of soundness for
notional machines. The definition is based on the idea of simulation, widely used
in many areas of computer science, from the analysis of state-transition systems
and programming languages to proofs of correctness of data representations.
For a formal definition, we need a formalization of (1) the notional machine,
(2) the aspect of the programming language under focus by the notional machine,
and (3) the relationship between them. To formalize (1) a notional machine,
we distinguish between the concrete representation of the notional machine
(typically visual) and its abstract representation, which we can make formal
statements about. This distinction is akin to the distinction between the concrete
and the abstract syntaxes of a programming language. The description of the
notional machine also includes an operation on this abstract representation. As a
formalization of (2) the aspect of the programming language under focus by the
notional machine, we used well-known formalisms, such as operational semantics
to describe the evaluation of programs, although other formalisms could be
used. Soundness is demonstrated by the soundness condition, which formally
describes (3) the relationship between the notional machine and the aspect of the
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programming language under its focus. The soundness condition can be visually
represented as a commutative diagram that relates the notional machine and the
programming language and essentially guarantees that the notional machine is
consistent with the aspect of the programming language under its focus.

The soundness condition and the corresponding commutative diagram were
then used as a general framework to reason about notional machines and, as
such, used as the basis to address other challenges related to notional machines.

One of these challenges is the design of notional machines. We have shown
how we can derive from the definition of soundness two similar methods to design
notional machines that are sound by construction. We call the resulting notional
machines isomorphic and monomorphic notional machines, due to the nature of
their relationship with the aspect under its focus.

Similarly, we can use the commutative diagram to analyze existing notional
machines with respect to soundness, identifying issues and opportunities for
improvement. In these analyses, we showed that one can benefit from reasoning
in terms of soundness even without fully formalizing and writing proofs about
the notional machine. For example, using just property-based testing, we were
able to identify a subtle issue in Alligator Eggs (a notional machine focused on
the evaluation of lambda calculus programs), even though the notional machine
has a very simple, clear, and seemingly correct definition.

As we progressed in our work, we have instantiated the commutative diagram
that represents the soundness condition many times, using different notional ma-
chines, programming languages (from small languages like the untyped lambda
calculus to large languages like Java), aspects of those programming languages
(from static aspects like parsing and type-checking to dynamic aspects like re-
duction and references), and degrees of formalism (from formal to informal).
Table 8.1 summarizes these instantiations showing each of these dimensions.

In a bigger example with a bigger language (Java), we show how we used
the same reasoning framework to improve the design of ExpressionTutor, a fam-
ily of notional machines centered on expressions. We begin by arguing for the
importance of focusing on expressions even in languages that are not predom-
inantly functional. We then continue by establishing a concise and complete
description of the subset of Java that contains only its expression constructs.
We used this subset of Java in two instantiations of the commutative diagram,
one focused on type-checking and the other on parsing. To further ground the
design of ExpressionTutor, we also analyzed expression trees drawn by students
in paper-based exams. An important insight that comes from the use of the
commutative diagram in the development of ExpressionTutor is that, in general,
the implementation of the components of the commutative diagram that defines
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Table 8.1. Instantiations of the commutative diagram in Figure 2.2 that repre-
sents the soundness condition for notional machines. For each instantiation, we
show the different dimensions we explored.

Level of
formalism

Notional
Machine

Programming
Language

Focus

Equational
reasoning

proof

EXPTREE
UNTYPEDLAMBDA Reduction

EXPTUTORDIAGRAM
TYPEDARITH Typing

TAPLMEMORYDIAGRAM TYPEDLAMBDAREF References
Property-based

testing
REDUCT

UNTYPEDLAMBDA Reduction
ALLIGATOR

Unit
testing

EXPTUTORDIAGRAM JAVA
Parsing
Typing

a notional machine yields the key components of an educational tool for that
notional machine that can generate activities for students to practice the aspect
under focus and automatically assess the students’ solutions.

Finally, we used the soundness condition once again, but this time as the
blueprint for the development of a methodology for the design of experiments
that can evaluate the effectiveness of notional machines as assessment instruments.
We demonstrated the methodology by designing a pilot study to evaluate the
effectiveness of ExpressionTutor as an assessment instrument. We then analyzed
the results of the study and discussed issues that could explain some of the
unexpected results.

The main issue to keep in mind is that the effectiveness of a notional machine
as an assessment instrument depends on the student properly learning how the
aspect of the programming language is mapped into the notional machine space,
which means a sufficiently precise practical understanding of the abstraction
functions (the mapping between code and notional machine) and the mechanics
of the notional machine. Learning this mapping is not cheap. It requires practice
and, in a way, it equates to essentially learning a whole other language (the
notional machine language) and a correspondence between these languages,
although the notional machine language is arguably simpler, given it’s focused
on one or a small set of concepts. This of course raises an important question:
is it really worth it? Wouldn’t it be better to simply learn the programming
language under focus? This is an important question but it’s a question about
the effectiveness of notional machines as a teaching instrument, something that
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we have not addressed in this research so we can only speculate. Let’s consider,
for example, how would an instructor explain references and mutation, and
how would they assess if a student learned it. Using just natural language and
examples of program behavior to really understand concepts is challenging and
the more challenging the more complex is the relationship between the aspect
of the programming language (the concept) under focus and any noticeable
program behavior. An alternative would be to express those ideas in a more
precise formal or semi-formal language, for example, by defining the language
being taught using another language previously known to the students. Another
known alternative is to grow the language, defining new constructs in terms of
previously defined constructs of the same language, something that comes with
its own challenges.

The hope is that notional machines can be an alternative that is both simpler
and have the necessary precision. If we can trust that they are consistent with the
aspect of the programming language under focus, and they are presented to the
students in a way that is sufficiently precise, at the discretion of the instructor,
then even with a high cost, they can be a good investment. Another advantage of
using notional machines is that they are focused purely on concepts, avoiding any
specific programming language and one could say that’s exactly what we want
from students: we want them to learn general concepts and not details specific
to a given language. On top of that, by focusing on concepts, notional machines
are hopefully more reusable and this reusability could help to amortize its cost.
Investigating the use of the same notional machine across different courses and
different programming languages would be an interesting direction to explore.

Ultimately, we hope that a more principled approach to reasoning about
notional machines, such as the one we propose here, can contribute to higher
quality notional machines and ultimately to an improvement of the effectiveness of
teaching and assessing students about programming and programming languages.



Appendix A

Programming Language Definitions

The languages used in Chapters 2 and 3 are defined in this appendix using
operational semantics. This presentation mostly follows the book “Types and
Programming Language” by Pierce [2002] with minor changes. In particular,
italics are used for metavariables and the axioms in the reduction (evaluation)
rules and typing rules are shown with explicitly empty premises.

A.1 UntypedLambda

Figure A.1 shows the syntax and evaluation rules for the untyped lambda calculus
by Church [1936, 1941], that we have referred to as UNTYPEDLAMBDA. The pre-
sentation here is taken from Pierce [2002]. The book contains a good explanation
of the pitfalls of the substitution operation in the Rule E-APPABS, which was the
source of the problem found in ALLIGATOR (Section 3.2). This language is used
in Sections 2.1, 2.3, 3.1, and 3.2 .

Syntax Evaluation

t ::= terms:
x variable

| λx .t abstraction
| t t application

v ::= values:
λx .t

(λx .t12) v2 −→ [x 7→ v2]t12

E-APPABS

t1 −→ t ′1
t1 t2 −→ t ′1 t2

E-APP1

t2 −→ t ′2
v1 t2 −→ v1 t ′2

E-APP2

Figure A.1. The untyped lambda calculus (UntypedLambda).
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A.2 TypedArith

We define here the language TYPEDARITH, used in Section 2.5. Figure A.2 shows
its syntax and evaluation (reduction) rules and Figure A.3 shows its typing rules.
The presentation here is taken from Pierce [2002], but here all the rules are
shown together. The appeal of using this language to present a notional machine
focused on the types is its simplicity. Terms don’t require type annotations and
the typing rules don’t require a type environment. In fact, Pierce uses it as the
simplest example of a typed language when introducing type safety.

Syntax Evaluation

t ::= terms:
true constant true

| false constant false
| if t then t else t conditional
| 0 constant zero
| succ t successor
| pred t predecessor
| iszero t zero test

v ::= values:
true

| false

| nv

nv ::= numeric values:
0

| succ nv

if true then t2 else t3 −→ t2

E-IFTRUE

if false then t2 else t3 −→ t3

E-IFFALSE

t1 −→ t ′1
if t1 then t2 else t3

−→ if t ′1 then t2 else t3

E-IF

t1 −→ t ′1
succ t1 −→ succ t ′1

E-SUCC

pred 0 −→ 0
E-PREDZERO

pred (succ nv1) −→ nv1

E-PREDSUCC

t1 −→ t ′1
pred t1 −→ pred t ′1

E-PRED

iszero 0 −→ true
E-ISZEROZERO

iszero (succ nv1) −→ false
E-ISZEROSUCC

t1 −→ t ′1
iszero t1 −→ iszero t ′1

E-ISZERO

Figure A.2. Syntax and reduction rules of the TypedArith language.
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Syntax Typing rules

T ::= types:
Bool type of booleans

| Nat type of natural numbers

true : Bool
T-TRUE

false : Bool
T-FALSE

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
T-IF

0 : Nat
T-ZERO

t1 : Nat

succ t1 : Nat
T-SUCC

t1 : Nat

pred t1 : Nat
T-PRED

t1 : Nat

iszero t1 : Bool
T-ISZERO

Figure A.3. Syntax of types and typing rules of the TypedArith language.

A.3 TypedLambdaRef

In Section 2.4, we showed the language TYPEDLAMBDAREF, used to design a
notional machine that focuses on references. This language is composed of the
simply-typed lambda calculus, the TYPEDARITH language, tuples, the Unit type,
sequencing, and references. The simply-typed lambda calculus and each of these
extensions is presented by Pierce [2002] before introducing references in Chapter
13, which contains the memory diagram notation we refer to in Section 2.4. Our
goal is again simplicity and this is the simplest language we need for the examples
in the book that use the diagram. Figure A.4 shows its syntax and evaluation
(reduction) rules. We show only the reduction rules for sequencing, references,
and tuples because the rules for the rest of the language would be similar to
what we showed before, except for the store then needs to be threaded through
all the rules. In fact, the notation here is denser than the previous languages
because the store, which is only manipulated in rules E-REFV, E-DEREFLOC, and
E-ASSIGN, needs to be carried over through all the other rules. Although that is a
typed language, we don’t present its typing rules because the notional machine
in Section 2.4 is focused only on its runtime behavior and not its types.
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Syntax Evaluation

t ::= terms:

x variable
| λx : T.t abstraction
| t t application

| true boolean true
| false boolean false
| 0 zero
| succ t successor
| pred t predecessor
| iszero t zero test

| unit unit constant
| t; t sequence
| ref t reference creation
| !t dereference
| t := t assignment
| l location

| {t i
i∈1..n} tuple

| t.i projection

v ::= values:
λx : T.t

| true

| false

| 0
| succ v
| unit

| l
| {vi

i∈1..n}

T ::= types:
T → T function type

| Bool boolean type
| Nat natural number type
| Unit unit type
| Ref T reference type
| {Ti

i∈1..n} tuple type

µ ::= store:
; empty store

| µ, l 7→ v location binding

t1|µ −→ t ′1|µ
′

t1; t2|µ −→ t ′1; t2|µ′
E-SEQ

unit; t2|µ −→ t2|µ
E-SEQNEXT

l /∈ dom(µ)

ref v1|µ −→ l|(µ, l 7→ v1)
E-REFV

t1|µ −→ t ′1|µ
′

ref t1|µ −→ ref t ′1|µ
′ E-REF

µ(l) = v

!l|µ −→ v|µ
E-DEREFLOC

t1|µ −→ t ′1|µ
′

!t1|µ −→ !t ′1|µ
′ E-DEREF

l := v2|µ −→ unit|[l 7→ v2]µ
E-ASSIGN

t1|µ −→ t ′1|µ
′

t1 := t2|µ −→ t ′1 := t2|µ′
E-ASSIGN1

t2|µ −→ t ′2|µ
′

v1 := t2|µ −→ v1 := t ′2|µ
′ E-ASSIGN2

{vi
i∈1..n}. j|µ −→ v j |µ

E-PROJTUPLE

t1|µ −→ t ′1|µ
′

t1.i|µ −→ t ′1.i|µ′
E-PROJ

t j |µ −→ t ′j |µ
′

{vi
i∈1.. j−1, t j , tk

k∈ j+1..n}|µ
−→ {vi

i∈1.. j−1, t ′j , tk
k∈ j+1..n}|µ′

E-TUPLE

Figure A.4. TypedLambdaRef: Syntax and Evaluation



Appendix B

Exam Questions

In the analysis of students’ mistakes in answers to paper-based questions about
expression trees (see Section 4.4.2), we analyzed two questions from different
written exams, both from the course “Programming Fundamentals 2” (PF2),
a second-year bachelor course that teaches an introduction to object-oriented
programming. The next two sections show the questions as they appeared in the
exams. The first appeared in the midterm exam and the second in the final exam,
both from the Spring semester of 2022.
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B.1 Midterm Exam Question

Expression Tree and Execution Trace (12 Points)

public c lass Maker {

public S t r ing pub l i sh ( S t r i ng a , S t r i ng b) {
System . out . p r i n t l n ( " pub " ) ;
System . out . p r i n t l n (a ) ;
return " done " ;

}

public S t r ing make( S t r i ng th ing ) {
System . out . p r i n t l n ( " making " ) ;
return "made " + th ing ;

}

public void run () {
S t r ing s = pub l i sh (make( " t h i s " ) , make( " tha t " ) ) ;
System . out . p r i n t l n ( " complete " ) ;

}

}

(a) (7 points) For the expression to the right of the equals sign (=) in the run
method, draw the expression tree (nodes, edges, and a star on the root node).
For each node, including the root, draw its type, and draw its value.

(b) (5 points) What gets printed on the console after executing the run method?
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B.2 Final Exam Question

Expression Tree (16 Points)

Given this class:

public class Demo {

private static String id(String arg) {

return arg;

}

public String toString() {

return "D";

}

public static String run() {

int i = 0;

Demo[] a = new Demo[] { new Demo() };

String s = "a[i] = " + (a==null ? "X" : id(a[i].toString())) + '+' + 0;

return s;

}

}

Draw the expression tree of the expression to the right of String s =.
Indicate which node is the root (with a star).
For each node indicate its type. As the type of the value null, write NULL.
For each node indicate its value. Use @1, @2, @3, ... to represent reference

values (like we did in class), except for the null reference, which you represent as
the null literal, and for strings, which you represent as a String literal.



132 B.2 Final Exam Question



Bibliography

Arawjo, I., Wang, C.-Y., Myers, A. C., Andersen, E. and Guimbretière, F. [2017].
Teaching Programming with Gamified Semantics, Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, ACM, Denver Colorado
USA, pp. 4911–4923.

Bierman, G. M., Parkinson, M. J. and Pitts, A. M. [2003]. MJ: An imperative
core calculus for Java and Java with effects, Technical Report UCAM-CL-TR-563,
University of Cambridge, Computer Laboratory.

Bird, R. S. [1984]. The promotion and accumulation strategies in transforma-
tional programming, ACM Transactions on Programming Languages and Systems
6(4): 487–504.

Bird, R. S. [1989]. Algebraic identities for program calculation, The Computer
Journal 32(2): 122–126.

Bloom, B. S. [1968]. Learning for Mastery. Instruction and Curriculum. Re-
gional Education Laboratory for the Carolinas and Virginia, Topical Papers and
Reprints, Number 1., Evaluation Comment 1(2).
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