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ABSTRACT: Computational techniques applied to drug discov-
ery have gained considerable popularity for their ability to filter
potentially active drugs from inactive ones, reducing the time scale
and costs of preclinical investigations. The main focus of these
studies has historically been the search for compounds endowed
with high affinity for a specific molecular target to ensure the
formation of stable and long-lasting complexes. Recent evidence
has also correlated the in vivo drug efficacy with its binding
kinetics, thus opening new fascinating scenarios for ligand/protein
binding kinetic simulations in drug discovery. The present article
examines the state of the art in the field, providing a brief summary
of the most popular and advanced ligand/protein binding kinetics
techniques and evaluating their current limitations and the
potential solutions to reach more accurate kinetic models. Particular emphasis is put on the need for a paradigm change in the
present methodologies toward ligand and protein parametrization, the force field problem, characterization of the transition states,
the sampling issue, and algorithms’ performance, user-friendliness, and data openness.

1. INTRODUCTION
The pharmacological properties of a drug are typically defined
as the pharmacokinetic and pharmacodynamic properties.
While pharmacokinetics regards the body effect on the drug
defining its absorption, distribution, metabolism, excretion, and
toxicity (i.e., ADMET), pharmacodynamics deals with the
drug’s effect on our body, which can be reasonably rationalized
by its mechanism of action and the elucidation at atomistic
scale of the drug binding interaction with its molecular target.
The latter is of paramount relevance to guide drug discovery
and is the topic of the present article. Despite the recent
methodological advances, drug discovery remains a daunting
task with poorly performing predictive models of in vivo drug
efficacy,1,2 dramatic time scale, and exorbitant costs (10−15
years and 2.6 billion US dollars on average to develop a new
medication).3,4 Considering also the low success rate of a drug
to pass clinical trials (below 10%),5 it is apparent that there is a
tremendous need for techniques capable of increasing the
probability that a ligand obtained from basic research could
become a drug and at the same time reducing the costs of the
research.6−8 This need is even more urgent since December
2022 when the Food and Drug Administration (FDA) took the
historic decision to replace the word “animal” with “nonclinical
tests” in the law governing the agency’s drug assessments,
paving the way to nonanimal alternative methods, such as
organoids, organs-on-a-chip and in silico modeling (Food and
Drug Administration Modernization Act 2.0).9 In this context,

structure-based drug discovery (SBDD) will play an ever more
prominent role. Traditionally, SBDD relies on drug/target
binding studies (hereafter ligand/protein binding, LPB)
focusing on ligand affinity to the target, expressed as ligand
binding free energy ΔG, binding/dissociation constant Kb/Kd,
or half maximal effective/inhibitory concentration EC50/IC50.
However, this is an oversimplified representation of LPB,
which is by far a more complex molecular process where the
ligand can reach the final binding mode by passing through
metastable states (alternative binding modes) and crossing
even high energy barriers (Figure 1).

In other words, LPB can be seen as a combination of
thermodynamic and kinetic problems, the first defining the
ligand binding affinity to its target by estimating the ratio
between the ligand concentration in the bound and unbound
states and the second characterizing the ligand residence time
in the target by computing the rate of ligand (un)binding. The
thermodynamics and kinetics of LPB are properties of the
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system and are quantified as constants related by the following
eq 1:
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where ΔG is the free-energy difference between the ligand-
bound and unbound state, Kb is the binding constant (Kd is the
inverse of Kb), β is the inverse of the product of the Boltzmann
constant and temperature, C0 is the standard concentration of
1 M, also expressed as 1/1660 Å−3, and kon and kof f are the two
kinetics constants for the binding and unbinding processes,
respectively.
Noteworthily, recent evidence has correlated ligand binding

rates (kinetics) more than ligand binding affinity (thermody-
namics) to in vivo drug efficacy.10−16 In addition, ligand
binding kinetics have also been related to the type of ligand
activity, agonist or antagonist, letting glimpse the potential
impact of including ligand binding kinetics in drug discovery.17

However, drug discovery studies are still rooted in binding
affinity predictive models, and no drug has been developed
based on ligand binding rate prediction so far. The reasons for
this are both historical and methodological. While plenty of
binding free-energy methods have been developed in the last
four decades, ligand-binding kinetic models have only
appeared in the last two.18,19 Furthermore, the prediction of
ligand binding rates requires the characterization of LPB
transition states (TSs), which are high-energy, transient (short-
lived) states that are elusive to standard structural biology
methodologies. Encouraging results come from time-resolved
X-ray crystallography and cryogenic electron microscopy,
which provide an augmented spatial and temporal resolution
of nonequilibrium macromolecule states.20,21 Similarly, nuclear
magnetic resonance (NMR),22 surface plasmon resonance,23,24

and other techniques (see Bernetti et al. 2019 for review)14

have made significant progress in providing a dynamic
description of LPB for kinetic predictions. However, all these
techniques are time-demanding and costly, and they hardly
provide mechanistic structural details useful to guide drug
design.25 To this end, computational approaches are valuable,
since they can sample TSs and obtain transition rates from one
energy minimum to another. Having the atomistic structure of
TS at the saddle point and the ligand binding mode provides a
unique, comprehensive description of LPB that might impact

the quality and success of structure−activity relationship
(SAR) studies and drug discovery in general. However, so
far molecular simulations are used to reproduce experimental
kinetic data, with only few examples where calculations are
presented together with or followed by experimental
validation.26−29 This is mainly due to two limiting factors
that are the time required to complete a kinetic study, in terms
of both simulation and real time for analysis, and the accuracy
of the calculations that largely rely on system-dependent
simulation settings, which hamper a routine and automated use
of such techniques in drug discovery. We discuss such aspects
in the following paragraphs, describing the state-of-the-art
techniques employed in LPB kinetics studies and their limits as
predictive tools. We further delineate the future directions of in
silico approaches in order to have a significant impact on drug
discovery.

2. STATE OF THE ART
Many approaches aimed at studying LPB kinetics have been
developed so far. They can be grouped into unbiased and
biased MD-based methods.

The first category comprises techniques that focus on
sampling the transition between metastable states by massively
parallelizing the simulation, allowing direct calculation of the
kinetic properties. Milestoning with MD or Brownian
Dynamics (BD) simulations,30−33 its notable variation called
Markovian Milestoning with Voronoi Tessellations
(MMVT),34 Weighted Ensemble Methods (WEM and
Markovian-WEM),35−39 and Adaptive Multilevel Splitting
(AMS)40,41 are four examples of this kind of approach. Their
key concept is discretizing the configuration space using
various descriptors (e.g., grids, distances, native contacts).
Multiple simulations are then spawned or killed semi-
independently to ensure a statistically meaningful exploration
of the transition pathways in a reasonable time. Although these
techniques are all based on unbiased approaches, i.e., the single
simulations are not affected by external bias, the sampling
algorithm may follow a nonequilibrium strategy. In fact, in
sampling at equilibrium, the system explores the forward and
backward transitions of energy barriers without altering the
probability distribution. On the other hand, in nonequilibrium
samplig the reconstruction of the equilibrium ensemble is
possible by optimizing the number of simulations performed,
their distribution, or relative weights, so as to properly sample
the rare event and promote the transition in a specific
direction. According to this definition, Milestoning and
MMVT are equilibrium approaches, whereas WE and AMS
are not.

At variance with unbiased simulations, in biased techniques,
user-defined degrees of freedom of the system are accelerated
by adding an external potential or force, which might be used
to compute the correct (unbiased) estimate of the energetic
barriers crossed during the simulation. Umbrella Sampling
(US),42 Steered MD (stMD),43 Targeted MD (TMD) and
Dissipation-Corrected Targeted MD (dcTMD),44−46

Smoothed MD (SMD),47,48 Adiabatic-bias MD (AbMD),49,50

Metadynamics MD (MetaD) (i.e., infrequent Metadynamics,
frequency-adaptive metadynamics),51−54 On-the-fly Probabil-
ity-Enhanced Sampling (OPES, and its flooding variant
OPESf),

55−57 Gaussian Accelerated MD (GaMD) and its
variants (Pep-GaMD, LiGaMD),58−60 and τ-random accel-
eration MD (τRAMD)61 are notable examples of this family of
out-of-equilibrium approaches. Among these, we note that in

Figure 1. Artistic representation of the free-energy profile of LPB with
bound (Bound), transition state (TS) and unbound state (Unbound).
Target protein and ligand are shown as the surface and licorice,
respectively.
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infrequent MetaD and OPESf, while the sampling of the basins
is accelerated, no bias should be applied to the system during
the transition between them. These techniques can be further
classified according to how the external potential, or force, is
applied to the system and how the kinetic properties are
estimated. US, MetaD, AbMD, stMD, TMD, and dcTMD
require the definition of specific Collective Variables (CVs),
which should describe the slowest degrees of freedom of the
process investigated.42,43,45,46,50,51,62 On the other hand, in
GaMD, harmonic boost potentials are directly applied to the
potential energy of the system.60 Similarly, in SMD, the
potential energy function is scaled back by a user-defined
factor.47 In τRAMD, randomly oriented forces are applied to
the ligand to accelerate its unbinding.61 Some of these
methods compute the kinetic data by estimating the energetic
barriers for the binding or unbinding events using Kramers’
rate theory or the Eyring equation. This is the case of stMD,
dcTMD, and GaMD.43,44,60 This approach could be also
applied to MetaD and OPES. Using the latter techniques, it is
also possible to directly estimate the accelerated ligand
residence time, which is then rescaled to the correct
(unbiased) one using the bias deposited during the
simulation.53,56 The association (binding) rate might be finally
derived from the dissociation constant and the ligand residence
time.53 Finally, SMD and τRAMD provide a computational
residence time that can be correlated with the available
experimental data, whereas abMD allows for estimating an
energetic score that can be correlated to the experimental
residence time.
In between biased and unbiased computational methods, we

find Markov State Models (MSMs).63−65 MSMs do not have a
defined simulation protocol but rather represent an a posteriori

analysis strategy that can be applied to any set of biased or
unbiased calculations.53,66−68 The only requirements are that
these simulations should be capable of discretizing the phase
space into a number of different, energetically relevant states,
thus allowing the computation of the transition matrix with the
exchange probability among these states.

We refer the reader to ref 19 for a review and deeper
discussion of these methods. In the following sections, we
focus on the limitations and advantages of these and other
computational strategies, providing insights into much-needed
improvements required to allow a breakthrough in the field.
They can be summarized in three points:

• the force fields issue;
• the sampling issue;
• performance, user-friendliness, and data openness.

3. FORCE FIELDS
Force Fields (FFs) are a set of parameters through which
interatomic forces are computed, allowing the system to evolve
during an atomistic simulation, be it MD or Monte Carlo. As
such, FFs should describe the physics underlying the simulated
phenomenon, and their accuracy is crucial for the predictive
power of simulations (Figure 2).

Over the years, continuous efforts have been paid in the
development of reliable FFs for biological macromolecules
(e.g., Amber, CHARMM, OPLS)69−74 and small organic
molecules (e.g., GAFF, CGenFF, OPLS, OpenFF, SMIR-
NOFF99Frosst).69,73−77 Typically, atomistic FFs employ
classical physics equations to describe interatomic interactions
with fixed, point-charge models, defined without considering
the surrounding chemical environment. The parameters of

Figure 2. Pipeline of LPB kinetics calculations for a sample system (i.e., adenosine GPCR A2A in complex with caffeine). The LPB can be
parametrized using classic or ML-based FFs and then simulated employing one of the computational techniques described in the text. The output is
the identification of the possible energy-minima LPB complexes (B and U), the transition state (TS), and rates between them (kon and kof f).
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these equations are derived from experimental or quantum
mechanical (QM) calculations data, often using models with a
finite number of atoms. These are then adapted into more
generalized terms to serve a wider variety of chemical
entities.69−74 Despite the intrinsic limitations of these models
justified by historical and practical reasons (FFs were
developed using significantly lower computational capabilities
compared to today), they have served very well the purpose of
advancing our understanding of biophysical processes. But are
classical FFs accurate enough for modern research in the age of
GPU accelerators and machine learning (ML) techniques? The
answer is highly dependent on the problem of interest. We can
start by saying that in the case of LPB kinetics traditional FFs
are not accurate enough.
An accurate estimate of kinetic rates requires a proper

identification of TSs.10 However, subpar parameters might
overly stabilize specific ligand (and protein) conformations,
thus altering the identification and energetic evaluation of
metastable and transient states.78,79 It has been shown that
inadequacies in the van der Waals and electrostatic terms of
FFs may influence partition functions,80,81 and also impact the
osmotic coefficients of some chemical entities.82 Using the
paradigmatic system benzamidine/trypsin, we have recently
shown that proper parametrization of the ligand torsional
potentials is essential to reconstruct the correct ligand binding
conformation and free-energy surface.78 In particular, the
default benzamidine parameters generated by different FFs
underestimated the energy of the barrier characterizing the
rotation of the amidine group with respect to the aromatic
ring. While the numerical value of the ligand/protein binding
free energy was not affected by this issue, differences might be
found in the energetic profile and binding mechanism obtained
using the tailored or default torsional potential. A second
important player is the mathematical formulation of molecular
charges. Most FFs consider the electrostatic distribution fixed,
even though it depends on the phase state, conformation, and
the environment surrounding the molecule.83 The electron
densities of a ligand in the unbound and bound state may also
be significantly different.84 Although these approximations
have a limited impact�in the absolute estimate of electro-
statics�on the results quality of MD calculations when taken
individually, they introduce errors that can reach tens of kJ/
mol, as shown by Kaminsky and Jensen.85 Even if such
inaccuracies do not affect the detection of the metastable
states, the passage through these states, which defines kinetic
rates, could be altered. In this regard, Vitalini et al. reported
that different FFs might provide contrasting kinetic rates and
dynamics for the same system, even when the identified
metastable states are in general agreement.86 The simplest
solution to these issues could be a thorough refinement of the
existing FFs to improve the bonded and nonbonded terms.
Still, it would not solve the fundamental limit of the classical
physics description, especially regarding the molecular electro-
static properties. Instead of lingering on such approaches, we
feel that it is time for FFs to step up to a higher tier of
modelization, leveraging the computational power of current
hardware and more accurate levels of theory. In this sense, the
strategy followed by polarizable FFs is particularly promising.
Polarisable FFs adopt a different philosophy when treating

molecular electronic densities, allowing the electron cloud to
move around the atoms to induce dipole effects and mimic
anisotropic electrostatic distributions, such as σ holes. This
approach results in a more accurate depiction of molecular

charges at the cost of increased computational power.87 Several
polarizable FFs are available nowadays (e.g., Amber ff02pol,
CHARMM Drude, SIBFA, AMOEBA)88−91 and they have
consistently demonstrated higher capabilities than standard
FFs in reproducing thermodynamic data.86,92,93 Particularly
noteworthy are the results of the SAMPL8 challenge achieved
by AMOEBA.94 Sadly, these FFs are rarely used to investigate
LPB processes, especially due to their high computational cost.
They usually find application in studying ion-absorbing, host/
guest, or phase transition processes, DNA systems, and protein
stability, phenomena where electrostatic interactions play a
significant role.87,95−97 This is also the case for LPB, so we
expect that polarizable FFs will soon become standard for
these studies. While polarizable FFs can achieve better results
than classic ones, they are still not accurate enough to
consistently reproduce kinetic data, as shown by Kaminsky and
Jensen.85 A further optimization step in FFs development
might be the inclusion of kinetic data sets in the FF parameters
generation. This proposal is nothing new, seeing as it was
already suggested in 2015 by Vitalini et al.86 Doing so would,
however, require setting up novel parametrization schemes to
consider kinetic and thermodynamic measurements. A
pragmatic solution to this hurdle could be resorting to ML
techniques.

ML has already been employed to optimize existing FFs, like
the Lennard-Jones (LJ) parameters for Drude oscillators,98,99

or to develop new ones.100,101 In particular, LJ parameters are
typically computed by taking the experimental hydration-free
energy of a compound as a reference. However, their
optimization is a lengthy and daunting task requiring extensive
validation with multiple experimental data sets. Such an
approach is necessary to ensure the reliability and accuracy of a
FF. In Chatterjee et al. and Rupakheti et al., a ML approach
has been employed to optimize the LJ parameters for several
classes of compounds, improving the estimation of different
molecular properties, including molecular volume, vaporization
and sublimation enthalpies, and dielectric constant.98,99

Specifically, Rupakheti et al. reported an improvement in the
estimate of molecular volumes and heat of vaporization of the
druglike small molecules of 2% and 9%, respectively. Similar
improvements were also found in compounds not included in
the training set. The average error with respect to the
experimental data was 0.46 kcal/mol, which is significantly
lower than the average error of 2.0 kcal/mol reported for
GAFF using the same compounds.98 As previously mentioned,
ML is also employed to parametrize new FF from
scratch.100,101 ML FFs do not employ physics-based equations
to describe atom−atom interaction and can be trained using
even complex data sets, such as ab initio quantum-mechanical
data. The main advantages are that the ML FFs might not
require an a priori definition of how the atoms are bonded
since the chemical bonds are directly inferred from the
pairwise atomic distances, and quantum-mechanics effects can
be embedded in the model at significantly reduced computa-
tional costs. Several strategies have been implemented to
develop ML FFs, with diverse pros and cons and different
accuracies. For a more detailed discussion on ML FFs, we refer
the reader to the review of Unke et al.101 The most notable
example of ML FF, as well as one of the most promising, is
NequIP from Batzner et al.102 Fu et al.103 have recently
benchmarked it together with other state-of-the-art ML FFs,
such as DeepPot-SE,104 SchNet,105 ForceNet,106 and GemNet-
T,107 using different molecules and observables. In detail, Fu et
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al. assessed the ML FFs capability to predict the correct forces,
distribution of interatomic distances, and sampling of the free-
energy surface of organic compounds (ethanol, naphthalene,
and salicylic acid), a small molecule (aspirin), and a peptide
(alanine dipeptide). They also evaluated whether these ML
FFs could reproduce the correct radial distribution functions
and diffusion coefficients of condensed phase systems such as
liquid water and crystalline superionic lithium. Finally, the
numerical stability of each system during the MD calculations
was assessed. Overall, NequIP performed consistently better
than the other ML FFs, with the exception of the simulation
speed (i.e., frames per second). This is due to its construction,
since NequIP uses local descriptors that require a higher
amount of data to be processed. Notwithstanding, NequIP, as
all the other ML FFs, has difficulties reproducing the sampling
behavior of standard simulations in systems as simple as
alanine dipeptide. In fact, when the simulation of the alanine
dipeptide is started from low-density metastable states, NequIP
is unable to reproduce the correct probability distribution,
resulting in an incorrect free-energy surface. In some cases,
simulations starting from these states could also be affected by
numerical instabilities and crashes. The authors hypothesize
that such issues are due to the quality of data set used to train
the model, which has poor statistics of low-density states and
lacks high-energy conformations. They remark that the latter
could be particularly useful since it could improve the models’
reliability.103 Interestingly, ML techniques have also been
applied to generalize atomistic FFs at the Coarse-Grained
(CG) level with the final aim of reducing the dimensionality of
the molecular representation and capturing the most relevant
(slow) degrees of freedom of the simulated system.100,108 CG
models achieve this scope by merging the atomic particles into
single entities called “beads” whose energetic interaction is
computed through equations inspired by atomistic FFs or
classical physics. The final result is reproducing the macro-
scopic properties of systems that would have required an
unfeasible amount of time and resources using all-atom

representation, however maintaining a physically sound
description of the molecular entities involved.109−111 CG FFs
have been successfully employed to study mesoscale processes,
supramolecular assembly, protein folding, and protein/lipid
interactions.110,112 In some cases, they were also used to
reconstruct kinetic information related to protein−protein
association mechanisms,113−115 but for a long time, they were
not employed to investigate small molecules and, in particular,
LPB.112,116 The recent works of Dandekar et al.,117 Negami et
al.,118 and Souza et al.119 have dramatically changed the status
quo of CG FFs. Using different versions of the popular Martini
FF, these authors demonstrated its potential in investigating
the binding of small molecules to various classes of targets. In
particular, Souza et al. employed the recently released third
version of Martini FF,111,119 which addressed several
limitations of the previous ones.120−122 Dandekar et al. and
Negami et al. were instead able to reconstruct the LPB kinetics
with good approximation.117,118 Doing so, however, requires
estimating the acceleration factor introduced by coarse-
graining, which is known to reduce molecular friction and
lower energy barriers due to entropy loss.116 This is rarely
done in practice. Usually, a generic, empirical acceleration
factor from three to eight is provided as a correction to the
kinetic estimates. These values are speed-up factors roughly
estimated by comparing the diffusion coefficients calculated in
pure water systems using Martini and atomistic simulations,
and not considering the system under investigation.117,118

Despite being useful for mesoscale applications, applying CG
FFs to LPB problems suffers from limitations mainly correlated
to their coarse nature that should be carefully taken into
account. In particular, the lower accuracy of CG modeling
implies that many details in the ligand/protein interactions
may be approximated. Furthermore, the lack of a bijective
function between AA and CG models leads to the obvious
consequence that different AA models could be mapped to the
same CG structure. In all cases, we recommend dutifully
validating the kinetic rates obtained via CG MD calculations

Figure 3. Time scales of the physical and biological processes investigated by simulations. The bars related to the diffusion refer to diffusion
coefficients measured in water. At the bottom time scales achievable by computational techniques.
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against experimental data to adequately estimate the
acceleration factor introduced by the CG FFs. These aspects
and other limitations of classic CG FFs, such as their
thermodynamics-based design and configurational-based CG
mapping, could be overcome by ML techniques.100,108,123−125

While we expect that these FFs, and the Martini in particular,
will continue to play a leading role in investigating many
phenomena, they could be integrated or replaced by ML-
guided CG FFs in the future. As discussed for the atomistic
FFs, the potentiality of ML methods in parametrizing,
optimizing, and including additional measurables, such as
kinetic data sets, could significantly improve the accuracy of
FFs and, therefore, cannot be overlooked. CG-ML FFs would
also benefit from the more consistent, data-driven approach in
deciding how to map atoms into single beads, as opposed to
current strategies that only consider the configurational
aspect.124 In doing so, they could include protein conforma-
tional freedom, which plays a determining role in ligand
binding processes ruled by induced fit or conformational
selection and is currently neglected by CG models.
In conclusion, the current findings indicate that existing

atomistic and CG FFs are not accurate enough to reconstruct
LPB kinetics properly. For this aim, a higher level of theory
and a significant change in the parametrization strategies are
required. ML FFs hold promise, but regrettably, they are not
yet fully developed for general applications. They are facing
essential challenges related to instabilities, representation
issues, and limitations in transferability, particularly when
applied to larger systems.103,124,126 However, their rapid
development cycle is encouraging, setting them apart from
traditional FFs, with numerous new ML FFs being introduced
annually.100,101,103,108,123,125 For instance, Fu et al. have
provided valuable insights into the limitations of current
training methods for ML FFs, which are likely to inspire
further advancements in the field.103 The atomistic ML FFs
hold great promise in achieving quantum mechanics-level
accuracy in MD simulations, with the potential to introduce
greater flexibility in handling configurational and conforma-
tional variations in small molecules, peptides, and proteins.
This could include simulating tautomeric shifts or changes in
protonation states, which are typically not feasible in MD
calculations without dedicated algorithms. However, it is
realistic to expect another five-ten years of progress to be
necessary for a significant breakthrough. A similar time frame
was observed in neural networks for visual pattern recognition,
which were first developed in 1988 but only surpassed human
accuracy thresholds in 2015.127

4. SAMPLING
The residence time of a drug in its molecular target can range
from milliseconds to hours (Figure 3); therefore, LPB kinetics
simulations should reach a comparable time scale.
In addition, to quantitatively estimate the kinetic rates, a

relatively large number of transitions between energy minima
should be observed to collect meaningful statistics. This makes
this kind of study time and computationally demanding.128,129

From a theoretical point of view, the study might focus on
simulating either the binding or the unbinding, with the
estimate of kon or kof f, respectively. Once one of the two
constants has been computed, the other could be derived
according to eq 1 and supposed that Kb is known.

14 It has to be
said that binding rates are faster than unbinding ones since the
unbound state is higher in energy than the bound state, and

consequently, the barriers to cross from the unbound state are
lower in energy if compared to the same from the bound state.
Therefore, the simulation of ligand binding is less time
demanding with respect to unbinding. On the other hand, the
system in the unbound state has a larger entropy, with multiple
isoenergetic conformations possible and only one or a few of
them functional for the ligand to reach the final binding mode.
This ends in a probabilistic problem that requires a significant
number of simulations for sampling the correct ligand binding.
At variance with ligand binding, ligand unbinding is
characterized by higher energy barriers, but only a few paths
can reach the unbound state. This makes the ligand unbinding
process and estimate of kof f computationally less challenging.
However, in such simulations, the ligand binding mode should
be a priori known. In both cases, kinetic calculations are
demanding, and despite the increasing computing power, such
extensive simulations are not accessible to many groups.
Therefore, the practical solution is to decompose the problem
into shorter and simpler tasks or to enhance the
sampling.130−135 As previously introduced, to estimate kinetic
rates and simulate the entire (un)binding process, the
transition paths between all of the energetic minimum states
have to be sampled. This rules out computational techniques
such as end-point and alchemical transformation methods,
which focus on calculating the binding thermodynamics based
on ligand binding modes, while neglecting the ligand binding
mechanism dynamics.136,137

The simplest solution to deal with LPB kinetics is to run
brute force MD calculations, organized in a number of parallel,
independent replicas, followed by an algorithm that computes
rates to go from one state to another one.13 However, this
approach simply shortens the time required to acquire the
results without reducing the computational cost. As a result,
slow kinetic rates, beyond milliseconds, remain unaccessible to
this kind of approach. An elegant solution comes from the
concept of a collective variable (CV): a reaction coordinate
that distinguishes the diverse states assumed by the system
during the binding process. CVs can be either easy and
intuitive to define (e.g., geometrical features such as distances
between molecules or groups of atoms) or complex in nature
(e.g., functions of molecular properties), and they should
represent the slowest degrees of freedom of the system under
investigation. At the end of the simulation, the potential of
mean force (PMF) computed as a CV function describes the
evolution of the free energy along the LPB process, allowing
the identification of transition states (Figure 1). In real-case
scenarios, LPB might be characterized by a relatively large
number of degrees of freedom with different dimensions
(interatomic distances, angles, coordination shells, etc.), which
could be difficult to identify. In addition, ligand binding might
be characterized by different phases ruled by diverse slow
degrees of freedom, especially in cryptic binding pockets and
long kinetics during which the system might significantly
evolve through large protein conformational changes,
solvation, and other long time scale effects. Considering the
complexity of the problem, it is clear that CV definition is a
dimensionality reduction problem and user-defined CVs might
not be accurate enough.138−140 Calculations based on a bad
CV choice might lead to simulation issues, including hysteresis
and a lack of convergence. In the era of machine learning and
semiautomated algorithms, many ways to reduce the
dimensionality of the problem have been proposed, including
principal component analysis, time-lagged independent
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component analysis, and various ML approaches.138,141−148

These techniques work with a given simulation data set and
combine the slowest degrees of freedom of the system using
linear or nonlinear functions. In this theoretical framework, the
quality of the data set and the time scale of the preparatory
simulations heavily affect the results. So far, ML-driven CV
definition has been reported on a number of systems and more
applications in general cases�where slow degrees of freedom
are unknown�are necessary to assess better their predictive
power.13,15,149−152

Furthermore, it is important to note that the system’s slow
degrees of freedom might not necessarily correspond to those
functional for LPB procecess. This makes CV selection even
more difficult. A possible solution could be to identify the
degrees of freedom�and the CVs�functional for LPB (e.g.,
specific ligand/protein interactions, conformational changes,
etc.) by training a ML model with short simulations at relevant
metastable states of the system.153 A distinct discussion merits
the path-based methods, used to analyze the transition
between two states by determining a transition-path ensemble
constructed from an initial guess.154−157 The initial guess pass
is enriched by new branches, created, and added to the
ensemble by running MD simulations or MC calculations.
Despite being elegant in its formulation, this approach can be
quite costly for systems with high barriers and rough free-
energy profiles, for which possible solutions have been
proposed.158 To reduce the computational effort, the reaction
pathway can be fragmented into discrete states, and the
transitions between them can be simulated independently in
parallel. This strategy is applied in state-based methods
encompassing string methods, Markov state-based models,
weighted ensemble, and milestoning, in which the CV can
distinguish specific conformations or anchors in Voronoi
tesselation.32,37,38,159−161 Simulation protocols based on such
approaches have been purposely designed for biological
systems to consider the presence of multiple metastable states
and the typically complex LPB free-energy surface. An
interesting, more recent approach is reconstructing the correct
sampling probability by operating on enhanced-sampling
trajectories with nonoptimized CVs (e.g., variational conforma-
tional dynamics, OPES, and similar techniques).55,162−166 For
example, a customized version of the OPES technique has
been applied in the calculation of kinetic rates for the
benzamidine/trypsin system,56 disclosing the role of water
after the definition of a tailored solvation CV by the authors.57

Such methods have demonstrated the ability to correct a
skewed sampling if the proper degrees of freedom are included;
however, as for other similar applications, their predictive
power has to be assessed in real cases where little information
is known about the system’s slow degrees of freedom.
Whatever method one decides to use to study LPB kinetics

and identify TSs, a postprocessing validation step is
recommended and good practice. The most intuitive and old
procedure implies sampling along nonintersecting hyper-
surfaces connecting two energy minima A and B identified in
previous simulations and computing the committor proba-
bility. This is the probability that a given system conformation,
belonging to the transition path connecting two minima, ends
into A or B.167−169 The committor ranges from 0 to 1 and is
0.5 at the TS, which means that running a relatively large
number of independent simulations starting from the putative
TS, half should fall into A and half into B. It could also be used
to identify TSs in simple systems, e.g., with only two energy

minima, which is seldom the case in LPB. In addition,
statistical tests like the Kolmogorov−Smirnov test might
further be used to assess the Markovian transition of the
saddle points and the Poissonian distribution of the computed
kinetic rates.13,53,170,171

Furthermore, committors might be employed to identify
optimal reaction coordinates and meaningful CVs, even using
ML approaches.172−174 This is an active field of research that
could be further expanded in the near future.175 In conclusion,
defining CVs that could at least alleviate the sampling issue is a
most reasonable strategy and a daunting task that continues to
attract the community.138,176 Despite the encouraging results
coming from automated and semiautomated ML algorithms,
the extensive preparatory simulations required for this kind of
calculations limit their applicability.177 An interesting direction
could be to define the best CVs automatically on-the-fly during
simulation using an unsupervised algorithm as suggested by
Bhakat.177 Independently from the method chosen, the
operator is asked to possess a solid understanding of the
technique and the investigated system, which dramatically
impacts the method’s user-friendliness, as discussed in the next
section.

5. FRIENDLINESS AND PERFORMANCE
In a world more focused on energy efficiency178,179 and data
openness,180,181 aspects such as computing performances, user-
friendliness, and code accessibility or reuse are becoming
increasingly important. This section briefly discusses the most
popular methods for computing the LPB kinetics from this
perspective. First, we compare the simulation times required by
diverse techniques to compute the association or dissociation
rates and the accuracy of their estimates. Then, we discuss
code availability, ease of usage, and data openness. We
conclude this section by analyzing how the open data approach
can be applied to FFs.

Providing a fair comparison of the computational perform-
ance of the different techniques is difficult. Nonetheless, some
baselines can still be drawn using a common test case like the
paradigmatic system benzamidine/trypsin where ligand un-
b i n d i n g o c c u r s w i t h a m i l l i s e c o n d t i m e
scale.32,34,39,46,53,57,60,66−68,161,163,182−186

Table 1 summarizes the results achieved over the years using
different methodologies, organized chronologically. Please note
that in Table 1, for the sake of discussion, we use the names of
the general techniques as defined in the section 2. From the
reported data, it can be seen that optimization of the
computing protocols, i.e., reduction of computer time needed
for LPB simulation, has been a primary focus. From 2016
onward, starting with the work based on the AMS method,184

new techniques typically required less than ten microseconds
of calculations to provide an estimation of the association and
dissociation rates, except for CG MD.117 Notable results were
achieved by Markovian-WEM (M-WEM)39 and OPESf

57 in
delivering accurate values of Kof f in less than four micro-
seconds. Similarly, MMVT34,161 gave an excellent estimate of
the Kon in only five microseconds. The kinetic estimations
significantly differed from the experimental ones in all of the
other cases. However, one should reckon that such inaccuracy
might be due to FFs issues, as discussed in the previous
section, and not necessarily to the methods themselves.
Considering the continuous improvement in the hardware
field133,187 and the potentialities of the upcoming quantum
computing technology,188 it is likely that in the future, the real
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time needed to achieve the calculation convergence will be
significantly shorter. With this in mind, achieving a more
accurate, comprehensive description of the interatomic forces
(as discussed in section 3) at the cost of more demanding
calculations seems to be acceptable or even desirable.
Access to higher computational capabilities or more accurate

modeling of molecular properties will be a game changer, but
we should not focus on only these aspects. We should also
continue to enforce the recent push for good code availability
and reusability practices to make these techniques easier to use
and comprehend, fostering their diffusion in the scientific
community. In principle, computational methods should have
clear documentation, self-explaining interfaces, maintained
repositories with a tracked list of changes and, when possible,
open databases of protocols for reproducibility practices.180

For example, MetaD and MMVT algorithms are supported by
their specific libraries PLUMED189 and SEEKER,34,161 with
plenty of tutorials and documentation available. Funnel-
metadynamics, a variant of metadynamics designed to study
LPB, has been recently furnished with a user-friendly protocol,
named Funnel-Metadynamics Advanced Protocol (FMAP),
and a graphical user interface.190 Furthermore, the PLUMED
consortium has published PLUMED-NEST, a public reposi-
tory containing the computational protocols employed in
PLUMED-assisted MD calculations, for the sake of data
reproducibility.191 LiGaMD, on the other hand, has been
directly integrated into the Amber software.192 We believe that
the next step in making this software more accessible and easy
to use is integrating it into a web server to generate and
validate simulation inputs and create public databases for
storing trajectories related to kinetic experiments. Examples of
such an approach can already be seen in the CHARMM-GUI

Web server,193 the 3-dimensional structure Representation
Sharing (3dRS),194 and the GPCRmd repository,195 among
others.196−198

Lastly, we believe existing and new FFs should be developed
following the principles of data openness. Most FFs use diverse
definitions for residue names, atom names, or types, which may
confuse a novice user. In addition, they have different
parametrization routines, which often involve diverse pools
of model compounds.69,73−76,98 Such discrepancies affect the
bonded and nonbonded parameters obtained from the
parametrization tasks, leading to divergent behaviors in
simulation, especially for small molecules, when diverse FFs
are applied to the same problem. Multiple authors have
observed such outcomes in different circumstances, in both
thermodynamic and kinetic calculations. The SAMPL6
challenge highlighted that GAFF and OPLS systematically
overestimated the octanol/water partition coefficients, whereas
CGenFF gave more accurate predictions.81 Kashefolgheta et al.
reported slightly different behaviors of the most popular ligand
FFs when evaluating their capability to reproduce experimental
cross-solvation free energies.80 Zhu showed similar results in
its benchmark calculations of ligands FFs when compared to
experimental osmotic coefficient data.82 Amore et al.
demonstrated that different FFs provide varying conformer
energies and geometries during the optimization of multiple
molecules and fragments.79 We documented that the para-
metrization of benzamidine using default GAFF parameters led
to unsatisfactory outcomes, altering the ligand binding
conformation and the free-energy landscape of the benzami-
dine/trypsin binding process.78 Kaminsky and Jensen reported
that the conformational transitions of various amino acid
derivatives varied depending on the FF employed. On average,
the errors in the interconversion barriers were in the order of
10 kJ/mol.85 While such discrepancies are usually minor and
may not be an issue in most cases, they could significantly
influence the outcome of LPB kinetic studies, especially when
working with poorly parametrized functional groups and atom
types,98,199 as also shown by the comparison between different
versions of OPLS.74,200,201 Developing standardized FFs with
improved physicochemical description, uniform parametriza-
tion protocols, unified validation tests, and reproducible results
over a wide array of functional groups would be advantageous
for accurately predicting kinetic data and MD calculations.75

Creating universal definitions of atom types and names, shared
among all FFs, would also help with such standardization
efforts. In this context, abandoning the historical classification
of atomic entities into atom types, which unnecessarily
complicates present FFs due to redundancy issues, in favor
of alternative approaches such as the one presented by Mobley
et al. could support the development of a gold standard.202 A
first step in this direction could be the development of public
repositories of model compounds with theoretical and
experimental data for the parametrization of FFs to avoid
discrepancies in the reference data pools. To date, the Open
Force Field initiative is the only consortium to host the
complete data set employed for the parametrization of its FF in
an openly accessible form.75,76

6. CONCLUSIONS
LPB kinetic calculations hold great promise in drug discovery
to achieve more accurate prediction models of in vivo drug
activity.10−16 In the past decade, computational methods have
demonstrated the ability to characterize LPB ki-

Table 1. Comparison of Methods Employed for Computing
the LPB Kinetics in the Benzamidine/Trypsin System

Method Kon (106 M−1 s−1) Koff (s−1)
Simulation
Timea (μs)

Experimental182 29 600 ± 300 −
MD + MSM66 150 ± 20 95000 ± 33000 50
MD + MSM67 440 28000 1
MetaD53 11.8 ± 10 9.1 ± 2.5 2
MD + MSM183 64 13100 ± 10900 149.1
US + MD +
MSM68

−b 1170 ± 276.5 58.28

AMS184 −b 260 ± 240 2.3
MD + BD32 21 ± 3 83 ± 14 19
WEM185 −b 5556 4.1
MetaD163 −b 4176 ± 324 1.2
WEM186 −b 266 8.75
dcTMD46 8.7 ± 0.5 270 ± 40 10000c

CG MD117 368 690000 398
MMVT34 120 ± 5 174 ± 9 4.4
LiGaMD60 11.5 ± 7.9 3.53 ± 1.41 5
M-WEM39 7.6 ± 3.8 769 ± 261 0.73
MMVT161 24 ± 2 990 ± 130 5
OPESf

57 −b 687d 3.3
aOnly production runs are considered. bData not reported/
computed. cdcTMD employs coarse-graining of the degrees of
freedom of the system and increased integration time step (up to
10 fs), significantly reducing the computational time and power
needed for simulations46 dThis value is the slowest unbinding rate
identified in 60% of the performed simulations. No estimate of the
standard deviation is reported in the paper.57
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netics.32,34,39,46,53,57,60,66−68,161,163,182−186 However, the applic-
ability and accuracy of such approaches remain limited (Table
1), mainly due to issues related to FFs and sampling capability.
The hardware and software improvements�also considering
the emerging era of quantum computing�together with the
continuously evolving ML techniques will undoubtedly play a
leading role in the coming years, hopefully making this kind of
calculations less demanding and useful for ligand database
screening protocols. In this regard, one could expect that even
quantum mechanical calculations�now considered unfeasible
for ligand binding studies203�might at least integrate the
atomistic level description of LPB. In the present article, we
have discussed three macro areas that could be further
improved, which are molecular properties parametrization,
sampling, and data openness. In addition, to make kinetics
calculations the “gold standard” in the near future, the
following requisites should also be fulfilled: (i) prediction of
kinetic rates; (ii) assessment of the results; (iii) release of the
atomistic structure of rate-determining states. To date, kinetics
calculations have been employed to reproduce experimental
rates, with only a few examples where calculations are
presented together with or followed by experimental
validation.26−29 We expect that a posteriori experimental
validation of the simulation data can become a standard
practice. This would represent an important acknowledgment
of the predictive power of this kind of calculations.
Furthermore, the assessment of the results is another crucial
point. As introduced in section 4, committor analysis and
statistical postprocessing tests are available and should
represent a standard practice to assess kinetics constants
estimates and identification of TSs. The latter leads to the last
point, which is the release of the atomistic structure of the rate-
determining states. These are high-energy, short-lived, hence
transient, states that are elusive to experimental structural
biology techniques like crystallography, Cryo-EM, and NMR.
At variance with these techniques, atomistic simulations have
the capability of detecting and disclosing the atomistic
structure of TSs and these should be reported in any kinetic
study. These structures would indeed increase the impact of
the work and represent unprecedented structural information
helpful for medicinal chemists in the design of ligands with
tailored binding kinetic properties. In such a way, the LPB
kinetics models could mark a breakthrough in drug discovery
and be in the pool of the in silico models as nonanimal
alternative methods for drug assessments approved by the FDA
(Food and Drug Administration Modernization Act 2.0).9
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