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Abstract: Compounds featuring a 1,2,4-oxadiazole core have been recently identified as a new
chemotype of farnesoid X receptor (FXR) antagonists. With the aim to expand this class of compounds
and to understand the building blocks necessary to maintain the antagonistic activity, we describe
herein the synthesis, the pharmacological evaluation, and the in vitro pharmacokinetic properties of
a novel series of 1,2,4-oxadiazole derivatives decorated on the nitrogen of the piperidine ring with
different N-alkyl and N-aryl side chains. In vitro pharmacological evaluation showed compounds 5
and 11 as the first examples of nonsteroidal dual FXR/Pregnane X receptor (PXR) modulators. In
HepG2 cells, these compounds modulated PXR- and FXR-regulated genes, resulting in interesting
leads in the treatment of inflammatory disorders. Moreover, molecular docking studies supported
the experimental results, disclosing the ligand binding mode and allowing rationalization of the
activities of compounds 5 and 11.

Keywords: farnesoid X receptor antagonist; pregnane X receptor agonist; 1,2,4-oxadiazole;
inflammatory disorders

1. Introduction

The nuclear farnesoid X receptor (FXR), mainly expressed in enterohepatic tissues,
is a well-known target of bile acids (BAs). FXR regulates the expression of many genes
encoding proteins involved in the entire metabolic process [1].

Its activation modulates the synthesis, transport, and reabsorption of bile acids and
also plays an essential role in glucose and lipid homeostasis. In addition to its role as a
metabolic regulator, FXR shows other effects in non-metabolic areas such as liver regenera-
tion, tumorigenesis, and the protection of atherosclerosis and renal diseases [2–5].

Consequently, FXR represents a promising target for the treatment of metabolic dis-
orders, showing beneficial effects in different diseases such as cholestasis, nonalcoholic
steatohepatitis (NASH), obesity, and liver fibrosis.

During the past decade, many efforts were directed towards the identification of novel
FXR modulators. Many FXR agonists, featuring steroidal or nonsteroidal scaffolds, have
been identified, and many of them are in preclinical and clinical phases for the treatment of
different hepatic and metabolic diseases [6–8].

However, FXR modulation shows multifaceted effects on metabolic disorders, possibly
due to differences in tissue expression and disease state [9]. Therefore, the evaluation of
antagonistic activity also needs to be considered in the drug discovery pipeline.
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Recent studies demonstrated that the inhibition of intestinal FXR, mediated by the
natural antagonist tauro-β-muricholic acid (TβMCA), prevented obesity-related metabolic
dysfunction in mice [10–13]. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is the
mainstay in the treatment of cholestatic liver disorders. Although its mechanism of action
is poorly understood, it is demonstrated that UDCA exerts FXR antagonistic effects [14,15].

Furthermore, FXR antagonists could be useful for the treatment of obstructive cholesta-
sis since FXR activation increases the expression of the intestinal bile acid-binding protein
(I-BABP) gene [16] and inhibits CYP7A1 gene expression, raising cholesterol levels [17].

These findings suggest that FXR antagonists represent an alternative to the treatment
of hypercholesterolemia and related metabolic disorders.

In this study, further expanding the library of 1,2,4-oxadiazole derivatives previously
identified by our research group [18], we have identified novel FXR antagonist molecules
endowed surprisingly with PXR agonistic activity.

The Pregnane X receptor (PXR) is a nuclear receptor, also known as a xenobiotic
sensor, expressed in the liver, small intestine, colon, and, to a lesser extent, in the brain. It is
involved in many metabolic pathways, including bile acids, lipids, and glucose homeostasis,
as well as inflammation [19].

As concerning the therapeutic applications, PXR agonists, such as rifaximin, are cur-
rently used in the therapy of inflammatory bowel diseases, such as Crohn’s and ulcerative
colitis [20].

To date, the first and only example of a dual PXR/FXR modulator is Theonellasterol G,
a marine sterol isolated in 2011 from the sponge Theonella swinhoei [21].

Since FXR and PXR are both involved in intestinal inflammation, a dual ligand able
to activate PXR and modulate FXR activity holds potential in the treatment of inflamma-
tory disorders.

Heterocyclic compounds, found in the structural core of many natural and synthetic
medicinal substances, have gained importance in medicinal chemistry and material science
considering their ability to behave as bioisosters of esters, amides, and carbamides [22–25].

Derivatives presenting in their structures heterocyclic scaffolds possess a wide range
of biological activities, such as anticancer, antifungal, anti-inflammatory, anti-bacterial,
antiviral, antihypertensive, and antioxidant [26].

Among these, 1,2,4-oxadiazoles represent an interesting class of five-membered het-
erocyclic compounds that could be decorated at positions C-3 and C-5 with different
substituents. The facile synthetic accessibility as well as the structural features make these
compounds useful in a broad range of applications, from medicinal chemistry, organic
synthesis as intermediates, and metal catalysts to the chemistry of polymers [27–29].

In our previous work, making modifications around the 1,2,4-oxadiazole core, we
explored the influence of different aromatic substituents at C3 and of different positions
of the nitrogen in the heterocyclic moiety at C5. The study resulted in the identification
of compound 1, featuring a 3-(2-naphthyl)-1,2,4-oxadiazole core and a piperidine ring
(Figure 1), as the most potent and selective FXR antagonist of the library (IC50 0.58 µM).
Notably, compound 1 was also endowed with excellent pharmacokinetic properties [18].

Starting from this molecule, we report here the synthesis and the biological evaluation
as dual FXR and PXR modulators of a novel series of derivatives characterized by a
3-(2-naphthyl)-5-(4-piperidyl)-1,2,4-oxadiazole core, in which the nitrogen of the piperidine
ring is functionalized with different alkyl or benzyl groups (Figure 1). Computational
studies disclosed the binding mode to both FXR and PXR of the most promising ligand of
the series, paving the way for the rational design of novel nonsteroidal dual modulators of
these nuclear receptors.
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Figure 1. Library of 1,2,4-oxadiazole derivatives generated in this study.

2. Results and Discussion
2.1. Synthesis and Evaluation of Biological Activity

Compound 1 was prepared from 2-naphthonitrile 1a using the amidoxime route
followed by coupling with N-Boc-isonipecotic acid (N-Boc-Inp-OH) as previously de-
scribed [18] (Scheme 1). Using different linear or branched alkyl bromides, compounds 2–9
were obtained. The treatment of compound 1 with methyl 3-(bromomethyl)benzoate and
methyl 4-(bromomethyl)benzoate allowed to obtain the methyl esters 12 and 13, respec-
tively, that in turn were reduced with diisobutylaluminium hydride (DIBAL-H), affording
the corresponding benzyl alcohols 10 and 11.
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Scheme 1. Reagents and conditions: (a) NH2OH HCl, K2CO3 in CH3OH, reflux; (b) N-Boc-
Inp-OH, DIPEA, HBTU in DMF dry, 80 ◦C, 80% yield; (c) TFA:CH2Cl2 1:1, 2 h, quantita-
tive yield; (d) bromoethane, 1-bromopropane, 1-bromobutane, 1-bromopentane, 1-bromohexane,
1-bromoheptane, 2-bromopropane, 2-bromobutane, methyl 3-(bromomethyl)benzoate or methyl
4-(bromomethyl)benzoate, DIPEA, in CH3CN dry, 60 ◦C, overnight, the yield of each compound is:
77% for 2, 87% for 3, 72% for 4 and 5, 63% for 6, 82% for 7, 50% for 8, 72% for 9 and 80% for 12 and 13
(e) DIBAL-H (1 M in toluene) in THF dry, 0 ◦C, 48 h, and 75 and 92% yields for compounds 10 and 11.

1H and 13C NMR spectra of compounds 2–11 are reported in the Supporting Information.
The newly synthesized oxadiazoles were evaluated on FXR in a luciferase reporter

assay. As shown in Table 1, compounds 2, 3, 7, and 9 unfortunately proved to be toxic on
HepG2 cells at 50 µM, while compounds 5, 10, and 11 emerged as FXR antagonists with an
efficacy of 66%, 66%, and 72%, respectively. The evaluation of the selectivity towards other
nuclear receptors, such as the liver X receptor (LXRα and LXRβ, Supplementary Materials,
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Figure S11) and PXR (Table 1), revealed that compounds 4, 5, 8, and 11 were also able to
activate PXR with an efficacy of 68%, 71%, 50%, and 105%, respectively.

Table 1. Efficacy of compounds 2–11 towards FXR and PXR.
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Overall, compounds 5 and 11 represent promising dual modulators in terms of efficacy,
emerging as potent PXR agonists and FXR antagonists.

The potency of selected compounds was investigated by a detailed measurement of
the concentration-response curves on FXR and PXR, as shown in Table 2.

Table 2. Potency and physicochemical properties of compounds 5 and 11.

Compound IC50
a

(FXR)
EC50

a

(PXR) t1/2 (min) LogD Clint
b

5 8.4 ± 2 6.4 ± 0.1 69 4.4 33.7
11 4.4 ± 0.4 7.5 ± 1 204 3.9 11.3

a IC50 and EC50 values (µM) were calculated in transactivation assays from at least three experiments. The results
are expressed as mean ± SEM. b Reported as µL/min/mg protein.

Liquid chromatography–mass spectrometry (LC-MS) analysis was performed to estab-
lish the physicochemical properties of the best active compounds 5 and 11. They exhibited
suitable logD values and showed also good metabolic stabilities in the S9 fraction, with
half-life (t1/2) of 69 and 204 min and intrinsic clearances (Clint) of 33.7 and 11.3, respectively
(Table 2).

To give support to the biological behavior of compounds 5 and 11, we then tested their
effects on HepG2 and CaCo2 cell lines using quantitative polymerase chain reaction (qPCR)
analysis. As shown in Figure 2, 5 and 11 reversed the effect of 6-ethyl chenodeoxycholic
acid (6-ECDCA), a well-known FXR agonist, on the expression of the canonical FXR target
gene bile salt export pump (BSEP) in the HepG2 cell line but showed only a trend on organic
solute transporter alpha (OSTα) expression. Only compound 5 showed antagonistic activity
on the expression of the mediator of BA transport sodium-dependent uptake transporter
(NTCP) (panels A–C). Additionally, panels D–F in Figure 2 demonstrated that 5 and 11
reduced changes in the production of proinflammatory factors caused by tumor necrosis
factor alpha (TNFα) stimulation in CaCo2, as well as rifaximin, a well-known PXR agonist.
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target in HepG2 cells left untreated, treated with 6-ECDCA (10 µM), compounds 5 or 11 (10 µM),
or a combination of 6-ECDCA plus 5 or 11. Results are expressed as mean ± SEM. (D–F) Effects of
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cells left untreated, treated with TNFα (100 ng/mL) alone, or in combination with 5 or 11 (10 µM).
Results are expressed as mean ± SEM. * p < 0.05 versus not treated cells (NT).

2.2. Molecular Docking

In order to investigate the binding mode of the PXR/FXR dual-active compounds 5
and 11, docking calculations were performed [30–32] with the Glide software package (see
Supporting Information for details).

As regards the docking in PXR, we used two different receptor structures that were
purposely chosen considering the bulkiness of the ligands in complex with the receptor.
In detail, for compound 5, we used the ligand binding domain (LBD) X-ray structure
of PXR with PDB ID 7AXE [33] that was co-crystallized with a small ligand similar in
shape to compound 5, while considering the bulkier para-hydroxymethyl group present
in compound 11, we docked this ligand in the PXR-LBD X-ray structure with PDB ID
3HVL [34] that was indeed resolved in a complex with a larger compound. This strategy
was necessary since docking calculations treat proteins as rigid bodies, and backbone or
side chain conformational changes induced by the binding of differently sized ligands
cannot be simulated during docking.

Docking calculations show for both compounds 5 and 11 a similar binding mode
in PXR, albeit with some differences (Figure 3). In particular, the naphthyl scaffold of
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each ligand is placed in the hydrophobic pocket between H3, H11, and H12, formed by
Leu240, Phe251, Phe281, Asn404, His407, Leu411, Phe420, Ala421, Met425, and Phe429,
where it establishes a number of favorable contacts such as π-stacking interactions with
Phe429; notably, an additional π-π interaction with Phe240 is formed by 5. The oxadiazole
ring of this compound can also form an H-bond with the side chain of Gln285, while the
ligand’s piperidine ring contacts Met246 and Phe288 and forms cation-π interactions with
Phe288 and Tyr306. Finally, the alkyl chain points toward the β-strand, where it can interact
with lipophilic residues such as Leu209, Val211, Met243, Trp299, and Tyr306. Similar
to compound 5, the oxadiazole ring of 11 is located close to Cys284 and Gln285 while
the piperidine ring can interact with Leu209, Val211, and Phe288 and makes a cation-π
interaction with Tyr306. Finally, the para-hydroxymethyl group points towards H4 and
H11, where it forms an H-bond with the backbone of Ile236.
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Figure 3. Binding modes of (A) compound 5 (in yellow sticks) in the X-ray structure of PXR-LBD
(PDB ID 7AXE) and (B) compound 11 (in light green sticks) were observed in the X-ray structure of
PXR-LBD (PDB ID 3HVL) [34]. PXR is shown as tan cartoon, while the interacting residues of the
receptors are shown in tan sticks. Hydrogens are omitted for clarity. Hydrogen bonds are shown as
dashed black lines.

As regards FXR, the crystal structure of the human FXR-LBD (PDB ID 4OIV) [35] in
its antagonist-bound (inactive) state was employed, and docking calculations show a very
similar binding mode of compounds 5 and 11. In the best-scoring and most populated
pose, both ligands occupy the binding site defined by H3, H5, H6, H7, and H11 (Figure 4).
Here, the ligands’ oxadiazole rings engage both a water-mediated hydrogen bond and a
π-π stacking interaction with the side chain of His451 on H11 and an additional water-
mediated hydrogen bond with the backbone of Tyr365. Furthermore, the naphthyl ring
establishes hydrophobic interactions with residues such as Ala295, Val299, Leu455, and
Met456. On the other side, the ligand’s piperidine ring establishes favorable interactions
with Ser336, Ile356, Ile361, Ile366, and Tyr373. Finally, the alkyl chain of compound 5
and the benzyl ring of compound 11 form hydrophobic contacts with Leu291, Met294,
Ala295, and Leu352. Additionally, the para-hydroxymethyl moiety of compound 11 forms
a direct H-bond with His298. Interestingly, the binding modes of compound 5 and com-
pound 11 resemble the ones previously described by us for oxadiazole FXR antagonists [18]
and the crystallographic binding pose of N-benzyl-N-(3-tert-butyl-4-hydroxyphenyl)-2,6-
dichloro-4-(dimethylamino)benzamide at the FXR-LBD (PDB ID 4OIV) [35]. In particular,
the interactions with residues known to play an important role in the binding of FXR antag-
onists, including the water-mediated H-bonds with His298 and Tyr365 and the hydrophobic
pattern involving Leu291, Ala295, Val299, and Leu455, are conserved (Figure 4).
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Figure 4. Binding modes of (A) compound 5 (in yellow sticks) and (B) compound 11 (in light green
sticks) in the X-ray structure of FXR-LBD (PDB ID 4OIV) [35]. FXR is shown as a gray cartoon, while
the interacting residues of the receptors are shown as gray sticks. Hydrogens are omitted for clarity.
Hydrogen bonds are shown as dashed black lines. The bridging water molecules are reported as red
sticks with explicit hydrogens.

Such interactions are known to stabilize the inactive conformation of the FXR-LBD [18],
which shows minor but substantial structural differences if compared with the receptor
agonistic form. In detail, in the antagonist-bound FXR-LBD, the C-tail of helix H11 is
bent, occupying in part the ligand binding pocket, while H12 unfolds, pointing toward
the binding site of the coactivator peptides of the neighboring FXR monomer. Such a
conformational change is likely due to the capability of FXR antagonist ligands to disrupt
the well-characterized cation-π interaction between His451 on H11 and Trp473 on H12,
which is crucial for receptor activation. This, in turn, impedes the recruitment of FXR
coactivators, eventually blocking the receptor in a non-activable state.

Overall, our results indicate that in FXR compounds with both linear alkyl chains (4, 5)
and bulkier benzyl groups (10, 11) as N-piperidine substituents, the antagonistic profiles
are good, suggesting a relative plasticity of the receptor in the region hosting such groups.
Here, it might be worth investigating additional functionalization of the piperidine nitrogen
(e.g., substituents endowed with hydroxyl, aminic, and other polar functional groups). On
the other hand, in PXR, the pocket hosting the N-piperidine substituent is narrow and
thus linear; thus, not very long substituents are preferred (4, 5 vs. 6, 7; 11 vs. 10), with the
para-hydroxymethyl benzyl substituent (11) showing the best efficacy. The morphology
of this pocket in PXR might represent a limitation in the design of FXR/PXR dual active
ligands that should be taken into consideration.

3. Materials and Methods
3.1. Synthesis
3.1.1. General Information

All chemicals were obtained from commercial vendors (Merk-Sigma, KGaA, Darm-
stadt, Germany; TCI, Tokyo Chemical Industry Co. Alts Nihongashi-honcho, Chou-Ku,
Japan and Fluorochem Limited, Hadfield, UK). Flash chromatography was performed
using Biotage Selekt (Uppsala, Sweden) and silica gel columns (Agela 40–60 µm, 60A)
Phenomenex, Torrence, CA, USA. Solvents and reagents were used as supplied from
commercial sources, with the exception of tetrahydrofuran, which was distilled from cal-
cium hydride immediately prior to use, and methanol, which was dried as previously
reported [36].
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The reactions were carried out under an argon atmosphere, and the progress of
reactions was monitored via thin-layer chromatography (TLC) on Alugram® silica gel
G/UV254 plates. The purity of the tested compounds was determined by HPLC analysis.
All compounds for biological testing were >95% pure. HPLC was performed using a Waters
Model 510 pump equipped with a Waters rheodine injector and differential refractometer,
Model 401 (Waters Co., Milford, MA, USA). ESI-MS spectra were performed on a mass
spectrometer, the LTQ-XL equipped with an HESI source and coupled with an Ultimate
3000 UHPLC system (Thermo Fisher Scientific, Waltham, MA, USA).

NMR spectra were obtained on Bruker Avance NEO 400 and 700 spectrometers (Bruker
Company Billerica, MA, USA) equipped with an RT-DR-BF/1H-5 mm-OZ SmartProbe
(1H at 400 MHz and 13C at 100 MHz; 1H at 700 MHz and 13C at 175 MHz) and recorded in
CD3OD (δH = 3.31 and δC = 49.0 ppm). All detected signals were in accordance with the
proposed structures. J are reported in hertz (Hz) and chemical shifts (δ) in ppm, referred to
as internal standard for CHD2OD. Spin multiplicities are given as s (singlet), br s (broad
singlet), d (doublet), t (triplet), or m (multiplet).

3.1.2. Synthetic Procedures

3-(Naphthalen-2-yl)-5-(piperidin-4-yl)-1,2,4-oxadiazole (1) was prepared as previously
reported [18].

General synthetic procedures to prepare 1,2,4-oxadiazole derivatives 2–9 and 12–13.
N,N-diisopropylethylamine (DIPEA, 94 µL, 0.54 mmol) and alkyl or benzyl bromide
(1.5 mol eq.) were added to compound 1 (50 mg, 0.180 mmol) dissolved in acetonitrile
dry (5 mL) and stirred at 60 ◦C over night. After completion of the reaction (monitored by
TLC), the resulting solution was then concentrated under vacuum, diluted with water, and
extracted with CH2Cl2. The organic fraction was dried over NaSO4, and the solvent was
removed under reduced pressure to yield the crude products (50–100% yields).

5-(1-Ethylpiperidin-4-yl)-3-(naphthalen-2-yl)-1,2,4-oxadiazole (2). The mixture was pu-
rified by HPLC on a Synergi Fusion-RP 80 (4 µm; 4.6 mm i.d. × 250 mm) with MeOH/H2O
(88:12) as eluent (flow rate 1 mL/min, tR = 6.7 min); 1H NMR (400 MHz, CD3OD): δH 8.60
(1H, s), 8.09 (1H, dd, J = 8.5, 1.5 Hz), 7.98 (1H, ovl), 7.97 (1H, ovl), 7.93 (1H, br d, J = 7.6 Hz),
7.58 (2H, m), 3.16 (1H, m), 2.99 (2H, m), 2.52 (2H, q, J = 7.2 Hz), 2.27 (2H, br t, J = 11.0 Hz),
2.19 (2H, m), 2.02 (2H, m), 1.16 (3H, t, J = 7.2 Hz, CH3); 13C NMR (100 MHz, CD3OD): δC
183.6, 169.4, 136.2, 134.5, 129.9 (2C), 128.8 (3C), 127.9, 125.5, 124.6, 53.7 (3C), 35.3, 30.1 (2C),
12.5; ESIMS m/z 308.4 [M + H]+.

3-(Naphthalen-2-yl)-5-(1-propylpiperidin-4-yl)-1,2,4-oxadiazole (3). The mixture was
purified by HPLC on a Synergi Fusion-RP 80 (4 µm; 4.6 mm i.d. × 250 mm) with
MeOH/H2O (88:12) as eluent (flow rate 1 mL/min, tR = 8.2 min); 1H NMR (700 MHz,
CD3OD): δH 8.60 (1H, s), 8.09 (1H, dd, J = 8.5, 1.5 Hz), 7.99 (2H, ovl), 7.93 (1H, br d,
J = 7.6 Hz), 7.58 (2H, m), 3.15 (1H, m), 3.06 (2H, m), 2.41 (2H, m), 2.28 (2H, br t, J = 11.0 Hz),
2.20 (2H, m), 2.04 (2H, m), 1.59 (2H, m), 0.95 (3H, t, J = 7.4 Hz, CH3); 13C NMR (175 MHz,
CD3OD): δC 183.6, 169.5, 136.1, 134.5, 129.9, 129.8, 128.9, 128.8, 128.7, 127.9, 125.5, 124.6,
61.9, 53.7 (2C), 35.3, 30.1 (2C), 20.6, 12.2; ESIMS m/z 322.2 [M + H]+.

5-(1-Butylpiperidin-4-yl)-3-(naphthalen-2-yl)-1,2,4-oxadiazole (4). The mixture was pu-
rified by HPLC on a Synergi Fusion-RP 80 (4 µm; 4.6 mm i.d. × 250 mm) with MeOH/H2O
(88:12) as eluent (flow rate 1 mL/min, tR = 11.7 min); 1H NMR (400 MHz, CD3OD): δH
8.60 (1H, s), 8.09 (1H, dd, J = 8.5, 1.5 Hz), 7.98 (1H, ovl), 7.97 (1H, ovl), 7.93 (1H, br d,
J = 7.6 Hz), 7.58 (2H, m), 3.17 (1H, m), 3.07 (2H, m), 2.45 (2H, m), 2.30 (2H, m), 2.23 (2H, m),
2.05 (2H, m), 1.56 (2H, m), 1.39 (2H, m), 0.97 (3H, t, J = 7.2 Hz, CH3); 13C NMR (100 MHz,
CD3OD): δC 183.7, 169.8, 136.1, 134.6, 129.9, 129.8, 128.9, 128.8, 128.7, 127.9, 125.5, 124.6,
59.8, 53.7 (2C), 35.3, 30.2 (2C), 29.7, 21.9, 14.4; ESIMS m/z 336.2 [M + H]+.

3-(Naphthalen-2-yl)-5-(1-pentylpiperidin-4-yl)-1,2,4-oxadiazole (5). The mixture was
purified by HPLC on a Synergi Fusion-RP (4 µm; 4.6 mm i.d. × 250 mm) with MeOH/H2O
(88:12) as eluent (flow rate 1 mL/min, tR = 14.6 min); 1H NMR (400 MHz, CD3OD): δH 8.60
(1H, s), 8.09 (1H, dd, J = 8.5, 1.3 Hz), 8.00 (1H, ovl), 7.99 (1H, ovl), 7.93 (1H, d, J = 7.2 Hz), 7.58
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(2H, ovl), 3.14 (1H, m), 3.03 (2H, m), 2.40 (2H, m), 2.21 (4H, m), 2.03 (2H, m), 1.57 (2H, m),
1.37 (2H, m), 1.33 (2H, m), 0.93 (3H, t, J = 7.1 Hz, CH3); 13C NMR (100 MHz, CD3OD) δC
183.5, 169.5, 136.0, 134.4, 129.9, 129.8, 128.9, 128.8, 128.7, 128.0, 125.4, 124.6, 59.0, 53.5 (2C),
35.2,31.0, 30.0 (2C), 27.0, 23.7, 14.4; ESIMS m/z 350.2 [M + H]+.

5-(1-Hexylpiperidin-4-yl)-3-(naphthalen-2-yl)-1,2,4-oxadiazole (6). The mixture was
purified by HPLC on a Synergi Fusion-RP 80 (4 µm; 4.6 mm i.d. × 250 mm) with
MeOH/H2O (88:12) as eluent (flow rate 1 mL/min, tR = 14.9 min); 1H NMR (400 MHz,
CD3OD): δH 8.60 (1H, s), 8.09 (1H, dd, J = 8.6, 1.4 Hz), 8.00 (1H, ovl), 7.99 (1H, ovl),
7.93 (1H, d, J = 7.2 Hz), 7.58 (2H, ovl), 3.16 (1H, m), 3.05 (2H, m), 2.43 (2H, m), 2.24
(4H, m), 2.05 (2H, m), 1.57 (2H, m), 1.35 (6H, m), 0.93 (3H, t, J = 7.1 Hz, CH3); 13C
NMR (100 MHz, CD3OD): δC 183.6, 169.5, 136.1, 134.5, 129.9, 129.8, 128.9, 128.8, 128.7,
127.9, 125.5, 124.6, 60.0, 53.7 (2C), 35.5, 32.9, 30.3, 30.1 (2C), 28.6, 27.4, 14.3; ESIMS m/z
364.2 [M + H]+.

5-(1-Heptylpiperidin-4-yl)-3-(naphthalen-2-yl)-1,2,4-oxadiazole (7). The mixture was
purified by HPLC on a Synergi Fusion-RP 80 (4 µm; 4.6 mm i.d. × 250 mm) with
MeOH/H2O (88:12) as eluent (flow rate 1 mL/min, tR = 15.4 min); 1H NMR (700 MHz,
CD3OD): δH 8.60 (1H, s), 8.09 (1H, dd, J = 8.7, 1.3 Hz), 8.00 (1H, ovl), 7.99 (1H, ovl), 7.93
(1H, d, J = 7.2 Hz), 7.58 (2H, ovl), 3.16 (1H, m), 3.06 (2H, m), 2.44 (2H, m), 2.28 (2H, m),
2.22 (2H, m), 2.05 (2H, m), 1.57 (2H, m), 1.35 (8H, ovl), 0.92 (3H, t, J = 7.1 Hz, CH3); 13C
NMR (175 MHz, CD3OD): δC 183.6, 169.5, 136.1, 134.5, 129.9, 129.8, 128.9, 128.8, 128.7,
127.9, 125.5, 124.6, 60.0, 53.7 (2C), 35.4, 32.9, 30.3, 30.1 (2C), 28.7, 27.6, 23.7, 14.5; ESIMS m/z
378.2 [M + H]+.

5-(1-Isopropylpiperidin-4-yl)-3-(naphthalen-2-yl)-1,2,4-oxadiazole (8). The mixture
was purified by HPLC on a Synergi Fusion-RP 80 (4 µm; 4.6 mm i.d. × 250 mm) with
MeOH/H2O (95:5) as eluent (flow rate 1 mL/min, tR = 6.2 min); 1H NMR (700 MHz,
CD3OD): δH 8.60 (1H, s), 8.09 (1H, dd, J = 8.6, 1.3 Hz), 8.00 (1H, ovl), 7.99 (1H, ovl), 7.94
(1H, d, J = 7.5 Hz), 7.58 (2H, ovl), 3.14 (1H, m), 3.04 (2H, m), 2.81 (1H, septet), 2.46 (2H, m),
2.23 (2H, m), 2.02 (2H, m), 1.13 (6H, d, J = 6.6 Hz, CH3); 13C NMR (175 MHz, CD3OD): δC
183.6, 169.5, 136.1, 134.5, 129.9, 129.8, 128.9, 128.8, 128.7, 127.9, 125.5, 124.6, 56.2, 35.6, 48.8
(2C), 30.4 (2C), 18.3 (2C); ESIMS m/z 322.2 [M + H]+.

5-(1-(Sec-butyl)piperidin-4-yl)-3-(naphthalen-2-yl)-1,2,4-oxadiazole (9). The mixture
was purified by HPLC on a Synergi Fusion-RP 80 (4 µm; 4.6 mm i.d. × 250 mm) with
MeOH/H2O (88:12) as eluent (flow rate 1 mL/min, tR = 13.4 min); 1H NMR (400 MHz,
CD3OD): δH 8.60 (1H, s), 8.09 (1H, dd, J = 8.6, 1.3 Hz), 8.00 (1H, ovl), 7.99 (1H, ovl), 7.94
(1H, d, J = 7.5 Hz), 7.59 (2H, ovl), 3.13 (1H, m), 2.98 (2H, m), 2.58 (2H, m), 2.49 (1H, m), 2.22
(2H, m), 2.02 (2H, m), 1.69 (1H, m), 1.35 (1H, m), 1.07 (3H, d, J = 6.6 Hz, CH3), 0.96 (3H, t,
J = 7.3 Hz, CH3); 13C NMR (100 MHz, CD3OD): δC 183.6, 169.5, 136.1, 134.5, 129.9, 129.8,
128.9, 128.8, 128.7, 127.9, 125.5, 124.6, 59.5, 54.8 (2C), 35.6, 33.6 (2C), 25.4, 13.6, 12.0; ESIMS
m/z 336.2 [M + H]+.

5-[1-(3-(Methoxycarbonyl)benzyl)piperidin-4-yl]-3-(naphthalen-2-yl)-1,2,4-oxadiazole (12).
1H NMR (700 MHz, CD3OD): δH 8.60 (1H, s), 8.09 (1H, dd, J = 8.5, 1.5 Hz), 8.05 (1H, s),
7.98 (2H, ovl), 7.94 (2H, t, J = 7.6 Hz), 7.62 (1H, d, J = 7.6 Hz), 7.58 (2H, ovl), 7.47 (1H, t,
J = 7.6 Hz), 3.91 (3H, s, OCH3), 3.63 (2H, s), 3.19 (1H, m), 3.07 (2H, m), 2.43 (2H, m), 2.23
(2H, m), 2.06 (2H, m); 13C NMR (175 MHz, CD3OD): δC 183.4, 169.5, 168.5, 136.1, 135.6,
134.8, 134.7, 130.9, 129.9, 129.8, 129.7, 129.6, 129.3, 128.9, 128.8, 128.7, 128.0, 125.5, 124.6, 63.3,
53.4 (2C), 52.6, 35.1, 30.0 (2C), ESIMS m/z 428.2 [M + H]+.

5-[1-(4-(Methoxycarbonyl)benzyl)piperidin-4-yl]-3-(naphthalen-2-yl)-1,2,4-oxadiazole (13).
1H NMR (700 MHz, CD3OD): δH 8.60 (1H, s), 8.09 (1H, dd, J = 8.5, 1.5 Hz), 8.02 (2H, d,
J = 8.3 Hz), 8.01 (1H, ovl), 7.99 (1H, ovl), 7.94 (1H, br d, J = 7.6 Hz), 7.58 (2H, m), 7.51 (2H,
d, J = 8.3 Hz), 3.91 (3H, s, OCH3), 3.65 (2H, s), 3.16 (1H, m), 2.99 (2H, m), 2.31 (2H, br t,
J = 10.9 Hz), 2.19 (2H, m), 2.05 (2H, m); 13C NMR (175 MHz, CD3OD): δC 183.6, 169.5, 168.5,
144.8, 136.1, 134.5, 130.6 (2C), 130.5 (2C), 130.4, 129.9, 129.8, 128.9, 128.8, 128.7, 128.0, 125.5,
124.6, 63.6, 53.7 (2C), 52.6, 35.4, 30.4 (2C), ESIMS m/z 428.2 [M + H]+.

General synthetic procedures to prepare 1,2,4-oxadiazole derivatives 10–11.
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Compounds 12 and 13 (61 mg, 0.144 mmol) were subjected to reduction with DIBAL-H
(1.0 M in toluene, 290 µL, 0.288 mmol) added dropwise in a solution with tetrahydrofuran at
0 ◦C. The reaction was stirred at room temperature for 12–24 h. The reaction was quenched
by slow addition of methanol and of a solution of saturated Rochelle salt, stirred for 1 h.
The mixture was partitioned three times, and the combined organic extracts dried over
Na2SO4.

5-[1-(3-(Hydroxymethyl)benzyl)piperidin-4-yl]-3-(naphthalen-2-yl)-1,2,4-oxadiazole (10).
The mixture was purified by HPLC on a Synergi Fusion-RP 80 (4 µm; 4.6 mm i.d. × 250 mm)
with MeOH/H2O (78:22) as eluent (flow rate 1 mL/min, tR = 19.2 min); 1H NMR (400 MHz,
CD3OD): δH 8.60 (1H, s), 8.09 (1H, d, J = 8.5 Hz), 7.98 (2H, ovl), 7.93 (1H, br d, J = 7.6 Hz),
7.58 (2H, m), 7.38 (1H, br s), 7.32 (1H, ovl), 7.29 (2H, ovl), 4.62 (2H, s), 3.60 (2H, s), 3.14
(1H, m), 3.00 (2H, m), 2.28 (2H, br t, J = 11.0 Hz), 2.19 (2H, m), 2.04 (2H, m); 13C NMR
(100 MHz, CD3OD): δC 183.4, 169.5, 142.0, 136.1, 135.5, 134.8 (2C), 131.4, 130.9, 129.9, 129.8,
129.3, 128.9, 128.8, 128.7, 128.0, 125.2, 124.6, 64.0, 63.3, 53.4 (2C), 35.1, 29.9 (2C); ESIMS m/z
400.2 [M + H]+.

5-[1-(4-(Hydroxymethyl)benzyl)piperidin-4-yl]-3-(naphthalen-2-yl)-1,2,4-oxadiazole (11).
The mixture was purified by HPLC on a Synergi Fusion-RP 80 (4 µm; 4.6 mm i.d. × 250 mm)
with MeOH/H2O (80:20) as eluent (flow rate 1 mL/min, tR = 14.3 min); 1H NMR (700 MHz,
CD3OD): δH 8.60 (1H, s), 8.09 (1H, dd, J = 8.5, 1.5 Hz), 7.98 (1H, ovl), 7.97 (1H, ovl), 7.93
(1H, br d, J = 7.6 Hz), 7.58 (2H, m), 7.35 (4H, ovl), 4.61 (2H, s), 3.59 (2H, s), 3.13 (1H, m),
2.99 (2H, m), 2.27 (2H, br t, J = 11.0 Hz), 2.19 (2H, m), 2.02 (2H, m); 13C NMR (175 MHz,
CD3OD): δC 183.7, 169.5, 142.0, 137.4, 136.1, 134.5, 130.8 (2C), 129.9, 129.8, 128.9, 128.8, 128.7,
128.0 (2C), 127.9, 125.5, 124.6, 64.9, 63.8, 53.5 (2C), 35.4, 30.2 (2C); ESIMS m/z 400.2 [M + H]+.

3.2. Biological Assays
3.2.1. Luciferase Reporter Gene Assay

The antagonistic activity on FXR was investigated using HepG2 cells transfected
with 100 ng of pSG5-FXR and pSG5-RXR, 200 ng of the reporter vector p(hsp27)-TK-LUC
containing the FXR response element, and 100 ng of the pGL4.70 vector encoding the
human Renilla gene used as a transfection control. Cells were stimulated with the agonist
6-ECDCA (10 µM) alone or in combination with compounds 2–11 after 24 h. In another
experimental setting, HepG2 cells were transfected using 100 ng of pSG5-PXR, 100 ng of
pSG5-RXR, and 100 ng of pGL4.70, along with the reporter vector pGL3(henance)PXRE. At
24 h post-transfection, cells were stimulated with rifaximin 10 µM (as a positive control)
or compounds 2–11 (10 µM). The specificity of compounds 5 and 11 versus FXR and PXR
was tested using HepG2 cells transiently transfected with 200 ng of the reporter vector
p(UAS)5XTKLuc, 100 ng of a vector containing the ligand binding domain of LXRα or
LXRβand 100 ng of pGL4.70, a vector encoding the human Renilla gene. At 24 h post-
transfection, cells were stimulated for 18 h with GW3965 (5 µM), compounds 5 and 11
(10 µM), and the combination of GW3965 plus 5 or 11 (50 µM). Cellular lysate was assayed
for luciferase and Renilla activities after 18 h using the Dual-Luciferase Reporter assay
system (E1980, Promega, Madison, WI, USA). The activity of luciferase was measured
using the Glomax 20/20 luminometer (Promega, Madison, WI, USA) and normalized with
Renilla activities.

3.2.2. Cell Culture

HepG2 and CaCo2 cell lines, obtained from ATCC, were routinely cultured in Ea-
gle’s MEM and high-glucose DMEM, respectively, supplemented with 10% FBS, 1% glu-
tamine, and penicillin/streptomycin. For in vitro experiments, HepG2 (2 × 106) cells
were stimulated with 6-ECDCA at a concentration of 10 µM alone or in combination
with compound 5 or 11, and CaCo2 cells were exposed to TNFα (100 ng/mL) alone or in
combination with rifaximin, compound 5, or 11.
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3.2.3. Reverse Transcription of mRNA and Real-Time PCR

Total RNA was isolated from the HepG2 and CaCo2 cell lines using TRI reagent
(Zymo Research) and Direct-zol™ RNA MicroPrep w/Zymo-Spin™ IIC Columns (Zymo
Research, Irvine, CA, USA). After purification from genomic DNA using DNase I (Thermo
Fisher Scientific, Waltham, MA, USA), 2 µg of RNA from each sample was reverse tran-
scribed using Kit FastGene Scriptase Basic (Nippon Genetics, Mariaweilerstraße, Düren,
Germany) in 20-µL of reaction volume, and 50 ng of cDNA was amplified in a 20-µL
solution containing 200 nM of each primer and 10 µL of PowerUp™ SYBR™ Green
Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) using a Quantstudio 3 sys-
tem (Applied Biosystems, Foster City, CA, USA). The relative mRNA expression was
calculated according to the ∆Ct method. The primer used were as follows (forward
and reverse): hGapdh (for CAGCCTCAAGATCATCAGCA; rev GGTCATGAGTCCTTC-
CACGA), hBsep (for TCCAGGAAAAGCATGTGTGA; rev CATTTCGCTCTCGATGTTCA),
hOstα (for TGTTGGGCCCTTTCCAATAC; rev GGCTCCCATGTTCTGCTCAC), hNtcp
(for TCAAGACTCCCAAGGATAAAACA; rev ATGTGGAAATGCTGGAGAAA), hPxr (for
GCAAGGGCTTTTTCAGGAG; rev GGGTCTTCCGGGTGATCT), hIl-8 (for GCAGCTCT-
GTGTGAAGGTGCA; rev GTTGGCGCAGTGTGGTCCACT), hIl-1β (for GTGGCAATGAG-
GATGACTTG; rev GGAGATTCGTAGCTGGATGC).

3.3. Physicochemical Properties and Pharmacokinetic Characterization
3.3.1. S9 Stability of Compounds 5 and 11

Human liver S9 fraction (Sigma-Aldrich, St. Louis, MO, USA) was used. All incu-
bations were performed in duplicate in a thermoblock (Dlab dry bath HB 120-S) at 37 ◦C.
The incubation mixtures contained 1 µM compound with 0.1% DMSO used as a vehicle,
human liver S9 fraction (0.3 mg of protein per mL), 5 mM taurine, 5 mM glycine, 5 mM
glucose 6-phosphate, 5 mM GSH, 1 mM NADPH, 1 mM ATP, 0.4 mM CoA, 0.4 mM UDPGA,
0.1 mM PAPS, and 0.4 U·mL−1 glucose 6-phosphate dehydrogenase. All the cofactors were
dissolved in a 50 mM potassium phosphate buffer (pH 7.4), containing 5 mM MgCl2, for a
final volume of 0.25 mL. Aliquots of 25 µL were removed at 0, 5, 15, 30, 45, 60, and 90 min
after S9 addition, and the reaction was stopped by adding 100 µL of ice-cold MeOH. The
samples were centrifuged for 10 min at 10,000 rpm, and the supernatants were transferred
into vials for LC-MS/MS analysis. The slope of the linear regression of the curve obtained
by reporting the natural logarithm of compound area versus incubation time (−k) was used
in the conversion to in vitro t1/2 values, calculated as t1/2 = −ln(2)/k. In vitro intrinsic
clearance (Clint expressed as µL/min/mg) was obtained by first calculating V using the
formula: V = volume of reaction (µL)/protein of liver microsomes (mg); intrinsic clearance
was then calculated as: Clint = (V × ln2)/t1/2.

3.3.2. LogD Measurement

40 µL of a 10 mM solution in DMSO of each compound was added to a 2 mL test tube
containing 980 µL of PBS pH 7.4 and 980 µL of 1-Octanol (in duplicate). The tubes were
shaken for 2 h at room temperature and subsequently kept still to allow for an optimal
phase separation. The two phases were then separated, and 10 µL of each sample was
diluted in 490 µL of MeOH for LC-MS/MS analysis. LogD was calculated as Log10 of
the ratio of mass signal octanol/PBS. LC-MS/MS analysis was conducted using a Kinetex
2.6 µm C18 100 Å LC column 100 × 2.1 mm by means of a linear gradient of the aqueous
phase (H2O 0.1% FA) and organic phase (ACN 0.1% FA).

3.4. Molecular Docking
3.4.1. Receptor Preparation

PXR. The crystal structures of the homo sapiens PXR-LBD in complex with ag-
onists, oxadiazon and [2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-1-(diethoxy-phosphoryl)-
vinyl]-phosphonic acid diethyl ester (SRL) (PDB IDs 7AXE and 3HVL, respectively) [33,34],
were retrieved from the Protein Data Bank website.
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FXR. The crystal structure of the homo sapiens FXR-LBD in complex with the antago-
nist N-benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benza-
mide (NDB) (PDB ID 4OIV) [34] was retrieved from the Protein Data Bank website as the
only tridimensional structure of the inactive form of the FXR-LDB receptor.

The receptor structures were prepared using the Protein Preparation Wizard [37] as
implemented in Maestro. Bond orders were assigned, and missing hydrogens were added.
A prediction of the receptor side chain ionization and tautomeric states was performed
using Epik [38]. However, both the tautomeric states of His298 in FXR were considered
in the docking calculations. Then, an optimization of the hydrogen-bonding network was
carried out, and the positions of the hydrogen atoms were minimized using OPLS2005
force field [39]. Finally, water molecules beyond 3 Å from the co-crystallized ligand—
NBD—in FXR were removed, whereas the others were explicitly considered in the docking
calculations as it is reported in the literature that they are involved in the binding mode of
other antagonists. As regards PXR, all water molecules were removed.

3.4.2. Ligand Preparation

Ligand 3D structures were built using the Graphical User Interface (GUI) of Maestro
ver. 13.3, [40] considering all the four conformers of the piperidine ring. All conformers
were then refined using LigPrep [41] as implemented in Maestro. In particular, the protona-
tion states of 5 and 11 at pH 7.4 in water were calculated using the Epik module [42,43].
Finally, the ligands were then minimized using the OPLS2005 force field through 2500
iteration steps of the Polak-Ribiere Conjugate Gradient (PRCG) algorithm [44].

3.4.3. Docking Calculations

Docking calculations in PXR were performed using the induced fit docking (IFD) [45]
protocol of the Schrödinger software release 2022-3 [46], which uses the OPLS2005 force field
and a combination of Glide and Prime [47,48] to allow optimization of the conformations of
the residue side chains in the receptor structure during ligand docking. However, we note
that major conformational rearrangements are not sampled using such a protocol; in such a
case, the use of multiple receptor structures is advised to explore a larger conformational
space. As regards docking calculations in FXR, a grid box of 25 Å × 25 Å × 25 Å centered
on the ligand binding cavity was created, and the docking calculation was carried out
using the Glide software package [49] with the Standard Precision (SP) algorithm of the
GlideScore function. The OPLS2005 force field was employed.

Binding poses were generated and docking conformations of compounds 5 and 11
were then clustered based on their atomic RMSD average. Four and seven clusters were
obtained for PXR and FXR, respectively, and, among them, only the conformation included
in the most populated cluster with both the Glide Emodel and GlideScore lowest-energy
values was considered (Figures 3 and 4).

All figures were rendered by UCSF Chimera [50].

4. Conclusions

In conclusion, in this paper, a new series of 1,2,4-oxadiazole compounds has been
synthesized and evaluated for their in vitro activities on FXR and PXR. This study resulted
in the identification of compounds 5 and 11, as dual FXR antagonists and PXR agonists.

These two most active derivatives were characterized by the presence, on the nitrogen
of the piperidine ring, of either a linear five-carbon chain or a benzyl group bearing a
hydroxymethyl in para position. The ability of compounds 5 and 11 to revert the expression
of both FXR target genes, involved in bile acid excretion, and inflammatory genes makes
these compounds promising leads for the treatment of inflammatory disorders. There have
been few examples of dual FXR/PXR modulators to date. Therefore, the discovery of a new
chemotype endowed with PXR agonist and FXR antagonist activity represents an attractive
opportunity in the field of chronic inflammatory and metabolic diseases.
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Supplementary Materials: The following supporting information can be downloaded at:
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spectra of compounds 2–11; Figure S21: Transactivation assays on LXRα and LXRβ of compounds 5
and 11.
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