
High-Performance Computational Methods to
Improve the Functioning of Energy Markets

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Timothy Andrew Bjustrom Holt

under the supervision of

Prof. Olaf Schenk and Prof. Igor Pivkin

April 2024

Dissertation Committee

Prof. Ernst Wit Università della Svizzera italiana, Switzerland
Prof. Stefan Wolf Università della Svizzera italiana, Switzerland
Dr. Slaven Peles Oak Ridge National Laboratory, USA
Prof. Simon Scheidegger Université de Lausanne, Switzerland

Dissertation accepted on 8 April 2024

Research Advisor Co-Advisor

Prof. Olaf Schenk Prof. Igor Pivkin

PhD Program Director

Prof. Walter Binder, Prof. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Timothy Andrew Bjustrom Holt
Lugano, 8 April 2024

ii

The computer can be used as a tool
to liberate and protect people,
rather than to control them.

Hal Finney, 1992

iii

iv

Abstract

This thesis delves into the enhancement of energy markets through the applica-
tion of high-performance computational methods. The overarching objective is
to bolster the efficiency, accuracy, and scalability of the computational methods
that are used to analyze and operate these markets through both applied indus-
trial and fundamental academic contributions. The work is presented through
four interconnected chapters that underscore the vital role of high-performance
computing in reshaping the energy landscape. Through: massively parallel de-
ployment of power market optimization models on many-core HPC clusters;
modeling techniques to improve performance and accuracy of power market op-
timization models; a data-driven refinement approach to power generation unit
commitment; and computational techniques to scalably identify pricing cycles in
retail gasoline markets, this work advances energy market analysis tools in terms
of efficiency, scalability, and usefulness.

v

Acknowledgements

Thank you all those who have mentored me along the way.

vi

Contents

Introduction 1
Research Motivation . 1
Structure . 2

I Power Market Models 4
Forward to Part I . 6

1 Massively parallel deployment of power market optimization mod-
els on many-core HPC clusters 15
1.1 Introduction . 15

1.1.1 Motivation and Background 15
1.1.2 Research Context . 16
1.1.3 Relevant Literature . 17
1.1.4 Contributions and Organization 18

1.2 Power Grid Models . 19
1.2.1 Zone-Based Market Model . 19
1.2.2 Optimal Power Flow Model 20
1.2.3 Unit Commitment . 21
1.2.4 Swiss Grid Benchmark Model 22

1.3 Parallelism Treatment . 24
1.4 Solution Strategy . 26

1.4.1 SLURM Workload Manager . 28
1.4.2 Greasy Meta Scheduler . 28

1.5 Numerical Experiments . 29
1.5.1 Performance Analysis of the Optimization Algorithms . . . 30
1.5.2 Node-Level Parallelism and Memory Bottleneck 32
1.5.3 Analysis of Parallelism Modes 33
1.5.4 Massively Parallel Execution 34
1.5.5 Massively Parallel Execution with Meta Scheduling 35
1.5.6 Verification of the Optimal Parallelism Degree Prediction . 36

vii

viii CONTENTS

1.6 Conclusions . 37

2 Modeling techniques to improve performance and accuracy of power
market optimization models 39
2.1 Introduction . 39
2.2 Model Reformulation . 40

2.2.1 Pyomo Model . 40
2.2.2 Fusion Model . 42

2.3 High-Speed Solution Methods . 43
2.4 Multi-Day Modeling . 45

II Power Generation Unit Commitment 47
Forward to Part II . 49

3 A data-driven refinement approach to power generation unit com-
mitment 56
3.1 Introduction . 56

3.1.1 Definitions . 58
3.2 Exascale Grid Optimization (ExaGO) Toolkit 60
3.3 Data-Driven Unit Commitment Algorithm 61

3.3.1 Algorithm Objectives . 61
3.3.2 Load Shed Recourse Phase 62
3.3.3 Pruning Phase . 64

3.4 Numerical Experiments . 64
3.4.1 Setup . 64
3.4.2 Performance Evaluation Criteria 66
3.4.3 South Carolina Grid Results 68
3.4.4 Texas Grid Results . 70

3.5 Discussion . 71
3.6 Conclusion . 72
3.7 Scientific Software: ExaGO . 73

3.7.1 Scalable ACOPF Optimization Techniques 74
3.7.2 Hardware Accelerated Optimization 75
3.7.3 Towards Scalable Stochastic Optimal Power Flow 77

3.8 Appendix: ExaGO ACOPF Forumulation 77
3.8.1 Variables and bounds . 78
3.8.2 Objective Function . 78
3.8.3 Equality constraints . 79
3.8.4 Inequality constraints . 80

ix CONTENTS

III Cycle Detection in Gasoline Markets 82
Forward to Part III . 84

4 Computational techniques to scalably identify pricing cycles in re-
tail gasoline markets 86
4.1 Introduction . 86

4.1.1 Related Literature, Contributions, and Replication Package. 90
4.2 Theoretical Background . 91

4.2.1 What Are Edgeworth Cycles? 91
4.2.2 Are Edgeworth Cycles Competitive or Collusive? 93

4.3 Data and Manual Classification . 94
4.3.1 Data Sources and Preparation 94
4.3.2 Manual-Classification Procedures 95
4.3.3 Rationale for Daily Frequency and Quarterly Window . . . 97

4.4 Models and Methods for Automatic Detection 99
4.4.1 Existing Methods Mostly Focus on Asymmetry 99
4.4.2 Our Proposals to Capture Cyclicality 101
4.4.3 Optimization of Parameter Values (“Training”) 106

4.5 Results . 107
4.6 How Much Data Do We Need? . 110
4.7 Economic and Policy Implications . 112

4.7.1 Cycles and Margins . 113
4.7.2 Additional Findings . 115
4.7.3 Exploratory Data Analysis . 116

4.8 Practical Recommendations . 120
4.9 Conclusion . 121
4.10 Appendix A: Methodological Details and Simulations 123

4.10.1 A.1 Details of the New Methods 123
4.10.2 A.2 Parameter Optimization 127
4.10.3 A.3 Performance on Simulated Cycles 128

4.11 Appendix B: Additional Results . 138
4.11.1 B.1 Combining Methods 1–4 138
4.11.2 B.2 Variants of Methods 5–7 139

Conclusion 140

Bibliography 143

Introduction

Research Motivation

Efficient use of energy resources is one of the key challenges that our civiliza-
tion must confront in order to continue flourishing in this century. The risks
posed by excessive carbon dioxide emissions from energy use are driving signifi-
cant transition from electricity generation technologies that are dispatchable and
centralized to those that are intermittent and decentralized. These intermittent
decentralized generation resources qualitatively change power grid forecasting
and control problems by introducing significant weather dependent stochastic
factors to the power supply and dispatch side, while massively increasing the
number of decision variables in optimization problems. While the spotlight is
on the push to develop and deploy renewable energy generation, the impor-
tance of effective grid planning and control systems to maintain a reliable grid
under the increasingly chaotic conditions introduced by distributed stochastic
intermittent generation cannot be understated. One of the key hurdles to a sus-
tainable energy future is thus developing market-based control systems that aide
in the efficient production and allocation of energy resources under conditions
of increasing stochasticity. Developing such systems will be an enormous in-
terdisciplinary effort involving domain scientists and engineers, economists and
financial institutions, and computational scientists and software engineers. This
thesis presents both applied industrial and fundamental academic contributions
to this effort by connecting advanced computational technologies with domain
knowledge to develop:

1. Practical methods and software that have been put into production in the
power trading industry to aide in electricity price discovery subject to ex-
pected weather conditions and other stochastic factors; and

2. More fundamental algorithms and computational techniques that aim to
advance the state-of-the-art in power grid planning and control, and the

1

2 Introduction

detection of retail gasoline pricing cycles.

New frontiers in scientific discovery lie at the nexus of domain expertise and
computing. It is thus incumbent upon my generation of computational scientists
to not only implement scientific methods on computer hardware, but also lever-
age the expertise of colleagues on multidisciplinary teams to develop computa-
tional technology that advances the boundaries of human knowledge. Through-
out my doctoral studies I have had the privilege of learning both these skills
by working on multidisciplinary teams together with domain experts from eco-
nomics, finance, electrical engineering, and physics to execute on projects that
exploit the state-of-the-art in computing to provide solutions to practical prob-
lems facing society today.

Structure

The thesis is presented in three parts, each representing a different research
project involving energy systems, data analysis, and computing that I undertook
during the course of my doctoral studies. The parts presented are:

Part I: Power Market Models — Research on models to forecast efficient
electricity prices under stochastic weather and economic conditions.

Chapter 1: Massively parallel deployment of power market optimiza-
tion models on many-core HPC clusters — Presenting methods and
algorithms to efficiently deploy several power market models on di-
verse hardware considering multi-level parallelism, memory bottle-
necks, and efficient scheduling. Chapter based on papers [81, 80].

Chapter 2: Modeling techniques to improve performance and accu-
racy of power market optimization models — Presenting theory and
numerical experiments on the effectiveness of throughput optimiza-
tion of power market models using model reformulation, high speed
solution methods, and multi-day modeling.

Part II: Power Generation Unit Commitment — Approaches to solve the
combinatorial Unit Commitment problem, which involves selecting the op-
timal subset of power generators to participate in the power market for a
given time period.

Chapter 3: A data-driven refinement approach to power generation
unit commitment — Presenting a novel approach and algorithms to

3 Introduction

scalably solve the power generation unit commitment problem con-
sidering a large number of stochastic scenarios. Chapter based on
paper [74].

Part III: Cycle Detection in Gasoline Markets — Using advanced data anal-
ysis techniques to systematically identify specific patterns in price signals.

Chapter 4: Computational techniques to scalably identify pricing cy-
cles in retail gasoline markets — A scientific evaluation of diverse
computational models, both parametric and non-parametric, to iden-
tify Edgeworth Cycles in retail gasoline prices in large Australian and
German data sets. Chapter based on paper [73].

I hope that the contributions laid out in these chapters will prove valuable to
researchers dedicated to advancing the understanding and efficiency of energy
systems and markets. It is my aspiration that the outcomes of this thesis will
not only enhance the academic discourse within the field, but also play a role in
fostering a sustainable future characterized by energy abundance.

Part I

Power Market Models

4

6 Forward to Part I

Forward to Part I:
Data Analysis for Power Market Forecasting

The Demand–Generation Balance Megatrend

We are currently undergoing structural changes to power supply infrastructure,
particularly in Western Europe and the United States. This is the trend from cen-
tralized dispatchable power production to decentralized stochastic power pro-
duction. Significant adoption of the decentralized stochastic power production
provided by solar and wind infrastructure makes maintaining equilibrium in the
grid very difficult. This is because the grid must maintain a generation-demand
balance at all times. We can represent this with

∑

g∈Gc

pg

︸ ︷︷ ︸

dispatchable
generation

+
∑

g∈Gs

pg

︸ ︷︷ ︸

stochastic
generation

=
∑

d∈Dc

pd

︸ ︷︷ ︸

dispatchable
demand

+
∑

d∈Ds

pd

︸ ︷︷ ︸

stochastic
demand

, ∀t ∈ T , (1)

where p is power in megawatts, Gc and Gs are the sets of dispatchable (control-
lable) and stochastic generators, Dc and Ds are the sets of dispatchable (con-
trollable) and stochastic loads (demand)1, and T is time2. Traditionally, the
demand side is heavily dominated by stochastic loads, that is to say, consumers
demand electricity exogenously from this balance equation, and the capacity of
controllable loads is very small, coming from energy storage devices, demand
response3 programs, or smart grid4 devices [14]. This means that to maintain
equilibrium we must depend on the supply side, particularly controllable gener-
ation. Traditionally, the quasi-totality of generators have been dispatchable units
with some throttling capability – allowing for easy maintenance of equilibrium.

1This equation and the associated control problem are significantly complicated by the fact
that they are subject to network topology, that is, supply and demand must be equal at all vertices
of the network. For this part of the discussion we will ignore network topology, but it should be
kept in mind as a major complicating factor.

2On very short time scales, the balance of this equation is maintained by the inertia of the
large rotating masses in the system. This allows us to focus on the control problem on longer
discrete time scales.

3“Demand response” refers to programs that provide incentives for power consumers to re-
duce their demand at times when the grid operator is struggling to maintain the equilibrium of
Eq. 1. Such initiatives are growing rapidly in certain markets, but it is still very early on the
technology adoption timeline for demand response.

4“Smart grid” has become something of a buzz-word, but it often describes automated and
decentralized demand response schemes.

7 Forward to Part I

dispatchable
generation

stochastic
generation

dispatchable
demand

stochastic
demand

yesterday’s
grid

today’s
grid

tomorrow’s
grid

Figure 1: Conceptual representation of supply and demand trends of electrical in-
frastructure. Circle size represents typical power output/consumption.

This is changing, with the recent trend of shutting down dispatchable thermal
generators and replacing them with stochastic renewable generators [89]. Fig-
ure 1 gives a representation of the trends as they are evolving and planned. The
precise sizes shouldn’t be taken literally, as this is a conceptual representation,
but the trends are as pictured.

Replacing the controllable generation with stochastic generation makes the
control problem significantly harder, and also makes forecasting of future grid
conditions more important to allow for planning of operations. Being able to
plan in advance becomes especially important as responses to grid conditions
become more diverse, with more parties to coordinate, and as different types of
energy storage devices play a larger role.

Weather is the Major Source of Stochasticity

Electricity demand is relatively predictable, with typical short-term load forecast-
ing accuracy of within 1-3% of actual load [53]. Electricity consumption exhibits
strong seasonal trends as well as daily and weekly cyclicality [53]. These trends
however can be accurately estimated by models using solely historical load, the
calendar, and economic growth independent variables [106]. The major source
of stochasticity in load comes from the weather [118, 111], which can be thought

8 Forward to Part I

of as a bias term on the relatively consistent load signal. Temperature devia-
tions from room temperature induce large loads for heating or cooling which,
together with an ensemble of other weather dependent consumption behaviors,
cause weather to be one of the most important factors affecting electricity mar-
kets. What we seek is a model that can estimate how weather will impact the
grid. Given that weather is a local phenomenon and grids are large, spanning
states, countries, and even continents, the model should be capable of mapping
local weather conditions to local production and consumption patterns, but also
be able to do this for many locations and model the interdependencies between
connected locations.

Given the highly uncertain nature of weather, this makes power forecast-
ing a particularly interesting field of study from a computational perspective.
Uncertainty in weather can be modeled using monte-carlo style weather fore-
casts. This type of approach is used by The European Centre for Medium-Range
Weather Forecasts (ECMWF) in the ensemble forecasting method. Numerical
weather prediction models are nonlinear dynamical systems that provide results
based on the evolution of some initial conditions. Each time step in the model
inherently contains some forecast error, and these errors compound over time,
leading to more significant forecast error for longer time horizons. The ECMWF
ensemble forecasting methodology provides some uncertainty quantification of
forecast error by providing an set of equally probable forecasts generated from
initial condition perturbations [90]. Concretely, these ensembles manifest in 50
equally probable weather forecasts – giving us 50 fully independent probable
future scenarios under which to estimate grid conditions.

Power Price Forecasting Workflow

The price of power at a given location and time in the future is a valuable piece of
information. Market participants such as power generators and large consumers
use this information in planing their operations. The more accurate this figure is,
the further ahead of time, the more valuable it is for planning purposes. As such,
we desire a model that is capable of estimating this value. Such a model should
be capable of translating weather forecasts, the dominant source of stochasticity,
into probabilistic price forecasts. The models presented in this work, fit into a
specific workflow which is depicted in Figure 2. Part I describes step 4 of the
workflow in detail - Run scenarios through the market model, but this is only
one part of the process that results in the commercially valuable forecasts. Next
we will briefly describe the key elements of each step.

9 Forward to Part I

Weather forecasts arrive 4x
daily in data dumps that pres-
ent 50 different equiprobable
scenarios with hundreds of
weather variables at 0.2° Res-
olution.

Process weather data1.

Process each scenario in the
batch through the Economic
OPF Model to estimate gener-
ator dispatch in each zone
given the scenario.

Run scenarios through the
market model

4.

For each market zone at each
time period form a distribution
of prices based on the cost
function of the marginal gener-
ator.

Form price expectations5.

For each weather scenario use
proprietary models to form ex-
pected demand and renew-
ables generation profiles for
each market zone for each
time period.

Form demand and renew-
ables generation profiles

2.

Combine demand and renew-
ables generation profiles with
stochastic fuel price trajecto-
ries to form a batch of simula-
tion scenarios.

Generate batch of simula-
tion scenarios

3.

Figure 2: Modeling process summary diagram from weather scenarios to power
price expectations

Process weather data — The ECMWF ensemble forecasts of 50 equally prob-
able weather scenarios are distributed at 6 hour intervals. The data contains
model outputs from the numerical weather models in hourly time steps, at a res-
olution of 0.2° for a forecast horizon of two weeks. Forecast horizons longer than
two weeks are possible with ensembles [25], however the error carried in longer
term forecasts limits the usefulness for financial decision making. The data con-
tains variables such as temperature, {u, v, w} components of wind, geopotential,
specific humidity, and percipitation, stratified across many different pressure lev-
els5 [87]. The first step is about identifying which of the myriad of variables are
relevant for the workflow, and efficiently extracting those and parsing them into
the format that is suitable for the next step in the workflow.

Form demand and renewable generation profiles — Weather is introduced
to the grid on the demand side through loads that fluctuate with weather such as
heating and cooling, and on the generation side through generators whose output
is correlated with weather variables such as wind, solar, and hydro power. Typi-

5pressure levels are points or layers of atmospheric pressure used in weather modeling that
correlate with altitudes.

10 Forward to Part I

cally, these values are estimated with data-driven models with the many weather
variables as the independent variables and clever data processing and modeling
techniques to account for non-linearities in the relationships between weather
variables and forecast variables. Forecasting each of these values is a complex
subject which is out of the scope of this thesis. I refer the interested reader to
the following summary papers on load forecasting [135], wind power forecast-
ing [66], and solar power forecasting [145], each of which does a nice job of
introducing the current modeling paradigms that comprise this second step in
the workflow.

Generate batch of simulation scenarios — In this step, the demand and re-
newables generation profiles for each of the weather scenarios are combined with
the other stochastic variables that are important to the power system. The most
important variables here are fuel prices, carbon prices, and some economic sce-
narios such as generator or line outages or geopolitical issues. The combination
of all of these scenarios yields a batch of scenarios for a given time horizon that
comprises on the order of 10s of thousands of individual simulations.

Run scenarios through the market model — The OPF market model aims
to allocate a generation level to each generator in the model such that results
in the universal lowest global generation cost. Each of the scenarios can be run
independently through the market model so parallelization is trivial. The market
model will be covered in detail in the next subsection.

Form price expectations — This is the last step in the workflow that finally
yields the desired estimates of future electricity prices. An estimated price can
be observed for each hour and in each market zone by taking the dual of the
demand-generation balance constraint to determine the marginal generation cost
in each of the market zones. The prices for each hour in each market zone can
be examined across all of the simulation scenarios to form a distribution of the
price random variable.

Optimal Power Flow Market Model

Given that power price is a random variable, more valuable than an estimate of
the expected value is an estimate of its distribution. The distribution shows us
not only the expected price, but quantifies the amount of uncertainty carried in

11 Forward to Part I

Electricity
Price

Economic OPF Model

Stochastic
Scenarios

Figure 3: Economic OPF model allows the translation of uncertain weather forecasts
into a distribution of prices that allows modeling of financial risks.

that estimate as well as the probabilities of extreme outcomes. Such detailed in-
formation is extremely valuable from a risk management perspective as it allows
market participants to better understand and limit their risk exposure. Figure 3
shows the principle behind such an economic optimal power flow model that
takes some set of stochastic scenarios and translates it into a distribution of fu-
ture power prices.

The market model discussed in Part I is an optimal power flow model that
is designed to capture economically relevant effects while avoiding the com-
plexity of an explicitly modeled grid. As such, the model is built to replicate
the European power market structure, where demand is aggregated into market
zones, which loosely correspond to European nations, and grid infrastructure is
abstracted away. The only transmission lines that are explicitly modeled are the
market zone interconnects that transfer power between market zones. All gen-
erators of material size are modeled. A conceptual representation of this model
is depicted in Figure 4. The model spans 43 market zones, 600 generators of 13
different types, and is set up for multi-period simulations between 40 and 256
hours.

The objective of this model is to find the lowest generation cost to meet de-
mand in all market zones. This is done by adjusting the power output decision
variables at each of the 600 generators. Since generators have heterogenous
production costs, the optimal solution will saturate the generators in order of in-
creasing cost, with the marginal generator in each market zone setting the price
for that zone in that time period. As such, the estimated power prices for each

12 Forward to Part I

European Power
Market Model

coal
gas
hydro

Figure 4: Conceptual representation of the European Power Market Model. Model
optimizes over 43 market zones, 13 generator types, 600 individual generators,
and from 40 to 256 time periods.

zone at each time are the duals of constraints
∑

g∈Gz

pg

︸ ︷︷ ︸

market zone
generation

+
∑

b∈Bz

ib

︸ ︷︷ ︸

market zone
power imports

−
∑

d∈Dz

pd

︸ ︷︷ ︸

market zone
demand

−
∑

b∈Bz

eb

︸ ︷︷ ︸

market zone
power exports

= 0, ∀t ∈ T , ∀z ∈ Z, (2)

where T is the set of all time periods, Z is the set of all market zones, and Bz

is the set of branches connected to a given market zone. This constraint fixes
generation in a market zone equal to demand in that market zone, net of power
imports / exports for all time (time indices omitted for simplicity). If imports
and exports were unconstrained, we would expect a unique price in all zones,
however the transmission lines are heavily capacity constrained, so the prices
across the continent vary significantly.

The stochastic scenarios in this model manifest in the form of net demand
profiles for the various market zones, which is defined as aggregate demand

13 Forward to Part I

minus non dispatchable power generation. Different net demand levels in each
of the market zones will lead to different generation profiles at the 600 generators
modeled. In addition to stochastic demand scenarios, stochastic trajectories for
fuel prices are also explored and combined with the demand scenarios. The
combinatorial effect from fuel prices and weather / demand scenarios, combined
with the constant updates of weather forecasts yields large batches of simulations
on the order of hundreds of thousands per day.

Efficient Deployment of the Market Model

Any time we face problem structures where computational tasks can be broken
down into fully independent sub-problems, such as we see with these batches of
independent scenarios, computational scientists are happy, since these types of
problems are ideally suited to exploit the massively parallel computational capa-
bilities of supercomputers. Assuming we have scalable methods and algorithms
to parallelize computation of these individual weather scenarios, we can quan-
tify the uncertainty in forecasts of grid conditions, while holding computation
wall time6 constant, simply by increasing computational resources. The follow-
ing subsection will discuss how we exploit these independent sub-problems to
forecast power prices in parallel, outputting rich distributions of power prices
expected by the model.

The problem structure of the market model scales linearly in the number of
scenarios. That is to say that if solving a scenario takes t seconds of computation
time, then solving 100 scenarios takes on the order of 100t seconds of compu-
tation time. Parallelization of such computations is theoretically trivial, since
no advanced decomposition or partitioning algorithms are required, and there
is no data exchange needed between computation of scenarios. In practicality
however, efficiently deploying these parallel computations on a real-world high-
performance compute cluster such that throughput of computation is maximized
is a challenging problem.

In trading, market participants who most quickly translate new information
into price opinions will be able to react to news before competitors. Minimiz-
ing the latency of the power price forecasting workflow is therefore essential. In
addition, increasing the throughput of the workflow for a given computational
resource allows for more rich modeling by adding extra scenarios. Therefore, the
models should be deployed in such a way that maximizes throughput and mini-

6Wall time refers to the amount of time that you would measure if you observe a clock on
the wall while the computations are being completed.

14 Forward to Part I

mizes latency. This gives us a scheduling problem on a many-core cluster for an
extremely data-intensive application with heterogenous workloads. Part I of this
thesis is dedicated to deployment, scheduling, and performance optimizations
that achieve this end of decreasing latency and increasing throughput of power
market models.

Chapter 1 deals with deployment of OPF market models on many-core HPC
clusters and is based on papers [81, 80]. Chapter 2 deals with modeling paradigms
and optimizations that decrease computation time of given model runs.

Chapter 1

Massively parallel deployment of power
market optimization models on
many-core HPC clusters

1.1 Introduction

Recent trends in the power grid operations and integration of intermittent renew-
able energy sources (RES) impose great demand on computational resources.
The large number of power grid scenarios that need to be analyzed require not
only parallel processing algorithms but also efficient execution strategies for a
large number of loosely coupled tasks. These can improve utilization of the com-
putational infrastructure required by individual jobs that need to be scheduled
on the available computing resources.

1.1.1 Motivation and Background

In order to operate the power grid in a secure and reliable way, a plethora of
parameters need to be considered. These are parameters such as weather, fuel
prices, and available transmission capacity between market zones [56]. The dif-
ficultly of accurately modeling these systems is constantly increasing given the
volatility induced by the rapid integration of intermittent RES into grids. Ad-
ditional challenges are associated with uncertainty quantification of the model
parameters and their sensitivity analysis. All these factors contribute to a large
number of power grid scenarios that need to be rapidly solved in order to provide
power grid operators tools required to control the complex power grid systems
and manage the associated uncertainty.

15

16 1.1 Introduction

Most of these problems can benefit from parallel processing, often built into
the simulation frameworks or available in the off the shelf solvers such as HiOP [32],
PIPS [8], or Beltistos [79]. Nonetheless, the question of the optimal level of par-
allelism arises and is left up to the end user to decide. This decision, however,
requires the knowledge of the underlying architecture, since the excessive level
of parallelism might introduce many bottlenecks on the hardware level and re-
sult in a significant slowdown of the overall processing time. This work provides
an analysis of the computational setup that could guide users of such parallel
tools and help to achieve high-throughput data analytics.

1.1.2 Research Context

Power grid dynamics are typically modeled as multistage stochastic unit com-
mitment (UC) problems [132, 113, 59], optimal power flow (OPF) [58, 62]
problems, or economic dispatch (ED) [9, 10]. Uncertainty is incorporated us-
ing stochastic programming techniques based on scenario trees in which the
uncertainty is known at each node. After applying various scenario genera-
tion schemes based either on expert knowledge, artificial intelligence, or Monte
Carlo simulation, the stochastic UC becomes a large optimization problem. Due
to the large-scale nature of the problem, the computational complexity is ad-
dressed by decomposing the problem into smaller subproblems and utilizing
parallel processing. Benders decomposition, Lagrangian relaxation, augmented
Lagrangian methods, or progressive hedging are usually among the methods of
choice [63, 117], since parallelization of these solution algorithms is straightfor-
ward.

Stochastic UC is a risk-neutral model that is concerned with the optimiza-
tion of expected payoff. In order to enable risk modeling, individual stochastic
trajectories, represented by a single UC problem, are analyzed independently.
Similarly as before, a large number of model evaluations are required. With
this method one can obtain all possible price trajectories resulting from the se-
lected scenarios. The resulting price distributions inform the risk management
processes that are crucial to applications such as energy trading [80].

Additionally, many model parameters are determined experimentally, using
the expert knowledge or based on historical data, with the exact values not avail-
able. In order to properly evaluate the effects of the uncertain parameters, one
needs to perform an uncertainty quantification [54, 108, 127]. It quantifies the
confidence of the model output given the uncertainty in the model parameters.
Sensitivity analysis is tightly linked to uncertainty quantification and is the pro-
cess of quantifying the fraction of the output uncertainty that can be explained

17 1.1 Introduction

by individual parameters. However, global sensitivity analysis presents compu-
tational challenges due to the large number of input-output samples needed to
estimate the uncertainty contributions. In order to perform the sensitivity anal-
ysis, parallel and high-throughput processing techniques are essential.

Similarly to the continuous counterparts, the mixed integer linear program-
ming (MIP) models are used in the stochastic frameworks. Many aspects of real-
life problems are modeled using discrete variables, including on-line status of
generator units [113, 59], transformer tap ratios [75], models of the storage de-
vices [59], or demand flexibility models [88, 86]. The resulting MIP problems
are solved using algorithms usually based on the dual simplex (DS) or interior
point (IP) method extended by heuristics to deal with the integrality constraints,
including branch and cut, cutting planes, or many advanced presolving tech-
niques. As such, these algorithms have different memory access patterns and
might behave differently compared to the underlying algorithm for the continu-
ous variables.

High-throughput processing is usually supported by an appropriate software
tool, either classical job schedulers such as SLURM [147] or the workload meta
schedulers. These include FireWorks [77], supporting also dynamic workflows,
failure-detection routines, and built-in tools and execution modes for running
high-throughput computations at large computing centers. Launcher [141] is a
utility for performing simple, data parallel, high-throughput computing work-
flows on clusters, massively parallel processor systems, workgroups of comput-
ers, and personal machines. Greasy [24]meta scheduler is used to manage high-
throughput simulations and to simplify the execution of embarrassingly parallel
simulations in any environment. It was primarily designed to run serial applica-
tions. Greasy is used in this work due to its architectural simplicity, ease of use,
and the fact that it is a tool already used at multiple supercomputing centers.

1.1.3 Relevant Literature

Massively parallel simulations that exploit modern multi-core central process-
ing units (CPUs) introduce pressure on various subsystems, particularly main
memory. Existing literature on efficient utilization of the available computa-
tional resources and avoidance of the bottlenecks is very sparse and scattered
across various scientific domains. Sources of bottlenecks for parallel protocol
processing and high-speed data transfers are identified, e.g., in [65, 142]. The
work in [65] studies the impact of different process affinity strategies, consider-
ing affinity using cores within the same or different sockets. The authors con-
clude that affinitization has a significant impact on parallel protocol processing

18 1.1 Introduction

efficiency, and that the performance bottleneck changes significantly with differ-
ent affinitization strategies. The focus is put on the communication patterns as
opposed to computationally heavy tasks which do not require any interprocess
communication, which is the main focus of this work.

The study [142] quantifies cache memory limitations on nonuniform mem-
ory access multicore platforms arising during parallel optimization of simulation
models governed by partial differential equation (PDE). Many parallel tasks are
generated within the PDE model calibration problems which seek to find the
model parameters that minimize the error between the PDE model and observed
reality. Typically, many simulations are run in parallel, each on its own core.
Affinity scheduling strategy for parallel computation is proposed, such that the
computational efficiency improves due to improved utilization of the memory
hierarchy. It is acknowledged that utilizing excessive parallelism does deterio-
rate the cache utilization, especially when the processes can migrate across the
cores. However, the study does not provide any discussion on how to determine
the level of parallelism minimizing the memory bottlenecks on top of enforcing
the CPU affinity. Additionally, it doesn’t consider the scheduling of the individual
jobs on large computational clusters.

1.1.4 Contributions and Organization

This work analyzes high-throughput scheduling techniques and addresses the
computational challenges of the massive parallelism associated with stochastic
models, uncertainty analysis, or similar applications that rely on a large number
of computational tasks which commonly arise in smart grid operations. The main
contributions of this paper can be summarized as follows:

• Introduce a technique that mitigates the bottlenecks of embarrassingly par-
allel simulations by maximizing the utilization of available computational
resources and thus reducing the processing time.

• Investigate the proposed technique on various mathematical programs in-
cluding market based ED, OPF, and UC and experimentally validate the
predictions.

• Perform the benchmarks using the ED models of the continental Europe
and OPF models of the Swiss transmission network.

This work is based on a previous study of LP problems [80], extending the pro-
posed concepts to additional problem types typically encountered in power grid
analysis.

19 1.2 Power Grid Models

1.2 Power Grid Models

Energy markets and operations of the power grid devices are modeled on differ-
ent levels of abstraction, capturing different aspects of the underlying physical
equipment. Some of the most commonly used mathematical models are (i) an
ED problem modeled as LP, (ii) direct current (DC) OPF formulated as QP, and
(iii) the UC considering also the discrete aspects of the problem modeled as MIP.

1.2.1 Zone-Based Market Model

The European electricity market is based on bidding zones, which are modeled as
one node. Lossless ED considers a problem where the objective is to find the set
of generator dispatch points pG that minimize the total cost of meeting a specified
demand pD, without modeling any network infrastructure. The problem consists
of several zones, where each zone contains several generators G and energy that
can be imported or exported. Similarly, the problem is defined over a multiperiod
time horizon T . The LP model in this work represents a simplified UC problem
formulated as a continuous problem in order to have certain guarantees about the
convergence and optimality of the solution, as well as reducing the computation
time. The LP model reads

minimize
pG

∑

t∈T

∑

g∈G

c f
g,tp

G
g,t (1.1a)

subject to ∀t ∈ {1, 2, . . . , N} :

pgen
g,t = pgen

g,t−1 + pG,on
g,t − pG,off

g,t , (1.1b)
∑

g∈G

pgen
g,t + nv

t + pSd
t = pD

t + pSc
t , (1.1c)

pG
min ≤ pG

t ≤ pG
max, (1.1d)

εmin
S ≤ εt ≤ εmax

S , (1.1e)

pG,off
g,t ≤∆

lo, pG,on
g,t ≤∆

up. (1.1f)

The objective (1.1a) is to minimize the energy cost, where the cost coefficients
c f represent marginal cost and approximate start-up costs of each conventional
generation unit g ∈ G. The power injection variables pG =

�

pgen,pS
�

consists not
only of the conventional generator outputs pgen but also includes the injections pS

incurred by the storage devices. The conventional power output is represented
recursively with respect to the previous time instance and the power increment
pG,on

g,t and decrement pG,off
g,t in the current time period, as expressed in (1.1b).

20 1.2 Power Grid Models

Considering this representation, minimum up-/down-time and generation ramp
constraints can be easily approximated by additional linear constraints. The de-
mand balance constraint (1.1c) states that the sum of all generation components
(power plants, net import, and storage discharge) should be equal to the sum of
all load components (demand and storage charging) for all time instances t ∈ T .
The net import nv

t is simply a sum of the power imports and exports for the given
zone of interest. Additional constraints are imposed for the links between the
zones, such as maximum capacity or flow-based constraints [85].

Energy storage devices are modeled using charging and discharging efficien-
cies and technical limitations of the state of charge, similar to the model in [84,
23, 98]. NS energy storage units are considered, where the vector of the storage
power injections consists of discharging and charging injections,

pS =
�

pSd
1 , . . . ,pSd

NS
,pSc

1 , . . . ,pSc
NS

�

. (1.2)

The evolution of the state of charge levels εt ∈ { R }NS follows the update equation

εt = εt−1 +BS pS,t t = 1, . . . , N , (1.3)

and introduces a coupling between the individual time periods. The energy level
in each period needs to honor the storage capacity, as expressed by the constraint
(1.1e). The initial storage level is denoted ε0 and the constant matrix BS ∈
{ R }NS×2NS models discharging and charging efficiencies of the storage devices,

BS = −δt

η−1
d,1 ηc,1

.
η−1

d,NS
ηc,NS

 (1.4)

with the discharging and charging efficiencies ηd,i and ηc,i, i = 1,2, . . . , NS.

1.2.2 Optimal Power Flow Model

An extension of the ED, considering also the transmission network and DC power
flow equations cε as a function of bus voltage angle variables θ , along with limits
on the branch power flows c I , becomes the DC OPF problem. The DC OPF is

21 1.2 Power Grid Models

formulated as

minimize
θ , pG

∑

t∈T

∑

g∈G

fg(p
G
g,t) (1.5a)

subject to ∀t ∈ {1,2, . . . , N} :

c t
ε
(θ t ,p

G
g,t) = 0, (1.5b)

c t
I(θ t)≤ pSmax

L , (1.5c)

pG
min ≤ pG

g,t ≤ pG
max, (1.5d)

εmin
S ≤ εt ≤ εmax

S , (1.5e)

−∆lo ≤ pG
g,t − pG

g,t−1 ≤∆
up. (1.5f)

The objective function fg is a quadratic cost defined for each generation unit
g ∈ G. Other cost components might also include the wear and tear of load-
following ramping and value of the initial and expected leftover stored energy
in the storage devices. At each network bus, the external power injections must
equal the injections from the connected generators, storages, and load compo-
nents, resulting in the power balance constraint (1.5b)

c t
ε

:= CGpgen
t + CSpS

t − pD
t − pB

t (θ t), (1.6)

where CG, CS are the generator and storage connectivity matrices, respectively.
The power flow in the transmission lines is limited, as expressed by the con-
straint (1.5c). The intertemporal coupling is introduced by energy storage de-
vices (1.5e) and generator ramp limits (1.5f). Additional modeling aspects are
described in more detail in [98, 152, 151].

1.2.3 Unit Commitment

The LP and QP problems in the previous sections have been restricted to con-
tinuous optimization variables. The real-life decision problems also consist of
discrete UC decisions, modeled by integral variables. The problems include addi-
tional startup and shutdown costs associated with changes in on-line status from
a prior commitment state. In multiperiod problems, these states are coupled
through time, not only by the startup and shutdown costs, but also by minimum
up and down time constraints.

The MIP problem formulation is an extension of the problem from section 1.2.2.
Additional sets of binary variables u,v, w ∈ {0, 1} are introduced, where u g,t

represents the on-line status of the generation unit g in time period t, while the

22 1.2 Power Grid Models

binary startup and shutdown states are represented by vg,t and w g,t variables,
respectively.

The constraints are either extended by the new binary variables, e.g., the
injection limits (1.5d) are replaced by

u g,tp
G
min ≤ pG

g,t ≤ u g,tp
G
max, (1.7)

or the new constraints are added, such as the minimum up and down times of
the dispatchable units

∑

n=t−τu+1

vg,n ≤ u g,t , (1.8)

∑

n=t−τd+1

w g,n ≤ 1− u g,t , (1.9)

and a set of the constraints modeling startup and shutdown events

u g,t − u g,t−1 = vg,t − w g,t . (1.10)

The full UC model formulation is available in the MOST framework [98, 152,
151].

0 3 6 9 12 15 18 21 24
5

7.5

10

12.5

15

·104

Time of day

Lo
ad

(G
W

)

January June

(a) Load profiles.

0 3 6 9 12 15 18 21 24

0

20

40

60

Time of day

G
en

er
at

io
n

(M
W

)

January June

(b) Wind energy profiles.

0 3 6 9 12 15 18 21 24

0

0.5

1

1.5

Time of day

G
en

er
at

io
n

(G
W

)

January June

(c) Solar energy profiles.

Figure 1.1: Daily profiles of the Swiss grid benchmark example for selected months
[51].

1.2.4 Swiss Grid Benchmark Model

For the purpose of benchmarking the models introduced in the previous sections,
two power models were set up. The LP ED problem was run using the proprietary
model of the continental Europe, while the QP and MIP problems were applied

23 1.2 Power Grid Models

Figure 1.2: Topology of the Swiss grid with the external nodes in the neighboring
countries.

to the model of the Swiss transmission grid introduced next. The topology of
the grid, including the external nodes abroad, is illustrated in Fig. 1.2, consisting
of 231 nodes and 439 transmission lines. The external nodes are used in order
to model the imports and exports of the power. The load is evenly distributed
across the nodes inside Switzerland up to a small random perturbation up to 100
MW with the net zero sum. The load data are 15 minute samples collected by
the national transmission system operator SwissGrid [129]. Fig. 1.1a illustrates
the overall load during the first 15 days of January and June of 2020. The grid
model also includes RES, namely, wind and solar energy, with the historical data
shown in Figs. 1.1b and 1.1c. The overall RES input is evenly distributed across
the selected nodes in the network.

On top of the RES, the Swiss grid example also contains energy storage de-
vices. For all LP models the length of the time period δt is set to 1 hour, while in
the QP and MIP simulations, the length of the time period δt is set to 15 minutes.
The energy storage devices are located at the first NS buses sorted according to
the largest positive active load demand specified in the case file. The storage
size εmax

S is chosen to contain up to 10 MWh. The initial state of charge is 70%,
which represents ε0 = 0.7εmax

S . The storage device power ratings are limited to

24 1.3 Parallelism Treatment

allow a complete discharging and charging within three hours and two hours,
respectively. Therefore, pSd,max = 1

3ε
max
S and pSc,min = −1

2ε
max
S . All storage device

discharging and charging efficiencies are chosen as ηd = 0.95 and ηc = 0.93.

1.3 Parallelism Treatment

The stochastic scenarios representing different market developments are pro-
cessed by running individual LP, QP, and MIP model instances in parallel. Mod-
ern many-core CPUs allow multiple solves to be run simultaneously on a given
compute node, however, this imposes greater congestion on the node’s memory
controller as the available bandwidth is shared across cores. Greater congestion
in turn adversely impacts solution times.

Considering the increase in runtime of individual solves as the level of par-
allelism increases, it might be beneficial to reduce the amount of parallelism
in favor of reducing the memory bottleneck. It is not obvious, however, how
much the parallelism should be reduced in order to achieve the optimal hard-
ware utilization. An empirical procedure proposed in this section may be used to
determine the optimal level of parallelism. By following the procedure prior to
the execution of subproblems on a given architecture, power grid practitioners
can improve utilization of computational resources by avoiding the memory bot-
tlenecks inherent in modern many-core CPUs. Consequently, significantly faster
execution can thus be achieved for models comprising many independent sub-
problems.

In order to determine the optimal level of parallelism for a given model, it is
important to find the average run time t c

avg at each level of parallelism c. The
model of interest is simply run multiple times, each time with a different number
of instances running simultaneously, utilizing a different number of cores of the
multicore CPU on a given compute node, as demonstrated in Fig. 1.3.

The performance of two different solution algorithms (DS and IP) on in-
stances of the LP model are shown in Fig. 1.3a. Given that the DS algorithm
outperforms the IP algorithm across the entire range of solve concurrency, the
choice between algorithms clearly favors the DS algorithm. This relationship
between the number of concurrent solves and t c

avg carries information not only
about which algorithm will solve the problem faster, but also about the opti-
mal level of parallelism with which to execute the given solution method. This
difference can be mostly attributed to the difference in dynamic random access
memory (DRAM) read volume. With c = 128 LPs running concurrently on the
compute node, the IP executions will require a combined 7.2 TB of data from

25 1.3 Parallelism Treatment

memory, while the DS executions will require only 1.7 TB. A similar measure is
shown in Fig. 1.3b for the MIP and QP models.

The optimal level of parallelism, i.e. the number of concurrent model solves
c, can be determined by finding the minimum expected processing time tn of n
model solves with respect to c. An approximation of this measure is given by

tn ≈
n
c

t c
avg . (1.11)

The expected processing time tn represents a lower bound for processing n model
solves since it assumes no scheduling overhead or idle CPU time. However, since
it depends on the experimental quantity t c

avg , its numerical value bears some
inherent error.

1 16 32 48 64 80 96 112 128

20

40

60

80

100

Number of concurrent LP solves c

Ex
pe

ri
m

en
ta

l
tc av

g
(s

)

500

600

700

800

900
Th

eo
re

ti
ca

l
t 1

00
0

(s
)

IP t c
avg DS t c

avg
IP t1000 DS t1000

(a) LP model with IP and DS algorithms

1 16 32 48 64 80 96 112 128

25

50

75

100

125

150

Number of concurrent solves c

Ex
pe

ri
m

en
ta

l
tc av

g
(s

)

800

900

1,000

1,100

1,200

1,300

Th
eo

re
ti

ca
l

t 1
00

0
(s

)

MIP t c
avg QP t c

avg
MIP t1000 QP t1000

(b) MIP and QP models

Figure 1.3: Average runtime t c
avg as a function of c and expected processing time

t1000 for a batch of n= 1000 problems.

The theoretical processing times t1000 for a batch of n= 1000 jobs are shown
in Fig. 1.3a. The batch size n was set such that it reflects a realistic batch size en-
countered in practice. The point at which the minimum tn is attained is relatively
unaffected by changing batch size n except for very small batch sizes (n < 320)
which do not arise in practice.

A substantial difference in the behavior of the algorithms can be observed
with respect to parallelism, exhibiting two modes of model behavior. While the
overall processing time t1000 using the IP algorithm reaches a minimum by ex-
ploiting the maximum level of parallelism, that is c = 128, with the DS algorithm
the models are expected to be processed in the most efficient way by decreasing
the level of parallelism to c = 64, utilizing only half of the available cores. A
similar pattern is observed for the MIP and QP models in Fig. 1.3b. While the QP
model can efficiently utilize the maximum level of parallelism, the MIP model’s
performance improves by reducing the parallelism to c = 64.

26 1.4 Solution Strategy

Equation (1.11) is an approximation of tn, since it implies that partial batches,
i.e., batches of solves that are less than the chosen level of parallelism, c, will be
executed at a fraction of t c

avg corresponding to the batch fraction. This would

imply that a batch of 1 job, with c = 128, would be processed at 1
128 ∗ t128

avg which
is not the case. To eliminate this effect an alternative estimation of tn is proposed:

tn ≈
 n

c

£

t c
avg . (1.12)

The ceiling function d·e implies that the compute node processes the jobs in
batches of size c, and that the last batch must be processed at a cost of t c

avg ,
irrespective of how many solves are remaining. This however represents a sim-
plification on two accounts: (i) first it implicitly assumes that solve time is de-
terministic, so that each process in each batch of size c starts and ends at the
same time. In reality, the solve time is a random variable, with a variance that
increases as c increases. This suggests that as c increases, some processes will
finish before others, and the cores will immediately start on a new job in the
queue. (ii) Second, there is the observation that t c

avg decreases as c decreases.
Thus, when there are no remaining jobs in the queue, the effective c will rapidly
decrease as it approaches 1, causing the remaining processes to speed up until
all jobs finish. Given this, (1.11) gives a reasonable approximation for tn from
a theoretical perspective. The comparison of both predictions are evaluated and
compared with actual measurements in the following section.

1.4 Solution Strategy

The resulting LP models are solved by both the DS and IP algorithms, while the
QP and MIP models are solved by the IP algorithm. Historically, the DS was con-
sidered superior but this proposition has been challenged by advancements in
IP methods, which outperform the DS, especially for large-scale problems. The
computational complexity of the DS algorithm lies in the combinatorial nature
of the search space defined by vertices of the feasible region, which grows very
quickly for large LP problems. On the other hand, the computational bottleneck
of the IP algorithm is the solution of a large sparse linear system in each IP iter-
ation, which can be effectively mitigated by efficient direct sparse linear algebra
routines [20, 84]. When it comes to memory requirements, DS solves asymmet-
ric linear systems of the size of the basis, which is much smaller compared to
linear systems in the IP algorithms. Additionally, only a single column changes
in every iteration, thus updating the factors is usually done rather than refac-

27 1.4 Solution Strategy

Table 1.1: Computational requirements of forecasting electricity prices on a typical
day.

Short-term forecasts Long-term forecasts
a) Forecast horizon (days) 45 700
b) # of runs per day 15 1

c) # of weather scenarios 52 45
d) # of fuel & econ shocks 25 25

of optimizations per day∗ 68 850 66 500

CPU time per optimization∗∗ 164 164
CPU hours per day 3 137 3 029

∗ a× b× (c + 2d)
∗∗ average time in seconds using the DS algorithm with the naive dispatch strategy

toring the whole matrix, which is recomputed only occasionally for numerical
stability reasons. In the IP algorithm, the factorization is computed in every it-
eration and storing the factors requires a significant amount of memory [78].
The performance and memory requirements of both algorithms are compared in
section 1.5.

Additional challenges lie in processing the large number of scenarios associ-
ated with the highly dynamic nature of electricity markets. The LP models must
be solved for a large number of equiprobable scenarios in order to get a rea-
sonable estimation of the electricity prices distribution. This challenge is com-
pounded by the fact that expectations of input variables are always changing. In
the real-world trading environment, this means optimization of the entire prob-
lem set is done 15 times per day with the latest available input values. Table 1.1
shows the number of LP solves required per day in order to achieve acceptable
prediction accuracy, which is 135350 LPs at a cost of 6 166 hours of CPU time.

Given the large quantity of optimizations that must be completed on a con-
tinual basis, effective parallelization strategies are critical. Parallelization on the
level of individual LPs is not considered, given its relatively small size. Instead,
parallelization across the set of LPs offers far greater benefit. Thus, each LP solve
is executed serially using a single CPU core. The main objectives of an effective
computational strategy are optimizing the data pipeline such that the required
data remain as close to the CPU registers as possible, and ensuring that when a
core finishes processing its LP, there is another job assigned to it with minimal
delay.

28 1.4 Solution Strategy

1.4.1 SLURM Workload Manager

SLURM Workload Manager is an open-source Linux utility that provides access
to available computational resources for some duration of time required to per-
form computation in the context of heterogeneous multiuser, multinode clusters.
SLURM is designed for scheduling massively parallel jobs, which usually take sig-
nificant time to complete. If the program running time is small, on the order of
less than one minute, and the number of scheduled tasks is very large, the SLURM
scheduler will incur noticeable overhead. Such tasks should not be submitted as
individual allocations, but rather packed into a single allocation containing mul-
tiple job steps. The disadvantage of this strategy is that it becomes difficult to
keep all cores saturated with work when individual job steps finish. This diffi-
culty stems from inadequate tools available in shell scripts and SLURM to detect
job step completion, idle resources within an allocation, or specific dependencies
between the individual job steps.

1.4.2 Greasy Meta Scheduler

Greasy is an open-source meta scheduler that works on top of SLURM to maxi-
mize resource utilization and minimize accounting overhead in embarrassingly
parallel applications. Greasy is launched with a list of tasks to run, which are
executed using the resources within a SLURM allocation. For each task, Greasy
dispatches a job step if resources are available, otherwise it forms a queue and
dispatches tasks as soon as resources become available. Additionally, users can
control the compute resource utilization by adjusting the number of “workers”
to adapt the scheduler to the character of various applications, whether memory
or compute bound. A worker is an abstraction that Greasy uses to control the
execution flow of job steps within the task list. Conceptually, a worker takes a
task off the queue and runs it on the compute node such that each worker is al-
ways busy. The user may specify the number of workers in order to control how
many processes will run concurrently on the allocated resources. As detailed in
section 1.5, undersubscribing nodes and executing on maximally scattered cores
can substantially ease bottlenecks in memory bound applications.

The vanilla Greasy implementation dispatches job steps with minimal SLURM
specifications, leveraging the process control of either SLURM or the underlying
Unix kernel. The schedulers on the level of the operating system may shift pro-
cesses to different cores during their lifetimes. This can improve throughput for
CPU-bound applications, because while the process is waiting for input/output
it gets evicted from the core so that another process can use the otherwise lost

29 1.5 Numerical Experiments

core
10

core
13

core
12

core
11

core
14

core
15

core
18

core
17

core
16

core
19

Socket 1

Node 1

core
0

core
3

core
2

core
1

core
4

core
5

core
8

core
7

core
6

core
9

Socket 0

D
RA

M
D

RA
M core

10
core
13

core
12

core
11

core
14

core
15

core
18

core
17

core
16

core
19

Socket 1

Node 2

core
0

core
3

core
2

core
1

core
4

core
5

core
8

core
7

core
6

core
9

Socket 0

D
RA

M
D

RA
M

Figure 1.4: Greasy CPU binding strategy for maximal scattering, Node 1 uses 5
workers while Node 2 uses 10.

CPU cycles. Once the process is ready to continue, it is assigned to the next avail-
able core. For memory bound applications, however, this has dire performance
consequences because data in cache memory is completely lost when a process is
assigned to a different core. Scheduling processes such that they are executed on
the same processor during their lifetime can dramatically improve performance
by reducing the number of time-consuming cache misses.

We have extended Greasy such that it provides CPU affinity control [2], a
feature that is not available in the original source code. An additional benefit of
CPU affinity is that it also allows control over the load balance between the two
CPU sockets. To achieve load balance, workers are spread out across maximally
dispersed CPU cores based on CPU number as shown in Fig. 1.4.

1.5 Numerical Experiments

In this section, the computational nature of the power grid models is analyzed,
focusing on the hardware-software interaction resulting from the application of
optimization methods to solve the models. Multiple aspects of the solution pro-
cess pipeline are analyzed, including (i) a choice of the solution algorithm based
on its performance and impact on memory resources, and (ii) scheduling tech-
niques responsible for allocation of computational resources to the individual
model instances in massively parallel settings. The experiments were carried out
on two Linux based compute clusters with different architectures: the 4-node
“DXT Cluster,” and the 41-node “ICS Cluster1."

1The DXT Cluster uses nodes with two 64-core AMD EPYC 7702 1.5 GHz CPUs and 640 GB
of memory, SLURM version 18.08.8, GREASY version 2.2.2, and MOSEK version 9.2.21. The ICS

30 1.5 Numerical Experiments

1 2 3 4
0

2

4

6

8

10

Time period (days)

D
R

A
M

lo
ad

op
er

at
io

ns
(×

10
9
)

IP load ops

DS load ops

0

200

400

600

800

D
R

A
M

lo
ad

da
ta

vo
lu

m
e

(G
B

)

IP data vol
DS data vol

Figure 1.5: IP and DS memory characteristics.

In the numerical experiments, the performance of the solution methods is
compared using the metric “solve time,” which is defined as the wall time of the
optimize function of the Mosek solver called for a single LP, QP, or MIP problem,
which excludes the problem assembly and setup.

1.5.1 Performance Analysis of the Optimization Algorithms

Performance and memory requirements of the DS and the IP algorithms are stud-
ied considering serial execution for LP models of increasing size, as shown in
Table 1.2. First, the memory footprint of each algorithm is analyzed, since this
imposes the main bottleneck in massively parallel simulations. Memory perfor-
mance measurements are made using the LIKWID framework [130], accessing
the performance counters on the Intel architecture.

From a memory perspective, Table 1.2 shows that the IP algorithm dispatches
fewer data load requests (32 billion) compared to the DS algorithm (38 bil-
lion), and exhibits slightly better cache locality (1.9% miss rate) compared to DS
(2.3%). As seen in Fig. 1.5, however, this economy of data load requests does
not translate to economy of data transfers. Although fewer data load requests
combined with a better overall cache hit rate results in a significant advantage
in the number of DRAM load operations, these operations have far greater av-
erage data volume, resulting in a larger DRAM data transfer volume for the IP
algorithm. This difference is most significant for the small problem size, where
the IP algorithm reads 4.3× more data from DRAM (56 GB) than the DS algo-
rithm (13 GB). These two examples serve as a baseline to show how the memory
requirements can change significantly depending on the solution algorithm. Sim-
ilarly, the memory footprint will be different for each model given differences in

Cluster uses nodes with two 10-core Intel Xeon E5-2650 v3 CPUs and 64 GB of memory, SLURM
version 20.02.4, GREASY version 2.2.2, and MOSEK version 9.2.29.

31 1.5 Numerical Experiments

Table 1.2: Properties of the LP instances and data access characteristics of the so-
lution algorithms.

Time period (days) 1 2 3 4

of variables 71 120 113 792 156 464 199 136
of constraints 104 480 167 376 229 721 292 116

Dual simplex algorithm

Data load ops (×109) 38 118 246 422
L1 cache hit rate (%) 95.5 95.9 96.0 96.1
Cache miss rate (%) 2.3 2.1 2.1 2.0

Interior point algorithm

Data load ops (×109) 32 87 190 346
L1 cache hit rate (%) 96.5 96.5 96.6 96.8
Cache miss rate (%) 1.9 1.9 1.9 1.8

0 25 50 75 100 125 150 175 200 225 250 275 300

1

2

3

4

Solve Time (seconds)

Ti
m

e
pe

ri
od

(d
ay

s)

Interior Point
Dual Simplex

Figure 1.6: IP and DS scaling for increasing problem size.

the problem structure.
To establish a baseline, solve times are measured with only a single model

instance running in single-core mode on an otherwise idle compute node. Under
these conditions, the solve time for a typical single-day LP is on the order of 20
seconds on either the DXT Cluster or the ICS Cluster. With these relatively small
problem sizes and nonconcurrent execution, the speed difference between the
algorithms is minimal. However, the IP algorithm exhibits superior scaling as the
problem size grows in the multiday simulations, as seen in Fig. 1.6. The increase
from 1 to 4 days results in a 7.8× increase in constraint matrix size. This causes
an 8.7× increase in the solve time using the IP algorithm, compared to 16.5× for
the DS algorithm. While the IP algorithm is clearly the better performer from a
solve time perspective with large problem sizes, the advantage is less clear with
the small problem size. With the introduction of parallelism in the following
section, the superior memory performance of the DS algorithm will clearly shift

32 1.5 Numerical Experiments

Table 1.3: Optimization problem sizes in terms of the number of variables and
constraints. For MIP the continuous and integer variables are listed separately.

Grid model Variables Constraints
LP 71 120 104 480
MIP 57 429/3 744 74 181
QP 180 117 213 717

the balance.

30 60 90 120 150

runtime (s)

(a) LP model - DS

30 60 90 120

runtime (s)

(b) LP model - IP

50 100 150 200

runtime (s)

(c) MIP model

50 100 150 200

runtime (s)

32 workers
80 workers
128 workers

(d) QP model

Figure 1.7: Histograms of individual problem run times with CPU affinity (n =
3000), y-axis cropped at 1000. Vertical lines represent mean runtime.

1.5.2 Node-Level Parallelism and Memory Bottleneck

The many-core CPUs of the DXT Cluster are exploited in order to run multiple
model solves simultaneously on the given compute node. The optimization prob-
lems associated with the power grid models are summarized in Table 1.3. The
memory bandwidth on the node becomes becomes saturated and eventually con-
gested as the degree of parallelism increases, since the available bandwidth is
shared across the cores. This congestion adversely impacts the solution times, as
shown in Fig. 1.7. All models and solution methods experience significant slow-
down as the number of solves running concurrently increases (controlled by the
number of Greasy workers). The mean slowdown when increasing from 32 to
128 concurrent solves ranges from 2.80× for the QP model, to 4.12× for the LP
with the DS algorithm.

Another memory congestion indicator on the node is the runtime variance
of individual processes. Figure 1.7 shows how this variance increases substan-
tially as the number of solves running concurrently increases. When increasing
from 32 to 128 concurrent solves the standard deviation of runtime increases

33 1.5 Numerical Experiments

from 24.13× for the LP IP, to 46.31× for the MIP. This variance is caused by the
memory controller scheduling the processes competing for the bandwidth as it
becomes constrained. The substantial increase in variance indicates that mem-
ory bandwidth is relatively unconstrained for the lower level of concurrency, and
severely constrained for the higher level of concurrency.

1.5.3 Analysis of Parallelism Modes

1 16 32 48 64 80 96 112 128

1

2

3

4

Number of concurrent solves c

Sl
ow

do
w

n
ψ

LP IP LP DS
MIP QP

(a) Slowdown of t c
avg relative

to single worker t1

32 48 64 80 96 112 128

0

0.02

0.04

Number of concurrent solves c

R
at

e
of

ch
an

ge
φ

LP IP LP DS
MIP QP

(b) Slowdown rate of change
(average over 6 periods)

Figure 1.8: Derived metrics for the average run time t c
avg for all models.

In order to better analyze different modes of the optimal parallelism deter-
mined by a procedure introduced in section 1.3, derived metrics for the measured
t c

avg are provided in Fig. 1.8. In Fig. 1.8a the slowdown of t c
avg , ψ is defined as

ψ(c) =
t c

avg

t1
avg

, (1.13)

while in Fig. 1.8b, the smoothed rate of change of t c
avg , φ is defined as

φ(c) =
1
6

∑

j∈K

t j
avg − t j−4

avg

4
,

K = {c − 4x | x ∈ {0, ..., 5}}.

(1.14)

The processing time was observed to attain a minimum by either utilizing
the full compute node with c = 128 or utilizing only half of the cores, c = 64,
depending on the solution algorithm or the power grid model examined. The
slowdown of t c

avg with increasing level of parallelism relative to the single process
execution t1

avg is shown in Fig. 1.8a. The two groups are visible by analyzing the

34 1.5 Numerical Experiments

rate of the slowdown, i.e., the slope of the slowdown curves, shown in Fig. 1.8b.
The LP with the DS algorithm and the MIP models both have generally increasing
slopes throughout the entire range of c, while the slopes of the other two models
stabilize around c = 64. This suggests that the slope is a more important factor
than the total amount of slowdown since the LP with the IP algorithm and the
QP both slow down a similar amount as the LP with the DS algorithm. The next
subsection demonstrates how the predicted tn translates to experimental results
in massively parallel execution setup.

1.5.4 Massively Parallel Execution

Average runtime of c model solves running concurrently, t c
avg , has been deter-

mined experimentally, as shown in section 1.3. In the large-scale experiment
considering n = 1000 model solves, both the LP model with DS and the MIP
model are expected to achieve a minimum runtime t1000 at running 64 concur-
rent solves. On the other hand, the other two models are not expected to reach
no decisive minimum before 128 concurrent solves, as shown in Fig. 1.3. Run-
ning the LP model with the DS algorithm with 64 concurrent processes results
in an average solve time of 26 seconds and an average setup time of 5 seconds.
Thus, expected processing time is

t∗1000 =
1 000

64
(26+ 5) s= 484s (1.15)

on a single compute node. To achieve such processing time, the assumption that
all cores are fully utilized 100% of the time with no delays between individual
LP solves running on a given core would have to be met.

Keeping all cores occupied is one responsibility of the workload manager such
as SLURM. However, centralized schedulers such as SLURM are fundamentally
designed for the traditional paradigm where there are a few large, long-running
jobs, rather than ensembles of small, short-running tasks [7]. The strategy of
submitting each individual model solve as a job batch to SLURM thus incurs extra
overhead as the scheduler identifies and matches jobs to idle resources, accounts
for user priority, prepares the environment, creates temporary directories, per-
forms some sanity or health checks, etc. Considering the example with n= 1000
for the LP model with the DS algorithm, SLURM needs significantly more time to
finish processing all LP solves, compared to the established expected processing
time t∗1000. The average processing time across 7 trials for SLURM is tslurm

1000 = 787 s
seconds, as shown in Fig. 1.9a. These experimental results were obtained using a
strategy that submits each LP solve to SLURM as a separate job batch, which max-

35 1.5 Numerical Experiments

imizes the administrative overhead mentioned above. Multiple LP solves could
be grouped into job batches, however, while such a strategy reduces administra-
tive overhead, it becomes difficult to balance the batches to keep available CPUs
fully saturated with jobs. Experimentally it was found that the administrative
overhead of SLURM is much less than the idle CPU overhead that such job group-
ing strategies incur. To eliminate SLURM overhead while minimizing idle time
across CPU cores, the meta scheduler Greasy is used.

32 48 64 80 96 112 128

500

600

700

800

900

1,000

Number of GREASY workers

Ex
pe

ri
m

en
ta

l
t 1

00
0

(s
) GREASY w affinity

GREASY w/o affinity
SLURM

(a) LP model with DS algorithm

32 48 64 80 96 112 128

600

700

800

900

1,000

1,100

Number of GREASY workers

Ex
pe

ri
m

en
ta

l
t 1

00
0

(s
) GREASY w affinity

GREASY w/o affinity

(b) LP model with IP algorithm

32 48 64 80 96 112 128

800

900

1,000

1,100

1,200

1,300

Number of GREASY workers

Ex
pe

ri
m

en
ta

l
t 1

00
0

(s
) GREASY w affinity

GREASY w/o affinity

(c) MIP model

32 48 64 80 96 112 128

900

1,000
1,100
1,200
1,300
1,400
1,500

Number of GREASY workers

Ex
pe

ri
m

en
ta

l
t 1

00
0

(s
) GREASY w affinity

GREASY w/o affinity

(d) QP model

Figure 1.9: Performance of GREASY for various numbers of workers with and with-
out CPU affinity control

1.5.5 Massively Parallel Execution with Meta Scheduling

The primary goal of the meta scheduler is to eliminate the overhead incurred
by SLURM. Considering a Greasy configuration using all 128 cores (128 work-
ers), the execution of Greasy and SLURM are equivalent from a perspective of
the number of solves that are running concurrently and the utilized resources.
Figure 1.9a illustrates that for the LP with the DS algorithm Greasy was able

36 1.5 Numerical Experiments

to achieve an average execution time tgreasy
1000 = 715 s without CPU affinity con-

trol and tgreasy
1000 = 745s with CPU affinity control, which represents decrease of

9% and 5%, respectively, compared to tslurm
1000 on a single compute node of the DXT

Cluster. The main benefit from using Greasy for data-intensive applications, how-
ever, arises from the ability to control the level of compute resources saturation.
Since the memory bottleneck is exacerbated as the number of concurrent jobs in-
creases, dispatching fewer concurrent solves to the compute node should benefit
the overall processing time as established by (1.11). To control this parameter,
Greasy uses the “worker” abstraction introduced in section 1.4.2. Figure 1.9 il-
lustrates the effect of undersubscribing the DXT Cluster node consisting of 128
cores on a batch of 1 000 model solves. These experimental measurements con-
firm the predictions of (1.11) that the optimal processing time t∗1000 = 484 s and
thus optimal throughput should be achieved at 64 concurrent processes. The
experimental measurement t1000 = 487s differs from the predicted result by less
than 1%, and represents a time reduction of 38% compared to using the plain
SLURM strategy, demonstrating how effective the reduction of parallelism is at
reducing memory bottlenecks.

For models which are optimally executed with an undersubscribed node, con-
trolling the CPU affinity is essential to achieving the optimal processing time,
although the magnitude of the impact depends on the specific model. The com-
parison of experiments with and without such control is illustrated in Fig. 1.9.
For a node employing at least 75% of the available cores, the difference is mod-
est, but a gap of almost a factor of two occurs for the undersubscribed node of the
LP DS, especially for the point at which the optimal throughput was established.
This is the effect of the Unix kernel scheduler intervening with the affinity of the
processes, effectively eliminating the benefit of data locality and thus losing the
advantage brought by the cache hierarchy.

1.5.6 Verification of the Optimal Parallelism Degree Prediction

The correspondence between the experimental measurements of t1000 using Gre-
asy, and the tn predicted by (1.11) and (1.12) is discussed in this section. The
two equations are compared against the experimental results obtained by run-
ning batches of 1 000 jobs using Greasy with CPU affinity. The predicted values,
introduced in Fig. 1.3, are qualitatively similar to the experimental values, as
can be seen in Fig. 1.10. This demonstrates the fact that the predictions corre-
spond well with experimental results in terms of determining the optimal level
of parallelism that needs to be used in order to minimize the impact of memory
bottlenecks. In this way, the processing throughput of the computational tasks is

37 1.6 Conclusions

1 16 32 48 64 80 96 112 128

500

600

700

800

900

1,000

Number of concurrent solves c

t 1
00

0
(s

)
Eq. (1.11) t1000

Eq. (1.12) t1000

Measured t1000

(a) LP model with DS algorithm

1 16 32 48 64 80 96 112 128

500

600

700

800

900

1,000

Number of concurrent solves c

t 1
00

0
(s

)

Eq. (1.11) t1000

Eq. (1.12) t1000

Measured t1000

(b) LP model with IP algorithm

1 16 32 48 64 80 96 112 128

800

900

1,000

1,100

1,200

1,300

Number of concurrent solves c

t 1
00

0
(s

)

Eq. (1.11) t1000

Eq. (1.12) t1000

Measured t1000

(c) MIP model

1 16 32 48 64 80 96 112 128

800

900

1,000

1,100

1,200

1,300

Number of concurrent solves c

t 1
00

0
(s

)

Eq. (1.11) t1000

Eq. (1.12) t1000

Measured t1000

(d) QP model

Figure 1.10: Predicted and experimentally measured processing time t1000 of 1 000
LPs.

maximized.
The gap between the predicted and the measured t1000 may be attributed

to further memory congestion introduced by the introduction of massive paral-
lelism, as well as Greasy overhead. It can be also seen that the ceiling function
in (1.12) introduces some nonlinearities to the predicted t1000 that do not ap-
pear consistently in the measured t1000. However, the predictions do not change
qualitatively using both formulations of the tn prediction, thus the optimal level
of parallelism can be found using either predictor.

1.6 Conclusions

For many time critical applications that consist of a large number of subproblems
the usual approach to decrease computation time is to improve the solver. This,
however, is often very expensive in terms of development time or license fees.

38 1.6 Conclusions

Significant improvements can be achieved by optimizing the hardware utiliza-
tion, either by selecting a method which reduces the bottlenecks or by adopting
scheduling techniques better suited for the computational nature of the prob-
lem at hand. In the real-world trading environment, the careful management
of the resources during the execution of embarrassingly parallel LP simulations
improved the throughput of computations by 38%. This type of speedup is sig-
nificant considering the computational demands of 135350 optimizations per
day, reducing daily computation time from 6 166 CPU hours to about 2280 CPU
hours.

This work proposed a simple procedure that can be used to determine the op-
timal level of node-level parallelism by power grid practitioners. The proposed
procedure for parallel processing of a large number of simulations is based on
a simple benchmark of empirical measurements. As such, it doesn’t require any
preliminary knowledge about the hardware architecture (e.g., the memory hier-
archy properties) or characteristics of the solution algorithm (such as its memory
access patterns). The limitation of this approach is such that the conclusions from
one hardware architecture are not, in general, transferable to other architectures.
The same applies to the particular problem at hand, where the conclusions are
not transferable across the different problem types. Also the solution method
needs to be considered, where various solution strategies might behave differ-
ently. Additionally, it is assumed that the problems included in the job pool are
homogeneous from the computational perspective, i.e., having similar memory
and time complexity, as well as the data access patterns. On top of this, the jobs
are assumed to be independent, i.e., no interaction occurs between them.

Future work directions could focus on applying the proposed parallel compu-
tation schemes to additional problem instances in the smart grid analysis, e.g.,
nonconvex nonlinear AC OPF. The methodology is production ready, and can be
integrated in the tools such as GREASY, or other pilot job mechanisms as a pre-
processing or analysis step suggesting to the user runtime parameters aiming to
improve the hardware utilization. Additionally, before applying the procedure to
the parallel decomposition schemes such as Benders, one should study how does
the process synchronization (communication between the processes) impact the
prediction.

Chapter 2

Modeling techniques to improve
performance and accuracy of power
market optimization models

2.1 Introduction

The content detailed in this chapter served as the subject of a 6-month full-time
internship that I completed at DXT Commodities from January to June 2022.1

The overarching goal of the internship was to improve the performance and ac-
curacy of the power forecasting models employed by the DXT power trading
desk. For performance, the critical metrics for DXT are both simulation through-
put and latency, as it is imperative to reduce the time between receiving new
weather forecasts and having high fidelity model results. For accuracy, the criti-
cal metric is the prediction error of the model on a back-fit test which simulates
how the model would have performed in the past given the data available at the
time. Specifically the objectives were as follows:

1. Model Reformulation: Reformulate the Stack European power market
model using high-level algebraic modeling language. Such a model would
enable rapid prototyping of new model features and would facilitate up-
dates to accommodate changing market structures. This would also allow

1The internship was focused on computational engineering of models whose details are sen-
sitive business information. Given that no work was published from this internship, this chapter
will focus mostly on high-level concepts and performance findings of the developments imple-
mented during the internship, while avoiding implementation details that could reveal sensitive
information.

39

40 2.2 Model Reformulation

for performance improvements by enabling performance testing of individ-
ual model components.

2. High-Speed Solution Methods: Investigate solution methods for the re-
formulated model including hot-start optimization, parallel interior point
methods, and re-calibration of the dispatch protocol.

3. Multi-Day Modeling: Extend the capabilities of the Stack model to be
able to tractably handle simulations with extended time periods of up to a
week, or 184 periods. The legacy model was a multi-period LP model, but
the scaling of both problem setup and model solution limited the ability to
run multi-day simulations with more than 40 periods. The advantage of
multi-day simulations is that they are able to capture the economic reality
of electricity markets which exhibit natural weekly cycles.

In this chapter I will detail the various findings of the extensive model devel-
opment and deployment, and performance benchmarking that was completed
for this project.

2.2 Model Reformulation

The European market model that was implemented by DXT was written natively
in Python using the Scipy and Numpy libraries to build the respective sparse ma-
trices for the LP and then pass these to the solver using the Python interface.
This modeling setup was limited in its usability and maintainability, as well as
scaling for longer simulation periods greater than 4 days. The model reformu-
lation efforts were about designing a more efficient data interface as well as an
implementation of the model that would relax the limitations of the existing im-
plementation.

2.2.1 Pyomo Model

The first objective of the was to build out a functional European market model
using the Pyomo algebraic modeling language [28, 69]. Pyomo is a python pack-
age developed at Sandia National Labs that constructs LP models using notation
that is very similar to the common optimization algebraic notation. Pyomo also
provides a universal interface to allow for the model to be solved by a number
of different optimization software packages. A diagram of the Pyomo structure
is shown in Fig. 2.1.

41 2.2 Model Reformulation

Mathematical
Model

Description

Pyomo Model
Description
(Python)

Pyomo
Internal

LP Model
Mosek

Gurobi

IPopt

Simulation
Parameters

Code Build Export

Figure 2.1: Pyomo model structure - Pyomo simplifies the “Code” step since the
model definitions are written in a syntax similar to the mathematical description.
Pyomo also automatically completes the “Build” and “Export” steps at runtime, pro-
viding interfaces to major optimization packages.

Table 2.1: Single-core time performance (seconds) for new models on Intel i9 Coffee
Lake 2.3/4.8 GHz

Pyomo model Fusion model

Build Model 7.9 2.9
Export Model 6.7 N/A
Solve Model (Mosek) 9.4 9.0

Total 23.9 11.9

The Pyomo model was built from scratch based on the mathematical defini-
tion of the European market model, was fully constructed to the point where it
included all constraints in the European market model. The model had excel-
lent performance in terms of solve time, improving upon the current production
model by approximately 3×. These gains in solve time, however were largely
offset by overhead inherent in the design of Pyomo. The fact that the Pyomo in-
ternal LP model is constructed using individual parameter indexes and for-loops
makes building the model inherently slow. Additionally, since Pyomo is designed
to be independant of the optimization software, an additional step is needed to
translate the Pyomo LP representation into a form suitable for the optimization
software. The Pyomo model timings for a sample simulation of 8 March 2022 on
an Intel i9 laptop computer are shown in Tab. 2.1.

42 2.2 Model Reformulation

2.2.2 Fusion Model

Given the promising results of the Pyomo model in terms of optimization speed
and ease of use, it was decided to develop a model using this modeling paradigm,
but with a software package that does not have the same performance limitations
as Pyomo. The Mosek Fusion library [12] was identified as a possible solution
since it provides an algebraic-like modeling interface, but is entirely matrix-based
and builds the models directly into the Mosek internal representation, thereby
eliminating the “Export” step.

The Mosek Fusion package is an object-oriented C++ library that provides
an interface allowing users to build optimization models using algebraic-like ex-
pressions. The Fusion library is designed such that the programmer uses matrix
operations, and low-level computations are executed using efficient linear alge-
bra subroutines. The library is designed to provide a compromise between an
expressive high-level interface, and fast low-level performance suitable for pro-
duction optimization models. A diagram of the Fusion structure is shown in
Fig. 2.2.

Mathematical
Model

Description

Fusion Model
Description
(Python)

Mosek

Simulation
Parameters

Code Build

Figure 2.2: Fusion model structure - Fusion provides an efficient direct interface
to the Mosek solver while sacrificing some ease-of-use found in Pyomo.

The performance of the Fusion model is excellent, showing significant im-
provements in all steps of the optimization process over both the Pyomo model
and the legacy production model. The Fusion model timings for a sample sim-
ulation on an Intel i9 laptop computer are shown in Tab. 2.1. In a production
setting, run times of individual simulations should be measured in a fully parallel
setting to account for node congestion and other factors that are experienced in
the production environment. Fig. 2.3 shows the comparison of timings in a large
fully parallelized run such as occurs in production. In this scenario, we see an
average speedup of 6.5× for the new Fusion model over the legacy production
model.

43 2.3 High-Speed Solution Methods

Figure 2.3: Solve time comparison between new Fusion model and legacy produc-
tion model in fully parallel production environment of the Stackmaster HPC cluster.
New fusion model exhibits an average speedup of 6.5×.

Another important metric for these models is latency, which is the time from
when the job is dispatched until all of the results are in. This metric is affected
especially by the right tail simulations since we must wait for the slowest of the
simulations to complete. In such a case, the legacy production model had some
simulations which took upwards of 200 seconds and so by this metric, we see an
order of magnitude improvement.

2.3 High-Speed Solution Methods

Batches of scenarios are frequently processed where the scenarios in the batch
are somewhat related to each other, specifically, they have partially overlapping
sets of parameter values. An example of this would be a base case scenario,
and a scenario where demand is shocked by a some amount. Since demand
enters into the model in a single constraint, the demand-generation balance, the
two scenarios would have almost identical parameter value sets, and therefore
constraint matrices.

Given that the simplex method requires a feasible starting point, and finding
such a starting point is non-trivial,2 some time can be saved by providing directly

2We need a basic feasible starting point x and corresponding initial basis B ⊂ {1, 2, . . . , n}
with |B| = m where the basis matrix B is nonsingular, xB = B−1 b ≥ 0, and xN = 0. Find-
ing the initial point and basis may be nontrivial, with equivalent difficulty as solving the linear
program [101].

44 2.3 High-Speed Solution Methods

a starting point for the optimization. With scenarios where we have two closely
related problems with minimal entries changed in the constraint matrix or in
the right-hand side, we expect the optimal solutions to be close to each other
geometrically speaking. We can exploit this closeness by solving the base-case
scenario to optimality using the Simplex algorithm, then using that solution as
an initial feasible point of the next scenario. This is referred to as a “hot-start” in
optimization. The basic idea of the hot-start is depicted in Fig. 2.4.

Fusion Model
Description
(Python)

Mosek

Simulation
Parameters

Mosek

Update
Parameters

Mosek

Update
Parameters

solve
10s

solve
<10s

solve
<10s

Build . . .

Figure 2.4: Hot-Start Optimization - Related simulations may exploit the previ-
ous Simplex optimal solution to achieve much faster subsequent solve times.

There are 3 different situations that should be considered when analyzing the
potential benefits of the hot-start:

1. Minor update: cases such as a demand shock or a change in fuel prices,
where only a small number of parameters change.

2. Moderate update: cases where multiple parameters change, however the
number of parameters does not. In such cases, the optimal solutions may
be far apart, but the initial guess may still be of value, and the time required
to update the parameters is limited.

3. Major update: cases where many parameters change, and the number of
parameters also changes. In this case the optimal solutions will be far apart
and the time required to update the parameters is significant.

The time performance for each of these three types of updates is detailed in
Tab. 2.2. We see that there can be significant benefit of nearly 8× speedup for
scenarios if they fall in the minor update group.

45 2.4 Multi-Day Modeling

Table 2.2: Single-core hot-start time performance (seconds) on Intel i9 Coffee Lake
2.3/4.8 GHz

minor update moderate update major update

Build Base Model 3.1 2.9 3.1
Solve Base Model 11.5 11.4 11.9
Update Parameters 0.1 2.4 2.8
Solve Scenario Model 1.8 3.9 9.0

Time Saved per Scenario 12.7 8.0 3.2
Scenario Speedup 7.7× 2.3× 1.3×

Table 2.3: Single-core multi-day time performance (seconds) of Fusion model on
Intel i9 Coffee Lake 2.3/4.8 GHz

DAYS 1 2 3 4 5 6 7 8 9

of Constraints (×105) 2.0 3.2 4.3 5.5 6.6 7.7 8.8 9.9 11.0
of Variables (×105) 1.0 1.7 2.3 2.9 3.5 4.2 4.8 5.4 6.1

Timings (seconds)
Init Data Container 0.4 0.6 0.7 0.8 1.0 1.3 1.5 1.5 1.8
Build LP 3 5 6 8 10 12 16 18 21
Optimize - IP Parallel 10 17 28 38 49 72 77 85 123
Optimize - IP Serial 12 23 36 49 64 93 97 121 175
Optimize - Dual Simplex 7 25 39 67 85 134 186 249 304

Total time - Best Algo 11 22 35 46 60 85 94 105 146

2.4 Multi-Day Modeling

Multi-day models better capture the economics of power markets, that exhibit
weekly cyclicality and seasonality. In addition, results are less dependent upon
the starting conditions of the simulation, which carry uncertainty. Multi-day sim-
ulations are challenging, since the size of the constraint matrix grows quickly and
subsequent operations can quickly become impractically slow if inefficient algo-
rithms are used. This said, since the problem structure is extremely sparse, very
large problems should be manageable even on computers with modest memory,
provided that the problem is built efficiently.

When using the Fusion library, sparse matrices are built internally by the opti-
mized library designed specifically for this purpose. As such, the Fusion model is

46 2.4 Multi-Day Modeling

1 2 3 4 5 6 7 8 9

50

100

150

200

250

300

Multi-day time horizon (days)

So
lv

e
ti

m
e

(s
)

Legacy DS Fusion DS
Fusion IP Serial Fusion IP Parallel

Figure 2.5: Multi-Day Performance - Legacy production and Fusion models solved
with the Dual Simplex and Interior Point solution algorithms in parallel and serial
versions.

scalable for large simulations. The Fusion model has been able to solve problem
sizes up to 9 days, which is currently the maximum size of data set that can be
prepared by the DXT database. Time performance of the Fusion model for multi-
day problems from 1-9 days can be seen in Tab. 2.3. Each of the solve (optimize)
time rows is with a different solution algorithm. Either the parallelized Interior
Point algorithm, the serial version, or the Dual Simplex algorithm. Graphical
comparison between the optimization time of the Fusion model and the legacy
production model on multi-day solves can be seen in Fig. 2.5.

Part II

Power Generation Unit Commitment

47

49 Forward to Part II

Forward to Part II:
A brief overview of the AC Optimal Power Flow and Unit
Commitment Problems

A basic understanding of the AC (alternating current) Optimal Power Flow and
Unit Commitment problems is essential to grasp the content of Part II. This for-
ward will provide this background for readers who are unfamiliar with the do-
main, while providing references for readers who want to delve deeper.

Brief Summary of AC Optimal Power Flow3

Electric power systems lend themselves to a graphical representation where the
vertices are electrical buses connected by branches that represent transmission
lines. Buses are connection points for various types of electrical infrastructure,
most notably generators and loads. The fundamental purpose of the power grid
is to transfer electric energy from generators to loads, while maintaining all op-
erating parameters within the specified constraints. The AC Optimal Power Flow
(ACOPF) problem is an optimization problem tasked with determining these op-
timal operating parameters of an electric power network under a given set of
conditions.

This optimization needs to be frequently completed during the operation of a
grid as load and supply conditions evolve, or else in advance using load and sup-
ply forecasts in order to aide in planning of grid operation. By determining the
optimal operating conditions of the network, ACOPF analysis plays a vital role in
ensuring the smooth operation and effective planning of power systems, allow-
ing them to achieve their overarching goal of delivering reliable and affordable
power to consumers. ACOPF includes variables and constraints that represent
the phenomena present with alternating current power systems such as reactive
power and voltage constraints. These unique elements are highly relevant from
the grid operator’s perspective as they are essential to understanding and plan-
ning the operation of a given grid on the engineering level. This level of detail
however may not be necessary to understand the economics corresponding to a
given load condition. This is why the market model presented in Part I did not
model any AC-related phenomena and aggregated demand onto the market zone

3This summary is inspired by the excellent introductory article on optimal power flow pre-
sented by Frank and Rubennack in IIE Transactions in 2016 [57]. For a detailed introduction to
the subject that is both quantitative and qualitative, I highly recommend this article.

50 Forward to Part II

level while ignoring intra-zone transmission.

Mathematical Formulation [57]. The ACOPF problem is cast as a nonlinear
optimization problem, with the primary objective of minimizing the total gener-
ation cost while satisfying the power flow equations and system constraints. The
mathematical representation includes variables such as real and reactive power
generation, voltage magnitudes, and power flow parameters. The specification
of the optimization problem can vary significantly according to the network fea-
tures, chosen representation of voltage and admittance, and the level of detail
represented. The classical formulation of the optimization problem from Car-
pentier [33] and Dommel and Tinney [44] models a set of buses N connected
by a set of branches L, with generators located at buses G ⊆ N. The generation
cost functions vary from generator to generator, but usually take the form of a
quadratic function of real power output: Ci(PG

i). Minimizing the cost across all
generators is the basic objective.

min
∑

i∈G

Ci

�

PG
i

�

, (2.1)

s.t. Pi(V,δ) = PG
i − PL

i , ∀i ∈ N, (2.2)

Q i(V,δ) =QG
i −QL

i , ∀i ∈ N, (2.3)

PG,min
i ≤ PG

i ≤ PG,max
i , ∀i ∈ G, (2.4)

QG,min
i ≤QG

i ≤QG,max
i , ∀i ∈ G, (2.5)

V min
i ≤ Vi ≤ V max

i , ∀i ∈ N, (2.6)

δmin
i ≤ δi ≤ δmax

i , ∀i ∈ N. (2.7)

Constraints 2.2 and 2.3 are the real and reactive power flow equations in
polar form. The remaining constraints represent bounds on the system voltages
and powers. In the general form, real and reactive loads are fixed, while the
optimization control variables are the real and reactive power output of each
generator.

The decision variables of the optimization can be partitioned into a set of
control variables u (real and reactive bus power injections),

u=
�

PG
i:i∈G,QG

i:i∈G

�

,

51 Forward to Part II

and a set of state variables x (voltage magnitudes and angles) [44, 27],

x = (δ2, . . . ,δN , V2, . . . , VN) .

a frequent addition to the above formulation is to add min and max flow con-
straints onto the branches such that the solution respects the engineered limits
of the respective power transmission lines. In following work, such constraints
are always considered for the systems.

The power balance constraints associated with alternating current increase
the difficulty of optimal power flow analysis given their non-linear nature and
coupling of variables. The power balance equation involves squared terms and
trigonometric functions due to the presence of real and reactive power magni-
tudes and phase angle, making the overall OPF problem non-linear. A common
relaxation in power system optimization is to thus relax the voltage constraints
constraints and eliminate the reactive power and voltage variables. This relax-
ation results in the DCOPF problem, since this relaxation causes the grid to be-
have as though it were based on direct current.

Challenges in ACOPF. The optimization of ACOPF problems poses significant
computational challenges due to:

• Non-linearity: quadratic terms and trigonometric functions in the power
balance equations, make the optimization problem inherently non-linear,

• Convexity: convexity is often lacking in ACOPF problems, primarily due to
the presence of non-convex constraints related to voltage magnitude limits
and branch angle differences,

• Numerical Instability: numerical challenges arise from solution sensitivity
to parameter variations and potential existence of local optima,

• Binary or Integer Constraints: binary or integer constraints are often
used to represent discrete control variables like switching devices, resulting
in a combinatorial search space,

• Stochasticity: renewable energy generation and demand forecasts are in-
herently stochastic,

• Size and Complexity of Networks: power networks characterized by many
buses, branches, and generators amplify the computational burden signif-
icantly given the elevated algorithmic complexity of solution methods.

52 Forward to Part II

Solution Methods. The solution methods for the ACOPF problem primarily in-
volve advanced optimization algorithms coupled with robust numerical solvers to
address the challenges posed by its non-linearity and complexity. Gradient-based
optimization methods, such as interior-point methods and sequential quadratic
programming, are widely used for solving ACOPF problems. These algorithms
iteratively improve the solution by considering the gradient of the objective func-
tion and constraints. Additionally, metaheuristic approaches like genetic algo-
rithms, particle swarm optimization, and simulated annealing are frequently pro-
posed alternatives for handling non-convexities and finding solutions in complex,
multimodal solution spaces. Robust numerical solvers play a critical role in en-
hancing the stability and efficiency of the optimization process. Efficient linear
programming solvers, non-linear solvers, and numerical libraries contribute to
the accuracy and usability of the optimization results.

Brief Summary of the Unit Commitment problem

The power generation unit commitment (UC) problem focuses on determining
the optimal commitment and dispatch schedule for a set of power generation
units. Given that grids must be designed to meet peak load conditions that hap-
pen only sporadically for brief periods of time, there is necessarily an oversupply
of generators available to the network during the majority of normal operating
periods. Typically, a power generator has a fixed cost associated with being ac-
tive and ready to supply a specified amount of power to the grid. These “startup
costs” result in a discontinuous cost function for generators, and are usually mod-
eled using binary variables that result in a mixed-integer optimization problem.
Naturally, UC decisions have multi-period impacts since starting and shuttering
a generator is a significant process in the real world.

Adding the power flow equations to the UC problem results in the security-
constrained unit commitment (SCUC). This security constrained formulation en-
sures that the Unit Commitment produced is actually feasible for the physical
power system, not violating voltage and flow limits [57]. This formulation, how-
ever, results in a significantly harder optimization problem. As such, a common
workflow is to find a relaxed Unit Commitment, and then test it afterwards for
feasibility on the security constrained system.

Another aspect of UC is to plan generator dispatch decisions so that the grid
is resistant to unplanned outages – referred to as contingencies – which are
a stochastic phenomenon. Adding in consideration of contingencies results in
a non-linear, non-convex, multi-period, combinatorial, stochastic optimization
problem. There are no known algorithms to natively solve such a problem, and

53 Forward to Part II

so relaxations are frequently used to solve an approximation of the problem.

Mathematical Formulation. The Generation UC problem is formulated as a
mixed-integer non-linear optimization problem, with the primary objective of
minimizing the total operational cost while satisfying operational and technical
constraints. The cost function thus encompasses binary decision variables for
unit commitment and continuous variables for power generation. A very basic
representation of the optimization problem can be expressed as follows:

Minimize
T
∑

t=1

N
∑

i=1

(C startup
i Ui t + Coperation

i Pi t) (2.8)

Subject to:

Ui t ∈ {0,1} ∀i ∈ generators,∀t ∈ time periods

Pi t ≤ Pmax
i · Ui t ∀i ∈ generators,∀t ∈ time periods

Pmin
i · Ui t ≤ Pi t ∀i ∈ generators,∀t ∈ time periods

Pi t − Pi(t−1) ≤ Ri ∀i ∈ generators,∀t ∈ time periods
N
∑

j=1

Dj t =
N ′
∑

i=1

Pi t ∀t ∈ time periods

Where:

T is the total number of time periods,

N is the number of buses,

N ′ is the number of generation units,

Ui t is the commitment status of unit i at time t,

Pi t is the power output of unit i at time t,

C startup
i and Coperation

i are the startup and operating costs of unit i,

Pmin
i and Pmax

i are the power output limits of unit i,

Ri is the ramping limit of unit i,

Dj t is the demand at bus j at time t.

54 Forward to Part II

This basic formulation captures the essence of the problem, while practical
formulations often also address generator startup and shutdown time and costs,
limits on generator cycling, ramp rate limits, reserve margin requirements, and
other scheduling constraints as well as power balance equations [57]. Zhu [149],
and Bai and Wei [16] are good references for details of the SCUC problem also
providing detailed formulations.

Challenges in Generation UC. The Generation UC problem faces the same
challenges as ACOPF, with a particular emphasis on combinatoriality because
the subset selection problem is intrinsically combinatorial. The non-linear, non-
convex, multi-period, combinatorial, stochastic features of the fully constrained
problem formulation make it intractable to solve in its natural form. For this
reason, solutions rely on relaxations and clever shortcuts to explore the space
and find credible candidate solutions that converge on optimality in a reliable
manner.

Solution Methodologies. Addressing the challenges posed by the UC problem
has spurred the development of diverse solution methodologies which can be
sorted on a scale in order of practical vs. academic relevance. On the practical
side, frequently we talk about relaxing the problem and using traditional well-
established methods to solve the relaxation [110]. A common relaxation is to
remove all non-linear elements of the problem such as reactive power, voltage
constraints and non-linear costs. This can result in a mixed-integer linear pro-
gram for which reasonable algorithms exist, and for which small systems can
even be solved to optimality in reasonable time. The weakness of this approach
is that these relaxations significantly change the fundamental problem such that
what we are optimizing is only an approximation of the actual problem. This
approach can be characterized as “optimal solutions to approximate problems”.
The approach presented in Chapter 3 takes a different tack. We instead keep
the fully constrained representation of the grid, assume a set of active genera-
tors by arbitrarily fixing binary unit commitment variables, use massively parallel
computing to solve the fully constrained ACOPF problems with the arbitrary unit
commitment, and then iteratively refine that selection. This approach can be
characterized as “suboptimal solutions to exact problems” and poses an interest-
ing twist on traditional methods.

On the academic side, there are many papers that explore different meta-
heuristic algorithms, such as genetic algorithms, particle swarm optimization,
and evolutionary algorithms, that provide alternative strategies for exploring

55 Forward to Part II

the complex solution space [68, 42, 52, 133]. These approaches can be supple-
mented with advanced optimization techniques such as stochastic programming
aim to enhance the resilience of solutions against uncertainties in renewable gen-
eration and demand forecasts [63, 38, 139]. There is also some research into the
integration of machine learning techniques, such as neural networks and rein-
forcement learning [146, 61]. Such methods may be used as a shortcut predic-
tion for parts or sub-problems of the optimization process, as a starting guess for
optimization, or as a complete alternative to the traditional approaches.

Future Directions and Conclusion. As the power generation landscape con-
tinues to evolve with the increasing penetration of renewable energy sources and
the deployment of advanced grid technologies, the Generation Unit Commitment
problem remains a focal point for research and innovation. Future avenues of
exploration may include the development of hybrid optimization techniques, the
incorporation of real-time data and adaptive learning strategies, and the explo-
ration of decentralized decision-making approaches to address scalability con-
cerns. As the relevance and importance of solving the UC problem increases
alongside the ever-increasing stochasticity and complexity of the grid, there will
no doubt continue to be significant research and improvements into both existing
and novel techniques for advancing the field of power system optimization.

Chapter 3 introduces a novel data-driven method to scalably improve unit
commitments under stochastic conditions by exploiting the data produced by
ACOPF economic dispatch computations. It is based on the paper [74].

Chapter 3

A data-driven refinement approach to
power generation unit commitment

3.1 Introduction

Transformational decarbonization of the electricity generation fleet is needed to
achieve emissions reductions targets [107]. This will require a transformation
from centralized dispatchable generation towards distributed renewable gen-
eration. Inherent variability in generation coupled with impacts of stochastic
weather scenarios requires a new class of scalable engineering tools to maintain
the reliability requirements of the grid while maximizing utilization of installed
renewable generation. In particular, developing grid planning and management
approaches that include stochastic factors and contingencies into generation dis-
patch decisions, is a key requirement for successful renewables integration [125].
These factors are normally considered downstream of the unit commitment (UC)
computations in the economic dispatch process for computational reasons [63].
The standard procedure of conducting economic dispatch computations over a
set of contingencies and weather scenarios generates data that is imbued with in-
formation about contingencies and weather. We propose a method to efficiently
“recycle” this data to refine UC, thus including contingencies and weather infor-
mation into the UC. This data-driven UC refinement is a minimal intervention
approach, simply adding an extra step in standard workflows to update UC after
economic dispatch.

Our novel data-driven unit commitment approach is enabled by ExaGO [5],
a recent development in security constrained alternating current optimal power
flow (SC-ACOPF) software that introduces massively parallel computation of
contingency and scenario analysis, greatly lowering the time-to-solution of such

56

57 3.1 Introduction

analysis. This means we can generate massive amounts of data in the economic
dispatch step at low-cost that can be used to refine UC in an iterative manner.
This integrated UC and economic dispatch approach leverages today’s vastly ex-
panded computational capabilities in a scalable way, showing strong potential to
improve both the security and cost of power grids.

UC is a challenging computational problem [148]. Its general formulation
– a constrained non-linear mixed-integer optimization problem – is an NP-hard
problem that is difficult to solve efficiently even when using parallel computa-
tions [52]. Typically, model approximations are made to make the UC problem
easier to solve. Most commonly, the model is linearized so that mixed-integer lin-
ear programming can be used, which can be implemented more efficiently [83].
The weaknesses of this approach are: 1) it is difficult to integrate considera-
tion of contingencies or stochastic scenarios into these solutions [133, 6, 38];
2) the linear approximations of the UC model do not capture voltage or reac-
tive power constraints, leading to solutions that are only approximations of the
fully constrained problem [119]; and 3) the combinatorial nature of the problem
formulation limits the scalability and solution accuracy achievable in a reason-
able time-frame for large grids [13]. This standard UC approach could thus be
improved by injecting information on contingencies and non-linear security con-
straints in a way that is scalable so that it can be applied to large grids.

Contingency analysis including all security constraints is typically done after
UC through a series of alternating current power flow (ACPF) forward simula-
tions [52]. Methods to include contingencies and stochastic information into
UC have been studied and proposed, with [6, 133, 63] providing summaries of
this research. This is a fundamentally challenging problem since it is large-scale,
non-linear, non-convex, and combinatorial, while solutions are expected in short
time-frames. Stochastic non-linear mixed-integer programming, that would pro-
vide a native way to solve such problems, is still an open research problem re-
quiring more investigation.

On the other hand, there has been significant progress in the development
of computational methods for security constrained and stochastic economic dis-
patch [114, 126, 80, 81]. Robust, parallelizable methods for stochastic SC-
ACOPF have been developed and successfully tested on different grid models [3,
110, 137]. These methods are stable with well understood complexity and con-
vergence properties; allowing for scheduling analyses that run within strict time
constraints. Furthermore, these analyses can model and strictly enforce all se-
curity constraints without making approximations. Finally, these methods run
efficiently on inexpensive hardware, process a large number of contingencies in
a relatively short time, and generate large amounts of high-quality data.

58 3.1 Introduction

Successful development of methods for security constrained economic dis-
patch creates new opportunities to exploit the big data contained in the economic
dispatch solutions to improve UC. In this work, we propose an integrated security
constrained unit commitment and economic dispatch approach that examines
data generated in SC-ACOPF analysis to suggest refinements to UC. Simulations
show that these refinements have potential to not only increase grid security
across large sets of contingencies, but also reduce total generation cost. We call
this approach Data-Driven Unit Commitment (DDUC). To keep the presentation
streamlined, we consider only day-ahead reliability UC in a deregulated region.

The main contribution of this work is the introduction of a scalable grid plan-
ning technique that exploits the data generated by economic dispatch analysis
with contingencies to improve UC. The approach is formalized in an algorithm
and presented alongside a statistically rigorous set of simulations that give a
promising proof-of-concept. The advantages of this approach are:

1. Incorporates contingency analysis and stochastic weather scenarios into
computation of UC.

2. Does not use mixed-integer programming for the refinements, instead re-
lying on data analysis techniques that are more scalable for large complex
grids.

3. Exploits the data generated by economic dispatch computations that must
be done in any case.

4. Additional computations imposed by DDUC utilize graph-based algorithms
of linear complexity, meaning they are extremely fast and efficient.

3.1.1 Definitions

Unit Commitment - Given a specific grid topology, a Unit Commitment is a sub-
set of generators in that grid that are active in a given period, therefore able
to produce power. Generators have a positive “startup cost” or a cost for being
active in a given period. By excluding some generators from the UC, the sum
of these startup costs is reduced. In very general terms, a good UC is one that
excludes generators whose startup costs are high proportional to the benefit that
they contribute to the grid. Identifying these generators is an NP-hard problem
that is typically solved using mixed-integer programming techniques that are
computationally very costly and difficult to parallelize. In this work, we present
an approach to UC that can be conducted in linear time, provided solutions to

59 3.1 Introduction

the Economic Dispatch problem. While this approach carries no guarantees, em-
pirically it is very effective at improving given UCs.

Grid Cost - The total cost of operating the grid for a given period. This is
comprised of the sum of generating costs (mostly comprising fuel, operating,
and startup costs), loadshed costs (a penalty assigned for each MW of load that
is shed from the grid), and penalties incurred for violating soft constraints such
as branch limits or power balances.

Contingencies - Refer to unplanned or unexpected events that can affect
the operation of the power system. Contingencies can include equipment fail-
ures, such as transmission line or generator outages, or changes in the power
demand. Contingencies can lead to violations of operational limits and outages
of the power system. In modern power grids that include significant genera-
tion from stochastic renewable sources, the importance of contingency analysis
is greatly elevated since effective generator outages occur frequently from events
such as sudden changes in cloud-cover or wind conditions, or rainfall. Analyzing
realistic sets of contingencies on such grids results in huge combinatorial search
spaces that are intractable to exhaustively analyze. For this reason, it is attrac-
tive to have computational methods that can respond quickly to contingencies
as they occur in real time. In this work, we analyze two types of contingencies:
generator outages, and transmission line outages.

Scenarios - Refers to a set of possible configurations and operating conditions
and environments of the power grid. Scenarios is a broader concept than contin-
gencies, potentially incorporating different sets of weather, generation, demand,
economic, and political conditions. In this work, contingencies is a subset of of
scenarios and the terms are used interchangeably.

Base-case - The default scenario under consideration. In this work we con-
sider base-cases which are primed with a given UC, then a set of contingencies
of that base-case is analyzed. The base-case is that scenario in which there are
no unplanned outages.

Security Constraints - Ensure that the power system operates in a safe and
stable manner under different operating conditions, such as variations in demand
or changes in the network topology. Security constraints prevent violations of
operational limits and maintain the reliability of the power system. The ExaGO
software package allows for strict enforcement of Security Constraints, with pe-
nalized load shedding used to prevent violation of constraints.

Economic Dispatch - Refers to the optimization of power generation in a
power system to meet the power demand at minimum cost, while satisfying op-
erational constraints, both linear and non-linear, such as thermal, voltage, and
reactive power limits, for a given UC. The objective function in the economic

60 3.2 Exascale Grid Optimization (ExaGO) Toolkit

dispatch problem is typically a quadratic cost function that reflects the variable
and fixed costs of generation.

Load shedding - Given a specific grid topology, load shedding is the act of
isolating loads from the grid, typically to prevent a violation of security con-
straints. Load shedding is required to maintain security constraints when the
demand for power at certain buses of the grid exceeds the ability of the grid to
deliver that power. This is usually due to some combination of high load con-
ditions, insufficient active generation capacity, power transmission constraints,
and equipment outages. Concretely, this means that some consumers have their
electricity turned off, a highly undesirable outcome. A key assumption of the
DDUC approach is that the amount of load shedding that is required to maintain
security constraints can be reduced by adjusting the UC, specifically, activating a
subset of currently inactive generators.

3.2 Exascale Grid Optimization (ExaGO) Toolkit

The Exascale Grid Optimization Toolkit (ExaGO) [3, 5] is a package for solving
large-scale AC optimal power flow problems with stochastic (wind generation,
load), security (generation and network contingencies), and scheduling (gener-
ator ramping) constraints. It implements scalable algorithms that allow it to run
on hardware ranging form a laptop to a supercomputer. ExaGO is portable and
can be deployed on traditional CPU and/or heterogeneous GPU-based architec-
tures. It has interfaces to state-of-the-art optimization libraries HiOp [41] and
Ipopt [136].

In this work, we use ExaGO’s scopflow application to solve SC ACOPF appli-
cation formulated as

min
∑

c∈C
f (xc) (3.1)

s.t. g(xc) = 0, (3.2)

h(xc)≤ 0, (3.3)

x− ≤ xc ≤ x+, (3.4)

−∆c x ≤ xc − x0 ≤∆c x , c 6= 0 (3.5)

where, C represents the set of contingencies, including the base-case denoted by
subscript 0. scopflow aims to minimize the objective

∑

c∈C f (xc), while adher-
ing to the equality g(xc), inequality h(xc), and the lower/upper bound (x−,x+)
constraints. For notational ease we include the base-case in set C, i.e., C ≡ C∪ c0.

61 3.3 Data-Driven Unit Commitment Algorithm

Each subproblem c has the detailed formulation of an AC optimal power flow
problem. Equation (3.5) represents the coupling between the base-case and
each of the contingency states ci. Equation (3.5) is the most typical form of
coupling that limits the deviation of the contingency variables xc from the base
x0 to within δc x . An example of this constraint could be the allowed real power
output deviation for the generators constrained by their ramp limit.

For the purpose of demonstrating and testing our DDUC approach, we relax
the coupling constraints (3.5) between the base and contingency subproblems.
This results in decoupling of AC optimal power flow subproblems for each con-
tingency. Each AC optimal power subproblem is solved in parallel. In essence,
this is similar to a parallel AC contingency analysis with the difference that in-
stead of solving power flow for each contingency, we solve an AC optimal power
flow. ExaGO’s scopflow application has an in-built solver called EMPAR (short
for “embarrassingly parallel”) that can be used for such decoupled contingency
analysis.

We also model load shedding for each AC optimal power subproblem where
each load i can shed an up to γi % of its load at a given cost Ci. This load
loss formulation allows setting priority or importance to loads (by setting higher
costs Ci) and making provision for load that should not be curtailed (1−γi), for
example in the case of critical loads.

3.3 Data-Driven Unit Commitment Algorithm

3.3.1 Algorithm Objectives

Given an initial UC, the DDUC algorithm proposes updated UCs after observing
the optimal results of the economic dispatch problem as solved by ExaGO. The
algorithm has two objectives: 1) efficiently find a UC that reduces or eliminates
the necessity for load shedding over a set of contingencies cases; and 2) exploit
the solutions of economic dispatch over time, to evolve the UC to reduce the
overall cost of the day-ahead UC. A UC that simultaneously realizes both of these
goals would be an unambiguous improvement to grid operation. The DDUC
algorithm achieves this by adding “important” generators to the UC and removing
“unimportant” ones over a series of iterations.

The identification of “unimportant” generators is done using a data-driven
approach that examines the solutions of the SC ACOPF problem finding those
generators that have low capacity factors, that is generators whose available ca-
pacity is left mostly idle. The hypothesis of this heuristic is that if a generator

62 3.3 Data-Driven Unit Commitment Algorithm

Algorithm 1: Data-Driven Unit Commitment
Data:

• G : power grid model,
• U : unit commitment for that grid,
• C : set of contingencies for that grid,
• n : number of iterations

Result: U ′ : new unit commitment
1 Function DDUC(G, U , C, n):
2 U ′← recourse(G,U ,C)
3 for n do
4 U ′← prune(G,U ′,C)
5 U ′← recourse(G,U ′, C)
6 end
7 return U ′

provided either low-cost or critical power to the grid, it should have a high ca-
pacity factor in the optimal (lowest-cost) SC ACOPF solution. The identification
of “important” generators is more nuanced. The basic idea is to find contingency
cases that require load shedding to maintain security constraints, then find cur-
rently deactivated generators that are “close” to the load that was preferentially
shed by the fully-constrained SC ACOPF optimization algorithm for that contin-
gency case. The hypothesis of this heuristic is that those generators that are
proximate to the areas of the grid that require load shedding will be most able
to provide the missing power. Details on how proximity is measured and how
proximate generators are algorithmically identified follow in Section 3.3.2.

The DDUC algorithm works in two phases: a load shed recourse phase where
“important” generators are identified and added to the UC, and a pruning phase
where “unimportant” generators are identified and removed from the UC. Algo-
rithm 1 defines how these phases are combined to produce the new UC.

3.3.2 Load Shed Recourse Phase

In the load shed recourse phase, the ACOPF solutions for the base-case and each
contingency are analyzed to find situations in which load shedding is required
to keep from violating security constraints. In each of the load shedding contin-
gency cases, the network is analyzed to find generators that are currently inactive
that would be good candidates to add to the unit commitment. A good candi-
date is a generator that: 1) is close, in the graphical sense, to the bus that shed
the most load; and 2) has available transmission capacity on the shortest path

63 3.3 Data-Driven Unit Commitment Algorithm

Algorithm 2: Load Shed Recourse
Data:

• {G,U ,C},
• α : activation parameter,
• k : number of generators to return from BFS

Result: U ′ : new unit commitment
1 Function recourse(G, U , C, α, k):
2 if C ⊃ {c0} then
3 U = recourse(G, U , C = {c0}, α, k)
4 end
5 Run ExaGO scopflow on G,U ,C
6 S ← set of cases with load shedding
7 U ′← U
8 for s ∈ S do
9 Us← U

10 B← buses in s with load shedding
11 π← total load shed in s
12 r ← 0
13 while r < απ and B 6=∅ do
14 b← pop highest load shed in B
15 breadthFirstSearch(b, k)
16 N ← k nearest deactivated gens to b
17 for g ∈N do
18 ρ← path capacity from g to b
19 ρ′← generating capacity of g
20 pg ←min(ρ,ρ′)
21 end
22 g ← argmax(p)
23 Us← Us ∪ g
24 r ← r +max(p)
25 end
26 U ′← U ′ ∪Us

27 end
28 return U ′

connecting it with that bus.
Such generators are found using a breadth first search (BFS) from the bus

that sheds the most load. The search terminates when the number of inactive
generators found reaches k, a tuning parameter that effectively controls the rel-
ative importance of the graphical proximity and available capacity measures. A
low k will emphasize graphical closeness, while a high k will emphasize avail-

64 3.4 Numerical Experiments

able capacity. For each generator in this set, the available capacity on the shortest
transmission path between that generator and the bus with load shedding is then
measured. The generator with the greatest ability to provide generation to the
bus, based on both generator capacity and transmission path capacity is then
added to the set of generators to activate. This process repeats for the bus with
the next highest amount of load shedding until the generation capacity activated
multiplied by parameter α is greater than the total amount of load shedding
in the scenario. Once this process has been repeated for each contingency that
had load shedding, the union of all sets of generators identified for each case
is added to the UC. Full details of this load shed recourse phase are outlined in
Algorithm 2.

3.3.3 Pruning Phase

The sole purpose of the pruning phase is to further optimize UC. The ACOPF
solution for the base-case and each of the contingency cases is analyzed to find
the generators with the lowest capacity factors in the network, across all cases,
and then remove some of those generators from the UC. The prune algorithm
proceeds by taking a sum of the capacity factor for each generator in the UC over
all of the cases / scenarios and then removing the z generators with the lowest
total capacity factor across all scenarios (Algorithm 3).

Tuning the parameter z, which defines how many generators to prune at each
pass of the DDUC algorithm, is critical to the effectiveness of the algorithm at
reducing the cost of the UC. Too low a z, and inefficient generators will remain
in the UC. Too high a z, and “important” generators may be mistakenly pruned.
Methods for exploring the space of z values and algorithms for reaching optimal
z values is something we would like to explore in further research. For this paper
we used a percentage of active generators in the range of 2-8% that decreases
with every iteration.

3.4 Numerical Experiments

3.4.1 Setup

Numerical experiments to test the effectiveness of the algorithm were conducted
on two test grids from the ACTIVSg series [17, 143, 18] – the synthetic SC and
Texas grids. At 500 and 2000 buses respectively, these grids are sufficiently com-
plex to provide challenging problems, while being small enough to provide SC

65 3.4 Numerical Experiments

Algorithm 3: Prune Generators
Data:

• {G,U ,C},
• z : number of generators to prune

Result: U ′ : new unit commitment
1 Function prune(G, U , C, z):
2 Run ExaGO scopflow on G,U ,C
3 S ← set of all cases
4 fg ← 0, ∀ g ∈ U
5 for s ∈ S do
6 for g ∈ U do
7 fg ← fg+ capacity factor of g in s
8 end
9 end

10 U ′← U
11 for z do
12 g ← pop argmin(f)
13 U ′← U ′ \ g
14 end
15 return U ′

ACOPF solutions with ExaGO in seconds rather than minutes. For each grid, a
single scenario with static load conditions was analyzed, with variability on the
supply and transmission side from the contingencies considered. Basic properties
of these test grids are shown in Table 3.1.

The experiments were conducted on a cluster with a 64-core AMD 3rd Gen
EPYC CPU on each node. The experiments were run using the ExaGO scopflow

EMPAR formulation using Ipopt [136] as the optimization engine and Pardiso [8,
21, 19] as the solver for linear systems. The scopflow EMPAR solver provides
massively parallel ACOPF solutions of all contingencies in a fully de-coupled for-
mulation. As such, one compute core is required for each contingency plus one
for the base-case to achieve maximal parallel throughput. For the SC grid 590
contingencies were considered in all experiments, representing the full set of
n−1 contingencies for generators and one branch outage per bus. For the Texas
grid a random sample of 500 n − 1 contingencies were considered including a
mix of both branch and generator contingencies. The SC and Texas grids thus
required 591 and 501 CPU cores, respectively, to solve fully parallel.

These are relatively small examples in terms of the number of contingencies
and scenarios, however, this method is also applicable to extreme-scale analy-

66 3.4 Numerical Experiments

Table 3.1: Properties of tested grids.

South Carolina grid Texas grid

Buses 500 2,000
Generators 90 544
Branches 597 3,206
Installed generation (MW) 12,189 96,292

Total load (MW) 7,751 67,109
Contingencies considered 590 500

ses. ExaGO has been successfully run on Frontier, the world’s most powerful and
first exascale supercomputer [123], to perform analysis on the 10,000-bus syn-
thetic Western Interconnection model, using 9,999 contingencies and 10 stochas-
tic scenarios, resulting in nearly 100,000 sub-problems. This problem was run
on 9,000 compute nodes with 72,000 MPI ranks and successfully completed in
16 minutes. To integrate such runs with the DDUC algorithm would require fur-
ther research and development, but the linear algorithmic complexity of the data
analysis methods make integration with extreme-scale problems feasible.

A statistical approach was used to evaluate the performance of the DDUC
algorithm given many distinct starting UCs. Specifically, performance was evalu-
ated for 100 stochastically generated starting UCs for each grid. The starting UCs
were made by randomly deactivating x percent of the generators in the grid, then
adding back generators until the base-case scenario was feasible without load-
shedding; x = {40% for SC, 30% for Texas}. This statistical approach provides
assurance that the positive results are representative of the performance of the
algorithm on a broad range of starting UCs and not a circumstance of a specific
case. The DDUC algorithm was evaluated using 5 iterations (5 cycles of load
shed recourse and pruning), as it was empirically most effective in the first 5
iterations.

3.4.2 Performance Evaluation Criteria

We evaluate the DDUC algorithm for its performance on two metrics: 1) reduc-
tion of the amount of load shedding from contingencies, and 2) improvement
of the overall cost of running the grid with the suggested UC. The reduction of
load shedding given a set of contingencies is the more important of these two
metrics, since loss of power for consumers is a highly undesirable event. Any

67 3.4 Numerical Experiments

(a) SC grid number of scenarios with load
shedding (n=100)

(b) SC grid total load shed reduction from
recourse (n=7)

(c) SC grid absolute cost function value
(n=100)

(d) SC grid iteration-over-iteration cost re-
duction (n=100)

Figure 3.1: DDUC algorithm performance on South Carolina grid. Figure 3.1a -
recourse algorithm reduction in number of load shed cases across all contingencies;
error bars show middle quartiles. Figure 3.1b - recourse algorithm reduction of load
shed (MW) for a random sample of 7 runs. Figure 3.1c - value of the cost function
($) of the base-case and the sum of all cost function values across all contingency
cases. Figure 3.1d - cost reduction ($) achieved on an iteration-over-iteration basis
for each of 5 iterations. Box plot notches represent median, box represents middle
quartiles, whiskers represent 5th to 95th percentiles.

approach to find a UC to reduce load shedding under contingencies, however,
should be evaluated not only for its benefits of reducing load shedding, but also
for its impact on the cost of operating the grid. A UC that reduces load shedding
in the contingencies may be undesirable if it significantly increases costs. The
following results show that the DDUC algorithm tends to find UCs that reduce
both load shedding and cost, giving us a win-win. However, the cost savings re-
sults are intrinsically sensitive to the particular cost model employed. Our model
includes a cost attached to load shedding, so there is a benefit in the cost metric
for preventing load shedding.

68 3.4 Numerical Experiments

(a) South Carolina grid (b) Texas grid

Figure 3.2: Histogram - cost function reduction from initial UC to UC assigned
after 5 iterations of DDUC algorithm for n=100 runs, each seeded with different
stochastic starting UC.

3.4.3 South Carolina Grid Results

Upon testing the DDUC algorithm, we are pleased to see impressive performance
on both metrics. Figure 3.1 visualizes the results for testing on the SC grid. The
top panel shows performance against the objective of eliminating load shedding,
while the lower panel shows performance at lowering overall cost.

Figure 3.1a shows the consistent ability of the recourse algorithm to find UCs
that eliminate the necessity of load shedding from contingency scenarios. This
figure shows that arbitrary starting UCs typically must shed load in 20-30 differ-
ent contingency cases. After the recourse algorithm is run on this starting UC,
however, the number of contingency cases requiring load shedding drops consid-
erably to the range of 2-3. Subsequent iterations of the DDUC algorithm do not
dramatically increase load shedding, and it is interesting to note that for this case,
the recourse algorithm has difficulty eliminating the necessity for load shedding
from all contingency scenarios, typically having 1 contingency that still requires
it. This suggests that the resilience of SC grid (as described in the model) could
be improved with suitable upgrades.

Figure 3.1b shows a slightly different view of the effectiveness of the recourse
algorithm. On the y-axis, the sum of load shedding across all contingency cases
(
∑

cases) for a particular UC is indicated by red diamonds before the recourse al-
gorithm and green dots after the recourse algorithm. Only 7 randomly selected
starting UCs are shown so that the plot is not too crowded. This figure shows
that while there may be significant load shedding required to maintain security
constraints across the set of contingency scenarios before the recourse algorithm,
after the algorithm, the amount of load shedding required across all contingen-
cies is most often 0 or nearly 0.

Figure 3.1c shows performance of the DDUC algorithm at reducing the overall

69 3.4 Numerical Experiments

(a) Texas grid number of scenarios with load
shedding (n=100)

(b) Texas grid total load shed reduction from
recourse (n=7)

(c) Texas grid absolute cost function value
(n=100)

(d) Texas grid iteration-over-iteration cost
reduction (n=100)

Figure 3.3: DDUC algorithm performance on Texas grid. See Figure 3.1 for detailed
description of plots.

cost of the network. The different colors of boxes represent the cost function
value for the base-case, and the sum of the cost functions of all contingency cases
including the base-case. An impressive improvement in cost is shown, with the
median cost of a starting UC at $131.3k compared to the median cost of $85.3k
after 5 iterations of the UC algorithm; an impressive improvement of 26.2%.

Figure 3.1d shows The cost reduction on an iteration-over-iteration basis of
the given UCs. What this means is that the metric measures the improvement for
each individual UC over the five iterations of the algorithm, yielding a positive
value if the cost decreased during the iteration and a negative value if the cost
increased during the iteration. These measures are then aggregated in the box
plot. We see that for each of the five iterations, the algorithm resulted in a cost
reduction to the system in the vast majority of instances. Notably, in both the
first and second iteration, at least 95% of the time the algorithm resulted in
reductions for both the base-case cost and the sum of contingency cases cost.

Figure 3.2a shows a histogram of the reduction in the value of the cost func-
tion for 100 runs of the DDUC algorithm. This shows us the distribution of the
cost reduction to be expected from an arbitrary starting UC to a corrected UC for

70 3.4 Numerical Experiments

the SC grid. Considering the base-case cost, over the 100 run sample: the mini-
mum cost reduction observed was $313, the mean cost reduction observed was
$30,986, and the maximum cost reduction observed was $56,432. Importantly,
in none of the 100 runs was a cost increase observed.

3.4.4 Texas Grid Results

Repeating the same tests on the Texas grid, we see similarly positive results.
Figures 3.2b and 3.3 visualize these results on the Texas grid test case.

In Figure 3.2b, we see that considering the base-case cost, over the 100 run
sample: the minimum cost reduction observed was $32,341, the mean cost re-
duction observed was $59,587, and the maximum cost reduction observed was
$102,508. While theses reductions are lower in relative terms than they were for
the SC grid, they are significant in absolute terms. The distribution is also more
impressive on the Texas grid in that even the minimum observed cost reductions
are significantly positive. Again, in none of the 100 runs, was a cost increase
observed.

Figure 3.3a shows the impressive results of the DDUC algorithm for eliminat-
ing load shed also persist on the Texas grid case. This figure shows that arbitrary
starting UCs typically must shed load in 15-50 different contingency cases. After
the recourse algorithm is run on this starting UC, however, the number of cases
requiring load shedding drops considerably to the range of 0-2. Subsequent it-
erations of the DDUC algorithm perform similarly well, eventually eliminating
load shedding altogether seeing no load shedding cases for iterations 4 and 5 in
the middle quartiles of data. This is a better result than on the SC grid, and is
perhaps attributable to the greater size and diversity of the Texas grid making it
less vulnerable to a particular outage.

In Figure 3.3b, we see that during the first iteration of the DDUC algorithm
there is one run where total load shedding over all cases increases after the re-
course algorithm. This is not persistent however, as the recourse algorithm con-
sistently eliminates load shedding on subsequent iterations. The high level of
load shedding after the pruning phase in contrast to the SC grid is attributable
to the fact that the larger Texas grid undergoes more aggressive pruning since
the parameter of how many generators to eliminate is set as a percentage of the
active generators, and was set higher in the Texas grid.

Figure 3.3c shows an impressive improvement in cost, with the median cost of
a starting UC at $1.31m compared to the median cost of $1.25m after 5 iterations
of the UC algorithm; an improvement of 4.7%.

In Figure 3.3d, again we see that for each of the five iterations, the algorithm

71 3.5 Discussion

resulted in a cost reduction to the system in the majority of instances. Notably,
in both the first and second iteration, at least 95% of the time the algorithm
resulted in reductions for both the base case cost and the sum of contingency
scenario costs. Interestingly, in the Texas grid, the DDUC algorithm does a better
job of reducing cost in the second iteration than the first one.

3.5 Discussion

The data-driven approach to finding UCs that are both secure and low-cost has
some fundamental merits that make it worthwhile exploring in more depth.
Perhaps the most important of these is that the input data for the approach is
coming from a stochastic SC ACOPF process that considers both contingencies
and weather scenarios. Using this data as a feed-stock for UC refinement there-
fore provides the possibility to find UCs that are best with respect to not only
some base-case scenario, but also to an aggregation of possible contingencies and
weather conditions. The ability to include contingencies and stochastic factors
into the UC optimization process is going to be critical to increasing the pene-
tration of renewables without sacrificing grid reliability. In addition, inducting
knowledge of contingencies and weather into the UC optimization process could
give grid planners confidence to tighten the safety margins used in UC decisions.
This would allow for more cost-effective grid operation in the same way that
superior calculation techniques in civil engineering allowed for building designs
using fewer materials.

Another important benefit of this DDUC approach is that the incremental
computations to find the UC refinements are extremely efficient and low-cost.
The underlying algorithms are linear complexity with respect to both the grid
topology, and the number of contingencies and scenario cases considered. In
contrast to the standard mixed-integer programming approach to UC, this means
that the method is highly scalable as network complexity increases.

A potential deployment of the DDUC approach could be: an initial seed UC
is found using the traditional mixed-integer approach. Economic dispatch with
respect to contingencies and weather scenarios is then run using this seed UC.
The data from the economic dispatch is then recycled into the DDUC algorithm
to refine the seed UC with the knowledge of contingencies and weather scenarios
that is contained in the economic dispatch solution, and this refinement process
is repeated as new information on the state of the grid and the weather becomes
available.

Another interesting possible application of the DDUC approach is for black-

72 3.6 Conclusion

start operations where it is known a priori which units to start and due to the
weak grid conditions, the chances of load shedding due to improper unit com-
mitment is significant. In such a case, the DDUC approach could provide feasible
and optimal grid operational solutions with no or least amount of load shed.

The primary goal of the DDUC algorithm is to reduce load shedding across
a range of contingencies by finding UCs that are less vulnerable to the ensemble
of contingencies. This is a critical consideration since more than 13 million peo-
ple in the United States were affected by power outages each year from 2008
to 2015, and the annual number of outages grew from 2,169 to 3,571 in this
same time period [64]. Another interesting area of research to explore would
be “demand-response” which amounts to voluntary load shedding. Demand-
response programs are common and rapidly growing in the US, and usually in-
volve some incentive that is provided by the grid operator to induce large con-
sumers to lower their consumption when conditions are tight [14]. The DDUC
approach would allow for demand-response to be explicitly modeled using the
cost of the incentive as the cost for load reduction variables in ExaGO. This is an
exciting possibility that could allow operators to better understand the relation-
ship between UCs and demand-response requirements.

While the results of the numerical experiments presented herein are prelim-
inary, they give reason to justify optimism in the possibilities of the DDUC ap-
proach as it is refined through further research. These experiments have shown
a validation of the heuristics, showing their ability to identify both the “impor-
tant” and “unimportant” generators in the grid. While benefits in terms of total
generation cost will likely diminish with more optimal seed UCs generated from a
mixed-integer programming approach, the DDUC method should be recognized
for its ability to efficiently include contingency and weather information into the
UC. While the experiments were only run with contingencies in this work, the
inclusion of stochastic weather scenarios would be a simple extension since this
functionality is already fully supported by ExaGO.

3.6 Conclusion

To achieve decarbonization goals [107], we need to develop tools to efficiently
manage highly dynamic and stochastic power grids. Stochasticity of weather
and operations and their impact on the grid can be modeled effectively in the
economic dispatch process using standard models and proven approaches. New
computational tools such as ExaGO allow us to vastly scale-up stochasticity mod-
eling efforts by leveraging parallel computing and modern computational re-

73 3.7 Scientific Software: ExaGO

sources to give high-resolution information in short time-frames. The outcome
is a tool set and data to support the decision-making process on resilience invest-
ments, improving operational efficiency and grid reliability. These economic dis-
patch computations with contingencies and stochastic scenarios generate huge
amounts of high-quality data that can be analyzed and effectively “recycled” to
imbue contingency and stochastic information into unit commitment through
heuristic refinements. This process is a minimal intervention approach that is
intrinsically scalable given the linear complexity of the graph-based algorithms
used to analyze the economic dispatch output data. The preliminary results pre-
sented in this work show that this data-driven unit commitment approach has
merit. It performed effectively on non-trivial grids of 500 and 2000 buses, consis-
tently providing unit commitments that strictly enforced all security constraints
(including non-linear) and minimized or fully eliminated the need for load shed-
ding across contingencies with power imbalance.

With further research, this data-driven unit commitment refinement approach
could be tested across a wide array of grids, with larger contingency sets, with
stochastic weather scenarios, and with different seed unit commitments. With
further development and a robust implementation, this could prove to be a com-
putationally efficient and practical method to include contingency and stochastic
weather information into the unit commitment optimization process; providing
more reliable and efficient grids with high penetrations of renewable energy.

3.7 Scientific Software: ExaGO

ExaGO: the exascale grid optimization toolkit, is a set of software tools designed
to enable scalable power grid optimization such that AC optimal power flow
problems can be extended to extreme scales, exploiting exascale supercomput-
ers such as the Frontier supercomputer at Oak Ridge National Laboratory [123].
ExaGO was developed as part of the Exascale Computing Project (ECP), a $1.8
billion U.S. Department of Energy investment in development of new computa-
tional technology. ExaGO represents the state-of-the-art in scalable AC optimal
power flow for fully constrained problems, scalably modeling fully constrained
grids including stochastic (wind generation, load), security (generation and net-
work contingencies), and scheduling (generator ramping) constraints [4].

To enable exascale grid optimization, two key breakthroughs were needed.
The first being optimization techniques and algorithms that allow for grid opti-
mization problems to scale close to linearly in the number of stochastic scenarios.
The second being optimization software that utilizes hardware accelerators such

74 3.7 Scientific Software: ExaGO

as GPUs. The following subsections describe these two challenges in more detail.

3.7.1 Scalable ACOPF Optimization Techniques

The need for scalable algorithms for grid simulation arises from the necessity
of grid operators to plan for contingencies such as equipment outages and en-
sure that such outages will not cause catastrophic or cascading failures in the
grid. Simulation of contingencies typically involves the simulation of an ACOPF
model for each contingency, which can number in the tens of thousands, to find
a secure state of the grid [50]. The large number of contingencies is a func-
tion of “N − 1” grid operation paradigm in which grid security must be assured
if any one piece of equipment fails. As such, there must be a contingency that
simulates the failure of a given piece of grid infrastructure for all grid infrastruc-
ture [105]. As the sensitivity of the grid to stochastic phenomena such as weather
increases, simulations of “N − 2” or even “N − 3” contingencies may be desire-
able. Given that these are combinatorial formulations,

�N
2

�

, and
�N

3

�

, they result
in extremely large sets of scenarios. Since the global minimum subject to the
ensemble of all contingencies is desired, all contingencies can be bundled into
a single optimization problem, however this results in extremely large systems
that quickly become intractable. A novel solution to this problem is to break the
scenarios into separate problems, that are coupled using a coupling variable in a
two-stage stochastic optimization scheme. ExaGO exploits this with the primal
decomposition technique [139, 137] as implemented in the HiOP optimization
software [41]. The following description from [139] describes the key idea of
the primal decomposition method. The primal decomposition solver breaks the
problem down into a two-stage stochastic optimization problem with recourse of
the form

minx∈Rn f (x) +R(x)
s.t. c(x) = cE

d l ≤ d(x)≤ du

x l ≤ x ≤ xu,

where the recourse function R(x) = EΩ[r(x ,ω)] is defined as the expectation
(integral) of the optimal value function r(x ,ω) of the second-stage problem pa-
rameterized by a random vector ω over a probability space Ω. More specifically,

75 3.7 Scientific Software: ExaGO

the second-stage optimal value function has the following mathematical form:

r(x ,ω) =miny∈Rm p(y, x ,ω)
s.t. c(y, x ,ω) = cE(ω)

d l(ω)≤ d(y, x ,ω)≤ du(ω),
y l(ω)≤ y ≤ yu(ω),

The second-stage problem is dependent on the first-stage through the coupled
variable x . For further details on the formulation, the interested reader should
consult the full paper by Wang et al. [139]. Essentially, this optimization tech-
nique breaks the problem down into a series of sub-problems overseen by a coor-
dination problem. In the research presented in Chapter 3 the sub-problems were
solved using Ipopt [136].

3.7.2 Hardware Accelerated Optimization

The interior point algorithm is the typical solution method of choice for these
large-scale non-linear, non-convex optimization problems given its robust prop-
erties and scalability and efficiency for handling large systems [13]. The majority
of computation in the interior point algorithm is the solution of a sparse system
of equations [81]. This is a major advantage of the interior point algorithm,
since this heavy computational task can be off-loaded to highly efficient and op-
timized parallel numerical libraries such as Pardiso [8]. The disadvantage of such
libraries is that they currently do not use hardware accelerators such as GPUs.
This lack of support for GPUs is an inherent barrier to exascale computations,
since the exascale barrier has only been broken thanks to a heavy reliance on the
extremely high arithmetic performance of GPUs1.

Solving sparse linear systems on GPUs poses challenges due to the inher-
ent nature of sparse matrices and the complexities of parallelizing certain solu-
tion methods. Sparse matrices contain mostly zero elements, leading to irregu-
lar memory access patterns and potentially inefficient GPU memory utilization.
These irregular access patterns and data layout make exploiting data level par-
allelism – the specialty of GPUs – inherently difficult [109].

Direct solving methods, such as Gaussian elimination or LU decomposition,
involve factorizing the matrix into lower and upper triangular matrices. These
methods can benefit from parallelism in certain steps, such as partial pivoting or
triangular solve. While the factorization itself can be parallelized using pipeline

1The world’s first certified exascale supercomputer, Frontier, at Oak Ridge National Labora-
tory derives over 99% of its arithmetic performance from GPUs [95].

76 3.7 Scientific Software: ExaGO

parallelism such as in the left-right looking strategy [122], translation of these al-
gorithms to GPUs are inherently difficult due to dependencies between elements,
synchronization events, and irregular access patterns. Additionally, the memory
requirements for storing the factorized matrices might be prohibitive for large
sparse systems [121].

Iterative methods, such as conjugate gradient (CG) or preconditioned itera-
tive methods (e.g., GMRES), are often favored for sparse linear systems on GPUs
due to their ability to exploit sparsity and their potential for parallelism [153].
These methods involve iterative updates to approximate the solution, where each
iteration typically consists of matrix-vector multiplication and vector operations.
While these operations can be parallelized efficiently on GPUs, achieving conver-
gence may require a large number of iterations, which can limit the performance
benefits, especially if the convergence rate is slow or if the preconditioning step
is computationally expensive [115].

Overall, the difficulty in parallelizing sparse linear system solution methods
on GPUs lies in balancing memory access patterns, exploiting parallelism in ma-
trix operations, managing dependencies between matrix elements, and optimiz-
ing convergence criteria. Direct methods face challenges in efficiently factorizing
sparse matrices, while iterative methods require careful optimization to balance
computation and memory access while ensuring rapid convergence.

Progress is being made, with significant research in the field of GPU enabled
sparse linear solvers, such as next-generation linear algebra libraries for hetero-
geneous computing presented in Matrix Algebra on GPU and Multi-core Archi-
tectures (MAGMA) [11, 144, 45], the NVIDIA cuSPARSE library [1, 131], hybrid
direct-iterative methods such as HyKKT [116], or the gpu-based solver imple-
mented in HiOP [41] as part of the Exascale Computing Project. For a compre-
hensive review of the current state-of-the-art, I refer the reader to [153]. ExaGO
can be configured to use HiOP GPU based solver for the sub-problems, result-
ing in truly exascale computations for the stochastic ACOPF problems. ExaGO
has been used for Stochastic security constrained alternating current optimal
power flow (SC ACOPF) analysis for 10,000-bus model of Western U.S. grid with
100,000 stochastic scenarios performed on 72,000 MPI ranks and using 9,000
nodes on Frontier exascale computer (72,000 GPUs). The analysis successfully
converged to the solution which was validated against commercial tools [128].
That said, this is still a field under development, and currently proposed solutions
for GPUs are not at the same level of maturity as the CPU counterparts.

77 3.8 Appendix: ExaGO ACOPF Forumulation

3.7.3 Towards Scalable Stochastic Optimal Power Flow

With the breakthroughs of allowing coupled ACOPF optimizations such as those
with contingencies to scale roughly linearly in the number of scenarios, and re-
cent developments of GPU enabled sparse linear solvers, we are entering the era
where large stochastic grid optimizations are becoming tractable given sufficient
computational resources. While further development is required to make these
techniques stable, robust, and trusted — ExaGO has served as a breakthrough
proof of concept and development platform for the next generation of stochastic
optimal power flow technology.

3.8 Appendix: ExaGO ACOPF Forumulation

The ExaGO base program is OPFLOW – a fully constrained AC optimal power
flow model that is then called by higher level programs that model contingen-
cies, stochastic scenarios, and multi-period problems. The OPFLOW formulation
includes:

• An objective function including generation cost, deviation cost, load loss
costs, and power imbalance costs

• Nodal power balance

• Shunt power

• Generator real and reactive power output

• Branch flows

• Automatic generation control (optional)

• Generator bus voltage control

The following details on the formulation are provided by the ExaGO User Man-
ual [4].

Optimal power flow is a general nonlinear programming problem of the form

min. f (x) (3.6)

s.t.

g(x) = 0 (3.7)

h(x)≤ 0 (3.8)

xmin ≤ x ≤ xmax (3.9)

78 3.8 Appendix: ExaGO ACOPF Forumulation

With decision variables x , bounded to xmin and xmax, objective function f (x),
and equality and inequality constraints g(x) and h(x).

3.8.1 Variables and bounds

Table 3.2 describes the optimization variables that are modeled by OPFLOW.
The power imbalance variables are slack variables that measure the violation

Table 3.2: Optimal power flow (OPFLOW) variables

Symbol Variable Bounds

pg
j Generator real power dispatch pgmin

j ≤ pg
j ≤ pgmax

j

qg
j Generator reactive power dispatch qgmin

j ≤ qg
j ≤ qgmax

j

∆pg
j Generator real power deviation −pr

j ≤∆pg
j ≤ pr

j

pgset
j Generator real power set-point pgmin

j ≤ pgset
j ≤ pgmax

j

∆P System power excess/deficit Unbounded

θi Bus voltage angle -π≤ θi ≤ π

vi Bus voltage magnitude vmin
i ≤ vi ≤ vmax

i

∆p+i ,∆p−i Bus real power mismatch variables 0≤∆p+i ,∆p−i ≤∞

∆q+i ,∆q−i Bus reactive power mismatch variables 0≤∆q+i ,∆q−i ≤∞

∆pl
j Real power load loss 0≤∆pl

j ≤ pl
j

∆ql
j Reactive power load loss 0≤∆ql

j ≤ ql
j

of power balance at buses. Inclusion of these variables ensures feasibility of the
bus power balance constraints.

3.8.2 Objective Function

min. Cgen(p
g)+Cdev(∆pg)+Closs(∆pl,∆ql)+Cimb(∆p+,∆p−,∆q+,∆q−) (3.10)

Total generation cost Cgen(pg)

Cgen(p
g) =

∑

j∈Jgen

Cg
j (p

g
j) (3.11)

Where Cg
j is a quadratic function of the form Cg

j = ag
j p

g
j
2 + bg

j p
g
j + cg

j .

79 3.8 Appendix: ExaGO ACOPF Forumulation

Total generation setpoint deviation C(∆pg)

Cdev(∆pg) =
∑

j∈Jgen

(∆pg
j
2) (3.12)

Load loss C(∆pl,∆ql)

Closs(∆pl,∆ql) =
∑

j∈J ld

σl
j(∆pl

j +∆ql
j) (3.13)

With default load loss penalty σl
j is $1000/MW for all loads.

Power imbalance Cimb(∆p+,∆p−,∆q+,∆q−)

Cimb(∆p+,∆p−,∆q+,∆q−) =
∑

i∈J bus

σi(∆p+ +∆p− +∆q+ +∆q−) (3.14)

Imbalance variables∆p+,∆p−,∆q+,∆q− are slack or non-physical variables that
ensure feasibility of the bus power balance constraints and can provide a measure
of infeasibility.

3.8.3 Equality constraints

Nodal power balance

The nodal power balance equations for each bus i are given by
∑

j∈Jgen

Ag
i j 6=0

pg
j = psh

i +∆p+i −∆p−i +
∑

j∈J ld

Al
i j 6=0

(pl
j −∆pl

j) +
∑

j∈Jbr

Abr
oi 6=0

pbr
jod
+
∑

j∈Jbr

Abr
id 6=0

pbr
jdo

(3.15)

∑

j∈Jgen

Ag
i j 6=0

qg
j = qsh

i +∆q+i −∆q−i +
∑

j∈J ld

Al
i j 6=0

(ql
j −∆ql

j) +
∑

j∈Jbr

Abr
oi 6=0

qbr
jod
+
∑

j∈Jbr

Abr
id 6=0

qbr
jdo

(3.16)

(3.17)

where, the real and reactive power shunt consumption is given by (3.18) and
(3.19)

The real and reactive power flow pbr
jod

, qbr
jod

for line j from the origin bus o to
destination bus d is given by (3.24) – (3.25) and from destination bus d to origin
bus o is given by (3.26) – (3.27)

80 3.8 Appendix: ExaGO ACOPF Forumulation

Shunt power

psh
i = gsh

i vi
2 (3.18)

qsh
i = −bsh

i vi
2 (3.19)

Generator real power output

Generator real power output pg
j relates to power deviation ∆pg

j by the following
relations

pgset
j +∆pg

j − pg
j = 0 (3.20)

pgset
j − pg*

j = 0 (3.21)

The second equation sets generator set-point pgset
j to a fixed value pg*

j . Here, pg*
j

is the set-point for the generator real power output.

3.8.4 Inequality constraints

MVA flow on branches

MVA flow limits at origin and destination buses for each line.

pbr
jod

2
+ qbr

jod

2 ≤ srateA
j

2
, j ∈ Jbr (3.22)

pbr
jdo

2
+ qbr

jdo

2 ≤ srateA
j

2
, j ∈ Jbr (3.23)

Branch flows

In polar coordinates, the real and reactive power flow pbr
jod

, qbr
jod

from bus o to bus
d on line j is given by (3.24) – (3.25)

pbr
jod
= goov2

o + vovd(god cos(θo − θd) + bod sin(θo − θd)) (3.24)

qbr
jod
= −boov2

o + vovd(−bod cos(θo − θd) + god sin(θo − θd)) (3.25)

and from bus d to bus o is given by (3.26) – (3.27)

81 3.8 Appendix: ExaGO ACOPF Forumulation

pbr
jdo
= gdd v2

d + vd vo(gdo cos(θd − θo) + bdo sin(θd − θo)) (3.26)

qbr
jdo
= −bdd v2

d + vd vo(−bdo cos(θd − θo) + gdo sin(θd − θo)) (3.27)

Automatic generation control (AGC)

ACG adds two additional constraints for each participating generator to enforce
the proportional generator redispatch participation as done in automatic gener-
ation control (AGC). These two equations are

�

α
g
j∆P −∆pg

j

��

pg
j − pgmax

j

�

≥ 0
�

∆pg
j −α

g
j∆P

��

pgmin
j − pg

j

�

≥ 0
(3.28)

Eq. 3.28 forces the generator set-point deviation to be equal to the generation
participation when the generator has head-room available pgmin

j ≤ pg
j ≤ pgmax

j .
Here, αg

j is the generator participation factor which is the proportion of the power
deficit/excess ∆P that the generator provides.

Generator bus voltage control

The generator bus voltage can be fixed when the total reactive power generation
available at the bus is within bounds. When it reaches its bounds, the voltage
varies with the generator reactive power fixed at its bound. To implement this
behavior, two inequality constraints are added for each generator bus

(vset
i − vi)(qi − qmaxi)≥ 0

(vi − vset
i)(q

mini − qi)≥ 0
(3.29)

Here, qi, qmaxi , and qmini are the generated, maximum, and minimum reactive
power at the bus, respectively.

Part III

Cycle Detection in Gasoline Markets

82

84 Forward to Part III

Forward to Part III:
Applying Computational and Data Science Methods to
Advance the Boundaries in Economics Research

This following chapter changes focus from electrical power systems to gasoline
markets, while at the same time shifting from more classical numerical analysis
to large scale data science and machine learning. The goal of the project was
straightforward: identify or construct models that can scalably and reliably de-
tect cyclical patterns in gasoline price data. The cyclical patterns in question are
Edgeworth Cycles, which are covered in detail in the following chapter. These
patterns are particularly interesting to economists because they are underpinned
by an elegant game theory model, and we see them emerging in consumer mar-
kets. Such emergence may have important economic and policy implications, as
it could indicate price collusion at the expense of the public.

Research into this phenomena, and it’s impact on the consumers, has been
impeded by the absence of a systematic definition of these price cycles as they
occur in empirical data. The research was relying on a patchwork of simple
heuristics that were parameterized by the age-old technique of “eyeballing” the
data. As we show in the paper, by using different empirical definitions of these
cycles you can in fact come to completely different economic conclusions about
the consequences of this phenomenon.

The research was conducted for the benefit of economists studying price cy-
cling phenomena, and thus the following chapter, based on our paper published
in The Journal of Law and Economics [73], is written for an audience of economics
researchers. Nonetheless, the research presented in the following chapter is un-
derpinned by a significant computational infrastructure that is capable of process-
ing large data sets, (on the order of 80GB) in an efficient manner into custom
data structures with flexible interfaces to interact with a range of 16 different
models ranging from simple parametric models to tree-based machine learning
models, to deep neural networks. The results presented in this paper flow from
1000s of node hours on a state-of-the-art GPU cluster in order to develop the
models and conduct a thorough uncertainty quantification process for model ac-
curacy. Doing so also involved implementing a custom optimization engine into
the framework that is able to handle the specific interfacing needs of this project
and the poorly behaved non-convex discrete functions. We were happy with the
research outcomes, as the proposed computational models can scalably identify
price cycles with an accuracy of 80 to 99% depending on the data set.

85 Forward to Part III

The code-base for this project grew to over 30,000 lines of code, before be-
ing trimmed back into a compact and easy to use package that is now available
on Github to empower researchers from economics to leverage computation to
achieve their research goals. While the presentation style of the following chap-
ter is different from that which we are familiar with in computational science,
I present it here as a model example of how interdisciplinary collaboration be-
tween computational scientists and domain experts can significantly push the
frontiers of research in other disciplines.

https://github.com/tabholt/detecting_edgeworth_cycles

Chapter 4

Computational techniques to scalably
identify pricing cycles in retail gasoline
markets

4.1 Introduction

Retail gasoline prices are known to follow cyclical patterns in many countries [30].
The patterns persist even after controlling for wholesale and crude-oil prices. Be-
cause these cycles are so regular and conspicuous, and because price increases
tend to be larger than decreases, observers suspect anti-competitive business
practices. The occasional discovery of price-fixing cases supports this view [40,
55, 138].1

These asymmetric movements are called Edgeworth cycles and have been
studied extensively.2 In particular, scholars and antitrust practitioners have in-
vestigated whether the presence of cycles is associated with higher prices and
markups. [43, 40, 29] find that asymmetry is correlated with higher margins,
price-fixing collusion, and concentrated market structure, respectively. How-
ever, [92, 150, 103] show prices and margins are lower in markets with asymmet-
ric price cycles. Given the diversity of countries and regions in these studies (Aus-
tralia, Canada, the US, and several countries in Europe), the cycle-competition

1Recent studies on algorithmic collusion suggest interactions between self-learning algo-
rithms could lead to collusive equilibria with such cycles [82]; the use of “repricing algorithms”
by many sellers on Amazon has made these phenomena prevalent in e-commerce as well [100].

2Maskin and Tirole (1988) [97] coined the term after Edgeworth’s (1925) hypothetical ex-
ample [49]. It became a popular topic for empirical research since Castanias and Johnson
(1993) [35]. We explain its theoretical background in section 2.

86

87 4.1 Introduction

relationship could be intrinsically heterogeneous across markets.
But another, perhaps more fundamental, problem is measurement: the lack

of a formal definition or a reliable method to detect cycles in large datasets. Be-
cause theory provides only a loose characterization of Edgeworth cycles, empir-
ical researchers have to rely on visual inspections and summary statistics based
on a single quantifiable characteristic: asymmetry. Meanwhile, the phenomena’s
most basic property, cyclicality, is almost completely absent from the existing op-
erational definitions. Even though asymmetry may be the most salient feature
of—and hence a necessary condition for—Edgeworth cycles, it is not a sufficient
condition. Empirical findings are only as good as the measures they employ; the
incompleteness of detection methods could affect the reliability of “facts” about
competition and price cycles. Now that the governments of many countries and
regions are making large-scale price data publicly available,3 developing scalable
detection methods represents an important practical challenge for economists
and policymakers.4

This work proposes a systematic approach to detecting Edgeworth cycles us-
ing scalable computational techniques and machine learning models. We formal-
ize four existing methods as simple parametric models: (1) the “positive runs
vs. negative runs” method of [35], (2) the “mean increase vs. mean decrease”
method of [47], (3) the “negative median change” method of [92], and (4) the
“many big price increases” method of [30]. We then propose six new meth-
ods based on spectral analysis and nonparametric/machine-learning techniques:
(5) Fourier transform, (6) the Lomb-Scargle periodogram, (7) cubic splines, (8)
long short-term memory (LSTM), (9) an “ensemble” (aggregation) of Methods
1-7 within a random-forests framework, and (10) an ensemble of Methods 1-8
within an extended LSTM.

To evaluate the performance of each method, we collect data on retail and
wholesale gasoline prices in two regions of Australia, Western Australia (WA)
and New South Wales (NSW), as well as the entirety of Germany. These datasets

3The governments of Australia, Germany, and other countries have made detailed price data
publicly available to inform consumers and encourage further scrutiny. The Australian Consumer
and Competition Commission has a team dedicated to monitoring gasoline prices and regularly
publishes reports. See https://www.accc.gov.au/consumers/petrol-diesel-lpg/about-fuel-prices.
The Bundeskartellamt does the same in Germany.

4Systematic methods to detect price cycles are useful for researchers who do not want to
study cycles as well. Chandra and Tappata (2011) [36] examine the role of consumer search
in generating temporal dispersion in the US retail gasoline prices. However, they could not
completely reject Edgeworth cycles as an alternative explanation (see their page 697 and footnote
46) because they did not have a scalable method to prove the absence of cycles in their large
dataset of more than 25,000 stations. Our procedure would have allowed them to provide more
concrete evidence.

88 4.1 Introduction

cover the universe of gasoline stations in these regions/countries, record each
station’s retail price at a daily (or higher) frequency, and are made publicly avail-
able by legal mandates.5 Given the lack of a clear theoretical definition, we con-
struct a benchmark “ground truth” based on human recognition of price cycles as
follows. We reorganize the raw data as panel data of the daily margins (= retail
minus wholesale prices) of gasoline stations and group them into calendar quar-
ters, so that a station-quarter (i.e., a set of 90 consecutive days of retail-margin
observations for each station) becomes the effective unit of observation. We
employ eight research assistants (RAs) to manually classify each station-quarter
as either “cycling”, “maybe cycling”, or “not cycling”. We then define a binary
indicator variable that equals 1 if an observation is labeled as “cycling” by all
of the RAs (the majority of observations are labeled by three RAs), and 0 oth-
erwise, thereby preparing a conservative target for automatic cycle detection.
Note that we look only for cyclicality and do not impose asymmetry or other
criteria in the manual-classification stage. The reason is that asymmetry is—
unlike cyclicality—amenable to clear mathematical definitions and can easily be
checked at a later stage. Hence, we prioritize the detection of cyclicality, thereby
alleviating the cognitive burden on RAs.

At this point, one might wonder whether human recognition of cycles is an ap-
propriate benchmark. We regard it as the best feasible option (the “second best”
) given the lack of clear theoretical definitions (the “first best”). Manual classifi-
cation by a team of RAs represents a best-effort practice in the literature and pro-
vides a relevant—if not perfect—benchmark in the following sense. First, most
existing studies employ some rule-of-thumb definitions with calibrated thresh-
olds, which are ultimately based on the researchers’ eyeballing and judgment,
the details of which are rarely documented. We make such procedures more
explicit, systematic, and transparent, so that the overall scheme becomes more
reproducible. Second, human recognition is central to the prominence of Edge-
worth cycles as an antitrust topic. Despite the lack of universal definitions, the
phenomena have become a perennial policy issue in many countries precisely be-
cause consumers and politicians can easily recognize cyclical patterns when they
see them. In this regard, human recognition is the “ground truth” that even-
tually determines the phenomena’s relevance to public policy. We interpret our
RAs’ responses as a proxy for the general public’s responses to various patterns
in gasoline prices.

We report three sets of results. First, when applied to the two Australian

5See [31] for a guide to the Australian data. [70, 96, 15] among others, study the German
data.

89 4.1 Introduction

Figure 4.1: Examples of Cycling and Non-cycling Station-Quarter Observations

datasets, most of the methods—both existing and new—achieve high accuracy
levels near or above 90% and 80%, respectively, because price cycles are clearly
asymmetric and exhibit regular periodicity (hence, are easy to detect) in these
regions. By contrast, German cycles are more subtle and diverse, defying many
methods. All existing methods except Method 4 fail to detect cycles, even though
as much as 40% of the sample is unanimously labeled as “cycling” by three RAs
(see Figure 4.1 for examples). This failure is not an artifact of sample selection or
human error because our interview with a German industry expert suggests Edge-
worth cycles are known to exist. They are (in fact) called the “price parachute”
(or Preis Fallschirm) phenomena, and are considered to be part of common pric-
ing strategies among practitioners. The Bundeskartellamt (2011) [26] also con-
firms the existence of both weekly and daily cycles. Methods 7–10 attain 71%–
80% accuracy even in this challenging environment.

Second, we assess the cost effectiveness of each method by using only 0.1% ,
1%, 5%, 10%, · · · , 80% of our manually labeled subsamples as “training” data.
Results suggest simpler models (Methods 1–7) are extremely “cheap” to train, as
they quickly approach their respective maximal accuracy with only a dozen obser-
vations. The nonparametric models (Methods 8–10) need more data to achieve
near-maximal performance, but their data requirement is sufficiently small for
practical purposes. Only a few hundred observations prove sufficient for even
the most complex model (Method 10). The economic cost of manually classi-
fying a few hundred observations is in the order of tens of RA hours, or a few

90 4.1 Introduction

hundred US dollars at the current hourly wage of US$13.50 for undergraduate
RA work at Yale University. Potential cost savings are sizable, as manually label-
ing the entire German dataset in 2014–2020 would require 4,800 RA hours, or
US$64,800. Thus, our approach is economical and suitable for researchers and
governments with limited resources.

Third, we investigate whether and how gasoline stations’ markups are corre-
lated with the presence of cycles. In WA and NSW, the average margins in (manu-
ally classified) “cycling” station-quarters are statistically significantly higher than
in “non-cycling” ones. The relationship is reversed in Germany, where the mar-
gins in “cycling” observations are lower than in “non-cycling” ones. Hence, in
general, the presence of cycles could be either positively or negatively corre-
lated with markups. All of the automatic detection methods lead to the correct
finding (i.e., positive correlations) in WA, but some of them fail in NSW. Fur-
thermore, Methods 1–6 either fail to detect cycles or lead to false conclusions
in Germany (i.e., find statistically significant positive correlations). This finding
emerges under both “cyclicality only” and “cyclicality with asymmetry” defini-
tions of Edgeworth cycles. Thus, whether researchers discover a positive, nega-
tive, or no statistical relationship between markups and cycles—a piece of highly
policy-relevant empirical evidence—depends on the seemingly innocuous choice
of operational definitions.

4.1.1 Related Literature, Contributions, and Replication Package.

Besides the contributions specific to the phenomena, our broader contribution is
three-fold: (i) introducing certain “heavy-duty” machine-learning models and
methods (a class of deep-neural-network architectures) to the empirical eco-
nomics literature, (ii) precisely explaining the mechanisms inside these “black
boxes”, and (iii) demonstrating their usefulness with a concrete, public-policy-
relevant example.

For the purpose of lowering the “entry barriers” for those empirical economists
who are considering the use of advanced machine-learning tools, we have made
the computer code (in Python), the dataset, and detailed documentations (in-
cluding the read-me file and the Online Appendix) publicly available as a repli-
cation package on Github [72].

https://github.com/tabholt/detecting_edgeworth_cycles.git

91 4.2 Theoretical Background

4.2 Theoretical Background

Even though the primary goal of this article is empirical, some conceptual an-
choring clarifies the target of measurement.

4.2.1 What Are Edgeworth Cycles?

Maskin and Tirole (1988) [97] offer the following verbal description: “In the
Edgeworth cycle story, firms undercut each other successively to increase their
market share (price war phase) until the war becomes too costly, at which point
some firm increases its price. The other firms then follow suit (relenting phase),
after which price cutting begins again. The market price thus evolves in cy-
cles” (pages 571–572). This description and its micro foundation—as a class
of Markov perfect equilibria (MPE) in an alternating-move dynamic duopoly
game—suggest four important characteristics: cyclicality, asymmetry, stochas-
ticity, and strategicness.

Property 1: Cyclicality. The price should exhibit cyclicality, as the terminology
suggests. However, this property is not so obvious in Edgeworth’s (1925) [49]
original conjecture. His writing focuses on the indeterminacy of static equi-
librium in a price-setting game between capacity-constrained duopolists. Even
though he mentions a price path that resembles Maskin and Tirole’s description
as an example, he uses the word “cycle” only once. More generally, he conjec-
tures that “there will be an indeterminate tract through which the index of value
will oscillate, or rather will vibrate irregularly for an indefinite length of time”
(page 118). Thus, Edgeworth’s original theory features not so much cyclicality
as “perpetual motion” (page 121).

Nevertheless, we have chosen to focus on cyclicality in this paper. Theoreti-
cally, Maskin and Tirole’s equilibrium strategies (their equation 23) explicitly fea-
ture price cycles. Empirically, it is this repetitive pattern that draws consumers’
and politicians’ attention; “ perpetual motion” alone would not raise antitrust
concerns.

Property 2: Asymmetry. The second characteristic is the asymmetry between
relatively few large price increases and many small price decreases. Edgeworth
(1925) [49] does not emphasize this property either, but it plays an important
role in the Maskin-Tirole formalization and the subsequent empirical literature.

92 4.2 Theoretical Background

Property 3: Stochasticity. In Maskin and Tirole’s Edgeworth-cycle MPE, big
price increases are supposed to happen stochastically, not deterministically. The
reason is that if one firm always “relents” whenever the low price is reached,
the other firm will always wait and free-ride, which in turn would make the first
firm more cautious about the timing of price increases. Thus, the frequency of
cycles must be stochastic—with varying lengths of time spent at the low price—in
equilibrium.6 We do not impose stochastic frequencies as a necessary condition in
our empirical procedures, but some of our methods are designed to accommodate
cycles with varying frequencies (Methods 7 and 8).

Property 4: Strategicness. The cyclical patterns are supposed to emerge from
dynamic strategic interactions between oligopolistic firms. If similar patterns
are observed under monopoly, their underlying mechanism must be different
from that of Edgeworth cycles.7 Thus, whether market structure is monopolistic
or oligopolistic is a theoretically important distinction. Empirically, however,
market definition is rarely clear-cut in practice. Even when a gasoline station
is located in a geographically isolated place, pricing decisions at large chains
tend to be centralized at the city, region, or country level. Market structure at
these aggregate levels is oligopolistic in all of our datasets. Consequently, we do
not impose any geographical boundaries a priori. We simply analyze data at the
individual station level.8 Our idea is that once the station-level characterization is
successfully completed, one can always compare cyclicality across stations in the
same market (defined geographically or otherwise) and look for synchronicity—
whenever such analysis becomes necessary.

6This theoretical property seems largely overlooked in the empirical literature, presumably
because the first two properties make the phenomena sufficiently interesting and policy-relevant.

7Alternative explanations include consumers with heterogeneous search costs, intertemporal
price discrimination, and “dynamic pricing” algorithms (broadly defined as any pricing strategy
and its implementation(s) that tries to exploit consumer heterogeneity and time-varying price-
elasticity of demand).

8This operational decision is not without its own risks. For example, if the grid of relevant
prices were very coarse and two firms take turns to change prices, we might not be able to observe
clear cycles at any specific station’s time-series data even if such cycles exist at the aggregate
level. Fortunately, gasoline prices reside on a relatively fine grid with the minimum interval of
the Australian or Euro cent. Moreover, Maskin and Tirole’s Edgeworth-cycle MPE requires a fine
grid with sufficiently small intervals (denoted by k in their model). Therefore, we believe the
risk of missing aggregate cycles is low.

93 4.2 Theoretical Background

4.2.2 Are Edgeworth Cycles Competitive or Collusive?

Whether Edgeworth cycles represent collusion is a subtle issue on which we do
not take a stand. Several reasons contribute to its subtlety and our cautious
attitude.

First, the theoretical literature seems agnostic about the distinction between
competitive and collusive behaviors in the current context. On the one hand,
Edgeworth’s (1925) [49] narrative lacks any hint of cooperative actions or inten-
tions. On the other hand, Maskin and Tirole (1988) [97] seem open to collusive
interpretations: “Several of the results of this paper underscore the relatively
high profits that firms can earn when the discount factor is near 1. Thus our
model can be viewed as a theory of tacit collusion” (page 592). In the more
recent literature, however, the term “tacit collusion” is usually associated with
collusive equilibria in repeated-games models.9 The latter rely on the concepts
of monitoring, punishment, and history-dependent strategies as their underlying
mechanism, none of which are prominently featured in Edgeworth cycles. Thus,
even though Maskin and Tirole’s own remarks suggest the possibility of collu-
sive interpretations, we feel inclined to regard their Edgeworth-cycle MPE as a
reflection of competitive interaction between forward-looking oligopolists.

Second, in terms of antitrust law, explicit communications of a cooperative
nature are the single most important act that constitutes criminal price-fixing.
That is, tacit collusion is not illegal as long as it truly lacks explicit communi-
cation. Notwithstanding this legal distinction, most of the theoretical literature
does not discriminate between tacit and explicit collusion because the process
through which firms reach collusive agreements is usually not modeled. Hence,
an important gap lies between economic theory and legal enforcement, which
complicates the interpretation of Edgeworth cycles in empirical research.

Third, partly reflecting this unresolved theory-enforcement divide, the em-
pirical literature has documented many different instances of asymmetric price
cycles, both with and without legally established evidence of criminal price-fixing.
Accordingly, interpretations of observed cycles vary across papers on a case-by-
case basis. The only common thread that unites the large empirical literature is
the data patterns with clear cyclicality and asymmetry.

For these reasons, we do not (necessarily) interpret Edgeworth cycles as ev-
idence of collusion. Consequently, we do not aim or claim to detect “collusion.”
Reliable methods to detect price cycles would nevertheless be useful for detecting

9Tirole and his coauthors exclusively focus on the repeated-games theory when they summa-
rize the “economics of tacit collusion” for the European competition authority. See Ivaldi, Jullien,
Rey, Seabright, and Tirole (2003) [76].

94 4.3 Data and Manual Classification

cycle-based collusion.

4.3 Data and Manual Classification

Retail-price data are publicly available for the universe of individual gasoline
stations in WA, NSW, and Germany. We combine them with wholesale-price data,
based on the region of each station (Australia) or the location of the nearest
refinery (Germany). We compute station-level daily profit margins by subtracting
the relevant wholesale price from the retail price,

pi,d ≡ pR
i,d − pW

i,d , (4.1)

where pR
i,d and pW

i,d are retail and wholesale prices at station i on day d, and
simply refer to this markup measure pi,d as “price” in the following. We organize
these daily prices by calendar quarter, so that station-quarter (i.e., a sequence of
daily prices over 90 days for each station) becomes the unit of observation for
cycle detection.

4.3.1 Data Sources and Preparation

Retail Prices. We use three datasets on retail gasoline prices that are publicly
available and of high quality. FuelWatch and FuelCheck are legislated retail-fuel-
price platforms operated by the state governments of WA and NSW, respectively.
Their websites display real-time information on petrol prices, and the complete
datasets can be downloaded. The Market Transparency Unit for Fuels of the
Bundeskartellamt publishes similar data for every German gas station in minute
intervals.

Sampling Frequencies. The raw data from WA contain daily retail prices for
each station, which is the most granular level in this region because its law man-
dates each station must commit to a fixed price level for 24 hours. By contrast, the
stations in NSW and Germany can change prices at any point in time, which we
aggregate into daily prices by taking either end-of-day values (NSW) or intra-day
averages (Germany). Intra-day changes are relatively rare in NSW, and hence,
end-of-day values are representative of the actual transaction prices. In Ger-
many, many stations change prices multiple times during the day, so we sample
24 hourly prices and take their average for each station-day (see section 3.3 for
further details on Germany).

https://www.fuelwatch.wa.gov.au
https://www.fuelcheck.nsw.gov.au
https://www.bundeskartellamt.de/EN/Economicsectors/MineralOil/MTU-Fuels/mtufuels_node.html

95 4.3 Data and Manual Classification

Wholesale Prices. The Australian Institute of Petroleum publishes average re-
gional wholesale prices. The Argus Media group’s OMR Oil Market Report collects
daily regional wholesale prices and offers the database on a commercial basis.10

4.3.2 Manual-Classification Procedures

Whereas most existing studies treat the manual-verification process as an infor-
mal preparatory step (to be embodied by the analyst’s eventual choice of methods
and calibration of threshold parameters), we make it as systematic as possible.
Our goal is to develop and compare the performance of multiple methods, and
such “horse racing” requires a common benchmark.

To establish a “ground truth” based on human recognition of cycles, we em-
ployed a team of eight RAs to manually classify station-quarter observations.11

Each station i in quarter t is classified as either “cycling,” “maybe cycling,” or “
not cycling.” The total number of manually labeled observations is 24,569 (WA),
9,693 (NSW), and 35,685 (Germany). The RAs’ total working hours are approx-
imately 260 (WA), 210 (NSW), and 480 (Germany). The manual labeling of the
datasets proceeded in three stages.

WA. First, we labeled all station-quarters in the WA data with two RAs as a
pilot project between July 2019 and June 2020. The first RA (a PhD student
in economics) laid the ground work with approximately half of the WA data
in close communication with one of the coauthors (Igami). The second RA (a
senior undergraduate student majoring in economics) followed these examples
to label the rest. Then, the first RA carefully double-checked all labels to maintain
consistency. As a result, each station-quarter (i, t) in WA has one label based on
the consensus of the two RAs.

NSW. Second, the NSW dataset is smaller but contains more ambiguous cases.
Hence, we took a more organized/computerized approach by building a cloud-
based computational platform to streamline the labeling process. The same coau-
thor manually labeled a random sample of 100 station-quarters in December
2020, which is used for generating automated training sessions for three new
undergraduate RAs (a senior and a junior majoring in economics, and a junior

10Regional wholesale prices are the most detailed publicly available information on the op-
erating costs of retail gasoline stations (to our knowledge). We do not observe station-specific
costs.

11All of them are graduate or undergraduate students majoring in economics, mathematics,
and statistics at Yale University.

https://www.aip.com.au

96 4.3 Data and Manual Classification

mathematics major). In the automated training sessions, each of the three RAs
was asked to classify random subsamples of the labeled observations, and to re-
peat the labeling practice until their judgments agreed with the coauthor’s at
least 80% of the time. Subsequently, each of the RAs independently labeled the
entire dataset in February–April 2021. Thus, each (i, t) in NSW carries three
labels.

Germany. Third, the same team of three RAs proceeded to label a 5% random
sample of the German dataset in April–June 2021. In turn, these labels served as
a source of “training sample” for yet another team of three RAs (two juniors ma-
joring in economics and a freshman in statistics and data science). They labeled
an additional 5% random sample in June 2021. In total, 10% of the German
data is triple-labeled.

Risk of “Collusion” Is Low. In the computerized procedures for NSW and
Germany, each RA is given one randomly selected observation for labeling at a
time. We believe the risk of “collusion” among RAs is low because copying each
other’s answers would require (i) keeping records of random sequences of thou-
sands of observations with their station-quarter identifiers, (ii) exchanging these
long records, and (iii) matching each other’s answers across different random
sequences. Such a conspiracy is conceivable in principle but prohibitively time-
consuming in practice. Honestly labeling all observations just once would be
much easier.

Summary Statistics. Table 4.1 reports summary statistics. Based on these
manual-classification results, we define c yclei,t as a binary variable indicating
the presence of clear cycles. In WA, each observation is labeled exactly once,
based on the consensus of two RAs. We set c yclei,t = 1 if station-quarter (i, t)
is labeled as “cycling,” and 0 otherwise. In the NSW and German data, which
contain more ambiguous patterns, we assigned three RAs to label each observa-
tion individually, and hence each (i, t) is triple-labeled. We set c yclei,t = 1 for
observations with triple “cycling” labels (i.e., based on three RAs’ unanimous
decisions), and 0 otherwise. Thus, we prepare the target for automatic detection
in a relatively conservative manner.

97 4.3 Data and Manual Classification

Table 4.1: Summary Statistics

(1) (2) (3)
Dataset Western Australia New South Wales Germany
Sample period (yyyy/mm/dd) 2001/1− 2020/6 2016/8− 2020/7 2014/6− 2020/1
Number of gasoline stations 821 1,226 14, 780
Number of calendar quarters 77 15 26
Number of station-quarters 25,463 9,693 353, 086
Of which:
Labeled as “cycling” by 3 RAs 0 (0.0%) 6, 878 (71.0%) 14, 116 (39.6%)
Labeled as “cycling” by 2 RAs 0 (0.0%) 906 (9.4%) 7, 173 (20.1%)
Labeled as “cycling” by 1 RA 15,007 (61.1%) 759 (7.8%) 6, 280 (17.6%)
Not labeled as “cycling” by any RA 9,562 (38.9%) 1,150 (11.9%) 8, 116 (22.7%)
Total manually labeled 24,569 (100.0%) 9,693 (100.0%) 35, 685 (100.0%)
Not manually labeled 894 0 317, 401

Note: Each “manually labeled” station-quarter observation in the WA data is single-labeled as either “cycling,”
“maybe cycling,” or “not cycling,” whereas the NSW and German data are triple-labeled.

4.3.3 Rationale for Daily Frequency and Quarterly Window

Several considerations led us to use the daily sampling frequency and the quar-
terly time window.

First, we prioritize setting a common time frame for all three datasets. Our
goal is to compare the performance of various methods in multiple different
datasets under the same protocol; a detailed case study of any single region/country
is not our main objective. The daily frequency is the finest granularity that can
be commonly used across all datasets because retail prices in WA are fixed for 24
hours due to regulation (see section 3.1). It is also the finest granularity used in
most other studies (however, see below for our discussion of the German data).

Second, cyclicality implies repetition, the identification of which requires a
sufficiently long time window. The existing studies on WA and NSW report cy-
cles with frequencies of one to several weeks, whereas those on Germany report
both weekly and intra-day cycles. The 12–13 weeks of a calendar quarter permit
repeated observations of relatively long (e.g., monthly) cycles.

Third, shorter-than-daily (e.g., hourly) frequencies would be too “costly” for
our research design, as systematic manual verification is its essential component.
Eyeballing and labeling a 10% subsample of the entire German dataset at the
hourly (instead of daily) frequency would require 24 times more labor: 480 hours
× 24 = 11,520 hours. At the hourly wage of $13.50, the total cost would be
$155,520.

Fourth, we avoid longer-than-quarterly time windows for two reasons. One is

98 4.3 Data and Manual Classification

that macroeconomic factors (such as business cycles, financial crises, and geopo-
litical upheavals in the world crude oil market) tend to feature prominently in a
time horizon longer than 90 days, which increases noise. Another reason is that
longer windows tend to complicate classification, as cycles might appear in only
one part of the graph but not others.

For these reasons, the daily frequency and the quarterly horizon are suitable
for our purposes. Note that our choice is driven by the comparative research
design, practical considerations, and budget constraints, not conceptual limita-
tions. All of the methods can be applied to time-series data of any frequency and
length in principle.

On Intra-Day Cycles in the German Data. We are aware of multiple studies
that document intra-day price cycles in Germany. The first investigation into the
German retail fuel markets by Bundeskartellamt (2011) [26] studies data from
four major cities (Hamburg, Leipzig, Cologne, and Munich) in January 2007–
June 2010 and highlights three patterns. First, weekly cycles exist in both diesel
and gasoline prices, with the highest prices on Fridays and the lowest prices on
Sundays and Mondays. Second, intra-day cycles exist as well, with many small
price reductions during the day and fewer, larger increases in the evening. Third,
stations operated by Aral (BP) and Shell typically lead those price increases, in
which one follows the other within three hours in 90% of the cases, followed by
three other major chains.

Given the well-documented presence of intra-day cycles, one might wonder
whether our focus on the daily data and multi-day cycles leads to an important
omission. Our answer is “yes,” but this issue is orthogonal to the main purpose
of this research.

By aggregating the underlying minute-by-minute data to 24-hour averages,
we lose these interesting short-run movements. Our choice of the daily frequency
is driven by the comparative design of our research, which prioritizes the sys-
tematic comparisons across the three datasets and (costly) manual verification.
Thus, researchers who wish to conduct an in-depth case study of the German
fuel markets might want to analyze intra-day patterns as well.

Nevertheless, the presence of shorter cycles does not preclude that of longer
cycles; as [26] confirms the existence of both (see above). One should also note
that the intra-day cycles seem to follow a specific time schedule in which prices
(i) rapidly increase at night between 20:00 and 24:00 hours and (ii) gradually
decrease from around 6:00 in the following morning [124]. Such a deterministic
pattern is more consistent with intertemporal price discrimination than Maskin

99 4.4 Models and Methods for Automatic Detection

and Tirole’s Edgeworth cycles [94]. Hence, while interesting, the intra-day cycles
in Germany are outside the scope of this paper.

4.4 Models and Methods for Automatic Detection

This section explains (i) how we formalize the four existing methods, (ii) the
six new methods that we propose, and (iii) the way we optimize the parameter
values of each model.

4.4.1 Existing Methods Mostly Focus on Asymmetry

The existing methods in the literature almost exclusively focus on asymmetry.
We formalize four of them as simple parametric models.

Method 1: Positive Runs vs. Negative Runs (“ PRNR”).

Castanias and Johnson (1993) [35] compare the lengths of positive and negative
changes. We formalize this idea by classifying each station-quarter as cycling
(c yclei,t = 1) if and only if

mean
�

len
�

run+
��

< mean
�

len
�

run−
��

+ θ PRNR, (4.2)

where len (run+) and len (run−) denote the lengths of consecutive (multi-day)
price increases/zero changes and decreases within quarter t, respectively. The
means are taken over these “runs.” θ PRNR ≈ 0 is a scalar threshold, which we
treat as a parameter.12

Method 2: Mean Increase vs. Mean Decrease (“ MIMD”).

Eckert (2002) [47] compares the magnitude of the mean increase and the mean
decrease. Formally, station-quarter (i, t) is cycling if and only if

�

�

�meand∈t

�

∆p+i,d
�

�

�

�>
�

�

�meand∈t

�

∆p−i,d
�

�

�

�+ θM I M D, (4.3)

where∆p+i,d and∆p−i,d denote positive and negative daily price changes at station
i (between days d and d − 1), respectively, and θM I M D ≈ 0 is a scalar threshold.

12Eckert (2002) [47] proposes a more comprehensive version of this idea, which compares
the distributions of positive and negative runs across lengths, by using the Kolmogorov-Smirnov
test.

100 4.4 Models and Methods for Automatic Detection

That is, a cycle is detected when the average price increase is greater than the
average price decrease.13

Method 3: Negative Median Change (“ NMC”).

Lewis (2009) classifies c yclei,t = 1 if and only if

mediand∈t

�

∆pi,d

�

< θN MC , (4.4)

where ∆pi,d denotes a price change between days d and d − 1, and θN MC ≈ 0
is a scalar threshold. In other words, the significantly negative median change is
taken as evidence of price cycles.14

Method 4: Many Big Price Increases (“ MBPI”).

Byrne and de Roos (2019) [30] identify price cycles with the condition

∑

d∈t

I
�

∆pi,d > θ
MBPI
1

	

≥ θMBPI
2 , (4.5)

where I {·} is an indicator function that equals 1 if the condition inside the bracket
is satisfied, and 0 otherwise. θMBPI

1 and θMBPI
2 are thresholds for “big” and “

many” price increases, respectively. They set θMBPI
1 = 6 (Australian cents/liter)

and θMBPI
2 = 3.75 (per quarter) in studying the WA data.15 Thus, many instances

of big price increases are taken as evidence of price cycles.

Other Existing Methods. These methods are among the most cited in the liter-
ature, but our listing is not exhaustive. Other influential papers use a variety of
methods. Let us briefly discuss three of them. First, Noel (2007) [102] proposes
a Markov switching model with three unobserved states, two of which corre-
spond to positive and negative runs, respectively, and the third corresponds to a
non-cyclical regime.16 Second, Deltas (2008) [43] and many others regress re-

13Eckert (2003) [47] uses this method as well. Clark and Houde (2014) [40] propose its
variant: the ratio of the median price increase to the median price decrease, with 2 as a threshold
to define cyclical subsamples.

14Many subsequent studies use this method [140, 46, 91, 93, 48, 150, 30]. As a threshold
for discretization, [93] uses −0.2 US cents per gallon, whereas [46, 150] use −0.5 US cents per
gallon.

15Lewis (2009) [92] also uses a similar method, with θMBPI
1 = 4 (US cents/gallon) in a single

day or two consecutive days.
16Because these states are modeled as unobserved objects, using this approach as a definition

is not straightforward. Zimmerman et al. (2013) [150] propose another definition that shares

101 4.4 Models and Methods for Automatic Detection

tail price on wholesale price to describe asymmetric responses. Third, Foros and
Steen (2013) [55] regress price on days-of-week dummies to describe weekly cy-
cles. These papers offer valuable insights, and their methods are suitable in their
respective contexts. However, they are not specifically designed for defining or
detecting cycles.

4.4.2 Our Proposals to Capture Cyclicality

We propose six new methods. Methods 5–6 are based on spectral analysis, and
hence are attractive as formal mathematical definitions of regular cycles. By
contrast, Methods 7–8 build on nonparametric regressions and machine-learning
techniques, respectively, and are more suitable for capturing nuanced patterns
and replicating human recognition of cycles. Methods 9–10 combine some or all
of the previous methods.

This subsection is rather technical because we are introducing data-analysis
techniques from outside the usual toolbox of empirical economists. If the reader
is not interested in methodological details, a quick look at the first and the last
few sentences of each method would be sufficient for an overview. If, instead, the
reader wants to exactly follow our procedures, Appendix A.1 (and the replication
package) provides additional details.

Method 5: Fourier Transform (“FT”).

Fourier analysis is a mathematical method for detecting and characterizing peri-
odicity in time-series data. When a continuous function of time g (x) is sampled
at regular time intervals with spacing∆x , the sample analog of the Fourier power
spectrum (or “ periodogram”) is

P (f)≡
1
N

�

�

�

�

�

N
∑

n=1

gne−2πi f xn

�

�

�

�

�

2

, (4.6)

where f is frequency, N is the sample size, gn ≡ g (n∆x), i ≡
p
−1 is the imag-

inary unit (not to be confused with our gas-station index), and xn is the time

the spirit of Markov switching regressions: (i) Compare the probability that a price increase (de-
crease) is observed after two consecutive price increases (decreases); and (ii) if the conditional
probability of a third consecutive increase is smaller than that of a third decrease, take it as an
indicator of cycles. We regard their approach as a variant of Castanias and Johnson’s method. Fi-
nally, Noel (2018) [104] defines the relenting and undercutting phases by consecutive days with
cumulative increases and decreases of at least 3 Australian cents per liter, respectively, which is
also close to Castanias and Johnson’s (1993) [35] idea.

102 4.4 Models and Methods for Automatic Detection

stamp of the n-th observation. It is a positive, real-valued function that quanti-
fies the contribution of each frequency f to the time-series data (gn)

N
n=1.17

We focus on the highest point of P (f) and detect cycles if and only if

max
f

Pi,t (f)> θ
F T
max, (4.7)

where Pi,t (f) is the periodogram (4.6) of station-quarter (i, t), and θ F T
max > 0 is a

scalar threshold parameter.

Method 6: Lomb-Scargle (“LS”) Periodogram.

The LS periodogram (Lomb 1976, Scargle 1982) characterizes periodicity in un-
evenly sampled time series.18 It has been extensively used in astrophysics be-
cause astronomical observations are subject to weather conditions and diurnal,
lunar, or seasonal cycles. Formally, it is a generalized version of the classical
periodogram (4.6):19

P LS (f) =
1
2

(
�∑

n gn cos (2π f [xn −τ])
�2

∑

n cos2 (2π f [xn −τ])
+

�∑

n gn sin (2π f [xn −τ])
�2

∑

n sin2 (2π f [xn −τ])

)

,

(4.8)
where τ is specified for each frequency f as

τ=
1

4π f
tan−1

�
∑

n sin (4π f xn)
∑

n cos (4π f xn)

�

. (4.9)

We propose the following threshold condition to detect cycles:

max
f

P LS
i,t (f)> θ

LS
max, (4.10)

where θ LS
max > 0 is a scalar threshold parameter.

17Appendix A.1 (Method 5) introduces FT to readers who are not familiar with Fourier anal-
ysis.

18Our data are evenly sampled at the daily frequency and can be analyzed by FT alone, but
the LS periodogram offers additional benefits. One is conceptual: it is interpretable as a kind of
nonparametric regression—see Appendix A.1 (Method 6). Another is practical: its off-the-shelf
computational implementation can offer more granular periodograms.

19Appendix A.1 (Method 6) explains how this expression relates to FT.

103 4.4 Models and Methods for Automatic Detection

Method 7: Cubic Splines (“CS”).

This method captures cycles’ frequency in a less structured manner than FT and
LS by using cubic splines (a spline is a piecewise polynomial function). That is,
we smooth the discrete (daily) time series by interpolating it with a commonly
used continuous function.20 For each (i, t), we fit CS to its demeaned price series,
pi,d ≡ pi,d − meand∈t

�

pi,d

�

, and count the number of times the fitted function
CS i,t (d) crosses the d -axis (i.e., equals 0). Operationally, we count the number
of real roots and detect cycles with the condition,

#roots
�

CS i,t (d)
�

> θ CS
root , (4.11)

where θ CS
root > 0 is a scalar parameter. Thus, any frequent oscillations (not limited

to the sinusoidal ones as in FT or LS) become a sign of cycles.

Method 8: Long Short-Term Memory (“LSTM”).

Recurrent neural networks with LSTM (Hochreiter and Schmidhuber 1997) [71]
are a class of artificial neural network (ANN) models for sequential data. LSTM
networks have become a “de-facto standard” for recognizing and predicting com-
plicated patterns in many applications, including speech, handwriting, language,
and polyphonic music. Because LSTM is relatively new, we explain this method
in greater detail.

Econometrically speaking, LSTM is a nonparametric model for time-series
analysis. It is a recursive dynamic model whose behavior centers on a collec-
tion of pairs of Bl × 1 vector-valued latent state variables, sl

d and cl
d , where

l = 1, 2, · · · , L is an index of layers. As this notation suggests, we use a multi-layer
architecture (a.k.a. “deep” neural networks) to enhance the model’s flexibility.21

Bl represents the number of blocks per layer, which are analogous to “neurons”
(basic computing units) in other ANN models. sl

d is an output state that repre-
sents the current, “short-term” state, whereas cl

d is called a cell state and retains
“long-term memory.” The latter is designed to capture lagged dependence be-
tween the state and input variables, thereby playing the role of a memory cell in
electronic computers.

20We use a cubic Hermite interpolater, which is a spline where each piece is a third-degree
polynomial of Hermite form. Appendix A.1 (Method 7) explains the details of this functional
form.

21Except for the multi-layer design, our specification mostly follows Greff, Srivastava, Koutník,
Steunebrink, and Schmidhuber (2017) [60], in which one of the original proponents of LSTM
and his team compare many of its variants and show that their simple “vanilla” specification
outperforms others.

104 4.4 Models and Methods for Automatic Detection

These state variables evolve according to the following Markov process:

sl
d = tanh

�

cl
d

�

︸ ︷︷ ︸

“output”

◦Λ
�

ωl
1 +ω

l
2∆pd +ω

l
3sl−1

d

�

︸ ︷︷ ︸

“output gate”

, and (4.12)

cl
d = tanh

�

ωl
4 +ω

l
5∆pd +ω

l
6sl−1

d

�

︸ ︷︷ ︸

“input”

◦Λ
�

ωl
7 +ω

l
8∆pd +ω

l
9sl−1

d

�

︸ ︷︷ ︸

“input gate”

+cl−1
d ◦

�

1−Λ
�

ωl
7 +ω

l
8∆pd +ω

l
9sl−1

d

��

︸ ︷︷ ︸

“ forget gate”

, (4.13)

where d = 1, 2, · · · , D is our index of days, ∆pd ≡ pd − pd−1 (we set ∆p1 = 0),
tanh (x) ≡ ex−e−x

ex+e−x is the hyperbolic tangent function, ◦ denotes the Hadamard
(element-wise) product, and Λ (x) ≡ ex

1+ex is the cumulative distribution func-
tion (CDF) of the logistic distribution.22 The ωs are weight parameters with the
following dimensionality: (i) ωl

1, ωl
2, ωl

4, ωl
5 , ωl

7, and ωl
8 are Bl × 1 vectors;

and (ii) ωl
3, ωl

6, and ωl
9 are Bl × Bl−1 matrices. Thus, B≡ (B1, B2, · · · , BL) deter-

mines the effective number of latent state variables and parameters, and hence
the flexibility of the model.

The first layer l = 1 of time d takes as input the states of the last layer
l = L of time d − 1. Thus,

�

sl−1
d ,cl−1

d , Bl−1

�

in the above should be replaced
by
�

sL
d−1,cL

d−1, BL

�

when l = 1. After the final layer L of the last day D = 90 of
quarter t, we detect cycles in station-quarter (i, t) if and only if

s∗
�

pi,t;θ
LST M

�

≡ω10 +ω
′
11sL

D > 0, (4.14)

where ω10 is a scalar, ω11 is a BL × 1 vector, and θ LST M ≡ (ω, L,B) collectively
denotes all parameters, including (i) the many weights in

ω ≡
�

�

ωl
1,ωl

2, · · · ,ωl
9

�L

l=1
,ω10,ω11

�

, (ii) the number of layers L, and (iii) the
profile of the number of blocks in each layer, B. We set L = 3 and B= (16,8, 4),
and find the value ofω that approximately maximizes the accuracy of prediction.

In summary, LSTM sequentially processes the daily price data in a flexible
Markov model with many latent states, and uses the terminal state s∗ as a latent
score to detect cycles.

22See Appendix A.1 (Method 8) for further details on this specification and computational
implementation.

105 4.4 Models and Methods for Automatic Detection

Method 9: Ensemble in Random Forests (“E-RF”).

This method combines Methods 1–7 within random forests (RF), which is a class
of nonparametric regressions. Let

gm
i,t ≡ LHSm

i,t − RHSm
i,t (4.15)

denote a “gap,” the scalar difference between the left-hand side (LHS) and the
right-hand side (RHS) of the inequality that defines each method m= 1, 2, · · · , M ,
excluding the threshold parameter, θm. For example, inequality (4.3) defines

Method 2. Hence, g2
i,t =

�

�

�meand∈t

�

∆p+i,d
�

�

�

�−
�

�

�meand∈t

�

∆p−i,d
�

�

�

�.23

Let

gi,t ≡
�

gm
i,t

�M

m=1
(4.16)

denote their vector, where M = 7.24 We construct a decision-tree classification
algorithm that takes gi,t as inputs and predicts c yclei,t = 1 if and only if

h
�

gi,t;ω
RF ,κRF

�

≡
K
∑

k=1

ωRF
k I
�

gi,t ∈ Rk

	

≡
K
∑

k=1

ωRF
k φ

�

gi,t;κ
RF
k

�

> 0, (4.17)

where K is the number of adaptive basis functions, ωRF
k is the weight of the k-

th basis function, Rk is the k-th region in the M -dimensional space of gi,t , and
κRF

k encodes both the choice of variables (elements of gi,t) and their thresh-
old values that determine region Rk.25 Because finding the truly optimal par-
titioning is a computationally difficult (combinatorial) problem, we use an RF
algorithm to stochastically approximate it.26 Thus, this method aggregates and
generalizes Methods 1–7 in a flexible manner that permits (i) multiple thresh-
olds and (ii) interactions between gm

i,ts. We denote its full set of parameters by

θRF ≡
�

ωRF ,κRF
�

≡
�

�

ωRF
k

�K

k=1
,
�

κRF
k

�K

k=1

�

.

23All of Methods 1–7 except 4 are one-parameter models like this example. For Method 4, we
define g4

i,t ≡
∑

d∈t I
�

∆pi,d > θ
MBPI∗
1

	

, where θMBPI∗
1 is the accuracy-maximizing value of θMBPI

1 .
24Our computational implementation also incorporates two additional variants of each of

Methods 5–7, which we explain in Appendix A.1 (Method 9). Hence, the eventual value of
M is 7+ (2× 3) = 13.

25See Murphy (2012, ch. 16) [99] for an introduction to adaptive basis-function models
including RF.

26See Appendix A.1 (Method 9) for further details.

106 4.4 Models and Methods for Automatic Detection

Method 10: Ensemble in LSTM (“E-LSTM”).

This method combines Methods 1–8 within an extended LSTM by incorporating
gi,t in (4.16) as additional variables in the laws of motion:

sl
d = tanh

�

cl
d

�

◦Λ
�

ωl
1 +ω

l
2∆pd +ω

l
3sl−1

d +ωl
12g
�

, and (4.18)

cl
d = tanh

�

ωl
4 +ω

l
5∆pd +ω

l
6sl−1

d +ωl
13g
�

◦Λ
�

ωl
7 +ω

l
8∆pd +ω

l
9sl−1

d +ωl
14g
�

+cl−1
d ◦

�

1−Λ
�

ωl
7 +ω

l
8∆pd +ω

l
9sl−1

d +ωl
14g
��

, (4.19)

where
�

ωl
12,ωl

13,ωl
14

�

are Bl×M matrices of weight parameters for gi,t (we sup-
press (i, t) subscript here). Other implementation details are the same as Method
8.

4.4.3 Optimization of Parameter Values (“Training”)

Accuracy Maximization. Whereas the existing research typically calibrates (i.e.,
manually tunes) the threshold parameters, we optimize this process by choosing
the parameter values that maximize accuracy, which we define as the percentage
of correct predictions,

% correct (θ)≡

∑

(i,t) I
¦

×c yclei,t (θ) = c yclei,t

©

all predic t ions
× 100, (4.20)

where ×c yclei,t (θ) ∈ {0, 1} is the algorithmic prediction for observation (i, t) at
parameter value θ , and c yclei,t ∈ {0, 1} is the manual classification label (data).
We analogously define two types of prediction errors, “false negative” and “false
positive,” in Appendix A.2. Thus,

θ ∗ ≡ arg max
θ

% correct (θ) (4.21)

characterizes the optimized (or “trained”) model for each method.27

Splitting Data into Training and Testing Subsamples. We optimize and eval-
uate each method as follows, separately for each of the three datasets (WA, NSW,
and Germany):

1. Randomly split each labeled dataset into an 80% “training” subsample and
a 20% “ testing” subsample.

27See Appendix A.2 for further details.

107 4.5 Results

2. Optimize the parameter values of each model in the 80% training subsam-
ple.

3. Assess its “out-of-sample” prediction accuracy in the 20% testing subsam-
ple.28

4. Repeat these three steps 101 times.29

5. Report the medians of the optimized parameter values, as well as the me-
dians and standard deviations of the prediction-accuracy results.

4.5 Results

Table 4.2 summarizes the performance of all methods for each dataset. We report
the median accuracy, the composition of correct and incorrect predictions, and
the associated parameter value(s), θ ∗, for each method.

WA. Panel I shows the results in WA, where clear-cut cycles of deterministic
frequencies are known to exist. Almost all methods achieve high accuracy near or
above 90%. The flexible, nonparametric models of Methods 8–10 do particularly
well with above 99% accuracy.

Some of the parameter values are informative about the underlying data pat-
terns. For example, CS lags behind all other methods with (a still respectable)
85% accuracy. Its parameter value, θ CS

roots = 22.5, suggests the model is trained
to focus on shorter cycles with wavelengths less than 90÷ 22.5

2 = 8 days. Byrne
and de Roos (2019) [30] show both weekly and two-weekly cycles exist in WA.
Thus, the inferior performance of CS stems from missing the latter, longer cycles.

Another interesting result concerns MBPI, which achieves 90% accuracy. Byrne
and de Roos (2019) [30] set θMBPI

1 = 6 and θMBPI
2 = 3.75 in their original study

of WA. Our accuracy-maximizing values (5.05 and 5, respectively) turn out to
be reasonably close to their calibrated values. This comparison illustrates how
experienced researchers’ parameter tuning could approximate the results of sys-
tematic numerical optimization. One can also interpret this finding as an exter-
nal validation of our manual classification. Given the similar parameter values
and the high accuracy, it follows that our manual classification must be broadly
consistent with Byrne and de Roos’s eyeballing results.

28This cross-validation procedure is particularly important for the nonparametric models of
Methods 8–10, which contain many parameters and could potentially “over-fit” the training sub-
sample.

29An odd number of bootstrap sample-splits facilitates the selection of the medians in step 5.

108 4.5 Results

Table 4.2: Performance of Automatic Detection Methods

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. Western Australia (# manually labeled observations: 24,569)

Parameter 1 −1.16 6.13 −0.20 5.05 0.12 0.21 22.50 − − −
Parameter 2 − − − 5 − − − − − −
Accuracy rank 5 4 9 6 8 7 10 1 3 1
% correct (median) 90.80 91.27 89.34 90.23 90.11 90.15 85.47 99.25 99.04 99.25
(Standard deviations) (0.37) (0.38) (0.38) (0.36) (0.40) (0.36) (0.45) (0.18) (0.15) (0.14)
of which cycling 55.27 55.70 57.08 60.74 58.24 57.92 56.41 60.62 60.97 60.34
of which not 35.53 35.57 32.25 29.49 31.87 32.23 29.06 38.62 38.07 38.91
% false negative 5.27 5.27 3.34 0.71 2.48 3.30 5.29 0.35 0.61 0.31
% false positive 3.93 3.46 7.33 9.06 7.41 6.55 9.24 0.41 0.35 0.45

II. New South Wales (# manually labeled observations: 9,693)

Parameter 1 4.20 5.76 1.01 14.90 0.20 0.57 4.50 − − −
Parameter 2 − − − 2 − − − − − −
Accuracy rank 7 8 10 4 6 5 9 2 3 1
% correct (median) 78.55 78.39 70.96 81.59 80.71 80.82 73.90 89.63 87.42 90.30
(Standard deviations) (0.85) (0.88) (0.97) (0.86) (0.80) (0.80) (0.89) (0.67) (0.69) (0.67)
of which cycling 67.04 65.09 70.96 64.62 66.53 66.43 70.40 67.20 67.10 65.60
of which not 11.50 13.31 0.00 16.97 14.18 14.39 3.51 22.43 20.32 24.70
% false negative 3.30 4.85 0.00 6.55 5.47 4.02 0.77 4.33 8.35 2.99
% false positive 18.15 16.76 29.04 11.86 13.82 15.16 25.32 6.03 4.23 6.70

III. Germany (# manually labeled observations: 35,685)

Parameter 1 −3.48 0.30 −0.45 1.25 0.24 0.62 24.50 − − −
Parameter 2 − − − 14 − − − − − −
Accuracy rank 9 6 7 5 8 10 4 3 2 1
% correct (median) 60.38 60.61 60.53 65.39 60.50 60.36 71.28 74.61 76.14 79.58
(Standard deviations) (0.49) (0.50) (0.52) (0.52) (0.56) (0.59) (0.42) (0.44) (1.46) (0.53)
of which cycling 0.00 1.25 0.07 14.77 0.00 0.00 25.88 23.46 23.96 29.96
of which not 60.38 59.37 60.46 50.62 60.50 60.36 45.40 51.16 52.18 49.63
% false negative 39.62 38.07 39.40 24.65 39.50 39.57 14.28 15.99 15.75 9.50
% false positive 0.00 1.32 0.07 9.96 0.00 0.07 14.45 9.40 8.11 10.91

Note: Appendix B.1 investigates whether combining some or all of Methods 1–4 leads to better performances. Ap-
pendix B.2 reports additional results for the variants of Methods 5–7. Columns (8)–(10) do not report parameter
values because they contain too many parameters to be listed. We randomly split the sample into an 80% training
subsample and a 20% testing subsample 101 times. In each split, the former subsample is used for setting parameter
values, the medians of which are reported here. The accuracy statistics are also the medians from the 101 testing
subsamples.

NSW. Panel II reports the results in NSW. Cycle detection in NSW is not as easy
as in WA, but most methods achieve near or above 80% accuracy. The nonpara-
metric methods are top performers again (87%–90%), followed by MBPI and
the spectral methods (81%–82%). By contrast, CS (74%) and NMC (71%) make

109 4.5 Results

mostly degenerate predictions in which they classify virtually all observations as
cycles.

The poor performance of NMC is surprising in three ways. First, it performed
well in WA. Second, it is one of the most widely used methods in the literature.
Third, other methods that similarly focus on asymmetry (PRNR and MIMD) do
significantly better (78%–79%). This finding alone does not necessarily invali-
date the use of NMC in other datasets but cautions against overly relying on any
single metric.

Germany. Panel III shows most methods fail in Germany, where cycles are more
subtle and data are noisier (i.e., our RAs reach unanimous decisions less often).
30 E-LSTM is the only method that achieves accuracy near 80%, followed by E-RF
(76%) and LSTM (75%). Somewhat surprisingly, CS (71%) outperforms all other
parametric models; MBPI (65%) is the only existing method with non-degenerate
predictions, presumably because it does not exclusively rely on asymmetry.

This profile of success and failure is intriguing. The methods that exclusively
focus on asymmetry (Methods 1–3) and deterministic cycles (Methods 5–6) fail,
whereas those that capture cyclicality in “fuzzier” manners (Methods 4 and 7)
manage to make at least some correct (non-degenerate) predictions. These re-
sults suggest that not all of the German cycles conform to the idealized patterns
of asymmetry or cyclicality and that less rigid classification rules could be rela-
tively more robust to irregular patterns and noise.

The parameter values of CS (θ CS
roots = 24.50) and MBPI (θMBPI

2 = 14) suggest
that the German cycles are approximately weekly. That is, θ CS

roots = 24.50 means
at least as many ups and downs are often recorded in “cycling” observations,
which translate into the wavelength of 90÷ 24.5

2 = 7.3 days or shorter. Likewise,
θMBPI

2 = 14 requires at least as many “big jumps” within a calendar quarter and
hence implies the wavelength of 90÷ 14 = 6.4 days or shorter. These numbers
provide another opportunity for external validation: the detailed case study by
Bundeskartellamt (2011) [26] confirms the presence of weekly cycles.

Summary. In summary, four findings emerge from Table 4.2. First, the four
existing methods (Methods 1–4) work well in the clean data environments of
Australia, but mostly fail in the noisier data from Germany. The spectral methods
(Methods 5–6) show similar performance. Second, by contrast, CS (Method 7)

30As Table 4.1 shows, 71% of the NSW data is unanimously labeled as “cycling” by three RAs,
whereas 9.4%+7.8%= 17.2% is labeled as such by only two or one RAs. In the German sample,
only 39.6% is unanimously “cycling,” whereas RAs disagree in 20.1%+ 17.6% = 37.7% of the
data.

110 4.6 How Much Data Do We Need?

underperforms most other methods when cycles are clear and regular, but does
relatively well in noisier cases. Third, LSTM (Method 8) is sufficiently flexible
to capture both clear and noisy cycles: the most accurate stand-alone method.
Fourth, the ensemble methods (Methods 9–10) effectively leverage the informa-
tion content of Methods 1–8 and usually outperform all of them. The fact that
E-RF performs so well is particularly interesting because it simply aggregates the
descriptive statistics from Methods 1–7 in a more flexible manner (i.e., permit-
ting their interactions and multiple thresholds).

Performance on Simulated Cycles. In Appendix A.3, we examine the 10 meth-
ods’ performances on simulated data with four types of artificial patterns: white
noise, theoretical Edgeworth cycles, “reverse Edgeworth” cycles, and sine waves
of various lengths. We simulate 10,000 quarters of data based on each DGP and
deploy the three pre-trained versions (WA, NSW, and Germany) of each method.
Four findings emerge. First, Methods 1–4 and 7 either fail to detect most of these
cycles or incorrectly classify white noise as cycles. Second, Methods 5–6 are the
best performers in such a controlled environment. Third, the performances of
Methods 8–10 are somewhere between these two groups of methods. Fourth, a
little bit of additional noise could either help or hinder the performance of these
10 methods. These results suggest the real-world data are qualitatively different
from simulated data with artificial cycles.

4.6 How Much Data Do We Need?

The accuracy “horse racing” in the previous section shows that more flexible
methods tend to outperform simple parametric ones, which is not surprising. The
real question is the cost of “training” complicated machine-learning algorithms,
which are known to require a lot of data. This section investigates the cost-
accuracy trade-offs of the 10 methods.

The accuracy of cycle detection naturally improves with the size of the train-
ing dataset. The rate of improvement is different across methods, however. Fig-
ure 4.2 shows performance when we restrict the training dataset to only 0.1%,
1%, 5%, 10%, · · · , 80% of the available samples.

Methods 1–7 and 9 perform surprisingly well with only 0.1% of the data,
which corresponds to 25, 10, and 36 observations in WA, NSW, and Germany, re-
spectively. The labor cost of human-generated labels is negligible for such small
samples (US$3.51, US$2.84, and US$6.48, respectively, based on the hourly

111 4.6 How Much Data Do We Need?

Figure 4.2: Gains from Additional Data

112 4.7 Economic and Policy Implications

wage of US$13.50 for undergraduate RA work at Yale University as of 2021).
These methods are extremely cost effective.

The fact that simple models with one or two parameters (Methods 1–7) re-
quire only a few dozen observations is not surprising. All we have to do is to
adjust one or two numerical thresholds to distinguish cycles from non-cycles.
However, the finding that E-RF (Method 9) is equally cheap is surprising. It is a
highly nonlinear machine-learning model with potentially many thresholds and
interactions. This result suggests that the building blocks of E-RF—the summary
statistics derived from Methods 1–7—contain genuinely useful information that
those stand-alone methods under-utilize.

Methods 8 and 10 contain a few thousand parameters and obviously need
more data. For instance, E-LSTM’s accuracy in NSW is below 50% when it uses
only 10 observations (0.1% subsamples). Fortunately, their performance dra-
matically improves with a mere 1% subsample, and they start outperforming all
other methods when 5% subsamples are used. The “critical” sample size above
which they perform the best is in the order of several hundred observations. The
associated cost of manual labeling is only tens of RA hours, or a few hundred US
dollars. Thus, even though LSTM and E-LSTM require more data for a given accu-
racy level, their total cost is surprisingly low, making them the highest-accuracy
methods within a limited amount of resources.

This finding is unexpected, but is definitely good news: heavy-duty machine-
learning algorithms turn out to be not only useful, but also affordable in the
context of detecting Edgeworth cycles. Our conjecture is that the cyclical pat-
terns that humans recognize are relatively simple after all, even though explicitly
articulating them might be difficult.

4.7 Economic and Policy Implications

The suspicion that price cycles might be related to collusive business practices has
led many researchers and governments to collect and scrutinize large amounts
of data on fuel markets. Some papers find that the presence of cycles is positively
correlated with retail prices and markups, whereas others find the opposite rela-
tionships.31

31The former includes Deltas (2008) [43], Clark and Houde (2014)[40], and Byrne
(2019)[29]; the latter includes Lewis (2009) [92], Zimmerman et al. (2013) [150], and Noel
(2015) [103].

113 4.7 Economic and Policy Implications

4.7.1 Cycles and Margins

Human-Recognized Cyclicality and Margins. Table 4.3 compares the retail-
wholesale margins between “cycling” and “ non-cycling” observations.32 Column
(0) is based on our manual classification and serves as a “ground truth” bench-
mark. The mean margins in cycling and non-cycling observations in WA are cents
11.86 and cents 9.47, respectively. The mean difference is cents 2.39. The t test
(based on Welch’s t statistic) rejects the null hypothesis that the difference in
means is zero at the 0.1% significance level. Hence, price cycles are positively
correlated with margins in WA. The same analysis yields similar results in NSW.

However, the pattern is reversed in Germany, where margins are lower in
cycling station-quarters. Thus, in general, the presence of cycles (as recognized
by human eyes) could be either positively or negatively correlated with margins,
depending on regions/countries.33

Algorithmic Cycle Detection and Margins. Columns (1)–(10) report the same
analysis based on the 10 algorithmic methods. In WA, all methods reach the
same conclusion that margins are higher in cycling observations. Broadly similar
results also emerge in NSW, even though one method fails (Method 3) and one
reaches the opposite conclusion (Method 7). These discrepancies suggest that
researchers find a positive or negative cycle-margin relationship depending on
the operational definition of cycles.

Our analysis of the German data highlights this point even more vividly. Both
the manual classification and Methods 7–10 suggest significantly negative rela-
tionships between cycles and margins, but Methods 2–6 lead to positive mean dif-
ferences. These positive differences are highly statistically significant in Methods
2–4. Some of them entail degenerate predictions, but Method 4 features reason-
able parameter values and achieves at least 65% accuracy. Hence, we cannot
dismiss these discrepancies as purely random anomalies.

In summary, the choice of the detection method could lead to qualitatively
different results and dictate the policy implications of empirical research on Edge-

32Our measure of profit margin is the difference between the retail price and the wholesale
price before tax, as defined in equation (4.1), in the Australian cent in WA and NSW and the
euro cent in Germany, respectively. Note the lack of volume data—a main limitation in this area
of research—means that we cannot check the extent to which consumers buy at the bottom of
price cycles.

33Determining the exact source of heterogeneity is beyond the scope of this paper. There can
be many reasons and Edgeworth cycles are only one of the possible mechanisms. Our purpose is
to illustrate with concrete examples how different methods could lead to different findings and
policy implications.

114 4.7 Economic and Policy Implications

Table 4.3: Profit Margins by Cycle Status

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method Manual PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. Western Australia (# manually labeled observations: 24,569)
Cycling
obs. 15, 007 14,462 14,620 16,147 16,941 16,223 15, 774 15, 953 15,011 14, 994 14, 999
Mean 11.86 12.07 12.21 11.66 11.46 11.88 12.03 11.78 11.86 11.86 11.86
Std. dev. 4.01 3.80 3.74 3.98 4.13 3.87 3.85 4.04 4.01 4.01 4.01
Not cycling
obs. 9, 562 10,107 9,949 8,422 7,628 8,346 8, 795 8, 616 9,558 9, 575 9, 570
Mean 9.47 9.30 9.05 9.52 9.73 9.08 8.94 9.35 9.47 9.47 9.47
Std. dev. 4.97 5.04 4.98 5.22 5.20 5.18 5.03 5.02 4.97 4.97 4.96
Difference
Mean diff. 2.39 2.77 3.16 2.14 1.73 2.80 3.09 2.43 2.39 2.39 2.39
Welch’s t 39.53 46.74 53.80 32.96 25.64 43.53 50.02 38.67 39.53 39.55 39.60
D. F. 17, 247 17,771 17,314 13,648 12,134 13,263 14, 608 14, 723 17,236 17, 282 17, 295
p value < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001

II. New South Wales (# manually labeled observations: 9,693)
Cycling
obs. 6, 878 8,324 8,038 9,693 7,303 7,704 7, 994 9, 253 7,052 6, 961 7, 183
Mean 12.03 11.73 12.35 11.66 12.48 11.76 11.81 11.58 12.19 12.07 12.13
Std. dev. 5.51 5.80 5.58 6.04 5.48 5.89 5.84 5.99 5.54 5.53 5.56
Not cycling
obs. 2, 815 1,369 1,655 0 2,390 1,989 1, 699 440 2,641 2, 732 2, 510
Mean 10.76 11.25 8.33 − 9.18 11.28 10.97 13.48 10.25 10.64 10.33
Std. dev. 7.10 7.31 7.01 − 6.92 6.56 6.85 6.79 7.01 7.08 7.08
Difference
Mean diff. 1.27 0.48 4.02 − 3.30 0.48 0.84 −1.90 1.94 1.43 1.80
Welch’s t 8.50 2.31 21.94 − 21.24 2.97 4.70 −5.76 12.80 9.48 11.55
D. F. 4, 266 1,663 2,106 − 3,423 2,870 2,252 472 3, 939 4,103 3,648
p value < .001 .021 < .001 − < .001 .003 < .001 < .001 < .001 < .001 < .001

III. Germany (# manually labeled observations: 35,685)
Cycling
obs. 14, 116 0 1,013 72 8,763 7 7 14, 281 11,762 13, 574 15, 299
Mean 98.18 − 99.57 99.67 98.73 114.11 115.64 98.19 98.38 98.16 98.18
Std. dev. 3.57 − 6.96 3.26 3.84 32.10 31.40 3.60 3.60 3.59 3.51
Not cycling
obs. 21, 569 35,685 34,672 35,613 26,922 35,678 35, 678 21, 404 23,923 22, 111 20, 386
Mean 98.65 98.46 98.43 98.46 98.38 98.46 98.46 98.65 98.50 98.65 98.68
Std. dev. 4.37 4.08 3.96 4.08 4.15 4.05 4.05 4.36 4.30 4.34 4.45
Difference
Mean diff. −0.47 − 1.14 1.21 0.35 15.65 17.18 −0.46 −0.12 −0.49 −0.50
Welch’s t −11.11 − 5.19 3.14 7.26 1.29 1.45 −10.86 −2.77 −11.55 −11.86
D. F. 33, 984 − 1, 031 71 15,941 6 6 34, 110 27, 415 32,697 35,595
p value < .001 − < .001 .002 < .001 .245 .197 < .001 .006 < .001 < .001

Note: Columns (1)–(10) use the median-accuracy version of each method in Table 4.2. The unit of measurement
(of means and standard deviations) is the Australian cent in WA and NSW, and the euro cent in Germany, respec-
tively. The p value indicates the probability that the difference in means is zero based on Welch’s t statistic and the
approximate degrees of freedom.

115 4.7 Economic and Policy Implications

worth cycles.

4.7.2 Additional Findings

The results sections constitute our main findings, but the curious patterns in
the data present additional puzzles. We address some of them in the following
paragraphs.

1. Why Existing Methods Work in Australia But Fail in Germany. Most of the
cycles in Australia follow specific (almost deterministic) frequencies and exhibit
strong asymmetry, whereas German cycles are noisier and not always asymmet-
ric. The existence of asymmetric non-cycles in Germany further complicates the
issue. Hence, asymmetry-based methods correctly identify cycles in Australia but
not in Germany.

2. Why Margins And Cycles Correlate Positively in Australia But Negatively
in Germany. In all datasets, the mean and the standard deviation of margins
are positively correlated. That is, higher markups tend to accompany higher
volatility. The reason is that retail and wholesale prices are relatively close so
that the only direction in which margins can move significantly is upward (un-
less stations are willing to incur losses). We find volatility and cyclicality are
correlated positively in Australia but negatively in Germany. Therefore, the av-
erage level and cyclicality of margins are correlated positively in Australia but
negatively in Germany.

3. How Can Cycles Be Less Volatile Than Non-Cycles? Cyclicality implies
systematic—but not necessarily large—movements; not all large/frequent move-
ments follow cycles. Many German observations exhibit high volatility without
any discernible patterns, which explains the existence of “volatile non-cycles” in
the data.

4. Why Existing Methods Find “Positive Correlations.” These methods’ thresh-
old rules tend to recognize high-mean, high-volatility cases as “cycles” because
only sufficiently large movements can satisfy these conditions. In Germany, how-
ever, volatility is a poor predictor of cyclicality (see Question 3 above).

116 4.7 Economic and Policy Implications

5. Could Intra-Day Cycles Be the Source of Curious Patterns in Germany?
The answer is “yes” and “no.” In general, our daily sampling frequency and 90-
day window are suitable for identifying cycles with the frequencies of several
days to a month or so. Shorter frequencies may not be well represented.

Nevertheless, if the “intra-day” cycles follow the frequency of exactly 24 hours
(or any hours that can divide 24 evenly), they would be “averaged out” in the
process of computing daily prices and would not affect our observations. The
existing studies suggest that they do follow exactly 24-hour cycles. Hence, how
intra-day cycles affect the multi-daily volatility in our data is not obvious.34

6. Why Manual Classification Provides a Relevant Benchmark. At this point,
one might question (again) the relevance of human recognition as a benchmark.
Our answer is still the same as before: It is the “second best” option. If we had
a perfect mathematical definition, no detection problem would arise in the first
place. In the absence of such a formula, the existing research relied on rules of
thumb that were ultimately validated by selective eyeballing by the authors. We
made this process more systematic and transparent.

4.7.3 Exploratory Data Analysis

As a further demonstration of the use of automatic cycle detection, this section
investigates the distribution of price cycles across time and space. Obviously,
such an exploratory data analysis becomes possible only after a scalable method
to detect cycles is used on the entire dataset. We first describe time-series patterns
and then explore cross-sectional correlations.

Time Series Patterns. How many stations exhibit price cycles at each point
in time? The two panels of Figure 4.3 plot the fractions of stations that exhibit
price cycles in Australia and Germany, respectively. Throughout this section, the
recognition of cycles is based on the median-performance version (parameter
values) of the most accurate algorithm (Method 10), which we apply to the entire
dataset—both labeled and unlabeled—in each region/country.

The two regions of Australia, WA and NSW, show mostly high percentages of
cycling stations. WA offers the longest data period. Byrne and de Roos (2019) [30]
documented clear price cycles in two subperiods (2007–2008 and 2010–2015),

34One possibility is the existence of “medium frequency” cycles that are longer than 24 hours,
but shorter than 3–4 days. However, we are not aware of any studies that document such cycles.
In short, the coexistence of daily, weekly, and other cycles and their interactions constitute an
open-ended question for further research.

117 4.7 Economic and Policy Implications

Figure 4.3: How Many Stations Exhibit Price Cycles?

Note: LZ0–LZ9 are Germany’s 10 geographic zones (Postleitzonen). See main text for details.

both of which correspond to the periods in which cycles are prevalent according
to our method.35 Thus, the results of our method confirm Byrne and de Roos’s
description of the WA data in terms of time series. The NSW dataset starts rela-
tively recently in 2016:Q4. Its range of approximately 70%–90% is comparable
to WA.

35Readers might wonder what causes sudden increases and decreases in WA in the 2000s.
Some of them reflect genuine changes in the number of cycling stations; others could be due
to noise in the original data because the WA database lacks a consistent station identifier. Even
though we tried to reconstruct as “balanced” panel data as possible (based on street addresses and
other observable characteristics), the recorded number of stations varies across time, sometimes
quite dramatically.

118 4.7 Economic and Policy Implications

The German picture is more “colorful,” with greater heterogeneity across re-
gions. We show the fraction of cycling stations in each of the 10 geographic zones
(Postleitzonen, henceforth LZs). LZ0 and LZ1 (in green) correspond to former
East Germany; LZ2–LZ6 (in red and yellow) are northwestern regions; LZ7–LZ9
(in blue) roughly correspond to the southern states of Baden-Württemberg and
Bavaria.36 Three patterns emerge. First, whereas LZ0–LZ6 tend to move together
in relatively high ranges, LZ7–LZ9 exhibit consistently lower percentages. Sec-
ond, despite these differences in levels, all regions display similar fluctuations
most of the time, and such fluctuations could be large. Third, as a general trend,
the overall range shifted downward from 30%–90% in 2015–2017 to 0%–70%
in 2018–2019. The timing of this change would seem to roughly coincide with
the introduction and dissemination of automatic pricing algorithms (see Assad et
al. (2021) [15]), but the clarification of their causal relationship would require
further research.

Spatial Patterns. We now explore spatial patterns within each region. The
geographical scope of price cycles (e.g., local, city-wide, or regional) and their
synchronization patterns might shed light on their mechanism and potentially
inform the definition of relevant markets for antitrust purposes.

Specifically, we investigate whether multiple gasoline stations tend to exhibit
price cycles at the same time, and if so, how such tendencies change with the
distance between them.

We construct our measure of “correlation” between stations as follows. First,
within each region, we list all possible pairs of stations and split them into seven
distance bins (less than 1km, 1–5km, . . . , 50–100km, and above 100km) based
on their Euclidean distances.37 Second, for each pair, we calculate the percentage
of quarters in which their cycle statuses match (i.e., either both stations exhibit
cycles or neither of them does). Third, for each distance bin in each region, we
take the average of these percentages, either across all pairs or across pairs of
same-brand stations. This procedure creates a summary statistic of how well the
presence or absence of cycles is synchronized across multiple stations in each
region—and how their “correlation” varies with distance.38

Figure 4.4 reports the spatial patterns of “correlation” in four graphs: (i) all

36For maps and further details, see Wikipedia page on “Postal codes in Germany” at
https://en.wikipedia.org/wiki/Postal_codes_in_Germany (accessed on January 10, 2023).

37Note we consider only pairs that share at least 12 calendar quarters of valid data in common.
38We say “correlation” in quotes because we use the “percentage of quarters with matched

cycle statuses” instead of correlation coefficient, which is undefined when a station always (or
never) shows cycles.

119 4.7 Economic and Policy Implications

Figure 4.4: How Presence of Cycles Correlates between Stations

Note: See main text for the definition of “percent matched” statistics. The WA graphs do not show
markers or lines in two distance bins (less than 1km and 50–100km) because the WA data have
relatively few pairs in these bins, which we grouped in the adjacent bins for the purpose of visualiza-
tion.

pairs in WA and NSW, (ii) same-brand pairs in WA and NSW, (iii) all pairs in
Germany, and (iv) same-brand pairs in Germany. Four patterns emerge. First,
the majority of the station-pair-quarter observations shares cycle status, with the
exception of the most distant (>100 km) bin in rural NSW. Second, the cities
and the rural areas of Australia exhibit qualitatively different patterns. The sta-
tion pairs within Perth and Sydney (the capital cities of WA and NSW, respec-
tively) tend to show high correlations with limited variability across distance
bins, whereas the rest of NSW features “ correlations” that decrease with dis-
tance.39 Third, all 10 LZs of Germany show similar patterns in which “corre-
lations” steadily decrease with distance. Fourth, pairs of same-brand stations

39All of the WA stations (with sufficient observations for these plots) are in Perth, which is
why we do not split WA into urban and rural areas as in NSW.

120 4.8 Practical Recommendations

tend to be more correlated than all/any pairs in both Australia and Germany,
especially in the 0km–10km bins in Germany.

4.8 Practical Recommendations

Based on our findings in sections 5–7, we suggest the following steps as a prac-
tical (but not necessarily the most rigorous) guide for automating the detection
of Edgeworth cycles:

1. Choose the data frequency and time window that would permit the iden-
tification of hypothesized cycles. That is, the sampling frequency must be
shorter than that of suspected cycles, and the time horizon should accom-
modate at least a few repetitions. (For the sake of simple exposition, our
explanation in the following keeps assuming the daily frequency and the
quarterly window.)

2. Eyeball and manually categorize a random sample of 100 station-quarter
observations in terms of cyclicality (but not necessarily asymmetry).40 If
sufficient numbers of both cyclical and non-cyclical cases are found, pro-
ceed to the next step. If not, increase the sample size.

3. As a first attempt to algorithmically distinguish cycles from non-cycles, cal-
ibrate one of the simpler methods. We recommend the two-parameter
model of Method 4 (MBPI) because it is the only one (among Methods
1–4) that captures the notion of cyclicality.

4. For more formal, mathematical definitions of cyclicality, use Methods 5
(FT) or 6 (LS), both of which are readily implementable in many program-
ming languages for scientific computing. Method 7 (CS) is another option
with similarly off-the-shelf implementations.

5. If the performance of these methods is unsatisfactory, try Methods 9 (E-
RF), 8 (LSTM), and 10 (E-LSTM), in increasing order of complexity and
expected accuracy.

40Adversarial circumstances, such as antitrust cases, could potentially introduce biases in the
manual labeling of data. Hence, the selection and training of human labelers (in more formal
contexts that the one assumed here) might have to be treated with the same care as in the
selection and training of jury in trials.

121 4.9 Conclusion

6. Once the detection of cyclicality (as recognized by humans) is successfully
automated, refine the classification of “ cycling” observations in terms of
asymmetry. The median-price-change statistic from Method 3 (NMC) of-
fers a simple way to capture asymmetry. For example, one can distinguish
between the Edgeworth-type asymmetry (i.e., the median change is nega-
tive), the inverse-Edgeworth asymmetry (i.e., the median change is posi-
tive), and symmetry (i.e., the median change is approximately zero). Meth-
ods 1 (PRNR) and 2 (MIMD) can be used for the same purpose.

7. If desired, this asymmetry-based classification can be automated by using
some clustering algorithm on the distribution (e.g., a histogram) of the
median price change across station-quarter observations. This process can
be designed as either supervised or unsupervised machine-learning tasks.

8. Once the classification based on both cyclicality and asymmetry is com-
plete, compute the mean margin and other statistics for each type of ob-
servation (e.g., Table 4.3). Welch’s t statistic and the associated degrees of
freedom can be used for testing the null hypothesis that the means of the
two subsamples (of potentially different sizes) are equal.

9. The previous step assumes that the dataset contains only prices and mar-
gins. If additional data are available on the characteristics of gasoline sta-
tions and their locations (as well as other demand- and supply-side factors
such as competition), control for these additional covariates in a suitable
regression model.

10. At any point after step 4, one might also consider another refinement based
on the frequency of cycles. Cycles of multiple lengths may coexist within a
single dataset. Methods 5–7 would be useful for this purpose.

Thus, even though Method 10 (E-LSTM) is the top runner in terms of cycle-
detection accuracy, other methods (including the existing ones) have important
roles to play, both as a tool for initial inspection and as a summary statistic for
refinement.

4.9 Conclusion

We propose scalable methods to detect Edgeworth cycles so that the growing
amount of “big data” on fuel prices can be scrutinized. The failure of the existing

122 4.9 Conclusion

methods in noisy data suggests further investigation would benefit from distin-
guishing “cyclicality” from “asymmetry.” Our nonparametric methods achieve
the highest accuracy; such flexible models typically require large amounts of
training data, but the requirement is minimal in this context. Whether researchers
discover a positive or negative statistical relationship between markups and cy-
cles depends on the choice of method. Because such “facts” are supposed to
inform regulations and competition policy, these methodological considerations
are directly policy relevant.

Data/Code Availability. The replication package [72] and the Online Appendix
are publicly available on Github.

https://github.com/tabholt/detecting_edgeworth_cycles

123 4.10 Appendix A: Methodological Details and Simulations

4.10 Appendix A: Methodological Details and Simula-
tions

4.10.1 A.1 Details of the New Methods

Fourier Transform (Method 5). The Fourier transform of a continuous func-
tion g (x) is

G (f)≡
∫ ∞

−∞
g (x) e−2πi f x d x . (4.22)

Let us define the Fourier transform operator F such that F {g} = G, which is
a linear operation. A sinusoidal signal (i.e., sine wave) with frequency f0 has a
Fourier transform consisting of a weighted sum of the Dirac delta functions at
± f0.41 The practical implication of these properties is that any signal made up of
a sum of sinusoidal components will have a Fourier transform consisting of a sum
of delta functions that mark the frequencies of those sinusoids. Thus, the Fourier
transform directly measures additive periodic content in a continuous function.
The power spectral density (PSD, or the power spectrum) of a function,

Pg ≡ |F {g}|
2 , (4.23)

is a positive, real-valued function of frequency f , and provides a convenient way
to quantify the contribution of each frequency f to the signal g (x).

When a continuous time series is sampled at regular time intervals with spac-
ing ∆x , as is the case in our data, one can use the discrete version of (4.22):

Gobs (f) =
∞
∑

n=−∞

g (n∆x) e−2πi f n∆x . (4.24)

Acknowledging the finite sample size N and focusing on the relevant frequency
range 0 ≤ f ≤ 1

∆x , one can define N evenly spaced frequencies with ∆ f = 1
N∆x

covering this range. Let gn ≡ g (n∆x) and Gk ≡ Gobs (k∆ f). Then, the sample
analog of (4.22) is

41The Dirac delta function is δ (f) ≡
∫∞
−∞ e−2πi f x d x , and hence, we can write F

�

e2π f0 x
	

=
δ (f − f0). The linearity of F and Euler’s formula for the complex exponential (ei x = cos x +
i sin x) lead to the following identities: F {cos (2π f0 x)} = 1

2 [δ (f − f0) +δ (f + f0)] and
F {sin (2π f0 x)}= 1

2i [δ (f − f0) +δ (f + f0)]. See VanderPlas (2018) [134] for further details.

124 4.10 Appendix A: Methodological Details and Simulations

Gk =
N
∑

n=0

gne−2πikn/N . (4.25)

One can construct the sample analog of the Fourier power spectrum (4.23) as
(4.6) in the main text. This is the “classical” or “Schuster” periodogram.42

A potential drawback of the threshold rule in (4.7) is that it exclusively fo-
cuses on the highest point and ignores the rest. As an alternative rule, we
can compare the highest point with the heights of other, less powerful frequen-
cies. One way to capture relative heights of multiple frequencies is to measure
the “ concentration” of power in a limited number of frequencies. We use the
Herfindahl-Hirschman Index (HHI) for an additional check for “significant” cy-
cles:

HHIi,t ≡
∑

f

�

Pi,t (f)
∑

f Pi,t (f)

�2

> θ F T
hhi , (4.26)

where θ F T
hhi ∈ (0, 1] is a scalar threshold parameter.43 A high value of HHIi,t

indicates strong periodicity at certain frequencies relative to other, weaker fre-
quencies.

Lomb-Scargle Periodogram (Method 6). Even though the classical periodogram
in (4.6) appears different from (4.8), (4.6) can be rewritten as

P (f) =
1
N

�

�

∑

n

gn cos (2π f xn)

�2

+

�

∑

n

gn sin (2π f xn)

�2�

.

Thus, the only major difference between (4.6) and (4.8) is the denominators in
(4.8).

Statistically, one can interpret the Lomb-Scargle periodogram as a collection
of least-squares regressions in which one fits a sinusoidal model at each frequency
f :

ĝ (x; f) = A f sin
�

2π f
�

x −φ f

��

, (4.27)

42See Press et al. (1992, section 12.2) [112] for computational implementation.
43The HHI is a summary statistic that is typically used to measure the degree of market-share

concentration in oligopolistic industries. A high value of the HHI indicates the market is close to
monopoly.

125 4.10 Appendix A: Methodological Details and Simulations

where amplitude A f and phase φ f are the parameters to be estimated by mini-
mizing the sum of squared residuals:

SSRLS (f)≡
∑

n

(gn − ĝ (xn; f))2 . (4.28)

Scargle (1982) [120] shows the following periodogram is identical to (4.8):

P̃ LS (f) =
1
2

�

SSRLS
0 − SSRLS (f)

�

,

where SSRLS
0 is the sum of squared residuals from the restricted model in which

the only regressor is a constant term. The idea is that the frequencies with good
fit will exhibit high P̃ LS (f).

The HHI variant of the LS method is

HHI LS
i,t ≡

∑

f

�

P LS
i,t (f)

∑

f P LS
i,t (f)

�2

> θ LS
hhi. (4.29)

Cubic Splines (Method 7). A spline is a piecewise polynomial function:

SK (x) =
P
∑

j=0

β j x
j +

N
∑

k=1

βP+k (x −τk)
P I {x ≥ τk} , (4.30)

where K = 1+P+N is the number of coefficients, P is the order of the polynomial
(not to be confused with the periodogram in Methods 5–6 or our notation for the
price, p), and the support for x is covered by N +1 ordered subintervals that are
joined by N knots (τ1 < τ2 < · · · < τN).44 It is a special case of a sieve/series
approximation that constitutes a class of nonparametric regression methods.45

We use splines as an interpolator to smooth the discrete (daily) time series and
facilitate further calculations. Specifically, we use a cubic Hermite interpolator,
which is a spline where each piece is a third-degree polynomial of Hermite form
(i.e., P = 3, N = 88, and βs are prespecified).46

44This N should not be confused with our notation for sample size in the discrete Fourier
transform.

45Any continuous function can be uniformly well approximated by a polynomial of sufficiently
high order, and the rate of approximation is o

�

K−2
�

. Other series models include trigonomet-
ric polynomials, wavelets, orthogonal wavelets, B-splines, and artificial neural networks. See
Hansen (2020, ch. 20) [67] for an introduction and Chen (2007) [37] for a review.

46On the unit interval d ∈ (0,1), given a starting point p0 at d = 0, an ending point p1 at
d = 1, and slopes m0 and m1, this polynomial is

p (d) =
�

2d3 − 3d2 + 1
�

p0 +
�

d3 − 2d2 + d
�

m0 +
�

−2d3 + 3d2
�

p1 +
�

d3 − d2
�

m1.

126 4.10 Appendix A: Methodological Details and Simulations

In addition to the indicator of frequent oscillations in (4.11), we propose a
measure that captures amplitude as well. We subtract the lowest daily price in

(i, t) from all of its daily prices, p
i,d
≡ pi,d −mind∈t

�

pi,d

�

, fit CS to
�

p
i,d

�

d∈t
, and

calculate its integral over d ∈ [1,90]. We set c yclei,t = 1 if and only if

∫ 90

1

CS i,t (d)> θ
CS
int , (4.31)

where CS i,t (d) is the fitted value of p
i,d

at time d. Because this definite integral

equals the area between the price series and its lowest level within (i, t), this
condition captures cycles with large amplitude and sustained high prices.

We also construct a discrete (raw data) analog of the splines-integral measure
as follows:

90
∑

d=1

�

�p̄i,d

�

�> θ CS
abs, (4.32)

where p̄i,d is the demeaned price. The information content of this statistic is
similar to the previous one, but its calculation is simpler.

Long Short-Term Memory (Method 8). Compared with Greff et al.’s (2017)
[60] “vanilla” setup, we make two simplifications. First, our law of motion for
cl

d (4.13) uses the same set of parameters
�

ωl
7,ωl

8,ωl
9

�

twice. This simplification
corresponds to their “Coupled Input and Forget Gate” variant due to Cho et al.
(2014) [39], which is also referred to as Gated Recurrent Units (GRUs) in the
literature. Second, we do not include cl

d or cl
d−1 inside Λ in (4.12) or inside tanh

andΛ in (4.13). This omission corresponds to their “No Peepholes” variant. Greff
et al. (2017) [60] show these simplifications reduce the number of parameters
without compromising predictive accuracy.

We implement LSTM in TensorFlow-GPU 2.6 (tf.keras.models.Sequential).
Our choice of network architecture and activation functions—which constitute
the specification of effective functional forms—are as explained in the main text.
The total number of weight parameters is 2,165. We set other tuning parameters
and the details of numerical optimization as follows: (i) the dropout rate is 0.5,
(ii) the optimizer is tf.keras.optimizer.RMSprop with the learning rate of 0.0005,
(iii) the number of epochs is 100, and (iv) the batch size is 30.

This form ensures the observed values (p0, p1) and their slopes (m0, m1) are fitted exactly. It
has become a default specification of CS in SciPy, a set of commonly used Python libraries for
scientific computing.

127 4.10 Appendix A: Methodological Details and Simulations

Ensemble in Random Forests (Method 9). The relationship between “deci-
sion trees” and “random forests” is as follows, according to Murphy (2012, ch.
16) [99]. Because finding the truly optimal partitioning in a decision-trees model
is computationally infeasible, some greedy, iterative procedures are used in the
estimation/tuning of the parameters

�

ωRF ,κRF
�

. However, the hierarchical na-
ture of this process leads to unstable predictions. Averaging over multiple esti-
mates from bootstrapped subsamples (“bootstrap aggregating” or “bagging”) is a
commonly used technique to reduce this variance. A further improvement is pos-
sible by randomly choosing a subset of input variables, in addition to “ bagging.”
This technique is called “ random forests” (Breiman 2001a) [22] and is known
to perform well in many different contexts (e.g., Caruana and Niculescu-Mizil
2006) [34].

We implement E-RF in scikit-learn 0.24.2 (sklearn.ensemble. RandomForest-
Classifier), with default options for all settings.

Ensemble in Long Short-Term Memory (Method 10). Our E-LSTM imple-
mentation details are the same as in the basic LSTM (Method 8). The only
difference is that the total number of weight parameters is larger at 2,933 to
incorporate the additional input variables from Methods 1–7.

4.10.2 A.2 Parameter Optimization

We define two types of prediction errors as follows:

% false negative (θ) ≡

∑

(i,t) I
¦

×c yclei,t (θ) = 0, c yclei,t = 1
©

all predic t ions
× 100, and

% false positive (θ) ≡

∑

(i,t) I
¦

×c yclei,t (θ) = 1, c yclei,t = 0
©

all predic t ions
× 100.

They correspond to type II errors and type I errors in statistics, respectively.

We occasionally encounter cases in which a range of parameter values attain
the same (maximum) accuracy. In such cases, we report the median of all θ ∗

values that we find in our grid search. These cases typically involve “degenerate”
predictions in which ×c yclei,t (θ) = 1 or ×c yclei,t (θ) = 0 for all (i, t), and hence
are mostly irrelevant for the purpose of finding well-performing θs.

128 4.10 Appendix A: Methodological Details and Simulations

Optimization Algorithm The objective function to be maximized for all para-
metric models was classification accuracy (defined as the fraction of correct clas-
sifications) as a function of theta. These functions are discrete in the output space
and non-convex, making derivative-based optimization impossible. To optimize
these functions within the context of the computational framework, given the
limits of the functions, we implemented a grid-search based optimization algo-
rithm, that we call Memoized Adaptive Grid Search (MAGS). MAGS is robust to
badly behaved functions, while being reasonably efficient in terms of the number
of function evaluations, given that it memoizes function evaluations and adapts
the resolution of the search window to increase resolution as it converges on
the goal. MAGS requires a search domain, as well as search resolution, search
window cut, and a termination tolerance parameters. The MAGS algorithm is
presented in Algorithm 4.

MAGS has no optimality guarantees, but it is guaranteed to converge given
the rounding function on line 12, and the termination condition. In practice, it
worked well to optimize these functions in time on the order of milliseconds or
seconds in a fully serial implementation. The biggest factor in the run time is the
function evaluations, which vary significantly in complexity, with the most com-
putationally intensive function evaluations being the Lomg-Scargle Periodograms.
The MAGS algorithm has the advantage of being trivially parallelizable, since the
function evaluations are fully independent and constitute the vast majority of the
runtime.

4.10.3 A.3 Performance on Simulated Cycles

This section studies the performance of each method on simulated data. Because
artificial cycles and real-world cycles are qualitatively different, our purpose is
not so much testing algorithms as understanding them better in a controlled
environment.

Setup. We consider four kinds of DGPs: (i) white noise, (ii) Edgeworth cycles,
(iii) “reverse Edgeworth” cycles, and (iv) sine waves of various lengths. First,
white noise is simply a 90-day sequence of i.i.d. random draws from the stan-
dard normal distribution. If a method “detects” cycles in white noise, we inter-
pret it as a false positive. Second, we simulate theoretical Edgeworth cycles by
using Maskin and Tirole’s (1988) [97] example.47 Third, we simulate cycles with

47We set the annual discount factor to 0.9, which translates into the daily discount factor of
δ = 0.9997 (in Maskin and Tirole’s notation). The probability of a big price increase at the

129 4.10 Appendix A: Methodological Details and Simulations

Algorithm 4: Memoized Adaptive Grid Search
Data: Objective Function f (θ), Upper and lower bounds on θ , resolution of

search grid φ, domain cut size s, tolerance ε
Result: Optimal θ ∗ which maximizes f for p ∈ [θlow, θhigh] : p = ε

�

θ
ε +

1
2

�

1 Function MAGS(f (θ), θlow, θhigh, φ, s, ε):
2 l ← θlow
3 r ← θhigh
4 w←∞
5 i← 1
6 m← {} /* hash table with key θ and value f (θ) */

7 while w> ε do
8 w← r − l
9 ψ← w

φ∗i
10 p← l
11 while p ≤ r do
12 p← ε

� p
ε +

1
2

�

/* round p to same precision as ε */

13 if p /∈ m then
14 insert p 7→ f (p) into m /* p 7→ f (p) is key value pair */

15 end
16 p← p+ψ
17 end
18 c← p : max(f (p) ∈ m)
19 l ←max(c − w

s , l)
20 r ←min(c + w

s , r)
21 i← i + 1
22 end
23 return c

the opposite asymmetry (i.e., few big decreases and many small increases) by re-
versing the time stamps of simulated Edgeworth cycles in the above. Fourth, we
generate sine waves (i.e., symmetric cycles) of five different wavelengths: 3, 7,

bottom of a price cycle (in their notation) is

α (δ) =

�

3δ2 − 1
� �

1+δ2 +δ4
�

8+ 7δ2 + 2δ4 + 3δ6
≈ 0.2997.

With two firms taking turns to change prices in the grid of seven different price levels,
�

0, 1
6 , 2

6 , . . . , 1
	

, the Edgeworth-cycle MPE entails asymmetric cycles of approximately weekly
frequency. We simulate each 90-day sequence of data by randomly drawing one of the seven
price levels as firm 2’s initial price, to which firm 1 best-responds on day 1, to which firm 2 best-
responds on day 2, and so on. These best responses are based on the equilibrium strategy profile
of Maskin and Tirole’s Table II. We use firm 1’s prices as simulated data.

130 4.10 Appendix A: Methodological Details and Simulations

14, 21, and 28 days. We generate 10,000 quarters of simulated data based on
each of these eight DGPs. Figure 4.5 shows examples of simulated cycles.

Figure 4.5: Examples of Simulated Cycles

Note: These pictures show examples of simulated price series before we transform them to match the
mean and standard deviation of each dataset. The horizontal axes represent calendar days.

Each cycle-detection method comes in three versions as we optimize its pa-
rameters in three different datasets: WA, NSW, and Germany (Table 4.2). To
match the mean and standard deviation of each (real) dataset, we rescale the
simulated data through an affine transformation.

Results. Table 4.4 reports the percentages of simulated data (10,000 quarters
each) that are classified as “ cycling.” Ideally, white noise should be classified as
non-cycles and the rest as cycles, but that is not always the case. The top panel
of Table 4.4 shows Method 4 (MBPI) and 7 (CS) mistakenly identify cycles in
100% of the white noise simulations. The reason is that they rely on counting
the number of upward (and downward) price movements. White noise could
trivially satisfy these criteria.

By contrast, Methods 1–3 are not fooled by white noise but fail to detect
cycles in most other simulations, with the exception of Method 2 (MIMD) in
theoretical Edgeworth cycles (53%). It is not surprising that these asymmetry-
based methods fail to detect non-Edgeworth cycles; they are designed in such
a way. Howerve, the result that Methods 1 (PRNR) and 3 (NMC) detect 0% of
Edgeworth cycles is surprising. These false negatives are caused by the particular

131 4.10 Appendix A: Methodological Details and Simulations

Table 4.4: Performance on Simulated Data (% Classified as Cycling)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. All Models Trained with Labeled Data from Western Australia

White noise 0 0 36 100 25 19 100 0 0 0
Edgeworth 0 53 0 100 91 92 100 28 90 40
Reverse Edgeworth 0 0 0 70 91 92 100 0 6 0
Sine wave: 3 days 0 0 0 100 100 100 100 0 0 0
Sine wave: 7 days 0 0 0 85 100 100 100 72 3 54
Sine wave: 14 days 0 0 0 12 100 100 0 23 0 26
Sine wave: 21 days 0 0 0 0 100 100 0 0 0 0
Sine wave: 28 days 100 0 0 0 100 100 0 0 0 0

II. All Models Trained with Labeled Data from New South Wales

White noise 100 0 80 100 22 15 100 0 3 0
Edgeworth 100 100 100 100 98 99 100 0 29 0
Reverse Edgeworth 65 0 100 15 98 99 100 0 0 0
Sine wave: 3 days 100 0 100 100 100 100 100 0 0 0
Sine wave: 7 days 100 0 100 20 100 100 100 0 27 0
Sine wave: 14 days 100 0 100 0 100 100 100 0 100 0
Sine wave: 21 days 100 0 100 0 100 100 100 87 100 100
Sine wave: 28 days 100 0 100 0 100 100 100 100 100 47

III. All Models Trained with Labeled Data from Germany

White noise 0 24 17 100 0 0 100 85 4 100
Edgeworth 0 100 0 64 0 0 100 86 49 100
Reverse Edgeworth 0 0 0 100 0 0 100 96 4 18
Sine wave: 3 days 0 0 0 100 0 0 100 56 8 100
Sine wave: 7 days 0 0 0 100 0 4 100 36 0 100
Sine wave: 14 days 0 0 0 100 0 4 0 0 0 4
Sine wave: 21 days 0 0 0 92 0 4 0 0 0 0
Sine wave: 28 days 0 0 0 44 0 4 0 0 0 0

Note: Each result (%) is based on 10,000 quarters of simulated data. See text for details.

way in which Maskin and Tirole specify their model—each firm changes its price
once every two days. There cannot be consecutive days of (strictly) positive or
(strictly) negative “runs,” which could fool Method 1. Likewise, Method 3 could
be fooled by the 45 days of inaction in each 90-day sequence because the median
price change is zero.

The “best” methods in the top panel are Methods 5 (FT) and 6 (LS) in the
sense that they correctly reject most of the white noise as non-cycles and correctly
detect most of the artificial cycles. In particular, their unique ability to detect
cycles of any length is noteworthy. Even though they are trained in the WA data,
which contain only weekly or two-week cycles, they correctly flag 100% of sine
waves of both higher and lower frequencies.48

48We should note, of course, that these spectral methods are specifically designed for sine

132 4.10 Appendix A: Methodological Details and Simulations

Finally, the performance of the nonparametric/machine-learning models of
Methods 8 (LSTM), 9 (E-RF), and 10 (E-LSTM) are somewhere in the middle.
On the one hand, they correctly reject 100% of the white noise as non-cycles and
correctly detect cycles in some of the simulated cycles (theoretical Edgeworth cy-
cles and weekly sine waves). On the other hand, they ignore most of the reverse
Edgeworth cycles and the other sine waves. In other words, they faithfully detect
patterns that they are trained to recognize (i.e., the cycles with Edgeworth-type
asymmetry or approximately weekly frequency in the WA data) and reject others.

The middle panel of Table 4.4 shows broadly similar results with the NSW-
trained models. The original NSW data feature longer cycles of 2–4 week fre-
quencies. Consequently, the nonparametric methods (8–10) respond only to the
sine waves of relatively long wavelengths. The spectral methods (5 and 6) do
well across all DGPs. Most of the existing methods (and Method 7) make degen-
erate predictions, but Method 2 happens to make perfectly correct predictions in
the first two DGPs (white noise and Edgeworth cycles).

The bottom panel of Table 4.4 reports the performances of the models trained
in the German data, in which cycles are noisy, nuanced, and generally difficult to
detect. Almost all methods produce degenerate predictions on simulated data,
with the exception of Method 2 (in the first two DGPs). Method 9 is another ex-
ception. Methods 4, 7, 8, and 10 make useless predictions by classifying most or
all of white noise as cycles, but they are capable of distinguishing between shorter
and longer cycles (i.e., they respond to shorter cycles but not longer ones). This
distinction reflects the fact that typical cycles in Germany are weekly.

In conclusion, these simulations further clarify the performance characteris-
tics of the algorithms. Certain methods (mostly Methods 1–4 and 7) struggle
to reject white noise, whereas the spectral methods (Methods 5 and 6) perform
well across the board—as long as they are trained on the data with clear cycles
(WA and NSW). More flexible models (Methods 8–10) adapt to nuanced, specific
data patterns. The 10 methods’ relative performance rankings in the simulated
data are often radically different from the ones in the real-world data (Table
4.2). Hence, perhaps the most important lesson from this exercise is that the
real-world data are quite heterogeneous and qualitatively different from simu-
lated data with artificial cycles. The analyst should use extreme caution when
applying a pre-trained model to new datasets.

Artificial Cycles with Noise. How do performances change if we add noise to
the simulated data? Figure 4.6 shows examples of simulated cycles with noise.

waves. Their real-world performance may not be as good, as we show in the main text.

133 4.10 Appendix A: Methodological Details and Simulations

Tables 4.5, 4.6, and 4.7 report results when small, medium, and large white
noises are added to the artificial cycles, respectively. We do not add noise to the
first “white noise” simulation because it is already pure noise. Nevertheless, the
three tables keep listing the same white-noise results as a reminder that some of
the predictions are degenerate (i.e., full of false positives).

Figure 4.6: Examples of Simulated Cycles with Noise

Note: These pictures show examples of simulated price series before we transform them to match the
mean and standard deviation of each dataset. The horizontal axes represent calendar days.

One might expect monotonically decreasing performances as we increase the
noise level, which we operationalize as the standard deviation of the i.i.d. normal
distribution. However, Table 4.5 shows small noise (standard deviation = 0.05)
could actually help some of the existing methods that rely on asymmetry. Method
1 (trained in the WA data) now detects at least 10% of theoretical Edgeworth
cycles, and Method 3 (also trained in the WA data) detects 93% of them, even
though neither method could detect any noiseless Edgeworth cycles (Table 4.4).
The reason is that the noise breaks the dominance of zero-price-change days in

134 4.10 Appendix A: Methodological Details and Simulations

theoretical Edgeworth cycles. The performance of Method 4 also improves, but
its predictions are mostly degenerate (i.e., it classifies 100% of pure white noise
as cycles) anyway. The additional noise mechanically increases the number of
big price increases, which triggers this method to flag more cycles.

By contrast, Methods 5 and 6 are hardly affected by small noise. These spec-
tral models correctly dismiss noise as noise because white noise does not contain
any systematic frequency component. Method 7 is unaffected, but that is because
it typically finds cycles in either 100% or 0% of the cases due to its simple rule.
The impact of noise on Methods 8–10 is mixed. Noise decreases the percentages
of detected Edgeworth cycles but often increases those of reverse Edgeworth cy-
cles and 3-day sine waves. Overall, a little bit of noise could be either good or
bad, or have no effect, depending on the nature of simulated cycles and detection
algorithms.

Table 4.6 shows medium-sized noise (standard deviation = 0.25) induces
broadly similar patterns, albeit with some differences. For example, Method 1
stops working. Method 3 seems to perform reasonably well, but it now detects
only 72% of Edgeworth cycles, instead of 93% with small noise. Moreover, it
starts detecting cycles in other simulations by chance (in the top panel) even
though its NMC criterion is supposed to capture only Edgeworth-type asymme-
try. Methods 5 and 6 still perform well (in the top and middle panel) but now
detect only 63%–82% of the asymmetric cycles. Methods 8–10 are also nega-
tively affected in most cases.

Finally, Table 4.7 reports the results under large noise (standard deviation
= 0.5). Noise of any size is better than no noise for the use of Method 3 on
theoretical Edgeworth cycles, but most of its predictions are now fooled by the
presence of random shocks. Methods 5 and 6 are the only ones that continue to
deliver valid classifications, albeit with the relatively low accuracy of 29%–39%
for the asymmetric cycles.

135 4.10 Appendix A: Methodological Details and Simulations

Table 4.5: Simulated Data with Small Noise (Standard Deviation = 0.05)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. All Models Trained with Labeled Data from Western Australia

White noise 0 0 36 100 25 19 100 0 0 0
Edgeworth 10 0 93 100 90 92 100 22 7 17
Reverse Edgeworth 0 0 0 96 90 91 100 0 8 0
Sine wave: 3 days 0 0 27 100 100 100 100 0 0 0
Sine wave: 7 days 0 0 34 87 100 100 100 72 2 53
Sine wave: 14 days 0 0 7 17 100 100 0 22 0 26
Sine wave: 21 days 4 0 0 0 100 100 0 2 0 0
Sine wave: 28 days 6 0 0 0 100 100 0 0 0 0

II. All Models Trained with Labeled Data from New South Wales

White noise 100 0 80 100 22 15 100 0 3 0
Edgeworth 100 7 100 100 97 98 100 0 2 0
Reverse Edgeworth 100 0 43 57 98 99 100 0 1 0
Sine wave: 3 days 100 0 92 100 100 100 100 0 0 0
Sine wave: 7 days 100 0 99 30 100 100 100 0 27 0
Sine wave: 14 days 100 0 99 0 100 100 100 0 99 0
Sine wave: 21 days 100 0 99 0 100 100 100 78 99 100
Sine wave: 28 days 100 0 100 0 100 100 100 100 100 45

III. All Models Trained with Labeled Data from Germany

White noise 0 24 17 100 0 0 100 85 4 100
Edgeworth 0 93 48 99 0 0 100 85 41 100
Reverse Edgeworth 0 0 0 100 0 0 100 96 5 43
Sine wave: 3 days 0 7 5 100 0 0 100 55 14 100
Sine wave: 7 days 0 1 5 100 0 4 100 38 0 100
Sine wave: 14 days 0 0 0 100 0 4 0 0 0 2
Sine wave: 21 days 0 0 0 92 0 4 0 0 0 0
Sine wave: 28 days 0 0 0 46 0 4 0 0 0 0

Note: The “white noise” simulations and results are the same as in Table 4.4 (with standard deviation = 1 in the
original simulation). We list them here for reference—as a reminder that some of the predictions are degenerate.
Each result (%) is based on 10,000 quarters of simulated data. See the text for details.

136 4.10 Appendix A: Methodological Details and Simulations

Table 4.6: Simulated Data with Medium Noise (Standard Deviation = 0.25)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. All Models Trained with Labeled Data from Western Australia

White noise 0 0 36 100 25 19 100 0 0 0
Edgeworth 0 0 72 100 64 63 100 0 0 0
Reverse Edgeworth 0 0 10 100 64 63 100 0 1 0
Sine wave: 3 days 0 0 40 100 100 100 100 0 1 0
Sine wave: 7 days 0 0 40 99 100 100 100 56 3 27
Sine wave: 14 days 0 0 20 51 100 100 0 1 0 19
Sine wave: 21 days 0 0 11 34 100 100 0 0 0 0
Sine wave: 28 days 0 0 11 30 100 100 0 0 0 0

II. All Models Trained with Labeled Data from New South Wales

White noise 100 0 80 100 22 15 100 0 3 0
Edgeworth 100 1 97 100 78 82 100 0 1 0
Reverse Edgeworth 100 0 50 100 77 82 100 0 0 0
Sine wave: 3 days 100 0 75 100 100 100 100 0 0 0
Sine wave: 7 days 100 0 90 91 100 100 100 0 29 0
Sine wave: 14 days 100 0 95 32 100 100 100 0 93 0
Sine wave: 21 days 100 0 95 19 100 100 100 0 99 0
Sine wave: 28 days 100 0 96 16 100 100 100 0 99 8

III. All Models Trained with Labeled Data from Germany

White noise 0 24 17 100 0 0 100 85 4 100
Edgeworth 0 58 46 100 0 0 100 77 26 100
Reverse Edgeworth 0 5 3 100 0 0 100 90 6 99
Sine wave: 3 days 0 23 24 100 0 0 100 56 33 100
Sine wave: 7 days 0 12 16 100 0 4 100 61 0 100
Sine wave: 14 days 0 9 2 100 0 4 0 78 0 2
Sine wave: 21 days 0 7 1 100 0 4 0 13 0 0
Sine wave: 28 days 0 6 1 100 0 4 0 18 0 0

Note: The “white noise” simulations and results are the same as in Table 4.4 (with standard deviation = 1 in the
original simulation). We list them here for reference—as a reminder that some of the predictions are degenerate.
Each result (%) is based on 10,000 quarters of simulated data. See the text for details.

137 4.10 Appendix A: Methodological Details and Simulations

Table 4.7: Simulated Data with Large Noise (Standard Deviation = 0.5)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. All Models Trained with Labeled Data from Western Australia

White noise 0 0 36 100 25 19 100 0 0 0
Edgeworth 0 0 44 100 34 29 100 0 0 0
Reverse Edgeworth 0 0 29 100 34 29 100 0 0 0
Sine wave: 3 days 0 0 40 100 100 95 100 0 3 0
Sine wave: 7 days 0 0 38 100 100 100 100 2 4 1
Sine wave: 14 days 0 0 27 97 98 100 63 0 0 0
Sine wave: 21 days 0 0 22 95 100 100 49 0 0 0
Sine wave: 28 days 0 0 22 93 100 100 48 0 0 0

II. All Models Trained with Labeled Data from New South Wales

White noise 100 0 80 100 22 15 100 0 3 0
Edgeworth 100 0 87 100 39 35 100 0 2 0
Reverse Edgeworth 100 0 75 100 38 35 100 0 1 0
Sine wave: 3 days 100 0 73 100 100 100 100 0 0 0
Sine wave: 7 days 100 0 87 100 100 100 100 0 4 0
Sine wave: 14 days 100 0 88 93 100 100 100 0 48 0
Sine wave: 21 days 100 0 88 88 100 100 100 0 55 0
Sine wave: 28 days 100 0 89 87 100 100 100 0 62 0

III. All Models Trained with Labeled Data from Germany

White noise 0 24 17 100 0 0 100 85 4 100
Edgeworth 0 31 22 100 0 0 100 83 11 100
Reverse Edgeworth 0 19 13 100 0 0 100 87 7 100
Sine wave: 3 days 0 27 25 100 0 0 100 62 47 100
Sine wave: 7 days 0 18 16 100 0 4 100 79 0 100
Sine wave: 14 days 0 17 7 100 0 4 44 93 0 69
Sine wave: 21 days 0 16 5 100 0 4 33 94 0 35
Sine wave: 28 days 0 15 4 100 0 4 30 96 0 17

Note: The “white noise” simulations and results are the same as in Table 4.4 (with standard deviation = 1 in the
original simulation). We list them here for reference—as a reminder that some of the predictions are degenerate.
Each result (%) is based on 10,000 quarters of simulated data. See the text for details.

138 4.11 Appendix B: Additional Results

4.11 Appendix B: Additional Results

4.11.1 B.1 Combining Methods 1–4

This section investigates whether combining some or all of the existing methods
leads to better performances. We construct 11 combinatorial methods based on
Methods 1–4. Each combination comes in two specifications, AND and OR, de-
pending on the logical operator combining its constituent methods. For example,
the two variants of combination (7) in Table 4.8 are “Methods 1 AND 2 AND 3”
and “Methods 1 OR 2 OR 3.” The former detects cycles if all of Methods 1–3 do;
the latter detects cycles if any of Methods 1–3 does.

Table 4.8: Accuracy (%) of Combinatorial Methods

Combination (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Constituent methods:
1. PRNR Yes Yes Yes – – – Yes Yes Yes – Yes
2. MIMD Yes – – Yes Yes – Yes Yes – Yes Yes
3. NMC – Yes – Yes – Yes Yes – Yes Yes Yes
4. MBPI – – Yes – Yes Yes – Yes Yes Yes Yes

I. Western Australia (# manually labeled observations: 24,569)

AND 90.34 90.88 90.89 91.18 91.74 89.58 90.34 90.33 90.89 91.18 90.33
OR 91.92 89.38 90.28 89.58 89.93 90.10 89.58 89.91 90.10 89.74 89.74

II. New South Wales (# manually labeled observations: 9,693)

AND 81.18 78.74 81.91 78.62 81.86 81.55 81.18 82.08 81.91 81.86 82.08
OR 76.18 70.96 78.38 70.96 78.31 70.96 70.96 76.03 70.96 70.96 70.96

III. Germany (# manually labeled observations: 35,685)

AND 60.44 60.44 60.44 60.49 60.84 60.48 60.44 60.44 60.44 60.49 60.44
OR 60.69 60.48 65.48 60.68 65.34 65.48 60.68 65.34 65.48 65.34 65.34

Note: “AND” and “OR” mean the constituent methods are combined with “and” and “or” operators, respectively.
We randomly split the sample into an 80% training subsample and a 20% testing subsample 101 times. In each
split, the former subsample is used for setting parameter values, whereas the latter subsample is used to evaluate
the accuracy of predictions. All accuracy statistics are the medians from the 101 testing subsamples.

Table 4.8 shows that the performances of these combinatorial methods are
similar to those of their constituent methods. The ranges of median accuracy re-
sults are 89%–92% in WA, 71%–82% in NSW, and 60%–65% in Germany, which
are almost identical to those of individual Methods 1–4 in Table 4.2. Thus, com-
binations do not generate materially different predictions.

139 4.11 Appendix B: Additional Results

4.11.2 B.2 Variants of Methods 5–7

Table 4.9 reports the performances of the variants of Methods 5 (FT), 6 (LS),
and 7 (CS). In Methods 5 and 6, the “max” and “ HHI” variants are as explained
in section 4.2 and Appendix A.1. The “peak” variant is similar to the “max”
one except that we additionally use a peak-detection algorithm to ensure we
are measuring the height of the highest (and well-behaved) peak in the power
spectrum and not some accidental maximum due to noisy data. In Method 7, the
“roots” variant is the baseline version in section 4.2. Its “integral” and “absolute
value” variants are explained in Appendix A.1.

Table 4.9: Performance of Automatic Detection Methods (Other Variants)

(5) (5′) (5′′) (6) (6′) (6′′) (7)
�

7′
�

(7′′)
Method FTmax FTpeak FT2hhi LSmax LSpeak LShhi CSroots CSint CSabs

I. Western Australia (# manually labeled observations: 24,569)

Parameter 1 0.12 0.14 0.04 0.21 0.23 0.44 22.50 551.47 246.08
Parameter 2 − − − − − − − − −
% correct (median) 90.11 88.40 87.61 90.15 89.66 81.83 85.47 83.42 85.14
(Standard deviations) (0.40) (0.45) (0.39) (0.36) (0.43) (0.54) (0.45) (0.54) (0.42)
of which cycling 58.24 57.31 59.12 57.92 57.10 54.13 56.41 55.92 57.14
of which not 31.87 31.09 28.49 32.23 32.56 27.70 29.06 27.49 28.00
% false negative 2.48 4.05 1.91 3.30 4.50 6.15 5.29 4.82 3.32
% false positive 7.41 7.5 10.48 6.55 5.84 12.03 9.24 11.76 11.54

II. New South Wales (# manually labeled observations: 9,693)

Parameter 1 0.20 0.27 0.21 0.57 0.81 29.21 4.50 783.11 459.83
Parameter 2 − − − − − − − − −
% correct (median) 80.71 81.85 81.23 80.82 82.21 81.38 73.90 75.45 79.63
(Standard deviations) (0.80) (0.70) (0.83) (0.80) (0.81) (0.84) (0.89) (0.79) (0.87)
of which cycling 66.53 66.99 64.72 66.43 66.89 67.30 70.40 68.13 67.25
of which not 14.18 14.85 16.50 14.39 15.32 14.08 3.51 7.32 12.38
% false negative 5.47 4.54 6.19 4.02 4.07 4.54 0.77 3.20 3.56
% false positive 13.82 13.62 12.58 15.16 13.72 14.08 25.32 21.35 16.81

III. Germany (# manually labeled observations: 35,685)

Parameter 1 0.24 0.90 0.67 0.62 1.93 42.96 24.50 994.19 4, 623
Parameter 2 − − − − − − − − −
% correct (median) 60.50 60.57 60.35 60.36 60.50 60.52 71.28 60.29 60.49
(Standard deviations) (0.56) (0.50) (0.53) (0.59) (0.57) (0.53) (0.42) (0.48) (0.48)
of which cycling 0.00 0.00 0.00 0.00 0.00 24.30 25.88 0.00 0.00
of which not 60.50 60.57 60.35 60.36 60.50 47.00 45.40 60.29 60.49
% false negative 39.50 39.41 39.65 39.57 39.50 15.26 14.28 39.51 0.00
% false positive 0.00 0.01 0.00 0.07 0.00 13.43 14.45 0.20 39.51

Note: See the text of Appendix sections A.1 and B.2 for the definition of each method.

Conclusion

This dissertation has demonstrated how state-of-the-art computational tools and
methods can be deployed to improve the analytical and control processes of en-
ergy markets including electric power markets and associated grids, and retail
gasoline markets.

Part I demonstrated how significant improvements in the performance of com-
putational models in time critical applications can be achieved by improved mod-
eling techniques and optimizing the hardware utilization, either by selecting a
method which reduces the bottlenecks or by adopting scheduling techniques bet-
ter suited for the computational nature of the problem at hand. The case study
presented in Chapter 1 showed how in the real-world trading environment, the
careful management of the resources during the execution of embarrassingly par-
allel LP simulations improved the throughput of computations by 38%, reducing
daily computation time from 6 166 CPU hours to about 2 280 CPU hours. Specif-
ically, it was shown that on the basis of a simple benchmark of empirical mea-
surements, without knowledge of the hardware architecture or characteristics of
the solution algorithm, a procedure for parallel processing of a large number of
simulations could be proposed and parameterized to significantly increase com-
putational throughput for a given problem on a given computational resource.

Chapter 2 presented a selection of modeling and solution techniques to in-
crease both the performance and scalability of power market optimization mod-
els. Specifically, it showed how dramatically the performance of a given math-
ematical model definition can vary depending on both the assembly and imple-
mentation of the model as well as the modeling framework used that is responsi-
ble for interfacing with the optimization solver. It further showed how improved
scaling can make the difference between a model that can be feasibly deployed
for simulations with a period of greater than a week, and one that can only be
deployed for simulations with a time period of up to a few days.

140

141 Conclusion

Part II showed how the development of efficient tools to manage highly dy-
namic and stochastic power grids plays a part in lowering the carbon dioxide in-
tensity of power production. Chapter 3 presented a novel data-driven approach
to approximately solving a fully constrained formulation of the power generation
unit commitment problem. By leveraging exascale computational tools such as
ExaGO, stochastic modeling efforts can exploit parallel computing and modern
computational resources to deliver high-resolution results in short time-frames.
The outcome of such computations can be used to improve both grid operational
efficiency and reliability. One of the key advantages of the presented algorithms
is that they exploit the data generated by optimizations that are already an es-
sential part of grid control workflows; imposing only minimal incremental com-
putational burden by recycling data through graph-based algorithms of linear
computational complexity. This minimal intervention approach showed promis-
ing results on non-trivial test grids of 500 and 2000 buses, consistently provid-
ing unit commitments that strictly enforced all security constraints (including
non-linear) and minimized or fully eliminated the need for load shedding across
contingencies with power imbalance. With further research, this data-driven unit
commitment refinement approach could be tested, refined, and subsequently de-
ployed across a wide array of grids, with larger contingency sets, and stochastic
weather scenarios. A refined and robust implementation of such an approach
could prove to be an efficient and practical method to include contingency and
stochastic weather information into the unit commitment optimization process;
providing more reliable and efficient grids with high penetrations of renewable
energy.

Part III showed that the deployment of high-performance data analysis frame-
works can unlock new possibilities in economics research, and provide tools and
insights to policy makers that allow for the effective regulation and monitoring of
high-impact markets such as retail gasoline. The scalable methods presented in
Chapter 4 to detect Edgeworth cycles propose new paradigms to the economics
community about how the growing amount of “big data” on fuel prices and can
be scrutinized. While simple heuristic filtering and detection methods used in
the existing body of fuel price literature failed to discern cycles in noisy data, the
methods proposed, especially the non-parametric and machine learning meth-
ods, showed significant accuracy even in the most ambiguous cases. These flex-
ible models typically require large amounts of training data, but analysis shows
that such requirements are not a barrier to their successful deployment in aca-
demic or governance contexts. It was further shown that the definition of cycli-

142 Conclusion

cality itself is critical in monitoring and policy making considerations, since the
definition used can be the difference between a positive and a negative statistical
relationship between markups and cycles.

Closing remarks I will finish by thanking all of my collaborators that con-
tributed to the work presented herein, and also played a pivotal role in my growth
and education during this very informative period of my life. Throughout my
doctoral studies I have been mentored and encouraged by so many inspiring col-
leagues. I am pleased to present this thesis as an important paving stone in my
career path. I hope that I can look back upon this path at the end, and say that
it has led humanity closer to a state of energy abundance.

Bibliography

[1] NVIDIA CUDA cuSPARSE Documentation, Accessed: 2024. URL https://
docs.nvidia.com/cuda/cusparse/index.html. Accessed on: February
21, 2024.

[2] X. Abellan, J. Naranjo, C. Simarro, J. Rodriguez, P. Rodenas, and T. Holt.
GREASY: CPU affinity extension, Apr. 2021. URL https://doi.org/10.

5281/zenodo.4668583.

[3] S. Abhyankar, S. Peles, A. Mancinelli, and C. Rutherford. Evaluation of AC
optimal power flow problems on graphical processing units. In Proceedings
of IEEE PES General Meeting, 2021.

[4] S. Abhyankar, S. Peles, A. Mancinelli, and C. Rutherford. ExaGO Manual
version 1.6, 2023.

[5] S. Abhyankar, S. Peles, A. Mancinelli, and C. Rutherford. Exago git repos-
itory, 2023.

[6] S. Y. Abujarad, M. Mustafa, and J. Jamian. Recent approaches of unit com-
mitment in the presence of intermittent renewable energy resources: A re-
view. Renewable and Sustainable Energy Reviews, 70:215–223, 2017. ISSN
1364-0321. URL https://www.sciencedirect.com/science/article/

pii/S1364032116310140.

[7] D. H. Ahn, N. Bass, et al. Flux: Overcoming scheduling challenges for
exascale workflows. Future Generation Computer Systems, 110:202–213,
2020. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2020.04.
006.

[8] C. Alappat, A. Basermann, A. R. Bishop, H. Fehske, G. Hager, O. Schenk,
J. Thies, and G. Wellein. A recursive algebraic coloring technique for
hardware-efficient symmetric sparse matrix-vector multiplication. ACM

143

https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.5281/zenodo.4668583
https://doi.org/10.5281/zenodo.4668583
https://www.sciencedirect.com/science/article/pii/S1364032116310140
https://www.sciencedirect.com/science/article/pii/S1364032116310140

144 Bibliography

Trans. Parallel Comput., 7(3), June 2020. ISSN 2329-4949. URL https:

//doi.org/10.1145/3399732.

[9] M. I. Alomoush. Microgrid dynamic combined power–heat economic-
emission dispatch with deferrable loads and price-based energy storage el-
ements and power exchange. Sustainable Energy, Grids and Networks, 26:
100479, 2021. ISSN 2352-4677. doi: https://doi.org/10.1016/j.segan.
2021.100479.

[10] G. A. Antonopoulos, S. Vitiello, G. Fulli, and M. Masera. Nodal Pricing
in the European Internal Electricity Market. Publications Office of the
European Union, Luxembourg, 2020. ISBN 978-92-76-17571-1. doi:
10.2760/41018.

[11] H. Anzt, W. Sawyer, S. Tomov, P. Luszczek, I. Yamazaki, and J. Don-
garra. Optimizing krylov subspace solvers on graphics processing units. In
Fourth International Workshop on Accelerators and Hybrid Exascale Systems
(AsHES), IPDPS 2014, Phoenix, AZ, 05-2014 2014. IEEE, IEEE.

[12] M. ApS. MOSEK Fusion API for Python 10.1.9, 2023. URL https://docs.

mosek.com/latest/pythonfusion/index.html.

[13] I. Aravena, D. K. Molzahn, S. Zhang, C. G. Petra, F. E. Curtis, S. Tu,
A. Wächter, E. Wei, E. Wong, A. Gholami, K. Sun, X. A. Sun, S. T. El-
bert, J. T. Holzer, and A. Veeramany. Recent developments in security-
constrained ac optimal power flow: Overview of challenge 1 in the arpa-e
grid optimization competition, 2022.

[14] L. A. Arias, E. Rivas, F. Santamaria, and V. Hernandez. A review and anal-
ysis of trends related to demand response. Energies, 11(7), 2018. ISSN
1996-1073. URL https://www.mdpi.com/1996-1073/11/7/1617.

[15] S. Assad, R. Clark, D. Ershov, and L. Xu. Algorithmic pricing and competi-
tion: Empirical evidence from the german retail gasoline market. Working
Paper, 2021.

[16] X. Bai and H. Wei. Semi-definite programming-based method for security-
constrained unit commitment with operational and optimal power flow
constraints. IET Generation, Transmission & Distribution, 3:182–197,
2009.

https://doi.org/10.1145/3399732
https://doi.org/10.1145/3399732
https://docs.mosek.com/latest/pythonfusion/index.html
https://docs.mosek.com/latest/pythonfusion/index.html
https://www.mdpi.com/1996-1073/11/7/1617

145 Bibliography

[17] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye. Grid
structural characteristics as validation criteria for synthetic networks. IEEE
Transactions on Power Systems, 32(4):3258–3265, 2017.

[18] A. B. Birchfield, T. Xu, K. S. Shetye, and T. J. Overbye. Building synthetic
power transmission networks of many voltage levels, spanning multiple
areas. In 51st Hawaii International Conference on System Sciences, 2018.

[19] M. Bollhöfer, A. Eftekhari, S. Scheidegger, and O. Schenk. Large-scale
sparse inverse covariance matrix estimation. SIAM Journal on Scientific
Computing, 41(1):A380–A401, 2019. URL https://doi.org/10.1137/

17M1147615.

[20] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, and K. Gullapalli. Parallel
Algorithms in Computational Science and Engineering, chapter State-of-the-
Art Sparse Direct Solvers, pages 3–33. Springer International Publishing,
2020. ISBN 978-3-030-43736-7. doi: 10.1007/978-3-030-43736-7_1.

[21] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, and K. Gullapalli. State-of-
the-art sparse direct solvers. pages 3–33, 2020. URL https://doi.org/

10.1007/978-3-030-43736-7_1.

[22] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[23] T. Brijs, A. van Stiphout, S. Siddiqui, and R. Belmans. Evaluating the role
of electricity storage by considering short-term operation in long-term
planning. Sustainable Energy, Grids and Networks, 10:104–117, 2017.
ISSN 2352-4677. doi: https://doi.org/10.1016/j.segan.2017.04.002.

[24] BSC Support Team. Greasy user guide. URL: https://github.com/

BSC-Support-Team/GREASY, 2014. Version 2.14.

[25] R. Buizza and M. Leutbecher. The forecast skill horizon, 06/2015 2015.
URL https://www.ecmwf.int/node/8450.

[26] Bundeskartellamt. Fuel Sector Inquiry. Final Report in accordance with §32e
GWB - May 2011 - Summary, 2011.

[27] R. C. Burchett, H. H. Happ, and K. A. Wirgau. Large scale optimal power
flow. IEEE Transactions on Power Apparatus and Systems, 101:3722–3732,
1982.

https://doi.org/10.1137/17M1147615
https://doi.org/10.1137/17M1147615
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1007/978-3-030-43736-7_1
https://github.com/BSC-Support-Team/GREASY
https://github.com/BSC-Support-Team/GREASY
https://www.ecmwf.int/node/8450

146 Bibliography

[28] M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nicholson, J. D.
Siirola, J.-P. Watson, and D. L. Woodruff. Pyomo - Optimization Modeling
in Python, 3rd Edition. Springer, 2021.

[29] D. P. Byrne. Gasoline pricing in the country and the city. Review of Indus-
trial Organization, 55:209–235, 2019.

[30] D. P. Byrne and N. de Roos. Learning to coordinate: A study in retail
gasoline. American Economic Review, 109(2):591–619, 2019.

[31] D. P. Byrne, J. S. Nah, and P. Xue. Australia has the world’s best petrol
price data: Fuelwatch and fuelcheck. Australian Economic Review, 51(4):
564–577, 2018.

[32] C. G. Petra, I.Aravena Solis, N. Gawande, V. Amatya, A. Li, J.
Li, S. Abhyankar, S. Peles, M. Schanen, K. Kim, A. Maldon-
ado, M. Anitescu. ExaSGD - Optimization grid dynamics at Ex-
ascale. https://ecpannualmeeting.com/assets/overview/posters/

exasgd_poster_3column_v4.pdf, 2020.

[33] J. Carpentier. Contribution to the economic dispatch problem. Bulletin de
la Société Française des Electriciens, 8:431–447, 1962.

[34] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd International Conference on
Machine Learning, pages 161–168, 2006.

[35] R. Castanias and H. Johnson. Retail gasoline price fluctuations. Review of
Economics and Statistics, 75(1):171–174, 1993.

[36] A. Chandra and M. Tappata. Consumer search and dynamic price disper-
sion: an application to gasoline markets. RAND Journal of Economics, 42
(4):681–704, 2011.

[37] X. Chen. Large sample sieve estimation of semi-nonparametric models.
In J. Heckman and E. Leamer, editors, Handbook of Econometrics, Volume
6B. North Holland (Elsevier), Amsterdam, Netherlands, 2007.

[38] K. Cheung, D. Gade, C. Silva-Monroy, S. M. Ryan, J.-P. Watson, R. J.-B.
Wets, and D. L. Woodruff. Toward scalable stochastic unit commitment.
Energy Systems, 6(3):417–438, Sep 2015. ISSN 1868-3975. URL https:

//doi.org/10.1007/s12667-015-0148-6.

https://ecpannualmeeting.com/assets/overview/posters/exasgd_poster_3column_v4.pdf
https://ecpannualmeeting.com/assets/overview/posters/exasgd_poster_3column_v4.pdf
https://doi.org/10.1007/s12667-015-0148-6
https://doi.org/10.1007/s12667-015-0148-6

147 Bibliography

[39] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint, art.
1406.1078, 2014.

[40] R. Clark and J.-F. Houde. The effect of explicit communication on pric-
ing: Evidence from the collapse of a gasoline cartel. Journal of Industrial
Economics, 62(2):191–228, 2014.

[41] Cosmin Petra. HiOP User Guide version 0.3. https://github.com/LLNL/
hiop/blob/master/doc/hiop_usermanual.pdf, 2017.

[42] S. Das, P. Acharjee, and A. Bhattacharya. Charging scheduling of electric
vehicle incorporating grid-to-vehicle and vehicle-to-grid technology con-
sidering in smart grid. IEEE Transactions on Industry Applications, 57(2):
1688–1702, 2021. doi: 10.1109/TIA.2020.3041808.

[43] G. Deltas. Retail gasoline price dynamics and local market power. Journal
of Industrial Economics, 56(3):613–628, 2008.

[44] H. W. Dommel and W. F. Tinney. Optimal power flow solutions. IEEE
Transactions on Power Apparatus and Systems, 87:1866–1876, 1968.

[45] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and
I. Yamazaki. Accelerating numerical dense linear algebra calculations with
gpus. Numerical Computations with GPUs, pages 1–26, 2014.

[46] J. Doyle, E. Muehlegger, and K. Samphantharak. Edgeworth cycles revis-
ited. Energy Economics, 32(3):651–660, 2010.

[47] A. Eckert. Retail price cycles and response asymmetry. Canadian Journal
of Economics, 35(1):52–77, 2002.

[48] A. Eckert and H. Eckert. Regional patterns in gasoline station rational-
ization in canada. Journal of Industry, Competition and Trade, 14:99–122,
2013.

[49] F. Y. Edgeworth. The pure theory of monopoly. In Papers Relating to Polit-
ical Economy, volume 1, pages 111–142. MacMillan, London, 1925.

[50] S. Ekisheva and H. Gugel. North american ac circuit outage rates and
durations in assessment of transmission system reliability and availability.
In 2015 IEEE Power Energy Society General Meeting, pages 1–5, 2015.

https://github.com/LLNL/hiop/blob/master/doc/hiop_usermanual.pdf
https://github.com/LLNL/hiop/blob/master/doc/hiop_usermanual.pdf

148 Bibliography

[51] ENTSO-E. Statistics and data, 2021. Accessed: 2021-12-01.

[52] I. Farhat and M. El-Hawary. Optimization methods applied for solving the
short-term hydrothermal coordination problem. Electric Power Systems
Research, 79(9):1308–1320, 2009. ISSN 0378-7796. URL https://www.

sciencedirect.com/science/article/pii/S0378779609000947.

[53] E. A. Feinberg and D. Genethliou. Load Forecasting, pages 269–285.
Springer US, Boston, MA, 2005. ISBN 978-0-387-23471-7. doi: 10.1007/
0-387-23471-3_12. URL https://doi.org/10.1007/0-387-23471-3_

12.

[54] J. Feinberg and H. P. Langtangen. Chaospy: An open source tool for de-
signing methods of uncertainty quantification. Journal of Computational
Science, 11:46–57, 2015. ISSN 1877-7503. doi: https://doi.org/10.1016/
j.jocs.2015.08.008.

[55] O. Foros and F. Steen. Vertical control and price cycles in gasoline retailing.
Scandinavian Journal of Economics, 115(3):640–661, 2013.

[56] P. Fotis, S. Karkalakos, and D. Asteriou. The relationship between energy
demand and real GDP growth rate: The role of price asymmetries and spa-
tial externalities within 34 countries across the globe. Energy Economics,
66:69–84, 2017. ISSN 0140-9883. doi: https://doi.org/10.1016/j.eneco.
2017.05.027.

[57] S. Frank and S. Rebennack. An introduction to optimal power flow: The-
ory, formulation, and examples. IIE Transactions, 48(12):1172–1197,
2016. doi: 10.1080/0740817X.2016.1189626. URL https://doi.org/

10.1080/0740817X.2016.1189626.

[58] F. García-Muñoz, F. Díaz-González, and C. Corchero. A novel algorithm
based on the combination of ac-opf and ga for the optimal sizing and
location of ders into distribution networks. Sustainable Energy, Grids and
Networks, 27:100497, 2021. ISSN 2352-4677. doi: https://doi.org/10.
1016/j.segan.2021.100497.

[59] I. Gomes, R. Melicio, and V. Mendes. Dust effect impact on pv in an ag-
gregation with wind and thermal powers. Sustainable Energy, Grids and
Networks, 22:100359, 2020. ISSN 2352-4677. doi: https://doi.org/10.
1016/j.segan.2020.100359.

https://www.sciencedirect.com/science/article/pii/S0378779609000947
https://www.sciencedirect.com/science/article/pii/S0378779609000947
https://doi.org/10.1007/0-387-23471-3_12
https://doi.org/10.1007/0-387-23471-3_12
https://doi.org/10.1080/0740817X.2016.1189626
https://doi.org/10.1080/0740817X.2016.1189626

149 Bibliography

[60] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhu-
ber. Lstm: A search space odyssey. IEEE Transactions on Neural Networks
and Learning Systems, 28(10):2222–2232, 2017.

[61] N. Guha, Z. Wang, M. Wytock, and A. Majumdar. Machine learning for ac
optimal power flow, 2019.

[62] J. S. Guzmán-Feria, L. M. Castro, N. González-Cabrera, and J. Tovar-
Hernández. Security constrained opf for ac/dc systems with power
rescheduling by power plants and vsc stations. Sustainable Energy, Grids
and Networks, 27:100517, 2021. ISSN 2352-4677. doi: https://doi.org/
10.1016/j.segan.2021.100517.

[63] M. Haberg. Fundamentals and recent developments in stochastic unit
commitment. International Journal of Electrical Power & Energy Systems,
109:38–48, 2019. ISSN 0142-0615. URL https://www.sciencedirect.

com/science/article/pii/S014206151832547X.

[64] H. Haes Alhelou, M. E. Hamedani-Golshan, T. C. Njenda, and P. Siano. A
survey on power system blackout and cascading events: Research moti-
vations and challenges. Energies, 12(4), 2019. ISSN 1996-1073. URL
https://www.mdpi.com/1996-1073/12/4/682.

[65] N. Hanford, V. Ahuja, M. Farrens, D. Ghosal, M. Balman, E. Pouyoul, and
B. Tierney. Improving network performance on multicore systems: Impact
of core affinities on high throughput flows. Future Generation Computer
Systems, 56:277–283, 2016. ISSN 0167-739X. doi: https://doi.org/10.
1016/j.future.2015.09.012.

[66] S. Hanifi, X. Liu, Z. Lin, and S. Lotfian. A critical review of wind power
forecasting methods—past, present and future. Energies, 13(15), 2020.
ISSN 1996-1073. doi: 10.3390/en13153764. URL https://www.mdpi.

com/1996-1073/13/15/3764.

[67] B. E. Hansen. Econometrics. Manuscript, 2020.

[68] S. Harasis, Y. Sozer, and M. Elbuluk. Reliable islanded microgrid operation
using dynamic optimal power management. IEEE Transactions on Industry
Applications, 57(2):1755–1766, 2021. doi: 10.1109/TIA.2020.3047587.

[69] W. E. Hart, J.-P. Watson, and D. L. Woodruff. Pyomo: Modeling and solving
mathematical programs in python. Mathematical Programming Computa-
tion, 3(3):219–260, 2011.

https://www.sciencedirect.com/science/article/pii/S014206151832547X
https://www.sciencedirect.com/science/article/pii/S014206151832547X
https://www.mdpi.com/1996-1073/12/4/682
https://www.mdpi.com/1996-1073/13/15/3764
https://www.mdpi.com/1996-1073/13/15/3764

150 Bibliography

[70] J. Haucap, U. Heimeshoff, and M. Siekmann. Fuel prices and station
heterogeneity on retail gasoline markets. Energy Journal, 38(6):81–103,
2017.

[71] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997.

[72] T. Holt, M. Igami, and S. Scheidegger. Replication package for: Detecting
edgeworth cycles, Nov. 2023. URL https://doi.org/10.5281/zenodo.

10126406.

[73] T. Holt, M. Igami, and S. Scheidegger. Detecting edgeworth cycles. The
Journal of Law and Economics, 2023.

[74] T. Holt, S. Abhyankar, T. Kuruganti, O. Schenk, and S. Peles. Data-driven
unit commitment refinement-a scalable approach for complex modern
power grids. In T. X. Bui, editor, Proceedings of the 57th Hawaii Interna-
tional Conference on System Sciences, pages 3082–3092. HICSS Conference
Office, January 2024.

[75] C. Hunziker, J. Lehmann, T. Keller, T. Heim, and N. Schulz. Sustainability
assessment of novel transformer technologies in distribution grid appli-
cations. Sustainable Energy, Grids and Networks, 21:100314, 2020. ISSN
2352-4677. doi: https://doi.org/10.1016/j.segan.2020.100314.

[76] M. Ivaldi, B. Jullien, P. Rey, P. Seabright, and J. Tirole. The economics of
tacit collusion. Technical report, Final Report for DG Competition, Euro-
pean Commission, 2003.

[77] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman,
G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and K. A. Persson.
Fireworks: a dynamic workflow system designed for high-throughput ap-
plications. Concurrency and Computation: Practice and Experience, 27(17):
5037–5059, 2015. ISSN 1532-0634. doi: 10.1002/cpe.3505. CPE-14-
0307.R2.

[78] J. Kardoš, D. Kourounis, and O. Schenk. Parallel Algorithms in Computa-
tional Science and Engineering, chapter Structure-Exploiting Interior Point
Methods, pages 63–93. Springer International Publishing, 2020. ISBN
978-3-030-43736-7. doi: 10.1007/978-3-030-43736-7_3.

https://doi.org/10.5281/zenodo.10126406
https://doi.org/10.5281/zenodo.10126406

151 Bibliography

[79] J. Kardoš, D. Kourounis, and O. Schenk. Two-level parallel augmented
schur complement interior-point algorithms for the solution of security
constrained optimal power flow problems. IEEE Transactions on Power
Systems, 35(2):1340–1350, March 2020. ISSN 1558-0679. doi: 10.1109/
TPWRS.2019.2942964.

[80] J. Kardoš, T. Holt, O. Schenk, V. Fazio, L. Fabietti, and F. Spazzini. High-
performance data analytics techniques for power markets simulation. In
2021 International Conference on Smart Energy Systems and Technologies
(SEST), pages 1–6, 2021.

[81] J. Kardoš, T. Holt, V. Fazio, L. Fabietti, F. Spazzini, and O. Schenk.
Massively parallel data analytics for smart grid applications. Sus-
tainable Energy, Grids and Networks, 31:100789, 2022. ISSN 2352-
4677. URL https://www.sciencedirect.com/science/article/pii/

S2352467722000972.

[82] T. Klein. Autonomous algorithmic collusion: Q-learning under sequential
pricing. RAND Journal of Economics, 52(3):538–599, 2021.

[83] B. Knueven, J. Ostrowski, and J.-P. Watson. On mixed-integer program-
ming formulations for the unit commitment problem. INFORMS Journal
on Computing, 32(4):857–876, 2020.

[84] D. Kourounis, A. Fuchs, and O. Schenk. Toward the next generation of
multiperiod optimal power flow solvers. IEEE Transactions on Power Sys-
tems, 33(4):4005–4014, July 2018. ISSN 0885-8950. doi: 10.1109/
TPWRS.2017.2789187.

[85] T. Kristiansen. The flow based market coupling arrangement in Europe:
Implications for traders. Energy Strategy Reviews, 27:100444, 2020. ISSN
2211-467X. doi: https://doi.org/10.1016/j.esr.2019.100444.

[86] T. Kumamoto, H. Aki, and M. Ishida. Provision of grid flexibility by dis-
tributed energy resources in residential dwellings using time-of-use pric-
ing. Sustainable Energy, Grids and Networks, 23:100385, 2020. ISSN 2352-
4677. doi: https://doi.org/10.1016/j.segan.2020.100385.

[87] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato,
F. Alet, S. Ravuri, T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer,
G. Holland, O. Vinyals, J. Stott, A. Pritzel, S. Mohamed, and P. Battaglia.
Learning skillful medium-range global weather forecasting. Science, 382

https://www.sciencedirect.com/science/article/pii/S2352467722000972
https://www.sciencedirect.com/science/article/pii/S2352467722000972

152 Bibliography

(6677):1416–1421, 2023. doi: 10.1126/science.adi2336. URL https:

//www.science.org/doi/abs/10.1126/science.adi2336.

[88] I. Lampropoulos, T. Alskaif, J. Blom, and W. van Sark. A framework
for the provision of flexibility services at the transmission and distribu-
tion levels through aggregator companies. Sustainable Energy, Grids and
Networks, 17:100187, 2019. ISSN 2352-4677. doi: https://doi.org/10.
1016/j.segan.2018.100187.

[89] S. Lechtenböhmer and S. Samadi. Blown by the wind. replacing nuclear
power in german electricity generation. Environmental Science and Policy,
25:234–241, 2013. ISSN 1462-9011. doi: https://doi.org/10.1016/j.
envsci.2012.09.003. URL https://www.sciencedirect.com/science/

article/pii/S1462901112001499.

[90] M. Leutbecher and T. Palmer. Ensemble forecasting, 02/2007 2007. URL
https://www.ecmwf.int/node/10729.

[91] M. Lewis and M. Noel. The speed of gasoline price response in markets
with and without edgeworth cycles. Review of Economics and Statistics, 93
(2):672–682, 2011.

[92] M. S. Lewis. Temporary wholesale gasoline price spikes have long-lasting
retail effects: The aftermath of hurricane rita. Journal of Law and Eco-
nomics, 52:581–605, 2009.

[93] M. S. Lewis. Price leadership and coordination in retail gasoline markets
with price cycles. International Journal of Industrial Organization, 30:
342–351, 2012.

[94] M. Linder. Price cycles in the german retail gasoline market - competition
or collusion? Economics Bulletin, 38(1):593–602, 2018.

[95] N. Malaya. The epyc cpu and instinct mi250x gpus in frontier. Fron-
tier Training Workshop, Feb. 2023. URL: https://www.olcf.ornl.gov/
wp-content/uploads/2-15-23-AMD-CPU-GPU-Frontier-Public.pdf.

[96] S. Martin. Market transparency and consumer search: Evidence from the
german retail gasoline market. Working Paper, 2018.

[97] E. Maskin and J. Tirole. A theory of dynamic oligopoly, ii: Price competi-
tion, kinked demand curves, and edgeworth cycles. Econometrica, 56(3):
571–599, 1988.

https://www.science.org/doi/abs/10.1126/science.adi2336
https://www.science.org/doi/abs/10.1126/science.adi2336
https://www.sciencedirect.com/science/article/pii/S1462901112001499
https://www.sciencedirect.com/science/article/pii/S1462901112001499
https://www.ecmwf.int/node/10729
https://www.olcf.ornl.gov/wp-content/uploads/2-15-23-AMD-CPU-GPU-Frontier-Public.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2-15-23-AMD-CPU-GPU-Frontier-Public.pdf

153 Bibliography

[98] C. E. Murillo-Sánchez, R. D. Zimmerman, C. L. Anderson, and R. J.
Thomas. Secure planning and operations of systems with stochastic
sources, energy storage, and active demand. IEEE Transactions on Smart
Grid, 4(4):2220–2229, 2013. doi: 10.1109/TSG.2013.2281001.

[99] K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
Cambridge, MA, 2012.

[100] L. Musolff. Algorithmic pricing facilitates tacit collusion: Evidence from
e-commerce. Working Paper, 2021.

[101] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
NY, 2 edition, 2006. ISBN 978-0-387-30303-1.

[102] M. D. Noel. Edgeworth price cycles: Evidence from the toronto retail
gasoline market. Journal of Industrial Economics, 55(1):69–92, 2007.

[103] M. D. Noel. Do edgeworth price cycles lead to higher or lower prices?
International Journal of Industrial Organization, 42:81–93, 2015.

[104] M. D. Noel. Calendar synchronization of gasoline price increases. Journal
of Economics and Management Strategy, 28:355–370, 2018.

[105] North America Electric Reliability Corporation (NERC). Reliability stan-
dards for the bulk electric systems of north america, July 2020. Available
at https://www.nerc.com/pa/Stand/Pages/default.aspx.

[106] I. K. Nti, M. Teimeh, O. Nyarko-Boateng, and A. F. Adekoya. Elec-
tricity load forecasting: a systematic review. Journal of Electrical Sys-
tems and Information Technology, 7(1):13, 09 2020. ISSN 2314-7172.
doi: 10.1186/s43067-020-00021-8. URL https://doi.org/10.1186/

s43067-020-00021-8.

[107] U. S. D. of State. The long-term strategy of the united states: Pathways
to net-zero greenhouse gas emissions by 2050. Technical report, United
States Department of State and the United States Executive Office of the
President, 2021.

[108] A. Olivier, D. G. Giovanis, B. Aakash, M. Chauhan, L. Vandanapu, and
M. D. Shields. UQpy: A general purpose Python package and development
environment for uncertainty quantification. Journal of Computational Sci-
ence, 47:101204, 2020. ISSN 1877-7503. doi: https://doi.org/10.1016/
j.jocs.2020.101204.

https://www.nerc.com/pa/Stand/Pages/default.aspx
https://doi.org/10.1186/s43067-020-00021-8
https://doi.org/10.1186/s43067-020-00021-8

154 Bibliography

[109] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,
and T. J. Purcell. A survey of general-purpose computation on graphics
hardware. Computer Graphics Forum, 26(1):80–113, 2007. doi: https:
//doi.org/10.1111/j.1467-8659.2007.01012.x.

[110] C. G. Petra and I. Aravena. Solving realistic security-constrained optimal
power flow problems. Operations Research, 2023. to appear, preprint
available at https://arxiv.org/pdf/2110.01669.pdf.

[111] G. Pirovano, P. Faggian, P. Bonelli, M. Lacavalla, P. Marcacci, and
D. Ronzio. Combining Meteorological and Electrical Engineering Exper-
tise to Solve Energy Management Problems, pages 133–154. Springer
New York, New York, NY, 2014. ISBN 978-1-4614-9221-4. doi:
10.1007/978-1-4614-9221-4_6. URL https://doi.org/10.1007/

978-1-4614-9221-4_6.

[112] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, Cambridge, MA, second edition,
1992.

[113] M. Rahmani, S. H. Hosseinian, and M. Abedi. Stochastic two-stage
reliability-based security constrained unit commitment in smart grid envi-
ronment. Sustainable Energy, Grids and Networks, 22:100348, 2020. ISSN
2352-4677. doi: https://doi.org/10.1016/j.segan.2020.100348.

[114] L. Rakai and W. Rosehart. Gpu-accelerated solutions to optimal power
flow problems. In 47th Hawaii International Conference on System Sciences,
pages 2511–2516, 2014.

[115] S. Regev. Preconditioning Techniques for Sparse Linear Systems. PhD thesis,
Stanford University, 2022.

[116] S. Regev, N.-Y. Chiang, E. Darve, C. G. Petra, M. A. Saunders, K. Swiry-
dowicz, and S. Peles. Hykkt: A hybrid direct-iterative method for solving
kkt linear systems. Optimization Methods and Software, 38(2):332–355,
2023. doi: 10.1080/10556788.2022.2124990.

[117] M. Reolon Scuzziato, E. Cristian Finardi, and A. Frangioni. Solving
stochastic hydrothermal unit commitment with a new primal recovery
technique based on lagrangian solutions. International Journal of Elec-
trical Power & Energy Systems, 127:106661, 2021. ISSN 0142-0615. doi:
https://doi.org/10.1016/j.ijepes.2020.106661.

https://arxiv.org/pdf/2110.01669.pdf
https://doi.org/10.1007/978-1-4614-9221-4_6
https://doi.org/10.1007/978-1-4614-9221-4_6

155 Bibliography

[118] B. F. Ronalds, A. Wonhas, and A. Troccoli. A New Era for Energy and Me-
teorology, pages 3–16. Springer New York, New York, NY, 2014. ISBN
978-1-4614-9221-4. doi: 10.1007/978-1-4614-9221-4_1. URL https:

//doi.org/10.1007/978-1-4614-9221-4_1.

[119] B. Saravanan, S. Das, S. Sikri, and D. P. Kothari. A solution to the
unit commitment problem—a review. Frontiers in Energy, 7(2):223–
236, Jun 2013. ISSN 2095-1698. URL https://doi.org/10.1007/

s11708-013-0240-3.

[120] J. D. Scargle. Studies in astronomical time series analysis. ii. statistical
aspects of spectral analysis of unevenly spaced data. Astrophysical Journal,
263:835–853, 1982.

[121] O. Schenk and K. Gärtner. On fast factorization pivoting methods for
sparse symmetric indefinite systems. ETNA. Electronic Transactions on Nu-
merical Analysis, 23:158–179, 2006.

[122] O. Schenk, K. Gärtner, and W. Fichtner. Efficient sparse lu factor-
ization with left-right looking strategy on shared memory multiproces-
sors. BIT Numerical Mathematics, 40:158–176, 2000. doi: 10.1023/A:
1022326604210.

[123] D. Schneider. The exascale era is upon us: The frontier supercomputer
may be the first to reach 1,000,000,000,000,000,000 operations per sec-
ond. IEEE Spectrum, 59(1):34–35, 2022.

[124] M. Siekmann. Characteristics, causes, and price effects: Empirical evi-
dence of intraday edgeworth cycles. Technical report, DICE Discussion
Paper, No. 252, 2017.

[125] J. C. Smith, M. O’Malley, D. Osborn, R. Piwko, and R. J. Thomas. R&d
requirements for integration of wind generation. In 45th Hawaii Interna-
tional Conference on System Sciences, 2012.

[126] X. Su, C. He, T. Liu, and L. Wu. Full parallel power flow solution: A gpu-
cpu-based vectorization parallelization and sparse techniques for new-
ton–raphson implementation. IEEE Transactions on Smart Grid, 11(3):
1833–1844, 2020.

[127] D. Suleimenova, H. Arabnejad, W. N. Edeling, et al. Tutorial applications
for verification, validation and uncertainty quantification using VECMA

https://doi.org/10.1007/978-1-4614-9221-4_1
https://doi.org/10.1007/978-1-4614-9221-4_1
https://doi.org/10.1007/s11708-013-0240-3
https://doi.org/10.1007/s11708-013-0240-3

156 Bibliography

toolkit. Journal of Computational Science, 53:101402, 2021. ISSN 1877-
7503. doi: https://doi.org/10.1016/j.jocs.2021.101402.

[128] K. Swirydowicz, N. Koukpaizan, S. Abhyankar, and S. Peles. Towards ef-
ficient alternating current optimal power flow analysis on graphical pro-
cessing units. In 29th International Conference on Information, Communi-
cation and Automation Technologies (ICAT23), June 2023.

[129] Swissgrid. Production and consumption, July 2021. URL https://www.

swissgrid.ch/en/home/operation/grid-data/generation.html.

[130] J. Treibig, G. Hager, and G. Wellein. LIKWID: A lightweight performance-
oriented tool suite for x86 multicore environments. In Proceedings of
the 39th International Conference on Parallel Processing Workshops, page
207–216. IEEE Computer Society, 2010. ISBN 9780769541570. doi:
10.1109/ICPPW.2010.38.

[131] P. Valero-Lara, I. Martínez-Pérez, R. Sirvent, X. Martorell, and A. J. Peña.
NVIDIA GPUs Scalability to Solve Multiple (Batch) Tridiagonal Systems.
Implementation of cuThomasBatch. In Parallel Processing and Applied
Mathematics - 12th International Conference (PPAM), 2017.

[132] W. van Ackooij, I. Danti Lopez, A. Frangioni, F. Lacalandra, and
M. Tahanan. Large-scale unit commitment under uncertainty: an updated
literature survey. Annals of Operations Research, 271(1):11–85, 2018. doi:
10.1007/s10479-018-3003-z.

[133] W. van Ackooij, I. Danti Lopez, A. Frangioni, F. Lacalandra, and
M. Tahanan. Large-scale unit commitment under uncertainty: an up-
dated literature survey. Annals of Operations Research, 271(1):11–
85, Dec 2018. ISSN 1572-9338. URL https://doi.org/10.1007/

s10479-018-3003-z.

[134] J. T. VanderPlas. Understanding the lomb–scargle periodogram. Astro-
physical Journal Supplement Series, 236(16):1–28, 2018.

[135] P. A. Verwiebe, S. Seim, S. Burges, L. Schulz, and J. Müller-Kirchenbauer.
Modeling energy demand – a systematic literature review. Energies, 14
(23), 2021. ISSN 1996-1073. doi: 10.3390/en14237859. URL https:

//www.mdpi.com/1996-1073/14/23/7859.

https://www.swissgrid.ch/en/home/operation/grid-data/generation.html
https://www.swissgrid.ch/en/home/operation/grid-data/generation.html
https://doi.org/10.1007/s10479-018-3003-z
https://doi.org/10.1007/s10479-018-3003-z
https://www.mdpi.com/1996-1073/14/23/7859
https://www.mdpi.com/1996-1073/14/23/7859

157 Bibliography

[136] A. Wächter and L. T. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Math-
ematical Programming, 106(1):25–57, Mar 2006. ISSN 1436-4646. URL
https://doi.org/10.1007/s10107-004-0559-y.

[137] J. Wang and C. G. Petra. An adaptive sampling sequential quadratic pro-
gramming method for nonsmooth stochastic optimization with upper-c2

objective. SIAM Journal On Optimization, 2023. to appear, preprint avail-
able at https://arxiv.org/abs/2204.09631.

[138] Z. Wang. Collusive communication and pricing coordination in a retail
gasoline market. Review of Industrial Organization, 32:35–52, 2008.

[139] Z. Wang, U. Munawar, and R. Paranjape. Stochastic optimization for
residential demand response with unit commitment and time of use.
IEEE Transactions on Industry Applications, 57(2):1767–1778, 2021. doi:
10.1109/TIA.2020.3048643.

[140] N. Wills-Johnson and H. Bloch. The shape and frequency of edgeworth
price cycles in an australian retail gasoline market. Working Paper, Curtin
University of Technology, 2010.

[141] L. A. Wilson, J. M. Fonner, J. Allison, O. Esteban, H. Kenya, and M. Lerner.
Launcher: A simple tool for executing high throughput computing work-
loads. Journal of Open Source Software, 2(16):289, 2017. doi: 10.21105/
joss.00289.

[142] W. Xia and C. A. Shoemaker. Improving the speed of global parallel opti-
mization on PDE models with processor affinity scheduling. Computer-
Aided Civil and Infrastructure Engineering, 37(3):279–299, 2022. doi:
https://doi.org/10.1111/mice.12737.

[143] T. Xu, A. B. Birchfield, K. M. Gegner, K. S. Shetye, and T. J. Overbye. Appli-
cation of large-scale synthetic power system models for energy economic
studies. In 50th Hawaii International Conference on System Sciences, 2017.

[144] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra. Improving
the performance of ca-gmres on multicores with multiple gpus. In IPDPS
2014, Phoenix, AZ, 05-2014 2014. IEEE.

[145] D. Yang, W. Wang, C. A. Gueymard, T. Hong, J. Kleissl, J. Huang, M. J.
Perez, R. Perez, J. M. Bright, X. Xia, D. van der Meer, and I. M. Peters. A

https://doi.org/10.1007/s10107-004-0559-y
https://arxiv.org/abs/2204.09631

158 Bibliography

review of solar forecasting, its dependence on atmospheric sciences and
implications for grid integration: Towards carbon neutrality. Renewable
and Sustainable Energy Reviews, 161:112348, 2022. ISSN 1364-0321.
doi: https://doi.org/10.1016/j.rser.2022.112348. URL https://www.

sciencedirect.com/science/article/pii/S1364032122002593.

[146] Y. Yang and L. Wu. Machine learning approaches to the unit commitment
problem: Current trends, emerging challenges, and new strategies. The
Electricity Journal, 34(1):106889, 2021. ISSN 1040-6190. Special Issue:
Machine Learning Applications To Power System Planning And Operation.

[147] A. B. Yoo, M. A. Jette, and M. Grondona. SLURM: Simple linux
utility for resource management. In D. Feitelson, L. Rudolph, and
U. Schwiegelshohn, editors, Job Scheduling Strategies for Parallel Process-
ing, pages 44–60, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.
ISBN 978-3-540-39727-4.

[148] Q. P. Zheng, J. Wang, and A. L. Liu. Stochastic optimization for unit
commitment—a review. IEEE Transactions on Power Systems, 30(4):1913–
1924, 2015.

[149] J. Zhu. Optimization of Power System Operation. Wiley-IEEE, Piscataway,
NJ, 2009.

[150] P. R. Zimmerman, J. M. Yun, and C. T. Taylor. Edgeworth price cycles in
gasoline: Evidence from the united states. Review of Industrial Organiza-
tion, 42:297–320, 2013.

[151] R. D. Zimmerman and C. E. Murillo-Sánchez. MATPOWER Optimal
Scheduling Tool (MOST) User’s Manual, Oct. 2020.

[152] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas. Matpower:
Steady-state operations, planning, and analysis tools for power systems
research and education. IEEE Transactions on Power Systems, 26(1):12–
19, Feb 2011. ISSN 0885-8950. doi: 10.1109/TPWRS.2010.2051168.

[153] K. Świrydowicz, E. Darve, W. Jones, J. Maack, S. Regev, M. A. Saunders,
S. J. Thomas, and S. Peleš. Linear solvers for power grid optimization
problems: A review of gpu-accelerated linear solvers. Parallel Computing,
111:102870, July 2022. ISSN 0167-8191. doi: 10.1016/j.parco.2021.
102870. URL http://dx.doi.org/10.1016/j.parco.2021.102870.

https://www.sciencedirect.com/science/article/pii/S1364032122002593
https://www.sciencedirect.com/science/article/pii/S1364032122002593
http://dx.doi.org/10.1016/j.parco.2021.102870

	Introduction
	Research Motivation
	Structure

	I Power Market Models
	Forward to Part I
	Massively parallel deployment of power market optimization models on many-core HPC clusters
	Introduction
	Motivation and Background
	Research Context
	Relevant Literature
	Contributions and Organization

	Power Grid Models
	Zone-Based Market Model
	Optimal Power Flow Model
	Unit Commitment
	Swiss Grid Benchmark Model

	Parallelism Treatment
	Solution Strategy
	SLURM Workload Manager
	Greasy Meta Scheduler

	Numerical Experiments
	Performance Analysis of the Optimization Algorithms
	Node-Level Parallelism and Memory Bottleneck
	Analysis of Parallelism Modes
	Massively Parallel Execution
	Massively Parallel Execution with Meta Scheduling
	Verification of the Optimal Parallelism Degree Prediction

	Conclusions

	Modeling techniques to improve performance and accuracy of power market optimization models
	Introduction
	Model Reformulation
	Pyomo Model
	Fusion Model

	High-Speed Solution Methods
	Multi-Day Modeling

	II Power Generation Unit Commitment
	Forward to Part II
	A data-driven refinement approach to power generation unit commitment
	Introduction
	Definitions

	Exascale Grid Optimization (ExaGO) Toolkit
	Data-Driven Unit Commitment Algorithm
	Algorithm Objectives
	Load Shed Recourse Phase
	Pruning Phase

	Numerical Experiments
	Setup
	Performance Evaluation Criteria
	South Carolina Grid Results
	Texas Grid Results

	Discussion
	Conclusion
	Scientific Software: ExaGO
	Scalable ACOPF Optimization Techniques
	Hardware Accelerated Optimization
	Towards Scalable Stochastic Optimal Power Flow

	Appendix: ExaGO ACOPF Forumulation
	Variables and bounds
	Objective Function
	Equality constraints
	Inequality constraints

	III Cycle Detection in Gasoline Markets
	Forward to Part III
	Computational techniques to scalably identify pricing cycles in retail gasoline markets
	Introduction
	Related Literature, Contributions, and Replication Package.

	Theoretical Background
	What Are Edgeworth Cycles?
	Are Edgeworth Cycles Competitive or Collusive?

	Data and Manual Classification
	Data Sources and Preparation
	Manual-Classification Procedures
	Rationale for Daily Frequency and Quarterly Window

	Models and Methods for Automatic Detection
	Existing Methods Mostly Focus on Asymmetry
	Our Proposals to Capture Cyclicality
	Optimization of Parameter Values (``Training'')

	Results
	How Much Data Do We Need?
	Economic and Policy Implications
	Cycles and Margins
	Additional Findings
	Exploratory Data Analysis

	Practical Recommendations
	Conclusion
	Appendix A: Methodological Details and Simulations
	A.1 Details of the New Methods
	A.2 Parameter Optimization
	A.3 Performance on Simulated Cycles

	Appendix B: Additional Results
	B.1 Combining Methods 1–4
	B.2 Variants of Methods 5–7

	Conclusion
	Bibliography

