
Self-Supervised Robot Learning for
Spatial Perception

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Mirko Nava

under the supervision of

Prof. Luca Maria Gambardella

co-supervised by

Prof. Alessandro Giusti

December 2023

Dissertation Committee

Prof. Cesare Alippi Università della Svizzera italiana, Switzerland
Prof. Piotr Krzysztof Didyk Università della Svizzera italiana, Switzerland

Prof. Cesar Cadena ETH Zurich, Switzerland
Prof. Matteo Matteucci Politecnico di Milano, Italy

Dissertation accepted on 11 December 2023

Prof. Luca Maria Gambardella
Research Advisor

Università della Svizzera italiana, Switzerland

Prof. Alessandro Giusti
Research Co-Advisor

Università della Svizzera italiana, Switzerland

Prof. Walter Binder
PhD Program Director

i

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Mirko Nava
Lugano, 11 December 2023

ii

To the people I hold dear in my heart,
for people are what matters the most.

iii

iv

Acknowledgements

There are many people I would like to acknowledge who helped me in countless ways through-
out this wonderful journey. To begin with, I want to express my sincere gratitude to Luca Maria
Gambardella and Alessandro Giusti for being my advisors: thank you for showing me how to
transform abstract ideas into concrete and formal research questions, present results to the pub-
lic, and for teaching me the importance of always asking why, with curiosity being one of the
main driving forces for my research. Without your guidance, support, and patience, my first
steps in the academic world would not have been possible.

Special thanks to Mauro Pezzè for being responsible for the double Master degree program
with Università degli Studi di Milano-Bicocca (UNIMIB): by being accepted into the program, I
got to study at Università della Svizzera italiana (USI), attending courses held by internationally
renowned professors and experiencing a different way of teaching while living in the wonderful
Lugano, a city I grew to love. Furthermore, I had the opportunity to do my Master thesis with my
advisor and get passionate about robotics and artificial intelligence. Without this experience,
I probably would have never thought about moving to Switzerland or applying for a Ph.D.
altogether – something which, I believe, has drastically changed my life.

Many thanks to my fellow double-degree mates Dario Mantegazza and Gabriele Abbate,
which were always there to discuss the silliest ideas I came up with and, overall, for being great
friends. Many thanks should also go to the Robotics Lab at the Dalle Molle Institute for Artificial
Intelligence (IDSIA). This endeavor would not have been possible without the help and joint
effort of my colleagues Antonio Paolillo, Daniele Palossi, Omar Chavez-Garcia, Jérôme Guzzi,
Boris Gromov, Elia Cereda, Luca Crupi, Simone Arreghini, and Nicholas Carlotti.

These acknowledgments would not be complete without thanking all the wonderful peo-
ple I had to pleasure of interacting with in IDSIA, the staff and fellow Ph.D. students at Uni-
versità della Svizzera italiana (USI) and Scuola Universitaria Professionale della Svizzera ital-
iana (SUPSI). I thank my parents, my beloved girlfriend Cristina, and the many friends I made
throughout the years for motivating me to push through the bad times and for being responsible
for many of the good times.

This work was supported by the Swiss National Science Foundation (SNSF) through the
National Centre of Competence in Research (NCCR) Robotics. As a member of NCCR Robotics,
I had the pleasure of meeting, sharing ideas and collaborating with colleagues on challenging
research problems, some of which I hold as dear friends.

Finally, I thank Cesare Alippi, Piotr Krzysztof Didyk, Cesar Cadena, and Matteo Matteucci
for serving on my committee, dedicating their time and effort to review my work, and providing
valuable suggestions.

v

vi

Abstract

Nowadays, deep learning techniques are ubiquitous for robot perception tasks, thanks to their
ability to recognize complex patterns and handle high-dimensional data. Crucial to the success
of a robot learning approach is the amount and quality of labeled training data. Collecting a
large amount of labeled training data requires much effort and resources: human experts may
be employed to manually label the collected data, requiring many man-hours, or alternatively,
one may use dedicated equipment capable of providing the needed labels; however, acquiring
and maintaining such equipment is expensive and requires an accurate setup, especially when
the system needs calibration to match the expected ground truth. One potential solution is to
use a simulator, providing perfect knowledge of the state of the environment. This solution,
in turn, brings its own challenges related to the reality gap, i.e., the many differences between
simulated and realistic data. Robots ought to work in the real world, where gathered informa-
tion is complex, imprecise, and noisy by nature, whereas simulated data is often too simplistic
for training.

In this dissertation, we discuss and propose novel approaches for self-supervised robot learn-
ing, where the robot autonomously collects data and uses it to supervise the training or fine-
tuning of a deep learning model. Specifically, we focus on spatial perception tasks, which entail
the robot’s ability to interpret complex visual data to estimate the geometrical properties of
the environment, including the location of humans, obstacles, robots, and other relevant ob-
jects. Self-supervised robot learning is compelling because it allows the robot to collect large
quantities of training data without requiring the involvement of humans; in fact, the robot may
collect data in all the environments it can explore, even the one in which it will be deployed.
The model is trained on the task at hand using the collected data; in addition, the model may
be asked to solve an auxiliary task, named pretext, to learn better features and improve its
performance. By introducing the pretext task, we limit the need for labeled data required to
achieve an adequate level of performance.

In the following, we describe our work in the field, from the design of approaches and their
implementation, to the validation on held-out testing data and in-field experiments. Our con-
tributions to the state of the art concern three areas within self-supervised robot learning. First,
we propose novel ways to derive supervision from sensors mounted on the robot, combining
multiple sensors’ readings collected in a time window. Second, we tackle some of the short-
comings in current self-supervised robot learning approaches by taking advantage of partially
labeled examples and dealing with the noise affecting sensor’s readings. Third, we introduce
novel self-supervised pretext tasks tailored to robotics and aimed at improving the performance
of spatial perception models. Finally, we present three potential research avenues for allevi-
ating the challenges associated with large-scale data collection and for the improvement of
perception models.

vii

viii

Contents

Contents vii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Problem Statement . 2
1.2 Self-Supervised Robot Learning for Spatial Perception 2

2 Literature Review 7
2.1 Robot Learning . 7
2.2 Self-Supervised Learning . 8
2.3 Self-Supervised Robot Learning . 9
2.4 Different Meanings for Self-Supervision . 10
2.5 Applications to Perception Problems . 12

2.5.1 Object Pose Estimation . 12
2.5.2 Manipulation . 14
2.5.3 Navigation . 15
2.5.4 Visual odometry . 17

3 Supervision From Odometry and Proximity Sensors 21
3.1 Background . 21

3.1.1 Related Work . 23
3.1.2 Model . 23
3.1.3 Learning-Based Solution . 23

3.2 Experiments . 24
3.2.1 Data Acquisition Controller . 25
3.2.2 Datasets . 26
3.2.3 Network Architecture and Training . 28
3.2.4 Self-Supervised Occupancy Map Estimation Results 29
3.2.5 Robustness Test and Control . 31
3.2.6 Simulated Experiment on Terrain Properties Estimation 31

3.3 Discussion . 32

ix

x Contents

4 Learning From Partial Labels 33
4.1 Background . 33

4.1.1 Related Work . 34
4.1.2 Model . 35

4.2 Experiments . 36
4.2.1 Self-Supervised Occupancy Map Estimation Setup 36
4.2.2 Semi-Supervised Estimation of User Pose in a Nanodrone Setup 38
4.2.3 Network Architectures and Training . 39
4.2.4 Self-Supervised Occupancy Map Estimation Results 39
4.2.5 Semi-Supervised Estimation of User Pose in a Nanodrone Results 41

4.3 Discussion . 43

5 Learning From Sparse Noisy Labels 45
5.1 Background . 45

5.1.1 Related Work . 46
5.1.2 Model . 47
5.1.3 Dealing With Uncertainty . 49

5.2 Experiments . 50
5.2.1 Object of Interest Pose Estimation With a Robotic Arm Setup 50
5.2.2 Robot Heading Estimation Using Infrared Sensors Setup 51
5.2.3 Indoor Localization of a Ground Robot Setup 52
5.2.4 Network Architectures and Training . 53
5.2.5 Object of Interest Pose Estimation With a Robotic Arm Results 53
5.2.6 Robot Heading Estimation Using Infrared Sensors Results 55
5.2.7 Indoor Localization of a Ground Robot Results 55

5.3 Discussion . 56

6 Supervision From Task Demonstrations 59
6.1 Background . 59

6.1.1 Related Work . 60
6.1.2 Visual Servoing . 61
6.1.3 Model . 62

6.2 Experiments . 64
6.2.1 Data Collection . 64
6.2.2 Network Architecture and Training . 65
6.2.3 Simulated Experiment Results . 65
6.2.4 Real Experiment Results . 68

6.3 Discussion . 69

7 Supervision From Sound 71
7.1 Background . 71

7.1.1 Related Work . 72
7.1.2 Model . 74

7.2 Experiments . 75
7.2.1 Data Collection . 76
7.2.2 Audio Features . 77
7.2.3 Alternative Strategies . 77

xi Contents

7.2.4 Network Architectures and Training . 78
7.2.5 Sound Prediction as a Pretext Task Results 79

7.3 Discussion . 81

8 Supervision From LEDs 83
8.1 Background . 83

8.1.1 Related Work . 84
8.1.2 Model . 85

8.2 Experiments . 86
8.2.1 Robot Platform . 87
8.2.2 Datasets . 87
8.2.3 Alternative Strategies . 88
8.2.4 Network Architectures and Training . 88
8.2.5 From Grid Map to Robot Position . 89
8.2.6 Evaluation Metrics . 90

8.3 Experimental Results . 90
8.3.1 LED State Prediction Improves Performance 90
8.3.2 Impact of λ and Amount of Labeled Examples 90
8.3.3 Alternative Training Strategies . 91
8.3.4 Generalization Ability . 92
8.3.5 In-Field Experiment . 92

8.4 Discussion . 93

9 Conclusions 97

A Publications 101

Bibliography 103

xii Contents

Figures

1.1 Access to labeled data is one limiting factor in building autonomous systems . . 3
1.2 Structure of the doctoral dissertation . 6

2.1 Self-supervised pretext task pipeline . 8
2.2 Self-supervised pretext task example approach . 9
2.3 Self-supervised robot learning example approach 10
2.4 Self-supervised object pose estimation example approach 14
2.5 Self-supervised pick-and-place example approach 16
2.6 Self-supervised terrain properties estimation example approach 18
2.7 Self-supervised visual odometry example approach 19

3.1 Supervision from odometry Mighty Thymio sensor apparatus 22
3.2 Supervision from odometry proposed approach scheme 24
3.3 Supervision from odometry training data generation 25
3.4 Supervision from odometry data collection controller 26
3.5 Supervision from odometry model prediction examples 27
3.6 Supervision from odometry label distribution . 27
3.7 Supervision from odometry neural network architecture 28
3.8 Supervision from odometry average AUC map . 30
3.9 Supervision from odometry AUC map grouped by sensor and environment 30
3.10 Supervision from odometry robustness test using a different camera setup 31
3.11 Supervision from odometry Pioneer 3-AT ground color prediction 32

4.1 Learning from partial labels experimental platforms 35
4.3 Learning from partial labels randomized environments for occupancy map esti-

mation . 37
4.2 Learning from partial labels proposed approach scheme 37
4.4 Learning from partial labels average AUC map comparison with baseline 39
4.5 Learning from partial labels occupancy map prediction examples 40
4.6 Learning from partial labels user head localization example frames 41
4.7 Learning from partial labels user head localization R2 performance 41
4.8 Learning from partial labels user head localization examples 42
4.9 Learning from partial labels improved user head tracking 43

5.1 Learning from noisy labels proposed task loss . 48
5.2 Learning from noisy labels proposed consistency loss 50

xiii

xiv Figures

5.3 Learning from noisy labels odometry error accumulating over time 52
5.4 Learning from noisy labels OoI pose estimation examples 54
5.5 Learning from noisy labels robot heading prediction performance 56
5.6 Learning from noisy labels indoor robot localization comparison 56

6.1 Supervision from task demonstrations evolution of control metrics 66
6.2 Supervision from task demonstrations simulated execution example 68
6.3 Supervision from task demonstrations simulated execution control metrics 69
6.4 Supervision from task demonstrations real execution example 70

7.1 Supervision from sound proposed approach scheme 72
7.2 Supervision from sound robot platform . 75
7.3 Supervision from sound dataset split . 76
7.4 Supervision from sound drone localization performance 78
7.5 Supervision from sound drone localization examples 79
7.6 Supervision from sound performance comparison 79

8.1 Supervision from LEDs proposed approach . 84
8.2 Supervision from LEDs robot platform . 87
8.3 Supervision from LEDs comparison of barycenter and argmax approaches 89
8.4 Supervision from LEDs localization examples . 91
8.5 Supervision from LEDs performance comparison . 91
8.6 Supervision from LEDs multi-drone localization . 92
8.7 Supervision from LEDs infield tracking performance 93

Tables

5.1 Learning from noisy labels experimental platforms 47
5.2 Learning from noisy labels indoor localization performance 56

6.1 Supervision from task demonstrations performance comparison 67

8.1 Supervision from LEDs performance comparison . 95

xv

xvi Tables

Chapter 1

Introduction

We live in a vast and intricately complex world, overflowing with an immense amount of in-
formation. Despite all of this complexity, animals as well as humans routinely carry out most
of their tasks effortlessly, without much thought given. Consider tasks in your daily routine,
even mundane ones, such as making breakfast: from grabbing some food and a drink from the
fridge, gathering tools such as cutlery and dishware, to plating the breakfast and pouring the
drink inside a glass. These ordinary actions rely on a stream of information coming from our
senses, including the visible spectrum of light we see, the range of sounds we hear, and the
smallest of pressures we feel on our skin. Although we can handle various tasks with ease, the
most technologically advanced robots still struggle to do the same. Robots encounter problems
due to their inadequate perception skills, lacking a basic understanding of the world around
them by interpreting and making sense of sensory information acquired from the environment.
Examples include understanding the geometry of the scene, telling which objects are present
and where they are located in space.

While in the past, robots were traditionally adopted in laboratory and controlled industrial
plants, nowadays they are starting to be taken outside, performing activities in fields such as
transportation, healthcare, agriculture, or in our households for cleaning and companionship;
each situation being different from the others, but all sharing a less structured, less predictable
environment. Modern robots, therefore, need to make sense of this complexity to be able to
successfully accomplish their duties. Consequently, they require powerful systems capable of
processing high-dimensional and complex data to construct an internal representation of the
robot’s surroundings. Furthermore, the learned skills should be applicable to different envi-
ronmental conditions, e.g., low light, bright sunlight or noisy and loud environments, demon-
strating a sufficient level of generality. Deep neural networks can handle high-dimensional and
complex data; as such, they have become the new de facto standard for perception tasks. Using
deep neural networks, however, is not an easy task and comes with the cost of requiring large
amounts of labeled training data and the computing resources needed to store and train using
this data. Collecting labeled data is expensive and requires a lot of effort and resources in terms
of time and dedicated equipment. Additionally, said data must be collected from a multitude of
environments in order to result in models that demonstrate an adequate generalization, adding
further cost to the training.

This thesis is about designing approaches for robots to learn perception skills, limiting
the need for expensive labeling procedures without sacrificing much in terms of performance.

1

2 1.1 Problem Statement

Specifically, we focus on spatial perception tasks where the robot has to interpret high-dimensional,
visual data to estimate geometrical properties of the environment, like the location of humans,
obstacles, robots and other objects of interest.

1.1 Problem Statement

Consider the task of detecting obstacles from frames streamed by a front-facing camera mounted
on a self-driving car. The ideal scenario is to have at our disposal a large dataset consisting of
camera frames annotated with the exact location of obstacles; with this data, one trains a deep
neural network model to predict the obstacles visible in camera frames and deploys it onto the
car. In many real-world scenarios, however, knowing the location of obstacles is problematic:
it requires perfect knowledge of the environment the robot is exploring, either by constructing
a map before-hand or by using simulation; or alternatively, one may ask human experts to label
the frames with the position of obstacles. These solutions are viable, and their implementation
accomplishes the goal we set out to solve; in spite of their effectiveness, they require a great
amount of resources and an equal amount of effort: constructing an environment map requires
the purchase of expensive equipment external to the robot, including its setup and calibration,
then one collects data in the mapped environment and repeats the whole process for multiple
environments; relying on human experts to label the camera frames requires many paid man-
hours, being in general expensive, even when services such as mechanical turk [42] are adopted;
finally, leveraging the perfect knowledge of a simulator to generate synthetic data brings its
own problem of adapting the learned models from simulation to reality, crossing the so-called
reality gap, another research area which so far has not found a general and task-independent
approach [153]. Due to the previously mentioned problems, only a handful of groups and
companies have the necessary resources to embark in this resource-intensive and expensive
collection process, with outcomes that are still far from perfect, as reported in a United States -
Department of Transportation report [2] and portrayed in Figure 1.1. Of course, this companies
do not share this data publicly, and even then, it is tied to a specific task out of the many for
which such data would be really needed.

A desirable solution would feature the following properties: inexpensive, relying on hard-
ware that is already fitted on the robot or inexpensive one to be mounted onto it while also
making a thoughtful choice in terms of energy consumption and weight; realistic, relying on
a system to generate data that resembles the real world, indistinguishable from that collected
with the sensors fitted on the robot; effective, able to generate large quantities of data in differ-
ent and varied environments, resulting in adequate model generalization and forgoing as little
performance as possible with respect to supervised approaches. In the next section, we propose
one such solution as the core of this dissertation.

1.2 Self-Supervised Robot Learning for Spatial Perception

While supervised learning has proven to be effective in many domains, it heavily relies on la-
beled examples provided by humans, which may not capture the range of possible scenarios
a robot may encounter in the real world. This lack of diversity in training data hinders the
generalization of learned perception models, resulting in subpar performance, potential safety
risks for users and passersby, and slows the adoption of robots across various industries. Ad-
ditionally, hand labeling is a very time-consuming and expensive process, and the alternative

3 1.2 Self-Supervised Robot Learning for Spatial Perception

Figure 1.1. Access to labeled data is one limiting factor in building autonomous systems: self-
driving cars are not yet ready to be considered reliable; in the United States alone over a ten
month period, there have been 392 reported incidents [2] where these cars have failed to
respond appropriately to the environment. Photo of a car crash caused by a self-driving car on
San Francisco’s Bay Bridge, November 2022, found on The Intercept journal1.

of using external dedicated equipment to provide labels also involves a large upfront cost and,
very often, this equipment requires a complex setup and calibration phase that renders moving
the equipment to different environments impractical.

The two different meanings of self-supervised learning

In the machine learning literature, a common solution for this issue is to take advantage of
cheaper unlabeled data by solving an additional task, named pretext, whose ultimate goal is to
supervise the model into learning a general feature space. With the feature space learned,
the model is then trained on the task we are interested in solving, named downstream or
end task, using a more expensive, generally small dataset featuring labels for this task. In
robotics, instead, the same issue is addressed by designing approaches that allow the robot to
autonomously collect its own labelled training data without human supervision; this data is then
used to train a model in the classic supervised learning manner. Moreover, since the required
sensors are fitted on the robot, data can be collected in all environments the robot is capable
of exploring, leading to a varied dataset and, therefore, model generalization. While both so-
lutions entail the idea of a cheaper alternative to supervise the model without the involvement
of humans or external systems, there are clear differences between the two. Specifically, in
the machine learning sense, self-supervised approaches are aimed at learning a general feature
space that suits as many end tasks as possible; in the robotics sense, it is specifically focused on
the end task of interest and further constrains the unlabeled data to be collected by the robot. To

1https://theintercept.com/2023/01/10/tesla-crash-footage-autopilot

4 1.2 Self-Supervised Robot Learning for Spatial Perception

reconcile the two different meanings, we propose a definition of self-supervised robot learning
that combines the two, in which a robot collects its own training data that can be unlabeled and
used for a pretext task or labeled and used for the end task; with the former scenario, namely
the pretext one, implying that the robot additionally collected a small labeled dataset for the
end task.

Our contributions

In this dissertation, we propose the use of self-supervised robot learning to address the issues
related to labeled data availability, data variety, and data efficiency for perception tasks. In de-
tail, our contributions to the self-supervised robot learning field involve original uses of sensors
to derive supervision for the end task, combining multiple ones, and aggregating information
collected over a time horizon. Further, we address some of the limitations of current approaches
by taking advantage of partially labeled examples, thus increasing the model supervision and
proposing a simple yet effective way of handling noisy labels derived from sensors. Addition-
ally, we investigate self-supervised pretext tasks tailored to robot perception tasks as a viable
solution to reduce the reliance on labeled data without sacrifices in performance.

This dissertation is organized into chapters and structured according to Figure 1.2: after
this introductory Chapter, we report a comprehensive review of the state of the art in Chap-
ter 2, followed by our contributions spanning Chapters 3 through 8, and finally conclude the
document with Chapter 9 by summarizing the proposed approaches, achieved results and de-
scribing future directions that follow this line of work. In what follows, we describe the three
main contribution areas in detail, represented in Figure 1.2 by gray rounded-edge boxes, while
the full publication list is provided in Appendix A.

Self-supervised robot learning for end tasks We investigate different supervision sources to
train a robot on the end task, leveraging information coming from sensors and demonstrations
of a control task. In Chapter 3, we propose to combine odometry and short-range proximity sen-
sors’ readings collected over a time window to construct a map-based obstacle label for the end
task; given the camera frame collected at time t, we train a perception model to predict obsta-
cles the robot has and will encounter during its trajectory within a time window centered in t.
The resulting model is capable of relating hard-to-interpret and long-range camera frames with
obstacles detected by straightforward short-range proximity sensors, demonstrating a high-level
understanding of the perceived scene and detecting obstacles beyond the physical limit of the
short-range sensors. Results computed on a separate testing set show that the approach is vi-
able and leads to an average obstacle localization performance in the central area in front of the
robot of 86% in AUC. In Chapter 6, we investigate the use of visual servoing task demonstra-
tions to supervise a perception model in estimating the visual features of an object of interest;
by backpropagating through a differentiable control law, the robot learns to imitate the demon-
strated task, generating visual features that would result in the same trajectory. This approach
enables robots to learn a perception task without explicit ground truth labels; instead, it lever-
ages the supervision provided by expert demonstrations and knowledge of the control problem
structure. The deployed model is capable of solving the feature extraction task and drive the
robot with the control law to reach the desired position with respect to the object of interest.

The approaches discussed in this paragraph resulted in three publications: the first is a
short paper demonstrating the initial findings on the use of odometry and short range sensors,
published and presented at the AAAI 2019 conference [112]; the second is an article with novel

5 1.2 Self-Supervised Robot Learning for Spatial Perception

experiments on the same idea, published at the IEEE RA-L journal [113]; while the third is an
article on the use of task demonstrations to supervise a perception model, published at the IROS
2022 conference [125].

Self-supervised robot learning improvements Autonomously collecting data to be used as
training labels also comes with some challenges. Specifically, approaches based on robot ex-
ploration, such as the one proposed in Chapter 3, result in many samples featuring only partial
labels or being totally unlabelled; moreover, the sensors used during collection are generally
affected by noise, causing a decrease in performance. In Chapter 4, we tackle the first problem
by introducing a consistency term inspired by human perception and their prior beliefs. Specifi-
cally, we propose a state-consistency loss that force models to have consistent predictions when
shown different views of the same environment, some of which featuring occlusions. The idea
is that by leveraging information present in one view, we supervise the robot in learning how
to interpret the other view, even if some parts of the space are occluded; furthermore, knowing
that a single state underlies the two views, we force model’s predictions to match and do so even
when no labels are available. In the evaluation, the perception model trained using additionally
this loss results in improvement of up to 33% in R2 when compared with one trained only on the
end task loss. In Chapter 5, instead, we address the noise affecting the sensors’ readings used
to generate training labels. We consider the approach combining different information sources,
such as odometry and fiducial marker detectors, both affected by noise. Our approach assumes
the noise to be gaussian and with known parameters; we employ a Monte Carlo approach to
approximate different possible realizations of the collected data by adding the sampled noise
contribution. Using this examples, we train a perception model to solve three different spa-
tial tasks, showing a consistent and significant reduction of errors and a more stable inference,
reducing the average pose estimation error on a separate testing set by 5cm and 8 degrees.

The approaches discussed here resulted in two publications: the former is an article explor-
ing the benefits of using a state-consistency loss in two different case studies, published at the
IEEE RA-L journal [114], while the latter is an article addressing the problem of noise-affected
sensors with a simple yet effective solution, published at the IEEE RA-L journal [115].

Self-supervised robot learning using pretext tasks When no suitable approach for end task
label generation can be employed, the next best solution is to limit the amount of expensive
labels required to achieve a satisfactory performance level. In this regard, we propose a pretext
task in Chapter 7 aimed at drone localization and based on the drone’s sound collected by a
cheap stereo microphone. The pretext task consists in predicting the sound features from cam-
era frames, exploiting the relation between sound and its source, in this case the drone itself.
The robot, by solving this pretext task, learns features that are informative of the drone’s sound
and, following this relation, of the drone’s location itself. Results show that this approach yields
models with an average mean absolute error for the localization of the drone in image-space
of 4 pixels while using a fraction of the labeled samples. Whereas, the model that has access
to labels for the entire training set achieves 2 pixels on the same metric, showing that our ap-
proach successfully reduces the need for end task labels without sacrificing the performance. In
Chapter 8, we investigate a different pretext task based on LED state prediction to improve the
robot localization ability of a perception model. As opposed to the previous approach requir-
ing a microphone, this one is compelling because LEDs are featured on most robot platforms.
Collecting labels for the pretext task is straightforward and requires little effort, as the robot to

6 1.2 Self-Supervised Robot Learning for Spatial Perception

be localized can simply blink its LEDs and broadcast their state to another robot collecting this
information, as well as its camera frames. With the addition of as little as 300 samples labeled
with the drone’s position, our approach leveraging frames with only LED state known achieves
a median localization error of 9.9 pixels, while a supervised model trained on the full labeled
dataset, which is 30× larger, scores 6.8 pixels.

The first approach discussed in Chapter 7, exploring a sound-based pretext task for drone
localization, resulted in an article published at the IEEE RA-L journal [116]. The second ap-
proach discussed in Chapter 8, investigating LED state prediction as a pretext task, is currently
under review at the IEEE RA-L journal.

Introduction - Chapter 1

Literature Review - Chapter 2

SSRL for End Tasks

Odometry & Prox. Sensors

Ch3

Task Demonstrations

Ch6

SSRL Improvements

Partial Labels

Ch4

Noisy Labels

Ch5

SSRL using Pretext Tasks

Sound as Pretext

Ch7

LEDs as Pretext

Ch8

Conclusions - Chapter 9

Figure 1.2. Structure of the doctoral dissertation. Contributed self-supervised robot learning
approaches are represented by black-outlined boxes and discussed in their respective chap-
ter. Contributions are grouped into three areas by gray rounded-edge boxes, representing ap-
proaches for supervising end tasks, additionally using pretext tasks, and overcoming some
limitations of self-supervised robot learning.

Chapter 2

Literature Review

Robots are starting to be employed in complex and unstructured environments, presenting them
with numerous challenges. These challenges include operating in dynamic environments with
varying terrains, changing weather conditions and the presence of other moving entities, re-
quiring robots to adapt their perception based on the setting. Additionally, robots often interact
with other agents, such as humans or other robots, adding another layer of complexity. To
address these challenges, robots are equipped with deep neural network models capable of
handling high-dimensional data and learning complex functions. As such, one of the leading
approaches to address these challenges is the use of robot learning (Section 2.1). However,
deep learning models require lots of labeled data to train on, and such data is difficult to collect
in large quantity, especially considering it should ideally represent all possible scenarios faced
by the robot during deployment. In the machine learning literature, the need for additional
supervision is addressed by self-supervised pretext tasks, where additional tasks defined on un-
labeled training examples are exploited to learn good features and then used to solve a variety
of end tasks (Section 2.2). Specifically, the use of pretext tasks can be seen as a representation
learning approach [16] with the added constraint that data used to learn a good feature repre-
sentation is not labeled. Instead, in robotics, self-supervised robot learning tackles the problem
by allowing robots to autonomously collect their own training data cheaply and conveniently,
leveraging the fitted sensors as additional sources of information (Section 2.3). Despite two
different meanings for the same term based on the context, similar ideas can be found in both;
in Section 2.4, we propose our own definition of self-supervision within the context of robot
learning to reconcile the two meanings. Many methods have been proposed to tackle a range
of challenges associated with self-supervised robot learning and have been implemented across
various tasks (Section 2.5).

2.1 Robot Learning

Robot learning is a heterogeneous research field at the intersection of machine learning and
robotics. It is concerned with solving robotics problems using machine learning techniques,
where a parametric model is trained from lots of samples.

Robots operate in a vast amount of environments to solve a variety of different tasks. There
are large differences between one scenario and others, motivating the development of custom
built robots, which differ in shape, mobility, and fitted sensors. Consequently, robot learning

7

8 2.2 Self-Supervised Learning

is mostly done from scratch, without suitable datasets already available and on data collected
by the robot itself. Learning from data collected on a different robot introduces a significant
domain shift, which has detrimental effects on the learning process. In a scenario in which we
control the robot used to collect data and the learning process itself, much effort is put into data
collection since data is equally as important as the learning process.

From a machine learning perspective, the goal is to endow robots with the ability to solve the
given task via learning, i.e., through a training process based on the collected data. Approaches
can be categorized into different paradigms by the amount of target data, also called labels
or ground truth, available for training. Supervised learning assumes all training data to have
labels and focuses on learning the most from them. Instead, unsupervised learning is used when
no labels are available: the learning process focuses on building an internal representation
that places similar input patterns close to one another and different patterns apart. Semi-
supervised learning is a hybrid of the two, considering data to be only partially labeled, usually
in a small percentage. It focuses on learning the most from the labeled data, while learning
useful feature representations from the unlabeled data. A recurrent term in all approaches is
the word supervision, which tells how much the learning process can watch over or optimize an
untrained model utilizing ground truth. It is easy to see how the aforementioned approaches
differ in the amount of supervision. Therefore, they can be fitted into an axis of a graph, where
supervised and unsupervised learning lie at both ends, and semi-supervised is somewhere in
the middle.

2.2 Self-Supervised Learning

Figure 2.1. Self-supervised visual pretext task pipeline from the survey of Jing and Tian [80].
First, a CNN model learns good visual features by means of solving a pretext task using an unla-
beled dataset. Second, knowledge of this features is transferred to a downstream or end task by
fine-tuning (part of) the model on a labeled dataset, leading to improvements in performance.

Self-supervised learning – although the name suggests otherwise – is not indicative of a level
of supervision, as was the case with supervised, semi-supervised and unsupervised paradigms,
but instead of alternative ways to supervise a model with the available data itself [80, 207],
hence self-supervised. Self-supervised strategies, in the machine learning sense, learn from
unlabeled data a good feature space; in a second moment, this feature space is used to solve
the task at hand more easily. To learn an effective feature space, we introduce an additional
task based on unlabeled data, named pretext task. The pretext task is different from the task

9 2.3 Self-Supervised Robot Learning

we are actually interested in solving, called downstream or end task; a conceptual illustration
of both tasks and the self-supervised training pipeline is shown in Figure 2.1. The rationale for
pretext tasks is that the input patterns the model has to recognize are the same for both pretext
and end tasks. In other words, we exploit the link between end and pretext tasks, e.g., that
in order to localize an object, we need a high-level representation of the scene, which can be
found in the latent space. Typical examples of pretext tasks include image reconstruction [173],
image colorization [202], depth estimation from color [78], and inpainting [129]; an example
of the latter is depicted in Figure 2.2.

For example, consider an undercomplete autoencoder learning to reconstruct an image
through a bottleneck. In this case, the latent space of the bottleneck represents a very informa-
tive, high-level and low-dimensional description of the scene. With this high-level description,
it is much easier to train a model on an end task, e.g., pose estimation, as part of the latent
space would probably contain information about the location of objects.

In the next section, we discuss a different meaning for the “self-supervised” term used by
roboticists to indicate the autonomous data collection by a robot without any human required
to supervise the process.

Figure 2.2. Self-supervised pretext task from Pathak et al. [129]. An undercomplete autoen-
coder is presented an image with the central part filled in with white. Its task is to fill in the
pixels of the central part using the context provided by the surrounding area. This pretext task
learns in the autoencoder’s bottleneck a rich feature space, informative of the image’s context,
using only unlabeled images.

2.3 Self-Supervised Robot Learning

As previously mentioned, robot learning is often done from scratch, with no data available up-
front, using a specific platform for which no previous work exists. In this context, the availability
of training data is crucial for the success of a machine learning model. Practitioners often invest
much time collecting ad-hoc datasets. Self-supervised learning, in the robotics sense, alleviates
this problem by introducing strategies for obtaining supervision that do not involve expensive
labeling procedures. In the robotics literature, self-supervised approaches are those in which an
autonomous, unattended robot collects data by itself. By carefully choosing which inputs and
outputs are involved in the learning problem, labels are produced from information gathered
by the fitted sensors; an example of self-supervised robot learning is shown in Figure 2.3. La-
beled data is, therefore, less expensive in terms of effort and exploration: an automated robot

10 2.4 Different Meanings for Self-Supervision

is much more efficient than humans at collecting data and only uses its fitted hardware for the
collection; in turn, this implies that a robot can collect data in every environment it can explore
– even the one in which it will be deployed.

Figure 2.3. Self-supervised robot learning approach from Kouris and Bouganis [87]. The drone
flies in an indoor environment by itself, collecting camera frames and infra-red distance sensors.
The data collection controller is programmed to fly the drone forward, stopping before any
collision is detected by the distance sensors and rotating in a new direction, repeating the
process. With this approach, the authors construct a dataset and train a CNN model to predict
the distance to obstacles from images; the resulting model is capable of piloting the drone in
a reactive manner, without needing additional sensors.

2.4 Different Meanings for Self-Supervision

In Sections 2.2 and 2.3, we have discussed the meaning of the term “self-supervised” in the
fields of machine learning and robotics respectively. With the increase in popularity of deep
learning-based solutions in robotics, the clash of these two research fields has caused some
confusion with regards to the meaning of this term. In this section, we delve into similarity and
differences between the two meanings and reconcile them within the scope of robot learning.

Similarities

In machine learning, the term is used to refer to the fact that some tasks can be solved by
learning from readily available data, in general considered unlabeled. Specifically, these tasks
are defined in such a way that the respective ground truth is trivially defined (e.g., masking an
image patch and ask the model recover it), a subset of the available data itself (e.g., predict
the next frame from the current one), or is generated from simulators with perfect knowledge
of the state. The goal is to improve the performance of a deep learning model by means of
learning a good feature space, general enough to support many different tasks. Accordingly,
the names pretext and downstream or end tasks are used to denote whether said task is intended
for learning general features or is the one we are interested in solving.

In robotics, the term is used to refer to the autonomous and unattended collection of data
by a robot, using its own hardware. The accent, here, is put on the fact that human supervision
is not needed and, likewise, no human intervention is required to generate ground truth labels
used for training. Instead of relying on humans, robots leverage their own sensor apparatus

11 2.4 Different Meanings for Self-Supervision

and process the readings with algorithm to derive the labels (e.g., an increase in weight of the
gripper before and after a grasp is indicative of the success of such attempt).

Both meanings entail the idea of taking advantage of cheap data to supervise a model: in one
case, with pretext task; in the other, with labeled data collected by the robot. Interestingly, one
can consider a robot collecting its own labeled data as yet another approach to obtain ground
truth for a task, similarly to pretext learning. Additionally, some works stretch the robotics
meaning to include the bootstrapping of a robot with a synthetic labeled training dataset before
doing the autonomous data collection [45, 92], similarly to self-supervised approaches in the
machine learning sense; however, this approaches fit the description of sim-to-real transfer
better than self-supervision.

Differences

In machine learning, pretext tasks are solved first, using widely-adopted datasets from the lit-
erature; in a second step, a downstream or end task is learned by fine-tuning (a part of) the
pre-trained model. In these works the focus is to show that the pretext task is general and
supports many different end tasks successfully. These techniques leverage the availability of
large-scale datasets in the literature, and focus on end tasks that all require similar perception
skills, such as image classification, object detection, semantic segmentation.

Instead, in robotics, we have very different setups in terms of hardware and robot platforms.
The end tasks considered are more varied, e.g., from regressing the pose of an object to pre-
dicting the probability of traversing a given terrain. As such, there are no large-scale datasets
readily available; practitioners have the robot collect its own data. Furthermore, there is no em-
phasis on learning general features, but rather that those features are conducive for the chosen
end task, which is chosen in advance. Additionally, in machine learning, the self-supervision is
used to solve a pretext task, whose utility is limited to the extent in which the learned features
improve the performance on the end task; instead, in robotics, the supervision is targeted at
the end task itself.

Reconciling the two meanings

Given the similarities and differences of the two meanings, we discuss here a version of self-
supervised robot learning that fits with the general idea of self-supervision in machine learning,
and is tailored to robotics applications. Specifically, we propose to let the robot use its own
hardware to autonomously collect data, be it unlabeled for a pretext task or labeled for an end
task. For pretext task learning, the robot is trained simultaneously on the unlabeled data it
collected and on a smaller labeled dataset, in which labels are generated from external systems
(e.g., a tracking system, overhead depth camera). The dimension of the labeled dataset is
considered to be small w.r.t. the unlabeled one since external systems are generally expensive,
require precise calibration, and are often non-portable. Due to these issues, external systems
are often found in dedicated laboratories, therefore the variety of scenes the robot is exposed
to is limited; as such, the pretext task must leverage fitted sensors to allow the robot to explore
different environments and, consequently, generalize well to unseen ones. The pretext task can
be easily designed: it can be defined solely on input data or be based on data coming from other
sensors fitted on the robot. The training is carried out simultaneously for both pretext and end
tasks, as there is no need for the learned features to support different end tasks; instead, the
goal is to be as specific as possible, choosing the pretext task which best suits the respective end

12 2.5 Applications to Perception Problems

one. For end task learning, the robot generates ground truth labels for the end task without
the use of external sensors; the collected labeled data is used to train the robot in a supervised
fashion. This definition allows data collection to be relatively cheap, offer a satisfactory variety
of scenarios collected from multiple environments, and ensures that the learned features are
applicable to the specific tasks it needs to perform.

2.5 Applications to Perception Problems

Perception tasks consist in processing visual data, such as images, into a high-level representa-
tion of the system comprising robot and its surroundings. Due to the high-dimensionality and
complexity of images, modern approaches utilize CNN, borrowing ideas from Deep Learning
and Computer Vision fields and specializing them to tasks involving robots. Typical Perception
tasks include localizing a given Object of Interest (OoI) (Section 2.5.1); learning to manipulate
objects (Section 2.5.2); predicting terrain properties such as material and traversability score,
or the presence of obstacles in the robot’s trajectory (Section 2.5.3) and estimating the robot
movements from image sequences (Section 2.5.4). In each of the following sections, we first
consider approaches that solve the respective task in a fully-supervised fashion; then, we con-
trast them with self-supervised ones, highlighting how the latter enable the training of models
with less effort and using a small amount of ground truth labels.

2.5.1 Object Pose Estimation

In designing a pick-and-place system for a given OoI, its position in space is central to the solu-
tion of the problem. Here, we discuss how to represent an object’s position in space, challenges
arising from different representations, and the state of the art in object pose estimation with
supervised and self-supervised approaches.

Background

In robotics, the position of an object in space is called pose, and consists of the object’s position
and orientation defined with respect to (w.r.t.) a frame of reference. An object’s pose is defined
differently based on the dimensionality of the space, be it 2D or 3D.

Modeling the problem in the 2D space is a simplifying yet effective choice for ground robots
since they are forced to the ground and cannot directly alter their height, like a flying robot
would. A 2D pose consists of the objects position on a plane, denoted by x and y , and its angle
of rotation φ. Alternatively, one can consider the full 3D pose of an object, having 6 Degrees of
Freedom (DoF). A pose in 3D space is represented by 6 variables: x , y and z for the position and
roll, pitch and yaw for the rotation. Lastly, some problems assume the camera to be calibrated;
thus, its projection matrix is known [40]; as such, the 3D object pose can be recovered from
its position on the image plane (u on the horizontal axis, v on the vertical) by back-projecting
into the 3D space. This operation creates a ray passing through the camera optical axis and
pointing towards the OoI. By adding the distance of the object d as an additional constraint,
one recovers the point lying on the ray at that distance as the OoI’s position.

In practice, pose estimation approaches can be divided into direct or indirect: direct ap-
proaches regress a pose representation with a model that is optimized using a loss designed
specifically for the chosen representation [100, 206]; indirect approaches predict the 2D image-
space location of known 3D points of interest, also known as 2D-3D correspondences, then solve

13 2.5 Applications to Perception Problems

a Perspective-n-Point (PnP) problem to obtain the most likely 6-DoF pose of the object [94];
analogously, other approaches predict which 3D points belong to the object and then feed them
as well as reference points of a known 3D model into an Iterative Closest Point (ICP) algorithm,
in which 3D point correspondences are defined, and the distance between corresponding points
is iteratively minimized, to obtain the object’s pose. Given the emphasis that we put on collect-
ing data, and the need for approaches that require a small amount of supervision, we focus
on direct pose estimation since alternatives assume knowledge of the 3D object model, which
requires scanning each object using dedicated equipment and do so for all objects we are inter-
ested in. Direct pose estimation simply refers to approaches in which the deep neural networks
directly produces the 6-DoF pose.

One problem arises when learning a model for pose estimation: preserving the continuity
of rotations around zero [100, 206], where tiny mistakes can result in large errors, e.g., the
mean absolute error between 1◦ and 358◦ is 357◦ despite the two angles being only 3◦ apart.
This problem makes it harder for models to learn the regression task, as rotation discontinuity
requires specifically designed losses and causes gradients to be noisy, distorted [206]. The most
straight-forward pose representation is the pose itself, making sure to limit the values for the
Euler angles to be between 0 and 359 [102]. Alternatively, approaches discretize the possible
rotations into a fixed number and then cast the problem to classification [136, 81]; utilize unit
quaternions q ∈ H as the representation, where H is the non-commutative ring of quaternions,
and the quaternion distance as loss [100]; 3×3 matrices of the 3D rotation group SO(3) and the
geodesic distance [100]; or a 6D representation consisting of two of the three columns/rows of
the 3× 3 rotation matrix [206].

State of the art

In the literature, many approaches for object pose estimation are fully supervised, i.e., they as-
sume to have unlimited access to ground truth pose labels. These approaches focus on achiev-
ing the best performance on State-of-the-art (SoA) benchmark datasets, failing to address the
problem of lack of ground truth in many real world applications. Self-supervised approaches,
instead, do not assume access to a large labeled dataset; they relax the assumption to either
cheaply collecting their own ground truth or enact strategies to minimize the amount needed
to obtain an adequate performance level.

Supervised approaches for indirect pose estimation focus on building 2D-3D correspondences,
or 3D correspondences, from which algorithms can infer the full 6-DoF pose of the OoI. Tekin
et al. [170] utilize a custom version of the YOLO model [145] to detect an object as well as
the 2D locations of the eight corners of a 3D box containing the object; with these 2D-3D cor-
respondences, they use the PnP algorithm to obtain the pose. Similarly, Tremblay et al. [175]
predict the 2D-3D correspondences of the 3D bounding box of the object, however, they train
using only domain-randomized [171] synthetic data; while Hu et al. [72] derives the pose by
feeding the 2D-3D correspondences inside a deep neural network. Xiang et al. [194] predict the
pixel-wise object center, orientation, and semantic segmentation, from which a voting algorithm
produces the most likely object pose. Kehl et al. [81] use a custom SSD [96]model, with object
rotations discretized into bins, to directly predict a coarse pose, then refined with the ICP algo-
rithm. Other approaches refine an initial pose guess by rendering the known 3D object model
back into the camera frame and minimize a visual error [93]; meanwhile others additionally
use depth to compute geometrical discrepancies to drive the refinement process [182].

14 2.5 Applications to Perception Problems

So far, we described approaches designed for generic objects; however, there are others
specifically designed to estimate the pose of robots, which in general have a more complex
shape, possibly changing over time. The solution is to use fiducial markers, which are used in
conjunction with computer vision algorithms to predict the pose of the marker and the robot
they are attached to. Saska et al. [155] use circles printed on paper, a simple yet effective
approach, as the size of the perceived circle is proportional to its distance, and the distortion to
an ellipse to its rotation; while Dias et al. [46] use multiple light-emitting markers, as perceived
changes in the configuration relate to a change in pose. Other approaches utilize depth images
to detect the robot itself, using handcrafted features [181] or by training a CNN model [24, 25].

Self-supervised approaches that assume knowledge of the 3D model of the object work by
segmenting 3D points of the object [200], supervise the training by minimizing a visual loss [183],
or by pre-training with synthetic data [45]. Zeng et al. [200] combine RGB-D frames taken by an
array of cameras to segment the object, project its points into 3D space and remove those associ-
ated with the background, thus obtaining the object’s point cloud from which they estimate the
pose with ICP, as shown in Figure 2.4. Inspired by the iterative refinement approaches, Wang
et al. [183] train a model by minimizing the visual differences between the perceived object
and its 3D rendering placed at the inferred pose, exploiting differential rendering techniques;
further, they improve the approach in [184] by introducing an additional loss based on depth
images and the chamfer distance [23]. Lastly, by pre-training on synthetic data, Deng et al.
[45] train a pose estimation model that is deployed on a robot arm; using this model, they are
able to pick and place the object in different locations, thus producing real labeled data to train
on iteratively.

For robot pose estimation, a CNN is trained using labels generated by the robot [92] with a
Ultra-Wide Band (UWB) relative localization algorithm [179] to predict its image-space position
and depth; combining this information with the camera intrinsics allows the authors to back-
project the image-space position and obtain the full 3D position of the robot.

Figure 2.4. Self-supervised object pose estimation approach from Zeng et al. [200]. The robot
takes color and depth images from multiple viewpoints of the scene. Each color image is
processed by a pre-trained Fully Convolutional Network (FCN) [97] to segment objects in 2D;
the segmentations are then combined in 3D by projecting the pixels. The resulting point cloud
is further processed to remove the background and then aligned with a pre-scanned 3D model
using ICP to obtain the object pose.

2.5.2 Manipulation

Manipulating an object involves understanding its geometrical properties and how those relate
to the gripper fitted on a robot arm. Tasks such as grasping, pushing and pick-and-place are

15 2.5 Applications to Perception Problems

common examples of robot manipulation. Due to the interplay between an object’s geometry
and the gripper or end-effector, manipulation tasks are complex and too difficult to be modeled
analytically; as such, the prominent solution is to use deep learning. Adequately training deep
learning models from high-dimensional, visual data requires lots of training samples collected
in different environments. This is essential for the model to exhibit satisfactory performance
and generalization ability. Despite much effort put towards supervised robot learning solutions
for manipulation, few deep learning-based approaches are found in the literature due to the
high cost of labeling the collected data [109]. Most approaches, nowadays, learn in a self-
supervised manner, deriving the success of a grasp or push attempt using sensor data or casting
the problem as reinforcement learning, where sensors are used to derive the reward signal.

Supervised approaches learn to grasp objects with robot arms from camera frames, deter-
mining the orientation of the object for a successful grasp [90]. Redmon and Angelova [144]
split the image into multiple patches, predicting for each patch the probability of success for the
grasp, the gripper rotation and finger distance; during inference, the grip settings with higher
probability of success are selected for execution. Seita et al. [158] use depth images to predict
which point to grasp on a bed sheet and use the robot for a bed-making task.

Self-supervised approaches learn the object orientation to perform a successful grasp with
labels generated by measuring the weight before and after a grasp attempt [136]. Other ap-
proaches cast the problem as reinforcement learning, where rewards are generated autonomously.
Specifically, Zeng et al. [201] learn to push and grasp with rewards obtained by measuring the
finger distance after a grasp attempt and the difference in depth images before and after a push.
Other approaches derive the reward signal from a given goal state: Berscheid et al. [18] de-
rive the rewards by comparing the similarity of the embeddings of current and goal views; the
embeddings are learned with a contrastive loss, where positive pairs consist of close-in-time im-
ages, and negatives of far-in-time or temporally non-ordered images. Jang et al. [77] propose
to use representation learning to derive reward signals and the robot actions to supervised the
learning of said representation, as depicted in Figure 2.5. Berscheid et al. [17] improve the
data efficiency of a self-supervised learning approach by employing a depth-based consistency
loss, where different crops of the same scene should result in the same predicted location for
a successful grasp [17]. Unlike other approaches, Radosavovic et al. [142] pre-train a visual
feature extractor with a masked autoencoding pretext task; they use self-supervised learning
in the deep learning sense, where an auxiliary task is solved for the sake of learning a better
feature space, in which to solve the task at hand.

2.5.3 Navigation

Navigating an environment requires a major understanding of terrain and obstacles present in
the robot’s surroundings and how these interact with the robot based on its motion capabilities.
Navigation systems rely on a model to estimate traversable versus obstacle areas, classify terrain
based on its composition (e.g., gravel, sand, concrete, dirt), and provide useful information such
as estimated time of traversal and energy consumption. Based on these estimates, approaches
directly compute in a purely reactive fashion which action to take to avoid collisions, while
others feed the information inside the optimization problem of planners and/or controllers.

Training said models in a supervised fashion present a major challenge since collecting a
large quantity of real-world visual data annotated with all of the aforementioned properties

16 2.5 Applications to Perception Problems

Figure 2.5. Self-supervised grasping approach from Jang et al. [77]. The authors derive the
reward signal for a pick-and-place task using representation learning and exploiting object per-
manence [34]: when the robot successfully grasps an object and raises it, the object was present
in the scene prior to the grasp, and is missing after that. They enforce the scene embedding
before the grasp minus the one after it to match the object embedding. In the learned repre-
sentation space, a reward signal is derived by computing the similarity between a given goal
scene and the current scene observed by the robot.

is not feasible [137, 47]. Early approaches, therefore, relied on rule-based approaches [48,
49], avoiding the issue altogether at the cost of loss of generality, some casted the problem
as imitation of a human pilot [138], while others used simulated data to train purely-visual
models [137]. Given this challenge, a limited number of hand-labeled datasets can be found in
the literature, some of which being domain specific [149], with supervised approaches relying
on domain adaptation or other generalization techniques to avoid overfitting. Instead, most
modern approaches use self-supervised learning, where robots autonomously collect their own
ground truth labels [159].

Supervised approaches learn to estimate terrain properties and then feed this information
into a planner to define a feasible trajectory or directly navigate the environment given an
input image, i.e., in an end-to-end fashion. Classic approaches learn to navigate by imitating
expert demonstrations in simulated environments [137]; or by imitating humans in real-life
scenarios [138]. Tai et al. [166] learn to navigate from depth images, imitating a human pilot;
while Pfeiffer et al. [135] use as input 2D laser range finder readings. Giusti et al. [63] teach a
drone how to navigate complex forest trails by collecting data from a human expert traversing
this environment. The authors train a CNN on the task of predicting the direction of the trail,
as given by the trajectory of the human.

Other approaches simply limit the task to terrain property estimation: Rothrock et al. [149]
train a CNN model to navigate Mars terrain from a large hand-labeled dataset, specifically by
predicting the terrain class out of multiple possible classes from grayscale images. Zhang et al.
[203] use an undercomplete convolutional autoencoder to segment RGB images into different
terrain classes. Palazzo et al. [120] utilize a regression approach in which vertical bands of set
width divide up the camera view. Each band starts from the top side of the image, has a height
normalized between 0 and 100% of the image height, and represents the portion of space that
is deemed non-traversable. By dividing each image into multiple bands, each parametrized by
a scalar, the authors greatly simplify the traversability estimation task by reducing the dimen-
sionality of the output; in the same work, they also propose an unsupervised domain adaptation

17 2.5 Applications to Perception Problems

technique to generalize the model to different environments. Lastly, Chavez-Garcia et al. [30]
train a CNN on synthetic 2.5D heightmap patches of the robot surroundings, labeled by the
success of the robot in traversing those patches inside the simulator.

Self-supervised approaches collect their own training data, consisting of the notion of traversabil-
ity, or the dual, obstacle-ness, and derive labels from readings of the onboard sensors. Dahlkamp
et al. [43] learn to predict the terrain traversability in front of the robot using labels produced
from the terrain height computed by an onboard stereo module, adopting a shallow machine
learning model; instead, Hadsell et al. [68] use CNNs to solve a similar task on a different
robot platform. Other approaches rely on spare laser scans [101] as the source of ground truth
labels for traversable areas. Zhou et al. [204] use lidar scans to construct a 3D voxel repre-
sentation of the environment in font of the robot. The authors derive from this representation
summary features that are fed into a support vector machine predicting which image patches
depict traversable terrain. Similarly, Maturana and Scherer [105] use a 3D voxel representation
to represent the terrain below an unmanned aerial vehicle (UAV), training a 3D CNN to classify
whether the depicted terrain is a save landing zone or not.

Interestingly, some approaches extract labels from information gathered at a later time than
the input frame: in Barnes et al. [11], the authors note that successfully traversing a patch of
terrain automatically indicates the label of pixels belonging to that patch; by leveraging this fact,
they train a segmentation model to classify pixels into traversable or not. Kouris and Bouganis
[87] rely on a similar mechanism but regress three values for the entire image representing
the distance measurements obtained by laser sensors, enabling the drone to autonomously fly
while avoiding collisions. Gandhi et al. [60] collect camera frames from a drone piloted by
a random controller. When, inevitably, the drone crashes with an obstacle, it signals that all
the collected camera frames near the crash time depict an obstacle, while all previous ones
represent unoccupied space. Leveraging the labels extracted using this method, the authors
teach the drone to autonomously fly while avoiding obstacles without the need to hand-label
the frames.

Different approaches predict terrain properties that can be used by another module to de-
termine the traversability score and, consequently, which route to take. Stavens and Thrun
[163] assume that, at time zero, an autonomous vehicle is placed so to have traversable road
in front of it; knowing this, they learn a model of the road visual appearance, steer the vehicle
towards areas classified as road, and update the appearance model online. Force and vibrations
felt at the wheel or foot level are indicative of the terrain a robot is currently on, enabling one
to estimate its degree of traversability [21, 15]. Wellhausen et al. [191] derive labels from the
force-torque sensors placed on the feet of a quadruped robot. This sparse information is pro-
jected onto the image space and propagated to dense, pixel-wise labels using the Mean teachers
approach [169], as represented in Figure 2.6. In a similar fashion, Zürn et al. [208] use the
sound produced by the wheels of a ground robot to infer the terrain type.

2.5.4 Visual odometry

Odometry is the ability of a robot to estimate its own motion by integrating sensors’ readings
over time. Visual odometry achieves the motion estimation by comparing pairs of consecutive
images, and relating pixel movement to the robot’s movement. Due to being an integrative
process, odometry suffers from the drift problem [40] in which the accumulation of tiny in-
stantaneous errors causes the estimate to depart from the real robot’s position and doing more

18 2.5 Applications to Perception Problems

Figure 2.6. Self-supervised terrain properties estimation from Wellhausen et al. [191]. The
ANYmal robot [74] traverses multiple terrains while recording images and torque sensors at
its footholds. The torque sensors’ readings are projected in image space using the camera
intrinsics and extrinsics. The authors generate sparse terrain properties from the readings, such
as terrain class and a ground reaction score. They propagate the sparse labels during training
using different image augmentations with Mean teachers [169].

so as time passes. Notably, supervised approaches solve the issue by relying on external mea-
surements not affected by drift, while self-supervised approaches rely on sensors’ readings and
optimize a consistency loss. The goal of a consistency loss is to enforce that the sensor reading
at one location matches the reading from a different location composed with the model’s esti-
mate of the motion occurred between the two locations, i.e., that the estimated motion explains
the difference of two real sensors’ readings.

Supervised approaches estimate the visual odometry by predicting the relative motion oc-
curred between a pair of images using a CNN [85]. Ummenhofer et al. [177] improve the
prediction by refining the model output using a depth-based consistency loss: given the image
pair, their model predicts the relative transformation as well as the depth of the two depicted
scenes. The consistency loss warps one depth using the relative transformation and forces it to
match the other depth, supervising the CNN model. Peretroukhin and Kelly [133] propose a
different approach, in which they start from an already existing visual odometry estimator and
train an additional model to predict correction terms that, when integrated with the estimates,
result in a more precise odometry. Other approaches integrate monocular frames with a Recur-
rent Convolutional Neural Network (R-CNN), instead of using pairs of images, to estimate the
motion [35, 186, 187].

Self-supervised approaches extract ground truth information directly from motor sensors,
possibly affected by drift, learning the relative transformation between two images collected
by an RGB camera [4]. Self-supervised approaches improve the model’s performance by intro-
ducing additional consistency losses. Zhou et al. [205] enforce consistency by minimizing the

19 2.5 Applications to Perception Problems

difference of inverse-warped depth images collected at time t + 1 and t − 1 with respect to the
current depth image, collected at time t [205], as depicted in Figure 2.7. Iyer et al. [76] use
a different consistency loss based on the notion that single consecutive estimates combine to
form the estimate over a longer distance between two camera frames. The authors enforce that
the concatenation of all relative motion estimates between time t and t + n (e.g., t + 1 w.r.t. t,
. . . , t + n w.r.t. t + n− 1) to match the single motion estimate of t + n w.r.t. t.

Figure 2.7. Self-supervised visual odometry approach from Zhou et al. [205]. The authors
adopt two neural networks: a pre-trained CNN predicting depth from RGB images, and a
visual odometry CNN predicting the difference of poses between two camera frames. Their
consistency loss enforces the depth predicted from images at different time steps to match each
other. Comparing depth from a pair of images taken from different poses requires inverse-
warping one depth image using the transformation occurred between the two poses. The
similarity between two depth images is used to supervise the visual odometry CNN.

20 2.5 Applications to Perception Problems

Chapter 3

Supervision From Odometry and
Proximity Sensors

In self-supervised learning for robotics, the traditional approach generates a training sample by
processing the readings from one or more sensors collected at a single timestep. In this chapter,
we take a different approach by exploring the use of readings collected at different time steps
and combined with the robot’s odometry to generate richer training labels. Although odometry
can be imprecise, it provides valuable information that is often overlooked when it comes to
automated label generation. Furthermore, by utilizing the readings collected in a static envi-
ronment at different time steps, the robot learns to establish geometrical relationships between
the current view of the environment and properties observed from multiple locations. This ap-
proach allows for a more comprehensive understanding of the environment and enhances the
robot’s perception capabilities.

3.1 Background

We consider a mobile robot capable of odometry and equipped with at least two sensors: a long-
range one, such as a camera or laser scanner; and a short-range sensor such as a proximity
sensor or a contact sensor (bumper). We then consider a specific perception task, such as
detecting obstacles while roaming the environment. Regardless on the specific choice of the
task and sensors, it is often the case that the long-range sensors produce a large amount of data,
whose interpretation for the task at hand is complex; conversely, the short-range sensor readings
directly solve the task, but with limited range. For example, detecting obstacles in the video
stream of a forward-pointing camera is difficult but potentially allows us to detect them while
they are still far; solving the same task with a proximity sensor or bumper is straightforward as
the sensor directly reports the presence of an obstacle, but only works at very close range.

We propose a novel technique for solving a perception task by learning to interpret the
long-range sensor data; in particular, we adopt a self-supervised learning approach in which
future outputs from the short-range sensor are used as a supervisory signal. We develop the
complete pipeline for an obstacle-detection task using camera frames as the long-range sensor
and proximity sensor readings as the short-range sensor (see Figure 3.1). In this context, the
camera frame acquired at time t (input) is associated to proximity sensor readings obtained at a

21

22 3.1 Background

Figure 3.1. The Mighty Thymio robot in two environments; five proximity sensors can easily
detect obstacles at very close range (blue areas), whereas the camera has a much longer range
(red area) but its outputs are hard to interpret.

different time t � �= t (labels); for example, if the robot odometry detects it has advanced straight
for 10cm between t and t �, the proximity sensor outputs at t � correspond to the presence of
obstacles 10cm in front of the pose of the robot at t. These outputs at time t � can be associated
to the camera frame acquired at time t as a label expressing the presence of an obstacle 10cm
ahead. The same reasoning can be applied to other distances, so that we define a multi-label
classification problem with a single camera frame as input, and multiple binary labels expressing
the presence of obstacles at different distances.

The approach is self-supervised because it does not require any explicit effort for dataset ac-
quisition or labeling: the robot acquires labeled datasets unattended and can gather additional
labeled data during its normal operation. Long-range sensors do not need to be calibrated: in
fact, they could even be mounted at random, unknown poses on the robot. Exploiting a com-
bination of long-range sensors is handled naturally by just using all of them as inputs to the
learning model.

Potential instances of the approach include: a vacuuming robot that learns to detect dirty
areas, by using a camera as the long-range sensor and an optical detector of dust in the vacuum
intake as the short-range sensor; an outdoor rover learning to see challenging terrain by relating
camera and/or LIDAR readings to attitude and wheel slippage sensors; a quadrotor learning to
detect windows at a distance, using camera/LIDAR as long range sensors and a vision-based
door/window detector which works only at close range as the short-range sensor. Note that
in this case, the short-range sensor is not a physical one but is the output of an algorithm that
operates on camera data but is unable to produce long-range results.

Our main contribution is a novel, general approach for self-supervised robot learning of
long-range perception. In Section 3.2 we implement this model on the Mighty Thymio robot [66,
174] for obstacle detection using a forward-looking camera as the long-range sensor and five
forward-looking proximity sensors as the short-range sensor. We report extensive experimen-
tal results on this task, and quantitatively evaluate the quality of predictions as a function of
distance. To test the generality of the approach, we finally instantiate the it on a different task
and report results obtained in simulation.

23 3.1 Background

3.1.1 Related Work

A common theme in self-supervised robot learning approaches is that labels are acquired si-
multaneously to the data they are associated to, and consider only information from a single
near-future step, as described in detail in Chapter 2. Our approach crucially differs in that we
derive supervisory labels from multiple short-range sensor readings acquired at a different time
than the long-range one to be classified, when the robot is at a different pose.

In this regard, similar approaches have been used in literature for terrain classification [21,
15]: in these approaches, accelerometer data is collected along with the front-facing camera’s
feed. Training examples are generated by matching the two streams in such a way that the
image collected at a given time, which contains the visual representation of a terrain patch in
front of the robot, is associated to the accelerometer readings collected when the robot was
traversing that specific terrain patch, from which the label is derived. Note that this implies
that the mapping between the image and the future robot poses is known, i.e., that the long-
range sensor is calibrated. Our approach does not rely on the knowledge of such mapping;
instead, we expect the Machine Learning model, which is fed the raw long-range sensor data
without any specific geometric interpretation, to automatically devise it; this also allows us to
simultaneously train for multiple labels at different relative poses.

Gandhi et al. [60] trained a model to determine whether the image acquired by the front
camera of a drone depicts a nearby obstacle or not. The former class is assigned to all images
acquired near the time in which of a drone crash is detected; remaining images are associated
to the latter class. This approach can be seen as a specific instance of the one we propose, with
the camera as a long-range sensor, a crash detector as a short-range sensor, and a single label
corresponding to a generic “nearby” pose. Van Hecke et al. [180] adopt a similar approach to
estimate average depth using a monocular image, by using the stereo vision depths from the
past as trusted ground truth.

3.1.2 Model

We consider a mobile robot with pose p(t) at time t; the robot is equipped with one long range
sensor l(·) and one or more short-range sensors si(·), i = 1, . . . , m. For simplicity, we limit the
analysis to wheeled mobile robots for which p(t) ∈ SE(2). We model all sensors as functions
that return the sensor readings for a given timestep t.

We assume that short-range sensors return binary values si(·) ∈ {0, 1} that provide very
local but unambiguous information for the robot (e.g., bumpers). Instead, long-range sensors
provide a wider but maybe not directly interpretable information (e.g., a camera).

We define a set {p1, . . . , pn} of predefined target poses relative to the current pose p(t) (see
Figure 3.2): our objective is to predict the readings si(j), i = 1, . . . , m ∧ j = 1, . . . , n of all
short-range sensors at the target poses, given the current reading l(t) of the long-range sensor.

3.1.3 Learning-Based Solution

We cast the problem as a supervised learning task. We gather a large dataset of training in-
stances and use it to model the relation between l(·) and s(·). Each training sample consists
in a tuple containing the long-range sensor reading and the short-range sensors’ readings for
all target poses. Each sample is collected in a self-supervised manner as the robot roams in the

24 3.2 Experiments

Figure 3.2. (a) A mobile robot at pose p(t) has a long-range sensor l (red) and (b) a short-range
sensor s . Our objective is to predict the value of s at n target poses p1, p2, . . . pn from the value
of l(t). (c, d) For a given instance, we generate ground truth for a subset of labels by searching
the robot’s future trajectory for poses close to the target poses.

environment while sensing with all its sensors and recording odometry information; for each
time t, we record (p(t), l(t), si(t), . . . , sm(t)).

Self-supervised label generation

After the data is collected, we consider each pose in the dataset as a training sample. Let p(t)
be such pose. In order to generate ground truth labels, we consider each of the target poses
{p1, . . . , pn} in turn. For each given target pose p j , we look for a time t � such that p(t �) is
closest to p j . In this step, we may limit the search to t � ∈ [t − δt , t + δt], e.g., to limit the
impact of odometry drift. If the distance between p(t �) and p j is within a tolerance δd , the
recorded values of si(t �), i = 1, . . . , n are used as the labels for target pose p j . Otherwise, the
labels associated to target pose p j are set to unknown. Therefore, it is possible that for a given
instance some or even all labels are unknown. While in the former case the instance can still
be used for learning, in the latter case it must be discarded.

The amount of training instances for which a given label is known depends on the corre-
sponding target pose and on the trajectory the robot followed during data acquisition. Sec-
tion 3.2.1 illustrates a robot’s behavior designed to efficiently generate a large dataset for a
specific set of target poses.

Given the structure of the labels, the machine learning problem we ought to solve is an
instance of multi-label binary classification with incomplete training labels, in which the model
predicts the value of m sensors at n poses (i.e., n × m labels) given one reading from l(·).
The specific model to solve this problem depends on the type of the data generated by l(·); in
Section 3.2.3, we consider a setting in which l(·) outputs images, therefore we adopt a CNN.

3.2 Experiments

The robot platform adopted for the experiments is a Mighty Thymio [66], a differential drive
robot equipped with 9 infra-red proximity sensors with a range of approximately 5 to 10cm,
depending on the color and size of the object. 5 of these sensors point towards the front of the
robot at angles of −40◦, −20◦, 0◦, +20◦, +40◦ with respect to the robot’s longitudinal axis; we
use these five sensors as the short-range sensors s1, . . . , s5, and treat their output as a binary
value: 1 for obstacle in range and 0 for no obstacle in range. The robot is also equipped with

25 3.2 Experiments

Figure 3.3. Simplified illustration describing how a training instance is built. The camera image
from the current pose p(t) (bottom) is associated to the sensor readings (blue squares) from
future poses that are close to the target poses aligned with the robot’s axis.

a forward-looking 720p webcam with an horizontal Field of View (FOV) of 68◦, used as the
long-range sensor.

We define a set of 31 target poses {p0, . . . , p30} which lie in front of the robot, aligned with
its longitudinal axis, evenly spaced at a distance of 0 to 30cm. Note that since target pose p0

coincides with the current robot pose p(t), labels for p0 are present in every training instance.

3.2.1 Data Acquisition Controller

We implemented an ad-hoc controller for efficient unattended collection of datasets, consisting
of the readings from the five short-range sensors, the robot odometry and the camera feed. The
controller behavior is illustrated in Figure 3.4: the robot moves forward (a) until an obstacle
is detected (b) by any of the proximity sensors; at this point, it stops and defines 5 directions
which are offset from the current direction by −30◦, −15◦, 0◦, 15◦ and 30◦ respectively (c,
the figure shows three for clarity). For each of these directions in turn, the robot: rotates in
place to align with this direction, moves back by a fixed distance of 30cm (d, f, h), then moves
forward by the same distance, returning to the starting position (e, g, i). After the process is
completed, the robot rotates away from the obstacle towards a random direction, then starts
moving forward again (j) and continues the exploration of the environment.

Note that the controller is built in such a way to efficiently populate labels for the target
poses (i.e., it proceeds straight when possible); moreover, the controller strives to observe each
obstacle from many points of view and distances, in order to mitigate the label imbalance in
the data.

However, it is important to note that the general approach we propose is not dependent on
any special controller. For any given choice of the target poses, a random-walk trajectory would
eventually (albeit inefficiently) collect instances for all labels.

26 3.2 Experiments

Figure 3.4. Example trajectory generated by the data acquisition controller.

3.2.2 Datasets

We acquired datasets from 10 different scenarios (see Figure 3.5), some indoor and some out-
door, each featuring a different floor type (tiled, wooden, cardboard, linoleum) and a different
set of obstacles. For each scenario, we left the robot unattended, acquiring data for about 10
minutes using the controller described above.

The collected data amounts to 90 minutes of recording, which is then processed in order
to generate labeled instances as described in Section 3.1.2, resulting in a total of 50K training
examples extracted at about 10Hz. Figure 3.6 reports the total number of known labels as a
function of the distance of the corresponding target pose. Note that the total of known labels
for a distance of 0cm amounts to 250K, i.e., 50K for each of the 5 sensors. We observe that the
classification problem is imbalanced in favor of negative labels; a potential countermeasure,
which is not necessary in our case, is to implement a cost-sensitive loss [22].

All quantitative experiments reported below split training and testing data by grouping on
scenarios, i.e., ensure that the model is always evaluated on scenarios different from those used
for training. This allows us to test the model’s generalization ability.

Data preprocessing and augmentation Camera frames are resized using bilinear interpola-
tion to 80×64 pixel RGB images, then normalized by subtracting the mean and dividing by the
standard deviation. The robot’s pose p consists of its position on the ground plane and orien-
tation angle 〈x , y,φ〉 since the robot operates in 2D. Proximity sensor readings are expressed
as binary values, i.e., 0 if no obstacle is detected and 1 if any obstacle is detected regardless on
its range.

Data augmentation has been adopted to synthetically increase the size of the datasets: with
probability 0.5, the image is flipped horizontally, and the corresponding target labels are modi-
fied by swapping the outputs of the left and right sensors, and the outputs of the center-left and
center-right sensors; with probability 1/3, a Gaussian noise with µ = 0 and σ = 0.02 is added
to the image; also, with probability 1/3 the image is converted to grayscale; lastly, a smooth
grayscale gradient with a random direction is overlayed on the image so as to simulate a soft

27 3.2 Experiments

Figure 3.5. 10 instances from the acquired dataset, each coming from a different scenario (top
row: scenarios 1 to 5; bottom row: 6 to 10). For each instance, we show the camera image
(bottom) and the 31× 5 ground truth labels as a blue matrix (top right): one row per distance,
one column per sensor; dark = obstacle detected; light = no obstacle detected; distances
masked by gray rectangles correspond to unknown labels (due to the robot never reaching the
corresponding pose). The red heatmap at the top left shows the predictions of a model trained
on the other 9 scenarios.

0 10 20 30

100K

200K

distance [cm]

nu
m

be
r

of
sa

m
pl

es

negative
positive

0 10 20 30

10 %

20 %

distance [cm]

ra
ti

o
of

po
si

ti
ve

sa
m

pl
es

Figure 3.6. Left: number of known positive (obstacle) and known negative (no obstacle) labels
as a function of the distance of the corresponding target pose. Right: percentage of positive
labels as a function of distance.

28 3.2 Experiments

Figure 3.7. Convnet architecture

shadow.

3.2.3 Network Architecture and Training

We use a convolutional neural network, with input shape 64 x 80 x 3 and output shape 1 x 155.
Namely, the outputs consist of one binary label for each of the five sensors, for each distance
in the set {0cm, 1cm, . . . , 30cm}. The architecture is a simple LeNet-like architecture [88] with
interleaved convolutional and max-pooling layers, followed by two fully connected layers. The
architecture is detailed in Figure 3.7. The model is trained for a total of 15 epochs with 1000
steps per epoch, using gradient descent on mini-batches composed by 64 instances; we use the
Adam [83] optimizer with a learning rate η = 0.0002; the loss function is the mean squared
error computed only on the available labels.

Since our dataset has incomplete labels (meaning that for a given instance only a subset of
the labels might be known), we adopt a masking approach to prevent the loss function to be
influenced by the outputs corresponding to the labels that are missing [51, 193]; in turn, this
ensures that the corresponding errors will not be backpropagated, which would compromise
the learning process.

To achieve this, for each instance we build a binary mask containing one value per label;
each value in the mask is equal to 1 if the corresponding label is known, and equal to 0 if the
label is unknown. During the forward propagation step, this mask is multiplied element-wise
with the difference between the prediction and the ground truth for each output, i.e., the error
signal. This nullifies the error where the mask is 0 (i.e., for the subset of labels which are
unknown for the given instance), and lets it propagate where the mask is 1.

29 3.2 Experiments

Performance metrics We evaluate the performance of the model by computing the area under
the receiver operating characteristic curve (AUC) for every output label (corresponding to a
distance-sensor pair). This metric is evaluated over 100 rounds of bootstrapping [9] to robustly
estimate a mean value and a confidence interval. Because of the heavy class imbalance in the
dataset (see Figure 3.6), accuracy is not a meaningful metric in this context; instead, AUC is
more robust to class imbalance and does not depend on a choice of threshold. In particular,
an AUC value of 0.5 provides a clear baseline: in fact, it corresponds to the performance of a
baseline classifier that always returns the most frequent class; conversely, an AUC value of 1.0
corresponds to an ideal classifier. We use these fixed bounds in all our figures.

3.2.4 Self-Supervised Occupancy Map Estimation Results

We report two sets of experiments. We begin by quantifying the prediction quality using the
datasets described above, acquired on the Mighty Thymio. After that, we aim to test the robust-
ness of the approach: to this end, we consider a model trained on these datasets and report
qualitative results for testing on video streams acquired in different settings.

We consider a model trained on scenarios 1 to 8, and we report the results on testing data
from scenarios 9 and 10. Figure 3.8 reports the AUC values obtained for each sensor and
distance. Figure 3.9 reports the same data as a function of distance, separately for the central
and lateral sensors. Note that “distance” here does not refer to the distance between the obstacle
and the front of the robot; instead, it refers to the distance of the corresponding target pose as
defined in Section 3.1.2, which corresponds to the distance that the robot would have to travel
straight ahead before the proximity sensor is able to perceive the obstacle.

We observe that overall prediction quality decreases with distance. This is expected for two
reasons: i. the training dataset contains fewer examples at longer distances, and those examples
exhibit more extreme class imbalance (Figure 3.6); ii. obstacles at a long range might be harder
to see, especially considering the limited input resolution of the network. We also observe that:

• AUC values at very short distances (0cm, 1cm, 2cm) are slightly but consistently lower
than the AUC observed between 4cm and 8cm. This is caused by the fact that when
obstacles are very close to the robot, they cover almost the whole camera field of view,
and there might be no floor visible at the bottom of the image; then, it is harder for the
model to interpret the resulting image.

• AUC values dramatically drop to 0.5 (i.e., no predictive power) for distance values larger
than 28cm. This is expected, since this value corresponds to the distance of obstacles
when they appear at the top edge of the image; an obstacle that is placed farther than
that will not be visible in the camera frame.

• For distances lower than 10cm the central sensor is significantly easier to predict than
lateral sensors. This is explained by the fact that objects that are detected by lateral
sensors are at the edge of the camera field of view when they are close, but not when
they are far away.

In the right plot of Figure 3.9 we report the AUC values obtained for each sensor, separately
for each testing environment. These values have been obtained by a leave-one-scenario-out
cross validation scheme. We observe that the predictive power of the model is heavily dependent
on the specific scenario. In particular, scenarios 9 and 10, which were used as a testing set for
the experiments above, are in fact harder than the average.

30 3.2 Experiments

Figure 3.8. AUC value obtained for each sensor (column) and distance (row).

0 10 20 30

0.6

0.8

1

distance [cm]

A
U

C

left
central

1 2 3 4 5 6 7 8 9 10

0.6

0.8

1

environment

A
U

C

left
center-left

central
center-right

right

Figure 3.9. Average AUC over 100 bootstrap rounds. Left: AUC for the center (black) and
left (cyan) sensors as a function of distance. Shaded areas report 95% confidence intervals
on the mean value (dashed line) over all environments. Right: AUC for each sensor for each
environment, averaged over all distances between 0 and 30cm.

31 3.2 Experiments

Figure 3.10. Robustness tests: input (bottom images) and outputs (top heatmap) of the model
trained on datasets acquired by the Mighty Thymio robot. Leftmost two images are acquired
by a TurtleBot 2; the remaining three images are acquired by a belt-mounted camera.

3.2.5 Robustness Test and Control

Figure 3.10 reports qualitative results concerning the performance of the model, trained on the
whole dataset described above, when used for inference in two setups which do not match the
training data. We run the model on the video stream from a TurtleBot 2 [1] robot, acquired by a
laptop webcam mounted about 60cm over the ground (compare with the Mighty Thymio cam-
era, which is 12cm from the ground), and oriented with a similar pitch as the Mighty Thymio
camera. Because the robot has no proximity sensors, we don’t have ground truth information;
still, we qualitatively observe that obstacles are detected reliably. The same figure reports the
results we obtain when feeding the model with data coming from a webcam mounted on the
belt of an user during walking (height 95cm, variable pitch). Videos are available as supple-
mentary material, and also include a brief experiment showing the effects of extreme camera
pitch angles. Supplementary videos show the system used as the sole input of an obstacle avoid-
ance controller, both on the Mighty Thymio robot (with disabled proximity sensors) and on the
TurtleBot 2 robot; the robots react to obstacles appropriately.

3.2.6 Simulated Experiment on Terrain Properties Estimation

In order to highlight the generality of the approach, we run an additional experiment using a
Pioneer 3-AT platform simulated in Gazebo (see Figure 3.11), equipped with 3 RGB cameras
looking at random angles (long-range sensor) and a single short-range sensor observing the
floor color just below the robot (which returns binary data: bright or dark). Data is collected
while the robot moves at a constant linear speed of 0.5ms−1 and every 3 seconds changes its
angular speed to a randomly chosen value between −15◦s−1 and +15◦s−1. We use 10 large
maps with size 50m× 50m each, featuring a planar floor textured in a random procedurally-
generated black and white image obtained by thresholding low-frequency Perlin noise. On these
maps, we run the controller for a total of 70 simulated minutes, respawning the robot to the
center of the area should it get too close to the edge. This results in 84000 training examples
collected at 20Hz; examples for 5 maps are used for self-supervised training, the remaining for
evaluation.

We consider a set of 17×17= 289 target poses {p1, p2, . . . , p289} in a square grid with a step
of 0.5m; because the short-range sensor is not affected by the robot’s orientation, we disregard
the orientation of the poses and depict them as small circles; the grid covers an area of 8m×8m
and is horizontally centered on p(t); it extends to 5m in front and 3m behind p(t). The task is

32 3.3 Discussion

Figure 3.11. From left to right: the simulated Pioneer 3-AT platform on one of the 10 random
maps; images acquired by the three cameras; top-down view with the grid of target poses and
the exact area of floor seen by each camera depicted in red (note that CAM1 is tilted laterally,
so its imaged area is not a trapezoid); log-scale heatmap of the number of known labels per
target pose in the training set; heatmap of the AUC on the testing set for each target pose.

to predict the color of the floor (dark or bright) that the robot would measure at p1, p2, . . . , p289

given the three camera images acquired at p(t).
The results on the right of Figure 3.11 show that the approach learns to predict the output

of short-range sensors for generic target poses, including those not on the robot’s longitudinal
axis, as long as the pose is visited often (i.e., its label is known in a sufficient number of training
instances). Interestingly, the approach learns to predict even some target poses that are not
directly observed by any of the three cameras; for example, the poses directly under the robot
and up to two meters behind it. Note that this can not be due to the short-range sensor or its
history, because the predictions are a function of a single input: the long-range sensor readings
at the current timestep. Instead, the model has learned to exploit the fact that bright and dark
areas in the floor are smooth and vary with low spatial frequency: this makes it possible to
extrapolate the floor color on poses behind the robot, as long as the true labels for these poses
are observed frequently in the training set.

3.3 Discussion

We presented a self-supervised approach that learns how to predict future and past outputs of an
informative short-range sensor by interpreting the current outputs of a long range sensor, which
might be high-dimensional and hard to interpret. We implemented the approach on the Mighty
Thymio robot for the specific task of predicting the future outputs of the robot’s proximity
sensors (i.e., the presence of obstacles at different distances from the robot) from the video
stream of the robot’s forward-pointing camera. We quantitatively verified that the approach
is effective and generalizes well to unseen scenarios: we qualitatively evaluated robustness to
different operating conditions and usage as input to an obstacle-avoidance controller. Finally,
we successfully instantiated the approach on a different, complementary task in simulation.

The presented approach is effective, however, it lacks in efficiency: much of the training
samples have a low percentage of known cells inside the map constituting the label for a given
image. Due to this missing information, we adopted a masked loss to train models using only
map cells with known values while ignoring remaining cells. In the following chapter we discuss
how to take full advantage of the collected data, supervising models also on those cells having
missing values using a consistency loss.

Chapter 4

Learning From Partial Labels

In the previous chapter, we investigated a self-supervised approach to automatically label cam-
era frames with occupancy maps, leveraging sensors’ readings acquired at different time steps.
One crucial detail of the generated labels is that they are dependant on robot exploration: by
choosing to head one direction instead of another, the robot explores some areas of the environ-
ment, leaving the others untouched. This translates in our approach to cells of the occupancy
map with no known label value, since the robot did not sense that specific area. In this chapter,
we explore how to exploit unknown map cells to provide additional supervision to a perception
model. Specifically, we take advantage of the fact that the environment state changes smoothly
and not abruptly to define a consistency loss. Apart from providing additional supervision, this
loss additionally introduces a desirable bias by forcing a model to have consistent predictions
from different views of the same area of the environment.

4.1 Background

We consider a class of perception problems in which a robot has to interpret data acquired by
onboard sensors (e.g., cameras) in order to derive spatial information about its environment
state (e.g., the presence of obstacles or the pose of a person in front of the robot). In the ideal
case, one learns a model in a supervised setting by using a large dataset which maps inputs
to known desired outputs. In many real-world cases, however, one can acquire a training set
which only features partial ground truth information. Two reasons why this might occur are
the following.

• In semi-supervised learning [27], one acquires (usually at a significant cost) a limited
amount of labeled training instances, but also wants to exploit a large amount of un-
labeled instances; those can be acquired with limited effort, or in environments more
representative of the deployment scenario; for example, this is the case when labels are
generated by motion-tracking systems, which can only be used in some environments;
or when a robot is expected to automatically adapt to a deployment environment, where
supervisory labels are not available.

• When learning multi-output models, each training instance might have ground truth in-
formation only for a (potentially different) subset of the outputs; in particular, this is rel-
evant in one type of self-supervised robot learning [204, 60, 113, 191], in which a robot

33

34 4.1 Background

autonomously acquires its own training set by using readings of different sensors, possi-
bly when the robot is at different poses, to determine ground-truth labels. Depending on
the robot behavior, every training sample might only have ground truth information for
some of the outputs.

The naive solution to the problem is to ignore the missing labels while training. This is trivially
implemented when using neural models that minimize a task loss: in the former case by defining
a task loss only on the labeled instances; and in the latter by using a masked task loss [51, 193]
which avoids backpropagating the error from the outputs with unknown labels.

This paper formalizes, demonstrates and evaluates a simple but general approach to exploit
unlabeled information in this context. In particular, we keep the task loss defined above, and
associate an auxiliary state-consistency loss: it captures the prior expectation that the environ-
ment state does not change over time. In dynamic environments, where the state does change
(but in a continuous way), we assume that state-consistency applies within time windows that
are short enough, i.e., by sampling at a sufficient frequency, the change in state between se-
quential samples is negligible.

This expectation can be interpreted as a rough translation to robotics of the Object-Permanence
hyperprior [34], a well-known concept in developmental psychology [57] that describes our
brain’s (innate or learned) expectation that objects continue to exist even when they are not di-
rectly perceived by the senses. According to the Predictive Coding theory of brain function [33],
this hyperprior yields a powerful supervisory signal that helps the process of learning to make
sense of sensory information1.

Our main contribution is a general approach to handle spatial perception problems with
partial labels. In Section 4.2, we directly instantiate the approach for two different realistic
robotic visual perception tasks, as depicted in Figure 4.1, and report results on both tasks with
simulated and real data, quantifying improvements, and exploring how the approach performs
in dynamic environments.

4.1.1 Related Work

Multi-view consistency approaches exploit different views of the same scene as a source of su-
pervision, e.g., allowing a model to better predict the overall shape of an object and its pose
given only a partial representation, possibly with occluded areas; other applications of multi-
view consistency are discussed in greater detail in Chapter 2. Given predictions generated from
different views of the same object, model consistency is achieved either by construction, ag-
gregating the predictions [200], or by penalization, using a consistency term [176, 189]. Our
approach shares the main idea of the latter class, multi-view consistency, but is not limited to a
specific sensor type or to operating on individual objects; instead, it supports a generic represen-
tation of the environment state, and can be adopted on any sensing modality. In particular, Zeng
et al. [200] solve the 3D pose estimation task for a robot arm using multiple RGB-D cameras.
Self-supervised learning is used to collect large quantities of RGB-D images containing single
objects, which are easily labeled by a background-removal algorithm. Multi-view consistency
is achieved by projecting the segmented objects from different views into a shared 3D space
and then combine them together. Next a template matching algorithm tries to fit a model of

1Another hyperprior described in developmental psychology is sensory synchronicity: the expectation that percep-
tions from different senses could be caused by the same physical object in the world, and thus can be used to predict
each other: this is the core idea behind cross-modal self-supervised learning [80], a very active research field in deep
learning.

35 4.1 Background

Figure 4.1. We demonstrate our general approach on two different spatial perception tasks.
On the first row, a differential drive robot takes RGB images to predict incomplete state obser-
vations. On the second row, a tiny drone learns state estimation from grayscale images and a
partially labeled dataset. Videos, datasets and code available at https://github.com/idsia-
robotics/state-consistency-loss.

the object, obtaining the most probable 3D pose. Tulsiani et al. [176] and Wei et al. [189] use
single-view RGB images of the same object taken from different positions to predict the 3D
shape of the object and it’s pose. During training multiple views of the same object are fed into
the network and the predicted shapes are forced to be equal by a consistency term: Tulsiani
et al. [176] compute the expected cost of each voxel being correctly represented in a depth
image taken from the point of view of another input instance, while Wei et al. [189] adopt the
chamfer distance computed over pairs of predictions belonging to the same object seen from
different points of view. In contrast, our loss function does not focus on shape prediction and
enforces consistency over all state observations, where overlapping.

Global consistency One important challenge for Simultaneous Localization and Mapping
(SLAM) techniques is to generate globally-consistent maps: this is tackled by optimizing the
global trajectory at each timestep and consequently updating the map [44], by limiting the op-
timization step to consider only a handful of keyframes [69] or by maintaining a collection of
overlapping submaps [146]. While focusing on a different task (model-based perception), our
approach shares with those mentioned above the common goal of a consistent state represen-
tation, enforced by means of constraints placed upon the optimization problem.

4.1.2 Model

We consider a mobile robot capable of odometry, in an environment whose state E(t) evolves
over time. Let pt be the pose of the robot at time t and x (t) the outputs of one or more onboard
sensors: our goal is to train a model to interpret x (t) in order to predict y(t) ⊆ E(t), which is
multi-dimensional (i.e., the model predicts multiple target variables). As an example, consider
a wheeled robot tasked to detect and avoid obstacles. Here, a sensible choice would be to
represent E(·) as an occupancy map and y(·) as the subset of the map local to the robot.

In a standard supervised learning setup, we would collect a training set of instances, each of
which is composed by a pair: inputs x (t) and ground truth outputs y(t). We consider a more
general scenario, often occurring in self-supervised robotics and real-world robot deployments,

36 4.2 Experiments

in which supervisory information is derived by an additional (onboard or offboard) sensor s(t)
from which we can compute ground truth for only a subset of the target variables of the training
set; in particular, we might know ground truth information for a subset of target variables for
every instance, and/or for a subset of the training instances (semi-supervised learning).

We learn the model by minimizing a loss function L defined as the weighted sum of two
terms.

• A task loss Ltask, which penalizes the distance between the model’s prediction ŷ(·) and
the ground truth y(·); if ground truth is known for only part of the target variables, one
can use a masked loss [193], such that unknown target variables for a given instance will
not contribute to the loss

• A state-consistency loss Lsc which penalizes inconsistent predictions at different times. If
we assume that the environment is dynamic, Lsc can be enforced only between instances
acquired within a (possibly very short) time window δt within which we expect the evo-
lution of the environment to be negligible

Let B be the batch of training instances and P be the set of all pairs of different state obser-
vations that lie within such a time window, P = {(ŷ(i), ŷ(j))|abs(i − j) < δt}; the loss can be
written as the mean squared difference on P:

Lsc(P) =
1
�P�
�

ŷ(i), ŷ(j)∈P

(ŷ(i)− ŷ(j))2 (4.1)

The overall loss function can be written as L = Ltask + λscLsc; the scaling factor λsc is set
such that the two losses are balanced, optimizing both task and state-consistency terms at the
same time. In particular, if Ltask is negligible with respect to λscLsc, the model would trivially
learn to predict an arbitrary, constant output independent on the input.

4.2 Experiments

We instantiate the general approach described above on two very different tasks and plat-
forms (Figure 4.1): one estimates a robot-centered occupancy map given the camera feed of a
differential-drive robot, similarly to the approach described in Chapter 3, and the latter predicts
the user pose w.r.t. a drone given the camera feed.

4.2.1 Self-Supervised Occupancy Map Estimation Setup

We consider a small differential-drive robot [111, 66] equipped with front-facing camera x (·)
and five short-range infrared proximity sensors s(·), moving in a static environment E(·) con-
sisting of an enclosed floor with some obstacles. The task consists in predicting a robot-centered
obstacle occupancy map y(t) ⊂ E(t), given a camera frame x (t) as input.

The cells of the map lie on a regular 20× 20 grid defined by a set of 2D coordinates P: the
model solves a 400-variable binary classification problem and predicts in ŷ(·) the probability of
an object being present in each cell of the map.

37 4.2 Experiments

Figure 4.3. Self-supervised occupancy map estimation: top-view of two randomly generated
environments and a close-up view of the robot.

Figure 4.2. Self-supervised occupancy map
estimation: given an image acquired at p1,
partial obstacle presence ground truth is com-
puted by considering short-range infra-red
sensor readings acquired when the robot is
at different poses (e.g. p2). Additionally, the
state-consistency loss enforces that predic-
tions from pairs of poses (e.g. p1 and p3) are
consistent where they spatially overlap.

The model is trained in a self-supervised
way by autonomously generating a training
set while the robot randomly explores the en-
vironment: for a given image x (t) acquired
at time t, we compute ground truth for a
subset of the cells in y(t) by considering the
infrared proximity sensors’ readings s(k) ac-
quired from different poses at times k �= t. In
particular, given a pose pk relative to pt , one
can derive constraints on y(t) from the prox-
imity sensor readings s(k) as shown in Figure
4.2: for example, if p2 is 20 cm in front of p1,
and the center proximity sensor does not de-
tect any obstacle within 1 cm, we can enforce
that there is no obstacle in a cell 21 cm in
front of p1. By considering all k in a time win-
dow centered on t, we acquire ground truth
information for a small subset of the cells of
y(t): free cells are labeled with 0, occupied
cells with 1 and unknown cells with -1, de-
picted respectively as green, red and gray in
Figure 4.12. A training example is generated
from each timestep t and represented by the
pair (x (t), y(t)).

Simulated environments

The setup consists in randomly generated environments, similar to Tobin et al. [171, 172], with
varying textured floors, object placement, size and texture properties such as ambient and spec-
ular color, light direction and intensity. Objects are boxes, cylinders, spheres and additionally
models of various real-world objects (see Figure 4.3). The whole environment is 3 x 3m large
and is enclosed by walls having same texture as the floor.

We use Gazebo [84] to simulate 20 randomly-generated environments. In each environ-

2Cells with contradicting ground truth are assigned the label (0 or 1) observed most frequently.

38 4.2 Experiments

ment, we simulate 64 episodes with an average duration of 14 seconds. In each episode, the
thymio is spawned at a random pose within the enclosure. A controller initially moves the robot
forward until it gets close to an object; then it rotates in one of the two directions for a ran-
dom time and starts moving forward again; the process is iterated four times; then, the robot is
spawned at a new pose so as to yield a good coverage of the environment. This results in a total
of 5 hours of simulated time, from which we sample 50k instances. Each instance consists of an
RGB image with size 80 x 64 pixels and the corresponding partial occupancy map covering an
area of 80 x 80cm with a step size of 4cm (400 variables). 30k instances from 10 environments
are used as the training set T , and 20k instances from the 10 remaining environments are used
for the testing set Q.

Loss function

The formulation of the proposed loss function is reported in Equation (4.1). For the task term we
adopt a masked MSE loss that ignores missing labels: the cells of the occupancy map for which
the ground truth is unknown are skipped when computing the mean squared error. For the state-
consistency loss we used a value of δt = 10s and λsc = 1. In a perfectly static environment with
perfect sensing, one could use a δt =∞; however in this case, a value of 10s has been chosen
in order to limit errors caused by odometry drift. The value of λsc has been chosen among the
set of candidates {10, 5,2,1, 0.5,0.2, 0.1} as the one resulting in the lowest validation loss.

4.2.2 Semi-Supervised Estimation of User Pose in a Nanodrone Setup

We consider a Crazyflie 2.1, a nano-drone measuring 10cm in diameter and weighing only 27g,
fitted with a forward-looking monocular camera x (·) and a Parallel Ultra-Low Power (PULP)
deep learning expansion board [123]. The camera acquires gray-scale images that are cropped
to a size of 160 x 96 pixels. The task is a 3-variable regression problem: predicting the relative
pose y(·) consisting of frontal displacement x , lateral displacement y , and relative head rotation
φ, of a user moving in front of the drone [102].

Datasets

We consider a training set set T of 60k instances, collected on 5 subjects, composed of two
distinct subsets: one subset with 30k instances, where an external motion tracking system
produced ground truth information s(·) for y(·) and a second subset of 30k instances which
we pretend has no ground truth. This identifies a semi-supervised problem, where only Ltask is
used for the former dataset, and only Lsc is used for the latter. 10k additional labeled instances
are used for the validation set set V.

The testing set set Q is composed by 30k additional labeled samples collected from 5 other
subjects disjoint from those in the training and validation sets.

Loss function

The end task loss Ltask is defined as the mean absolute error between ŷ(·) and y(·). In contrast,
Lsc, as defined in (4.1), penalizes the motion of the user in a fixed reference frame, i.e., dis-
counting the motion of the drone itself, which is known from the drone’s odometry. Therefore,
the Lsc loss captures the intuitive prior that, in an unlabeled dataset, within a short time frame

39 4.2 Experiments

Figure 4.4. Self-supervised occupancy map estimation: AUC of the occupancy maps predicted
from held-out testing data. The lighter the color the better the performance. Left, baseline
model trained using only the task loss (masked MSE) [113]. Right, model trained using task
and state-consistency losses.

the pose of the user should not change dramatically, i.e., that the user is subject to the laws of
physics.

4.2.3 Network Architectures and Training

Both models are small resnet-like convolutional architectures [70], with approximately 300k
parameters. We adopt early stopping in order to select the best performing model on the vali-
dation set. Both networks are trained with mini-batch gradient descent, using the combination
of task and state-consistency losses with a weight λsc = 1 (kept fixed throughout all experi-
ments), Adam [83] as the optimizer and a learning rate η = 5 ∗ 10−5. Each batch is composed
of temporally-close training instances in order to maximize the pairs contained in the set P,
used to compute the state-consistency loss.

4.2.4 Self-Supervised Occupancy Map Estimation Results

On the held-out testing set, we compare in Figure 4.4 the performance of a model trained as
described above with an identical model trained on the same data with λsc = 0, which disables
the proposed state-consistency loss and serves as a baseline. Because this is a multi-label binary
classification problem, we evaluate each model by computing the Area Under the ROC Curve
(AUC) for each output variable. The metric is independent on the choice of threshold: a value
of 50% implies that the model does not have any predictive power, whereas a value of 100%
denotes an ideal model.

The performance of both models is best in the central part of the occupancy map, which

40 4.2 Experiments

Figure 4.5. Self-supervised occupancy map estimation: on six testing instances. Left: input
before down-scaling. Center: self-supervised labels (not used for prediction). Right: model
prediction and FOV (blue). Red represents occupied cells, green for empty cells, and gray for
missing information.

is well visible in the camera image; it decreases towards the sides due to the limited field of
view of the camera – with objects being invisible in the frame, especially at short distances.
Interestingly, the models yield (weakly) informative estimates even for cells at the bottom left
and bottom right of the map, which are well outside the camera field of view; this occurs
because the model captures regularities in the environment – such as the common size of some
objects – and is therefore able to sometimes extrapolate to unseen parts of the map, e.g., if just
a part of an object is visible on one side. The score is lower the further we get because of the
limited resolution available to represent distant objects, and for the much smaller amount of
self-supervised labels available for far cells of the map.

For our model, the average AUC computed over all outputs is 69%. This is significantly
higher than the model trained solely with the task loss [113], which only scores 63%; the
difference is particularly striking if one considers that in most frames, a large number of cells
can not be estimated; therefore, the upper-bound for the AUC is likely to be well below 100%.

Qualitative analysis

In Figure 4.5 six different testing-set instances are displayed along with the corresponding net-
work’s prediction. The model has successfully learned to identify walls as narrow and long
structures, even when only a small part of the wall is visible, and corners as two walls intercept-
ing at a 90◦ angle. It correctly detects multiple solid-coloured and textured objects, regardless of
size and point of view, especially when those are located near the robot. The model has learned
that structures like walls not only exist in the part of the map for which labels are provided,
but extend beyond those, correctly predicting that they continue in a straight line; furthermore,
when faced with corners, the wall extend in the direction opposite from such corner and not in
the other way.

41 4.2 Experiments

Figure 4.6. Semi-supervised estimation of user pose in a nano-drone: consecutive frames with
the user standing up, changing direction and walking. In such a dynamic environment, our
approach is applied using small time windows.

R2 (%)

Model x y φ

Baseline 41.7 ± 7.0 58.0 ± 1.0 3.0 ± 1.4
Ours (δt = 0.5s) 54.2 ± 5.0 59.1 ± 1.9 13.1 ± 2.0
Ours (δt = 1.0s) 55.7 ± 3.5 59.1 ± 2.2 4.7 ± 2.7
Ours (δt = 1.5s) 50.5 ± 1.7 54.8 ± 2.4 -3.2 ± 3.6
Ours (δt = 2.0s) 45.0 ± 7.9 48.8 ± 2.7 -4.3 ± 3.5

Upper-bound 78.4 ± 0.6 73.2 ± 1.0 37.3 ± 1.3

Abs. Improv. +12.4 +1.1 +10.1
Rel. Improv. [%] +33.8 +7.2 +29.4

Figure 4.7. Semi-supervised estimation of user pose in a nano-drone: R2 computed for a
model trained using only the task loss [102] (baseline), our model trained using task and
state-consistency losses using different values of δt , and the upper-bound; we report abso-
lute improvements of our approach (δt = 0.5) vs the baseline, and improvements rescaled
such that baseline performance is 0% and upper-bound performance is 100%.

4.2.5 Semi-Supervised Estimation of User Pose in a Nanodrone Results

We train the proposed approach using δt ∈ {0.5, 1.0,1.5, 2.0} seconds; we compare the results
of these models on the held-out testing set with two alternatives: one baseline model trained
with λsc = 0 (equivalent to using only labeled data as in [102]); and a model acting as an upper-
bound of the achievable performance, obtained by training on all 60k instances, exploiting also
the labels of the unlabeled dataset.

Figure 4.7 reports the average coefficient of determination (R2) and its standard deviation
computed over 5 replicas of the experiment (10 for δt = 0.5), for each of the three output
variables. The R2 metric quantifies the fraction of the variance of the target variable that is
explained by the model, and ranges between 0% (for a model that trivially predicts the average
of the testing set) and 100% (for an ideal model); this metric does not depend on the unit of
measure and is more interpretable (but related to) the MSE. We quantify the improvement of

42 4.2 Experiments

Figure 4.8. Semi-supervised estimation of user pose in a nano-drone: user’s head location
(x , y, z) and heading (φ) predictions. Compared to the model trained using only the task
loss [102] (blue), our approach with δt = 0.5s (red) is usually closer to the ground-truth (green).

our model over the baseline model, trained using only the task loss [102], both in absolute
terms (R2 points) and, more importantly, as percentage relative to the maximum achievable
improvement; this is computed as (model − baseline)/(upper − baseline) and yields 0% for a
model that performs as well as the baseline, and 100% for a model that performs as well as the
upper-bound.

On this metric, the model trained with the state-consistency loss and δt = 0.5s yields
statistically-significant improvements over the baseline (evaluated with the one-sided Welch’s
t-test [190]) for x (33% relative improvement, p = 0.007), and φ (29% rel. improvement,
p = 0.00002), but not for y (7% rel. improvement, p = 0.15). This is explained as x and φ
represent harder pattern recognition problems compared to the estimation of the lateral dis-
placement y .

Models trained on larger δt values assume that the environment is approximately static
over longer time periods; if the assumption is met, this should improve the model as stronger
state consistency priors are exploited during training; however, if the assumption is violated
the state consistency loss introduces noise and hinders training. In our dynamic environment,
we observe this trade-off over different target variables. In particular, x (the distance of the
subject to the camera) changes most slowly: in this case, intermediate values for δt maximize
performance. y tends to change faster than x , because it is heavily affected by rotational motion
of the camera; φ, corresponding to head rotation, changes most abruptly. On y and φ, larger
values of δt hinder performance and make the model even worse than the baseline.

Implementation and qualitative performance

Figure 4.8 shows a comparison of the model’s prediction against a baseline model trained using
only the task loss [102] and ground-truth. The model is in general more accurate than the
baseline, especially for x and y , while has some difficulties in estimatingφ and the user’s height
z, especially when the user is crouching. Figure 4.9 shows the Crazyflie nano-drone driven by
a controller which tracks never-seen-before users at close range; the controller is fed with the
outputs of the model trained using the proposed approach, and controls the robot position and
yaw in order to stay 1.5 m in front of the user’s head, pointing towards it. Height is fixed to the
average head height (1.5 m), which is the same height used for training set acquisition. The

43 4.3 Discussion

Figure 4.9. The Crazyflie drone tracking the user’s movements with a perception model learned
using the state-consistency loss.

whole pipeline runs onboard the drone using the commercially available AI-deck [121], based
on the PULP heterogeneous model [38]. The improvements in R2 performance on the testing
set maps to a noticeable subjective improvement in tracking quality. Similarly, the upper-bound
model trained using ground-truth labels for the whole dataset performs noticeably better than
our model.

4.3 Discussion

We proposed a general state-consistency loss enforcing a prior that the robot environment
changes smoothly; the loss is used in addition to a task loss for self-supervised or semi-supervised
spatial perception problems, and allows to learn from portions of the dataset for which labels
are not available. We instantiate the approach in two very different visual perception tasks,
and measure statistically-significant improvements which have noticeable effects in observed
robot behavior. The success of the approach depends on the proper choice for the size of the
time window δt and on the quality of the robot’s odometry. The time window can be easily
tuned through trial and error, grid search, or using an optimization strategy such as bayesian
optimization [132].

The reliance of the approach on odometry causes the model’s performance to decrease pro-
portionally to the noise affecting the odometry itself. In the next chapter, we address this issue
by considering odometry and sensors as being affected by noise, thus modeling them as random
variables. Then, task and state-consistency losses are updated into what we call an uncertainty-
aware formulation, using Monte Carlo to approximate the distribution of the losses minimized
during training.

44 4.3 Discussion

Chapter 5

Learning From Sparse Noisy Labels

In the previous two chapters, we studied self-supervised robot learning approaches that lever-
age the combination of sensors’ readings and the robot’s odometry to generate labels. Thus far,
the approaches assumed the sensors and odometry to be ideal, i.e., not affected by noise or
that its contribution is negligible. However, this assumption falls short when looking at realistic
sensors that, due to fabrication errors and operational conditions, are almost always affected
by noise. In this chapter, we take noise into account and explore a simple approach to handle
it. We assume to know the model of the noise affecting sensors, and represent it with normal
distributions. This approach does not require any alteration to the chosen deep neural net-
work and can be customized to facilitate any loss function. The approach is applied to three
increasingly challenging scenarios and different tasks to test its effectiveness.

5.1 Background

Many robot perception tasks consist in interpreting sensor readings to extract high-level spatial
information [80], such as the pose of an OoI with respect to the robot, or the pose of the robot
itself in the environment. When sensors produce noisy, high-dimensional data that is difficult
to interpret (e.g., cameras or lidars), a common solution is to rely on supervised learning [162].
In many real-world scenarios, collecting the necessary training sets is a fundamental problem;
Self-Supervised Learning (SSL) in robotics aims at equipping robots with the ability to acquire
their own training data, e.g., by using additional sensors as source of supervision, without any
external assistance. In some cases, this allows robots to acquire training data directly in the
deployment environment [163]; a detailed description of these approaches can be found in
Chapter 2.

In this context, a state estimator, such as robot’s odometry, can be a rich source of infor-
mation. Odometry allows a robot to estimate its own motion in the environment according to
its kinematics, e.g., by integrating over time the motion of its wheels as measured by wheel
encoders, often with some uncertainty and accumulating errors. Consider for example a robot
capable of odometry, equipped with a camera and a collision detector [60]; after bumping into
an object, the robot could reconsider the camera observations from the timesteps preceding the
collision; assuming a static obstacle, the camera image acquired when the robot was (according
to its own odometry) 1m behind the place of collision, would depict an obstacle at a distance
of 1m. This piece of information was acquired by the robot without any explicit external su-

45

46 5.1 Background

pervision, and can be used for training machine learning models that map acquired images to
the spatial position of obstacles. The role of odometry is to leverage sparse information from
a simple detector – which provides relevant information only for a few timesteps in a training
sequence – to generate an informative labeled training set.

In this paper we generalize and extend this basic idea: we consider a generic robot that
has a spatial perception task, such as estimating the pose of an OoI in the environment, is
capable of state estimation, possibly affected by accumulating uncertainty due to errors, and is
equipped with one or more sensors, whose outputs we want to use to estimate the target pose.
Furthermore, the robot is equipped with a detector that, for at least a small fraction of timesteps,
produces ground-truth information about the target pose (possibly uncertain). Given training
sequences, we want to learn a stateless model that, given the sensor readings, estimates the
target pose.

Our main contribution is a formalization of the problem of learning spatial perception tasks
in the presence of noisy labels and a general solution based on deep learning, that: i) learns
from sporadic supervision given by a detector and a possibly uncertain state estimator; ii) can
explicitly account for uncertainty in the state estimates and in the supervision using a Monte
Carlo approach; iii) integrates the consistency loss described in Chapter 4 to further improve
results, even with the hurdle of uncertainty. In Section 5.2 we investigate the generality of our
contribution by instantiating it in three different applications as shown in Table 5.1:

• Estimating the relative 3D pose of an OoI from a camera mounted on a robotic arm ma-
nipulator.

• Estimating the heading of a differential drive robot in the vicinity of a straight wall, using
data from 7 sensors that measure the amount of infrared light reflected from the environ-
ment.

• Estimating the 2D pose of a docking station, using images from a camera mounted on a
mecanum robot.

We experimentally evaluate the approach on the three applications and quantify the improve-
ments due to explicitly modeling uncertainty and enforcing state-consistency.

5.1.1 Related Work

In real world scenarios, especially when data is collected directly by robots, noise present in the
labels can severely degrade the performance of learned models [162]. Most approaches that do
regression from noisy data focus on estimating the uncertainty associated to predictions. These
approaches fall under the category of Bayesian learning: some apply an uncertainty estima-
tion model on an existing regressor [99], while others design ad-hoc architectures, casting the
problem as learning the distribution of the model weights [19, 59, 192].

Loquercio et al. [99] estimate the uncertainty associated to model predictions by fitting a
Bayesian belief network. Dropout is used during multiple forward passes of the network to ap-
proximate the uncertainty of the prediction in a Monte Carlo sampling fashion. Similarly, Gal
and Ghahramani [59] propose to approximate the true uncertainty by utilizing dropout Monte
Carlo samples. In contrast to Loquercio et al. [99], they require to alter the network architec-
ture by placing dropout layers after each non-linearity. By keeping the dropout functionality
active during inference, they compute the uncertainty as the variance of the produced samples.

47 5.1 Background

Table 5.1. Platforms and sensory equipment used in the perception tasks

Robot Simulated Robot Manipulator Real Diff. Drive Robot Real Mecanum Robot

F0

Fr

Fi

x (t)p(t)

y(t)

Fr

F0

x (t)
L CL C CR R

p(t)

y(t)

Fr

F0

x (t)

p(t)

y(t)

Sensor RGB Camera Infrared Sensors RGB Camera

Target Object of Interest 3D Pose Robot Heading Docking Station 2D Pose

Detector Fiducial Marker Initial Robot Pose Initial Robot Pose

State
Estimator Forward Kinematics Odometry (inaccurate) Odometry (inaccurate)

Blundell et al. [19] propose to model Neural Network (NN) weights with a zero-centered Gaus-
sian distribution. Learning is then casted as a variational inference problem, where the true
target distribution is approximated by the learned model conditioned on input data. By noting
that commonly used weight distributions are symmetric and independent, Wen et al. [192]
improve the ideas of Blundell et al. [19] by decomposing the forward pass into multiplication
of input and weight means by independently sampled sign matrices [192, eq. (4)], resulting in
faster computation and less variance in the gradients.

In contrast, our approach tackles the different problem of learning from noisy data, without
delving into the estimation of the uncertainty associated to predictions.

5.1.2 Model

We aim to train a model that, given readings x (t) collected by onboard sensors, predicts a
target variable y(t), consisting in a pose p in SE(3) of the frame Fi of an OoI, relative to the
moving robot frame Fr . The sensor readings x (t) do not need to have an explicit geometric
interpretation, might be high-dimensional (e.g., an uncalibrated image), and could potentially
represent the concatenated outputs from multiple heterogeneous sensors.

To train the model, we use data collected in one or more training episodes. During each
episode, the OoI is static (i.e., y does not change when expressed in a fixed reference frame)
while the robot moves in the environment. Let T be the set of all timesteps in a given training
episode.

We assume that a black-box detector provides temporally sparse estimates of y(t):

d(t) =

�
ỹ(t) if t ∈ Td ,

undefined otherwise
(5.1)

where Td ⊆ T denotes the set of timesteps in which the detector module provides an output,
and the tilde over y denotes the fact that this is a potentially inaccurate estimate of the true
value of the target variable.

48 5.1 Background

Figure 5.1. Illustration of the task loss in case the detector and odometry are ideal (left), inac-
curate (center), or with a known uncertainty model (right). Black color denotes the true poses
for the robot (arrowhead) and OoI (diamond); blue color denotes the OoI pose as returned
by the detector; orange denotes model predictions, obtained from data (red) sensed at time u.
Gray denotes robot odometry. See text for details.

Finally, we assume that an odometry module outputs for every t ∈ T a (potentially inac-
curate) estimate p̃(t) of the robot pose p(t) in a fixed inertial frame F0. Given two timesteps
t, u ∈ T , we denote with p̃(t, u) the odometry’s estimate of the pose of the robot at u with
respect to its pose at t. In particular, p̃(t, u) = �p̃(t)⊕ p̃(u), where ⊕ denotes the pose com-
position operator, and the unary operator � denotes pose inversion [40].

For each training episode, we collect the set of samples

{x (t), p(t),d(t)|t ∈ T} ; (5.2)

and use data from all training episodes to learn a mapping from x to y . The mapping is imple-
mented by a NN model m(x |θ) parametrized by θ . Training is performed by minimizing a loss
function

L= Ltask +λscLsc, (5.3)

composed by a task loss Ltask and a state-consistency loss Lsc; the latter is scaled with a factor
λsc.

We first describe these two terms in case the detector and odometry return point-wise esti-
mates; then, we extend the discussion to the case in which their uncertainty can be modeled
with a probability distribution, see Figure 5.1 and Figure 5.2.

Task loss

Consider two timesteps t,u in the same episode, such that t /∈ Td and u ∈ Td . The task loss en-
forces that the model, when fed with x (t) returns a pose that is consistent with d(u), accounting
for the pose transform measured between t and u by the robot odometry p̃(t,u).

More specifically, d(u) is an estimate of the target variable with respect to the robot frame
at time u; it follows that ỹ(t) = p̃(t, u)⊕ d(u) is an estimate of the target variable at t. Thus,
the task loss is defined as

Ltask =
�

t∈Td ,u∈T

ΔSE3(p̃(t,u)⊕ d(u), m(x (t)|θ)), (5.4)

49 5.1 Background

where the function ΔSE3(·, ·) is a measure of the distance between two poses in SE(3) and
defined as

ΔSE3(pa, pb) := λo �oa − ob�+
1
π
Δquat (qa,qb) , (5.5)

where pa and pb are two generic poses, composed of the position components oa, ob ∈ �3, and
the rotation components represented as quaternions qa,qb ∈ �, being � the non-commutative
ring of the quaternions. In (5.5), Δquat(·, ·) denotes the quaternionic distance [100, eq. (4)].
Note that the rotational term of the distance is bound in [0, 1] while the positional term has no
upper bound. The parameter λo is introduced as scaling factor to weigh the two terms.1

This definition of the task loss uses odometry to propagate the estimate of y (produced by
the detector in a timestep u ∈ Td), to any other timestep t in the same episode. If both the
detector and the odometry are ideal (error-free), using any u ∈ Td yields the same value of
ỹ(t) = p̃(t,u) ⊕ d(u). Otherwise, if the detector and/or the odometry are not ideal, every
different choice of u yields a different estimate of ỹ(t). In practice, this is expected to mitigate
inaccuracies as errors are averaged out during training.

State-consistency loss

Consider two timesteps t, u in the same sequence, and assume that t,u /∈ Td . The state-
consistency loss enforces that the predictions of the model at t and u are consistent with each
other, accounting for the robot’s odometry between t and u. More specifically,

Lsc =
�

t,u∈T

ΔSE3(p̃(t, u)⊕m(x (u)|θ), m(x (t)|θ)). (5.6)

Consider the following example; given x (t), the model returns an estimated pose for an
OoI 1.5m in front of the robot; after the robot advances 1m, at time u, the model given x (u)
should return a pose that is 0.5m in front of the robot. The state-consistency loss ensures that
predictions ŷ(t) =m(x (t)|θ) and ŷ(u) =m(x (u)|θ) match this expectation.

5.1.3 Dealing With Uncertainty

Our approach relies on two sources of information, namely the detector d̃(t) and the odometry
p̃(t, u), both of which are possibly affected by measurement errors (instantaneous for the detec-
tor, accumulated over time for the odometry). If such errors can be modeled, we can explicitly
account for them in our approach.

In particular, we represent the uncertainty of d(t) by considering that the detector’s output
is, instead of a pointwise estimate of the target pose, a probability distribution over poses,
defined in SE(3). We denote such probability distribution as D(t).

Similarly, for odometry we define P(t, u) as the probability distribution of the relative pose of
p(t, u); this also accounts for the fact that odometry errors accumulate over time, and therefore
are not independent for different times.

This representation allows to reformulate the task loss as

Ltask =
�
t∈Td
u∈T

�
�
ΔSE3

�
p(t, u)⊕ d(t), m(x (u)|θ)

��
, (5.7)

1In principle, other options for representing poses and their distance [206, 134] might be adopted, as long as the
distance function is continuous and differentiable

50 5.2 Experiments

Figure 5.2. Illustration of the state-consistency loss in case the odometry is ideal (left), inaccu-
rate (center), or with a known uncertainty model (right); black color denotes the true poses for
the robot (arrowhead) and OoI (diamond). Orange denotes the outputs of the model at times
t and u, which depends on sensed data (red). The state consistency loss (violet) forces the
model to output consistent estimates, accounting also for odometry (gray) and its uncertainty,
if known.

and similarly, the state-consistency loss can be rewritten as

Lsc =
�

t,u∈T

�
�
ΔSE3

�
p(t,u)⊕m(x (u)|θ), m(x (t)|θ)

��
(5.8)

where p(t,u)∼ P(t, u) and d(t)∼ D(t).
In practice, when implementing the losses we approximate the expectation as the average

over a finite number of realizations, in which d(t) and p(t, u) are Monte Carlo samples of the
respective distributions.2

5.2 Experiments

This section validates our approach with three applications that differ in complexity and input
dimensionality: (i) pose estimation of an OoI with a robotic arm; (ii) robot heading estimation
using infrared sensors; and (iii) indoor localization of a ground robot.

5.2.1 Object of Interest Pose Estimation With a Robotic Arm Setup

We consider the robotic manipulator Panda by Franka Emika, equipped with an Intel RealSense
D435 sensor [82] at its end-effector, simulated with Gazebo [84], see Table 5.1. The task is
to estimate the 3D pose of an OoI, i.e., a colored mug, which is equipped with a small visual
fiducial marker that is visible only when the cup is observed from a specific viewpoint. The
frames F0 and Fr are placed at the base of the robot and at its end-effector respectively; while
the frame Fi of the OoI is in the center of the mug. The end-effector pose p(t) is given by the
robot forward kinematics. The input x (t) is a 160 × 120 pixel RGB image acquired from the

2In a straightforward implementation, this multiplies the number of training samples by a factor equal to Nmc, and
yields a correspondingly longer training time; in contrast, no additional computation is needed during inference.

51 5.2 Experiments

RealSense camera. The estimates d(t) are generated by the AprilTag [185] off-the-shelf fiducial
marker detector operating on x (t); only when the marker is clearly visible in the frame, the
detector returns an estimate of the 3D pose of the marker w.r.t. Fr

3.
As shown in Table 5.1, the environment consists of a flat table of 90×90 cm with different

objects, some textured and some others having a solid color, besides the mug. In each training
episode, the table and objects color, the position of the objects, and the direction of the light
illuminating the scene are randomized to generate different environments. For each environ-
ment, the robot moves the end-effector in order to reach a total of 32 goal poses using the ROS
MoveIt [36] implementation of the RRT planner. Each goal position is sampled from a semi-
sphere having a radius of 55cm placed at an height of 35cm from the table; the goal orientation
is set to make the camera look towards a random point lying 5cm above the table. For each
environment, the end-effector pose is initialized at the center of the semi-sphere.

The collected data amounts to 237k tuples (of which only 78k have the mug visible), corre-
sponding to 157 environments and 5 simulated hours. The data is finally split into a training set
(119 environments), a validation set (18 environments) and a testing set (20 environments).
Training is performed with a λo = 10, striking a balance between the positional and rotational
errors.

5.2.2 Robot Heading Estimation Using Infrared Sensors Setup

For this application, we use a Thymio [111, 66], a small differential drive robot equipped with 9
infrared sensors: 5 mounted at the front, 2 at the rear of the robot body, and 2 at the bottom that
are not used in this experiment. Each sensor measures the amount of infrared light reflected
from the environment, which is related in some unknown way to the distance and orientation of
the sensor with respect to an obstacle. The input of the model x (t) consists in the uncalibrated
readings of the 7 sensors at time t, while y(t) is the angle of the wall w.r.t the robot. Note that
we can still adoptΔSE3, setting λo = 0, thus considering only the heading. The robot odometry
p̃(t), derived from the wheel encoders, provides the 2D transformation of the robot frame Fr

w.r.t. the inertial frame F0. The scenario, along with an illustrative schematic of the sensor
readings, is shown in Table 5.1.

Episodes are collected by teleoperating the robot along trajectories in the proximity of the
wall. During each episode, the robot true pose is tracked by a fixed tracking infrastructure
(12 Optitrack cameras), which is used as a comparison for experiments. At the beginning of
each episode, the robot touches the wall with its rear side, thus the inertial frame F0 coincides
with the robot frame Fr at this instant in time. This piece of information also acts as a virtual
detector, whose output d̃(t) is available only in the first timestep of each episode.

Information about the rotation of each wheel is computed by the robot’s firmware by mea-
suring the current flowing through each motor – an inaccurate approach whose errors we model
to compute the robot’s uncertain odometry.

A total of 16 distinct episodes are recorded, each lasting on average 34 seconds, during
which samples are collected at 10 Hz (a total of 5453 samples). Episodes are split into training
and validation sets for experiments using a leave-one-episode-out cross-validation scheme.

3The rigid transformation between the end-effector and the camera frame is assumed to be known, through a
calibration procedure. Similarly, the offset between the origin of Fi and the center of the marker is taken into account
in our computations.

52 5.2 Experiments

Figure 5.3. Visualization of measured inaccurate odometry (black), and 50 realizations of the
uncertain odometry, for the first minute of a training episode of the RoboMaster robot.

5.2.3 Indoor Localization of a Ground Robot Setup

We consider a wheeled ground robot, the DJI RoboMaster EP, equipped with an onboard cam-
era and omnidirectional motion capabilities using Mecanum or Swedish wheels, see Table 5.1.
We consider a situation in which the robot navigates a given indoor environment and, when
required, needs to come back to a fixed docking station, e.g., to recharge the batteries. In our
setting, the docking station is represented by a mark on the floor. The input x (t) is the cam-
era stream, downsampled to a resolution of 160 × 120 pixels; the perception task consists in
predicting the pose of the docking station relative to the robot frame Fr , given an image x (t)
acquired at a generic pose. Note that, since the docking station is fixed in the environment, this
problem is equivalent to robot localization; it differs from the object localization task presented
in Section5.2.1 because the docking station does not need to be visible in the input image for
successful estimation.

The robot onboard odometry module provides p̃(t) w.r.t. the inertial frame F0, which co-
incides with Fr at the beginning of the acquisition. Figure 5.3 depicts the inaccurate robot
odometry as measured, and 50 realizations accounting for uncertainty, for the first minute of a
training episode.

Furthermore, at time t = 0 the robot undocks from the docking station; similarly to the
previous case, we use this information as a detector. In this case study, the OoI is the docking
station and its frame Fi coincides with frame F0, as in Section 5.2.2.

We collect 20 episodes recording data at 15 Hz, for a total of 70k samples in 80 minutes
(4 minutes per episode). Each episode begins with the robot attached to the docking station;
the robot is then teleoperated to explore the environment. Data from different episodes are
split into a training set (40k samples, 10 episodes), a validation set (15k samples, 5 episodes)
and a testing set (15k samples, 5 episodes). Training is performed with λo = 10, similarly to
Section 5.2.1.

53 5.2 Experiments

5.2.4 Network Architectures and Training

In all case studies, a NN is trained using Adam [83] as optimizer with a learning rate of 1e−3;
early stopping is used to determine when to conclude the training process. An architecture
based on MobileNet-V2 [154] with a total of 1 million parameters is used for the case studies in
Section 5.2.1 and Section 5.2.3; it maps a 160×120 RGB image to an output vector representing
a 3D pose (composed of 7 elements, 3 for the position and 4 for the quaternion). In these two
use cases, we artificially increase the amount of data used for the training, by adopting the
following data augmentation techniques on the input images: blurring, multiplicative Gaussian
noise, random brightness and contrast, random resized cropping.

In the case study detailed in Sec. 5.2.2, we use a simpler NN architecture composed of four
linear layers with a total of a 1000 parameters, mapping the 7 infrared sensors’ readings to a
3D pose.

5.2.5 Object of Interest Pose Estimation With a Robotic Arm Results

For the scenario described in Section 5.2.1, we first evaluate the trained model on the testing
set, by comparing the predicted poses ŷ to the corresponding ground-truth y . Predictions occur
independently for every frame; no information from state estimation or the detector is used in
the process.

For the position component, the model achieves a Root Mean Squared Error of 39.9mm,
and a coefficient of determination R2 of 0.962, 0.960 and 0.866 on the x , y and z components,
respectively. The coefficient of determination is an adimensional measure of the quality of
a regressor, which quantifies the amount of variance in the target variable that is explained
by the model; an ideal regressor yields R2 = 1, whereas a dummy regressor estimating the
mean of the target variable yields R2 = 0; we observe that, while all components are estimated
well, the z coordinate, i.e., the distance of the OoI w.r.t. the camera, is estimated with lower
accuracy; this is expected, since estimating distances is hard from low-resolution monocular
images. The rotational component is estimated with an average rotational errorΔquat = 0.1417,
corresponding to an angle of about 25◦.

As a comparison, we also trained a supervised model using ground truth poses of the OoI
instead of the detector outputs: the resulting prediction performance is the same as with the
self-supervised approach: in fact, in the considered simulated environment the detector is very
accurate and state estimation is ideal, which makes the self-supervised labels almost identical
to ground truth labels. This is not the case for the experiment in Section 5.2.6.

Figure 5.4(a) shows a sequence of camera frames from the testing set with an overlay of
the model’s prediction and the ground-truth. We observe that the model correctly identifies the
object and accurately estimates its pose, even when the OoI is only partially visible or occluded,
and independently on the visibility of the fiducial marker used during training. When the object
is not visible at all on the image, the model tends to confuse it with other objects that are visually
similar; this highlights a limitation of our approach: we do not explicitly handle aliasing, i.e.,
the case in which x does not contain enough information to estimate y .

To demonstrate the fact that the model, once trained, can be used in dynamic environments,
we consider an additional testing scenario: the mug is placed on a rotating disk support and ob-
served while the robot also moves. Figure 5.4(b) shows a sequence of camera frames captured
during the experiment. Figure 5.4(c) compares the model prediction to AprilTag detections,
and to ground-truth. For the sake of clarity, the target has been transformed in the frame F0,

54 5.2 Experiments

(a) Predictions (magenta-lime-cyan colored frame) and reconstructed ground-truth (red-green-blue frame)
on testing set data.

(b) Input images from the additional testing scenario.

(c) Pose of the OOI in the inertial frame on the additional testing scenario.

Figure 5.4. Prediction of the OoI pose with a robotic arm on the testing set (a); input images
(b), ground-truth and predictions (c) relative to the additional testing scenario. In (b-c) a mug
is placed on top of a rotating disk support. To more easily evaluate the results, we report
both target variables and predictions in the inertial frame F0. Grayed out areas indicate time
intervals in which the mug is not visible.

55 5.2 Experiments

along with the model predictions. The model (green in the plots) manages to predict a consis-
tent pose (it well overlaps the blue dashed line of the ground-truth), outperforming the AprilTag
detection (red line), which provides a measure for a small fraction of frames in which the tag
is visible, while our model runs at 25Hz on a GPU Nvidia Quadro P2000. The model produces
good estimates of the mug pose from most points of view, even when it appears upside down.
Occasional failures occur when the mug is seen from a point of view that does not provide any
reference to infer its actual rotation around the vertical axis, i.e., when both the marker and
the handle of the mug are not visible. While it is robust to partial occlusions of the mug, the
model fails to estimate the mug’s pose when a very small portion of it is visible, or when it is
totally invisible; time intervals in which the mug is not visible are depicted with a gray shadow
in Figure 5.4(c).

5.2.6 Robot Heading Estimation Using Infrared Sensors Results

For the scenario described in Section 5.2.2 we consider three possible sources of odometry: ex-
act odometry, where p̃(t, u) = p(t,u), as measured by the optitrack system, acting as an upper
bound of the achievable performance; pointwise odometry, where the relative pose p̃(t, u) is
computed according to the known robot kinematics and the readings of the wheel rotation sen-
sors between timesteps t and u; uncertain odometry, where the probability distribution P̃(t, u)
is approximated by Nmc = 50 realizations of the odometry between timesteps t and u, obtained
by corrupting the readings of the wheel rotation sensors with white Gaussian noise, whose
variance matches the known uncertainty of the sensor.

Figure 5.5 reports the Mean Absolute Error between the predicted angle of the robot pose
with respect to the wall, against the ground-truth angle as measured by the optitrack system;
this metric is reported for four models trained with different odometry sources, with (λsc = 1) or
without (λsc = 0) the state-consistency loss. Each of the four models is trained and evaluated 16
times according to the leave-one-episode-out cross validation scheme. We observe that: i) using
uncertain odometry instead of pointwise odometry improves the prediction performance of the
resulting model;4 ii) additionally enforcing the state-consistency loss (λsc = 1) further improves
performance, even though the incremental improvement over the uncertain model with λsc = 0
is not statistically significant; iii) compared to the model trained with exact odometry, serving
as a supervised learning upperbound, the performance gap of our best model is less than half of
the performance gap of the baseline model (pointwise λsc = 0), specifically of 0.57◦ vs 1.20◦.

5.2.7 Indoor Localization of a Ground Robot Results

For the scenario described in Section 5.2.3, we report one qualitative and one quantitative
experiment. In the qualitative experiment, we train a model using uncertain odometry (Nmc =
50) and λsc = 1, then apply the trained model independently on each frame of a testing episode.
Figure 5.6 shows the position component of the predicted poses (green), compared to the poses
returned by the robot’s odometry (blue) for the same trajectory; despite the short duration of
the testing episode (about 4 minutes), the drift of the odometry trajectory is apparent: the blue
trajectory passes through a wall on the left; in comparison, the poses predicted by our approach
are locally noisy but not affected by accumulating error. The figure also depicts the predicted
pose at the end of the trajectory for each of the two methods; our model correctly predicts that

4we use the non-parametric Wilcoxon signed-rank test between matched samples, i.e., the performance of two
models on the same cross-validation fold (p = 0.0003)

56 5.3 Discussion

Figure 5.5. Mean absolute angle error (lower is better) in the heading estimation task. ∗ p =
0.0003; ∗∗ p = 0.0008; n.s. means not significant (p = 0.029).

Table 5.2. Quantitative performance on the indoor localization task

Method Position Error [mm] Rotation Error [deg]

Odometry 84.9 11.9
Pointwise, λsc = 0 62.8 23.8
Pointwise, λsc = 1 49.1 7.5
Uncertain, λsc = 0 73.5 9.1
Uncertain, λsc = 1 35.2 3.8

the robot is back at the docking station, whereas the odometry has drifted by about 50cm and
20◦.

2m

Figure 5.6. Robot localization task on test-
ing data.

In the quantitative experiment, we consider
four timesteps t ∈ t1, t2, t3, t4 of the testing
episode, whose ground-truth poses p(t) have
been manually measured with respect to the dock-
ing station. For each of the four timesteps, we
measure the positional and rotation components
of the error against such ground-truth, for: i) the
pose p̃(t) estimated by the robot odometry; ii) the
poses estimated by each of four models. In partic-
ular, we consider models trained with pointwise
or uncertain odometry, with or without using the
state-consistency loss. Table 5.2 shows that: us-
ing the state-consistency loss improves both posi-
tional and rotational errors; using uncertain odometry during training consistently outperforms
pointwise odometry.

5.3 Discussion

We presented a general self-supervised learning approach for spatial perception tasks, and in-
stantiated it on three different case studies. The approach is general enough to be applicable to
different robots and sensor apparatus, requiring only a possibly uncertain odometry and a detec-
tor that sparsely produces a ground-truth estimate. A novel loss allows us to evaluate the model

57 5.3 Discussion

outputs also for timesteps in which no supervision is available, by propagating such supervision
from different timesteps using uncertain state estimates. Furthermore, the loss formulation
enforces consistency among predictions at different timesteps, which further improves perfor-
mance. Results show consistent and statistically significant improvements of models learned
with the uncertainty-aware version of the loss compared to the respective baseline.

So far, we examined self-supervised robot learning approaches that extract supervision from
sensors and odometry. Among various options being explored for proposing new supervision
sources, task demonstrations are a solid candidate. In the next chapter, we study the use of
task demonstrations to supervise a perception model to predict visual features of an OoI. By
learning to imitate the demonstrated task, the visual features produced by the model become
consistent w.r.t. the OoI, resulting in the desired behaviour.

58 5.3 Discussion

Chapter 6

Supervision From Task
Demonstrations

Classic self-supervised robot learning approaches rely on sensors and other information pro-
duced by the robot to provide supervision to perception models. Given this data, robots gen-
erate labels to train a perception model, understanding the environment without relying on
externally labeled data. In this chapter, we investigate a different way of deriving supervision
for a perception approach using task demonstrations. Specifically, we consider the task of pre-
dicting visual features of an OoI such that they can be used inside the control law for visual
servoing. Overall, this approach explores the potential of learning a perception task by super-
vising the model with robot trajectories. By leveraging a differential control law, the model
learns to produce visual features for the OoI without needing ground truth features. The goal
is to train a model to produce visual features that imitate the demonstrated behavior when
combined with the control law.

6.1 Background

Recent advancements in the fields of robotics and AI are leading machines to higher levels of re-
liability and autonomy. Specific application domains, like domotics and Industry 4.0, are show-
ing the big potential of these technologies. Indeed, the ubiquity of robots chased for decades
is quickly becoming reality, although it brings novel needs and challenges. In particular, an in-
creasing number of nonspecialist users ask for easy-to-use robots and no programming duties.
Even in technical domains, like industry, practitioners with little or no expertise in robotics wish
for plug-and-play platforms.

Today’s progress of Deep Learning (DL) permits a relatively straightforward application of
NNs, which are known to handle well high dimensional data and complex perception tasks [64].
In this work, we focus on how to combine DL and control techniques to solve the perception
problem in the specific context of Visual Servoing (VS). The traditional VS paradigm relies on
the image processing to extract a suitable control feedback. It has to be properly designed,
implemented, and normally tailored to the desired task. To increase the easiness of use, also
for nonspecialists, a possible way is the complete removal of the explicit image processing block
from the VS scheme. Furthermore, it is desirable to have a modular perception block, possibly

59

60 6.1 Background

transferable to other visual controllers. To this end, we propose to train a NN that derives su-
pervision from the knowledge of the control structure and the robot motion to provide neural
feedback from monocular images. The proposed framework keeps the classic perception-and-
control scheme where the feedback extraction algorithm is left outside the control block. Never-
theless, our perception model is made aware of the VS structure and the visual features motion
model, leveraging this information to give a geometric interpretation to the neural feedback.
This approach differs from an end-to-end one, where sensing and action are, instead, coupled.
We claim that keeping the controller analytical structure enables higher flexibility of the entire
framework, besides customization of the downstream control.

The rationale of relying on DL, or other sorts of Machine Learning (ML), to avoid the explicit
image processing in the VS has already been proposed in different forms (see Section 6.1.1).
However, we speculate that neural perception, control, and modeling aspects can bring a ben-
eficial synergy to provide the VS scheme with effective neural feedback (Section 6.1.2). Our
approach is to train a neural perception model oriented to the VS task so that the prediction
provides a robust and tailored control feedback. Using the setup detailed in Section 6.2, we
validate our approach with simulations and real experiments.

6.1.1 Related Work

Classic VS uses visual features extracted from camera images to control robots [28, 29]. In
Image-Based VS (IBVS), they are directly measured on the image, whereas Position-Based VS
(PBVS) uses visually reconstructed camera poses. The basic formulation has been expanded to
planning [106, 31], optimization-based control [3, 126, 108], model predictive control [5, 156,
124] and integrated with ML-based concepts [124, 125]. In any case, the images have to be
explicitly processed to properly detect, track and match the visual features.

More advanced approaches avoid the explicit image processing considering the whole image
as feedback. This newer class of VS, known as direct VS, proposes to use, e.g., photometric
moments [10], luminance of the pixels [37], histograms [13] or Gaussian mixtures [41] as
visual features.

Recently, ML techniques have been considered to solve the image processing problem in VS.
In [26] a Gaussian Mixture Model is used to imitate the classic VS behavior using a reduced
image resolution. In [79], task-relevant features are extracted by a NN to build a more complex
feedback and the visual error. The idea of considering the whole image to avoid specific image
processing is well suited to the application of DL, which efficiently handle dense visual infor-
mation [64]. Indeed, nowadays many works propose to learn the relative camera-scene pose
from monocular images [93, 45, 115], which in principle can be used to realize PBVS; more
relative pose estimation approaches are described in Section 2.5.1. Specifically to the VS case,
several works rely on DL to infer from images the relative camera displacement [157, 198, 14].
In [54] visual features are extracted from an autoencoder latent space and their motion model
computed, to be considered in the analytical VS law. Deep visual features and their dynamics
are learned by an agent in [89].

In end-to-end approaches, a DL architecture computes control commands directly from im-
ages, avoiding the explicit visual feature extraction by coupling the perception and control
problem [91]. End-to-end architectures use a NN to first learn a representation of the image
and another NN to regress velocity commands [139, 53]. In [102] an end-to-end is compared
to a cascade of two NNs computing the target pose and the command for an aerial drone.

Our approach uses DL to extract from monocular images geometrically-interpretable visual

61 6.1 Background

features needed to close the VS loop. In principle, it can learn any feedback described by the VS
law considered during the training phase, being it a Cartesian pose or an image feature. It dif-
fers from an end-to-end approach, since we maintain the classic perception-control paradigm,
keeping the controller structure untouched downstream the perception block. Our neural per-
ception derives supervision from the control knowledge so that it can provide a feedback tailored
to the VS. Furthermore, keeping the control operation outside the perception block allows ma-
jor flexibility of the whole framework. Being formally decoupled from the control, the trained
perception model can be deployed within different control alternatives.

6.1.2 Visual Servoing

In VS, visual features s ∈ � f serve as feedback, extracted or reconstructed from images, re-
quired to close the control loop realizing the desired robot behavior [103, 28, 40]. In general, s
depends on the camera calibration and/or Cartesian information [28, 40]; examples are points
or lines on the image (in IBVS) or reconstructed camera poses (in PBVS).

Considering a robot arm with n DoF in the eye-in-hand configuration, where the camera is
mounted on the robot arm’s end effector, the time derivative of the visual features ṡ is directly
related to the robot joints velocity q̇ ∈ �n through the relationship ṡ = Jq̇ , where J ∈ � f ×n

is the Jacobian matrix. Assuming a non-moving target and a constant reference, the classic VS
law used to control the robot is q̇ = −λĴ+(s − s∗) [29, 103] where λ is a positive control gain
tuning the convergence rate; s∗ ∈ � f are the desired visual features; Ĵ+ ∈ �n× f is the pseudo-
inverse of an approximation of the Jacobian. At convergence, under specific assumptions [28],
the VS law makes sure that the measured features match with their desired counterparts. As a
consequence, the camera is driven to the desired pose.

The following considerations about the Jacobian matrix shall be mentioned. It is composed
as J = L(s)VJr(q) [29, 104], where: L ∈ � f ×6 is the interaction matrix that depends on
the features and relates their motion to the camera velocity; V ∈ �6×6 is the constant matrix
transforming the velocities from the end-effector to the camera frame; Jr ∈ �6×n is the robot
Jacobian in the end-effector frame and depends on the robot configuration q .1 The Jacobian
approximation is mainly due to the interaction matrix that depends on generally unknown
spatial information, e.g., the visual features depth of the visual features; an estimation or ap-
proximation is normally used [28, 5, 104]. Furthermore, the Jacobian can become singular for
particular robot or features configurations, with disruptive consequences on the correct control
convergence. A damping term can be added to the control law, paid at the cost of lower tracking
performances [161].

Neural feedback for visual servoing

We aim at extracting the VS feedback using a NN, tackling a pure perception task. We use the
term model to denote the function m implemented by the NN and predicting the visual features
from an image, i.e., s ≈ m(i|θ), where i ∈ �whc is an image with a resolution of w× h pixels
and c channels; θ ∈ �m is the set of weights2 obtained by optimizing a loss function L in the
training phase.

1If not explicitly mentioned, the dependency of the matrices on the robot configuration and the visual features is
omitted for brevity.

2In what follows, we omit the dependency of the models on the weights.

62 6.1 Background

The majority of NN-based methods rely on labels, i.e., the known value of the target vari-
able contained in the data, to train models in a supervised fashion. Nevertheless, especially
in robotics, the labeling procedure is costly and demanding. Alternative approaches use au-
tomated procedures to label the data, so that a bigger amount of information crucial for the
performance of DL techniques, are made available. In this work, we propose to learn proper
visual features for the VS, avoiding the processing required to explicitly label the images with
visual features. Instead, we extract supervision from the knowledge of the VS and the motion
model.

The ultimate aim of the work is to derive a VS law with the visual feedback provided by a
NN:

q̇ = −λĴ+
�
m(i)−m(i∗)
�

(6.1)

where i∗ indicates the desired image that the camera would see at the completion of the task.
Our goal is to learn a neural perception model m, such that the estimated visual features can

be geometrically interpreted and thus used by a classic VS law. The task is defined as follows:
find proper visual features for the VS law without any explicit image processing, directly using
the raw uncalibrated image captured by the robot on-board camera. To this end, our model
derives supervision directly from demonstrations of the VS, avoiding the need for explicit labels
for the visual features. Training data, collected from the robot itself while it realizes several
executions of the visual task, is a sequence of the following tuple:

〈 q̇k, Jr,k, ik 〉, k = 1, . . . , N (6.2)

where N is the number of samples. Note that in the data there is no knowledge about the
visual features. All the required information is given by the robot standard sensory equipment,
composed of joint encoders and a monocular camera, with no further processing and readily
accessible.

6.1.3 Model

Proper visual features can be reconstructed by imitating the desired VS control behavior. Thus,
to train our model, we shall consider the following control imitation loss function:

LCI =
1
N

N�
k=1

���q̇k +λĴ+k
�
m(ik)−m(i∗k)
����

1
(6.3)

that forces the model to learn visual features such that their use in the VS law (6.1) imitates
the demonstrated commands. We are not interested in learning the controller, as in end-to-end
approaches. The knowledge of the control structure is instead leveraged to build a perception
model tailored to the VS. As a result, the visual features are learned without the need for their
explicit knowledge in the training data. In practice, the supervision of the learning process is
provided by the imitation of the control behavior. Note that in (6.3) the reference image i∗k is
taken as the image captured at completion of each demonstration.

Recalling Section 6.1, the Jacobian in (6.3) has this shape:

Ĵk = L̂k

�
m(ik)
�

V Jr,k

�
qk

�
(6.4)

where Jr,k depends on the robot configuration and its numerical value is taken from the data (6.2),
while V is constant and known in advance. Instead, the interaction matrix Lk depends on the

63 6.1 Background

visual features that are predicted by the model. It is worth recalling that the interaction matrix
also depends on the features’ depth; their known value at the target is used as an approxima-
tion. Furthermore, the analytical structure of the interaction matrix depends on the number
and the kind of visual features, which are decided in advance in the training procedure (see Sec-
tion 6.2). This design choice allows us to format the structure of the interaction matrix, which
helps the learning process to find a particular geometrical interpretation of the prediction. In-
deed, by imitating the control law, which has a precise structure grounded on the geometry of
the visual features, it is possible to find in the data the correspondence between raw images
and the geometrical interpretation requested by the VS feedback.

During the training of the model, especially at the first epochs, the model might provide
naive features configurations. This issue possibly leads to a singularity of the Jacobian and a
resultant ill-posed inversion problem. Thus, in (6.3), in place of Ĵ+k , it is considered:

�
Ĵ�k Ĵk +σ

2In

�−1
Ĵ�k (6.5)

where σ is a damping term used to better handle the inversion of the Jacobian [161] and In is
the n× n identity matrix.

State consistency

The temporal sequence of images and joint velocities is a rich source of supervision that can be
exploited during the learning process. In fact, assuming that the object of interest is static during
the data collection, the evolution of the visual features is well described by its motion model:
given the visual features’ estimate m (ik), the joint velocities q̇k and the Jacobian Jk at timestep
k, we expect the neural output to be geometrically consistent with the motion model, i.e.,
producing at timestep k+1 the estimate m (ik)+δt Jkq̇k. We take advantage of this information
and instantiate the state-consistency loss, as described in Chapter 4, which penalizes models
that have an eradic prediction, failing to be consistent with the scene:

LSC =
1
N

N−1�
k=1

�m(ik+1)−m (ik)−δt Jkq̇k�1 (6.6)

being δt the time difference between two consecutive timesteps. The effect of this loss is to
further enforce the desired geometrical interpretation of the neural perception.

Image reconstruction as a pretext task

A particular class of NNs, called auto-encoder, uses an encoder to reduce high-dimensional
images into a small-size latent variable, and a decoder to reconstruct the input image from the
latent variable. The latent space is thus meant to be a highly informative domain where the
most important notions of the image are condensed. Therefore, it is reasonable to extract the
feedback of our VS law (6.1) from the latent variable of an auto-encoder. For this reason, we
consider the auto-encoding loss function:

LAE =
1
N

N�
k=1

���ik −δ
�
�(ik)
����

1
(6.7)

where the function δ and � indicate the decoding and encoding parts, respectively. Even though
the latent variable is an effective representation of the image and conceptually close to the

64 6.2 Experiments

visual feature, its semantic interpretation is entrusted to the NN. To be correctly interpreted
and actually used in the controller (6.1), the visual features need to be extracted from the latent
variable with an additional piece of network that we call head and denote with h(·). Therefore,
the neural visual features have this form:

m(ik) = h
�
�(ik)
�
. (6.8)

The head, trained by considering the loss functions defined in Section 6.1, gives the correct
interpretation to the output of the encoder. Furthermore, it allows setting a desired dimension
f of the neural visual features.

Note that the auto-encoding can be seen as a pretext task [80] , i.e., an auxiliary task that
is of no direct interest, but whose solution stimulates the better performance of the end task,
as discussed in Chapter 2. Practically speaking, the pretext task helps to find patterns in the
data that are useful for the solution of the end task. Most importantly, as for (6.3), this strategy
is particularly convenient because we can exploit unlabeled data and thus count on a bigger
amount of information to solve our problem.

Regularization term The loss functions described in the previous sections are enough to solve
our perception task. However, it has to be considered that the neural model is not enforced to
produce an output easy to interpret for a human. In fact, the NN can find infinite solutions to
our problem, all equally valid. For instance, it might produce point features outside the image
plane borders and randomly displaced around the image of the object to track. To overcome
this issue, we add an heuristic-based regularization term LR that solves the ambiguity of the
NN solutions by constraining particular geometrical properties. For example, it can be used to
force the desired prediction m(i∗) to be within the bounds of the image.

6.2 Experiments

To test our framework, we considered the 7 DoF robotic manipulator by Franka Emika [52].
The robot is equipped at the end-effector with an Intel RealSense depth camera D435, used as
a monocular camera, streaming images at the nominal frame-rate of 30 Hz with a resolution
of 640× 480 pixels. The robot also provides a measurement of the Jacobian and the received
joint velocity commands at a frequency of 200 Hz. Thus, we had easy access to the required
information to construct the dataset (6.2). The framework and the communication with the
robot are implemented in Python within the Robot Operating System (ROS) [58] infrastructure;
the NN implementation is built upon the PyTorch library [128].

6.2.1 Data Collection

Data is collected within the robotic simulator Gazebo [84], where the exact knowledge of the
robot and its working environment is available. In Gazebo, the robot carries out multiple ex-
ecutions of a VS task, consisting in framing an OoI at the center of the image captured by the
onboard camera. In principle, to collect proper joint velocity commands, the VS task could be
demonstrated in different forms, such as teleoperation, with a classic VS law, or using other
control structures. In our setup, the VS task is demonstrated by an ideal classic IBVS using 4
point visual features. Thus, we consider the interaction matrix of point features in our learning
procedure, and in the computation of the loss functions (6.3) and (6.6). As a consequence, the

65 6.2 Experiments

model will be forced to give the geometrical interpretation of points to its estimate. In principle,
different numbers and kinds of features may be considered, by selecting the corresponding in-
teraction matrix in the training phase. The visual features are geometrically reconstructed from
the 4 vertexes of the bounding box containing the OoI and projecting them on the image using
the camera projection model. Thanks to the perfect knowledge of the camera model and the
pose of the OoI w.r.t. the camera frame, it is possible to realize the VS task with high accuracy.
Indeed, this demonstrator serves as a sort of oracle, providing the learning procedure with ideal
data. However, the only collection of ideal situations might be not enough to guarantee the vari-
ability of data needed to reach generality performances during the deployment of the model.
In practice, with an ideal IBVS, the smooth convergence produces very similar images, most of
which have the OoI at the center of the image. To increase data variability, we adopt a two-steps
procedure: first, the robot camera is driven to a random pose, and then converges driven by the
ideal IBVS introduced above. In both the steps, we collect the commands as computed by the
IBVS. Furthermore, we adopt a domain randomization [171] strategy: color and texture of the
background, lighting conditions, the planar pose of the OoI, and the initial configuration of the
robot are all randomized. Overall, we collected in the simulator the equivalent of 2 hours of
data, totaling to approximately 100k examples, generated from 500 task demonstrations, out
of which 83.5k examples were from the training set, and 16.5k from the validation set. Once
collected, data is shuffled by pairs of two (to allow the implementation of the state-consistency
loss, which needs at least two consecutive time samples) and organized in batches.

6.2.2 Network Architecture and Training

We consider a convolutional NN architecture composed of three main blocks: encoder, decoder,
and head. The encoder consists of a series of 4 convolutions with stride 2 followed by ReLU
non-linearity, halving each time the size of the image, followed by the bottleneck of size 64. The
decoder consists of the bottleneck, followed by the same number of convolutions present in the
encoder part, but with stride 1 and an up-sampling of the previous activation map, doubling
each time the image size. The head takes the latent representation from the bottleneck and
through a series of 3 feed-forward layers with ReLU non-linearities, and the final layer with
TanH non-linearity produces the visual features. The model output is finally multiplied by a
scaling factor, allowing the estimation to vary in a wider range and handle situations where the
OoI is partially outside the camera field of view.

Our model is trained for 100 epochs with gradient descent, using the combination of loss
functions described in Section 6.1.2:

L= λCILCI +λAELAE +λSCLSC +λRLR (6.9)

where the scalars λAE, λCA, λSC and λR are introduced to weigh the loss terms, allowing the
tuning of the different components. In our setup, we heuristically set these parameters to one.
The optimizer of choice is Adam [83]with a fixed learning rate of 1e−4. To synthetically increase
the amount of training data, we apply data augmentation in the form of additive gaussian noise,
random brightness, and contrast.

6.2.3 Simulated Experiment Results

Our perception model is evaluated in closed-loop simulations, in which the control law (6.1)
computes the commands to fulfill the desired behavior. The evaluation considers 50 VS task

66 6.2 Experiments

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ca
m

e
ra

 p
o
si

ti
o
n
 e

rr
o
r

[m
]

Ours End-to-end

0.0

0.2

0.4

0.6

0.8

1.0

ca
m

e
ra

 r
o
ta

ti
o
n
 e

rr
o
r

[r
a
d

]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

co
n
tr

o
l
e
ff

o
rt

 [
ra
d

/s
]

0 5 10 15 20
Time [s]

0

20

40

60

sm
o
o
th

n
e
ss

 [
ra
d

/s
2
]

0 5 10 15 20
Time [s]

Figure 6.1. Control metrics evolution of the successful executions carried out by the analysis
comparing our model with an end-to-end approach.

67 6.2 Experiments

Table 6.1. Median of the control metrics over the successful executions of the task in simulation

Model SR [%] CE [rad/s] CS [rad/s2] PE [cm] OE [rad]

Ours 73 0.37 15.2 10.8 0.39
End-to-end 38 0.25 10.0 13.9 0.32

executions performed under different initial conditions. Each VS task consists in driving the
robot camera at a desired pose w.r.t. a box. For each execution, the simulation environment
is set up with the OoI placed at a random pose in front of the robot, a working surface with
randomized texture, and an environmental light with random orientation. Then, the robot
camera is moved to the desired pose using the knowledge of the simulator; at this time, the
reference image i∗ is saved, together with the object depth to be used in the interaction matrix
computation. Thus, the robot is driven to a pre-defined initial posture and the VS experiment
starts: at each time step, the current camera image i is acquired to infer the features using the
model m; the commands are then computed using the controller (6.1) and sent to the robot.

To evaluate the effectiveness of our perception model in providing a reliable feedback to
the VS law, the following “control metrics” are considered: (i) control effort (CE), i.e., the
norm of the commands; (ii) control smoothness (CS), i.e., the norm of the commands time
derivative; (iii) position error (PE), i.e., the Euclidean distance of the camera position from its
desired value; (iv) orientation error (OE), i.e., the quaternion distance [100, Eq. (4)] of the
camera orientation from its desired value. These metrics are computed only for the successful,
converging, executions. Each execution is considered successful if, in the given time of 20s, PE
and OE fall below given threshold set to 10cm and 15° (0.26rad), respectively. CE, and CS are
used to evaluate the quality of the control action produced by the neural feedback, whereas PE,
OE serves as an index to establish the distance of the executions from the convergence.

The performance of our approach is compared against an end-to-end approach, that is
trained to directly infer the joint velocities commands using as input camera feed and joint
positions. We consider also the joint position as input of the end-to-end to realize a fair com-
parison against our approach, where the joint position is indirectly considered through the
Jacobian. The end-to-end architecture shares the same layer structure as our model, with the
exception of the head part, which receives the latent representation of the image concatenated
with the 7 joint positions value.

Figure 6.1 compares the values of the control metrics obtained by our model and the end-
to-end approach on the successful executions of the VS task. Table 6.1 show the median of
the metrics over the successful execution, along with the success rate (SR). Overall we can
observe a faster convergence and higher success rate of our model; we cannot see a remarkable
difference in the control effort and smoothness.

It shall be mentioned that both the NNs presented problems in correctly estimating the box
orientation, accumulating a drift in the visual features measurement, in the case of our model,
and in the commands in the case of the end-to-end. This leads to undesired effects, even after
convergence, for which the controlled motion drifted. We overcome this issue by stopping the
execution right after the satisfaction of the convergence criterion previously described.

We also carried out an ablation study of our model, and we could not observe a significant
difference between the versions of the model. This analysis suggests that there is room for
improvements. In particular, we believe that the autoencoder could be more beneficial for the

68 6.2 Experiments

Figure 6.2. Execution of the VS task with the simulated robot manipulator.

overall approach when paired with a more advanced domain adaptation strategy [75], e.g., to
cover the reality gap; instead, the state consistency loss could have a greater impact if applied
to sequences longer than two samples.

The execution of one single VS task carried out using our model is presented in Figure 6.2.
At the beginning of the execution, the robot camera is driven to the desired pose, the reference
image taken and the corresponding desired visual features computed, by applying our model.
The desired visual features are depicted with red circles in the camera views of Figure 6.2.
During the execution, the model provides the VS with current visual features, depicted with
green dots, till converge, when the camera pose value goes under a certain threshold. Figure 6.3
shows the computed commands and the norm of the visual error for this simulation execution.

6.2.4 Real Experiment Results

We consider our model also for closed-loop experiments carried out with the real robot ma-
nipulator. To this end, we considered the model trained only on randomized simulated data,
and trained with additional data augmentations designed to replicate noise and interference
present in the real camera sensor. Given the low performance of the model in estimating an
accurate orientation of the OoI, we decided to change the structure of the control considering
only the position. In practice, we projected the VS task into the null space of another primary
task, consisting in keeping a constant camera orientation. Crucially, this design change in the
control law was possible thanks to the flexibility of our approach, where the perception model
is decoupled from the controller. Indeed, even if our model uses the knowledge of the classical
VS scheme during training, its output can be used for deployment in other contexts; whereas
the end-to-end approach does not offer such flexibility.

In Figure 6.4 we show three snapshots of the robot performing the control task, along with
the corresponding camera views. The experiment starts with the OoI partially out of the cam-
era’s field of view – a challenging situation that could result in a failed attempt when using

69 6.3 Discussion

−1.0

−0.5

0.0
co

m
m

a
n
d

s
[r
a
d

/s
]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [s]

0.0

0.5

1.0

1.5

v
is

u
a
l
e
rr

o
r

Figure 6.3. Control commands (top) and visual error (bottom) of the VS execution carried out
with the simulated robot manipulator.

explicit methods for the image processing. Our neural perception model can provide the re-
quired feedback for the correct convergence of the VS task. A video of this experiment, as well
as other executions and the simulations, are shown in the multimedia attachment.

6.3 Discussion

We have presented an approach for learning a deep perception model, providing feedback to
visual controllers. The neural perception model is trained leveraging the knowledge of the
visual servoing and the features’ model as supervision. As a result, we estimate geometrically
interpretable neural visual features to be used in the analytical form of the visual servoing.
By keeping perception algorithm and controller decoupled, we could preserve flexibility and
modularity of the framework. In fact, our neural perception could be used in different control
structures.

We have shown promising results, and future work will be devoted to achieving a higher
performance. To this end, it might be necessary to sophisticate and redesign the architecture of
our NN. Further development will focus on the contribution brought by the different loss terms.
By modifying the state consistency loss to consider time horizons longer than one timestep,
we render the consistency task harder to solve, thus increasing the supervision provided and
resulting in a higher model performance. In the future, we will also address the sim-to-real
gap by exploiting domain adaptation techniques, some of which can be easily implemented
thanks to the auto-encoding part of our model [62]. These aspects will help on improving the
estimation of the tracked object orientation. Bayesian optimization techniques [132, 151] can

70 6.3 Discussion

Figure 6.4. Execution of the VS task with the real robot manipulator.

be used to optimally weigh the different loss functions during the training. Also, the perception
model could be trained to optimize the task performance so that the estimated feedback could
be even more reliable for the downstream visual controller.

The current approach has been developed by considering RGB images as the source of infor-
mation. However, the approach can be generalized to different sources of sensory information,
such as depth, point clouds, or even sound; the network design can be changed to handle these
sources without much effort. Finally, we plan to carry out more experiments, training our per-
ception model with different type and number of features and test it in different control contexts
and with more complex target objects.

So far, we have explored self-supervised robot learning approaches to collect data autonomously,
and improve the performance of deep learning models trained in this paradigm with state-
consistency and uncertainty awareness. In the next chapter, we look at self-supervised robot
learning from the machine learning perspective, where an auxiliary task, named pretext, is
used to further improve models’ performance, and how to apply these approaches to spatial
perception tasks where only few labelled examples are available.

Chapter 7

Supervision From Sound

So far, we have explored self-supervised robot learning to autonomously collect data for the task
of interest. In the machine learning literature, instead, a common self-supervised strategy is the
use of pretext tasks (see Chapter 2). These tasks are auxiliary, meaning that their solution is not
the ultimate objective; instead, they are introduced with the goal of improving the performance
on the task of interest, called end task. In this chapter, we propose to use self-supervised robot
learning to autonomously collect labels for the pretext task. In turn, this enhances the learned
model, which can solve its perception task more accurately and reduces the need for a large
number of labeled samples for the end task. Specifically, we study the use of microphones
as inexpensive sensors for providing labels to the pretext task. Furthermore, this approach
leverages the complementary information available in auditory and visual modalities to improve
the performance of a perception model that relies on visual information.

7.1 Background

Robot perception tasks often involve estimating spatial information, such as the pose of an OoI,
from high-dimensional data, e.g., images acquired by onboard cameras; deep learning models
such as CNN are a standard tool to solve this kind of problems. If no pre-trained model is avail-
able for a task of interest, one standard approach is to acquire large labeled training datasets, as
representative as possible of the environment in which the robot will be deployed. Each image
in the dataset is labeled with the corresponding relative pose of the OoI, obtained for example
through an external tracking system. Then, one trains a deep learning model in a supervised
way. However, the acquisition of such labeled datasets is expensive and not always feasible.
Therefore, recent research leverages semi-supervised and self-supervised learning approaches,
which combine a (typically small) labeled dataset with a large unlabeled dataset; in robotics
applications, the latter can be acquired efficiently, by the robot itself, even during deployment.

A common strategy consists in using the unlabeled dataset for training an autoencoder; the
encoder part is then used as a feature extractor for learning the perception task of interest in a
supervised way using the labeled dataset [64]. Recent advances in the field of self-supervised
learning bring this idea further. To solve a task of interest (end task), for which a limited
labeled dataset is available, it is advantageous to simultaneously learn auxiliary pretext tasks,
that are defined on large unlabeled datasets. In this context, pretext tasks should: i) require
similar perception skills as the end task; ii) not require the explicit acquisition of ground truth

71

72 7.1 Background

Camera

Stereo Mic
Drone

Raw audio L

Raw audio R

Audio features (known in all training frames)

Audio features
prediction
(Pretext Task)

Pretext loss
(defined in all training frames)

Task loss
(defined in few training frames)

Drone relative
position prediction
(End Task)

Drone relative position labels (known in few training frames)

FFT

L

R

Frame

Model

Figure 7.1. Given an image from the ground robot’s camera, our model estimates the relative
position of the quadrotor; this is the end task, learned by minimizing a regression end loss on
few training frames for which the true relative position is known. We show that simultaneously
learning to predict audio features (pretext task), which are known in all training frames, yields
significant performance improvements on the end task.

labels, but instead use information in the data itself for supervision (hence, “self-supervised”).
The intuition is that auxiliary tasks force the model to recognize patterns in the input that are
similar to those that must be recognized to solve the task of interest, and thus aid in learning
meaningful intermediate representations, as detailed in Chapter 2.

In this work, we apply this approach to a ground robot for learning a visual estimator of
the position of a flying quadrotor, given the following training data: a small number of labeled
samples for which the relative position of the drone is known; and a large number of unla-
beled samples. The ground robot is also equipped with an uncalibrated stereo microphone,
mounted at an arbitrary but fixed pose with respect to the camera, which picks up the noise of
the quadrotor (see Figure 7.1).

In this context, one could learn to estimate the drone position using the audio signal as an
input to the model – a topic covered by the literature concerning sound source localization (see
Section 7.1.1). Our work does not aim at this goal. Instead, we use auditory perceptions to
define a pretext task that aids in learning a purely-visual estimator; our model has one input
(the camera frame) and predicts two outputs: the relative position of the drone (end task)
and the intensity at different frequency bands of the corresponding sound (pretext task); the
model is trained by minimizing the sum of the two respective regression losses: one (end loss)
defined only on labeled instances; the other (pretext loss) defined on all instances. This is a
novel application to robotics of self-supervised learning techniques, and represents our main
contribution. After training is completed, one can ignore the pretext task: the model only
relies on visual data and can operate in arbitrarily noisy environments, or on robots without
a microphone. The approach is validated with experiments on extensive real-world datasets
described in Section 7.2, which we release alongside the paper as a secondary contribution.
Results show that learning with the sound-prediction pretext task yields models that perform
significantly better than two baselines: one using no pretext task, and one using a standard
image-reconstruction pretext task with an undercomplete autoencoder.

7.1.1 Related Work

Audio is a rich source of supervision utilized in many recent works to learn useful visual feature
representations from data. Learned features are then used to solve classification problems [119,

73 7.1 Background

6], to learn an audio-conditioned forward model of how an object moves based on a robot action
[61], or to identify the region of interest responsible for the sound [118, 7, 86, 130, 8]. Video
classification is done by training a CNN to predict audio features from images [119], or by
using one network per modality [6]: features extracted from images are clustered into classes
and used as labels for the audio network, while audio features are used as labels for the image
network. Then, both approaches classify the video by clustering together video frames based
on the predicted audio features. Similarly to Owens et al. [119], our approach solves the task
of predicting audio features from images; however, we do so in a robotics context to improve
the performance on the end task of visually localizing an object from images. Gandhi et al. [61]
learn to relate audio features to actions taken by a robot arm: they use the sound collected
by microphones mounted on a box, as a robot tilts the box while having an object inside. The
audio features learned with this approach are shown to better predict the action taken by the
robot than using visual features extracted before and after executing the aciton.

Coarse-grained object localization can be achieved by identifying the region of interest re-
sponsible for the sound, obtained by applying class activation mapping to a trained network:
Owens and Efros [118] train the network by extracting audio samples and frames from a video
and predicting the probability that the two streams are temporally aligned. Instead, Arand-
jelovic and Zisserman [7] use a triplet loss, in which positive examples are image-sound pairs
coming from the same video, while negative pairs are taken from different videos; whereas Ko-
rbar et al. [86] train on hard-negatives, generated by sampling sound from the same video but
at a different moment. Patrick et al. [130] generalize the approaches above, generating differ-
ent tasks by choosing which transformation to apply to the data. Training is done by sampling
random transformations pairs, and then predicting the probability for the pair to correspond
to the same instant of a video. Arandjelovic and Zisserman [8] train a model on image-sound
correspondence: the feature map, computed as the scalar product of image and sound features,
is used for a coarse-grained localization of the sound source.

Sound source localization

A large amount of literature investigates the problem of sound source localization [143]. Classic
approaches compute hand-crafted audio features and algorithms based on sound propagation
models to solve the problem; several recent approaches learn features directly from data with
NN [167, 197, 168, 55, 71]. Takeda and Komatani [167] propose to use a NN on a directional
activator, while Yalta et al. [197] utilize a more modern ResNet architecture on the power
spectrogram extracted from the short-time Fourier transform (STFT). When localizing from
audio information, approaches suffer from noise present in the environment or produced by
the robot itself, and from reverberations coming from different surfaces [143]. Takeda and
Komatani [168] tackle these challenges by minimizing the cross-entropy loss computed on data
collected in the deployment environment. Ferguson et al. [55] propose to jointly minimize two
loss functions: a polar loss based on the direction of the source, and a mean squared error loss
based on the distance of the source. He et al. [71] focus on the localization of multiple sources,
by estimating a spatial spectrum that can be decoded into the locations of the sound sources.
To aid the learning process, the network output is constrained to predictions that are coherent
with the number of known sources present in a given sample.

In contrast to this body of work, our goal is not to localize the sound source from audio;
instead, we take advantage of the (unknown) correlation between audio features and the po-
sition of the OoI – which is expected to emit sound at least while collecting training data – to

74 7.1 Background

learn a better visual feature representation. During deployment, the trained model utilizes the
camera feed to estimate the location of the OoI using the corresponding head, while the sound
prediction head is left idle.

7.1.2 Model

We consider the problem of estimating from a monocular image the position relative to the cam-
era reference frame of an OoI that, at least during training-data acquisition, produces sound.
In addition to the camera video stream, we record audio from a microphone placed at a fixed
pose with respect to the camera reference frame. In this context, we learn a NN model from a
set of instances

{〈ik, fk, pk〉}Nk=1 (7.1)

where i denotes a camera frame, f audio features computed from the corresponding audio
signals, p the position of the OoI relative the robot’s camera. More specifically, the (possibly
very small) subset of instances for which p is available, is denoted as the labeled training set
T�; remaining instances compose the unlabeled training set Tu, which is assumed to be much
larger, as it can be acquired by a robot without external supervision.

We learn a Sound as Pretext (SaP) model that, given the image i, estimates: p̂, the relative
position of the OoI (end task); this task is trained using data in T�, and is the task whose perfor-
mance we are interested in optimizing. f̂ , the corresponding audio features (pretext task); this
task is trained using data in T�∪Tu, and is of no direct use for model deployment. We represent
the relative OoI’s position by its image-space position o and its distance d from the camera. The
model implements a function parametrized by θ

�
p̂, f̂
�
=mSaP (i|θ) . (7.2)

Training consists in obtaining optimal values of θ by minimizing through gradient descent the
following loss function

λ

|T�|
|T�|�
i=1

Lend(pi , p̂i) +
1

|Tu ∪ T�|
|Tu∪T�|�

i=1

Lpretext(fi , f̂i) (7.3)

where Lend and Lpretext both compute the absolute error between their two arguments, | · |
denotes the cardinality of a set, and λ acts as a tradeoff on the optimization of the two losses.
Note that training instances in Tu have no label pi .

Application to quadrotor position estimation

In the rest of the paper, we instantiate the general approach presented above to a concrete
problem: learn from scratch a visual estimator of the position of a flying quadrotor from images
captured by a ground robot, using audio data acquired by an onboard stereo microphone to aid
learning. We exploit a small amount of training data T�, in which the position of the drone
relative to the camera is known from a motion tracking system; and a large unlabeled training
set Tu, acquired by the robot without supervision.

The scenario is attractive because it matches many similar robot perception tasks of wide
interest, in which deep learning models must be trained from scratch and large pre-existing
labeled datasets are not available. Acquiring those labeled datasets ad-hoc is potentially very
expensive and time-consuming; exploiting self-supervision from cross-modal cues is in this con-
text an attractive alternative.

75 7.2 Experiments

Figure 7.2. From left to right. Technical drawing of the Robomaster S1 platform (black) and
some of our addons (gray, blue, red). Photograph of the real platform. Top view of the robot
with placement and orientation of the two condenser capsules (L, R) in the stereo mic. Polar
pickup pattern for the two cardioid capsules for three different frequencies. Orange elements
refer to the example of direct sound coming from a drone at a 30◦ angle, see text.

7.2 Experiments

We use a modified DJI Robomaster S1 ground robot (see Figure 7.1 and Figure 7.2); the robot
features a controllable pan-tilt turret and four Swedish wheels, which provide omnidirectional
motion capabilities. On the turret, the robot is equipped with: an integrated RGB camera ac-
quiring images at a resolution of 1280×720 pixels; a stereo microphone (RØDE Stereo VideoMic
Pro), mounted in such a way that the frontal direction is aligned with the camera optical axis;
an NVIDIA Jetson Nano single-board computer mounted on the back; and an Intel RealSense
camera that is not used in our experiments.

The microphone uses a matched pair of high sensitivity 0.5 inch cardioid condenser capsules
mounted in a coincident XY stereo configuration [164] (Figure 7.2); therefore, the two capsules
point 45◦ to the left (L) and right (R) of the camera optical axis. Each capsule has a cardioid
pickup pattern that attenuates sounds depending on the angle of the sound source with respect
to the axis of the capsule, as depicted in Figure 7.2 (right): sounds coming from a direction
aligned with the capsule axis are not attenuated (0dB); sounds coming at an angle of 90◦ are
attenuated by approximately 6dB.

As an example, Figure 7.2 shows the case of a drone (orange) hovering at the same height
of the microphone, in a position that lies at an angle of 30◦ to the left of the camera optical
axis; we further assume that the microphone is pointing horizontally (turret tilt equal to 0◦).
Interpreting the polar plot, we expect that the direct noise from the drone will be attenuated
by approximately -0.5dB in the left channel (15◦ with respect to the capsule axis), and by
approximately -4dB in the right channel (75◦ with respect to the capsule axis); note that in
most indoor environments including ours, a significant part of the drone noise will not originate
directly from the drone direction, but instead be reflected by the surrounding environment as
reverberations. Note also that low frequencies (red) are attenuated more than high frequencies
(green). Noise and rumble induced on the microphone from robot movements and vibrations
can be attenuated with an optional anti-shock acoustic suspension (RØDE Rycote Lyre). It is
important to remark that the configuration of the microphone setup is not assumed known
in our system; our only assumption is that there exists some unknown, potentially weak, and
potentially nonlinear correlation between the drone relative position (target variables for the
end task) and the corresponding audio features (target variables for the pretext task). If this

76 7.2 Experiments

unlabeled labeled

re
c
o
rd

in
g
s

Tu,1

Tu,2

Tℓ,1

Tℓ,2

V1

V2

Q

Figure 7.3. Data is collected in 22 recording sessions, and then split in unlabeled (Tu) and
labeled (T�) training sets; validation set (V); and testing set (Q).

is the case, solving the pretext task indirectly favors learning visual features that encode the
drone position.

The drone we use in our experiments is a Ryze Tello quadrotor; the Robomaster turret and
the Tello body are outfitted with infrared reflective markers and tracked during data collection
by a motion tracking system (12 Optitrack Prime-13 cameras), which provides the precise Tello
position w.r.t. the RobotMaster’s camera frame1 used as labels in the training procedures.

7.2.1 Data Collection

We collect data in 22 different recording sessions taking place in a laboratory environment,
comprising a total of approximately 50 minutes of data. During each session, the Tello is tele-
operated by a user with a joypad, flying 3D trajectories that attempt to stay within a maximum
distance of 3m from the Robomaster, such that the drone remains visible in the scaled-down
camera feed used for learning (128×80 pixels); at the same time, a different user teleoperates
the Robomaster to move in the environment and pan/tilt the turret to keep the Tello visible in
the camera feed – this ensures that the image background is very variable in the entire dataset.
For each session, we record camera frames at 30Hz, raw stereo audio from the microphone,
and absolute pose information of the Robomaster turret and Tello body. A set of instances is
then generated associating to each camera frame i the corresponding audio features f and rel-
ative drone position p with respect to the camera. Following [194], the position is represented
as the normalized coordinates u and v of the drone as it appears on the image plane, and its
Cartesian distance d from the camera. Instances in which the drone is not visible (defined as
having the drone position projected in the image plane out of the bounds of the camera frame)
are discarded.

All instances from one recording are used in the following as a testing set Q, on which we
compute performance metrics. Instances from the remaining 21 recordings are partitioned into
three sets: the first 70% of the frames as the unlabeled training set Tu, the following 10% for
the labeled training set T�, and the remaining 20% for the labeled validation set V, which is only
used to monitor models during training (see Figure 7.3). In total, we collected 89k instances,
of which 60k are in Tu, 8k in T�, 17k in V, and 4k in Q.

1The offset between the OptiTrack markers placed on RobotMaster turret and its camera frame is taken into account.

77 7.2 Experiments

7.2.2 Audio Features

Audio features corresponding to a given frame acquired at time t are extracted from raw audio
data acquired in a time window of 0.15s centered on t (6615 audio samples at 44.1 kHz);
within this short time window, we assume that the quadrotor noise profile is approximately
stationary. For each of the two channels, we use the discrete Fourier transform to compute the
logarithm of the average magnitude of the frequency spectrum within each of three frequency
bands: 1 to 2kHz; 2 to 5kHz; and 5 to 15kHz. This yields 3 features for each channel, which
can be interpreted as the values of a log-spectrogram of the audio signal, sampled at a single
timestamp, and average-pooled along the frequency axis. We further compute the difference
between the features in the two channels, for a total of 9 features, because we expect intensity
differences between the two channels to be correlated to the drone position relative to the
robot camera and mic. We consider multiple frequency bands since, depending on the angle
of the sound source, each band is attenuated by a different amount, and that environmental
reflections are more prevalent in some frequencies than in others. In contrast, because our
microphone uses virtually-coincident positions for the two capsules, our approach can not rely
on inter-channel time difference cues [148].

7.2.3 Alternative Strategies

To validate the rationale of our approach, we analyze and compare its performance with several
alternatives. First, we train the Baseline (B) model only on the end task using data in T�, i.e.,
Lpretext is not considered in (7.3).

To estimate the maximum achievable performance, we train the Upper Bound (UB) model,
using only the end task as in the previous case, but considering the whole training set as if it
was all labeled. The model is trained with labels for Tu that we collected only for this purpose
and ignored for all other models.

A common approach in the robotics literature to exploit unlabeled image data is to train on
such data an undercomplete autoencoder [64], and use the resulting compressed representa-
tion as features for subsequently learning the end task; the expectation is that these features
encode high-level information in the original image. In our context, this corresponds to using
autoencoding as a pretext task. Therefore, we train the Autoencoding as Pretext (AaP) model,
by simultaneously considering the end task (on T�), as well as the autoencoding pretext task
(on Tu ∪ T�).

Taking inspiration from sound source localization approaches, we consider the Audio Only
(AO) model which is trained solely on regressing the position from audio features f , using T�.
Similar to other audio-only approaches [167], it is negatively affected by noise generated by
the robot itself, environment reverberations, and other external sound sources, which makes
the approach less desirable for deployment in unstructured scenarios.

When provided with data from multiple sensors, a common approach in the literature is to
fuse readings coming from different sensors together [195, 178]. To explore this option, we
train the Sensor Fusion (SF) on the task of regressing the drone position from both image and
audio features, using only instances in T�.

We also compare SaP, trained using our 9-dimensional audio features, with two models
trained using different audio features. The first, SaP-Mono, uses only 3 features (fMono) ob-
tained as the average of the features for left and right channels, actually emulating a mono-
channel microphone. The latter, named SaP-Mel, is trained using a richer audio representation

78 7.2 Experiments

Figure 7.4. End Task Regression Performance on the testing set Q. On the left side we compare
ground truth (x -axis) and predictions (y-axis) for different models (columns) and variables
(rows). On the right, predictions on 35s of the testing set. Between seconds 17 and 20 the
drone exits of the camera FOV, causing all models to temporarily fail.

(fMel) based on Mel-spectrograms [140]. More specifically, we compute for each channel a
64-band Mel-spectrogram in the range 1 to 15kHz, using 0.15s windows; for each frame, we
associate the 64×2 values sampled from the two spectrograms at the corresponding time, plus
their difference, for a total of 64× 3 audio features.

7.2.4 Network Architectures and Training

Most of the strategies considered in this work employ a CNN architecture based on MobileNet-
V2 [154], with a total of 1 million parameters, and a variable number of output neurons de-
pendant on the chosen strategy (3 for strictly supervised approaches, 12 for the SaP model).
The SF model utilizes the same convolutional architecture for the image branch, while a series
of 4 feed-forward layers with ReLU non-linearities processes the audio information and 3 more
feed-forward layers fuse the two streams, similarly to [178]. The AaP model implements an
encoder-decoder CNN architecture, with a bottleneck of size 128 [64]. A separate head takes
the latent representation and through a series of 3 feed-forward layers with ReLU non-linearities
produces a prediction of the position. The AO model is composed of a series of 5 feed-forward
layers with ReLU non-linearities, for a total of 60k parameters. For all models, training uses
the Adam [83] optimizer with an initial learning rate of 10−3, which is reduced by a factor of
10 halfway through the training process, which lasts a total of 60 epochs. In designing our
loss, we choose a tradeoff factor λ = 1. Batches of size 64 (or possibly less, for the last one)
are drawn from either of the two training datasets, and the corresponding loss is used for the
optimization.

79 7.2 Experiments

Figure 7.5. Predictions of the Sound as Pretext model (green cross) compared to ground truth
(blue circle) on ten frames taken from the testing set.

Figure 7.6. Summary of results; each model reports the position MAE (lower is better) and the
R2 metric for each output variable (higher is better).

7.2.5 Sound Prediction as a Pretext Task Results

This section explores the effectiveness of our approach against alternatives (Section 7.2.5),
different choices for the sound features (Section 7.2.5), the impact on the amount of labeled
data (Section 7.2.5), and a comparison with approaches that use audio features as inputs (Sec-
tion 7.2.5). For our evaluation, we consider the following metrics computed on the entire
testing set Q: the mean absolute error (MAE) of the prediction w.r.t. the ground truth, com-
puted separately for uv (MAEuv , expressed in pixels), and distance (MAEd , expressed in cm);
and the coefficient of determination R2 for each of the three components of the relative posi-
tion, denoted with R2

u (u image coordinate), R2
v (v image coordinate) and R2

d (distance from
the camera). The coefficient of determination is a standard adimensional metric for regression
performance. It represents the fraction of the variance of the target variable that is correctly
explained by the model (higher values are better). A trivial model that predicts the average of
the target variable in the whole testing dataset yields R2 = 0; an ideal model yields R2 = 1.0;
a model might have a negative R2 in case its MAE exceeds the variance of the data, which fre-
quently occurs with weak models operating on high-dimensional inputs. The R2 metric enables
meaningful comparison of regression performance on different variables, since, unlike the MAE,
it does not depend on the variance of the target variable.

80 7.2 Experiments

Sound prediction as a pretext task improves performance

In the top section of Figure 7.6, we compare the performance of our SaP approach with base-
lines, alternatives, and a Dummy model that simply returns the average of each target variable
in the training set. We observe that compared to the baseline B, our approach significantly im-
proves performance on u and d, and to a lesser extent on v. Considering the relative improve-
ment in terms of R2 of each variable, where B represents the 0% reference and UB is considered
as the maximum achievable performance (100%), our approach reaches 87% improvement on
u, 32% on v and 88% on d.

The u and d variables are most directly related to audio features: for example, u affects the
intensity difference between the two audio channels, and d the intensity on both channels; on
these two variables, SaP yields large improvements over the baseline. This is because the pretext
task induces the model to learn visual features that capture well the horizontal position of the
quadrotor and its distance. In contrast, the v variable is only weakly and non-monotonically
related to audio features (and in fact, v can not be estimated well by the AO model). Still, our
pretext task significantly improves performance on the v variable; one possible explanation is
that the same visual features that capture u and d are also useful to estimate v.

Figure 7.4 shows scatter plots comparing ground truth to predictions of the baseline, our
approach, and the upper bound, as well as a qualitative comparison of their predictions on 35s of
data taken from the testing set. Considering the scatter plots on the left, our approach improves
over the baseline, having a tighter distribution that is closer to the diagonal line representing
the ideal case; this confirms the quantitative evaluation of Figure 7.6. It can be noticed how
all models correctly predict the distance d when the drone is close to the camera, while longer
distances are harder to estimate. Regarding the time plot on the right in Figure 7.4, comparing
different model predictions on a portion of Q shows that our approach follows closely the upper
bound, while the baseline struggles when the drone is not in the central area of the image.
Between seconds 4 and 5 all models struggle in predicting the horizontal location of the drone:
this is explained by the drone moving close to the edge of the field of view; similarly, between
seconds 17 and 20, the drone briefly exits the camera’s field of view, causing all models to
predictably fail. In Figure 7.5 we present a qualitative evaluation of SaP on 10 camera frames
taken from the testing set. Failure cases, in which the model’s prediction (green) does not
overlap with the ground truth (blue), occur when the drone blends with a cluttered background,
or when it reaches a distance greater than 3m, rendering the quadrotor recognition from very
few pixels difficult.

Impact of sound features

To further explore this fascinating finding, we also trained SaP-Mono, the version of our ap-
proach that uses as the target of the pretext task only 3 features. Without access to stereo
information, audio features do not allow discriminating whether the drone is at the left or right
side of the image, but still allow good resolution concerning the drone distance; therefore, the
beneficial effects of the cross-modal pretext task are reduced on u and v, when compared with
its stereo counterpart, while on d SaP-Mono and SaP perform equally well. Predicting richer
audio features as the pretext (SaP-Mel) still exhibits improvements over the baseline, but not
as much as with our features; this is probably due to the larger dimensionality of Mel fea-
tures, which exposes the model to overfitting issues while containing limited additional useful
information when compared to our features. Whereas solving an autoencoding pretext task

81 7.3 Discussion

(AaP) yields very poor results, with a performance well below the baseline B. The reason is
that autoencoding is a poor pretext task in this scenario: the drone is most often small in the
input image and covers a small fraction of pixels; the autoencoding loss minimizes the image
reconstruction error, and will not promote representing meaningful information concerning the
drone position. Instead, we expect that the learned features will be dominated by modeling the
different possible backgrounds, which cover most of the image and exhibit very high contrast.
Unfortunately, the image background is exactly what we want our features to be insensitive to.

Impact of the labeled set size

To explore the impact of the amount of available labels for the end task, we trained the SaP
model on decreasing amounts of labeled data while keeping the unlabeled data fixed. The
second panel of Figure 7.6 reports the respective results; thanks to the effectiveness of the
sound pretext task in learning meaningful visual features, the u variable can be estimated well
even with 10% of the labeled data, corresponding to just 800 frames, while d requires a larger
amount of labels. In contrast, the performance on v rapidly drops as fewer labeled instances
are considered.

Strategies using sound as input

The previous analysis compared our approach against others using just images as input; we
now extend our focus on strategies that utilize different modalities, whose results are reported
in the third panel of Figure 7.6. The AO model shows promising results on the variables u
and d while having no predictive power on the v. This is easily explained by the microphone’s
geometry, for which the difference between sound intensity in the two channels is highly infor-
mative on the horizontal axis but not on the vertical axis; humans and animals overcome this
issue by accounting for different spectral filtering of the ear geometry on sound coming from
different elevations, or by actively tilting the head to better localize sound sources. Model SF
can leverage images to estimate v, resulting in a higher R2 score on that variable; while on u
SF has a similar performance as AO, it is penalized on the distance d. In fact, images yield little
additional information to audio when predicting distance, especially when the drone is far from
the camera. Compared to all alternatives, SaP performs better on all three variables.

7.3 Discussion

We presented Sound as Pretext, an approach for tackling visual object localization problems by
employing a cross-modal pretext task, well suited to many applications of self-supervised robot
learning. By collecting images of the quadrotor as well as its noise, we alleviate the need for a
large labeled training dataset, and provide supervision to the model by adopting the auxiliary
pretext task of predicting audio features from images. The approach requires only that the
object to be localized produces sound during training data collection – a condition that, for silent
objects, could be satisfied with the help of a wireless speaker – while during deployment no
audio information is necessary. An extensive evaluation shows that our approach outperforms a
supervised baseline, a standard image-reconstruction pretext task, and approaches that directly
use audio, or a combination of vision and audio, to solve the same task.

The sound-based pretext task is powerful but relies on the assumption that the source pro-
duces a stationary sound, such as that of drone’s rotors or other motors. If, instead, the sound is

82 7.3 Discussion

non-stationary and dynamic, the relationship between the source’s sound and its location would
be weaker because it would also depend on time and other factors. Thus, the effectiveness of
the pretext task may vary based on the sound profile of the object or robot to be localized. In
the next chapter, we explore a purely-visual pretext task completely decoupled from the OoI’s
movements.

Chapter 8

Supervision From LEDs

In the previous chapter, we considered the use of self-supervised robot learning for the auto-
mated collection of labels for a sound-based pretext task. By solving this pretext task, a model
learns a better feature space, leading to improvements in performance and lessen the reliance
on end task labels. Despite the success of the approach, its scope is limited to distinctive and
constant sound sources, such as drone’s rotors, and fails to consider that robot movements
affect the sound it makes. These issues imply that, for very dynamic robots or when using re-
current neural network models, the effectiveness of this pretext task is remarkably reduced. In
this chapter, we decouple end and pretext tasks, studying the use of controllable LEDs as the
base of a vision-only pretext task. Controllable LEDs are independent of the robot’s position
or movements, are featured on practically all robot platforms and, therefore, are a convenient
source of supervision.

8.1 Background

The ability to estimate the position of a target robot in a video feed is crucial for many robotics
tasks [165, 131, 32]. SoA approaches use deep learning techniques based on CNNs [92]: given
a camera frame, they segment the target robot, regress the coordinates of its bounding box
or its position in the image. Training these approaches to handle new robots or environments
requires extensive labeled datasets, which are time-consuming and expensive to acquire, often
relying on specialized hardware, e.g., motion tracking systems, to generate ground truth labels.

We present an approach to drastically reduce the labeled data required to train such mod-
els, building upon recent results in Self-Supervised Learning [80]. In the robotics literature, the
term Self-Supervised denotes two distinct paradigms. In the first, a robot system autonomously
generates labeled data for the task of interest, named end task, and is trained in a standard su-
pervised way. This paradigm has been used in robotics since the mid 2000s [43, 98, 68, 200].
As a recent example, Li et al. [92] use nano-drones equipped with SoA algorithms to auto-
matically acquire camera frames and the corresponding relative location of the target drone.
In the second paradigm, a robot system autonomously generates abundant labeled data for a
pretext task: the pretext task requires similar perception skills as the end task while relying on
cheaper ground truth that is easier or free to collect. Then, a model is trained to solve both
tasks simultaneously using an additional dataset containing only few labels for the end task.
Despite not being useful during deployment, the pretext task forces the model to learn mean-

83

84 8.1 Background

ingful features, boosting the performance on the end task. This paradigm is widely successful
in the deep learning literature [80] and has only recently been adopted for robot perception
applications [116, 142].

This work introduces a novel approach based on the second paradigm, tailored to robotics
applications, and suitable for deployment on resource-constrained platforms. Our contribu-
tion, presented in Section 8.1.2, is the use of target robot LED state prediction (on or off) as
a pretext task to improve the learning process of a visual localization end task. By learning to
predict the state of the LEDs aboard, the model learns features that are also useful to localize the
target robot. The idea is compelling because most robot platforms feature controllable LEDs:
during data collection, the target robot blinks its LEDs and radio-broadcast their state; at the
same time, another robot automatically collects images annotated with LED state ground truth.

We instantiate this general idea to a specific, challenging end task: predict the image-space
position of a target nano-drone given a low-resolution, low-dynamic-range image acquired by
the camera of a peer nano-drone. A Fully Convolutional Network (FCN) model [97] simultane-
ously learns to solve pretext and end tasks using the dataset described in Section 8.2, containing
only few samples labeled with the drone’s location. We provide detailed comparisons and an
ablation study on the Bitcraze Crazyflie 2.11 nano-drone in Section 8.3. Results show the pro-
posed pretext task to significantly improve performance over a supervised baseline, different
pre-training strategies, and an autoencoding pretext task. The model generalizes well to unseen
environments, and is capable of localizing multiple drones simultaneously. Finally, we deploy
the model aboard the target platform to complete a vision-based position tracking task.

Figure 8.1. A fully convolutional network model is trained to predict the drone position in the
current frame by minimizing a loss Ltask defined on a small labeled dataset Tl (bottom), and
the state of the four drone LEDs, by minimizing Lpretext defined on a large dataset Tl ∪Tu (top).

8.1.1 Related Work

Drone-to-drone relative localization approaches rely on various sensors, including microphones,
infra-red sensors, UWB, color and depth cameras; examples of such tasks are described in Sec-
tion 2.5.1. In particular, microphones can be used for localization, integrating distance esti-
mates from a drone beacon emitting a specific sound [12]. Multiple infra-red sensors with
known geometry allow the triangulation of a drone equipped with infra-red emitters [147].

1https://www.bitcraze.io/products/Crazyflie-2-1

85 8.1 Background

Camera-based approaches rely on visual fiducial markers such as circles printed on paper [155],
light-emitting markers [46], by detecting the drone in depth images with handcrafted [181],
or learned [25] models. In our work we use monocular grayscale images as the model’s in-
put. LEDs, which come already integrated with the adopted platform, are exclusively used to
generate data for the self-supervised pretext task and are not used during inference.

UWB is a wireless communication technology recently adopted for localization tasks [65,
117, 39, 179, 196], enabling communication between multiple robots and providing a dis-
tance measurement through the Received Signal Strength Intensity (RSSI). RSSI measures
the amount of radio signal received from a source and is used to derive its distance. Using
three non-colinear UWB sensors enables the triangulation of robots [65]. A single sensor re-
quires more complex approaches, such as integrating distance measurements from UWB beacon
drones moving in a pattern [117]. Communication is used during localization to combine dis-
tance measurements with broadcasted state-estimates [39, 179] and optimizing a camera-based
initial guess [196].

Self-supervised relative drone localization approaches focus on learning a model with lim-
ited access to labeled data, using UWB to provide ground truth [92], or a stereo microphone
for an audio-based pretext task, described in Chapter 7. In detail, Li et al. [92] pre-train a
purely visual estimator using synthetic data, then fine-tune it using a small labeled dataset gen-
erated autonomously from UWB nodes [179]. In contrast, our approach introduces a pretext
task defined on images with no ground truth positions; our pretext is based solely on LED state
estimation and does not require additional hardware.

We explored cross-modal self-supervised learning of visual quadrotor localization in Chap-
ter 7, using images acquired by a ground robot equipped with a stereo microphone. The pretext
task consists of predicting features (intensity in various frequency bands) of the perceived sound
of a quadrotor, given an image. By solving this pretext task, the model is forced to learn features
of the perceived sound that, in turn, are informative of the drone’s location.

The present work proposes a more general pretext task that does not rely on additional
sensors (e.g., a microphone), is suitable for applications with limited power budget and supports
the localization of multiple robots. Further, it only assumes that the target robot is able to vary
its appearance using actuators, with controllable LEDs being a natural and convenient choice.

8.1.2 Model

We consider visual robot-to-robot localization problems, in which an observer robot has to pre-
dict the position of a target robot on the image plane. The observer robot takes a monocular
image from its forward-looking camera and predicts the position of the target robot visible in
the image. Additionally, we require the target robot to be equipped with controllable LEDs.

We collect tuples consisting of �〈i j , o j , l j〉
�N

j=1 (8.1)

where i ∈ Rwhc denotes a camera frame of w×h pixels and c channels, o ∈ R2 the image-space
position of the robot, and l the state of the four LEDs on the robot, which can be either all off
or on, represented respectively by 0 and 1.

In the following, we call samples labeled when the drone’s position o is known or unlabeled
otherwise. We denote the set containing the (possibly small) amount of labeled samples with
T� and the unlabeled set with Tu. We also collected a separate labeled set Q that serves as a
testing set and on which we compute performance metrics.

86 8.2 Experiments

Using this data, we learn an NN model m that, given a monocular image, predicts two maps:
the location map q̂ containing likely drone locations and the LED state map l̂ the probability of
seeing a drone with its LEDs on, �

q̂ , l̂
�
=m (i|θ) (8.2)

where θ is the set of trainable network weights.
Using a map to represent the drone’s location has two advantages compared to using the

drone’s coordinates [20]. First, it allows one to handle images with zero, one or more visible
drones [92]. Second, it enforces an inductive bias by limiting the receptive field of each cell
of the output map; in fact, we expect the target drone to cover a small portion of the input
image [152].

A ground truth location map q ∈ [0, 1]wh of w×h cells is generated from the robot’s position
o = (u, v): we start with a map filled with zeros and place a circle of radius r = 4 pixels centered
in o, filled with ones and with a soft-edge transitioning to zero.

We train m by optimizing the weights θ through gradient descent steps, minimizing the loss
function L. The loss, in turn, is defined as the weighted sum of two terms: the first term Ltask

consists of a regression loss computed on the labeled training set T�, whose aim is to learn the
robot localization task, and defined as

Ltask =
1
|T�|

|T�|�
i=1

mean
�|q̂i − qi |2
�

(8.3)

where mean is the average of the map cells. The second term Lpretext consists of a classification
loss defined on the union of the training sets T�∪Tu, learning the LED state prediction task, and
defined as

Lpretext =
1

|Tu ∪ T�|
|Tu∪T�|�

i=1

BCE
�
mean
�
l̂
�

, l
�

(8.4)

where BCE is the binary cross-entropy. To obtain the scalar l̂ representing the probability of the
drone’s LEDs being on, we compute the average of the LED state map l̂2.

The complete loss function is L = (1 − λ)Ltask + λLpretext, where λ ∈ [0, 1] controls the
tradeoff between the two loss terms during training. In (8.3) and (8.4), each loss is weighted
by the reciprocal of the dataset size on which it operates, ensuring that the impact of each loss
during training is comparable when working on differently-sized datasets.

8.2 Experiments

In the following, we instantiate the presented approach to the challenging task of drone-to-
drone localization, as shown in Figure 8.2. This task represents the broader set of image-based
robot localization tasks, as many mobile robots feature cameras and controllable LEDs. Among
platforms to which our approach is applicable, we specifically selected nano-drones for our
experiments: they are difficult to localize due to their small dimensions and complex shape.
Additionally, they have constrained resources: the camera is low resolution, low dynamic range,
and has a limited field of view; the onboard microprocessor imposes limitations on the breadth
and depth of the NN, especially for real-time applications.

2Training attempts with an average of l̂ weighted by the location map q̂ were unsuccessful; it resulted in less stable
training and a lower performance.

87 8.2 Experiments

Figure 8.2. The palm-sized Bitcraze Crazyflie 2.1 nano-drone platform (10 cm in diameter).
(a) The drone’s hardware and its four controllable LEDs; (b, c) high-resolution pictures of the
flying drone; (d, f) samples from our dataset; (e, g) zoom-in on the drone using the model’s
receptive field (45× 45 pixels).

8.2.1 Robot Platform

The platform of choice is the Bitcraze Crazyflie 2.1, a nano-drone measuring 10cm in diameter
and weighing only 27g, extended by the Ai-deck companion board, see Figure 8.2. The Ai-deck
provides a forward-looking monocular camera, acquiring 320×320 pixels grayscale images, and
a GWT GAP8 PULP System-on-Chip (SoC) [122] extending the basic computational capabilities,
i.e., state estimation and low-level control, offered by the STM32 microcontroller available
on the nano-drone. We employ the GAP8 SoC to boost the execution of NNs, which require
integer quantization to exploit its 8-core general-purpose cluster due to the lack of floating
point support. The GAP8 SoC has two levels of on-chip memory: 64kB low-latency L1 memory
and 512kB L2 memory. Additionally, the drone features on its main body four controllable LEDs,
which we exploit to define the pretext task.

We consider a scenario in which two identical Crazyflie drones fly in the environment: one
drone takes the observer role, acquiring camera frames in which the other drone (target) is
visible.

8.2.2 Datasets

Our experimental validation is based on Nano2nano3, a dataset collected in a 10 × 10m lab
equipped with a motion-tracking system and consisting of 72 different sequences. For each
sequence (average length of 210 seconds and 830 frames), the target Crazyflie flies a pseudo-
random trajectory with the four controllable LEDs switched either on or off; meanwhile, the
observer continuously moves to increase the variability of represented backgrounds. The tra-
jectory is computed so as to keep the target in the camera view and cover the image space as
uniformly as possible, with distances ranging from 0.2 meters to 2 meters. Each frame is la-
beled with the target pose relative to the observer’s camera, its position in the image, and the
state of the LEDs. Half of the 72 sequences are used as the testing set Q (30k samples). Data
from remaining 36 sequences is partitioned into the labeled training set T� (1k samples) and
the unlabeled training set Tu (29k samples).

For training one approach described in Section 8.2.3, we employ the synthetic training
dataset proposed in [92, Section IV], named Ts, consisting of 800 random-background images
depicting the nano-drone placed at a random pose. Images are converted to grayscale and
padded with a solid random gray value to match size and channels of our data. Additional gen-
eralization experiments are reported in Section 8.3.4 and shown in the supplementary video;
these experiments use data recorded in different rooms, without ground truth for the drone
location.

3https://github.com/idsia-robotics/drone2drone_dataset

88 8.2 Experiments

8.2.3 Alternative Strategies

We assess the validity of our approach, named LED state prediction Pretext (LED-P), against
various alternatives. First, we consider a naive model (DUMMY) that always predicts the mean
position on the labeled training set T�. The Baseline (BAS) strategy involves training using only
Ltask (achieved with λ = 0) on the labeled training set T�. The UB strategy is used to estimate
the maximum achievable performance. It minimizes only Ltask, assuming to have access to
ground truth position labels for both T� and Tu, representing a fully-supervised scenario where
ground truth is cheap and abundant.

We also consider alternative strategies: Autoencoding Pretext (AE-P), Contrastive Language-
Image Pre-training (CLIP) and Efficient Deep Neural Networks (EDNN).

Undercomplete autoencoders are a frequently-adopted strategy for taking advantage of un-
labeled data, defining an image-reconstruction pretext task [80]. The intuition is that by learn-
ing to compress and decompress an image, autoencoders learn a high-level representation that
can be useful to solve the end task. In AE-P, we train an autoencoder on T� ∪ Tu by mini-
mizing the MS-SSIM [188] between input and reconstructed images; then, an additional NN
head learns the localization task using Ltask on T�, taking as input features computed by the
autoencoder’s bottleneck.

CLIP is a powerful bi-modal feature extractor trained to minimize the distance of embed-
dings between an image and its caption [141]. The learned image encoder is shown to out-
perform supervised models in many zero- and few-shot tasks. In CLIP, we take the features
extracted from the pre-trained image encoder and pass them to a NN head trained for the lo-
calization task using Ltask on T�.

In EDNN, we consider supervised pre-training on synthetic images, as described in [92], to
cheaply generate labeled data. The strategy consists first in training using the synthetic dataset
Ts on the localization task with a focal loss [95], and then fine-tune the NN parameters using
Ltask on T�.

8.2.4 Network Architectures and Training

BAS, UB, EDNN and LED-P share the same tiny FCN [97] architecture consisting of nine con-
volution blocks, in order: two blocks with 8 channels, 2× max-pooling, three with 16, 2×
max-pooling, three with 32, 2× max-pooling and one with 2 channels as the output, totalling
22.1k trainable parameters. Convolution blocks consist of a convolution layer, batch normal-
ization and ReLU activation. The model’s input is a grayscale image of 320× 320 pixels, nor-
malized between zero and one. The model produces two maps of 40×40 cells, each cell with a
45×45 pixels receptive field, as illustrated in (e, g) of Figure 8.2. Cells of the first map denote
drone presence in the corresponding area of the input image4, while cells of the second denote
whether the drone has its LEDs on (1.0) or off (0.0); cells with no visible drone are expected
to have a value close to 0.5.

AE-P uses an encoder with four convolution blocks with 4, 8, 16 and 32 channels, inter-
leaved by 2× max-pooling layers, and terminating with the Fully-Connected (FC) bottleneck;
in our experiments we considered bottlenecks of 512 and 1024 neurons. The decoder uses four
convolution blocks with channels symmetrical to the encoder and interleaved by 2× bilinear up-
sampling. We attach to the bottleneck a convolution head responsible for localizing the drone,

4Map cells are independent one another and assume values in the range from 0 (no drone) to 1 (drone present in
given cell).

89 8.2 Experiments

consisting of two convolution blocks with 32 and 1 channels and interleaved by 2× bilinear
upsampling.

CLIP uses the pre-trained image encoder of the homonymous model [141] as a feature ex-
tractor; specifically, we adopt the variant using the vision transformer ViT-B/32 [50] producing
512 features. We follow a similar approach to what is presented in [141, Section 3] but keeping
CLIP parameters frozen and replacing the logistic regression with a FC head. A FC head uses
two blocks composed of a FC layer, batch normalization and ReLU activation. We conducted
many trials to find performing architectures that use the 512 CLIP features; we report here the
best two: the top performer with 16 neurons and the second with 512, followed by the output
block of 400 neurons reshaped into a 20× 20 grid.

Finally, we compare LED-P with Frontnet [20], an approach that directly regresses the
drone’s coordinates.

All NNs are trained using Adam [83] as the optimizer, running for a total of 200 epochs. We
adopt a scheduler that divides the learning rate by a factor of 5 every 50 epochs, starting with
a learning rate η start = 1e−2 and reaching a final learning rate ηfinal = 8e−5. In each epoch we
randomly draw mini-batches of 64 examples from the two joined training sets and minimize
the loss function described in Section 8.1.2. Specifically, we minimize Lpretext (setting Ltask to
0) for examples taken from Tu since there are no known labels, and the complete loss L when
fed samples from T�.

Additionally, to increase the variability of the drone’s visual appearance, we apply the follow-
ing augmentations: horizontal flip (50% probability), random rotation (uniform ±9◦), random
translation (uniform ±32 pixels), and apply multi-frequency simplex noise.

8.2.5 From Grid Map to Robot Position

We consider two approaches to recover ô from the model’s predicted map q̂ named argmax and
barycenter: the argmax approach selects the coordinate of the cell of q̂ whose value is largest;
barycenter computes the expected drone position by averaging the coordinates of each map cell
weighted by the corresponding probability of depicting a drone [56]. The probability of each
map cell is obtained by normalizing q̂ such that its sum equals one.

As shown in Figure 4, barycenter returns more conservative estimates, biased towards the
mean of the dataset. In contrast, argmax yields unbiased results at the expense of larger errors
for frames with no detected drone. Banding artifacts are present with argmax since it can-
not represent positions inbetween cells of the 40× 40 map, i.e., it discretizes the input image
coordinates into 8-pixel-wide bins. In the following experiments we use the argmax approach.

Figure 8.3. LED-P model predictions on the testing set Q with argmax and barycenter ap-
proaches for the u and v components of the drone’s position.

90 8.3 Experimental Results

8.2.6 Evaluation Metrics

We compare models on different metrics computed on the testing set Q. The Pearson correla-
tion coefficient ρ, computed separately for the horizontal u and vertical v components of o; it
measures the linear correlation between predicted and ground truth values. We also compute
the model’s error distribution using the euclidean distance between o and ô. From this distribu-
tion, we derive the median value in pixels �D and a precision score Pk. We chose median instead
of mean for being a robust central tendency estimate for skewed distributions. Pk is the fraction
of samples whose position error is lower than k pixels, considering predictions with a distance
smaller than the threshold k as correct, similarly to ADD for 6 Degrees of Freedom pose estima-
tion [194]. Additionally, we report P+k , defined as the relative improvement of LED-P models
with respect to the corresponding baseline BAS, such that BAS represents 0%, and UB 100%.
In our experiments we consider k = 30 pixels, i.e., approximately 10% of the edge length of
images.

Even though LED state prediction is not our end task, we also report the Area Under the
Receiver Operating Characteristic Curve (AUC) for the LED classification output: it measures
how well a model distinguishes the two classes at various thresholds, i.e., telling between a
drone with LEDs off or on. A random classifier achieves an AUC score of 50%, while an ideal
classifier achieves a score of 100%.

8.3 Experimental Results

This section reports the performance of our proposed strategy (Section 8.3.1), how performance
changes as a function of λ and of the amount of labeled examples (Section 8.3.2), a comparison
with alternative approaches (Section 8.3.3), generalization ability of our proposed strategy
(Section 8.3.4) and a deployed in-field experiment on nano-drones (Section 8.3.5).

8.3.1 LED State Prediction Improves Performance

In Table 8.1, first and last panels, we report the performance of our LED-P strategy against a
dummy model (DUMMY), baseline (BAS) and an upperbound (UB). We observe that LED-P-
100, trained leveraging unlabeled images, performs moderately better than BAS-100 across all
evaluation metrics. The P30 metric indicates that 86.9% of predictions fall within 30 pixels from
the respective ground truth position, with a median error of only 8 pixels out of a 320× 320
pixels image. We also computed P30 scores on two subsets of Q containing examples with LEDs
off and on, on which our LED-P-100 model scores 83.3% and 91.2% respectively, showing
more difficulties in localizing drones with LEDs off. On the same metric, we report LED-P-
100 to score higher than BAS-100 with a p-value of 0.029, computed with the non-parametric
one-sided Mann-Whitney U test.

8.3.2 Impact of λ and Amount of Labeled Examples

In Figure 8.4, we inspect the LED-P-30 (λ = 0.001) prediction against BAS-30 on samples
taken from Q, where it scores 30.9% in P+30, a considerable improvement over the respective
baseline. Our model demonstrates an overall good performance when the target drone flies at
or below the camera height and, to a lesser extent, when the target flies higher – which hinders
the visibility of the LEDs. The model has a harder time localizing the drone when its LEDs are

91 8.3 Experimental Results

off. Regarding the AUC for the LED state prediction, our model scores 74% despite these two
challenging scenarios being frequently present in Q.

Failure in detecting the drone causes the model to predict the position of similar looking
areas of the image. This situation happens less frequently when LEDs are on since their presence
improves the drone’s visibility.

In Figure 8.5, we show the P+30 relative improvement score for BAS and LED-P strategies as
the amount of labeled training examples and the weight of the loss λ vary. LED-P outperforms
BAS when training on as few as 100 labeled examples (10% of T�). The optimal value of λ
for our loss is 0.001 for 100 and 300 labeled examples (10% and 30% of T� respectively), and
0.0005 for the full labeled dataset.

Inspecting the two loss term values, we note that Ltask is in the order of magnitude of 10−4

and Lpretext in 10−1. The optimal λ values are scaling the loss terms to be in the same order of
magnitude, striking a balance between the two.

Figure 8.4. LED-P-30 with λ = 0.001 (small green circle), BAS-30 (yellow cross) predictions
and ground truth (large magenta circle) on frames taken from Q with the drone’s LEDs on (first
three) and off (last three).

Figure 8.5. P+30 score for BAS (λ = 1) and LED-P (λ < 1) strategies as the amount of labeled
training examples T� and the weight of the loss λ vary.

8.3.3 Alternative Training Strategies

We investigate strategies using a different architecture, model pre-training, or different pretext
tasks, described in Section 8.2.3, and whose performance metrics are reported in Table 8.1,
fourth panel. EDNN scores 10.2 pixels in �D demonstrating some degree of accuracy; however,

92 8.3 Experimental Results

it scores lower than LED-P-100 and BAS-100 that use the same amount of labeled data. This
result suggests that task similarity is less influential than dataset relevance, i.e., training on the
same task with data vastly different (in appearance) from testing achieves lower scores than
solving a different task on similar data, e.g., our LED state prediction pretext task.

Frontnet achieves 31 pixels in �D despite having been trained similarly to BAS-100, which
achieves only 8.2 pixels. The increase in error demonstrated by Frontnet indicates that using
a FCN model producing a map-based representation leads to a better performance than direct
regression.

AE-P successfully learns to reconstruct input images using the bottleneck features. However,
the model focuses on large-scale aspects of the environment, such as floors, walls and fixtures,
distinctive of background elements and disregards high frequency elements such as the drone.
This tendency results in a feature space, regardless of bottleneck size, that is not informative
of the drone’s position, rendering this pretext task inadequate for localizing small object. Even
in CLIP’s case, we note how the provided features do not translate in good localization perfor-
mance. We speculate that CLIP’s features are inadequate for very specialized vision tasks such
as nano-drone localization [141, Section 3.1.5].

AE-P and CLIP highlight the importance of choosing the right kind of pretext [199], which
promotes the recognition of patterns similar to those required to solve the end task.

8.3.4 Generalization Ability

In Figure 8.6, we show the prediction of LED-P-30 (λ = 0.001) on images collected in another
lab environment and featuring multiple drones [110]. For this scenario, we modified the argmax
approach by thresholding the localization map l̂ with its 95-percentile, extracting the maximum
value of each connected component, discarding components whose maximum is below 0.2 and
returning their centroid as the drone locations. For the most part, our model correctly localizes
the drones despite the motion blur and defocus, with all examples featuring at least two correct
predictions. Failed detections frequently occur on the edge of the field of view, where the
vignetting effect is strong.

Figure 8.6. Generalization and multi-drone localization examples using LED-P-30 (λ = 0.001)
on images from a different dataset and environment [110]. Errors are visually marked as false
positives (FP) or false negatives (FN).

8.3.5 In-Field Experiment

The LED-P-30 (λ = 0.001) and BAS-30 models are deployed aboard the observer nano-drone,
using the academic NEMO/DORY deployment framework5. The former tool provides post-
training quantization-aware fine-tuning, to convert deep learning models from floating-point to

5https://github.com/pulp-platform/nemo

93 8.4 Discussion

integer arithmetic, needed due to the absence of floating point units on the GAP8 SoC. DORY,
instead, produces a template-based C implementation, which takes care of data movements
across the memory hierarchy of the GAP8 SoC. This stage is fundamental in achieving fast
inference as sub-optimal data tiling/transfers might lead to poor performances, waiting to refill
L1 and L2 memories. Our optimized NN pipeline achieves an in-field inference rate of 21 frames
per second.

In the observer drone, the model output is used as feedback to a visual servoing controller,
designed to keep the target drone in the center of the image. The controller moves the observer
drone on a vertical plane, orthogonal to its camera axis, while keeping a constant yaw. Without
loss of generality, we consider the motion of the observer drone to take place on the yz world
plane, with x = 0. In the experiment, the target drone follows a predefined, scripted trajectory.
The ideal trajectory for the observer drone is the same as the target, projected on x = 0 vertical
world plane.

Figure 8.7 reports the y and z components of the measured trajectory of the observer drone,
controlled using position estimates from LED-P-30, compared to the ideal one. We observe that
the drone follows very closely the ideal trajectory. The same experiment run using BAS-30 yields
worse position tracking: the mean and standard deviation σ of the absolute position error on
the yz plane is 4.2 cm (σ = 4.0 cm) for LED-P-30, and 11.9 cm (σ = 8.3 cm) for BAS-30.

Figure 8.7. In-field experiment: measured vs ideal trajectory of the observer drone when using
LED-P-30 (λ = 0.001) for estimating the target position.

8.4 Discussion

We propose LED state estimation as a self-supervised pretext task applied to the end task of
visually localizing robots from small labeled datasets. The pretext task is optimized on large,
cheaply-collected datasets that only have ground truth for the LED state of the observed robot.
The approach is instantiated on localizing nano-quadrotors in low-resolution images, observ-
ing improved localization accuracy compared to baselines and alternative techniques for self-

94 8.4 Discussion

supervision. In-field experiments used a 27-g Crazyflie nano-drone to track the position of a
peer drone; the proposed approach reduces mean position-tracking error from 11.9 to 4.2 cm.

The proposed approach represents a small step towards more powerful pretext tasks for per-
ception. We discuss future research directions in more detail in Chapter 9. Here, instead, we
highlight some extensions to the LED-based pretext task, where we will consider the different
robot LEDs to be separate and independent. First, we consider the pretext task of predicting
the state of each of the four LEDs. This introduces additional complexity stemming from the
robot’s orientation, as some LEDs will naturally be occluded, and the visible ones require the
identification of their respective assignment (also based on the orientation of the robot). By
learning this pretext task, the model would learn useful features for both position and orienta-
tion of the other robot. Second, by using an asymmetric LED pattern, such as three out of four
turned on, we provide a strong cue for the robot’s orientation. Using such an LED pattern will
simplify the prediction the robot’s orientation and may also be used at inference time.

95 8.4 Discussion

Table 8.1. Comparison of models, five replicas per row. Pearson correlation coefficient ρu and
ρv , precision P30 and median of the error �D computed on the testing set Q.

M
od

el
Tr

ai
ni

ng
se

t
fo

r
ta

sk
λ

ρ
u

ρ
v

P 3
0

P+ 30
� D

Po
in

t
pl

ot
fo

r
P 3

0
[%
]
→

En
d

Pr
et

ex
t

[%
]
↑
[%
]
↑
[%
]
↑
[%
]
↑
[p

x]
↓

Er
ro

r
ba

rs
de

no
te

95
%

co
nf

.
in

t.

D
U

M
M

Y
−

−
−

−
−

8.
0

−
79

.0

p=
0.

02
9

p=
0.

01
4

n.
s.

0
20

40
60

80
10

0

LE
D

-P
-1

00
T �

T �
∪T

u
0.

01
00

55
.2

59
.0

63
.4

-2
50

.6
13

.2
LE

D
-P

-1
00

T �
T �
∪T

u
0.

00
50

74
.3

78
.0

80
.9

-4
9.

4
8.

8
LE

D
-P

-1
00

T �
T �
∪T

u
0.

00
10

79
.6

81
.7

84
.6

-6
.9

8.
3

LE
D

-P
-1

00
T �

T �
∪T

u
0.

00
05

81
.3

83
.6

86
.9

19
.5

8.
0

B
A

S-
10

0
T �

−
0.

00
00

79
.0

82
.7

85
.2

0.
0

8.
2

LE
D

-P
-3

0
30

%
T �

30
%
T �
∪T

u
0.

01
00

50
.1

55
.5

57
.5

-4
3.

0
14

.9
LE

D
-P

-3
0

30
%
T �

30
%
T �
∪T

u
0.

00
50

51
.0

57
.3

60
.4

-3
0.

8
14

.3
LE

D
-P

-3
0

30
%
T �

30
%
T �
∪T

u
0.

00
10

68
.5

71
.4

76
.2

30
.9

9.
9

LE
D

-P
-3

0
30

%
T �

30
%
T �
∪T

u
0.

00
05

61
.7

66
.3

70
.5

8.
6

11
.1

B
A

S-
30

30
%
T �

−
0.

00
00

59
.0

66
.2

68
.3

0.
0

10
.9

LE
D

-P
-1

0
10

%
T �

10
%
T �
∪T

u
0.

01
00

18
.3

28
.7

25
.1

-3
3.

9
94

.1
LE

D
-P

-1
0

10
%
T �

10
%
T �
∪T

u
0.

00
50

32
.3

42
.2

39
.9

-5
.1

61
.0

LE
D

-P
-1

0
10

%
T �

10
%
T �
∪T

u
0.

00
10

42
.1

48
.0

50
.3

15
.2

33
.6

LE
D

-P
-1

0
10

%
T �

10
%
T �
∪T

u
0.

00
05

36
.1

44
.7

43
.8

2.
5

53
.1

B
A

S-
10

10
%
T �

−
0.

00
00

34
.7

41
.6

42
.5

0.
0

57
.8

A
E-

P-
51

2
T �

T �
∪T

u
−

0.
5

1.
1

3.
7

−
13

7.
9

A
E-

P-
10

24
T �

T �
∪T

u
−

-0
.9

-2
.2

3.
8

−
13

0.
1

C
LI

P-
16
[1

41
]

T �
−

−
2.

0
8.

9
6.

5
−

10
2.

7
C

LI
P-

51
2
[1

41
]

T �
−

−
1.

4
7.

8
5.

7
−

10
9.

1
Fr

on
tn

et
[2

0]
T �

−
−

69
.5

74
.1

48
.7

−
31

.0
ED

N
N
[9

2]
T �

T s
−

64
.7

68
.5

73
.3

−
10

.2

U
B

T �
∪T
∗ u

−
0.

00
00

91
.7

89
.3

93
.9

10
0.

0
6.

8

96 8.4 Discussion

Chapter 9

Conclusions

Self-supervised robot learning is a promising approach to overcome the lack of labeled data
in real robotics applications. By leveraging a robot’s autonomous capabilities, we enable the
collection of training data without relying on pre-existing datasets or expensive data collec-
tion processes. In turn this makes many real-world robotics applications more practical and
approachable by practitioners. Specifically, we focus on spatial perception problems, which
require understanding spatial information, such as the relationship between the robot and ob-
jects, people, or other robots in the environment. Visual data, such as camera frames, lidar, or
laser readings, serve as input for deep learning models that predict spatial information. Train-
ing deep learning models notoriously requires large amounts of training data supplied by the
robot’s own data collection. With cheap, robot-collected data, we can supervise vision models
directly with labels generated from sensors’ readings or by using self-supervised pretext tasks
to boost performance and reduce the reliance on labeled data.

Throughout my doctoral studies, we have made valuable contributions to the state of the art
from two different perspectives: first, we investigated different types of sensors and actuators
used during data collection, from common ones, such as proximity sensors and odometry, to
less prominent yet powerful ones, such as microphones and LEDs. Much attention has been
put into practical considerations related to cost and availability of the chosen hardware com-
ponents. In particular, we centered many of our articles on the robot’s odometry, an ubiquitous
state estimation process that generates useful information. We also proposed pretext tasks
based on controllable LEDs, being fitted in most modern robot platforms, and on microphones
which come in miniaturized, very inexpensive and lightweight boards, if not already present
in the platform. One of the advantages of our approaches is that they leverage existing and
inexpensive off-the-shelf hardware or robot-fitted sensors instead of relying on expensive and
non-portable external systems. Data collection can be performed at the same speed as the robot
itself, allowing for efficient and fairly quick data acquisition. This property is especially bene-
ficial where real-time or near-real-time data processing is required, such as for online learning
approaches. Furthermore, data collection can be carried out in various environments, exploring
and gathering data from different real-world scenarios. As a result, models trained with such
data demonstrate good generalization and perform effectively in unseen environments.

Second, we addressed some issues associated with self-supervised robot learning approaches.
Specifically, in some situations a significant portion of the robot’s data is only partially labeled
or contains labels only for a limited number of training samples, e.g., when labels depend on

97

98

the exploration of the robot. We proposed a simple yet effective consistency loss for leverag-
ing these partial labels for supervising a model. Another problem is the reliance on sensors’
readings to derive training labels, which can be imprecise and have detrimental effects dur-
ing training. The presence of noise in sensors’ measurements can introduce errors and impact
the training results, leading to less performing models. To tackle the issue, we proposed an
uncertainty-aware approach that improves the performance of self-supervised models in the
presence of noisy labels.

In this dissertation, we have made headway on the goal of alleviating the burden of large-
scale data collection required for training deep perception models by enabling robots to au-
tonomously collect their own data and employing strategies to minimize the dependency on
labels. Now, we outline some of the future research directions towards this goal and to further
improve perception models.

Multiple modalities to learn better features In Chapters 3 and 7, we have investigated the
relationship between different perceptions of the same environment. Specifically, we trained a
model to predict one modality from another in a cross-modal fashion. This approach is relevant
in the field of self-supervised robot perception, where data from various modalities, such as
geometric, visual, auditory, kinesthetic, and tactile, can be easily and cheaply collected using
different sensors. It is well-known that fusing multiple modalities to solve a task often leads to
better results than using a single one [73]. Many robotics approaches have adopted this strategy
to improve their perception capabilities. However, what has not been extensively explored is
the prediction of multiple modalities from a subset thereof. By successfully predicting multiple
modalities, for example, from a single camera frame, a model demonstrates to have learned
a general, high-level understanding of its environment. This means that the model’s hidden
features are highly informative and can be leveraged to solve perception tasks in a more effective
way.

More powerful pretext tasks to learn better features In Chapters 7 and 8, we have proposed
two different pretext tasks for robot pose estimation. These pretext tasks are successful because
they take advantage of a known relationship between the end task (robot pose estimation) and
the pretext task. For example, the sound of a drone perceived by a microphone is inherently re-
lated to its location in space. Despite their success, very few perception approaches explored the
use of pretext tasks [116, 142]. This could be attributed to the lack of theoretical understanding
and motivation behind the success of pretext tasks: this tasks originate from our understanding
of the fundamental laws that govern our world without much theoretical scaffolding to support
their effectiveness. Only recently, some work is shedding light on the intuition behind pretext
tasks by applying the principles of information theory [160]. Therefore, more investigation is
required to gain a deeper understanding of pretext tasks, their effectiveness, and the underly-
ing information they capture. Further improvements require designing new pretext tasks that
capture more relevant and informative features for the end task; this will provide insights into
which pretext tasks are successful and how their success is related to this shared information.

Onboard and online learning to lower costs So far, the proposed approaches are composed
of different sequential phases, starting from data collection, than dataset generation, model
training and finally deployment. This design is in line with the most common robot learning
paradigms. By ensuring that all available information is provided to the dataset generation

99

phase, the resulting dataset is representative of real-world scenarios and is varied enough for
the robot to generalize to different environments. Once the dataset is complete, models are
trained on dedicated deep learning machines, and only at the end they are deployed onto the
robot. A prominent robot learning paradigm is the online learning one, in which a robot collects
some data, trains on it onboard, and repeats the process iteratively. Online robot learning is de-
sirable and has several advantages: robots can quickly adapt to changes in the data distribution,
making them more robust in scenarios where the environment may change over time, e.g., by
entering a dark tunnel; it enables continuous improvements since the model learns iteratively,
resulting in better performance and doing so during deployment; due to its online nature, this
paradigm eliminates the need to store data already used for training and to train a model on
the robot itself, avoiding the need for expensive, dedicated deep learning machines.

100

Appendix A

Publications

After an extension of our master thesis work, we presented our initial results on the use of
odometry and proximity sensors for self-supervision [112] at the demonstration track of the
AAAI 2019 conference. With the addition of new experiments on a different robot platform on
the task of predicting terrain features, highlighting the generality of the approach, described in
Chapter 3, we published our work [113] in the IEEE RA-L journal and presented it at the ICRA
2019 conference. In the following work, we improved over [113] with the introduction of an
additional unsupervised consistency loss, focused on enforcing consistency over geometrically-
related model predictions [114], described in Chapter 4; this work is published in the IEEE RA-L
journal. We also published our work on integrating self-supervised approaches with uncertainty
awareness [115], described in Chapter 5, in the IEEE RA-L journal and later presented it at
the IROS 2021 conference. Our work on the use of sound prediction as a pretext task [116],
described in Chapter 7, is published in the IEEE RA-L journal and was presented at the ICRA
2022 conference. Finally, our latest work on using LEDs state estimation as a pretext task,
described in Chapter 8, is currently under review at the IEEE RA-L journal.

In addition, we collaborated with colleagues on three projects: path planning with local
motion estimates, learning a visual feature extractor to close the control loop, and studying the
impact of feeding state estimates as additional information to predictive models. The former
resulted in the article [67], published in the IEEE RA-L journal and presented at the ICRA 2020
conference. The second project resulted in the article [127], described in Chapter 6, presented
at the IROS 2022 conference, and published in the conference proceedings. Meanwhile, the
latter is currently under review. Outside the area of robotics, we collaborated with another
group of our research center on an applied deep learning project. Specifically, the theme was
domain adaptation with neural networks applied to the challenging problem of estimating the
transmission quality in optical fiber networks. The resulting article [150] is published in the
JOCN journal.

In October 2022, I started a five-month internship at Magic Leap Switzerland GmbH on
the topic of self-supervised object pose estimation, experimenting ways to learn a pose estima-
tor with little-to-none ground truth, involving the use of NeRF [107] to generate images for
supervision.

Since the beginning of the Ph.D. studies, we published a total of 1 demonstration, 1 confer-
ence and 6 journal articles; we are also waiting for 2 articles, which are currently under review.
All articles except [127] and [150] are open access, and feature links to dedicated pages on the

101

102

research group website, giving full access to supplementary material such as videos, developed
code, and datasets used to validate the proposed approaches.

References

[112] Mirko Nava, Jérôme Guzzi, Ricardo Omar Chavez-Garcia, Luca Maria Gambardella, and
Alessandro Giusti. Demo: Learning to perceive long-range obstacles using self-supervision from
short-range sensors. AAAI Conference on Artificial Intelligence, 33: 9867–9868, 2019.

[113] Mirko Nava, Jérôme Guzzi, Ricardo Omar Chavez-Garcia, Luca Maria Gambardella, and
Alessandro Giusti. Learning long-range perception using self-supervision from short-range sen-
sors and odometry. IEEE Robotics and Automation Letters, 4: 1279–1286, 2019.

[114] Mirko Nava, Luca Maria Gambardella, and Alessandro Giusti. State-consistency loss for
learning spatial perception tasks from partial labels. IEEE Robotics and Automation Letters, 6:
1112–1119, 2021.

[115] Mirko Nava, Antonio Paolillo, Jérôme Guzzi, Luca Maria Gambardella, and Alessandro
Giusti. Uncertainty-aware self-supervised learning of spatial perception tasks. IEEE Robotics
and Automation Letters, 6: 6693–6700, 2021.

[116] Mirko Nava, Antonio Paolillo, Jérôme Guzzi, Luca Maria Gambardella, and Alessandro
Giusti. Learning visual localization of a quadrotor using its noise as self-supervision. IEEE
Robotics and Automation Letters, 7: 2218–2225, 2022.

[67] Jérôme Guzzi, Ricardo Omar Chavez-Garcia, Mirko Nava, Luca Maria Gambardella, and
Alessandro Giusti. Path planning with local motion estimations. IEEE Robotics and Automation
Letters, 5: 2586–2593, 2020.

[127] Antonio Paolillo, Mirko Nava, Dario Piga and Alessandro Giusti. Visual Servoing with
Geometrically Interpretable Neural Perception. IEEE/RSJ International Conference on Intelligent
Robots and Systems: 5300–5306, 2022.

[150] Cristina Rottondi, Riccardo di Marino, Mirko Nava, Alessandro Giusti, and Andrea Bianco.
On the benefits of domain adaptation techniques for quality of transmission estimation in opti-
cal networks. Journal of Optical Communications and Networking, 13: 34–43, 2021.

Bibliography

[1] E Ackerman. Turtlebot inventors tell us everything about the robot. IEEE Spectrum, 26:
1–10, 2013.

[2] National Highway Traffic Safety Administration. Standing General Order on Crash Report-
ing for Level 2 Advanced Driver Assistance Systems. United States Department of Trans-
portation, DOT HS 813 325, June 2022.

[3] D J Agravante, G Claudio, F Spindler, and F Chaumette. Visual servoing in an opti-
mization framework for the whole-body control of humanoid robots. IEEE Robotics and
Automation Letters, 2(2):608–615, 2017.

[4] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In
IEEE/CVF International Conference on Computer Vision, pages 37–45, 2015.

[5] Guillaume Allibert, Estelle Courtial, and François Chaumette. Predictive control for con-
strained image-based visual servoing. IEEE Transactions on Robotics, 26(5):933–939,
2010.

[6] Humam Alwassel, Dhruv Mahajan, Bruno Korbar, Lorenzo Torresani, Bernard Ghanem,
and Du Tran. Self-supervised learning by cross-modal audio-video clustering. Advances
in Neural Information Processing Systems, 33:9758–9770, 2020.

[7] Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In IEEE/CVF Interna-
tional Conference on Computer Vision, pages 609–617, 2017.

[8] Relja Arandjelovic and Andrew Zisserman. Objects that sound. In European Conference
on Computer Vision, pages 435–451, 2018.

[9] Efron B. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7
(1):1–26, 1979.

[10] Manikandan Bakthavatchalam, Omar Tahri, and François Chaumette. A direct dense
visual servoing approach using photometric moments. IEEE Transactions on Robotics, 34
(5):1226–1239, 2018.

[11] Dan Barnes, Will Maddern, and Ingmar Posner. Find your own way: Weakly-supervised
segmentation of path proposals for urban autonomy. In IEEE International Conference on
Robotics and Automation, pages 203–210, 2017.

103

104 Bibliography

[12] Meysam Basiri, Felix Schill, Dario Floreano, and Pedro U Lima. Audio-based localiza-
tion for swarms of micro air vehicles. In IEEE International Conference on Robotics and
Automation, pages 4729–4734, 2014.

[13] Quentin Bateux and Eric Marchand. Histograms-based visual servoing. IEEE Robotics
and Automation Letters, 2(1):80–87, 2017.

[14] Quentin Bateux, Eric Marchand, Jürgen Leitner, François Chaumette, and Peter Corke.
Training deep neural networks for visual servoing. In IEEE International Conference on
Robotics and Automation, pages 3307–3314, 2018.

[15] Mohammed Abdessamad Bekhti, Yuichi Kobayashi, and Kazuki Matsumura. Ter-
rain traversability analysis using multi-sensor data correlation by a mobile robot. In
IEEE/SICE International Symposium on System Integration, pages 615–620, 2014.

[16] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35
(8):1798–1828, 2013.

[17] Lars Berscheid, Thomas Rühr, and Torsten Kröger. Improving data efficiency of self-
supervised learning for robotic grasping. In IEEE International Conference on Robotics
and Automation, pages 2125–2131, 2019.

[18] Lars Berscheid, Pascal Meißner, and Torsten Kröger. Self-supervised learning for precise
pick-and-place without object model. IEEE Robotics and Automation Letters, 5(3):4828–
4835, 2020.

[19] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural networks. In PMLR International Conference on Machine Learning,
pages 1613–1622, 2015.

[20] Stefano Bonato, Stefano Carlo Lambertenghi, Elia Cereda, Alessandro Giusti, and
Daniele Palossi. Ultra-low power deep learning-based monocular relative localization
onboard nano-quadrotors. In IEEE International Conference on Robotics and Automation,
pages 3411–3417, 2023.

[21] Christopher A Brooks and Karl Iagnemma. Self-supervised terrain classification for plan-
etary surface exploration rovers. Wiley Online Library Journal of Field Robotics, 29(3):
445–468, 2012.

[22] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class
imbalance problem in convolutional neural networks. Elsevier Neural networks, 106:
249–259, 2018.

[23] M Akmal Butt and Petros Maragos. Optimum design of chamfer distance transforms.
IEEE Transactions on Image Processing, 7(10):1477–1484, 1998.

[24] Adrian Carrio, Sai Vemprala, Andres Ripoll, Srikanth Saripalli, and Pascual Campoy.
Drone detection using depth maps. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1034–1037, 2018.

105 Bibliography

[25] Adrian Carrio, Jesus Tordesillas, Sai Vemprala, Srikanth Saripalli, Pascual Campoy, and
Jonathan P How. Onboard detection and localization of drones using depth maps. IEEE
Access, 8:30480–30490, 2020.

[26] Francesco Castelli, Stefano Michieletto, Stefano Ghidoni, and Enrico Pagello. A machine
learning-based visual servoing approach for fast robot control in industrial setting. In-
ternational Journal of Advanced Robotic Systems, 14(6), 2017.

[27] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien, editors. Semi-Supervised
Learning. MIT Press, London, England, 2006.

[28] F Chaumette and S Hutchinson. Visual servo control. part i: Basic approaches. IEEE
Robotics & Automation Magazine, 13(4):82–90, 2006.

[29] F Chaumette and S Hutchinson. Visual servo control. part ii: Advanced approaches. IEEE
Robotics & Automation Magazine, 14(1):109–118, 2007.

[30] R Omar Chavez-Garcia, Jerome Guzzi, Luca M Gambardella, and Alessandro Giusti.
Learning ground traversability from simulations. IEEE Robotics and Automation Letters,
3(3):1695–1702, 2018.

[31] G Chesi and Y S Hung. Global path-planning for constrained and optimal visual servoing.
IEEE Transactions on Robotics, 23(5):1050–1060, 2007.

[32] Maicol Ciani, Stefano Bonato, Rafail Psiakis, Angelo Garofalo, Luca Valente, Suresh Sug-
umar, Alessandro Giusti, Davide Rossi, and Daniele Palossi. Cyber security aboard micro
aerial vehicles: An opentitan-based visual communication use case. In IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5, 2023.

[33] Andy Clark. Whatever next? predictive brains, situated agents, and the future of cog-
nitive science. Cambridge University Press Behavioral and brain sciences, 36(3):181–204,
2013.

[34] Andy Clark. Surfing Uncertainty: Prediction, Action, and the Embodied Mind. Oxford
University Press, 2015.

[35] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, and Niki Trigoni. Vinet:
Visual-inertial odometry as a sequence-to-sequence learning problem. In AAAI Conference
on Artificial Intelligence, volume 31, 2017.

[36] David Coleman, Ioan Alexandru Sucan, Sachin Chitta, and Nikolaus Correll. Reducing
the barrier to entry of complex robotic software: A moveit! case study. Journal of Soft-
ware Engineering for Robotics, 5(1):3–16, 2014.

[37] Christophe Collewet and Eric Marchand. Photometric visual servoing. IEEE Transactions
on Robotics, 27(4):828–834, 2011.

[38] Francesco Conti, Daniele Palossi, Andrea Marongiu, Davide Rossi, and Luca Benini. En-
abling the heterogeneous accelerator model on ultra-low power microcontroller plat-
forms. In IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1201–1206, 2016.

106 Bibliography

[39] Mario Coppola, Kimberly N McGuire, Kirk YW Scheper, and Guido CHE de Croon. On-
board communication-based relative localization for collision avoidance in micro air ve-
hicle teams. Springer Autonomous Robots, 42(8):1787–1805, 2018.

[40] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms in MATLAB®.
Springer, 2017.

[41] Nathan Crombez, El Mustapha Mouaddib, Guillaume Caron, and François Chaumette.
Visual servoing with photometric gaussian mixtures as dense features. IEEE Transactions
on Robotics, 35(1):49–63, 2019.

[42] Kevin Crowston. Amazon mechanical turk: A research tool for organizations and infor-
mation systems scholars. In Springer IFIP Advances in Information and Communication
Technology - Shaping the Future of ICT Research, pages 210–221, 2012.

[43] Hendrik Dahlkamp, Adrian Kaehler, David Stavens, Sebastian Thrun, and Gary R Bradski.
Self-supervised monocular road detection in desert terrain. In Robotics: Science and
Systems, 2006.

[44] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian Theobalt.
Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly surface
reintegration. ACM Transactions on Graphics, 36(4):1, 2017.

[45] Xinke Deng, Yu Xiang, Arsalan Mousavian, Clemens Eppner, Timothy Bretl, and Dieter
Fox. Self-supervised 6d object pose estimation for robot manipulation. In IEEE Interna-
tional Conference on Robotics and Automation, pages 3665–3671, 2020.

[46] Duarte Dias, Rodrigo Ventura, Pedro Lima, and Alcherio Martinoli. On-board vision-
based 3d relative localization system for multiple quadrotors. In IEEE International Con-
ference on Robotics and Automation, pages 1181–1187, 2016.

[47] Ernst D Dickmanns. Computer vision and highway automation. Vehicle System Dynamics,
31(5-6):325–343, 1999.

[48] Ernst D Dickmanns and Alfred Zapp. Autonomous high speed road vehicle guidance by
computer vision. IFAC Proceedings Volumes, 20(5):221–226, 1987.

[49] Ernst Dieter Dickmanns and Alfred Zapp. A curvature-based scheme for improving road
vehicle guidance by computer vision. In SPIE Mobile Robots I, volume 727, pages 161–
168, 1987.

[50] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. International Conference on Learning Representations, Virtual Event, 2021.

[51] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single
image using a multi-scale deep network. In Advances in Neural Information Processing
Systems, pages 2366–2374, 2014.

[52] Franka Emika. Franka emika website. https://www.franka.de, Accessed: 2023.

107 Bibliography

[53] Samuel Felton, Elisa Fromont, and Eric Marchand. Siame-SE(3): regression in se(3) for
end-to-end visual servoing. In IEEE International Conference on Robotics and Automation,
pages 14454–14460, 2021.

[54] Samuel Felton, Pascal Brault, Elisa Fromont, and Eric Marchand. Visual servoing in
autoencoder latent space. IEEE Robotics and Automation Letters, 7(2):3234–3241, 2022.

[55] Eric L Ferguson, Stefan B Williams, and Craig T Jin. Sound source localization in a multi-
path environment using convolutional neural networks. In IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 2386–2390, 2018.

[56] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel.
Deep spatial autoencoders for visuomotor learning. In IEEE International Conference on
Robotics and Automation, pages 512–519, 2016.

[57] John H Flavell. The Developmental Psychology of Jean Piaget. Van Nostrand Reinhold,
1963.

[58] Open Source Robotics Foundation. Robot Operating System Website. https://www.

ros.org, Accessed: 2023.

[59] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning. In PMLR International Conference on Machine
Learning, pages 1050–1059, 2016.

[60] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. Learning to fly by crashing. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3948–3955, 2017.

[61] Dhiraj Gandhi, Abhinav Gupta, and Lerrel Pinto. Swoosh! rattle! thump!-actions that
sound. In Robotics: Science and Systems, 2020.

[62] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen Li.
Deep reconstruction-classification networks for unsupervised domain adaptation. In Eu-
ropean Conference on Computer Vision, pages 597–613, 2016.

[63] Alessandro Giusti, Jérôme Guzzi, Dan C Ciresan, Fang-Lin He, Juan P Rodríguez, Flavio
Fontana, Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni Di Caro, et al.
A machine learning approach to visual perception of forest trails for mobile robots. IEEE
Robotics and Automation Letters, 1(2):661–667, 2016.

[64] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

[65] Samet Güler, Mohamed Abdelkader, and Jeff S Shamma. Peer-to-peer relative localiza-
tion of aerial robots with ultrawideband sensors. IEEE Transactions on Control Systems
Technology, 29(5):1981–1996, 2020.

[66] Jérôme Guzzi, Alessandro Giusti, Gianni A Di Caro, and Luca M Gambardella. Mighty
thymio for higher-level robotics education. In AAAI Conference on Artificial Intelligence,
2018.

[67] Jérôme Guzzi, R Omar Chavez-Garcia, Mirko Nava, Luca M Gambardella, and Alessan-
dro Giusti. Path planning with local motion estimations. IEEE Robotics and Automation
Letters, 5(2):2586–2593, 2020.

108 Bibliography

[68] Raia Hadsell, Pierre Sermanet, Jan Ben, Ayse Erkan, Marco Scoffier, Koray Kavukcuoglu,
Urs Muller, and Yann LeCun. Learning long-range vision for autonomous off-road driving.
Wiley Online Library Journal of Field Robotics, 26(2):120–144, 2009.

[69] Lei Han and Lu Fang. Flashfusion: Real-time globally consistent dense 3d reconstruction
using cpu computing. In Robotics: Science and Systems, volume 1, 2018.

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[71] Weipeng He, Petr Motlicek, and Jean-Marc Odobez. Adaptation of multiple sound source
localization neural networks with weak supervision and domain-adversarial training. In
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 770–774,
2019.

[72] Yinlin Hu, Pascal Fua, Wei Wang, and Mathieu Salzmann. Single-stage 6d object [ose
estimation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2930–2939, 2020.

[73] Yu Huang, Chenzhuang Du, Zihui Xue, Xuanyao Chen, Hang Zhao, and Longbo Huang.
What makes multi-modal learning better than single (provably). Advances in Neural
Information Processing Systems, 34:10944–10956, 2021.

[74] Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario Bellicoso, Vas-
silios Tsounis, Jemin Hwangbo, Karen Bodie, Peter Fankhauser, Michael Bloesch, et al.
Anymal: A highly mobile and dynamic quadrupedal robot. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 38–44, 2016.

[75] Tadanobu Inoue, Subhajit Choudhury, Giovanni De Magistris, and Sakyasingha Das-
gupta. Transfer learning from synthetic to real images using variational autoencoders for
precise position detection. In IEEE International Conference on Image Processing, pages
2725–2729, 2018.

[76] Ganesh Iyer, J Krishna Murthy, Gunshi Gupta, Madhava Krishna, and Liam Paull. Geo-
metric consistency for self-supervised end-to-end visual odometry. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, Workshop, pages 267–275, 2018.

[77] Eric Jang, Coline Devin, Vincent Vanhoucke, and Sergey Levine. Grasp2vec: Learn-
ing object representations from self-supervised grasping. In PMLR Conference on Robot
Learning, pages 99–112, 2018.

[78] Huaizu Jiang, Gustav Larsson, Michael Maire Greg Shakhnarovich, and Erik Learned-
Miller. Self-supervised relative depth learning for urban scene understanding. In Euro-
pean Conference on Computer Vision, pages 19–35, 2018.

[79] Jun Jin, Laura Petrich, Masood Dehghan, and Martin Jagersand. A geometric perspective
on visual imitation learning. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5194–5200, 2020.

109 Bibliography

[80] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages
4037–4058, 2020.

[81] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir Navab. Ssd-
6d: Making rgb-based 3d detection and 6d pose estimation great again. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1521–1529, 2017.

[82] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and Achintya Bhowmik.
Intel realsense stereoscopic depth cameras. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Workshop, pages 1–10, 2017.

[83] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

[84] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, volume 3, pages 2149–2154, 2004.

[85] Kishore Reddy Konda and Roland Memisevic. Learning visual odometry with a convo-
lutional network. International Conference on Computer Vision Theory and Applications,
VISAPP, 2015:486–490, 2015.

[86] Bruno Korbar, Du Tran, and Lorenzo Torresani. Cooperative learning of audio and video
models from self-supervised synchronization. In Advances in Neural Information Process-
ing Systems, pages 7774–7785, 2018.

[87] Alexandros Kouris and Christos-Savvas Bouganis. Learning to fly by myself: A self-
supervised cnn-based approach for autonomous navigation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1–9, 2018.

[88] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[89] Alex X Lee, Sergey Levine, and Pieter Abbeel. Learning visual servoing with deep features
and fitted Q-iteration. In International Conference on Learning Representations, 2017.

[90] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting robotic
grasps. SAGE Publications The International Journal of Robotics Research, 34(4-5):705–
724, 2015.

[91] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of
deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373,
2016.

[92] Shushuai Li, Christophe De Wagter, and Guido CHE De Croon. Self-supervised monoc-
ular multi-robot relative localization with efficient deep neural networks. In IEEE Inter-
national Conference on Robotics and Automation, pages 9689–9695, 2022.

[93] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. Deepim: Deep iterative matching
for 6d pose estimation. In European Conference on Computer Vision, pages 683–698,
2018.

110 Bibliography

[94] Zhigang Li, Gu Wang, and Xiangyang Ji. Cdpn: Coordinates-based disentangled pose
network for real-time rgb-based 6-dof object pose estimation. In IEEE/CVF International
Conference on Computer Vision, pages 7678–7687, 2019.

[95] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. In IEEE/CVF International Conference on Computer Vision, pages
2980–2988, 2017.

[96] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European Conference
on Computer Vision, pages 21–37, 2016.

[97] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 3431–3440, 2015.

[98] Andrew Lookingbill, John Rogers, David Lieb, J Curry, and Sebastian Thrun. Reverse
optical flow for self-supervised adaptive autonomous robot navigation. Springer Inter-
national Journal of Computer Vision, 74:287–302, 2006.

[99] Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. A general framework for un-
certainty estimation in deep learning. IEEE Robotics and Automation Letters, 5(2):3153–
3160, 2020.

[100] Siddharth Mahendran, Haider Ali, and René Vidal. 3d pose regression using convolu-
tional neural networks. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, Workshop, pages 2174–2182, 2017.

[101] Daniel Maier, Maren Bennewitz, and Cyrill Stachniss. Self-supervised obstacle detection
for humanoid navigation using monocular vision and sparse laser data. In IEEE Interna-
tional Conference on Robotics and Automation, pages 1263–1269, 2011.

[102] Dario Mantegazza, JÃ©rÃ´me Guzzi, Luca M. Gambardella, and Alessandro Giusti.
Vision-based control of a quadrotor in user proximity: Mediated vs end-to-end learn-
ing approaches. In IEEE International Conference on Robotics and Automation, pages
6489–6495, 2019.

[103] Éric Marchand and François Chaumette. Feature tracking for visual servoing purposes.
Elsevier Robotics and Autonomous Systems, 52(1):53–70, 2005.

[104] Éric Marchand, Fabien Spindler, and François Chaumette. Visp for visual servoing: A
generic software platform with a wide class of robot control skills. IEEE Robotics & Au-
tomation Magazine, 12(4):40–52, 2005.

[105] Daniel Maturana and Sebastian Scherer. 3d convolutional neural networks for landing
zone detection from lidar. In IEEE International Conference on Robotics and Automation,
pages 3471–3478, 2015.

[106] Y Mezouar and F Chaumette. Path planning for robust image-based control. IEEE Trans-
actions on Robotics, 18(4):534–549, 2002.

111 Bibliography

[107] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. ACM Communications of the ACM, 65(1):99–106, 2021.

[108] Enrico Mingo Hoffman and Antonio Paolillo. Exploiting visual servoing and centroidal
momentum for whole-body motion control of humanoid robots in absence of contacts
and gravity. In IEEE International Conference on Robotics and Automation, pages 2979–
2985, 2021.

[109] Marwan Qaid Mohammed, Kwek Lee Chung, and Chua Shing Chyi. Review of deep
reinforcement learning-based object grasping: Techniques, open challenges, and recom-
mendations. IEEE Access, 8:178450–178481, 2020.

[110] Akmaral Moldagalieva and Wolfgang Hönig. A dataset and comparative study for vision-
based relative position estimation of multirotor teams flying in close proximity. arXiv,
page 2303.03898, 2023.

[111] Francesco Mondada, Michael Bonani, Fanny Riedo, Manon Briod, Léa Pereyre, Philippe
Rétornaz, and Stéphane Magnenat. Bringing robotics to formal education: The thymio
open-source hardware robot. IEEE Robotics & Automation Magazine, 24(1):77–85, 2017.

[112] Mirko Nava, Jérôme Guzzi, R Omar Chavez-Garcia, Luca M Gambardella, and Alessandro
Giusti. Demo: Learning to perceive long-range obstacles using self-supervision from
short-range sensors. In AAAI Conference on Artificial Intelligence, volume 33, pages 9867–
9868, 2019.

[113] Mirko Nava, Jérôme Guzzi, R Omar Chavez-Garcia, Luca M Gambardella, and Alessandro
Giusti. Learning long-range perception using self-supervision from short-range sensors
and odometry. IEEE Robotics and Automation Letters, 4(2):1279–1286, 2019.

[114] Mirko Nava, Luca Maria Gambardella, and Alessandro Giusti. State-consistency loss
for learning spatial perception tasks from partial labels. IEEE Robotics and Automation
Letters, 6(2):1112–1119, 2021.

[115] Mirko Nava, Antonio Paolillo, Jérôme Guzzi, Luca M Gambardella, and Alessandro
Giusti. Uncertainty-aware self-supervised learning of spatial perception tasks. IEEE
Robotics and Automation Letters, 6(4):6693–6700, 2021.

[116] Mirko Nava, Antonio Paolillo, Jérôme Guzzi, Luca M Gambardella, and Alessandro
Giusti. Learning visual localization of a quadrotor using its noise as self-supervision.
IEEE Robotics and Automation Letters, 7(2):2218–2225, 2022.

[117] Thien-Minh Nguyen, Zhirong Qiu, Thien Hoang Nguyen, Muqing Cao, and Lihua Xie.
Distance-based cooperative relative localization for leader-following control of mavs.
IEEE Robotics and Automation Letters, 4(4):3641–3648, 2019.

[118] Andrew Owens and Alexei A Efros. Audio-visual scene analysis with self-supervised
multisensory features. In European Conference on Computer Vision, pages 631–648, 2018.

[119] Andrew Owens, Jiajun Wu, Josh H McDermott, William T Freeman, and Antonio Tor-
ralba. Ambient sound provides supervision for visual learning. In European Conference
on Computer Vision, pages 801–816, 2016.

112 Bibliography

[120] Simone Palazzo, Dario C Guastella, Luciano Cantelli, Paolo Spadaro, Francesco Rundo,
Giovanni Muscato, Daniela Giordano, and Concetto Spampinato. Domain adaptation
for outdoor robot traversability estimation from rgb data with safety-preserving loss. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 10014–10021,
2020.

[121] Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand, Davide Scaramuzza,
and Luca Benini. Ultra low power deep-learning-powered autonomous nano drones. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 8357–8371,
2018.

[122] Daniele Palossi, Francesco Conti, and Luca Benini. An open source and open hardware
deep learning-powered visual navigation engine for autonomous nano-uavs. In IEEE
International Conference on Distributed Computing in Sensor Systems, pages 604–611,
2019.

[123] Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand, Davide Scaramuzza,
and Luca Benini. A 64-mw dnn-based visual navigation engine for autonomous nano-
drones. IEEE Internet of Things Journal, 6(5):8357–8371, 2019.

[124] A Paolillo, T S Lembono, and S Calinon. A memory of motion for visual predictive control
tasks. In IEEE International Conference on Robotics and Automation, pages 9014–9020,
2020.

[125] Antonio Paolillo and Matteo Saveriano. Learning stable dynamical systems for visual
servoing. In IEEE International Conference on Robotics and Automation, pages 8636–
8642, 2022.

[126] Antonio Paolillo, Angela Faragasso, Giuseppe Oriolo, and Marilena Vendittelli. Vision-
based maze navigation for humanoid robots. Autonomous Robots, 41(2):293–309, 2017.

[127] Antonio Paolillo, Mirko Nava, Dario Piga, and Alessandro Giusti. Visual servoing with
geometrically interpretable neural perception. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5300–5306, 2022.

[128] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

[129] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros.
Context encoders: Feature learning by inpainting. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2536–2544, 2016.

[130] Mandela Patrick, Yuki M. Asano, Polina Kuznetsova, Ruth Fong, Jo ao F. Henriques, Ge-
offrey Zweig, and Andrea Vedaldi. Multi-modal self-supervision from generalized data
transformations. In IEEE/CVF International Conference on Computer Vision, 2021.

[131] Maxim Pavliv, Fabrizio Schiano, Christopher Reardon, Dario Floreano, and Giuseppe
Loianno. Tracking and relative localization of drone swarms with a vision-based headset.
IEEE Robotics and Automation Letters, 6(2):1455–1462, 2021.

113 Bibliography

[132] Martin Pelikan, David E Goldberg, Erick Cantú-Paz, et al. Boa: The bayesian optimization
algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
1–10, 1999.

[133] Valentin Peretroukhin and Jonathan Kelly. Dpc-net: Deep pose correction for visual
localization. IEEE Robotics and Automation Letters, 3(3):2424–2431, 2017.

[134] Valentin Peretroukhin, Matthew Giamou, W Nicholas Greene, David Rosen, Jonathan
Kelly, and Nicholas Roy. A smooth representation of belief over SO(3) for deep rotation
learning with uncertainty. In Robotics: Science and Systems, 2020.

[135] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Cesar Cadena. From
perception to decision: A data-driven approach to end-to-end motion planning for au-
tonomous ground robots. In IEEE International Conference on Robotics and Automation,
pages 1527–1533, 2017.

[136] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from
50k tries and 700 robot hours. In IEEE International Conference on Robotics and Automa-
tion, pages 3406–3413, 2016.

[137] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances
in Neural Information Processing Systems, 1, 1988.

[138] Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navi-
gation. Neural computation, 3(1):88–97, 1991.

[139] En Yen Puang, Keng Peng Tee, and Wei Jing. KOVIS: Keypoint-based visual servoing
with zero-shot sim-to-real transfer for robotics manipulation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 7527–7533, 2020.

[140] Lawrence Rabiner and Ronald Schafer. Theory and Applications of Digital Speech Process-
ing. Prentice Hall Press, 2010.

[141] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In PMLR International
Conference on Machine Learning, pages 8748–8763, 2021.

[142] Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor
Darrell. Real-world robot learning with masked visual pre-training. In PMLR Conference
on Robot Learning, pages 416–426, 2023.

[143] Caleb Rascon and Ivan Meza. Localization of sound sources in robotics: A review. Elsevier
Robotics and Autonomous Systems, 96:184–210, 2017.

[144] Joseph Redmon and Anelia Angelova. Real-time grasp detection using convolutional
neural networks. In IEEE International Conference on Robotics and Automation, pages
1316–1322, 2015.

[145] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 7263–7271, 2017.

114 Bibliography

[146] Victor Reijgwart, Alexander Millane, Helen Oleynikova, Roland Siegwart, Cesar Cadena,
and Juan Nieto. Voxgraph: Globally consistent, volumetric mapping using signed dis-
tance function submaps. IEEE Robotics and Automation Letters, 5(1):227–234, 2019.

[147] James F Roberts, Timothy Stirling, Jean-Christophe Zufferey, and Dario Floreano. 3d
relative positioning sensor for indoor flying robots. Springer Autonomous Robots, 33(1):
5–20, 2012.

[148] Tobias Rodemann, Gokhan Ince, Frank Joublin, and Christian Goerick. Using binau-
ral and spectral cues for azimuth and elevation localization. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2185–2190, 2008.

[149] Brandon Rothrock, Ryan Kennedy, Chris Cunningham, Jeremie Papon, Matthew Hev-
erly, and Masahiro Ono. Spoc: Deep learning-based terrain classification for mars rover
missions. In AIAA SPACE, page 5539, 2016.

[150] Cristina Rottondi, Riccardo di Marino, Mirko Nava, Alessandro Giusti, and Andrea
Bianco. On the benefits of domain adaptation techniques for quality of transmission
estimation in optical networks. Optical Society of America Journal of Optical Communi-
cations and Networking, 13(1):A34–A43, 2021.

[151] Loris Roveda, Marco Maroni, Lorenzo Mazzuchelli, Loris Praolini, Giuseppe Bucca, and
Dario Piga. Enhancing object detection performance through sensor pose definition with
bayesian optimization. In IEEE International Workshop on Metrology for Industry 4.0 &
IoT, pages 699–703, 2021.

[152] Artem Rozantsev, Vincent Lepetit, and Pascal Fua. Detecting flying objects using a single
moving camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(5):
879–892, 2016.

[153] Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea Pellegrino. Crossing the
reality gap: A survey on sim-to-real transferability of robot controllers in reinforcement
learning. IEEE Access, 9:153171–153187, 2021.

[154] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.

[155] Martin Saska, Tomas Baca, Justin Thomas, Jan Chudoba, Libor Preucil, Tomas Krajnik,
Jan Faigl, Giuseppe Loianno, and Vijay Kumar. System for deployment of groups of un-
manned micro aerial vehicles in gps-denied environments using onboard visual relative
localization. Springer Autonomous Robots, 41(4):919–944, 2017.

[156] M Sauvee, P Poignet, E Dombre, and E Courtial. Image based visual servoing through
nonlinear model predictive control. In IEEE Conference on Decision and Control, pages
1776–1781, 2006.

[157] Aseem Saxena, Harit Pandya, Gourav Kumar, Ayush Gaud, and K Madhava Krishna. Ex-
ploring convolutional networks for end-to-end visual servoing. In IEEE International
Conference on Robotics and Automation, pages 3817–3823, 2017.

115 Bibliography

[158] Daniel Seita, Nawid Jamali, Michael Laskey, Ajay Kumar Tanwani, Ron Berenstein,
Prakash Baskaran, Soshi Iba, John Canny, and Ken Goldberg. Deep transfer learning
of pick points on fabric for robot bed-making. In Springer The International Symposium
of Robotics Research, pages 275–290, 2019.

[159] Christos Sevastopoulos and Stasinos Konstantopoulos. A survey of traversability estima-
tion for mobile robots. IEEE Access, 10:96331–96347, 2022.

[160] Ravid Shwartz-Ziv and Yann LeCun. To compress or not to compress – self-supervised
learning and information theory. arXiv, page 2304.09355, 2023.

[161] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: Mod-
elling, Planning and Control. Springer, 2009.

[162] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from
noisy labels with deep neural networks: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

[163] David Stavens and Sebastian Thrun. A self-supervised terrain roughness estimator for
off-road autonomous driving. In PMLR Uncertainty in Artificial Intelligence, pages 469–
476, 2006.

[164] Ron Streicher and Wes Dooley. Basic stereo microphone perspectives: A review. Audio
Engineering Society Journal of the Audio Engineering Society, 33(7/8):548–556, 1985.

[165] Bilal Taha and Abdulhadi Shoufan. Machine learning-based drone detection and classi-
fication: State-of-the-art in research. IEEE Access, 7:138669–138682, 2019.

[166] Lei Tai, Shaohua Li, and Ming Liu. A deep-network solution towards model-less obstacle
avoidance. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2759–2764, 2016.

[167] Ryu Takeda and Kazunori Komatani. Sound source localization based on deep neural
networks with directional activate function exploiting phase information. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pages 405–409, 2016.

[168] Ryu Takeda and Kazunori Komatani. Unsupervised adaptation of deep neural networks
for sound source localization using entropy minimization. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, pages 2217–2221, 2017.

[169] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. Advances
in Neural Information Processing Systems, 30, 2017.

[170] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time seamless single shot 6d object
pose prediction. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 292–301, 2018.

[171] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from simulation
to the real world. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 23–30, 2017.

116 Bibliography

[172] Josh Tobin, Lukas Biewald, Rocky Duan, Marcin Andrychowicz, Ankur Handa, Vikash
Kumar, Bob McGrew, Alex Ray, Jonas Schneider, Peter Welinder, et al. Domain random-
ization and generative models for robotic grasping. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3482–3489, 2018.

[173] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders
are data-efficient learners for self-supervised video pre-training. Advances in Neural In-
formation Processing Systems, 35:10078–10093, 2022.

[174] Stefano Toniolo, Jérôme Guzzi, Alessandro Giusti, and Luca Maria Gambardella. Learn-
ing an image-based obstacle detector with automatic acquisition of training data. In
AAAI Conference on Artificial Intelligence, 2018.

[175] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox, and
Stan Birchfield. Deep object pose estimation for semantic robotic grasping of household
objects. In PMLR Conference on Robot Learning, pages 306–316, 2018.

[176] Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Multi-view consistency as supervi-
sory signal for learning shape and pose prediction. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2897–2905, 2018.

[177] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy Ilg, Alexey
Dosovitskiy, and Thomas Brox. Demon: Depth and motion network for learning monoc-
ular stereo. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5038–5047, 2017.

[178] Michelle Valente, Cyril Joly, and Atnaud de La Fortelle. Deep sensor fusion for real-
time odometry estimation. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 6679–6685, 2019.

[179] Steven Van Der Helm, Mario Coppola, Kimberly N McGuire, and Guido CHE de Croon.
On-board range-based relative localization for micro air vehicles in indoor leader-
follower flight. Springer Autonomous Robots, 44(3):415–441, 2020.

[180] Kevin Van Hecke, Guido CHE de Croon, Daniel Hennes, Timothy P Setterfield, Alvar
Saenz-Otero, and Dario Izzo. Self-supervised learning as an enabling technology for fu-
ture space exploration robots: ISS experiments on monocular distance learning. Elsevier
Acta Astronautica, 140:1–9, 2017.

[181] Matouš Vrba, Daniel Heřt, and Martin Saska. Onboard marker-less detection and local-
ization of non-cooperating drones for their safe interception by an autonomous aerial
system. IEEE Robotics and Automation Letters, 4(4):3402–3409, 2019.

[182] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martín-Martín, Cewu Lu, Li Fei-Fei, and Silvio
Savarese. Densefusion: 6d object pose estimation by iterative dense fusion. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3343–3352, 2019.

[183] Gu Wang, Fabian Manhardt, Jianzhun Shao, Xiangyang Ji, Nassir Navab, and Federico
Tombari. Self6d: Self-supervised monocular 6d object pose estimation. In European
Conference on Computer Vision, pages 108–125, 2020.

117 Bibliography

[184] Gu Wang, Fabian Manhardt, Xingyu Liu, Xiangyang Ji, and Federico Tombari. Occlusion-
aware self-supervised monocular 6d object pose estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

[185] John Wang and Edwin Olson. Apriltag 2: Efficient and robust fiducial detection. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4193–4198,
2016.

[186] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. Deepvo: Towards end-to-end
visual odometry with deep recurrent convolutional neural networks. In IEEE Interna-
tional Conference on Robotics and Automation, pages 2043–2050, 2017.

[187] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. End-to-end, sequence-to-
sequence probabilistic visual odometry through deep neural networks. SAGE Publications
The International Journal of Robotics Research, 37(4-5):513–542, 2018.

[188] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for
image quality assessment. In IEEE Signals, Systems & Computers, volume 2, pages 1398–
1402, 2003.

[189] Yi Wei, Shaohui Liu, Wang Zhao, and Jiwen Lu. Conditional single-view shape generation
for multi-view stereo reconstruction. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9651–9660, 2019.

[190] B. L. Welch. The generalization of student’s problem when several different population
variances are involved. Biometrika, 34(1):28–35, 1947.

[191] Lorenz Wellhausen, Alexey Dosovitskiy, René Ranftl, Krzysztof Walas, Cesar Cadena, and
Marco Hutter. Where should i walk? predicting terrain properties from images via self-
supervised learning. IEEE Robotics and Automation Letters, 4(2):1509–1516, 2019.

[192] Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger B Grosse. Flipout: Efficient
pseudo-independent weight perturbations on mini-batches. In International Conference
on Learning Representations, 2018.

[193] Shaoen Wu, Junhong Xu, Shangyue Zhu, and Hanqing Guo. A deep residual convolu-
tional neural network for facial keypoint detection with missing labels. Elsevier Signal
Processing, 144:384–391, 2018.

[194] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn: A con-
volutional neural network for 6d object pose estimation in cluttered scenes. Robotics:
Science and Systems, 2018.

[195] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfusion: Deep sensor fusion for
3d bounding box estimation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 244–253, 2018.

[196] Hao Xu, Luqi Wang, Yichen Zhang, Kejie Qiu, and Shaojie Shen. Decentralized visual-
inertial-uwb fusion for relative state estimation of aerial swarm. In IEEE International
Conference on Robotics and Automation, pages 8776–8782, 2020.

118 Bibliography

[197] Nelson Yalta, Kazuhiro Nakadai, and Tetsuya Ogata. Sound source localization using
deep learning models. Fuji Technology Press Journal of Robotics and Mechatronics, 29(1):
37–48, 2017.

[198] Cunjun Yu, Zhongang Cai, Hung Pham, and Quang-Cuong Pham. Siamese convolutional
neural network for sub-millimeter-accurate camera pose estimation and visual servoing.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 935–941,
2019.

[199] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Sil-
vio Savarese. Taskonomy: Disentangling task transfer learning. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3712–3722, 2018.

[200] Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo, Ed Walker, Alberto Rodriguez, and
Jianxiong Xiao. Multi-view self-supervised deep learning for 6d pose estimation in the
amazon picking challenge. In IEEE International Conference on Robotics and Automation,
pages 1386–1383, 2017.

[201] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas
Funkhouser. Learning synergies between pushing and grasping with self-supervised deep
reinforcement learning. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4238–4245, 2018.

[202] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European
Conference on Computer Vision, pages 649–666, 2016.

[203] Wei Zhang, Qi Chen, Weidong Zhang, and Xuanyu He. Long-range terrain perception
using convolutional neural networks. Elsevier Neurocomputing, 275:781–787, 2018.

[204] Shengyan Zhou, Junqiang Xi, Matthew W McDaniel, Takayuki Nishihata, Phil Salesses,
and Karl Iagnemma. Self-supervised learning to visually detect terrain surfaces for au-
tonomous robots operating in forested terrain. Wiley Online Library Journal of Field
Robotics, 29(2):277–297, 2012.

[205] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsupervised learning
of depth and ego-motion from video. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1851–1858, 2017.

[206] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of
rotation representations in neural networks. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5745–5753, 2019.

[207] Andrew Zisserman. Self-Supervised Learning Slides. https://project.inria.fr/

paiss/files/2018/07/zisserman-self-supervised.pdf, Accessed: 2023.

[208] Jannik Zürn, Wolfram Burgard, and Abhinav Valada. Self-supervised visual terrain clas-
sification from unsupervised acoustic feature learning. IEEE Transactions on Robotics,
pages 466–481, 2020.

