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Abstract

Given the high costs of software development and maintenance, tools and techniques have
been proposed both in industry and academia to speed up programming activities. Some of
these techniques focus on automating the generation of source code, by predicting the code
tokens the developer would write starting from the ones already typed. We use the term
code recommender to refer to these approaches.

In this thesis, we study the strengths and the weaknesses of code recommenders from
several perspectives. We started by investigating the accuracy of recently proposed Deep
Learning (DL) models in generating non-trivial and possibly multiple code statements. In-
deed, previous work usually tested these techniques in the relatively easy task of predicting
the single next token the developer is likely to write. We pushed the boundaries of the pre-
dictions to entire blocks of code, showing that DL models can achieve excellent results when
predicting a few code tokens but their accuracy steadily decreases when asked to predict
entire code statements. Still, even in such a challenging scenario, DL models are able to
produce correct suggestions in ∼29% of cases. Given such a finding and the stunning capa-
bilities of recently released products such as GitHub Copilot, we decided to investigate the
extent to which DL models tend to copy code from the training set. Surprisingly, we found
that DL models rarely copy verbatim from the training data, mostly generating original code.
Finally, we studied the extent to which DL models generalize across different versions of the
same programming language, showing that a model trained on a language version vi exhibits
a strong drop in performance when asked to predict completions on a version v j 6= vi .

Then, since most of the tools proposed in the literature are based on researchers’ intu-
itions, we ran a survey with 80 practitioners to create a taxonomy of characteristics of code
recommenders they consider important (e.g., adapt the recommendations to the developer’s
programming style). Such a taxonomy can be used to inform future research in the field
aimed at targeting the weaknesses of code recommenders as perceived by practitioners. To
show that, we tackle one of the identified weaknesses (i.e., limited knowledge of the coding
context) and show how the performance of code recommenders can be boosted by enriching
the coding context they are aware of before triggering a recommendation.
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1
Introduction

Recommender systems for software developers have been defined by Robillard et al.[RMWZ14]
as “software tools that can assist developers with a wide range of activities”, ranging from
bug fixing [DAP+17, LNNN15, LHL+17] to documentation writing and retrieval [HLX+18,
MBP+15, MBP+17] and code review activities [TPT+21, TMM+22]. Among the mostly au-
tomated tasks there is code completion, which is considered one of the “killer” features
of modern Integrated Development Environments (IDEs) [BMM09, KZTC21, RL10]. It can
provide developers with predictions about the next token(s) to write given the code already
written in the IDE, thus speeding up the code writing and preventing potential mistakes
[HWM09, HWM11].

The quality of the recommendation, at the beginning merely based on alphabetical order,
drastically improved thanks to the development of data-driven techniques. The enhanced
code recommenders started to suggest “intelligent” completions that leverage the context
surrounding the code [BMM09, RL10], the history of code changes [RL10], and/or coding
patterns mined from software repositories [HBS+12, NNN+12, TSD14, ARSH14, NNN16,
NKZ17, HD17]. Recently, also Deep Learning (DL) models [KS19, KZTC21, ASLY20, SDFS20,
WVVP15] have led to state-of-the-art performance for code completion. The rise of DL was
facilitated by the unprecedented amount of code-related data publicly available on platforms
such as GitHub that, at time of writing, counts over 120 million public repositories and over
100 million users. The support provided to developers, initially limited to the prediction
of the single next token the developer is likely to write, improved over time, being able to
recommend multiple contiguous tokens [ASLY20, SDFS20, CTJ+21].

Building on top of this research, OpenAI and GitHub presented GitHub Copilot [copb], a
code assistant that achieved state-of-the-art performance in code recommendation. Thanks
to the massive training on a huge corpus of more than 150Gb of data from over 50M public
GitHub repositories, Copilot is able to even recommend entire methods just starting from
their signature or the skeleton of a class given the very first typed tokens. Furthermore, in
February 2022, DeepMind introduced AlphaCode [alp], a system for code generation that
achieved human performance in competitive programming tasks. Unlike programming, that
usually requires solving simple tasks, competitive programming problems require deeper
reasoning, showing the latent potential of DL models.

1



2 Introduction

In November 2022, OpenAI introduced ChatGPT, a conversational language model pow-
ered by a DL model. ChatGPT is capable of generating human-like responses in natural
language, including those related to software-related tasks, such as implementing a given
program.

While anecdotal evidence suggests that these tools are production-ready, there is little
empirical evidence about their actual capabilities. Indeed, in the literature there is a lack of
empirical studies investigating the behavior of these tools, like the inclination of the model to
copy already seen code [zie] or the capability of the model to generalize to different datasets
[HPGB19, AKL21]. Moreover, the tools proposed are based on researchers’ intuitions and
just a few studies investigated what developers want from code recommenders and how they
interact with them [MCB15, JLJ19].

1.1 Thesis Statement

We formulate our thesis as follows:

The novel AI-empowered code recommenders are changing the way in which de-
velopers write code. Although these tools achieved astounding performance, solid
empirical knowledge about their strengths and weaknesses can push the boundaries
even further.

1.2 Research Contributions

The research contributions of this thesis can be grouped into two high-level categories: (i)
studies aimed at objectively investigating strengths and weaknesses of the state-of-the-art
via technology-based experiments (i.e., experiments not involving humans) which assess
the performance of DL-based code recommenders from a specific perspective; and (ii) re-
search investigating the practitioners’ perspective on code recommenders and exploiting it
to improve the performance and usefulness of code recommenders.

1.2.1 Objectively Investigating Strengths and Weaknesses of Code Recommenders

Despite the significant improvement over time in the performance of code recommenders,
most of the approaches in the literature came with an important limitation in the support
provided to developers: They mainly focused on the prediction of the single next code token
the developer is likely to write. Only recently a few techniques started focusing on predicting
multiple contiguous tokens [ASLY20, SDFS20, copb]. We studied the accuracy of data-driven
techniques when employed in three code completion scenarios having different levels of
difficulty, including the automated generation of complete code blocks composed by multiple
statements. All code completion scenarios involved the automated generation of code tokens
to complete partially implemented Java methods.

We started by testing in these scenarios two models: (i) an n-gram model, a proba-
bilistic language model that showed promising results when used to model source code
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[TSD14, HD17], and (ii) the recently presented RoBERTa model [LOG+19], a DL model
that leverages the Transformers architecture. We compared their performance in the dif-
ferent code completion scenarios previously mentioned, showing how the more recent DL
model (RoBERTa) substantially outperforms the n-gram model. We collected our findings in
the following work [CCP+21b]:

An Empirical Study on the Usage of BERT Models for Code Completion

Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Denys Poshyvanyk, Massimiliano Di Penta, Gabriele
Bavota. In 18th International Conference on Mining Software Repository (MSR 2021), 108–119

While being superior to the n-gram model, in our MSR’21 paper we observed that RoBERTa
substantially suffers when generating complex predictions spanning over multiple state-
ments (∼10% of correct predictions as compared to the ∼52% achieved in the simplest
code completion scenario). To overcome the limitations of the RoBERTa model, we exper-
imented with the novel Text-To-Text Transfer Transformer (T5) model [RSR+20], another
Transformer-based architecture that achieved state-of-the-art performance in several NLP
tasks. We showed the superiority of the T5 model in all scenarios, with correct predictions
going up to ∼69%, with a ∼29% achieved in the most complex scenario. The paper present-
ing this work has been published in IEEE Transactions on Software Engineering [CCP+21a]:

An Empirical Study on the Usage of Transformer Models for Code Completion

Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, Emad Aghajani, Denys Poshy-
vanyk, Massimiliano Di Penta, Gabriele Bavota. In IEEE Transactions on Software Engineering (TSE
2021), 4818–4837

In such a work we observed some very surprising recommendations generated by the
experimented models. With “surprising” we refer to quite complex and challenging state-
ments correctly generated by the models. This, in addition to the remarkable performance
achieved by recently presented code recommenders such as GitHub Copilot and AlphaCode
[copb, alp], made us wonder whether these models tend to copy code from their training
data when generating predictions. Indeed, while in our experiments we guaranteed no du-
plicates between the Java methods present in the training and test set, it is still possible that
specific code statements to generate for a prediction in the test set are available in the train-
ing set. Answering such a research question is crucial, since the vast majority of training data
used for these models comes from open source repositories and hence its usage is regulated
by specific Free and Open Source Software (FOSS) licenses.

These licenses regulate how the licensed source code can be distributed or modified,
generating derivative work, but it is not clear if the code can be used for training DL-based
code recommenders or if the generated source must be considered new code “written from
scratch” rather than derivative work. The problem would be more relevant if these tech-
niques tend to perform a verbatim copy from training data that spans different statements.
We checked the percentage of Type-1 clones (i.e., exact copies) and Type-2 clones (i.e., copied
code with changes to identifiers and types) between the training data and the T5 predictions.
From our findings, there is no evidence that T5 tends to copy a significant amount of code
from the training set. We reported the results of our investigation in the following paper
[CPB22]:
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To What Extent do Deep Learning-based Code Recommenders Generate Predictions by Cloning
Code from the Training Set?

Matteo Ciniselli, Luca Pascarella, Gabriele Bavota. In 19th International Conference on Mining Soft-
ware Repository (MSR 2022), 1167–178

Finally, in this research track we studied the extent to which DL models generalize across
different versions of a given programming language. This means training the model in a
specific version vi and testing it on that same version as well as on other versions v j 6= vi .
This allows studying the difference in performance (if any) observed across the test sets.
We observed a strong decrease in performance when moving towards versions being far in
time from the one used for training, thus suggesting the need for continuously re-training
DL-based code recommenders being deployed. This work is currently under review:

On the Generalizability of Deep Learning-based Code Completion Across Programming Lan-
guage Versions

Matteo Ciniselli, Alberto Martin-Lopez, Gabriele Bavota. International Conference on Program Com-
prehension (ICPC 2024)

1.2.2 The Practitioners’ Perspective

The design of code recommenders in the literature is usually guided by the researchers’
intuition, and rarely developers are involved in this process. To collect developers’ opinion
about code recommender systems, we ran a survey with 80 professional developers recruited
through Amazon Mechanical Turk [amt] and via personal contacts asking their desiderata
when it comes to code recommenders and, more in general, aspects they feel should be
improved. The outcome of the survey is a taxonomy of characteristics of code recommenders
desired by developers. Our findings indicate, for example, that practitioners would like to
have code recommendations personalized to their development style. They also desire a
tool able to support them in different code completion scenarios, ranging from identifier
recommendations to the automated completion of entire lines of code. We reported the
results of our investigation in the following paper [CPA+23]:

Source Code Recommender Systems: The Practitioners’ Perspective

Matteo Ciniselli, Luca Pascarella, Emad Aghajani, Simone Scalabrino, Rocco Oliveto, Gabriele Bavota.
In 45th International Conference on Software Engineering (ICSE 2023), 2161–2172

The output of this work is a taxonomy of 70 characteristics of code recommenders that
are relevant for practitioners. Such a taxonomy can be used to derive a future research
agenda. To show that, we tackled one of the weaknesses identified by practitioners: They
consider particularly important that the code recommender is aware of the coding context
in order to generate more relevant recommendations. For this reason, we performed an em-
pirical study investigating the role of the provided context (i.e., the information provided as
input to the code recommender) on the performance of the DL-based recommender. Our
finding showed the benefits of additional contextual information provided to the model,
with a relative increase of 22% of Exact Match predictions (i.e., the cases in which the rec-
ommendation of the model is the exact code we are expecting). The chapter is based on the
following submission:
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Deep Learning-based Code Completion: On the Impact on Performance of Additional Contex-
tual Information

Matteo Ciniselli, Gabriele Bavota. Submitted to Empirical Software Engineering (EMSE 2023)

1.3 Outline

This dissertation is structured in the following chapters:

Chapter 2 presents an overview of the state of the art for source code recommender sys-
tems, including the main models proposed in the literature and empirical studies look-
ing at code recommenders from different perspectives.

Chapter 3 presents an empirical study that compares the performance of different state-of-
the-art models in three different code completion scenarios, ranging from suggesting a
few tokens up to an entire block of code, trying to emulate different coding situations
in which developers may need assistance. We evaluated the models’ performance using
several metrics extensively used in the literature.

Chapter 4 presents a study exploring to what extent DL models tend to verbatim copy
snippets of code seen during the training. Our findings showed that the model seems
to memorize simple and ubiquitous constructs, like return statements, while it rarely
copies long snippets of code.

Chapter 5 investigates the capabilities of DL models to generalize to different versions
of the same programming language. In detail, we trained the CodeT5 model on the
Java 8 version, and we evaluated its prediction performance on 9 different versions,
spanning over 20 years of language evolution.

Chapter 6 presents an empirical study involving 80 developers aiming at investigating im-
portant characteristics of code recommenders systems. Our results show that, de-
spite the state-of-the-art solutions proposed in the literature achieving stunning per-
formance in terms of accuracy, there are a lot of features that can support developers,
for example providing the rationale behind the suggestions or enhancing the readabil-
ity of the proposed code.

Chapter 7 presents an empirical study investigating the role of the contextual information
on the performance of DL-based code recommenders. Our findings show the benefits
of the additional contextual information.

Chapter 8 concludes the thesis and outlines directions for future work.
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2
State of the Art

Code completion is a useful feature integrated into the IDEs that assists programmers by au-
tomatically recommending code snippets, reducing the effort of manually typing code and
also preventing syntax errors. During the last years, several code completion approaches
have been proposed by researchers and industry. The advent of novel and enhanced tech-
niques improved the granularity of the suggestions, passing from recommending just a method
call up to recommending even several lines of code, thus dramatically increasing the devel-
opers’ productivity. Recently, tools like Copilot Chat [copa] further improved the support
provided to developers, allowing them to interact with Github Copilot to solve coding-related
questions directly inside the IDE.

This chapter contains the most relevant publications related to code recommenders, and
in particular to their application in the context of code completion. Works related to recom-
mending code examples [HM05, MBP+15, ARSH17, ASBN21] or retrieving relevant Stack
Overflow discussions [PBL13, PBP+14, TR16, YHL16] are not presented since not central to
this thesis. Section 2.1 discusses the code recommender systems proposed in the literature,
while Section 2.2 reports on empirical studies investigating code recommenders from dif-
ferent perspectives. Section 2.3 discusses how the contributions of this thesis stem and are
different from previous works in the literature.

2.1 Source Code Recommender Systems

First attempts in recommending code. At the beginning, the code recommenders inte-
grated in the IDEs were simply suggesting the code to complete in alphabetical order. The
Prospector tool by Mandelin et al. [MXBK05] was one of the first techniques aimed at sup-
porting smart code completion by suggesting within the IDE variables or method calls from
the user’s code base. Developers can interact with the tool using a query that expresses their
intent. Based on the input query, Prospector recommends the best suggestion from the code
base, leveraging information contained in signatures and code examples. Prospector was
then followed by improvements such as the InSynth tool by Gvero et al. [GKKP13] which,
given a type expected at a given point in the source code, searches for type-compatible ex-
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pressions.
Hill and Rideout [HR04] proposed a technique to automatically complete the body of

a method. Their approach can support such a completion for what the authors define as
“atomic clones” (i.e., small units of implementation that are unavoidable in Java to imple-
ment specific requirements). The presented tool uses the K-Nearest Neighbour to identify a
clone of a method under development. Such a clone is then used to recommend the comple-
tion of the method body. A similar technique was proposed a few years later by Wen et al.
[WAN+21]: In this case, the technique is specialized in recommending developers with the
next method to implement, by learning from the change history which methods are usually
implemented “together” by developers.

Bruch et al. [BMM09] introduced the intelligent code completion system, able to filter
out from the list of candidate method calls recommended by the IDE those that are more
relevant to the current working context. Such a system is implemented using three different
variants based on (i) method usage frequency, (ii) association rules discovery, and (iii) an im-
plementation of K-nearest-neighbor clustering named Best-Matching Neighbor (BMN). Their
results showed the capability of their technique to correctly predict up to 82% of method calls
actually needed by developers, and up to 72% of those that are relevant to the current devel-
opment context. The approach by Bruch et al. has been improved by Proksch et al. [PLM15]
who added further contextual information and proposed a Pattern-based Bayesian Networks
approach. As a result, Proksch et al. were able to substantially reduce the model size while
keeping about the same level of prediction accuracy.

Han et al. [HWM09] proposed a technique exploiting a Hidden Markov Model (HMM)
to autocomplete multiple keywords starting from abbreviated inputs. This means that the
user (i.e., the developer) only writes a few characters of the keyword of interest that is then
expanded by the HMM. The authors show that their model can save up to 41% of keystrokes.

Robbes and Lanza [RL10] used information extracted from the change history of software
systems to support the code completion of method calls and class names. In particular,
they implemented different strategies that recommend, for example, the methods defined
in the same class or the methods that have been recently changed by the developer. Their
approach has been implemented in a tool named OCompletion, and the performed empirical
evaluation demonstrated its ability to propose a correct match in the top-3 results in 75% of
cases.

Hou and Pletcher [HP11] evaluated three mechanisms to enhance code completion tech-
niques, namely sorting, filtering, and grouping that they implemented in their Better Code
Completion (BCC) tool. This tool allows the user to customize the three mechanisms de-
scribed before in order to improve the recommendation of API method calls. The outcome
of their study is an assessment of the effectiveness of fourteen different configurations of the
three mechanisms, measured using the capability of the tool to recommend the correct API
in the first positions.

Asaduzzaman et al. [ARSH14] proposed a technique named CSCC (Context Sensitive
Code Completion). They collected code examples from software repositories and, for each
method call, represented its context as a set of methods, keywords, class, and interface names
appearing within four lines of code. This contextual information was then used to filter out
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method call recommendations. The assumption was that similar contexts implied similar
method calls. CSCC outperformed previous approaches, achieving 86% precision and 99%
recall.

The rise of statistical language models. Hindle et al. [HBS+12] pioneered the work
on statistical language models applied to software. They conceived the idea of “naturalness
of source code”, conjecturing that, since the code has been written by humans, it tends to
be repetitive and predictable, similarly to what happens with the English language. For
this reason, they used n-gram models, a probabilistic language model previously used for
predicting English words, to create a language-agnostic algorithm that is able to predict the
next token in a given statement. The n-gram model is able to exploit these regularities in the
code, leveraging the information contained in the previous tokens to predict the next one.
The trained model’s average entropy is between three and four bits, indicating a high degree
of naturalness.

Raychev et al. [RVY14] approached the code completion problem through statistical lan-
guage models, testing the capabilities of n-gram models, Recurrent Neural Networks, and
their combination. They extracted sequences of method calls from a large code base, and
used this dataset to train a language model able to predict API calls. Their best model, which
combined both the approaches, achieved a 90% accuracy in the top-3 recommendations.

Nguyen et al. [NNN+12] proposed GraPacc, a context-sensitive code completion model
trained on a database of API usage patterns. They extracted different patterns from the
code, i.e., a set of API elements, like classes and method calls, and control structures that
defined the correct way in which developers may combine different API elements to perform
a programming task. These patterns are then matched to a given code under development
to support code completion. GraPacc achieves up to 95% precision and 92% recall. A similar
approach was later on proposed by Niu et al. [NKZ17] for API completion in Android: Given
an API method as a query, their approach recommends a set of relevant API usage patterns.
They reported an 18% improvement of F-Measure when compared to pattern extraction
using frequent-sequence mining.

Nguyen et al. [NN15] presented GraLan, a graph-based statistical language model that
the authors instantiated to recommend the next API element needed in a given code, where
an API element is a method call together with the control units (e.g., if statements) needed
for its usage. The reported empirical evaluation showed that GraLan can correctly recom-
mend the correct API element in 75% of cases within the first five candidates.

Tu et al. [TSD14] introduced a cache component in the n-gram model to exploit the “lo-
calness of code” (i.e., the fact that some regularities of the code are specific to some files or
projects and locally repetitive). Results show that since the code is locally repetitive, local-
ized information can be used to improve performance. The enhanced model outperformed
standard n-gram models by up to 45% in accuracy. In a related work, Franks et al. [FTDH15]
implemented CACHECA, an Eclipse auto-completion plugin exploiting the aforementioned
cache language model [TSD14]. In comparison to Eclipse built-in suggestions, their tool
improves the accuracy of top 1 and top 10 suggestions by 26% and 34%, respectively.

Hellendoorn and Devanbu [HD17] proposed further improvements to the cached models
proposed by Tu et al. [TSD14], aimed at considering specific characteristics of code, like
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unlimited, nested, and scoped vocabulary, that can help the model to dynamically adapt
to different projects. Then, they compare their model with DL-based models, showing its
superiority. Also, they show that the two families of techniques can be combined together,
leading to an unprecedented 1.25 bits of entropy per token.

Deep learning-based solutions. Differently from Hellendoorn and Devanbu [HD17],
Karampatsis et al. [KS19], a few years later, suggested that neural networks are the best
language-agnostic algorithm for code completion. They proposed to overcome the out-of-
vocabulary problem by using Byte Pair Encoding [Gag94]. In addition, the proposed neural
network is able to dynamically adapt to different projects. Their best model outperformed
n-gram models, achieving an entropy of 1.03 bits.

Kim et al. [KZTC21] leveraged the Transformers neural network architecture for code
completion. This novel architecture can process the input code and capture the contextual
dependencies across each input token, improving the efficiency and the performance in tasks
involving sequential data, like the code generation. They provide the syntactic structure
of code to the network by using information from the Abstract Syntax Tree to fortify the
self-attention mechanism. Among the several models they experimented with, the best one
reached a MRR up to 74.1% in predicting the next token.

Alon et al. [ASLY20] addressed the problem of code completion with a language-agnostic
approach named Structural Language Model. It leveraged the syntax to model the code snip-
pet as a tree. The model, based on LSTMs and Transformers, receives an AST representing
a partial expression (statement) with some missing consecutive tokens to complete. Their
best model reached state-of-the-art performance with an exact match accuracy for the top
prediction of 18.04%.

Svyatkovskiy et al. [SDFS20] introduced IntelliCode Compose, a general-purpose multi-
lingual code completion tool capable of predicting code sequences of arbitrary token types.
They did not leverage high-level structural representation, such as AST, and used subtokens
to overcome the out-of-vocabulary problem. Their model can recommend an entire statement,
and achieved a perplexity of 1.82 for the Python programming language.

Liu et al. [LLZJ20] presented Code Understanding and Generation pre-trained Language
Model (CugLM), a Transformer-based neural architecture pre-trained with the goal of incor-
porating both code understanding and generation tasks. The prediction of the next token
to write has been handled in two separate steps: They first predict the type of the token,
while the second exploits this information to predict the actual token. They evaluated their
approach on Java and TypeScript datasets, showing state-of-the-art performance.

A problem related to code completion has also been tackled by Watson et al. [WTM+20]:
The authors exploited a sequence-to-sequence model to recommend assert statements for a
given Java test case. They integrated the standard attention mechanism, allowing the model
to pay particular attention to specific tokens, with the copy mechanism, used by the model
to copy some tokens from the input sequence. This technique is able to generate assert
statements with a top-1 accuracy of 31%.

Kanade et al. [KMBS20] showed how code embeddings can support code-related tasks,
deriving a contextual embedding of source code by training Code Understanding BERT (Cu-
BERT), based on the BERT model. They leveraged the enhanced embedding for different
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tasks, ranging from exception type prediction to variable misuse and repair, with an im-
provement up to 15% of accuracy when compared to the BiLSTM baseline.

Svyatkovskiy et al. [SLH+21] proposed a different perspective on neural code comple-
tion, shifting from a generative task to a learning-to-rank task. Their model is used to rerank
the recommendations provided via static analysis, being cheaper in terms of memory foot-
print than generative models.

Bhoopchand et al. [BRBR16] proposed a neural language model for code suggestion in
Python, aiming at capturing long-range relationships among identifiers. To do that, they
exploited a sparse pointer network, achieving a lower perplexity and a greater accuracy as
compared to the n-gram models and LSTM.

Aye and Kaiser [AK20] proposed a novel language model to predict the next top-k tokens
while taking into consideration some real-world constraints such as (i) prediction latency,
(ii) size of the model and its memory footprint, and (iii) validity of suggestions. Their model
leverages static analysis and character-level input representation to handle out-of-vocabulary
tokens.

Chen et al. [CPX+22] proposed a deep learning model for API recommendation com-
bining structural and textual code information based on an API context graph and code
token network. The model significantly outperformed the existing graph-based statistical
approaches and the tree-based deep learning approaches for API recommendation.

Chen et al. introduced Copilot [CTJ+21], a new GPT model trained on more than 150Gb
of data from GitHub. They evaluated the performance of their model by checking whether
the proposed solution can pass all the test cases defined for that method, showing that stan-
dard match-based metrics like the BLEU score are not well suited for measuring the accuracy
of the model. Their trained model achieved state-of-the-art performance in the demanding
task of predicting the whole method when providing as input to the model just a natural
language description of what the developer wants to implement.

Feng et al. [FGT+20] proposed CodeBERT, a bimodal Transformer trained on code and
English text, able to capture semantic connections between natural and programming lan-
guage. The authors pre-trained the model using the ubiquitous masked language modeling
objective, together with the novel replaced token detection, in which the model has to de-
tect the token that has been replaced with a plausible alternative. Despite the authors focus
on the problems of code search and code documentation, CodeBERT is suitable for code
completion, having been trained using a “masking” pre-training objective.

Wang et al. [WWJH21] presented CodeT5, in which the T5 model has been pre-trained
with a novel identifier-aware task, where the model has to first tag the identifiers and then
predict the masked ones. The authors performed an ablation study showing the contribu-
tion of each objective. The semantic information introduced by the novel pre-training objec-
tives allowed CodeT5 to achieve state-of-the-art performance on the CodeXGLUE benchmark.
Wang et al. [WLG+23] subsequently extended their previous work by presenting CodeT5+,
a family of encoder-decoder models where the modules can be easily combined to handle
specific tasks, thanks to a plethora of pre-training objectives used in the training.

Finally, Izadi et al. [IGG22] presented CodeFill, a Transformer-based approach trained
for single- and multi-token code completion by predicting both the type and value of the
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masked tokens. Thanks to the capability of exploiting the token type information when
predicting token values, CodeFill outperformed the previous techniques in terms of ROUGE
and METEOR scores.

2.2 Empirical Studies on Source Code Recommender Systems

Most of the empirical studies in the literature focus on assessing the effectiveness of code
recommenders and how they are used by developers. Proksch et al. [PANM16] evaluated
a method-call recommender system on a real-world dataset featuring interactions captured
in the IDE. They observed that commonly used evaluations based on synthetic datasets ex-
tracted a-posteriori from released code do not take into account context change: This has a
major effect on the prediction quality.

In a similar research thread, Hellendoorn et al. [HPGB19] studied 15,000 real code
completions from 66 developers founding that typically used code completion benchmarks
— e.g., produced by artificially masking tokens — may misrepresent actual code completion
tasks. They found that the experimented tools are less accurate on the real-world dataset,
showing that synthetic benchmarks are not representative enough. Moreover, they found
that such tools are less accurate in challenging scenarios, when developers would need them
the most.

Mărăs, oiu et al. [MCB15] studied how developers use code completion in practice. They
observed that many recommendations are not accepted by the users. The main reason for
this low acceptance rate is due to the developers’ limited familiarity with some of the rec-
ommended APIs. Similar findings have been reported by Arrebola and Junior [AJ17], who
advocate for more context-awareness. They showed that half of the interactions did not
produce any benefit for developers, since they are dismissed or interrupted.

Jin and Servant [JS18] examined the hidden costs of code recommendations, investigat-
ing the effect of different recommendation list lengths on the developers’ productivity. They
found that lengthy suggestion lists are not uncommon and reduce the developer’s likelihood
of selecting one of the recommendations, since the code completion tool they evaluated (In-
telliSense) sometimes provides the right recommendation far from the top of the list. They
observed that longer lists discourage developers from selecting a recommendation.

Lin et al. [JLJ19] focused on the performance of a code2vec [AZLY19] model in the
context of method name recommendation. The authors retrained the model on a different
dataset and assessed it in a more realistic setting where the training dataset did not contain
any record from evaluation projects. The results suggested that while the dataset change
had little impact on the model’s accuracy, the new project-based setting negatively impacted
the model. Jiang et al. [JLJ19] also evaluated the usefulness of code2vec suggestions by
asking developers to assess the quality of suggestions for non-trivial method names. The
evaluation results showed that the model rarely works when it is needed in practice. Further
investigation also revealed that around half of successful recommendations (48%) occur for
simpler scenarios, such as setter/getter methods or when the recommended name is copied
from the method body source code. To confirm such findings, the authors developed a simple
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heuristics-based approach. The comparison revealed the superiority of a simple heuristics-
based approach over a state-of-the-art machine learning based approach.

Liu et al. [LSZ+20] investigated the performance of deep learning-based approaches
for generating code from requirement texts. For that, they assessed five state-of-the-art ap-
proaches on a larger and more diverse dataset of pairs of software requirement texts and
their validated implementation as compared to those used in the literature. The evaluation
results suggest that the performance of such approaches, in terms of common metrics (e.g.,
BLEU score), is significantly worse than what was reported in the literature. The authors
attributed this observation to the relatively small datasets on which such models are eval-
uated. This study highlighted the importance of a database both in terms of size and the
quality of data sources.

Similarly, Aye et al. [AKL21] investigated the impact of using real-world code completion
examples (i.e., code completion acceptance events in the past) for training models instead
of artificial examples sampled from code repositories. The usage of such realistic data on
n-gram and transformer models significantly improved the accuracy of the models, with
an increase of more than 12%. Later, an A/B test conducted with Facebook developers
confirmed that the autocompletion usage increases by around 6% for models trained on
real-world code completion examples, with users that are more prone to accept the new
recommendations.

Xu et al. [XVN22] ran a controlled experiment with 31 developers who were asked to
complete implementation tasks with and without the support of two code recommenders.
They found no significant gain in developers’ productivity when using the code recom-
menders. Further analysis revealed several points that can help improve the effectiveness of
the recommenders, like reporting more contextual information in the output to help devel-
opers in understand the suggestion or providing a unified and intuitive query syntax, that
can help developers to better describe their intent.

Ziegler et al. [ZKL+22] ran a survey with Copilot users to investigate which quantitative
measure better captures their perceived productivity when using the tool. They found that
the acceptance rate of shown suggestions is the best predictor of perceived productivity, since
the suggestions, although not always correct, can also be a useful template to start from.

Different studies investigate the effectiveness of contextual information in improving
recommender systems for developers. Gail Murphy suggested that contextual information
“could enable software tooling to take a substantial step forward” [Mur19]. They proposed
different kinds of contexts that may be beneficial, like historical information, that can high-
light the part of the systems that might need a change, or dynamic execution information,
that leverages debugging information. The authors also emphasize the major room of im-
provement, due to the limited usage of context in current IDEs.

Tian and Treude [TT22] presented a preliminary study in which they evaluated how
additional contextual information provided as input to a DL may improve its performance
for clone detection and code classification. They experimented with the context from the
method’s call hierarchy, adding the caller methods and the callee methods, showing an im-
provement of up to 8%.

Relevant to this thesis is also the blog post by Albert Ziegler [zie], who investigated the
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extent to which GitHub Copilot suggestions are copied from the training set. He concluded
that Copilot rarely recommends pieces of code that are verbatim copies of instances from
the training set, and when this happens these are coding solutions recurring across several
systems, that also humans are likely to reuse.

2.3 Summary and Conclusions

We discussed the papers mostly related to the research presented in this thesis. It is worth
mentioning that several of these works, especially those presenting DL-based solutions for
code completion, have been published during the four years of my PhD (e.g., GitHub Copilot
[CTJ+21] was presented in 2021), and some of these works stemmed from the research
presented in the following chapters.

When we started investigating the topic, the usefulness of code completion techniques
was mostly tested in predicting single (or very few) code tokens. The advent of DL-based so-
lutions made these evaluations obsolete, since DL models can achieve excellent performance
in this prediction scenario. To the best of our knowledge, we were the first to investigate the
usage of large pre-trained models to predict non-trivial code components, like entire code
blocks (see Chapter 3). The experimental design we adopted inspired several subsequent
works in the field (see e.g., [LRA23, CFLB22, NYN22]).

We also presented the first work assessing the extent to which DL-based solutions for
code completion tend to perform verbatim copies of the training code when generating pre-
dictions, thus leading to potential licensing issues (Chapter 4). This was the first thorough
empirical investigation about the phenomenon, whose only evidence was available in blog
posts [zie].

Similarly, although there was preliminary evidence of the important role played by con-
textual information (i.e., the input information provided to the model for generating the
prediction) in improving the accuracy of code recommendations [TT22], there were no ex-
tensive studies focusing on this aspect before the one we present in Chapter 7.

Finally, this thesis provides the research community with several future research direc-
tions in the field that have been distilled by surveying 80 practitioners asking them which
characteristics of code recommender systems they consider important (Chapter 6).



3
An empirical study on the usage of transformer
models for code completion

3.1 Motivation

In this study, we present a large-scale empirical study exploring the limits and capabilities
of state-of-the-art DL models to support code completion. Besides generating the next to-
ken(s) the developer is likely to write, we apply DL models to generate entire statements
and code blocks (e.g., the body of an if statement). Among the many DL models proposed
in the literature, we focus on models using the Transformer architecture [VSP+17], namely
the RoBERTa model [LOG+19] and the Text-To-Text Transfer Transformer (T5) architecture
[RSR+20]. RoBERTa is a BERT (Bidirectional Encoder Representations from Transformers)
model [DCLT19] using a pre-training task in which random words in the input sentences
are masked out using a special <MASK> token, with the model in charge of predicting the
masked words. The T5 model [RSR+20] leverages transfer learning, i.e., the capability to
reuse the knowledge acquired by the model in one task for another task. For example, a
single model trained on multiple translation tasks (e.g., from English to German, English to
French, and French to German) could be more effective than three different models each
trained on a specific translation task (e.g., English to German). Both RoBERTa and T5 mod-
els are trained in two phases: pre-training which allows defining a shared knowledge-base
useful for a large class of sequence-to-sequence tasks (e.g., guessing masked words in En-
glish sentences to learn about the language), and fine-tuning which specializes the model
on a specific downstream task (e.g., learning the translation of sentences from English to
German).

To compare the performance of the two Transformer models presented before, we se-
lected the n-gram model as a baseline for DL-based models, also showing the impact on its
performance of using a caching mechanism as proposed by Hellendoorn and Devanbu [HD17].

We focus on three different code completion scenarios, aiming at emulating the way in
which developers complete their code: (i) token-level predictions, namely classic code com-
pletion in which the model is used to guess the last n tokens in a statement the developer
started writing; (ii) construct-level predictions, in which the model is used to predict specific
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code constructs (e.g., the condition of an if statement) that can be particularly useful to
developers while writing code; and (iii) block-level predictions, with the masked code span-
ning one or more entire statements composing a code block (e.g., the iterated block of a for

loop).
The main finding of our work is the substantial superiority of the T5 model, being able to

correctly predict even entire code blocks, something that we found to be not achievable with
RoBERTa. The achieved results show that, for a typical code completion task (i.e., token-
level), T5 correctly guesses all masked tokens in 66% to 69% of cases (depending on the
used dataset), while RoBERTa achieves 39% to 52% and the n-gram model 42% to 44%. In
the most challenging prediction scenario, in which we mask entire blocks, RoBERTa and the
n-gram model show their limitations, being able to only correctly reconstruct the masked
block in less than 12% of the cases, while the T5 achieves 30% of correct predictions.

In our work, we also want to investigate the performance of the two transformer-based
models by also looking at the role played on the models’ performance by the pre-training task
and the transfer learning across different tasks. However, since this requires the training of
many different variants of the experimented models, we adopt the following strategy. First,
we compare RoBERTa and T5 by training three different models for the three code comple-
tion scenarios (i.e., token-level, construct-level, and block-level) we experiment with. This
implies creating three different RoBERTa and T5 models (six models overall). Then, we take
the best performing one (T5) and we show that using pre-training increases its performance,
even though the impact is limited. Finally, we show that fine-tuning a single T5 model to
support all three prediction tasks boosts performance confirming transfer learning across the
three very similar tasks (i.e., knowledge acquired in one task can be used to perform another
task).

The source code and data used in our work are publicly available in a comprehensive
replication package [repa].

3.2 Research Questions and Context

The study goal is to assess the effectiveness of Transformer-based DL models in predicting
masked code tokens at different granularity levels. We address the following research ques-
tions (RQs):

RQ1: To what extent are transformer models a viable approach to learn how to autocomplete
code? This RQ investigates the extent to which T5 and RoBERTa can be used for predicting
missing code tokens. We assess the quality of the generated predictions from both a quanti-
tative (i.e., BLEU score [DM12], Levenshtein distance [Lev66]) and a qualitative (i.e., correct
predictions, potential usefulness of wrong predictions) point of view. RQ1 is further detailed
in the following two sub-RQs:

RQ1.1: To what extent does the number of masked tokens impact the prediction quality?
We train and test the approaches we experiment with on datasets in which masked code to-
kens span from a few contiguous tokens in a given statement to multiple missing statements
composing a code block. RQ1.1 explores the limits of Transformer models when considering
simple and more challenging code completion scenarios.



3.2 Research Questions and Context 17

RQ1.2: To what extent are the performance of the models influenced by the specificity of the
dataset employed for training and testing it? While it is reasonable to expect that larger train-
ing datasets tend to help deep learning models, we are interested in answering RQ1.2 from
a different perspective. To address this RQ, we compare the autocompletion performance
on two different datasets: a first, more general one, composed of Java methods; and a sec-
ond, more specific one, composed of methods from Android apps. While the programming
language is the same, and the granularity of the two datasets is the same (i.e., method-level
granularity), methods in the second dataset make heavy use of Android APIs, and the same
APIs are likely to be used for similar purposes, e.g., app features dealing with GPS position-
ing share common API usages. We expect this to create “regularities” in the Android dataset
to help model learning.

RQ2: What is the role of pre-training and transfer learning in the performance of Transformer-
based models? As explained in Section 3.1, both RoBERTa and T5 can be pre-trained and then
fine-tuned on several tasks. RQ2 investigates the boost in performance (if any) brought by
(i) pre-training of the models, and (ii) fine-tuning a single model on several tasks to take
advantage of transfer learning. Such an additional analysis has been performed only for the
best-performing model (i.e., the T5).

RQ3: How do transformer models compare to a state-of-the-art n-gram model? An alter-
native to DL models is represented by statistical language models based on n-grams. In this
research question, we compare the DL models to (i) a classical n-gram model and, (ii) in a
smaller study, to the state-of-the-art n-gram cached model [HD17].

3.2.1 Context Selection: Datasets

Our study involves two datasets. The first one is used to fine-tune the RoBERTa and T5
models and to train the n-gram model. We refer to this dataset as fine-tuning dataset and
it includes both a Java and an Android dataset to allow answering RQ1.2. The fine-tuning
dataset has been built starting from the CodeSearchNet dataset [HWG+19], which features
Java methods mined from open-source projects. The second dataset has been built specif-
ically to answer RQ2, i.e., to have a different dataset that can be used to pre-train the best
performing model among RoBERTa and T5 (i.e., pre-training dataset). The following section
describes how the datasets have been built.

Fine-tuning dataset

To create the Java dataset, we started from the CodeSearchNet Java Dataset provided by
Husain et al. [HWG+19]. We decided to start from CodeSearchNet rather than from other
datasets proposed in the literature (see e.g., [MAL18, RvDJ13]) since CodeSearchNet has
been already subject to cleaning steps making it suitable for applications of machine learn-
ing on code. Also, CodeSearchNet is already organized at method-level granularity (i.e.,
one instance is a method), while other datasets, such as the 50k [MAL18], collect whole
repositories. In particular, CodeSearchNet contains over 1.5M Java methods collected from
open-source, non-fork, GitHub repositories. For details on how the dataset has been built,
see the report by Husain et al. [HWG+19]. For our work, the most important criteria used in
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the dataset construction are: (i) excluding methods of fewer than three lines; (ii) removing
near-duplicate methods using the deduplication algorithm from CodeSearchNet; this is done
to not inflate the performance of the models as a result of overlapping instances between
training and test sets [ded] and (iii) removing methods with the name containing the “test”
substring in an attempt to remove test methods; methods named “toString” are removed as
well. The latter are often automatically generated by the IDEs with a very similar structure
(e.g., mostly concatenating class attributes). Thus, they rarely represent a challenging code
completion scenario and can result in inflating the prediction accuracy.

To build the Android dataset we adopted a similar procedure. We cloned the set of
8,431 open-source Android apps from GitHub available in the AndroidTimeMachine dataset
[GMP+18]. Then, we extracted from each project’s latest snapshot the list of methods. This
resulted in a total of ∼2.2M methods. Then, we applied the same filtering heuristics defined
for the Java dataset, ending up with 634,799 Java methods and 532,096 Android methods.

Then, the three versions of each dataset (Java and Android) summarized in Table 3.1
were created using the following masking processes (note that Table 3.1 reports the number
of instances in each dataset after the filtering steps described below):

Token masking. For each code line l in each method having more than one token we
mask its last x tokens, where x is a random number between 1 . . . n − 1, where n is the
number of tokens composing l. Given a method m having k lines with more than one token,
we generate k versions of m, each of them having one line with the last x tokens masked and
the remaining k − 1 reported without any change (i.e., no masked tokens, just the original
raw source code). We set the maximum number of masked tokens to 10 (i.e., if x > 10 then
x = 10). This scenario simulates the classic code completion task in which a developer is
writing a statement and the code completion tool is in charge of autocompleting it.

Construct masking. We selected a number of code constructs for which it could be par-
ticularly useful to be supported with automated code completion. Given a method m, we
use the scrML [src] toolkit to identify all m’s tokens used to: (i) define the complete condi-
tion of an if statement or of a while/for loop (e.g., in a statement having for(int i=0;

i<data.size(); i++)we identify all tokens between parenthesis as those used to define the
for loop); (ii) define the parameters in a method call (e.g., in copyFile(source, target)

the tokens “source”, “,”, and “target” are identified); and (iii) define the exception caught
in a catch statement (e.g., in catch(IOException io) we identify IOException io as the
involved tokens). For m this results in a set S={T1, T2, . . . , Tn}, where Ti represents a set of
relevant tokens for one of the previously mentioned constructs (e.g., Ti is the set of tokens
used to define the for loop condition).

Given m, we generate |S| versions of it, each one having one of the subject constructs
masked. Also, in this case we set the maximum number of masked tokens to 10. This means
that if a construct requires more than 10 tokens to be masked (this happened for 9.38% of
the constructs in our dataset), it is not masked in our dataset.

The code completion tasks simulated by the construct masking resemble cases in which
the developer uses the technique to get recommendations about non-trivial code tokens,
representing decision points in the program flow (e.g., condition of if statement) or error-
handling cases (e.g., exceptions to catch).
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Block masking. We use srcML to identify in each method m its code blocks. We de-
fine a code block as the code enclosed between two curly brackets. For example, a block
may be, besides the method body itself, the code executed in a for/while loop, when an
if/else/else if condition is satisfied, etc. Then, given k the number of blocks identified
in m, we create k versions of m each one having a specific code block masked. We set the
maximum size of the masked block to two complete statements. This means that if a block
is composed of more than two statements (which happened for 49.29% of the blocks in our
dataset), it is not masked. This is the most challenging code completion scenario in which
we test the experimented techniques. If successful in this task, code completion techniques
could substantially speed up code implementation activities.

Table 3.1. Study datasets. One instance corresponds to a method with masked token(s).

Domain
Masking

Dataset #Instances #Tokens
Level

Token
Training 750k 46.9M
Evaluation 215k 13.4M
Test 219k 13.6M

Construct
Training 750k 48.2M

Java Evaluation 104k 6.7M
Test 106k 6.7M

Block
Training 298k 19.1M
Evaluation 39k 2.5M
Test 40k 2.5M

Token
Training 750k 47.4M
Evaluation 198k 12.5M
Test 201k 12.6M

Construct
Training 750k 48.9M

Android Evaluation 99k 6.4M
Test 101k 6.5M

Block
Training 205k 13.4M
Evaluation 27k 1.7M
Test 27k 1.8M

In summary, there are six fine-tuning datasets: For each of the two domains (Java or
Android), there are three different masking levels (token, construct, block). These masking
levels have been picked to simulate code completion tasks having different complexity (with
token masking expected to be the simplest and block-masking the most complex).

Starting from the six datasets, we created the training, evaluation, and test sets in Ta-
ble 3.1. As a first step, we filtered out specific instances from our datasets. First, when using
generative deep learning models, the variability in the length of the sentences (in our case,
methods) provided as input can affect the training and performance of the model, even when
techniques such as padding are employed. For this reason, we analyzed the distribution of
methods length in our dataset, finding that two-thirds of them are composed of at most 100
tokens. For this reason, as done by Tufano et al. [TWB+19], we excluded from our datasets
all the methods having more than 100 tokens. Second, RoBERTa cannot efficiently handle
cases in which the masked tokens are more than the non-masked tokens. This often happens,
for example, when masking the entire method body in the block-level masking approach.
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Thus, those instances are excluded as well.
After the filtering steps, we split each of the six datasets into training (80%), evaluation

(10%), and test (10%) sets. While the methods in the dataset are randomly ordered, the
splitting we performed was not random to avoid biasing the learning. To explain this point,
let us consider the case of the block masking dataset. Given a method m having k blocks in it,
we add in the dataset k versions of m, each having one and only one block masked. Suppose
that m contains two blocks b1 and b2, thus leading to two versions of m: One in which b1 is
masked (mb1

) and b2 is not and vice versa (mb2
). With a random splitting, it could happen

that mb1
is assigned to the training set and mb2

to the test set. However, in mb1
the b2 is not

masked. Thus, when the model has to guess the tokens masked in mb2
it would have the

solution in the training set, resulting in boosted prediction performance. For this reason, we
randomly select 80% of the methods in each dataset and assign all of their masked versions
to the training set. Then, we proceed in the same way with evaluation and test sets.

Using this procedure, we obtained the datasets in Table 3.1. Important to note is that,
given the original size of the datasets using token-level and construct-level masking, we
decided to cap the training set to 750k instances (no changes were made in the evaluation
and test sets). This was necessary given the computationally expensive process of training
several DL models (as it will be clear later, our study required the training of 19 different
DL-based models). Also, the size of the evaluation and test sets is slightly different since, as
explained before, we split the dataset based on the methods (not on their masked versions)
and each method can result in a different number of its generated masked versions.

Pre-training dataset

To build the pre-training dataset, we used the GitHub Search platform [DAB21] to identify all
Java repositories having at least 100 commits, 10 contributors, and 10 stars. These filtering
criteria only aim at reducing the likelihood of selecting toy and personal projects for the
building of this dataset. We sorted the projects by their number of stars, cloning the top
6,000 and extracting from each of them the methods in the latest snapshot tagged as a
release, to only rely on methods likely to be syntactically correct. Repositories for which no
snapshot was tagged as a release were excluded, leaving 3,175 repositories. Finally, since we
wanted to avoid extremely large projects to influence the dataset too much (i.e., to contribute
too many methods to the dataset), we cap the maximum number of methods to extract from
each repository to 1,500. This was also due to limit the number of the pre-training instances
to a manageable size according to our available hardware resources. In addition to the
filters used while building the fine-tuning dataset (see Section 3.2.1), we also removed test
methods identified as all those using the @test annotation or containing the word “test” in
the method name after camel case splitting (i.e., we do not exclude updateStatus). Also,
since the goal of the pre-training dataset is to provide instances in which random tokens are
masked to make the model “familiar” with a specific context (i.e., the Java language in our
case), we excluded very short methods (< 15 tokens) not having enough elements to mask
and, for the same reasons explained for the fine-tuning dataset, long methods (in this case,
> 200 tokens).
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We then removed all the exact duplicates within the pre-training dataset, keeping in the
dataset only the first occurrence of each duplicate. After having removed the duplicates, the
dataset contained 1,874,338 different methods. Finally, we ensured that the pre-training
dataset does not contain any methods belonging to the fine-tuning dataset (neither in the
training, evaluation, or test sets). We found a total of 23,977 duplicates between the pre-
training and the fine-tuning datasets, leading to a final number of 1,850,361 instances in the
pre-training dataset.

3.2.2 Context Selection: Techniques

In this section, we overview three experimented techniques, i.e.,RoBERTa [LOG+19], T5
[RSR+20], and n-gram [HD17]. We refer to the original papers presenting them for addi-
tional details.

RoBERTa

The first Transformer-based model leverages the off-the-shelf RoBERTa model, which is an
Encoder-Transformer architecture. Details about the RoBERTa model are provided in a report
by Liu et al. [LOG+19], while here, we mainly focus on explaining why it represents a suitable
choice for code completion. BERT-based models, such as RoBERTa, use a special pre-training
where random words in the input sentence are masked out with a special <MASK> token. This
pre-training task is very well-suited to simulate a code completion task, in which the input
is an incomplete code snippet the developer is writing and the masked tokens represent the
code needed to autocomplete the snippet. However, one limitation of such a pre-training
is that when attempting to predict multiple tokens, e.g., an entire masked if condition, it
requires the number of tokens to generate to be known, due to the fixed sequence length of
Transformers [VSP+17]. To overcome this issue, we modify such an objective by masking
spans of tokens using a single <MASK> token.

As previously explained, BERT models (such as RoBERTa) can be pre-trained and fine-
tuned on several tasks [DCLT19]. The result will be a single model able to support different
tasks and, possibly, take advantage of what it learned for a specific task to also improve
its performance in a different task. In our study, we start by comparing the RoBERTa and
the T5 models in a scenario in which no pre-training is performed and a single model is
built for each of the three code completion tasks previously described (i.e., token, construct,
and block masking) by using the fine-tuning dataset. Then, for the best performing model
among the two (i.e., T5), we also experiment with pre-training and multi-task fine-tuning.
We trained six RoBERTa models, one for each dataset in Table 3.1.

As for the implementation of the RoBERTa model, we used the one provided in the Python
transformers library [WDS+19]. We also train a tokenizer for each model to overcome the
out-of-vocabulary problem. The out-of-vocabulary problem happens when a machine learning
model deals with terms that were not part of the training set but appear in the test set.
We trained a Byte Pair Encoding (BPE) [Gag94] model using the HuggingFace’s tokenizers
Python library [hug]. BPE uses bytes as vocabulary, allowing it to tokenize every text without
requiring the unknown token often used in applications of DL to NLP, thus overcoming the
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out-of-vocabulary problem. When used on source code [KBR+20], BPE has been shown to
address the out-of-vocabulary problem.

T5

Raffel et al. [RSR+20] presented the T5 model that leverages multi-task learning to imple-
ment transfer learning in the NLP domain. The T5 has been presented in five pre-defined
variants [RSR+20]: small, base, large, 3 Billion, and 11 Billion that differ in complexity,
size, and, as a consequence, training time. T5small , the smaller variant, has 60 million pa-
rameters while T511B, the largest, has 11 billion parameters. Despite Raffel et al. [RSR+20]
report that highlights the largest model offers the best accuracy, its training time is some-
times too high to justify its use. Given our computational resources, we opted for the T5small
model; therefore, we expect that our results represent a lower bound for the performance of
a T5-based model.

T5 offers two advantages as compared to other DL models: (i) it is usually more efficient
than RNNs since it allows to compute the output layers in parallel, and (ii) it can detect
hidden and long-ranged dependencies among tokens, without assuming that nearest tokens
are more related than distant ones. The latter is particularly relevant in code-related tasks.
For example, a local variable could be declared at the beginning of a method (first statement),
used in the body inside an if statement, and finally returned in the last method’s statement.
Capturing the dependency existing between these three statements, that might even be quite
far from each other (e.g., variable declaration and return statement), can help in better
modeling the source code with a consequent boost of performance for supporting code-
related tasks.

For additional details about the T5 architecture, we refer the reader to the original work
presenting this model [RSR+20].

n-gram

As a baseline for comparison, we used the widely studied statistical language models based
on n-gram. An n-gram model can predict a single token following the n−1 tokens preceding
it. Even though the n-gram model is meant to predict a single token given the n−1 preceding
tokens, we designed a fair comparison for the scenario in which we mask more than one
token. In particular, we use the n-gram model in the following way: Let us assume that we
are predicting, using a 3-gram model, how to complete a statement having five tokens T, of
which the last two are masked (M): <T1, T2, T3, M4, M5>, with M4 and M5 masking T4 and T5,
respectively. We provide as input to the model T2 and T3 to predict M4, obtaining the model
prediction P4. Then, we use T3 and T4 to predict M5, thus obtaining the predicted sentence
<T1, T2, T3, P4, P5>. Basically, all predictions are joined to predict multiple contiguous
tokens.

The n-gram models are trained on the same training sets used for the fine-tuning of the
DL models without, however, masked tokens. We experiment with both the standard n-gram
model (i.e., the one discussed above) as well as, in a smaller study, with the n-gram cached
model proposed by Hellendoorn and Devanbu [HD17].
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3.3 Data Collection and Analysis

In this section, we detail the data collection and analysis procedure adopted to answer the
research questions described in Section 3.2.

3.3.1 Training of Models

We detail the process used for the training and hyperparameters tuning of the two deep
learning models that we experimented with.

Table 3.2. Hyperparameters Tuned for the RoBERTa Models.

Hyperparameter Experimented Values Best

Learning rate {5e−5, 3e−5, 2e−5} 5e−5

Batch size {16, 32, 64} 64
# Hidden Layers {6, 12, 16} 12
# Attention Heads {6, 12, 16} 16
Hidden Layer Size {256, 512, 768, 1024} 768
Intermediete Size {3072, 4096} 4,096

RoBERTa

We performed hyperparameter tuning using the Weights & Biases’s [wan] Python library on
a Linux server with an Nvidia RTX Titan GPU. Table 3.2 reports the hyperparameters we
tuned, the range of values we tested for them, and the value in the best configuration we
found. Besides those parameters, we used an attention dropout probability of 0.1, and a
hidden layer dropout probability of 0.3. For the tokenizer, the vocabulary size was set to
50k. The hyperparameter search was performed using the training and the evaluation sets
of the Android dataset with token masking. We picked as the best configuration the one
that, when applied to the evaluation set, was able to obtain the highest number of “correct
predictions”. We define as “correct” a prediction that exactly matches the code written by the
developers. Thus, the model correctly guesses all masked tokens. If one of the masked tokens
is different we do not consider the prediction as “correct”. While, in principle, a different
hyperparameter tuning would be necessary for each dataset, such a process is extremely
expensive, and preliminary investigations we performed on a subset of the other datasets
showed minor differences in the achieved best configuration.

The training was performed across servers using their GPUs. The first was equipped with
an Nvidia Tesla V100S, the second with an Nvidia RTX Titan, and the third with 3 Nvidia GTX
1080Ti. The training time strongly depends on the size of the dataset and the used server
but ranges between 28 and 114 hours per model. Note that, once trained, each model can
be used to perform predictions in the split of a second (on average, 0.12 seconds on a laptop
CPU), thus making them a viable solution for “real-time” code completion.

We train each model for a maximum of 50 epochs. However, we adopted the following
stopping condition. At the end of each training epoch, we executed the model on the eval-
uation set and we computed the number of correct predictions. If we observe that, during
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the training, the performance of the model is worsening in terms of correct predictions on
the evaluation set (i.e., the model is likely overfitting to the training set), we stop the train-
ing. In particular, given a model trained for nth epoch, we stop the training if the number
of correct predictions on the evaluation set is lower than the number of correct predictions
achieved after the n− 4 epoch. This ensures that the models can have some fluctuations in
performance for up to three epochs. Then, if it is still not improving, we stop its training and
take the best model (in terms of correct predictions on the evaluation test) obtained up to
that moment. None of the models were trained for the whole 50 epochs.

Table 3.3. Hyperparameters Tuned for the T5 Models.

Learning Rate Type Parameters

Constant (C-LR) LR= 0.001
Slanted Triangular (ST-LR) LRstarting = 0.001

LRmax = 0.01
Ratio= 32
Cut= 0.1

Inverse Square Root (ISQ-LR) LRstarting = 0.01
Warmup= 10, 000

Polynomial Decay (PD-LR) LRstarting = 0.01
LRend = 1e−06
Power= 0.5

T5

We rely on the same configurations used by Mastropaolo et al. [MSC+21]. In particular,
concerning the pre-training, we do not tune the hyperparameters of the T5 model because
the pre-training step is task-agnostic, and this would provide limited benefits. Instead, we
experiment with four different learning rate schedules for the fine-tuning phase, using the
configurations reported in Table 3.3, and identify the best-performing configuration in terms
of correct predictions on the evaluation sets. Each of the four experimented configurations
has been trained for 100k steps (∼7 epochs) before assessing its performance on the evalu-
ation sets. Across all six evaluation datasets (Table 3.1), the best performing configuration
was the one using the Slanted Triangular learning rate, confirming the findings in [MSC+21].
Also, all T5 models we built use a SentencePiece [KR18] tokenizer trained on the pre-training
dataset and are composed of 32k word pieces [MSC+21].

The best configuration we identified has been used to train six different T5 models (i.e.,
one for each dataset in Table 3.1) and assess their performance on the corresponding test
set. These results can be used to compare directly the T5 and the RoBERTa model when
fine-tuned without pre-training and in a single-task setting (i.e., no transfer learning). Since
we found the T5 to perform better than RoBERTa, we also used this model to answer RQ2.
Thus, in addition to these six models, we also built additional seven models: six of them
leverage pre-training plus single-task fine-tuning. In other words, they are the equivalent of
the first six models we built, with the addition of a pre-training phase.

For pre-training the T5 model, we randomly mask 15% of the tokens in each instance
(method) of the pre-training dataset. The pre-training has been performed for 200k steps
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(∼28 epochs), since we did not observe any improvement going further. We used a 2x2
TPU topology (8 cores) from Google Colab to train the model with a batch size of 256, with
a sequence length (for both inputs and targets) of 256 tokens. As a learning rate, we use
the Inverse Square Root with the canonical configuration [RSR+20]. The training requires
around 26 seconds for 100 steps.

Finally, we created a T5 model exploiting both pre-training and multi-task fine-tuning
(i.e., a single model was first pre-trained, and then fine-tuned on all six datasets in Table 3.1).
This was done to check the impact of transfer learning on the model performance. Overall,
we trained 13 T5 models: six with no pre-training and single-task fine-tuning, six with pre-
training and single-task fine-tuning, and one with pre-training and multi-task fine-tuning.

Table 3.4. Summary of the evaluation metrics used in our study

Metric Purpose
BLEU score Overall prediction quality for different prediction lengths
Levenshtein distance Proxy of the effort needed to adapt the prediction
% of correct predictions To what extent is the approach able to generate predictions that need human intervention

3.3.2 Analysis of Results

To answer RQ1 we compute the metrics summarized in Table 3.4 by running each trained
model on the test sets in Table 3.1.

The first metric, Bilingual Evaluation Understudy (BLEU)-n score, assesses the quality of
automatically translated text [DM12]. The BLEU score computes the weighted percentage
(i.e., considering the number of occurrences) of words appearing in translated text and the
reference text. We use four variants of BLEU, namely BLEU-1, BLEU-2, BLEU-3, and BLEU-4.
A BLEU-n variant computes the BLEU score by considering the n-grams in the generated text.
Most of the previous work in the SE literature adopts the BLEU-4 score [GZZK16, JAM17,
WTM+20]. However, such a variant cannot be computed when the target prediction (in
our case, the number of masked tokens) is lower than four. For this reason, we compute
four different versions from BLEU-1 to BLEU-4. BLEU-1 can be computed for all predictions,
while BLEU-n with n>1 only for predictions having a length (i.e., number of tokens) higher
or equal than n. The BLEU score ranges between 0% and 100%, with 100% indicating, in
our case, that the code generated for the masked tokens is identical to the reference one.

The Levenshtein distance [Lev66]. To provide a proxy measure of the effort needed by
developers to convert a prediction generated by the model into the reference (correct) code,
we compute the Levenshtein distance at token-level: This can be defined as the minimum
number of token edits (insertions, deletions or substitutions) needed to transform the pre-
dicted code into the reference one. Since such a measure is not normalized, it is difficult to
interpret it in our context. Indeed, saying that five tokens must be changed to obtain the
reference code tells little without knowing the number of tokens in the reference code. For
this reason, we normalize such a value by dividing it by the number of tokens in the longest
sequence among the predicted and the reference code.

The percentage of correct predictions tells us about the cases in which the experimented
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model can recommend the very same sequence of tokens which were masked in the target
code.

We statistically compare the results achieved by RoBERTa and T5 using different statisti-
cal analyses. We assume a significance level of 95%. As explained below, we use both tests
on proportions and non-parametric tests for numerical variables; parametric tests cannot be
used because all our results in terms of BLEU score or Levenshtein distance deviate from
normality, according to the Anderson-Darling test [Dod08] (p-values<0.001). Whenever an
analysis requires running multiple test instances, we adjust p-values using the Benjamini-
Hochberg procedure [YY95].

To (pairwise) compare the correct predictions of RoBERTa and T5, we use the McNemar’s
test [McN47], which is a proportion test suitable to pairwise compare dichotomous results of
two different treatments. To compute the test results, we create a confusion matrix counting
the number of cases in which (i) both T5 and RoBERTa provide a correct prediction, (ii)
only T5 provides a correct prediction, (iii) only RoBERTa provides a correct prediction, and
(iv) neither T5 nor RoBERTa provides a correct prediction. Finally, we complement the
McNemar’s test with the Odds Ratio (OR) effect size.

The comparison between different datasets, aimed at addressing RQ1.2, is performed,
again, through a proportion test, but this time, being the analysis unpaired (i.e., we are
comparing results over two different datasets), we use Fischer’s exact test (and related OR)
on a matrix containing, for different approaches and different masking levels, the number
of correct and incorrect predictions achieved on Java and Android.

To compare the results of T5 and RoBERTa in terms of BLEU-n score and Levenshtein
distance, we use the Wilcoxon signed-rank test [Wil45] and the paired Cliff’s delta [GK05]
effect size. Similarly, the comparison between datasets in terms of BLEU-n score and Leven-
shtein distance, being unpaired, is performed using the Wilcoxon rank-sum test [Wil45] and
the unpaired Cliff’s delta effect size.

For the T5, we also statistically compare the performance achieved (i) with/without pre-
training, and (ii) with/without transfer learning. Also in this case, McNemar’s test is used
to compare correct predictions.

Finally, we take the best performing model (i.e., T5 with pre-training and multi-task
fine-tuning) and we check whether the confidence of the predictions can be used as a re-
liable proxy for the “quality” of the predictions. If this is the case, this means that in a
recommender system built around the trained model, the developer could decide to receive
recommendations only when their confidence is higher than a specific threshold. T5 returns
a score for each prediction, ranging from minus infinity to 0. This score is the log-likelihood
(ln) of the prediction. Thus, if it is 0, it means that the likelihood of the prediction is 1 (i.e.,
the maximum confidence, since ln(1) = 0), while when it goes towards minus infinity, the
confidence tends to 0.

We split the predictions performed by the model into ten intervals, based on their con-
fidence c going from 0.0 to 1.0 at steps of 0.1 (i.e., the first interval includes all predictions
having a confidence c with 0 ≤ c < 0.1, the last interval has 0.9 ≤ c). Then, we report for
each interval the percentage of correct predictions.

To corroborate our results with a statistical analysis, we report the OR obtained by build-
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ing a logistic regression model relating the confidence (independent variable) with the extent
to which the prediction achieved a correct prediction (dependent variable). Given the inde-
pendent variable estimate βi in the logistic regression model, the OR is given by eβi , and it
indicates the odds increase corresponding to a unit increase of the independent variable. We
also determine the extent to which the confidence reported by the model correlates with the
number of masked tokens. To this extent, we use the Kendall’s correlation [Ken38], which
does not suffer from the presence of ties (occurring in our dataset) as other non-parametric
correlations.

To address RQ3, for all the datasets, we compare the performance of the DL-based mod-
els with that of an n-gram model. In particular, we perform a first large-scale comparison
using a standard n-gram language model and, on a smaller dataset, we also compare the
experimented techniques with the state-of-the-art cached n-gram model [HD17] using the
implementation made available by the authors [slp]. We detail later why the cached n-gram
model was too expensive to run on the entire dataset.

We tried to design a fair comparison, although the n-gram model is designed to predict
a single token given the n tokens preceding it. Thus, in a scenario in which we mask more
than one token, we use the n-gram model in the following way: We run it to predict each
masked token in isolation. Then, we join all predictions to generate the final string (i.e.,
the set of previously masked tokens). The n-gram models are trained on the same training
sets used for the fine-tuning of the DL-based models without, however, masked tokens. We
compare the three approaches in terms of correct predictions generated on the test sets. A
statistical comparison is performed using the McNemar’s test [McN47] and ORs.

3.4 Results Discussion

We start by contrasting the performances of T5 and RoBERTa (Section 3.4.1). Then, we
show how the n-gram model compares with the DL-based ones (Section 3.4.2). Finally,
Section 3.4.3 presents qualitative examples of correct predictions made by the models and
discusses the semantic equivalence of non-correct predictions.

Note that, upon interpreting the achieved results, and especially those concerning the
correct predictions, a direct comparison with the results achieved in previous works on code
completion is not possible. This is because most of the studies in the literature experiment
with code completion models when predicting a single next token the developer is likely
to write. As we will show, in such a specific scenario the models we experiment with can
achieve extremely high accuracy (> 95% of correct predictions). However, their perfor-
mance strongly decreases when predicting longer sequences composed of multiple tokens or
even multiple statements.

3.4.1 DL-based models performance comparison (RQ1)

Fig. 3.1 depicts the results achieved by DL-based models in terms of correct predictions for
different masking approaches, namely (from left to right) token-masking, construct-masking,
and block-masking. The plots show the percentage of correct predictions (y axis) by the
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Figure 3.1. Percentage of correct predictions achieved by T5 and RoBERTa

number of masked tokens (x axis). For example, in the token masking scenario we randomly
mask, for each source code line l having more than one token, its last x tokens, where x is a
random number between 1 . . . n−1, with n being the number of tokens of l, and x is capped
to a maximum of 10. The results achieved by the T5 are reported in orange while those for
RoBERTa in red; continuous lines represent the results achieved on the Java dataset, while
the dashed lines are used for the Android dataset.

The left-side graph in Fig. 3.1 shows the percentage of correct predictions when we only
mask the last token (i.e., one masked token), the last two tokens, etc.. The scale on the x axis
is different when dealing with the block masking scenario since here we mask entire blocks
thus having, in some cases, dozens of masked tokens. Each point indicates that between
x −5 and x tokens were masked, e.g., for the first data point at most 5 tokens were masked,
for the second between 5 and 10, etc..

Table 3.5 reports the average BLEU score in the four considered variants and the average
normalized Levenshtein distance achieved by T5 and RoBERTa. Also in this case the results
are grouped based on the masking level and dataset.

The results in Fig. 3.1 and Table 3.5 are achieved by the DL-based models in the sim-
plest scenario, i.e., single-task without pre-training. To answer RQ1.3 we run additional
experiments for the best model (i.e., T5). The results of such experiments are provided in
Table 3.6 as the percentage of correct predictions for different variants of the T5 model,
i.e., with/without pre-training and using single- and multi-task fine-tuning. Table 3.6 also
reports the results achieved with the RoBERTa model in the simplest scenario to simplify the
discussion of the results.

Impact of number of masked tokens (RQ1.1) and specificity of the dataset (RQ1.2)

Three findings immediately emerge from the analysis of Fig. 3.1: (i) as expected, the higher
the number of masked tokens, the lower the performance of the models; (ii) the results
achieved on the more specific dataset (i.e., Android, dashed lines in Fig. 3.1) are substantially
better as compared to the ones achieved for Java only in the token-masking scenario with the
RoBERTa model (see statistics in Table 3.10); (iii) the T5 model (orange lines in Fig. 3.1)
substantially outperforms RoBERTa (see statistics in Table 3.7 and Table 3.8). Also, the
performance of RoBERTa drops more steadily as compared to that of T5 when the number
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Table 3.5. BLEU score and Levenshtein distance for T5 and RoBERTa.

Token masking

Java Android
T5 RoBERTa T5 RoBERTa

BLEU-1 0.83 0.60 0.85 0.73
BLEU-2 0.73 0.43 0.76 0.61
BLEU-3 0.60 0.23 0.64 0.44
BLEU-4 0.47 0.10 0.51 0.28
Levenshtein 0.16 0.35 0.14 0.24

Construct masking

Java Android
T5 RoBERTa T5 RoBERTa

BLEU-1 0.68 0.51 0.68 0.57
BLEU-2 0.55 0.34 0.57 0.43
BLEU-3 0.48 0.24 0.49 0.33
BLEU-4 0.37 0.14 0.43 0.26
Levenshtein 0.32 0.48 0.32 0.41

Block masking

Java Android
T5 RoBERTa T5 RoBERTa

BLEU-1 0.65 0.44 0.62 0.44
BLEU-2 0.57 0.32 0.54 0.31
BLEU-3 0.49 0.21 0.46 0.21
BLEU-4 0.41 0.13 0.38 0.13
Levenshtein 0.35 0.54 0.37 0.55

of masked tokens increases.
Table 3.7 reports results of the McNemar’s test and ORs for the comparison between

T5 and RoBERTa in terms of their ability to perform correct predictions. As it can be seen,
the (adjusted) p-values always indicate a statistically significant difference, and the ORs
indicate that T5 has between 2.94 and 8.87 higher odds in providing a correct prediction
than RoBERTa.

Concerning the comparison of BLEU scores or Levenshtein distances (whose average
values are reported in Table 3.5) between T5 and RoBERTa, statistical results (Wilcoxon
signed-rank test adjusted p-values and Cliff’s d) are in Table 3.8 and Table 3.9. Also in
this case, differences are always statistically significant, with varying effect sizes (generally
larger for greater levels of BLEU score, and for Java than Android) in favor of T5 (for the
Levenshtein distance a negative d is in favor of T5, as it is a distance).

Token masking. The left part of Fig. 3.1 shows that, as expected, the lower the number
of masked tokens the higher the correct predictions. Not surprisingly, the models are very
effective when we only mask the last token in a statement. Indeed, in most cases, this will
be a semicolon, a parenthesis, or a curly bracket. Thus, it is easy for the model to guess the
last token. When moving to more challenging scenarios like the last five tokens masked in
a statement, the percentage of correct predictions for RoBERTa on the Java dataset drops to
less than 10%, a major gap with the T5 model that keeps a percentage of correct predictions
higher than 40%. As for the dataset, both models achieve significantly better performance
on the Android dataset (Fisher’s test p-value<0.001 and OR< 1), which is more specific and,
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Table 3.6. Correct predictions of T5 models with different fine-tuning strategies, and RoBERTa model

Dataset and Masking Level
T5 RoBERTa

With Pre-training No Pre-training No Pre-training
Single-task Multi-task Single-task Single-task

Java
Token 62.9% 66.3% 61.0% 38.9%
Construct 51.2% 53.0% 48.4% 33.4%
Block 27.2% 28.8% 22.9% 8.7%

Android
Token 64.8% 69.3% 63.8% 51.8%
Construct 49.3% 50.8% 46.8% 37.4%
Block 27.5% 29.7% 22.8% 9.4%

Overall 56.2% 59.3% 54.1% 38.7%

Table 3.7. Correct prediction: Mcnamar’s test comparison between T5 and RoBERTa

Dataset Masking p-value OR

Java
Token <0.001 8.87
Construct <0.001 4.69
Block <0.001 8.14

Android
Token <0.001 4.47
Construct <0.001 2.94
Block <0.001 7.61

thus, more subject to regularities in the source code. However, the gap in terms of correct
predictions between the Java and the Android dataset is much more marked for the RoBERTa
model (e.g., ∼20% at x = 5 against a ∼6% for the T5).

Looking at Table 3.5, the BLEU scores and the Levenshtein distance confirm what was
observed for correct predictions: performances for the Android dataset are better than for the
Java one. According to Wilcoxon rank-sum test, all differences, except for RoBERTa at Block
level, are statistically significant, yet with a negligible/small Cliff’s d (detailed statistical
results are in the online appendix).

Construct masking. In this scenario (see central sub-graph in Fig. 3.1), T5 and RoBERTa
achieve respectively above 65% and 55% of correct predictions when a single token is masked
for both datasets. Note that, in this scenario, also a single-token prediction is not trivial since
we are in a context in which such a single token represents (i) the complete condition of an if

statement or a while/for loop, or (ii) the parameters in a method call, or (iii) the exception
caught in a catch statement. When the prediction is represented by a single token, it is
usually related to a Boolean used in an if condition (e.g.,if(true), if(valid), etc.) or the
single parameter needed for a method invocation.

Also in this case, a higher number of masked tokens implies lower performance, and
again the T5 outperforms RoBERTa significantly for both datasets although the gap is smaller.
Finally, as shown in Table 3.10, while with RoBERTa results for Android are better, for T5 we
achieve an OR' 1.

In terms of BLEU score and Levenshtein distance, the achieved values are worse as com-
pared to the token-level masking, confirming the more challenging prediction scenario rep-
resented by the construct-level masking. On average, the developer may need to modify
∼40% and ∼30% of the predicted tokens to obtain the reference code (small variations are
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Table 3.8. BLEU score comparison between T5 and RoBERTa: Wilcoxon signed-rank and Cliff’s delta
(N: negligible, S: small, M: medium, L: large)

Dataset Masking
BLEU 1 BLEU 2 BLEU 3 BLEU 4

p-value d p-value d p-value d p-value d

Java
Token <0.001 0.33 (S) <0.001 0.41 (M) <0.001 0.51 (L) <0.001 0.62 (L)
Construct <0.001 0.22 (S) <0.001 0.30 (S) <0.001 0.32 (S) <0.001 0.35 (M)
Block <0.001 0.39 (M) <0.001 0.43 (M) <0.001 0.47 (M) <0.001 0.49 (L)

Android
Token <0.001 0.17 (S) <0.001 0.21 (S) <0.001 0.27 (S) <0.001 0.34 (M)
Construct <0.001 0.14 (N) <0.001 0.20 (S) <0.001 0.22 (S) <0.001 0.27 (S)
Block <0.001 0.33 (M) <0.001 0.39 (M) <0.001 0.42 (M) <0.001 0.44 (M)

Table 3.9. Levensthein distance comparison between T5 and RoBERTa: Wilcoxon signed-rank and
Cliff’s delta (N: negligible, S: small, M: medium, L: large)

Dataset Masking
Levenshtein

p-value d

Java
Token <0.001 -0.32 (S)
Construct <0.001 -0.21 (S)
Block <0.001 -0.38 (M)

Android
Token <0.001 -0.17 (S)
Construct <0.001 -0.14 (N)
Block <0.001 -0.34 (M)

observed between Java and Android) when using RoBERTa and T5, respectively.
Block masking. This represents the most challenging prediction scenario: The masked

part can involve an entire statement or even span over two statements (the maximum bound-
ary we set). The performance of T5 and RoBERTa in terms of correct predictions are respec-
tively above 50% and 35% when dealing with small masked blocks, up to five tokens. These
blocks are mostly related to return statements representing a code block (e.g., the value to
return when an if condition is satisfied), such as { return false; }, { return null;

}, etc.
For longer blocks, the performance substantially drops. When considering blocks having

between six and ten masked tokens, RoBERTa is able to generate a correct prediction in∼5%
of cases, as compared to the ∼25% achieved by the T5. The largest masked block reporting
a correct prediction for the T5 model is composed of 36 and 39 tokens for Android (see
Fig. 3.2) and Java datasets respectively, compared to the 13 and 15 tokens achieved with
the RoBERTa model.

At this level (see Table 3.10), the difference in terms of performance between Java and
Android is not so evident, and even insignificant for T5.

As expected, the BLEU scores are the lowest in this scenario (Table 3.5), and the devel-

protected void fireScriptEnded(String plugin, Hook hook, Script script) 
{ Object[] listeners = _listeners.getListenerList(); 
for (int i = listeners.length-2; i>=0; i-=2) <MASK> }

{ if (listeners[i]==ScriptListener.class) 
{ ((ScriptListener)listeners[i+1]).scriptEnded(plugin, hook, script); } }

Figure 3.2. Correct prediction of 36 tokens generated by T5 in the Android dataset
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Table 3.10. Comparison between different datasets for correct predictions - results of Fisher’s exact
test (OR<1 indicate better performances for Android)

Masking Method p-value OR

Token
T5 <0.001 0.89
RoBERTa <0.001 0.59

Construct
T5 <0.001 1.07
RoBERTa <0.001 0.84

Block
T5 0.67 1.01
RoBERTa 0.01 0.93

oper may need to revise, on average, ∼ 50% and ∼ 35% of the predicted tokens, indepen-
dently from the dataset of interest, when using RoBERTa and T5, respectively.

Answer to RQ1.1: As the number of masked tokens increases, the DL-based models have
a harder time generating correct predictions. Still, the performance achieved by the T5 model
looks promising and, as we will discuss later, can be further pushed through proper pre-training
and multi-task fine-tuning.

Answer to RQ1.2: When looking at the best model (i.e., the T5), its performance on the two
datasets is quite similar, with no major differences observed. A strong difference in performance
is only observed in the token-masking scenario with the RoBERTa model.

Impact of pre-training and transfer learning (RQ2)

As explained in Section 3.3.1, we trained seven additional T5 models to assess the impact
of pre-training and transfer learning on its performance. First, we added to the six models
for which we previously discussed the T5 performance (i.e., no pre-training, single-task)
the pre-training phase (obtaining a pre-trained model in the single-task scenario, i.e., no
transfer learning). Then, we take the pre-trained model, and fine-tuned it in a multi-task
setting, investigating the impact of transfer learning.

Table 3.6 shows the achieved results also reporting the performance of the previously
discussed T5 and RoBERTa models (i.e., no pre-training, single-task in Table 3.6). Results
of a statistical comparison made using McNemar’s test are reported in Table 3.11. As it
is shown, the pre-training has a positive (OR> 1) and statistically significant effect in all
cases, and the fine-tuning in a multi-task setting outperforms the single-task pre-training.
Looking at Table 3.6, the pre-training had a positive impact on the accuracy of T5, boosting
the percentage of correct predictions from 1% to 4.7%, depending on the test dataset. The
benefit of pre-training is more evident in the most challenging block-level scenario (∼5%).
Overall, when considering all test datasets as a whole, the percentage of correct predictions
increases from 54.1% to 56.2% (+2.1%).

By training a single model on the six training datasets, the percentage of correct pre-
dictions further increases, going up to an overall 59.3%. Note that improvements can be
observed on all test datasets and, for the token-masking scenario, they can reach ∼5%.

The performance improvement is also confirmed by the results achieved in terms of BLEU
score and the Levenshtein distance that we report in our replication package [repa].

Answer to RQ2: We found both pre-training and multi-task fine-tuning to have a positive
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Table 3.11. Effect of different pre-training levels for T5: McNemar’s test results. None indicates the
T5 model with no pre-training and single-task fine-tuning. Single and Multi indicate the pre-trained
model with single- and multi-task fine-tuning, respectively.

Dataset Masking Comparison p-value OR

Java

Token
single vs. none <0.001 1.44
multi vs. single <0.001 1.81
multi vs none <0.001 2.33

Construct
single vs. none <0.001 1.61
multi vs. single <0.001 1.34
multi vs none <0.001 1.92

Block
single vs. none <0.001 2.19
multi vs. single <0.001 1.32
multi vs none <0.001 2.32

Android

Token
single vs. none <0.001 1.23
multi vs. single <0.001 2.27
multi vs none <0.001 2.61

Construct
single vs. none <0.001 1.58
multi vs. single <0.001 1.28
multi vs none <0.001 1.81

Block
single vs. none <0.001 2.14
multi vs. single <0.001 1.39
multi vs none <0.001 2.39

impact on the T5 performance. Overall, such an improvement accounts for +5.2% in terms of
correct predictions (36,009 additional instances correctly predicted).

T5 Confidence Level

The T5 returns a score for each prediction, ranging from minus infinity to 0. This score is the
log-likelihood of the prediction itself. If the score is -2 then it means that the log-likelihood
of the prediction is -2. Hence, the likelihood is 0.14 (ln(x) = −2 =⇒ x = 0.14) and this
implies that the model has a confidence of 14% for the prediction to be correct. If the score
is 0, repeating the same computation as above, the model has the confidence of 100% about
the prediction itself.

Fig. 3.3 reports the relationship between the percentage of correct predictions and the
confidence of the model. The orange line shows the percentage of correct predictions within
each confidence interval (e.g., 90% of predictions having a confidence higher than 0.9 are
correct), while the red line reports the percentage of correct predictions that are due to
predictions in that confidence interval out of the total (e.g., 78% of all correct predictions
have a confidence higher than 0.9).

Fig. 3.3 shows a strong relationship between the confidence of the model and the correct-
ness of the prediction. While this result might look minor, it has an important implication:
It would be possible to build a reliable code completion tool around the T5 model. Indeed,
the tool could be configured to only trigger recommendations when the confidence of the
prediction is higher than a given threshold (e.g., 0.9). This would result in an extremely high
precision.

From a statistical perspective, a logistic regression model correlating the confidence level
and the correct prediction outcome indicates a statistically significant (p-value <0.001) cor-
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Figure 3.4. Average length (in tokens) of the predictions by confidence

relation, and an estimate of 6.58, which means 720 higher odds of a correct prediction for
each unit increase of the confidence, i.e., 72 higher odds of a correct prediction for a 0.1
increase of the confidence, i.e., a tick on the x-axis of Fig. 3.3.

Fig. 3.4 analyzes the average length, in tokens, of the correct predictions (yellow line),
wrong predictions (orange line), and for all the predictions (red line) among all confidence
intervals. It is clear that the length of the prediction is related to the confidence, since the
model has higher confidence for shorter predictions. Indeed, the average number of tokens
in correct predictions for the highest confidence interval (i.e., 3 tokens) is much lower than
the average number of tokens in correct predictions for the lowest confidence interval (i.e.,
6 tokens). This confirms previous findings showing that the model is more likely to correctly
predict shorter statements.

From a statistical perspective, this is confirmed by a significant (p-value <0.001), nega-
tive, and moderate Kendall’s correlation (τ=-0.36).
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Table 3.12. Correct predictions of the three models

Dataset and Masking Level T5 RoBERTa n-gram

Java
Token 61.0% 38.9% 30.4%
Construct 48.8% 33.9% 12.5%
Block 22.9% 8.7% 4.6%

Android
Token 63.8% 51.9% 35.4%
Construct 47.1% 37.8% 17.6%
Block 22.8% 9.4% 6.6%

Overall 54.3% 38.8 24.9%

Table 3.13. Comparison with the n-grams model: results of McNemar’s test

Dataset Masking Comparison p-value OR

Java

Token
T5 vs. RoBERTa <0.001 8.93
RoBERTa vs. n-grams <0.001 2.21
T5 vs. n-grams <0.001 10.31

Construct
T5 vs. RoBERTa <0.001 4.65
RoBERTa vs. n-grams <0.001 5.29
T5 vs. n-grams <0.001 11.62

Block
T5 vs. RoBERTa <0.001 8.15
RoBERTa vs. n-grams <0.001 2.85
T5 vs. n-grams <0.001 14.38

Android

Token
T5 vs. RoBERTa <0.001 4.47
RoBERTa vs. n-grams <0.001 4.26
T5 vs. n-grams <0.001 10.14

Construct
T5 vs. RoBERTa <0.001 2.91
RoBERTa vs. n-grams <0.001 5.30
T5 vs. n-grams <0.001 9.04

Block
T5 vs. RoBERTa <0.001 7.62
RoBERTa vs. n-grams <0.001 1.90
T5 vs. n-grams <0.001 10.00

3.4.2 Comparison with an n-gram Model

We answer RQ3 by comparing the DL-based models without pre-training and in the single-
task setting to the n-gram model. We opted for this comparison for the sake of fairness,
since in this way the n-gram model has been trained on exactly the same dataset as the two
DL-based models.

Table 3.12 reports the comparison in terms of correct predictions between T5, RoBERTa,
and the n-gram model in different evaluation scenarios, as well as the overall results. For ex-
ample, T5 produced 61% correct predictions on the Java dataset when using token masking.
The results of statistical tests (McNemar’s test) are in Table 3.13.

One important clarification is needed to properly interpret the results of Table 3.12. Since
the n-gram model uses a different script to tokenize the code, we excluded from the test sets
cases in which the tokens to predict (i.e., the masked ones) are tokenized differently between
the DL-based approaches and n-gram one (e.g., one identifies 4 tokens and the other one 5).
This resulted in the exclusions of a few hundred instances from each test set and explains
the slightly different performances reported for T5 and RoBERTa between Table 3.12 and
Fig. 3.1.
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Table 3.13 reports the results of the statistical comparison among the three models, using
McNemar’s test. DL-based models achieve better performance in all experimented datasets,
and McNemar’s tests always indicate statistically significant differences, with ORs ranging
between 1.90 (RoBERTa vs n-grams, block masking for Android) and 14.38 (block masking,
T5 vs n-grams for Java).

In the token masking scenario, the performance of the n-gram model is very competitive
when compared with RoBERTa, while the T5 performs substantially better. When masking
specific constructs, the gap in performance becomes stronger (see Table 3.12) with a sub-
stantial gap, especially between T5 and n-gram. Finally, in the block masking experiment,
RoBERTa and n-gram techniques struggle to obtain a high percentage of correct predictions,
with the T5 performing better achieving more than twice the number of correct predictions
as compared to the competitive techniques.

While the DL-based models showed superior performance, there are two important as-
pects to consider. First, the n-gram model allows for faster training. We estimate four to five
times less training time needed for the n-gram model as compared to the DL-based models.
We do not report precise data since such a study would require executing the training many
times on the same machine, and such an analysis is out of the scope of this work. Once
trained all models can generate predictions in fractions of a second. Second, the comparison
presented as of now concerns the standard n-gram model. However, we also experimented
with the cached n-gram model [HD17], which can leverage information about other code
components coming from the same project (e.g., same file or package [HD17]) of the method
in which the prediction is performed. This is one of the advantages of the cache model
[HD17] and, in a real scenario, it should be possible to use this information assuming that
the method on which the prediction is performed is not the first one written in the whole
system. However, such experimentation is quite expensive to perform since it requires the
cloning of the whole repositories hosting every test method. This is why it has only been
performed on a small sample of our dataset.

Table 3.14. Correct predictions of n-gram model when providing the cloned repository (WC) vs.
when not providing (NC). In comparison to DL-based models (200 methods)

Dataset and Masking Level T5 RoBERTa
n-gram

NC WC

Java
Token 65.5% 42.2% 32.5% 43.9%
Construct 56.0% 38.0% 14.5% 20.5%
Block 25.8% 8.5% 5.2% 8.5%

Android
Token 69.9% 50.9% 35% 42.2%
Construct 52.8% 37.8% 13.9% 22.0%
Block 33.6% 13.0% 9% 11.9%

Overall 57.7% 38.2% 23.9% 31.5%

For a given method mt in the test set, we clone its repository and check if the source code
of mt in the latest system snapshot is exactly the same as in the test set. If this is the case, we
run the prediction on mt providing the cloned repository as a test folder, in such a way that
it is leveraged by the cache model (this is done through the implementation of Hellendoorn
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et al. [HD17]). If the method changes, we discard it and move to the next one. Since such
a process is very expensive, we collected 200 methods from each test set, and we compared
the performance of the n-gram model when such additional information is provided (and
not) on these instances.

Table 3.14 reports the achieved results. As expected, the performance of the n-gram
model increased thanks to the use of the information in the test project. On these same
instances, the performance of T5 and RoBERTa models are always superior but in the case
of Java token and block masking for RoBERTa.

Answer to RQ3: The n-gram model is a competitive alternative to RoBERTa, while the T5
confirms its superior performance. It is worth highlighting the much cheaper cost of training
(and possibly re-training several times) an n-gram model as compared to a DL-based approach.

3.4.3 Qualitative Results

To give a better idea to the reader about the capabilities of the experimented models in
supporting code completion, we report in Fig. 3.5 examples of correct predictions for the T5
model in different scenarios/datasets. Examples of predictions for the RoBERTa and n-gram
model are available in the replication package [repa].

Given the achieved results showing the superiority of the T5 model, we had a better look
at a sample of the wrong predictions it generates, to see whether some of them are seman-
tically correct (e.g., return 0x0; is equivalent to return 0;) despite being different from the
reference code written by the developers. The first author looked at 200 wrong predictions
generated within the highest confidence interval, finding that only in three cases the pre-
diction was semantically equivalent, with the reference code including extra (unnecessary)
brackets not generated by the T5 model (e.g., T5 predicts entry; instead of (entry);). Over-
all, it appeared that several of the generated predictions, while wrong, might still speed up
the implementation process, for example when n− 1 out of the n parameters needed for a
method invocation are correctly predicted. Clearly, only a user study with developers can
help in assessing the actual usefulness of these predictions during real coding activities.

Since we found cases in which the correct predictions of the T5 spanned across dozens of
tokens, being almost unrealistic, we checked whether the 21 correct predictions having more
than 30 tokens were already present in the training set. Indeed, while we ensure that there
are no duplicated methods between training and test, it is possible that two different methods
m1 and m2 have the same masked part (i.e., the two methods are different in the non-masked
part but they have the same set of masked tokens). Only one out of the 21 inspected cases was
already present in the training set and related to the transposition of a matrix. The model was
able to correctly predict very complex masked parts such as "{ if (defaultProviders != null &&
index < defaultProviders.length) { return defaultProviders[index].getRebuild(defaultProviders,
index + 1); } } ".

Finally, it is worth commenting on the possible reasons behind the superior performance
we observed for the T5 as compared to RoBERTa and for the DL-based models as compared
to the n-gram model. RoBERTa predicts all of the masked tokens at the same time, whereas
T5 predicts them one by one. This means that RoBERTa cannot use the previously generated



38 An empirical study on the usage of transformer models for code completion

Android Token

public SongViewHolder(View itemView) { super(itemView); albumSongNameTextView = 
(TextView) itemView <MASK> }
.findViewById(R.id.albumSongNameTextView);

Java Token

public Sheet getSheet() { if (sheet != null) { return sheet; } UIComponent 
parent = getParent(); while (parent != <MASK> parent = parent.getParent(); } 
return (Sheet) parent; }
null && !(parent instanceof Sheet)) {

Android Construct

public static int i(String tag, String msg) { _log( <MASK>); return 
Log.i(tag, msg); }

_prioToLevel(Log.INFO), tag, msg

Java Construct

public DoubleToLongFunction mask(ThrowingDoubleToLongFunction<? extends X> 
function) { Objects.requireNonNull(function); return d -> 
maskException( <MASK>); }
() -> function.applyAsLong(d)

Android Block

public void setAnchor(float anchorU, float anchorV) { if (marker != null) <MASK> else 
{ markerOptions.anchor(anchorU, anchorV); } }

{ marker.setAnchor(anchorU, anchorV); }

Java Block
private void calculateMean() { double sum = 0; Integer count = 0; for(int i=0; 
i<data.length; i++) { if (calibrationFlag[i]) <MASK> } mean = sum / 
count.doubleValue(); }
{ sum += data[i]; count++; }

Figure 3.5. Examples of correct predictions generated by T5

tokens to predict the next one, while the T5 exploits this additional information. Concerning
the superior performance of the DL-based model as compared to the n-grams, this most likely
comes down to the context window it is able to see. Indeed, the n-gram model can only see
(and leverage) a few tokens when predicting the next one, while both T5 and RoBERTa have a
better view of the coding context, seeing all the tokens surrounding the masked ones (which
could be hundreds). A solution could be to scale up the n-gram model which, however,
would become too demanding in terms of computational cost.

3.5 Threats to Validity

Threats to construct validity concern the relationship between theory and observation. One
threat, also discussed by Hellendoorn et al. [HPGB19], is related to how we simulate the
extent to which code completion intervenes during development, i.e., by masking source
code elements. As explained in Section 3.2.1, we consider different masking levels, not
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only to evaluate the amount of code completion that can be predicted but also to simulate
different ways a developer writes source code, especially because we cannot assume this is
done sequentially. However, we are aware that the considered masking levels cover a limited
number of cases that may not completely reflect how developers write code.

Another threat is related to how we assess the code completion performances. On the
one hand, 100% BLEU score clearly reflects a correct prediction. However, the BLEU score
may be sufficient to assess the performance of code-related tasks [RGL+20] and, in general,
it is difficult to evaluate the usefulness of semantic equivalent predictions or incorrect yet
useful. To mitigate this threat, we report some qualitative examples, indicating how partially-
complete recommendations could still be useful.

Threats to internal validity concern factors, internal to our study, that could influence
its results. To this extent, an important factor that influences DL performance is the cal-
ibration of hyperparameters, which has been performed as detailed in Section 3.3.2. We
are aware that due to feasibility reasons we only performed a limited calibration of the hy-
perparameters. Hence, it is possible that a more detailed calibration would produce better
performances. Also, note that we did not experiment with a pre-trained version of RoBERTa.
Indeed, to simplify our experimental design and reduce the training cost we decided to only
pre-train the best-performing model (i.e., T5).

When building the pre-training dataset we capped to 1,500 the maximum number of
instances that a single project can contribute to our dataset. This has been done to avoid
a handful of projects strongly influencing the training of the model. We acknowledge that
different (and maybe better) results could be obtained by considering the whole code base
of each project for pre-training.

Threats to conclusion validity concern the relationship between evaluation and outcome.
As explained in Section 3.3.2 we used appropriate statistical procedures, also adopting p-
value adjustment when multiple tests were used within the same analysis.

Threats to external validity are related to the generalizability of our findings. On the
one hand, we have evaluated the performances of the models on two large datasets. At
the same time, we do not know whether the obtained results generalize to different do-
mains than Android, and other programming languages than Java. A further threat is that
our study is limited to the RoBERTa and T5 models for DL and, as a baseline for n-gram
models, the one by Hellendoorn and Devanbu [HD17]. While we claim such models are
well-representative of the current state-of-the-art, it would be desirable to investigate how
alternative approaches would work for the different evaluation scenarios. Also, when build-
ing our fine-tuning dataset, we started from the CodeSearchNet Java Dataset provided by
Husain et al. [HWG+19]. In this dataset, short methods (those having less than three lines),
as well as methods containing test in their name have been excluded. This means that the
results of our study do not generalize, for example, to very short methods implementing
critical tasks in less than three lines of code.
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3.6 Conclusion

We investigated the ability of Transformer-based DL-models in dealing with code completion
tasks having different level of difficulty, going from the prediction of a few tokens within the
same code statement, up to the entire code blocks we masked. Among the three models
we experimented with, namely T5 [RSR+20], RoBERTa [DCLT19], and the cached n-gram
model [HD17], the T5 resulted in being the most effective in supporting code completion.

Our study provided a series of highlights that will guide our future research. First, when
the code to complete spans over multiple statements (two in the case of our experiments),
these models, with the training we performed, are still far from being a valuable solution
for software developers. Indeed, even the best-performing model (T5) struggles in guessing
entire code blocks. However, the performance we reported should not be seen as an “upper
bound” for these techniques, since larger models may be trained on more data can be adopted
(e.g., the recently proposed GitHub Copilot [copb]) and different training strategies could
help in achieving better results (e.g., Tufano et al. [TDS+20] showed that pre-training on
English text helps transformer models in improving performance even in code-related tasks).
Besides working on these research directions we also plan to investigate alternative solutions
mixing, for example, retrieval-based and DL-based solutions.

Second, the confidence of the predictions generated by the T5 turned out to be a very
reliable proxy for the quality of its predictions. This is something fundamental for build-
ing tools around this model, as it can be used by developers to just ignore low-confidence
recommendations. Future studies will investigate how the developers perceive the useful-
ness of recommendations having different characteristics, including length, confidence, and
covered code constructs.

Finally, a user study is also needed to understand what is the level of accuracy (in terms
of correct predictions) needed to consider tools built around these models as effective for
developers. In other words, it is important to understand the “percentage of wrong predic-
tions” a developer can accept before considering the tool counterproductive. Such a study
is also part of our research agenda.
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To what extent do deep learning-based code
recommenders generate predictions by cloning
code from the training set?

4.1 Motivation

The rise of DL to support code-related tasks was possible thanks to the unprecedented
amount of development data being publicly available (e.g., from GitHub) and that can be
used for training the DL models. The vast majority of this data comes from open-source
repositories and hence its usage is regulated by specific Free and Open Source Software
(FOSS) licenses (e.g., Apache 2.01, GPL v3.02). These licenses regulate how the licensed
source code can be redistributed or modified to create derivative work. However, they were
not meant to define whether (i) the licensed code can be used for training DL-based code
recommender, nor (ii) the code recommended by the trained models should be considered
as derivative work or, instead, as new code “written from scratch”. Such a discussion is part
of a non-trivial debate that will likely result in the update of FOSS licenses in the near future.

From the studies previously presented in this thesis, it is clear that DL models achieved
astounding results, being able to correctly predict even two Java statements. Moreover, the
significant dependence of the model’s performance on the Java version used for the train-
ing may be due to the capabilities of the model to “memorize” some version-dependent
constructs without being so good at generalizing to similar ones. If DL-based code recom-
menders tend to clone code snippets from the training set when generating predictions, it
would be difficult to consider the recommendations as new and original code (rather than as
derivative work). Although it is reasonable that the generated recommendations are influ-
enced by the training dataset (e.g., by often reusing frequent code identifiers), the problem
would be more relevant if these techniques perform a verbatim copy of the training code,
possibly spanning several statements.

In this thesis, we are interested in investigating the following research question (RQ):

1https://www.apache.org/licenses/LICENSE-2.0
2https://www.gnu.org/licenses/gpl-3.0.html
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To what extent do DL-based code recommender systems generate predictions by
cloning code snippets from the training set?

To answer our research question, we need: (i) a DL-based code completion technique
able to recommend several tokens/statements; (ii) access to the dataset(s) used to train the
DL model; and (iii) access to the predictions generated by the technique on a test set. Unfor-
tunately, such an analysis is not possible using GitHub Copilot since the training dataset is
not publicly available. For this reason, we adopt the Text-To-Text-Transfer-Transformer (T5),
a DL model that has been used to support several code-related tasks [MSC+21], including
code completion [CCP+21a].

We start from the pre-trained T5 made available by Ciniselli et al. [CCP+21a], who also
made publicly available the pre-training dataset. The model has been pre-trained on ∼2M
Java methods. Then, we fine-tuned this model on a new dataset we built featuring 841,318
Java methods to train the model in predicting non-trivial code snippets composed of several
statements. Indeed, predictions only spanning a few code tokens are not interesting for our
goal, since they cannot really be defined as “clones” even if copied from the training dataset.
We built four versions of the fine-tuning dataset, each one applying a different strategy to
remove near duplicates [All19], including more and less strict strategies. Indeed, one of the
assumptions we want to test is that a higher presence of near-duplicates in the training set
pushes the model to copy more, since it observes over and over the same pattern.

Once trained the four models on the different datasets, we used them to generate predic-
tions on a test set of ∼16k instances (i.e., ∼16k Java methods with missing code statements
that must be guessed by the model). Then, we used the SIMIAN clone detector [sima] to
identify Type-1 (i.e., exact copies) and Type-2 (i.e., copied code with changes to identifiers
and types) clones between the generated predictions and both the pre-training and fine-
tuning training datasets. Also, we checked whether the model tends to “copy” more when
(i) dealing with predictions having different lengths, since we expect smaller predictions to
more likely result in clones; and (ii) generating correct or wrong predictions.

The achieved results show that ∼10% of the generated predictions represent a Type-1
clone of code in the training data, with this percentage going up to ∼80% when considering
Type-2 clones. However, the percentage of clones steadily drops when the model is asked to
predict several statements, with basically no clones generated when the prediction comprises
at least four lines of code.

We also found that correct predictions are more likely to contain clones of code present
in the training datasets. Such a result stresses once more the importance of a proper dataset
cleaning to avoid overlaps between the training and the test datasets.

4.2 Study Design

The goal of this study is to understand the extent to which DL-based code recommenders
are prone to suggest code snippets being clones of instances present in the training set. The
context is represented by the four training datasets described in Section 4.2.2 and by the
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snippets of code generated by a state-of-the-art code recommender built on top of the Text-
To-Text-Transfer-Transformer (T5) [CCP+21a].

Our study aims at answering the following research question:

RQ. To what extent do DL-based code recommender systems generate predictions by cloning
code snippets from the training set?

Our RQ sheds some light on the implications of using recommendations generated by
DL-based code recommenders in terms of possible licensing issues occurring when using the
generated recommendations in the development of commercial software. We answer our RQ
by training a DL-based code recommender to then use it in thousands of code completion
tasks (i.e., an incomplete code is provided as input to the model, that is required to generate
the missing code). The generated recommendations are then compared to the instances in
the training set looking for clones.

4.2.1 Study Context: DL-based Code Recommender

The first step in the selection of the study context is the code recommender to use. The lat-
est and likely more effective code recommender available, namely GitHub Copilot [CTJ+21],
was not an option for our study. Indeed, while we have access to Copilot, the dataset used
to train it is not publicly available, making it impossible to check whether the code it recom-
mends is a clone of the instances in its training set. For this reason, we focused on another
DL-based code recommender recently proposed by Ciniselli et al. [CCP+21a].

The authors trained a T5 model supporting code completion in Java at method-level
granularity. This means that once trained the model can take as input an incomplete Java
method (i.e., a method missing one or more contiguous code tokens) and it can predict the
missing tokens. The T5 has been trained in two phases. The first, named pre-training, aims
at providing the model with a general knowledge about the language of interest. Ciniselli
et al. [CCP+21a] used a classic denoising pre-training task in which the model has been fed
with ∼2M Java methods having 15% of their tokens (even non-contiguous ones) randomly
masked, with the model asked to predict them. Once pre-trained, the model has been fine-
tuned to support code completion at different levels: (i) token-level, in which the last x
tokens (with 1 ≤ x ≤ 10) of a given statement have been masked and must be predicted;
(ii) construct-level, in which the masking has been focused on specific code constructs, such
as the conditions of if statement or of a while/for loop, the parameters of method calls,
etc. (see [CCP+21a] for details); and (iii) block-level, in which entire code blocks3 up to two
statements are masked.

The fine-tuning has been performed on different datasets, for a maximum of 750k in-
stances (methods) involved.

In the reported evaluation, the T5 achieved correct predictions ranging from ∼29%,
obtained when asking the model to guess entire blocks, up to ∼69%, reached in the simpler
scenario of a few tokens masked from the same code statement [CCP+21a].

3A code block is defined as the code enclosed between two curly brackets.
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Table 4.1. Threshold (Th) configurations and number of methods after the filtering.

Name Set Th. Multiset Th. # of Methods

Very Weak 0.8 0.7 838k
Weak 0.6 0.5 711k
Strong 0.4 0.3 483k
Very Strong 0.3 0.2 273k

We start from the pre-trained model made available by Ciniselli et al. in their replication
package [repa], but we fine-tune it from scratch on a new dataset described in Section 4.2.2.
Indeed, the fine-tuned model used by Ciniselli et al. [CCP+21a] was not appropriate for our
study, since they trained the T5 to predict at most two code statements. In our work, we
are interested in identifying code clones in the generated predictions and, for this reason,
we want to train the T5 to generate also longer predictions. Indeed, clones represented by
a few code tokens or a single statement are unlikely to be relevant, but mostly due to the
syntactic sugar of programming languages.

4.2.2 Study Context: Datasets Construction

To create our fine-tuning dataset we started from the CODESEARCHNET dataset provided
by Husain et al. [HWG+19]. CODESEARCHNET features over ∼1.5M Java methods collected
from open source non-forked GitHub repositories. On top of them, we added the∼2.2M Java
methods made available by Ciniselli et al. [CCP+21a] and collected from GitHub Android
repositories. From the overall set, we removed methods (i) having less than three lines
of code, since they do not allow training the model on “code completion scenarios” that
are interesting in the context of code clones (i.e., when asking the model to generate several
missing code statements); (ii) having the name containing the test substring in an attempt to
remove test methods; and (iii) containing non-ASCII characters (e.g., Chinese text) to avoid
confusing the model during training. We then excluded all methods having a duplicate in
the pre-training dataset used by Ciniselli et al., obtaining the final set of 841,318 instances.

As a final step, we applied the approach defined by Allamanis [All19] and Lopes et al. [LMM+17]
and used in the construction of the CODESEARCHNET database [HWG+19] to identify near-
duplicates in our fine-tuning dataset. The idea behind this approach is to look at the per-
centage of overlapped tokens between two instances (i.e., methods) and identify them as
near-duplicates if such an overlap exceeds a specific threshold. The code implementing such
an approach is publicly available [ded], and allows setting two thresholds making the iden-
tification of near-duplicates weaker (i.e., only very similar methods are considered clones)
or stronger. Both thresholds define the percentage of shared tokens needed to consider two
methods as duplicates. However, the first threshold (Multiset Threshold) considers the en-
tire list of tokens in a method (including duplicates), while the second (Set Threshold) is
computed on the unique set of tokens in the compared methods.

We experiment with the four different combinations of thresholds reported in Table 4.1,
that resulted in four different fine-tuning datasets composed by the # of Methods instances
not considered near-duplicates (out of the starting ∼850k). In the following, we refer to the
four combinations as very weak (i.e., the combination of thresholds rarely reports methods
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as near-duplicates), weak, strong, and very strong (i.e., the combination of thresholds fre-
quently reports methods as near-duplicates) and to the resulting datasets as datasetver y_weak,
datasetweak, datasetst rong , and datasetver y_st rong . The choice of experimenting with four dif-
ferent combinations was dictated by the following assumption: It is possible that a train-
ing dataset featuring several near-duplicates (such as datasetver y_weak) pushes the model
to “copy” more from the training set as compared to a dataset featuring almost no near-
duplicates (datasetver y_st rong). Indeed, seeing a code snippet over and over across several
training samples may push the model to use that coding pattern more when generating the
predictions. This is just an assumption we validate in our study.

As described in Section 4.2.3, the four datasets have been used to fine-tune four T5
models starting from the pre-trained model by Ciniselli et al. [CCP+21a].

4.2.3 Model Training

We do not discuss the architectural details of T5, which have been widely documented by
Raffel et al. [RSR+20] to better focus on implementation choices that are relevant for this
study. The specific architecture we use is the T5small presented in [RSR+20].

Tokenization. T5 uses a tokenizer to pre-process the input and generate the stream of
output tokens. As it will be clear later, in our study the model will be fed with a Java method
in which specific code statements have been masked (input) and will be asked to generate
the masked statements (output). The adopted tokenization strategy impacts the vocabulary
that the model can exploit to generate the output. Previous work studied the pros and cons of
different tokenization strategies, spacing from word- [DGMH+23] to character-level [MM04]
tokenization. The former is prone to the out-of-vocabulary problem [KBR+20] while the
latter struggles with long inputs. To mitigate these limitations, Sennrich et al. [SHB16]
introduced the Byte Pair Encoding (BPE) tokenization that splits the input into a sequence
of subtokens (e.g., it can split the word “string” into two parts “str” and “ing”, where “str” is
the root and “ing” is the specialization). Through this sub-splitting, BPE has the advantage
of reducing the vocabulary size (as well as the out-of-vocabulary problem) and allows the
model to generate composed words. For example, when applied to source code the model
can generate unseen identifiers whose name is a composition of the sub-tokens present in
the vocabulary. The T5 exploits a SentencePiece [KR18] tokenizer which uses the same idea
behind BPE. Ciniselli et al. [CCP+21a] trained a 32k-word SentencePiece tokenizer on the
pre-training dataset. Since we reused their pre-training dataset, we also reused their trained
SentencePiece tokenizer.

Datasets masking and splitting. To train T5 with the goal of generating non-trivial
snippets of code composed by multiple statements, we adapted one of the block-level masking
scenarios proposed by Ciniselli et al. [CCP+21a].

In particular, we apply the following processing to each instance (i.e., Java method) in
each of the four datasets (i.e., datasetver y_weak, datasetweak, datasetst rong , and datasetver y_st rong).
In each method, we identify all blocks (i.e., code snippets enclosed between two curly brack-
ets) composed by at least two and at most six statements. Given a method including n of
such blocks, we generate n versions of it, each having one of the n blocks masked with
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Table 4.2. Study datasets. We reported the number of instances for the training and the number of
distinct methods.

Filtering
Dataset #Instances

#Distinct
Level Methods

Very Weak

Training

1.2M 797k

Weak 1.02M 671k

Strong 703k 446k

Very Strong 390k 240k

All levels
Evaluation 15,783 8,560
Test 15,742 8,506

the special token <EXTRA_ID_>. During training and testing the model is then fed with
methods including a masked block and it is required to generate it. The lower and upper
bound for the block size (i.e., two and six lines) are defined, based on our experience, to
obtain code generation tasks that are non-trivial (at least two statements), relevant in the
context of cloning, and addressable given the employed DL model, training dataset, and
hardware resources (at most six statements). To account for trivial statements, we count
only statements composed by at least two characters to exclude, for example, statements
including only a closing parenthesis. Thus, a block composed by one 10-character statement
and one 1-character statement is not considered in our study, since it does not match the
“two statements” lower bound.

Starting from these instances, we created the training, evaluation, and test datasets in
Table 4.2. First, it is important to clarify that the splitting across training, evaluation, and
test sets was not random to avoid biasing the learning. To explain this point, let us go back
to the way in which we created the instances (i.e., Java methods with a masked code block)
for our dataset. Given a method m having n blocks composed by two to six statements, we
added in the dataset n versions of m, each having one and only one block masked. Suppose
that m contains two blocks b1 and b2, thus leading to two versions of m: one in which
b1 is masked (mb1

) and b2 is not and vice versa (mb2
). With a random splitting, it could

happen that mb1
is assigned to the training set and mb2

to the test set. However, in mb1
the

b2 is not masked. Thus, when the model has to guess the tokens masked in mb2
it would

have the solution in the training set, resulting in boosted prediction performance. For this
reason, the splitting was done at “method-level” rather than “instance-level”. This means
that all instances related to a method m can belong to only one of the three sets (training,
evaluation, testing). The number of unique methods in each set is reported in Table 4.2 in
the # Distinct Methods column, while the number of instances these methods generated is
represented in the # Instances column.

Second, as previously said, in our study we want to investigate whether the prevalence
of near-duplicates in the training dataset (i.e., the different filtering levels we applied, from
very weak to very strong) plays a role in the generation of code clones. For this reason,
while the training sets for the four datasets can be different, with datasetver y_weak being the
largest one (i.e., containing more near-duplicates), we wanted to have the same evaluation
and test sets for all datasets, to allow for a fair comparison. For this reason, we built the
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Table 4.3. Hyperparameters Tuned for the T5 Models.

Learning Rate Type Parameters

Constant (C-LR) LR= 0.001
Slanted Triangular (ST-LR) LRstarting = 0.001

LRmax = 0.01
Ratio= 32
Cut= 0.1

Inverse Square Root (ISQ-LR) LRstarting = 0.01
Warmup= 10,000

Polynomial Decay (PD-LR) LRstarting = 0.01
LRend = 1e−06
Power= 0.5

Table 4.4. Number of fine-tuning steps and best checkpoint found.

Filtering # Training Best
Level Steps Checkpoint

Very Strong 152k 20k
Strong 275k 40k
Weak 400k 225k
Very Weak 470k 450k

evaluation and the test dataset with∼15k instances each. Those instances meet the following
requirements: (i) they have been extracted from the methods that were present in all four
datasets, independently from the near-duplicates filtering level that has been applied; and
(ii) they are balanced in terms of prediction difficulty, featuring ∼3k instances in which a
two-statement block is masked, ∼3k in which a three-statement block is masked, etc., up to
six-statement blocks masking.

Hyperparameters tuning. We started from the pre-trained T5 model by Ciniselli et al. [CCP+21a].
Then, to find the best T5 configuration for the fine-tuning, we followed the hyperparameters
tuning procedure previously used by Mastropaolo et al. [MSC+21]. In particular, we trained
four different configurations of the T5 that differ for the type of learning rate applied during
the training (see Table 4.3 for the four configurations). Once trained, each model has been
run on the evaluation set to assess its performance in terms of percentage of correct predic-
tions, namely the percentage of instances in the evaluation set for which the model managed
to exactly predict the masked code. This process has been performed on the largest dataset
(i.e., datasetver y_weak), assuming that the best configuration identified on it represents the
best choice also for the other three datasets. Each model has been fine-tuned for 50k (corre-
sponding to ∼10 epochs given the used batch size of 256). The Slanted Triangular learning
rate obtained the best results and, thus, has been used in the study to train our models.

Fine tuning. We fine-tuned T5 on each of the four datasets for ∼100 epochs, by vary-
ing the number of fine-tuning steps based on the dataset size (i.e., larger datasets require
more steps to reach 100 epochs, see # Training Steps in Table 4.4). To avoid overfitting, we
saved the trained models every 5k steps and identified the best one (see Best Checkpoint in
Table 4.4) on the evaluation set in terms of percentage of correct predictions.

These are the models we will use to generate the predictions on the test set and analyze
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the overlap in terms of code clones between the generated predictions and the code in the
training sets.

4.2.4 Data Collection And Analysis

Once trained the four models (one on each training dataset), we run them on the test set that,
as previously explained, is the same for all four models. This results in the models generating
the code blocks predicted as needed to fill the masked code. These blocks of generated code
are the ones we want to contrast against the training set used for each model to identify
code clones.

To identify the clone detector to use, we started from the literature review by Rattan
et al. [RC07], looking at the list of tools documented by the authors. Several of them are
no longer available (e.g., [HK09], [GKKP13]), while others do not work on syntactically
incorrect code that may be generated by the T5 models (e.g., [RC08], [cpd]). Given the
study’s constraints, we used the SIMIAN clone detector [sima]. Besides being very robust
and scalable, SIMIAN can identify Type-1 and Type-2 clones [RC07]. SIMIAN works at line-
level granularity, looking for duplicated lines among the code dataset provided as input.
Therefore, having two snippets of code that are identical but written on a different number
of lines, may fool the clone detection algorithm. For this reason, we formatted all methods
in our datasets using the IntelliJ formatter [int], to ensure they all adopt the same coding
style (e.g., maximum number of characters per line).

We run SIMIAN to identify both types of clones between the code generated by the four
models and their respective training set. Then, we compute the percentage of code clones
generated by each model by looking at different characteristics of the clones and of the
predictions. In particular, we consider in our analysis:

• The amount of near-duplicates in the training set. As previously explained, this has
been achieved by training four T5 models on the four datasets we built. We report the
percentage of clones generated by each of these models.

• The length of the generated code. We split the generated code blocks in different buckets
based on the number of statements they feature (from ≥ 2 to ≥ 5 at steps of 1). Then,
we compute the percentage of clones in each bucket. We expect smaller predictions to
contain a higher percentage of clones.

• The clone type. When reporting the percentage of clones, we distinguish between Type-
1 and Type-2 clones. Type-2 clones will be, by construction, more prevalent, since they
are a superset of Type-1 clones, being exact copies but for the different use of identifiers
and types.

• The training dataset from which the prediction has been “cloned”. Each T5 model exploits
two training datasets, the pre-training and fine-tuning. We analyze from where the
model is more likely to “copy”.

• The correctness of the prediction. We look at whether the models are more likely to
“copy” when generating correct or wrong predictions.
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We complete our study with a correlation analysis in which we assess whether the model
is more prone to clone code in specific circumstances. In particular, we use the Spearman
test [Zar72] to correlate the presence of clones with (i) the Cyclomatic Complexity of the test
method (ii) the number of lines of the method, and (iii) the confidence of the prediction. The
first two metrics are computed using the Python Lizard library [liz]. The last one is a score
we computed for each prediction made by T5. Such a score x ranges from minus infinity to
0 and it is the log-likelihood of the prediction itself and can be normalized by computing the
ex p(ln(x)). This brings the confidence score between 0.0 and 1.0, with 1.0 indicating the
scenario in which the model is confident about the generated prediction.

Finally, it is worth mentioning that, despite the use of the SentencePiece tokenizer, the T5
may generate predictions including unknown tokens. We performed all the above described
analysis both when considering all the instances of the test set as well as when removing
the ones that contain at least one unknown token. The latter are less likely to result in code
clones, since the training sets do not contain unknown tokens. We report in this thesis the
results achieved when excluding from the test set the 6,986 instances for which at least
one of the four models generated an unknown token; the results on the whole test set are
available in our replication package [repe], but we anticipate that they are inline with those
discussed in this thesis.

4.2.5 Replication Package

The datasets, models, training/testing code, and the achieved raw data are publicly available
in our replication package [repe].

4.3 Results Discussion

To answer our research question, we analyze the percentage of code predictions being clones
of instances present in each training dataset (i.e., pre-training and fine-tuning).

Type 1 Type 2

Very Strong

Strong

Weak

Very Weak

8.2% 83.2%
10.3% 84.6%
12.5% 83.5%
12.1% 83.5%

>=2 Lines Clones

Type 1 Type 2

0.9% 30.3%
1.6% 33.9%
2.3% 35.1%
1.9% 31.9%

>=3 Lines Clones

Type 1 Type 2

0.2% 11.8%
0.3% 12.5%
0.6% 14.4%
0.4% 12.0%

>=4 Lines Clones

Type 1 Type 2

0.0% 2.3%
0.0% 2.6%
0.1% 3.2%
0.1% 2.5%

>=5 Lines Clones

Figure 4.1. Percentage of Type-1 and Type-2 clones in predictions having different lengths.

Impact of the amount of near-duplicates in the training set. Fig. 4.1 shows the per-
centage of Type-1 and Type-2 clones found in the predictions of the four models fine-tuned
on the different datasets (i.e., datasetver y_st rong , datasetst rong , etc.). We also organize the
predictions in different buckets based on the length of the predicted code (from ≥ 2 up to ≥
5). As a reminder, datasetver y_st rong is the smallest (273k instances) and has been built using
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very strict criteria for the exclusion of near duplicates; datasetver y_weak is instead the largest
(838k instances), with a higher presence of near duplicates. Note that the gap in dataset
size is substantial when moving from the Very Strong to the Strong configuration (+77% of
instances) and from Strong to Weak (+47%), but limited when going from Weak to Very Weak
(+18%).

Before commenting on the achieved results is also worthwhile to remind that the number
of generated predictions is 15,742-6,986 for all datasets, since in this results discussion we
removed all cases for which at least one of the four models generated an unknown token.
Thus, a 10% of clones indicates ∼900 generated clones.

With the increase of near duplicates in the training set, the percentage of Type-1 clones
in the generated predictions increases as well. This trend is visible across the four datasets
with the exception of datasetver y_weak for which the percentage of generated Type-1 clones
is inline with those of datasetweak. As previously said, this is likely to be due to the small
differences in size (i.e., in the presence of near-clones) between the two datasets.

Another trend is also clear when looking at Fig. 4.1: longer predictions are less likely
to be the result of cloned snippets from the training set. If we focus, for example, on the
dataset resulting overall in the highest percentage of generated Type-1 clones (datasetweak),
such a percentage moves from 12.5% for predictions featuring at least two statements, to
2.3% for those having at least three statements, down to 0.1% when only considering the
generation of non-trivial code snippets composed by at least five statements. Such a result
is quite expected since longer predictions are statistically less likely to be equal to instances
present in the training set as compared to shorter predictions.

The analysis of Type-2 clones follows similar trends with a couple of notable differences.
First, as expected, the percentage of Type-2 clones is much higher as compared to that of
Type-1 clones (from 10 to 100 times higher). This can be explained by the weaker require-
ments adopted to consider two code snippets as Type-2 clones. Indeed, while the code struc-
ture should be similar, two instances are considered as Type-2 clones even if they adopt
completely different identifiers and types. Still, confirming what observed for Type-1 clones,
the percentage of clones in the predictions steadily drops with the increase in size of the pre-
dictions, moving from ∼80% to ∼2.5% when the prediction’s size increases from at least 2
to at least 5 lines. Finally, differently from what observed for Type-1 clones, there is no sub-
stantial difference in the percentage of Type-2 clones across the different datasets. This may
be due to the fact that, differently from Type-1 clones that are verbatim copies of code from
the training set, in the case of Type-2 clones the amount of near-duplicates (i.e., frequent
instances in the training set) is less likely to play a role.

Take away 1. Around 10% of the generated predictions represent a Type-1 clone of
code present in the training data, with this percentage going up to ∼80% when consid-
ering Type-2 clones. However, the percentage of clones steadily drops when the model
is asked to predict several statements, with basically no clones generated when the pre-
diction comprises at least four lines of code. This indicates that advanced tools such as
GitHub Copilot that can generate entire functions are very unlikely to “copy code” from
the training data.
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Pre-training and fine-tuning datasets. We also analyzed the provenance of the clones,
meaning whether the cloned predictions tend to come from the pre-training or from the
fine-tuning dataset. Fig. 4.2 summarizes the achieved results. For both types of clones (i.e.,
Type-1 and Type-2) Fig. 4.2 reports the the percentage of clones coming (i) only from the
pre-training (i.e., the prediction has a clone only in the pre-training dataset); (ii) only from
the fine-tuning; and (iii) from both training datasets (i.e., both training datasets have at least
one instance representing a clone of the prediction). In interpreting the reported percentages
it is important to consider that the chances of cloning from the pre-training are expected to
be higher, since it contains more “material” from which the model can copy. For example, in
the Very Strong configuration, we have 1.85M methods in the pre-training dataset and 273k
methods in the fine-tuning dataset. Therefore, 87% of the training methods belong to the
pre-training dataset and only 13% to the fine-tuning dataset. The Very Weak configuration
is the most balanced, still having, however, 69% of training instances coming from the pre-
training dataset against the 31% of the fine-tuning dataset.

Type 1
Pretrain

Type 2
Pretrain

Type 1
Finetuning

Type 2
Finetuning

Type 1
Both

Type 2
Both

Very
Strong
Strong

Weak
Very

Weak

12.9% 3.4% 17.9% 2.2% 69.2% 94.4%

9.4% 2.4% 23.7% 3.1% 66.9% 94.5%

6.8% 2.3% 28.2% 4.0% 65.0% 93.7%

5.8% 2.3% 33.9% 4.1% 60.3% 93.6%

Figure 4.2. Percentage of Type-1 and Type-2 clones coming from the pre-training and fine-tuning
dataset

For both types of clones, most of the cloned predictions have a clone both in the pre-
training and in the fine-tuning datasets.

As expected, this is especially true for Type-2 clones, for which almost the totality of
cloned predictions follow this pattern. More interesting are the results for Type-1 clones,
namely exact copies. While also here there is a substantial percentage of predictions having
clones both in the pre-training and in the fine-tuning datasets (∼60%), most of the predic-
tions only cloned from one of the two training datasets come from the fine-tuning. This result
is not really expected considering that the pre-training dataset provides most of the “training
material”. However, possible explanations for this result lie in the order in which the two
training phases are applied to the DL model and in their objective. The pre-training changes
the weights of the neural network from a random distribution to a distribution able to deal
with the pre-training denoising task (i.e., guessing masked tokens in the input instance). The
tokens masked in the pre-training are randomly selected and may not be contiguous. This
means that in very few cases the model sees instances in which it is required to generate
complete code statements. The fine-tuning, instead, starts from the pre-trained model or, in
other words, from the distribution of weights obtained after pre-training. These weights are
then modified to support the fine-tuning task that, in our case, explicitly requires the model
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to generate complete code blocks. Thus, when the model is asked during testing to generate
code blocks, the weights learned during the fine-tuning may come more “handy”, pushing
the model to reuse more knowledge acquired during the fine-tuning rather than during the
pre-training.

Take away 2. Most of the cloned predictions have clones in both the pre-training and the
fine-tuning. For example, in the case of Type-1 clones, ∼65% come from both training
datasets. This indicates that code instances seen repeatedly during both training phases
are, as expected, more likely to influence the generated predictions. The remaining
ones (i.e., clones that only come from one of the two training sets), are more likely to
come from the fine-tuning. This goes against what we expected since the pre-training
is substantially larger than the fine-tuning.

Correct and wrong predictions. Fig. 4.3 shows the percentage of Type-1 and Type-2
clones created by the model when generating correct (CP) and wrong (WP) predictions. Also
in this case the percentages must be read by keeping in mind that, across the test instances
on which the four models have been tested, all models achieved ∼3% of correct predic-
tions (∼500 cases), implying that we should expect ∼3% of clones being related to correct
predictions. Before commenting the results, a few notes on the low percentage of correct
predictions achieved by the models (more in our Validity Evaluation section — Section 4.4):
(i) such a percentage is inline with what has been reported in the literature for applications
of DL models to automate other code-related tasks, such as bug-fixing [TWB+19] or code
review automation [TPT+21]; (ii) the code generation tasks on which we tested T5 included
the generation of code blocks up to six lines of code, thus being non-trivial; (iii) we con-
sider as correct only predictions that are identical to the masked code, meaning that even
predictions that are slightly different but semantically equivalent are considered wrong; (iv)
finally, as we will discuss in Section 4.4, our inspection of wrong predictions confirmed that
the model learned how to generate syntactically correct code, confirming the validity of the
performed training.

Type 1
CP

Type 2
CP

Type 1
WP

Type 2
WP

Very
Strong
Strong

Weak
Very

Weak

12.3% 5.4% 87.7% 94.6%

11.1% 5.8% 88.9% 94.2%

12.0% 6.5% 88.0% 93.5%

13.3% 6.7% 86.7% 93.3%

Figure 4.3. Percentage of Type-1 and Type-2 clones in correct (CP) and wrong (WP) predictions.

The cases in which the predictions represent verbatim copies of code in the training data
(Type-1 clones) occur ∼4× more than expected in correct predictions (see Fig. 4.3), with
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∼12% of clones belonging to correct predictions, only representing ∼3% of all predictions.
This is likely due to instances (methods) in the training set that, while being different from all
methods in the test set, share with them the part of code that we masked. Such a result also
raises a warning for the evaluation of DL models in the context of code generation: It might
be not enough to just remove duplicates and/or near-duplicates across instances, since the
parts of code the model is required to generate in the test set may still be present as verbatim
copy in the training set, even when very strict criteria are used to remove duplicates (as in
the case of our Very Strong configuration).

Similar observations can be made for Type-2 clones, even though here the percentage of
clones in correct predictions is only ∼2× higher than what we expected.

Take away 3. Correct predictions are more likely to contain clones of code present
in the training datasets. Such a result stresses once more the importance of a proper
dataset cleaning to avoid overlaps between the training and the test datasets.

Correlation analysis. We now discuss the results related to the correlation analysis
aimed at understanding if specific characteristics of (i) the code snippet to predict, (ii) the
instance containing it, or (iii) the confidence of the model in generating the prediction, may
affect the presence/absence of code clones.

More in detail, as explained in Section 4.2, we consider (i) the Cyclomatic Complexity
(CC) of the entire instance (method), (ii) the CC of the model’s input (i.e., the entire method
without the block to predict), (iii) the number of lines of the method, (iv) the number of
lines of the block to predict, and (v) the confidence of the T5 model.

We found no significant correlation between all these metrics and the presence of Type-1
clones in the generated predictions. While we identified some significant correlations for
Type-2 clones, they are all lower than |0.15|, thus indicating very low correlations (complete
results in our replication package [repe]).

Qualitative Examples. Finally, we present in this section some qualitative examples of
the clones generated by the T5 model. Remember that the clones refer only to the part of
code predicted by the model, ignoring the surrounding context. In other words, two different
methods containing the same block of code predicted by T5 are considered as clones.

/ c l oned code /
errorFragment = new ErrorFragment ( ) ;
Bundle msg = new Bundle ( ) ;
msg . pu tS t r ing ( " msg " , ex . getMessage ( ) ) ;
errorFragment . setArguments (msg ) ;
getSupportFragmentManager ( ) . beg inTransac t ion ()

. r ep lace (R . id . message , errorFragment ) . commit ( ) ;

/ e x p e c t e d p r e d i c t i o n /
{
errorFragment = new ErrorFragment ( ) ;
Bundle msg = new Bundle ( ) ;
msg . pu tS t r ing ( " msg " , "No or poor i n t e r n e t connect ion . " ) ;
errorFragment . setArguments (msg ) ;
getSupportFragmentManager ( ) . beg inTransac t ion ()
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. r ep lace (R . id . message , errorFragment ) . commit ( ) ;
}

Listing 4.1. Type-1 Clone Generated in Wrong Prediction

The top part of Listing 4.1 shows an example of Type-1 clone generated by the T5, while
the bottom part reports the correct prediction the model was expected to generate (i.e., the
code we masked). As it can be seen, the prediction task we asked the model to perform was
far from trivial and the T5 managed to generate a prediction really close to the expected
one. Such a prediction was the result of cloning four of the five statements to predict from
the training dataset. This is one of those cases in which, despite the model did not generate
a correct prediction, it went quite close to the target, with the only difference being one of
the arguments used in the putString invocation.

Also Listing 4.2 shows a Type-1 clone generated in a wrong prediction. In this case,
we want to put the focus on the fact that the model cloned a snippet of code that repre-
sents a quite popular template in Java when converting a String to an Integer. The model
understood the need for implementing a check on the value of an Integer but failed in im-
plementing the check that was actually needed (the one shown in the expected prediction).

/ c l oned code /
i f ( s != nul l )
{

t ry {
return I n t ege r . pa r s e In t ( s ) ;

} catch ( NumberFormatException e ) {
}

}
return nul l ;

/ e x p e c t e d p r e d i c t i o n /
{

I n t ege r i n t e r v a l = OptionAdvanceParser . DEFAULT_INTERVAL ;
i f ( opt ionSet . hasArgument ( " i n t e r v a l " ) ) {

i n t e r v a l = ( In t ege r ) ( opt ionSet . valueOf ( " i n t e r v a l " ) ) ;
i f ( i n t e r v a l < 1) {

throw new I l l ega lArgumentExcept ion ( " I n t e r v a l cannot be s e t below 1.0 " ) ;
}

}
return i n t e r v a l ;

}

Listing 4.2. Type-1 Clone Generated in Wrong Prediction
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/ c l oned code /
do {

CategorySource categorySource = CategorySource . categoryFromCursor ( cursor ) ;
c a t s S r c s . add( categorySource ) ;

} while ( cursor . moveToNext ( ) ) ;

/ e x p e c t e d p r e d i c t i o n /
{

do {
CategorySource categorySource = CategorySource . categoryFromCursor ( cursor ) ;
c a t s S r c s . add( categorySource ) ;
} while ( cursor . moveToNext ( ) ) ;

}

/ code from the t r a i n i n g s e t /
do {

CategorySource category = CategorySource . categoryFromCursor ( cursor ) ;
c a t e g o r i e s . add( category ) ;

} while ( cursor . moveToNext ( ) ) ;

Listing 4.3. Type-2 Clone Generated in Wrong Prediction

Finally, Listing 4.3 shows an example of Type-2 clones, reporting the prediction on top,
the expected code in the middle, and the cloned instance from the training in the bottom.
In this case, the model reused the code structure just changing the identifier name from
category to categorySource. The model generated something very close to the expected
solution, fully relying, however, on code already seen during the training that led it to a
wrong prediction.

4.4 Validity Discussion

Threats to construct validity concern the relationship between the theory and what we ob-
serve. In our analysis, similarly with what done in the literature (e.g., [HPGB19, CCP+21a]),
we simulate the usage of the code recommender by masking blocks of code. We are aware
that the masked blocks may not completely reflect the way in which developers would use
such recommenders in practice.

Another threat is related to the limited prediction performance achieved by our models
(∼3% of correct predictions, detailed results in [repe]). As already discussed, this level of
performance is not unusual for the automation of challenging code-related tasks [TWB+19,
TPT+21], such as the code generation task subject of our study. However, a reader may
wonder whether the low percentage of clones we observed in the predictions may be due
to the fact that, in most of cases, the model just generates garbage, thus not being “able” to
generate clones of training instances. This is not unusual to observe for DL models trained,
for example, on very little data and that tend to generate long meaningless sequences of
frequent tokens observed in the training set (e.g., sequences of parentheses when dealing
with code-related datasets). While we trained our models on millions of Java methods, we
inspected a sample of 200 wrong predictions (50 for each of the four models) to manually
check whether the generated predictions, while wrong, followed a correct Java syntax. Such
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an analysis has been performed by the first author, and resulted in only 7 (3.5%) instances
classified “meaningless predictions” in terms of Java syntax.

Threats to internal validity concern factors, internal to our study, that could affect our
results. The hyperparameters tuning phase described in detail in Section 4.2 can have a
strong impact on the performance of DL models and, consequently, on their likelihood of
generating clones. Due to feasibility reasons, we calibrated the hyperparameters only for
the datasetver y_weak, assuming that the chosen configuration would also work well for the
other datasets. Hence, it is possible that evaluating a plethora of different configurations
may improve the performance of the model and/or impact our findings about the generated
clones.

Note also that, as explained, we observed that for some of the instances in the test set the
models generated unknown tokens that are less likely to result in clones from the training set.
For this reason, we reported in the thesis the results achieved when ignoring these instances,
while the results on the whole dataset are available in our replication package [repe]. As
previously said, the main observed findings still hold when also considering the predictions
featuring unknown tokens.

Finally, it is worth mentioning that the accuracy of the SIMIAN clone detector may in-
fluence the achieved results. To partially address this threat, the first author inspected 100
randomly selected predictions from our dataset for which Simian identified Type-1 (50 pre-
dictions) and Type-2 (50) clones. Since for a single prediction there might be dozens of
clones, we inspected 3 clones per each prediction. Concerning Type-1 clones, without sur-
prise, the accuracy was 100%, since those are predictions being exact copies of code in the
training sets. As for Type-2 clones, judging the identified instances was not always straight-
forward due to the limited size of the identified clones (between 2 and 6 lines). These clones
are exact copies at the AST-level and, looking at them from this perspective, we confirm the
correctness of all inspected cases. However, especially when looking at very small clones
(e.g., 2 lines), we acknowledge that some pieces of code, while sharing the same AST struc-
ture, may look different to a human, since using different identifiers and/or types.

Threats to external validity are related to the possibility to generalize our results. We
chose the T5 model, that showed a strong ability to adapt to different code-related tasks
[MSC+21] achieving remarkable performance. The datasets used in our experiments are all
Java-related. We do not claim any generalizability of our findings in terms of adopted DL
model and subject programming language.

We relied on the SIMIAN clone detector [simb] that, as explained in Section 4.2, is robust
in the processing of syntactically incorrect code. Results may change by using other clone
detectors. Moreover, in our study we only considered code clones composed by at least two
non-trivial lines. Considering shorter clones, while being an option, is likely to artificially
inflate the percentage of clones with instances that are not really relevant in terms of possible
licensing issues.
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4.5 Conclusion

Code recommenders are becoming more and more popular. GitHub Copilot [CTJ+21] sub-
stantially pushed the adoption of these tools by developers, making central questions related
to possible licensing issues that may come from their adoption in a commercial setting. In-
deed, these tools are usually trained on open-source code, the usage of which is regulated
by FOSS licenses.

While the posed licensing questions are part of a non-trivial debate among the open
source community, researchers, and tool builders, we started investigating a concrete and
related research question: To what extent do DL-based code recommender systems generate
predictions by cloning code snippets from the training set?

We trained a Text-To-Text-Transfer-Transformer (T5) model on over ∼2M Java methods
with the task of recommending code blocks aimed at finalizing the methods’ implementation.
Then, we used a clone detector to check whether the predictions it generated on the test set
represent Type-1 or Type-2 clones of instances in the training datasets. Our findings show
that, while for short predictions the trained deep learning model is likely to generate a non-
trivial percentage of clones (∼10% Type-1 and ∼80% Type-2), such a percentage quickly
approaches 0% when the model generates more complex predictions composed by at least
four code statements.

In summary, our findings suggest that the likelihood of obtaining clones generated by
DL-based code recommenders that are possibly “harmful” in terms of licensing issues is ex-
tremely low.

Our future work will mainly focus on replicating our work on larger, more performant,
DL-based code recommenders and different clone detectors, with the goal of confirming or
confuting our findings.

The material used in this study is publicly available [repe].
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5
On the Generalizability of Deep Learning-based
Code Completion Across Programming Language
Versions

5.1 Motivation

Just like code completion tools and approaches rapidly become more mature, programming
languages themselves evolve at a fast pace too. In the last five years, languages such as
Python [pyt] and JavaScript [javd] have released major versions every year, and Java [javb]
has released a new version every six months. These new versions introduce new features and
syntax such as new keywords, operators, data types, APIs, and constructs. For instance, Java
8 introduced the Stream API, which allows developers to perform functional-style operations
on collections of objects, and Java 11 introduced the var keyword, which allows developers
to declare local variables without specifying their type. These new features may impact the
performance of DL-based code completion models, which may be more prone to overfitting
the specific language version used for their training, or may simply be unaware of new syntax
constructs introduced in new language versions, thus being unable to predict them. This
problem is usually referred to as concept drift [GZB+14, LLD+19], where the data upon which
a machine learning model has been trained on evolves over time, eventually leading to a
performance degradation of the model or even invalidating it.

In this thesis, we study the impact of language evolution on the performance of DL-based
code completion models. More specifically, we investigate to what extent code completion
models can generalize across different language versions, including both older and newer
versions as compared to the one used for training.

We focus on Java as a good representative of a mature language with a long history of re-
leases over the last 30 years. The selected DL model for the evaluation is CodeT5 [WWJH21],
a state-of-the-art code model based on the Text-To-Text Transfer Transformer (T5) [RSR+20]
architecture. This model has been shown to perform well in a variety of code-related tasks
such as code summarization, code generation, and defect detection, among others [WWJH21].
For our experiments, we pre-train and fine-tune CodeT5 exclusively on Java 8 code, and then

59
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assess its code completion capabilities on nine different Java versions (including Java 8 itself)
ranging from Java 2 (released in 1998) to Java 17 (released in 2021). To make our study
more comprehensive, we evaluate the model performance at three different code comple-
tion granularity levels, namely, token-level (i.e., predicting the last n tokens in a statement),
construct-level (i.e., predicting whole constructs such as if conditions), and block-level (i.e.,
predicting all statements within a code block, such as the body of a for loop).

The results of our study show significant performance differences across different lan-
guage versions, with gradual decreases as we move away from the target version used for
training—Java 8—and the worst performance being obtained in the most far apart versions—
Java 2 and 17. This finding highlights the potential benefits of using version-specific DL
models for code completion and, even more significantly, the importance of retraining the
model on newer language versions as more training data is progressively available. As a
matter of fact, we found that a small fine-tuning on the target language version can signif-
icantly improve the model performance, thus suggesting that the model can be adapted to
new language versions with relatively little effort.

Our work raises awareness on the importance of retraining DL models on new language
versions, which can hopefully pave the way towards more effective code completion tools
that developers can use to boost their productivity. Moreover, we believe that our results
can be used to inform the design of online incremental training techniques for DL-based
code completion models, which can be trained on new language versions as soon as they are
released, thus keeping up with the fast-paced evolution of programming languages.

All code and data used in our study are publicly available [repc].

5.2 Study Design

The goal of this study is to assess the generalizability of a state-of-the-art DL-based code com-
pletion technique across different versions of the same programming language. In particular,
we aim at answering the following research question (RQ):

To what extent do DL-based code completion techniques generalize across different language
versions?

Our empirical study is focused on the specific context represented by: (i) CodeT5 [WWJH21]
as a representative DL model which has been used in the literature for the automation of
code-related tasks [CAD+22, BWH22, TC22, ZJW+23, LWG+22, ADS22, WWW+22]; and
(ii) code from 784 Java repositories for which we managed to reliably identify the used Java
version.

CodeT5 is a T5 model [RSR+20] pre-trained on code and natural language (i.e., code
comments). Wang et al. [WWJH21] exploited the CodeSearchNet dataset [HWG+19] for
pre-training CodeT5. This dataset includes functions written in six programming languages
(Go, Java, JavaScript, PHP, Python, and Ruby). Some of these functions also include a sum-
mary comment (e.g., the Javadoc comment for Java). On top of CodeSearchNet, Wang et al.



5.2 Study Design 61

collected additional functions from C/C# repositories hosted on GitHub. Overall, their pre-
training dataset featured 8,347,634 functions, 3,158,313 of which paired with their docu-
mentation. The employed pre-training objectives were the classic masked language model
(i.e., self-supervised pre-training by randomly masking 15% of the input asking the model to
predict it) as well as a novel identifier-aware pre-training objective devised by the authors.

In our study, we fine-tune CodeT5 for the code completion task only with source code
belonging to a specific Java version vi , and we test it on multiple test sets, each featuring a
different Java version (including vi). The performance obtained on the vi test set provides
a reference point for evaluating the performance on all the other test sets (v j 6= vi). To
factor out the impact of pre-training on the CodeT5 model (whose pre-training dataset does
include code from multiple Java versions [HWG+19]), we perform the experiments not only
with the pre-trained model (i.e., the publicly available CodeT5 checkpoint [cod]), but also
with a non pre-trained one.

5.2.1 Data Collection and Datasets Creation

In this section, we describe the process for collecting the data used to create the training and
test sets. The training dataset is used to fine-tune CodeT5 for the code completion task on
a single Java version, while the test sets are used to assess the generalizability of the model
across different Java versions.

We used the tool by Dabic et al. [DAB21] to select from GitHub all the non-forked Java
repositories having more than 100 commits, 10 contributors, 50 issues, and 10 stars. We ap-
plied these filters in an attempt to remove toy/personal projects. This query resulted in 5,632
repositories. One of the requirements for our study is the ability to identify the Java version
used in the project. For this reason, we only selected from the 5,632 repositories those using
Maven. Indeed, Maven projects feature a POM (Project Object Model) file where developers
can specify configuration details useful for building the project, including the used Java ver-
sion. To increase the probability of collecting compilable code from these projects (i.e., to
avoid training the DL model on syntactically wrong code), we excluded all projects which
cannot be compiled using Maven. In particular, we attempted the compilation for the last
two GitHub releases of each repository, keeping only the ones for which compilation suc-
ceeded: we first check the latest release and, only if its compilation fails, we move to the
second-last. Overall, we collected 784 repositories which can be successfully compiled and
which explicitly report the adopted Java version in the POM file.

From each repository, we randomly selected up to 1,000 Java files, ignoring the ones
having the word “test” in the filename, aiming to exclude test files and create a more cohesive
dataset made of production code only. The choice of capping the maximum number of files
per project to 1,000 aims at avoiding that very large projects may contribute too much code
to the final dataset.

We used the set of collected files to build a method-level dataset of code completion
tasks by slightly adapting the masking procedure proposed by Ciniselli et al. [CCP+21a].
In particular, Ciniselli et al. proposed three method-level completion tasks having different
levels of difficulty:



62
On the Generalizability of Deep Learning-based Code Completion Across Programming

Language Versions

• Token masking. For each line of code, we masked the last n tokens in a statement, with
n randomly ranging from three to ten, and then we asked the model to predict them.
We chose to mask at least three tokens to avoid trivial completions (e.g., only predicting
the semicolon ending a Java statement). Moreover, we masked at most three random
statements for each method to avoid generating too many instances from the same
method. Indeed, each method can generate multiple training/testing instances, each
with a specific statement being partially masked. The token masking scenario emulates
the code completion task in which the DL model is trying to complete the statement
the developer is writing.

• Construct masking. Ciniselli et al. suggests that code completion performed on spe-
cific types of code constructs (e.g., the condition of if statements) can be particularly
useful to developers. We follow their construct masking scenario, by masking all tokens
used to implement: (i) the condition of an if statement or of a while/for loop, e.g.,
“for(int i=0; i<dict.size(); i++)” is masked as “for(<MASK>)”, with the model
in charge of predicting the masked tokens; and (ii) the exception caught in a catch

statement. Also in this case, a single method can contribute multiple instances to the
dataset (e.g., if it has three if statements, three instances are created, each of which
having the condition of one if statement masked). We used srcML [src] to identify
the statements of interest and perform the masking.

• Block masking. This is the most challenging completion task. All code statements
enclosed between curly brackets are considered a block (e.g., the corpus of an if state-
ment [CCP+21a]). As in the previous case, we used srcML [src] to identify all blocks
in each method and then create multiple instances of it, each having one entire block
masked. As Ciniselli et al., we only mask blocks featuring at most three statements to
cap the task complexity.

We applied these masking procedures to all methods in the collected Java files, gener-
ating three different datasets. Exceptionally, we excluded methods that: (i) contained non-
ASCII characters, which caused issues during training; and (ii) contained less than three or
more than 50 statements (including signature), since they are either too short to prepare
any meaningful completion scenario or too long to be provided as input to the DL model,
whose maximum input length is 512 tokens. We removed duplicate methods to avoid leaking
information between the training and test sets. In the end, we collected 1,052,141 differ-
ent methods, from which we derived a total of 2,846,746 token-masking instances, 783,546
construct-masking instances, and 1,303,444 block-masking instances. Note that the construct-
masking instances are less than the overall number of methods since not all methods feature
the construct types we mask (i.e., if, while, for, and catch).

The methods and corresponding instances are spread across 10 different Java versions
as reported in Table 5.1.
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Table 5.1. Number of methods and instances for each Java version.

Java
# Methods

# Token # Construct # Block
Version Instances Instances Instances

2 4,530 12,167 1,389 2,802
5 8,549 21,178 6,510 11,103
6 68,379 181,877 53,991 85,517
7 99,405 266,162 72,108 122,593
8 809,704 2,194,600 601,891 1,007,040
9 4,809 13,879 3,393 5,401
11 38,521 105,700 29,975 44,632
14 6,160 17,203 5,842 8,644
16 7,169 20,593 4,946 9,805
17 4,915 13,387 3,501 5,907

ALL 1,052,141 2,846,746 783,546 1,303,444

Creating the Test Sets

Our goal is to create 30 different test sets, each one representing one of the 10 Java versions
featured in our dataset and one of the three masking scenarios we adopted. For example,
one test set will feature Java 2 methods in which entire blocks have been masked (i.e.,
block masking). In creating the test sets, we must make sure that they all feature instances
having a similar level of complexity, so that any observed performance differences in the
model predictions can be attributed to the Java version used in the test set, and not to other
factors. To address this issue, we defined a number of metrics to assess the complexity of
each instance in our dataset, where an instance is a Java method having some of its tokens
masked (based on the three masking scenarios previously described):

1. Number of lines in the method. Longer methods may provide more contextual informa-
tion to the model and allow for a simpler completion (e.g., completing 10 out of 100
tokens may be easier than completing 10 out of 15 tokens).

2. Average number of characters per line. Very long statements in a method may suggest
a higher complexity of its instructions. The average number of characters per line is
computed as the total number of characters in a method divided by the number of
lines it features.

3. Number of masked characters. The higher the number of masked characters, the higher
the complexity of the code completion task (i.e., guessing 20 characters is likely more
complex than guessing five characters).

4. Number of lines masked (only for block masking). Similarly to the number of masked
characters, masked blocks featuring a higher number of lines are likely more challeng-
ing to predict.

We computed these metrics for all collected methods. Table 5.2 reports their mean values
on the whole dataset. These represent our reference values that we use to build the test sets
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Table 5.2. Complexity metrics computed on the dataset.

Metric Value

Mean # of lines in method 7.7
Mean # of characters per line 28.1
Mean # of masked characters (token masking) 18.2
Mean # of masked characters (construct masking) 27.9
Mean # of masked characters (block masking) 37.5
Mean # of masked lines (block masking) 1.3

Algorithm 1 Algorithm used for generating the test sets.
n← 5000 . Number of selected methods for that specific Java version
δ← 0.05 . Difference allowed between the reference metrics and the test set metrics
function BUILDTESTSETS(n,δ)

S← RANDOMLYSELECTSAMPLE(n)
for steps← 1 to 5000 do

const raintMet ← True
for i← 1 to NumberO f Met rics do

RCi
← REFERENCEVALUEFORMETRIC(i)

SCi
← CALCULATESAMPLEMETRIC(S, i)

if SCi
− RCi

> δ then
const raintMet ← False
m j ← FINDMETHOD(S, i, RCi

) . random method having Ci > RCi
mk ← FINDMETHOD(S, i, RCi

) . random method having Ci < RCi
S← REPLACEMETHOD(S, m j , mk)

else if SCi
− RCi

< δ then
const raintMet ← False
m j ← FINDMETHOD(S, i, RCi

) . random method having Ci < RCi
mk ← FINDMETHOD(S, i, RCi

) . random method having Ci > RCi
S← REPLACEMETHOD(S, m j , mk)

end if
end for
if const raintMet = True then

return S
end if

end for
n← n− 500
return BUILDTESTSETS(n,δ)

end function

for the different Java versions. In particular, we build the test sets by adopting the algorithm
reported in Algorithm 1, explained in the following.

We target the building of test sets featuring n=5,000 instances each (e.g., 5k instances in
the Java 8 test set using token masking). We set as constraint that each test set should feature
instances being close, in terms of complexity, to the reference metric values in Table 5.2,
with a margin δ of ±5% for each metric. This means, for example, that a test set can have a
mean number of lines per method being 7.7±0.38. The same holds for the other metrics in
Table 5.2. The algorithm starts by randomly selecting a sample S of 5,000 Java methods from
the dataset, checking for each metric Ci how far this sample is from the reference value. If
the constraint for Ci is satisfied (i.e., SCi

is within δ from the reference value RCi
), no changes

to S are performed. Otherwise, if SCi
- RCi

> δ and it is a positive number (i.e., methods in
S have a higher value for the metric Ci as compared to the reference value RCi

), we remove
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from S a randomly selected method m j having Ci > RCi
and we add a randomly selected

method mk having Ci < RCi
. If, instead, methods in S have a lower value for the metric Ci

as compared to RCi
, we remove from S a randomly selected method m j having Ci < RCi

and
we add a randomly selected method mk having Ci > RCi

. Essentially, we seek convergence
of the considered metrics. We perform this procedure for a maximum of 5,000 steps. If after
5,000 steps the sample S does not meet the constraint for all metrics, we reduce the number
of methods to collect by 500 (i.e., n= n− 500) and repeat the process.

Table 5.3. Number of methods and instances for each set for each Java version.

Dataset
Java

# Methods
# Token # Construct # Block

Version Instances Instances Instances

train 8 724,130 1,962,673 538,427 900,927

eval 8 80,574 218,377 59,729 99,886

test

2 3,000 7,692 879 2,052
5 5,000 12,626 4,670 6,866
6 5,000 13,272 4,032 6,394
7 5,000 13,440 3,547 6,069
8 5,000 13,550 3,735 6,227
11 5,000 13,547 3,494 5,650
14 5,000 13,855 4,178 6,750
16 5,000 14,356 3,568 6,849
17 4,000 10,894 2,925 4,834

Following this procedure, we managed to collect 5,000 methods for all test sets with
few exceptions: for Java 2, which featured 4,530 overall methods in the whole dataset, we
managed to collect 3,000 methods. For Java 17, we collected 4,000. Lastly, for Java 9, we
did not reach convergence at any test set size, hence its exclusion from our study.

Creating the Training (Fine-Tuning) and Evaluation Set

Given the distribution of methods across the Java versions in our dataset (see Table 5.1), we
decided to use Java 8 as the “training version”, since it features∼80% of the overall methods
we mined. This means that Java 8 is the version on which we train CodeT5 to then test its
performance on the test sets belonging to the different versions (including Java 8 itself). To
create the training and evaluation sets, we took the 804,704 Java 8 methods which were
not included in the Java 8 test set and split them into training (90%) and evaluation (10%)
sets, the latter being used for hyperparameters tuning (as described in the next section).
Table 5.3 reports the number of methods and instances for the training, evaluation, and test
sets.

5.2.2 Hyperparameters Tuning and Training

We adopt the default parameters used in the paper presenting CodeT5 [WWJH21], only
experimenting with different learning rates. More specifically, we evaluated three different
values (i.e., 1e−5, 2e−5, 5e−5), using the AdamW optimizer [LH19] to update the weights.



66
On the Generalizability of Deep Learning-based Code Completion Across Programming

Language Versions

We trained the model for 10K steps using a batch size of 12 and we evaluated the perfor-
mance of each of the three configurations on the evaluation set in terms of the percentage
of exact match predictions (i.e., the predicted code tokens are identical to the masked ones).
We performed this tuning for both: (i) a CodeT5 model fine-tuned based on the publicly
available pre-trained checkpoint [cod]; and (ii) a CodeT5 fine-tuned from scratch, not pre-
trained at all. Indeed, as previously explained, CodeT5 has been pre-trained on source code,
including Java code. Thus, it has seen Java code written in versions different from the Java
8 we want to use as “training version”. Experimenting also with a non pre-trained model in
our study allows us to factor out this further confounding factor.

For both models (i.e., pre-trained and non pre-trained) we found the best configuration
to be the one in Table 5.4. Using this configuration, we trained the two models for 15 epochs,
for a total of 4,250,000 training steps with a batch size of 12. The trainings took 26 days
using an NVIDIA GPU GeForce RTX 3090 with 24GB of RAM.

During the training, we saved a checkpoint every 50K steps, evaluating the performance
on the evaluation set. We aimed to use early stopping, however, in both trainings, the best
checkpoint was the last one for the pre-trained model and the second-last for the non pre-
trained one. We are aware that this indicates potential margin for improvements for both
models. However, the increment in performance among the latest checkpoints was very
minor as it can be seen in Fig. 5.1. Thus, we decided to not invest additional time in further
training the models.

Table 5.4. Configuration used for the CodeT5 training.

Hyperparameter Value

Learning rate 5e−5

Batch size 12
# Encoder block 12
# Decider block 12
# Attention Heads 12
Hidden Layer Size 768

5.2.3 Evaluation and Analysis

We evaluated both trained models (i.e., with and without pre-training) on all the 27 test
sets (i.e., 9 Java versions × 3 masking scenarios), collecting their predictions. For each test
set, we compute the percentage of Exact Match (EM) predictions. We focus our discussion
on the gap of performance (if any) existing between the EMs observed on the Java 8 test
set (featuring instances written using the same language version used for the training and
hyperparameters tuning) and those obtained on other Java versions, both those preceding
and following version 8.

We statistically compare the results achieved on the Java 8 test set and on all other test
sets assuming a significance level of 95%. We compute the Fisher’s exact test (and related
OR) on a matrix containing, for the different test sets and for different masking levels, the
number of correct (EM) and incorrect predictions. To account for multiple test instances—
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Figure 5.1. Percentage of Exact Match predictions for both models at different training epochs.

we contrast the performance on Java 8 with all other versions—we adjust p-values using the
Benjamini-Hochberg procedure [YY95].

5.3 Results Discussion

We discuss the achieved results by presenting: (i) performance differences across language
versions; (ii) possible reasons behind the observed differences in performance; and (iii) the
impact of version-specific fine-tuning on the model performance. The combination of these
analyses allows us to provide a comprehensive answer to our RQ.

5.3.1 Performance Differences

We computed the percentage of EM predictions for the test set of each Java version, both
for the pre-trained and non pre-trained model. Fig. 5.2 reports the results obtained. The
x-axis shows the Java version, with the distance between data points being proportional to
the time passed between Java version releases. The y-axis shows the percentage of correct
predictions made by the pre-trained (dashed lines) and non pre-trained (continue lines)
models in the three masking scenarios, i.e., token-level (orange line), construct-level (red),
and block-level (dark red).

As illustrated, the trend in performance is similar for different masking scenarios and
models. As expected, the best results are obtained for Java 8 (i.e., when testing the model on
the same Java version seen during training), where the pre-trained model is able to correctly
predict up to 70% of instances for the token-level masking scenario. The percentage of EM
predictions gradually decreases as we move away from Java 8, both back and forward in
time. Despite the similar trend overall, there are notable differences across language versions
and masking scenarios. As expected, block-level masking is the most challenging scenario,
since the model has to guess up to several entire statements, while token-level masking is
the easiest one, with just a few tokens to predict. Construct-level masking is in the middle:
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Figure 5.2. Percentage of Exact Match predictions with and without pre-training on different Java
versions.

constructs define the application logic and hence are difficult to predict, while still limited
in size.

The impact of pre-training is relevant, with an average improvement across all Java ver-
sions and masking scenarios of +9%.

In detail, looking at the performance of the model for each specific completion scenario,
the improvement goes from 5% to 16% for token-level masking, and from 12% to 19% for
construct-level masking. For block-level masking the improvement is less evident, ranging
from 3% to 8% block, likely due to the difficulty of the task. Thus, pre-training the model
can be very valuable, especially when the predictions are quite challenging, involving for
example logic constructs.

The pre-training dataset is a mixture of all different Java versions [HWG+19] and this
can help the model in predicting code that, despite being different from the one used for
training (fine-tuning), has been seen during the pre-training phase.

In terms of language version, the worst results are obtained for Java 2, probably because
this is an archetypal version of the language (Java 2 was released in 1998 while Java 8 in
2014). It is worth noticing that the performance on the last three versions (i.e., Java 14,
16 and 17) is very similar, likely due to very small differences between these versions, all
released between March 2020 and September 2021.

We also reported in Table 5.5 the results of the Fisher’s Exact test (and related OR) when
comparing the performance on the Java 8 test set and all other test sets (in terms of EM
predictions) for the non pre-trained model (results for the pre-trained one are available in
our replication package [repc]).

The p-values, after adjustment, are always very close to 0, indicating a statistically sig-
nificant difference in the performance observed on the different test sets. The OR goes from
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Table 5.5. Comparing EM predictions on the Java 8 test set vs the test sets of the other versions:
adjusted p-value and OR.

Java Masking Fisher Fisher
version scenario p-value OR

2
token � 0.001 3.74
construct � 0.001 4.73
block � 0.001 13.73

5
token � 0.001 1.73
construct � 0.001 1.84
block � 0.001 1.72

6
token � 0.001 1.69
construct � 0.001 1.92
block � 0.001 2.28

7
token � 0.001 1.59
construct � 0.001 1.63
block � 0.001 2.16

11
token � 0.001 1.70
construct � 0.001 1.97
block � 0.001 2.65

14
token � 0.001 2.06
construct � 0.001 2.51
block � 0.001 3.92

16
token � 0.001 1.83
construct � 0.001 2.27
block � 0.001 3.66

17
token � 0.001 1.78
construct � 0.001 3.05
block � 0.001 2.64

1.59 to 13.73 indicating much higher odds of observing a correct prediction on the Java 8
test set rather than on the others. For example, in the comparison between Java 8 and Java
14 in the token-level scenario, the OR=2.06 indicates that the odds of an EM prediction for
Java 8 are ∼2 times higher than for Java 14.

Key insight: Regardless of the masking scenario and the use of pre-training, there are
significant performance differences across language versions, ranging from 11% (w.r.t.
Java 5, block masking, non pre-trained model) to 37% (w.r.t. Java 2, block masking,
pre-trained model).

5.3.2 Reasons Behind Performance Differences

The observed drop in performance provides strong evidence of the concept drift [GZB+14,
LLD+19] issue caused by programming language evolution. In this section, we try to better
link the observed drop in performance to the changes implemented across the Java ver-
sions. In particular, we looked for the official Java documentation reporting the new APIs
introduced in each Java version different from Java 8. Unfortunately, we only found this
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Figure 5.3. Distribution of the percentage of EM predictions for 100 subsets of instances not featuring
new APIs (box plots) vs the percentage of EM predictions in the set featuring new APIs (red dots).
On average, each set features 43 instances.

information for the newer versions (i.e., those following Java 8), and only for the versions
listed in Table 5.6 we identified new APIs.

Based on this information, we conducted an analysis to compare the percentage of EM
predictions in the instances from the test sets containing new APIs against the percentage of
EM predictions in the instances not featuring any new APIs released after Java 8. The goal
of this analysis is to understand whether the presence of new APIs (not seen in the Java 8
training set) in the code to predict has an impact on the model performance.

It is worth mentioning that the code containing new APIs represents less than 1% of the
instances of the test sets. Thus, the observed drop in performance is certainly not only due
to the new APIs introduced in the new Java versions.

For example, Java 9 also introduced an improved try-with-resource statement and
the diamond operator extensions which partially changed the language syntax.

Still, we compare the performance of the code completion model when dealing with
instances featuring and not featuring new APIs to get an idea of what the impact of new
“code tokens” unseen in the training set can be. To allow for a fair and robust comparison,
given n the number of instances featuring new APIs in the test set of Java version j (with
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Table 5.6. New APIs introduced in specific Java versions.

Java
Features

version

9
List.of, Set.of, Map.of, takeWhile, iterate,
dropWhile, ifPresentOrElse

10 List.copyOf, orElseThrow

11
isBlank, lines, strip, stripLeading, stripTailing,
repeat, Files.writeString, Files.readString,
HttpClient, HttpRequest, HttpResponse

12
indent, transform, Files.mismatch, Collector.teeing,
NumberFormat.getCompactNumberInstance

13
newFileSystem, stripIndent, translateEscapes,
formatted

j ∈ {11, 14,16, 17}, namely one of the versions following Java 8 and considered in our study)
we randomly select from the same test set 100 subsets of n instances each, all not featuring
new APIs. Then, we compare the percentage of EM predictions obtained on the set featuring
instances with new APIs with the distribution of EM predictions obtained for the 100 subsets
of equal size featuring instances not exploiting new APIs.

Our findings are presented in Fig. 5.3. For each Java version and masking scenario, we
report a boxplot illustrating the distribution of the percentage of EM predictions across the
100 randomly sampled subsets, i.e., those not featuring new APIs. We also report a red
dot representing the percentage of EM predictions in the instances containing new APIs. As
illustrated, for the Java 11, 14, and 17 test sets, the performance observed on the instances
featuring the new APIs usually falls below (or inline) with the first quartile, indicating that in
≥75% of cases, we observed better performance in the instances not featuring new APIs. This
holds for all code completion scenarios (i.e., token, construct, block). The only exception to
this trend is Java 16, in particular when dealing with token- and construct-level completions.

Key insight: The introduction of new APIs in the language has, in most cases, an im-
pact on the model performance, with a noticeable drop of EM predictions for instances
featuring new APIs. Still, no strong claims can be made on this finding given the lack of
statistical analysis, which we do not perform given the low number of instances in the
test sets exhibiting new APIs (43, on average, in each of the 12 test sets).

5.3.3 Impact of Version-Specific Fine-Tuning

Given the major drop in performance observed when moving away from Java 8, possible
strategies to address such a performance decrease are worth being investigated. For this
reason, we studied the extent to which a small additional fine-tuning performed on each of
the eight Java versions v j 6= 8 may increase performance on the v j test set. In particular, we
created eight additional fine-tuning datasets (one per each Java version different from Java
8) by using methods that have been excluded while building the test sets (i.e., excluded by
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Table 5.7. Number of methods and instances of the version-specific fine-tuning datasets for each Java
version.

Java
# Methods

# Token # Construct # Block
Version Instances Instances Instances

2 1,530 4,475 510 750
5 3,549 8,552 1,840 4,237
6 63,379 168,605 49,959 79,123
7 94,405 252,722 68,561 22,124
11 92,153 105,700 33,111 38,982
14 1,160 3,348 1,664 1,894
16 2,169 6,237 1,378 2,956
17 915 2,493 576 1,073

ALL 259,260 552,132 157,599 151,139

Algorithm 1) and thus not used in any step of our study. This resulted in the datasets listed in
Table 5.7. The datasets have different sizes, also allowing us to observe whether particularly
small datasets (e.g., Java 17) are anyway sufficient to observe any practical improvement.
Each of these datasets has been split into 90% for the additional fine-tuning and 10% for
evaluation. The fine-tuning has been performed for only five epochs on top of the model
fine-tuned for Java 8, in an attempt to simulate its adaptation to a different Java version.

In total, 16 new models have been trained (i.e., 8 Java versions with/without pre-training).
We assessed the EM predictions of the models after each training epoch on the correspond-
ing evaluation set, selecting the best performing one to be run on the test set (i.e., the one
adopting the same version as the version-specific fine-tuning dataset).

Fig. 5.4 reports the achieved results for the non pre-trained (a) and for the pre-trained
(b) models. Each subfigure features eight pairs of bars, one pair for each of the eight Java
versions for which we further fine-tuned the model (i.e., all but Java 8). The red bars rep-
resent the absolute improvement in EM predictions observed on the test set adopting the
same version used for further fine-tuning the model, while the orange bars report changes
in performance observed on the Java 8 test set. We computed the performance on both
test sets in an attempt to understand whether the adaptation of the model to a specific Java
version (different from Java 8) may have a negative impact on the version that the model
was originally trained on (Java 8). We statistically analyzed the results using the Fisher’s
exact test and related OR, comparing the performance of the model with and without the
version-specific fine-tuning for each of the test sets previously described. For the statistically
significant comparisons (i.e., p-value < 0.05), we reported the OR value on the top of each
bar. Since the trend is similar for both pre-trained and non pre-trained model, we focus our
discussion on the non pre-trained one, i.e., Fig. 5.4 a).

The second round of fine-tuning significantly increased the accuracy of the predictions.
The most notable improvement was obtained for Java 2—the most negatively affected ver-
sion by the concept drift problem—where the percentage of correct block-level predictions
jumped from 3% to 33%, with an overall improvement of 31% across all masking scenarios.
All improvements resulted in statistically significant differences with large ORs (i.e., 2.5 in
the token-level, 5.9 in the construct-level, and 11.1 in the block-level).
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Figure 5.4. Difference in the percentage of EM predictions with and without the version-specific
fine-tuning, evaluated on the same Java version test set and on the Java 8 test set.

For the other Java versions, the improvement ranges from 3% to 15% for token-level pre-
dictions, from 7% to 39% for construct-level predictions, and from 4% to 29% for block-level
predictions. Overall, the average improvement is 11% across all masking scenarios. Inter-
estingly, even a rather small fine-tuning dataset such as the one used for Java 17 still allowed
to achieve statistically significant better performance in all masking scenarios, although with
ORs limited to a maximum of 1.7.

Such a major improvement has however a small price to pay. Indeed, re-adapting the
model to a specific version did have an impact on the performance of the model for the
version it was originally trained on (Java 8). However, as shown in Figure 5.4 (orange
bars), the performance drop was very small in most cases (4% on average). These findings
show that a short additional fine-tuning on a specific Java version can significantly improve
the performance of the model on that version, while incurring a negligible performance
degradation for the original version the model was trained on.
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Key insight: A limited fine-tuning—with few training instances and epochs—on a spe-
cific language version can lead to significant performance improvements in the model
predictions (up to 40%) at the cost of a negligible performance drop in the original ver-
sion (4% on average). The most noticeable improvements are achieved for the most
challenging tasks, i.e., construct-level, and block-level predictions.

5.4 Threats to Validity

Conclusion validity. We applied appropriate statistical analysis, using specific statistical
tests and effect size measures, following common guidelines in the literature [AB14, YY95].

Construct validity. These revolve mainly around the way in which we evaluate the task
of code completion, i.e., by masking code elements. While we acknowledge that this might
not be completely representative of how developers write code, we evaluate three different
completion tasks (token-level, construct-level and block-level) that allow us to evaluate the
model performance in different scenarios and with different amounts of masked code. An-
other threat in this regard is how we evaluate the model performance, i.e., by measuring
the percentage of Exact Matches. While it is possible that the model predicts different but
semantically equivalent code, we believe that this metric is still a good proxy for the model
performance, as previous work shows that distinct code suggestions tend to be semantically
different [CCP+21b, ARSH14, ASLY20, HD17].

Internal validity. On the one hand, it is possible that the observed performance differ-
ences across language versions may be due to the specific test sets used for the experiments.
To partially address this threat, we implemented Algorithm 1, whose goal is to balance the
complexity of the predictions in the tests. On the other hand, the impact of version-specific
fine-tuning (Section 5.3.3) might depend on the size of the fine-tuning datasets. In acknowl-
edging this, we reported the sizes of all version-specific datasets used (Table 5.7).

External validity. Our study is characterized by the selected DL model, programming
language, and reference language version. CodeT5 was selected as a representative code
model that has demonstrated strong performance across a range of tasks [WWJH21]. The
choice of Java was motivated by its popularity and widespread use, and because it is possible
to reliably identify a project’s Java version based on its POM file. Finally, we selected Java 8
as the reference version due to its prevalence in the dataset, as shown in Table 5.1.

5.5 Conclusion and Future Work

Programming languages evolve rapidly. To support developers effectively, coding tools must
keep up with this fast pace. DL-based code completion approaches and, more broadly, in-
telligent coding assistants such as the recently released GitHub Copilot Chat [git] are in-
evitably affected by these changes. In this thesis, we investigated the impact of language
evolution on the performance of code models for the task of code completion. Our findings
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demonstrate that DL-based code completion models are susceptible to the concept drift prob-
lem, with significant performance differences across different language versions, particularly
when deviating from the target version used for training. In aiming to mitigate this problem,
we evaluated the impact of fine-tuning the model with a limited version-specific dataset. The
results are encouraging, with noticeable gains in performance even with datasets of just a
few hundred samples. We believe that our research can inform the design and deployment
of more robust code completion models, which can be continuously refined as new training
data (code from new language versions) becomes available.

Our future research will target two main goals. First, we plan to make our study more
comprehensive and extend it to other DL models and programming languages. Second,
we will delve deeper into the impact of the small version-specific fine-tuning on the model
performance, as well as the perceived improvements by developers in real-world scenar-
ios. These efforts will contribute to the development of adaptable code completion tools,
ensuring they remain effective amid the dynamic nature of programming languages.
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6
Source Code Recommender Systems: The
Practitioners’ Perspective

6.1 Motivation

Recommender systems are becoming more and more popular in software engineering. These
tools can support developers in several tasks [RMWZ14], such as documentation writing
and retrieval [XP06, MBP+15, MBP+17, HLX+18], code refactoring [BLMO14, TCC18], bug
fixing [GDFW12, TWB+19, LWN20], bug triaging [TNAN11, XLD+17], code review [TPT+21,
TMM+22] etc. Among these, source code recommender systems support developers in writing
code.

While research on code recommender systems is extremely active, with new tools fre-
quently released, able to achieve new state-of-the-art performance, no previous work in-
vestigated what the desiderata of software developers are. In other words, the techniques
proposed in the literature are mostly based on assumptions made by researchers. For ex-
ample, a recent work by Wen et al. [WAN+21] targets the automatic implementation of
whole code functions. However, it is unclear whether developers are actually looking for
such a type of support or if, instead, they prefer the classic code completion implemented in
IDEs. Also, none of the existing tools and techniques customize their code recommendations
based on the developer’s coding style and/or to their expertise and it is unclear whether such
a functionality would be important for practitioners. To answer these questions, we present
a study involving 80 practitioners which is aimed at investigating the characteristics of code
recommenders that they consider important. In particular, after collecting demographic in-
formation, we asked participants their opinion about the code recommenders they use (e.g.,
copilot, default code completion in IDE, etc.) from three perspectives: (i) coverage (i.e.,
in how many coding scenarios the tool can provide recommendations), (ii) accuracy (i.e.,
to what extent recommendations are close to what practitioners need), and (iii) usability
(i.e., how friendly the user interface is). For each of these three aspects participants were
asked to describe improvements (if any) they would like to see in the recommender they
mostly use. Then, we ask them in an open-ended question what the characteristics of code
recommenders they consider important are.

77
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Each answer we received has been independently analyzed by five authors through an
open-coding inspired approach with the goal of assigning a set of tags to it. The extracted
tags represent requirements expressed by practitioners for code recommenders and, after
conflict resolution, have been organized in a hierarchical taxonomy. Such a process has
been performed iteratively four times, with 20 practitioners taking part in each iteration.
We stopped once the output taxonomy converged (i.e., no additional requirements were
added to the taxonomy from the answers we received in the last iteration).

The output of our study is a taxonomy of 70 “requirements” that should be consid-
ered when designing code recommender systems (Fig. 6.2). For example, our taxonomy
highlights that practitioners are interested in adaptive recommendations, meaning that the
recommended code should be automatically adapted to the code under development (e.g.,
reusing identifiers when possible) and to the developer’s coding style.

Significance of research contribution. The taxonomy of 70 “requirements” for code
recommenders, the output of our study, provides a rich research roadmap in the field of
code recommender systems. Indeed, as our empirical evidence shows, the desiderata of
practitioners in this context are not always aligned with what offered by state-of-the-art
techniques.

Based on our taxonomy, researchers can have a clear understanding of what the priorities
are when designing code recommenders.

Data availability. We release the survey used in the study, the collected answers with
the results of the manual analysis we performed on them, plus additional material in our
replication package: https://code-recommenders.github.io.

6.2 Study Design

The goal of the study is to investigate what the desiderata of software practitioners are when
it comes to code recommender systems. The context consists of objects, i.e., a survey designed
to investigate the study goal, and subjects (referred to as “participants”), i.e., 80 practitioners
recruited through Amazon Mechanical Turk (MTurk) [amt] and personal contacts.

We aim at answering the following research question:

What are the characteristics of code recommender systems that are considered im-
portant by practitioners? Despite the many code recommender systems proposed
in the literature, no study investigated what practitioners actually need in terms
of automatic support during coding activities. Answering our RQ can guide the
development of better code recommender systems.

6.2.1 Context Selection — Participants

We recruited participants through two channels. First, we used MTurk [amt], a crowdsourc-
ing website to hire people for on-demand tasks. We enrolled participants that (i) have suc-
cessfully completed in the past at least 50 tasks on MTurk; (ii) have an approval rate for their
past tasks greater than 90% (i.e., more than 90% of the tasks they performed in the past have

https://code-recommenders.github.io
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been approved by the requester); (iii) hold the MTurk Master qualification assigned to “top
workers”. We only involved practitioners in our survey, excluding students (at any level) and
researchers.

Participants who completed our survey were paid 10$ upon a manual verification in
which we made sure that the provided open answers (described in the following) were
meaningful and written in correct English. We collected 31 complete surveys from MTurk.
In addition, we invited practitioners in the authors’ contact network. This resulted in an
additional 49 answers, leading to a total of 80 participants. As explained later, developers
were not invited altogether, but in four rounds of 20 participants each. Demographics about
participants are presented in Section 6.3.

6.2.2 Context Selection — Survey

Our survey has been implemented in Qualtrics [qua] and is available in our replication pack-
age [repd].

Participants were initially presented with a welcome page, which explained the goal of
the study, reported its expected duration (∼15 minutes), and set the context by explaining
what source code recommender systems are:

With source code recommender systems we refer to approaches that can be used to
automatically suggest code to developers while they are writing code. The classic
example in this context is the code completion feature implemented in IDEs.
However, some tools go beyond the classic code completion task and recommend
longer pieces of code to developers to autocomplete a task they perform (see, e.g.,
https://copilot.github.com/).

By agreeing to participate, they started our survey composed of three steps.

Step 1 : Demographic Information. We asked participants to indicate (i) their job
position (e.g., developer, tester), (ii) the programming language and the IDE they mostly
use, and (iii) the number of years of programming experience.

Step 2 : Experience with Code Recommenders. The second step included questions
about the participants’ experience with code recommender systems. We asked what tool(s)
they use as code recommender, with the possibility of selecting “The default one in the IDE”
and/or specifying the tool(s) in an open text box. If participants indicated that they did
not use any code recommender, the survey stopped. We also collected the frequency with
which participants check code recommendations: Occasionally (i.e., less than 50% of times
a recommendation is available), Most of times (i.e., more than 50%, but not always), and
Always.

Then, we asked to rate the code recommendation capabilities of the tool they mostly
use from three perspectives: (i) coverage (i.e., in how many coding scenarios the tool can
provide recommendations), (ii) accuracy (i.e., to what extent recommendations are close
to what practitioners need), and (iii) usability (i.e., how friendly the user interface is). For
each of these three aspects, participants could indicate their answer on a three-point scale
(Low, Medium, High), or select a “Not sure” option. We provided participants with detailed

https://copilot.github.com/
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Table 6.1. Characteristics of code recommendations collected from literature

Attribute Description References

Concise Code
The recommended code must be as short and simple
as possible.

[KLHK09, NSMB12, HPGB19]

Correct Code The recommended code must be bug-free. [KLHK09]

Familiar

If multiple recommendations are possible, the one
using code that is more familiar to the developer
must be used (e.g., the code using APIs already used
in the past by the developer receiving the recom-
mendation).

[RTX09]

High readability
The recommended code must be readable (e.g.,
avoid very long statements, adopt indentation).

[MBP+15]

High reusability

The recommended code must be easy to reuse (e.g.,
a code using object types not available in the lan-
guage but defined in other projects from which the
recommended code has been learned is difficult to
reuse).

[MBP+15]

Inline Documentation
The recommended code features comments ex-
plaining the code step-by-step.

[NSMB12]

Meets coding layout

The recommended code must be adapted to the
context of the recommendation by adopting the
same coding layout (e.g., same indentation, spaces
between code tokens).

[KATF18]

Meets naming conventions

The recommended code must be adapted to the
context of the recommendation by adopting the
same naming conventions (e.g., if variables are
named with camelCase, the same convention must
be adopted in the recommended code).

[KATF18]

Precise Typing Information
A recommended code using AVerySpecificType
should be preferred over a recommended code us-
ing Object.

[PGBG12]

Responsive
The responsiveness of the code recommendation
system in terms of time needed to generate a rec-
ommendation.

[SDFS20]

Same name

The recommended code must be adapted to the
context of the recommendation by using the same
variable names of the code it completes when pos-
sible.

[PGBG12]

Syntactical Correctness
The recommended must not introduce syntax er-
rors.

[dSAEWV16, WSLJ20, SDFS20]

Step-by-step Solution

In case the recommended code spans across many
statements, the code is divided into multiple chunks
(by using a blank line), each one responsible for a
sub-task.

[NSMB12]

Vulnerability-free The recommended code must be vulnerability-free. [SSTS21]
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explanations about the three perspectives [repd]. For each of them, we also asked the im-
provements participants would like to see in the code recommender(s) they commonly use
(e.g., what they would like to have in terms of “coverage” that is not currently supported).
Finally, we ask a specific question related to the accuracy of the recommendations: Assume
that a code recommendation tool provides a list of recommendations sorted by likelihood of be-
ing relevant (i.e., the most relevant on top). How many of these recommendations would you
be willing to read to find the right one? Answers to this question can inform the evaluation of
code recommenders by researchers. Indeed, when evaluating approaches for automatically
generating code, researchers often assess their performance for the top-k recommendations
(e.g., top-50 in [TWB+19]). Knowing how many recommendations developers are willing
to inspect can help in setting the number of generated solutions to realistic values.

Step 3 : Characteristics of Code Recommenders. The third and last step is the core
of our survey, in which we asked participants about the characteristics of code recommen-
dations they consider important. In the first question, participants could describe in an
open text box the characteristics of code recommendations they perceive as most important,
accompanying each one with a short explanation/rationale. We clarified that they could
include both functional and non-functional characteristics.

In the second question, the survey showed a list of 14 characteristics we preliminarily
defined, asking participants to select the ones they consider important (if any). To deter-
mine such 14 categories, we manually analyzed the state of the art related to code rec-
ommender systems. Specifically, we focused on papers that presented: (i) techniques for
code generation/completion (see e.g., [SDFS20]), (ii) empirical studies about code gener-
ation/completion techniques (e.g., [SSTS21]), (iii) techniques to generate code examples
(e.g., [MBP+15]), and (iv) empirical studies about code examples used by developers (e.g.,
[NSMB12]). For example, we extracted the high reusability characteristic from the paper by
Moreno et al. [MBP+15].

The full list of characteristics with the corresponding references they were extracted from
is available in Table 6.1. Note that, to define such a list, we did not perform a systematic
literature review to identify all papers in the surveyed areas: We relied on the experience
of the six authors to identify a set of 41 peer-reviewed papers published in international
conferences and journals and applied backward snowballing on their references to identify
additional relevant works.

At the end, we inspected 53 papers. Each paper was assigned to one author in charge
of adding to a spreadsheet the list of “characteristics” described in the paper (if any). In
some cases, the papers from which we extracted a characteristic did not explicitly point to
the need for considering such a characteristic when building code recommender systems.

However, this could be inferred from the text of the paper. One example is the work by
Schuster et al. [SSTS21]. The authors show that “neural code autocompleters are vulnerable to
poisoning attack” [SSTS21]. Thus, we infer that Vulnerability-free is one of the characteristics
to assess for code recommenders. Similarly, Nasehi et al. [NSMB12] studied what makes
a good code example on Stack Overflow. Again, this is something not directly linked to a
code recommender. However, we assume that characteristics of good code examples could
be relevant for recommended code as well.
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Table 6.2. Rounds of data collection (20 participants each)

Round
New L1 New L2 New L3 New L4

Conflicts
Charac. Charac. Charac. Charac.

I 5 25 13 0 24%
II 0 9 6 6 21%
III 0 0 6 0 24%
IV 0 0 0 0 24%

6.2.3 Data Collection and Analysis

Given the goal of our study, we decided to run it in multiple rounds until we reached sat-
uration in the collected taxonomy of characteristics. First, we invited 20 practitioners to
complete our survey (first round). Then, to answer our RQ, we analyzed the data collected
in steps 2 and 3 in the open answers by following an open-coding inspired approach: Five
of the authors independently assigned a set of tags to each of the open answers provided by
the 20 participants that described through written text the improvements they would like to
see in terms of coverage, accuracy, and usability of the code recommenders they use and the
characteristics of code recommenders they perceive as most important. Each tag was meant
to encode a specific characteristic (e.g., Early prediction was derived from the answer “if the
completions are not timely, it is just easier to type the whole thing myself sometimes”).

Conflicts (i.e., different tags assigned by the five authors to the same answer) were solved
through online meetings involving all authors. The set of “characteristics” derived through
this analysis was then complemented with the ones selected by developers as important from
the list extracted from the literature. The output of this analysis is a hierarchical taxonomy
of characteristics of code recommenders (Fig. 6.2), with level-1 nodes indicating root cate-
gories, level-2 nodes indicating sub-categories of a specific root category, and so on.

This first round was followed by three additional rounds, each of which added 20 partic-
ipants. We stopped with this process when the execution of a new round did not result in the
addition of any new characteristic in our taxonomy, indicating that a good level of saturation
was reached. We are aware that additional rounds may further strengthen the generalizabil-
ity of our taxonomy. However, we had to balance the comprehensiveness of the taxonomy
with the feasibility of the study given our limited access to professional developers.

Table 6.2 reports for each round (i) the number of new characteristics added to the dif-
ferent levels of the taxonomy and (ii) the percentage of conflicts arisen during open coding.
The number of characteristics reported in Table 6.2 for each level does not match the final
number in Fig. 6.2: This happens because we reorganized the taxonomy after each round
for readability reasons (e.g., some level-2 characteristics were moved to level-3 as child of a
new level-2 category). However, the overall number of characteristics (70) matches the one
in our final taxonomy (Fig. 6.2).

Concerning conflicts, since we had five authors inspecting each answer in an open coding
setting in which the codes (i.e., characteristics of code recommenders) to extract were not
pre-defined but had to emerge from the data, we had some form of conflict very frequently,
e.g., one of the five authors not extracting a characteristic indicated by the remaining four
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authors. These cases were usually trivial to solve in online meetings. Other types of conflict
required instead longer discussions, and these are the ones we document in Table 6.2.

In particular, we report the percentage of cases in which there was no majority in ex-
tracting a “characteristic” from an open answer (i.e., less than three authors reported it). As
it can be seen, this happened in ∼20% of cases in each round.
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Figure 6.1. Demographic information (top), usage of source code recommenders (middle), and as-
sessment of code recommender systems (bottom).

6.3 Results Discussion

We start by summarizing demographic information about the study participants and their ex-
perience with code recommender systems. Then, we discuss the taxonomy of characteristics
of code recommender systems, which is the main outcome of this study.
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6.3.1 Demographics and Experience with Code Recommenders

Fig. 6.1 presents a visualization of demographic data for the 80 practitioners involved in our
study. Most of the participants are developers (47) or software engineers (20), with others
classifying themselves as analysts, testers, and group leaders. Participants mostly work with
Java, Python and/or Javascript.

In terms of experience, 86% of participants has more than five years of programming
experience, with an average of 9.7 years, and a median of 9. The vast majority (85%) of
participants use the IDE’s built-in code completion feature as their only code recommender
system.

Among the used IDE plugins, GitHub Copilot is the most represented one, with 5 men-
tions all coming from the latest round we performed. Indeed, when we ran the first three
rounds Copilot was not yet publicly available.

Less than 19% of the participants claimed to “occasionally inspect the code recommen-
dations provided”, with the remaining ones looking at them most of times or always when
they are available.

Participants indicated the willingness to inspect at most the top-5 code recommenda-
tions provided (95%), with the majority (56%) focusing only on the top-3. This suggests
researchers to limit the assessment of code recommenders to the top-5 recommended solu-
tions, since others are very unlikely to be considered by developers.

When asked about their assessment of the code recommender they use in terms of cov-
erage, accuracy, and usability, developers reported that they are mostly happy with the tools
they use as for these aspects. Specifically, ∼44% of them considered the accuracy high, and
∼50% medium; ∼58% evaluated the usability as high, and ∼38% as medium; and ∼31%
judged the coverage high and ∼46% medium. The coverage of the provided support (i.e.,
the variety of scenarios in which the tool is able to recommend code) is the aspect achieving
the lowest rates, with ∼23% of participants reporting a low coverage.

6.3.2 Taxonomy Discussion

Fig. 6.2 reports the taxonomy of characteristics participants indicated as relevant for code
recommender systems. The number on the top-right of the level-1 and level-2 categories
indicates the number of participants who mentioned such a characteristic as important (out
of 80). While some characteristics have only been mentioned by few developers (e.g., Aware-
ness→ Developer’s task) we decided to include all of them for completeness.

On top of that, Fig. 6.3 reports the definition of all categories up to level-3, without
including the ones for level-4 categories. However, these usually represent specifications of
level-3 categories that are quite intuitive and we include in our replication package [repd]
complete definitions for all categories, with a search interface that helps in quickly identifying
the category of interest.

We discuss our taxonomy, going through each of the five root categories depicted in
Fig. 6.2. We use the ­ icon to highlight lessons learned for future research in the field.
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Characteristics of recommended code. This root category groups characteristics of
the recommended code that participants consider important. All participants mentioned
at least one aspect related to the quality of the recommended code. Note that, at a first
sight, one may think that code quality is not relevant for code recommenders, since they
often recommend a few code tokens to complete a statement the developer is writing. This
is, however, not the case for the new generation of code recommenders (see e.g., GitHub
Copilot [copb] or recently proposed works in the literature [SDFS20, WAN+21, CCP+21a])
that can recommend complete code statements or even entire functions.

Receiving recommendations having a high readability and understandability is a priority
for developers (66 mentions). 39% of the participants indicated their preference for concise
recommendations, e.g., “I do not use completion that suggests entire snippets. The reason is that
if I get an entire snippet I’ll need to understand it to make sure is what I need and, based on my ex-
perience, this is not faster than writing the code myself.” ­ This goes somehow in contrast with
recent work targeting the automatic implementation of whole functions [WAN+21, copb].
However, as we will see later when discussing the Coverage of Support, developers are willing
to use recommendations for complex scenarios (such as entire functions) if they have a high
confidence in the received recommendations. Also, in case of recommendations composed
by several statements, 14 participants indicated the importance of organizing these recom-
mendations as Step-by-step solutions, meaning that the code is divided into multiple chunks
(using a blank line), each one responsible for a sub-task. Such a feature requires the ability
of the recommender to identify sub-tasks within the suggested code.

­ More in general, readability and understandability are two important aspects of code
recommendations, e.g., “If I don’t understand what the suggestion is about at a first glance,
I ignore it and I continue programming”. However, to the best of our knowledge, no code
recommender explicitly focuses on these aspects when deciding which recommendation to
trigger. While this could be possible exploiting the readability metrics previously defined in
the literature [BW10, PHD11, Dor12, SLOP18, MKX+18], it is still unclear to what extent
such metrics work on artificial code.

Other participants pointed out the importance of the recommended code to meet best
practices and coding standards. ­ This includes the possibility to customize the notion of cod-
ing standard (e.g., “meets coding standards of the company in terms of code quality”, “pushing
good coding standards, either general ones or customized by the user”). This is another aspect
currently unsupported in the state of the art.

Several other aspects of code quality have been mentioned by participants (e.g., ensure
good performance, robustness, and reusability of the recommended code). For example, in
the case of performance one practitioner wrote: “Now that more complex recommendations
are possible thanks to tools like copilot, aspects related to code quality should be taken into
account more, for example by picking among two possible recommendations the one ensuring
better performance”.

A crucial quality aspect mentioned by 69 participants is, as expected, the correctness of
the recommended code. This means that the recommendation must not break the syntax
and/or introduce bugs/vulnerabilities in the code under development (e.g., “the IDE must
never recommend a solution that leads to a malfunction”). While such a finding might look
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obvious, it triggers a few considerations about state-of-the-art techniques. For example, DL
models have been proposed to support code completion [CCP+21a, LLZJ20, WSLJ20].

However, recent work by Ciniselli et al. [CCP+21a] showed that, in the best case scenario,
these models can recommend a correct code completion in less than 70% of cases, with
much worse results (<30%) achieved for challenging completions (e.g., recommend entire
statements). While the study by Ciniselli et al. assessed the accuracy of the recommendations
(i.e., the extent to which the tool completes the code as expected), it is likely that a tool not
providing an accurate recommendation breaks the code syntax or even introduces bugs.
­ Our survey suggests that developers are unlikely to use tools that could potentially “break”
their code in ∼35% of cases. For the reasons discussed, the notion of correctness is strongly
related to the accuracy of recommendations, that is another root category in our taxonomy
(see Fig. 6.2).

The majority of surveyed developers (61%) reported the accuracy of recommendations as
an important characteristic of code recommenders (e.g., “inaccurate recommendations would
create more work than manually writing the code”, “the recommender system should have a
minimum amount of false positive hits”, “accuracy below 80% is not acceptable”). ­ Some
developers even proposed solutions to overcome issues related to the low accuracy in specific
scenarios (these led to the two child categories of Accuracy of recommendations in Fig. 6.2).
For example, a participant mentioned “it must be possible to configure the suggestions, to get
less but more likely to be correct”.

Basically, the possibility to filter out recommendations in which the recommender system
has a low confidence could help in addressing limited accuracy in challenging scenarios.
Some developers also indicated their willingness to consider recommendations that are not
100% accurate as long as they can be easily modified to obtain the needed code: “I often
accept the recommendation even if it’s not 100% accurate if I think that adjusting it takes less
time than writing code from scratch”.

Going back to the characteristics of recommended code tree, developers are also looking
for adaptive recommender systems: Developers mentioned that the tool should adapt the
recommendations to their coding style (e.g., “once it learns my coding style it should go with
that”) and to the coding context (e.g., “context-sensitivity is also important; I would like prac-
tical and stylistic compatibility with the existing code”).

­ Automatically inferring the developer’s coding style is far from trivial. One possibility
would be to investigate the integration between approaches to learn coding style/conven-
tions [Rei07, ABBS14] and code recommender systems. More in general, our survey seems
to suggest the need for “modeling software developers and their coding practices” with all
difficulties and privacy concerns this may lead to. Having such information may substantially
boost the usefulness of code recommenders, that could better adapt their recommendation
to the user receiving them.

Finally, the structural characteristics subtree groups characteristics of the recommended
code that concern its structure. These have been considered relevant by a lower number of
developers (16). An interesting point to highlight here is the need for code recommendations
that are easy to integrate into the code under development. This aspect is related to the
adaptability of the recommendations: if the recommended code adapts to the coding context,
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for example, reusing identifiers when needed, it can make the developer’s life easier. This is
in contrast with what has been done in retrieval-based approaches that recommend relevant
pieces of code from a code base (e.g., Stack Overflow) leaving the integration effort on the
developer’s shoulders. ­ An approach able to automate, at least in part, the integration
process could substantially increase the usefulness of code recommenders.

Functionality. This category groups features developers would like to see in code recom-
menders. Most of the answers point to specific wishes in terms of coverage of support. This
means that developers would like to have a wider support in terms of code recommendations,
something that goes beyond the tools they currently use. Such a subtree supports several of
the directions that the software engineering research community is currently investigating.

Approaches for multi-token completion (i.e., code completion that goes beyond recom-
mending the next token the developer is likely to write, for example, an entire statement)
are a hot research topic [KZTC21, KS19, LLZJ20, CCP+21a, copb] as well as the automated
generation of assert statements [WTM+20, TDSS22] (see Fig. 6.2). ­ Our results show the
need for techniques able to support developers in complex code completion scenarios (e.g.,
“code completion provides good support in finding the right API in a class and a few other things,
but rarely suggests something challenging such as conditional statements”, “cool would be sug-
gesting which asserts are needed to test the code under development”). While no developer
asked for the automated implementation of whole functions from scratch [WAN+21], some
mentioned the possibility to automatically implement stub functions starting from their sig-
nature as recently done in Copilot [copb]: ­ “When writing new functions I often create stubs
of the other functions I need to invoke; the IDE could propose implementations for those stubs”.

­ An interesting research challenge also comes from the suggestion for multi-lingual sup-
port: “autocomplete when mixing languages such as inline SQL code when writing database
statements in C#”. Such a support is currently missing in code recommenders. Finally, for
what concerns the coverage of support, it is also interesting the possibility to integrate the ca-
pabilities to autocomplete refactoring operations started by the developer. This is something
that has been accomplished by Foster et al. [FGL12] with their WitchDoctor tool.

Another representative category in the functionality tree is “provide additional info”,
which relates the will of developers to receive additional information accompanying the
code recommendation.

This includes the possibility to provide a rationale justifying non-trivial code recommen-
dations (e.g., “it should give a quick reason that I can understand why it’s suggesting I do it”),
or documenting the recommended code (e.g., “assuming the recommended code is not trivial,
a documentation/explanation for the suggestion is needed”).

While code recommenders mostly focus on generating meaningful code recommenda-
tions, retrieval-based techniques (i.e., those retrieving relevant code from a code base) and
properly trained DL-based techniques can provide support for the automated documentation
of the recommended code [HHC+20, copb]. ­ More challenging is the generation of a ratio-
nale explaining to the developer why a given recommendation is relevant for what they are
doing.

Finally, the other child categories under functionality have been mentioned by a few
developers. They concern: (i) the ability of the tool to improve over time based on accept-
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ed/rejected recommendations (self-improving); (ii) the possibility to configure aspects of the
tool, such as defining shortcuts (configurable); (iii) the way in which the recommendations
are presented or generated (recommendation modality), and (iv) the need for having the rec-
ommendation quickly triggered to avoid manually writing most of the code thus reducing
the usefulness of the recommendation (early prediction). These categories are described in
Fig. 6.3.

Usability. This root category concerns aspects that influence the usability of the code rec-
ommender. Among all, high responsiveness was the most important requirement highlighted
by developers (39 mentions) (e.g., “these recommendation systems are often slow and lag the
entire UI, especially on large projects”). ­ This confirms the relevance of works investigating
efficiency aspects in code completion tools [SLH+21].

Along this line, participants expect tools which are intuitive (e.g., allowing a gradual
learning curve for all developers) and well integrated with IDE, as one developer underlined:
“clean interface making it easy to use is pretty important”.

Finally, an interesting aspect highlighted by some developers is the need for non invasive
code recommenders, always leaving the final word to the developer: “It shouldn’t change the
code without my confirmation, even though the code I’m writing is not logically right; a warning
would be nice”.

Awareness. The last root category in our taxonomy is awareness: the code recommender
must be “aware” of different aspects to improve its recommendations. Most importantly
from the participants’ point of view (29 mentions) is the awareness of developer’s knowl-
edge. This implies that the same recommender system triggered on the same code by two
different developers could produce different recommendations. ­ Code recommendations
using APIs familiar to the developer (e.g., that the developer used in the past) can be favored
as well as recommendations using code constructs that are familiar to the developer. As pre-
viously observed, this requires the ability of the recommender to “model” the developer’s
knowledge, exploiting it in generating the recommendations with the goal of minimizing
the comprehension effort for the developer.

A second important aspect is the awareness of coding context, i.e., the code recommender
should consider the current code context (e.g., the code the developer is writing in the IDE)
when providing suggestions. It is important to explain the difference between awareness of
coding context and adapted to coding context previously described: in the former case, the
recommended code is triggered by what has been written in the IDE (e.g., it completes the
implementation of a method under development), while in the latter the suggested code
is adapted (i.e., changed) to match up with the current code context (e.g., to reuse identi-
fiers present in the code). These two aspects should be combined together to obtain useful
recommendations.

Other interesting requirements developers expressed are the awareness of coding history
and of the developer’s tasks. ­ Exploiting the change history of the system on which recom-
mendations are generated [RL08, RL10] can “help with repetitive tasks”. Instead, being aware
of the tasks assigned to the developer to which recommendations are proposed can be ex-
ploited for a better customization of the recommendations. For example, the recommender
can identify the issues assigned to the developer by mining the issue tracker, inferring the
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one they are working on in the IDE and targeting recommendations aimed at completing the
issue being addressed.

6.4 Validity Discussion

Threats to construct validity concern the relationship between theory and observation. The
characteristics output of our study are personal opinions of the surveyed developers. To
provide information about the “support” each characteristic had, we included the number
of participants who mentioned the characteristics (at least for top-level categories, complete
data available in [repd]).

Threats to internal validity concern factors internal to our study that could have in-
fluenced the results. The participants to our survey are likely more interested in code rec-
ommenders than others, thus providing a “biased view” of the investigated phenomenon.
However, they still provided quite different views on what it is important in code recom-
menders.

When presenting the results of our study, we often report “quotes” from the answers
provided by participants. These quotes are not always verbatim, with changes introduced to
fix typos or to shorten them without, however, changing their meaning.

To limit subjectivity bias during the open coding procedure, five authors independently
inspected each answer we received, with a following discussion aimed at solving conflicts
when needed. On top of that, the answers we collected together with the codes (i.e., cate-
gories of our taxonomy) we assigned them are publicly available in our replication package
[repd].

Finally, contrary to our expectation, we found difficulties in recruiting software practi-
tioners through MTurk. Indeed, when we ran our survey, we did not set the strict selection
criteria for participants described in Section 6.2.1. This resulted in the collection of mostly
low-quality answers, often clearly copied/pasted from online sources that we had to exclude.

Also, we had to forbid the access to our survey from specific countries due to bots provid-
ing random answers. In the end, we preferred to collect fewer answers but of high quality.
Indeed, whenever we had a doubt about the quality of answers collected through our survey,
we discarded the corresponding response.

Such a “quality issue” is less relevant when it comes to answers we collected through
our contact network, which represent the majority of completed surveys in our study (49
out of 80). Indeed, those are all professional developers (i.e., working in companies) who
voluntarily agreed to participate in our survey. To check the extent to which our taxonomy
generalizes to these two different groups of participants we involved (i.e., practitioners from
MTurk vs practitioners in our contact network) we checked the number of categories in our
final taxonomy that have been indicated as relevant (i) by both groups, (ii) by MTurk partic-
ipants only, and (iii) by practitioners in our contact network only. Out of the 70 categories
in our taxonomy 51 (73%) have been indicated by participants belonging to both groups,
3 (4%) by MTurk’s participants only, and 16 (23%) by practitioners in our contact network
only. These results indicate an overall “agreement” among the two groups for two-thirds
of our taxonomy. Also, the fact that only three out of 70 categories have been contributed



6.5 Conclusion and Future Work 91

exclusively by MTurk’s participants support the validity of the answers collected through this
platform, since most of the “requirements” we extracted from them have been confirmed by
practitioners in our contact network. The three categories being MTurk-only are: Functional-
ity→ Coverage of support→ Language keywords, Functionality→ Recommendation modality
→ Open source, Functionality → Recommendation modality → Proactive: perceives when de-
veloper needs help.

Threats to external validity concern the generalization of our findings. The obvious
threat is the limited number of participants involved in the survey (80). Such numbers are
in line with previously published survey studies (e.g., [FL02, dSAdO05, BDO+13]) but, of
course, replications can help in corroborating our findings and complementing them.

6.5 Conclusion and Future Work

Our study partially fills the lack of empirical investigations aimed at collecting practitioners’
desiderata when it comes to code recommenders. We ran a survey involving a total of 80
practitioners to investigate characteristics of code recommenders they perceive as impor-
tant. As output of our study, we defined a taxonomy of 70 characteristics (Fig. 6.2) that
can drive future research in the field. We make all (anonymized) answers we collected, the
tags we assigned to them, and study material available in our replication package hosted at
https://code-recommenders.github.io.

Our future works stem from the findings of our survey, and will focus on improving
characteristics of code recommenders that our study highlighted as relevant. We detail three
research directions we plan to pursue:

• Improving the awareness of code recommenders. One aspect several of the participants
in our study stressed as important is what we defined as the “awareness of the code
recommenders”. In other words, what the information available to the recommender
is when it synthesizes suggestions. Being aware of the developers’ knowledge (i.e.,
their expertise, past implementation tasks, etc.) could result in more relevant recom-
mendations that might be particularly suitable and easy to understand and reuse for
the developer receiving them. Integrating such a “knowledge” in the recommender
is far from trivial and requires the development of techniques allowing to automati-
cally infer (i) the programming style of software developers, and (ii) their expertise,
namely the specific programming languages, libraries, notions (e.g., design patterns),
etc. they are at ease with. This could be done by mining the past developers’ activities
from software repositories (e.g., versioning system, issue tracker).

• Making code quality a first-class citizen in code recommendations. Given the increasing
complexity of the recommendations supported by tools such as GitHub Copilot, code
quality must become a priority for the recommended code. This is a clear outcome
of our survey. Important aspects to focus on are the absence of bugs/vulnerabilities
and the promotion of readability and understandability. All these quality aspects can
benefit from tailored design decisions made (i) when training the code recommender,

https://code-recommenders.github.io
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by curating the quality of the code snippets composing the training set; and (ii) at
post-processing stage, with checks done before triggering the recommendation to the
user. Also, alternative recommendations could be ranked based on their quality.

• Augmenting the coverage of support. Despite the gigantic steps ahead made in the last
few years, code recommenders still struggle in specific coding scenarios for which they
do not offer (or offer limited) support. In this context, two interesting research direc-
tions stemming from our taxonomy are (i) better support for multi-lingual code, and
(ii) generation of templates rather than raw source code when the recommender is
not confident. Concerning the first point, we plan to assess the effectiveness of re-
cent transformer models trained on several programming languages (e.g., CodeBERT
[FGT+20]) when dealing with multi-lingual code. Depending on the observed per-
formance, the proposal of alternative strategies to deal with this problem will be in-
vestigated. As for the template generation, we plan to work on a model specifically
trained for generating abstract code templates rather than raw source code. Such a
model could be triggered when the standard code recommender is not confident in
suggesting the raw code.
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Characteristics of recommended code

Structural characteristics: The recommended code meets specific structural characteristics of the code (detailed in the leaf nodes) that might be desirable.
Easy to integrate: The recommended code does not require major changes to be integrated in the code under development (e.g., a code using object types not available in the 
language but defined in other projects from which the recommended code has been learned is difficult to reuse).
Type checked: The recommender checks types when completing statements, ensuring values assigned to a variable are compatible with its type. 
Unambiguous: The recommended code is unambiguous (e.g., it doesn’t suggest multiple imports with the same name, making difficult to identify the one actually needed).
Precise typing information: The recommended code relies on specific types (e.g., java.time.LocalDate ) rather than the generic one (e.g., Object).

This category groups together specific code characteristics (detailed in the leaf nodes) that might be desirable for the recommended code.

Adaptive: The recommended code is customized based on specific factors (detailed in the leaf nodes).

Coding context: The recommended code is adapted to the code the developer is writing (see leaf nodes).
Coding style: The recommended code is adapted to the developer's coding style (e.g., using extra parenthesis to better format code if this practice is used by the developer).

Code Quality: The recommended code meets specific quality criteria (see leaf nodes).
Best Practices: The recommended code meets best coding practices. The latter depend on the language/paradigm in use.
Performance: The recommended code is optimized in terms of performance (e.g., it does not introduce unneeded operations).
Correctness: The recommended code must be bug-free.
Robustness: The recommended code is robust when dealing with possible erroneous situations (e.g., a null check is implemented if needed).
High Reusability: The recommended code is easy to reuse. This is particularly relevant for recommender systems suggesting code components at higher granularity (e.g., methods).
High Readability & Understandability: The recommended code must be readable (e.g., avoid very long statements, adopt indentation) and easy to understand.
Maintainability: The recommended code is easy to maintain.

Functionality

Early Prediction: The recommender is able to trigger recommendations early in the coding process (e.g., the developer just wrote a few code tokens).

This category groups together the features developers would like to see in source code recommenders (see leaf nodes).

Coverage of Support: This subcategory details the desiderata of developers when it comes to the coverage of the recommender tool (i.e., the different coding scenarios it can support).
Identifiers support: The recommender provides support for identifiers, suggesting them when needed.
3rd party library support: The recommender is able to propose code recommendations when dealing with code using third-party libraries (e.g., invocation of an API in a library).
Language keywords: The recommender is able to suggest the language keywords when needed.
Multi-token completion: The recommender can generate code recommendations that are not limited to a single token, but span several tokens.
Multi-lingual support: The recommender can generate code recommendations even when multi-lingual code statements (e.g., C# and SQL) are written by the developer.
Refactoring: The recommender is able to autocomplete a refactoring operation started by the developer.

Self-improving: The recommender improves the suggestions based on the feedback received by the developer for past recommendations.

Provide additional info: The recommender provides additional information together with the suggestion
Provide rationale: The tool provides a rationale to justify the given recommendation (e.g., you are seeing this code because ...).
Highlight edits: If the code that the developer is writing is very similar to code that can be recommended, the tool highlights the differences that might be implementation errors.
Documentation: The recommended code includes documentation.

Configurable: The recommender is customizable based on developers' preferences (e.g., see leaf node).

Ask information: If the recommender cannot infer what the developer is doing it is able to ask for additional information to better contextualize the recommendations.
Multiple options: The recommender is able to generate multiple recommendations for a given scenario.
Smart ranking: When multiple options are available, the tool ranks the recommendations using a smart criterion rather than alphabetical order.
Proactive: The recommender perceives when the developer needs help (e.g., they are not writing for long time) and starts triggering recommendations. It does not need to be 
explicitly invoked by the developer.
Open source: If the recommended code is retrieved from a dataset, such a dataset must feature open source code which is less likely to result in licensing issues.

Recommendation modality: The modality used by the recommender when suggesting a recommendation.

Awareness

Coding context: The recommended code is based on a specific coding context, usually representing the code written by the developer in the IDE.

This category groups together information items the recommender should be aware of to improve its recommendations.

Coding history: The recommended code is generated/improved based on development activities performed in the past. The past development activities could be related to the 
developer receiving the recommendation or to other developers. In other words, "natural" coding solutions are favored.

Developer’s task: The code recommender is aware of the task(s) the developer is working on. Differently from the coding context that only captures the code under development in a 
specific moment, in this case a more complete view of the developer's tasks is available (e.g., the tool could mine from the issue tracker the issues assigned to the developer and use 
this information to generate/improve its recommendations).
Developer’s knowledge: If multiple recommendations are possible, the one using code that is more familiar to the developer must be used (e.g., the code using APIs already used in 
the past by the developer receiving the recommendation).

Usability

Intuitive: The recommender is intuitive (e.g., shallow learning curve).
This category groups together usability aspects they would like to see in source code recommenders (see leaf nodes).

No overhead: The recommender does not hinder coding (e.g., a button can be pressed to accept/decline the recommendations) and does not require context-switch.
Non invasive: The recommender is never in control of the code writing, it only provides suggestions.

Integrated with IDE: The recommender is integrated within the IDE.
Ask confirmation: The recommender asks confirmation to the developer before implementing code.

High responsiveness: The recommender is responsive, not causing lagging while coding.

Accuracy of recommendations

Filtering based on confidence: The recommender does not trigger recommendations when its confidence is low.
The recommended code is accurate (i.e., the recommender is able to suggest a code semantically equivalent to the one the developer was going to write).

Templating in low level confidence: If the recommender has a low confidence about a recommendation, it can suggest a template for the recommendation rather than the raw code.

Figure 6.3. Definitions for taxonomy’s characteristics up to level-3
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7
Deep Learning-based Code Completion: On the
Impact on Performance of Additional Contextual
Information

7.1 Motivation

One of the most noticeable results of the adoption of Deep Learning (DL) in software en-
gineering (SE) is the recent release of DL-based programming assistants such as GitHub
Copilot [copb]. These tools redefined the notion of code completion, moving it from tech-
niques able to recommend the next few tokens the developer is likely to type to tools capable
of automatically generating entire functions.

While Copilot likely is the most well-known representative of this generation of code
completion tools, it is the natural follow-up of years of research done in this field [PGBG12,
GKKP13, KATF18, WSLJ20, CCP+21a]. Most of these works proposed novel solutions with
the main goal of improving the state-of-the-art performance of code completion tools. When
talking about “performance”, we refer to the accuracy of the technique in recommending the
expected code (e.g., the tokens needed to complete a code statement or an entire function
starting from its signature).

Our study on the characteristic of the code recommenders desired by developers high-
lighted the importance of the awareness of external source of information, like coding history
or developer’s knowledge, that allow the model to generate familiar code that leverage, for
example, the APIs frequently used by each developer. Another important factor that the
models should be aware of, that could potentially bolster their performance, is the contex-
tual information provided as input to the model for triggering the recommendation: This is
the information available to the model to decide which code completion recommendation
to generate. For example, in the recent work by Ciniselli et al. [CCP+21a] the DL model is
provided as input a Java method with one or more missing statements to complete. In this
case, the incomplete Java method is the only information the model can rely upon to predict
the missing statements. Such a design choice ensures shorter inputs for the model and, as a
consequence, shorter training time. However, this choice may limit the prediction capabil-
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ity of the model which could benefit, for example, from knowing what the other methods
implemented in the same class are. While previous work suggests the positive impact that
additional contextual information may have when using DL-based solutions for code-related
tasks [TT22], to the best of our knowledge there is no study deeply investigating the role of
contextual information on the prediction accuracy of DL-based code completion techniques.
We aim at filling this gap.

We start by defining three families of contextual information which can be provided to a
DL model to improve its prediction capabilities. To provide a high-level explanation of each
of them, let us focus on the same method-level code completion task defined by Ciniselli
et al. and previously summarized (i.e., provide as input an incomplete Java method and ask
the model to generate the missing part). We use I Mi to refer to a generic incomplete method
to finalize and assume that the developer Dj is the one working on it (i.e., the person who
will receive the completion recommendation).

The first family of contextual information we experiment with is the coding context: These
are contexts augmenting the input provided to the model with code components having
structural relationships with I Mi (e.g., the methods invoking/invoked by I Mi). The assump-
tion here is that knowing more about the code base can help the model in generating the
correct prediction.

The second family is the process context, providing the model with information related
to the development process carried out in the project I Mi belongs to (e.g., what the open
issues possibly related to I Mi are when a code completion is triggered on I Mi). The idea
behind the process context is that knowing what the ongoing tasks are could help the model
in predicting the missing code.

Finally, the third family is the developer context, augmenting the input with information
characterizing the recent development activity of Dj (i.e., the developer currently working
on I Mi). One of the developer contexts we experiment with augments the model’s input
with method invocations recently and frequently used by Dj . The assumption is that the
model might exploit information about the recent development activities of Dj to improve
its predictions.

Overall, we defined and implemented 8 types of contexts belonging to the three above-
described families and experimented with them (and their combinations) by training and
testing 18 Text-To-Text-Transfer-Transformer (T5) [RSR+20] models. Our results show that:
(i) additional contextual information helps in boosting prediction performance, with the ones
belonging to the coding context usually bringing the larger boost; (ii) by combining different
types of contexts it is possible to achieve a substantial relative improvement over the baseline
(i.e., the model not exploiting additional contextual information) of up to +22%.

7.2 Types of Contextual Information

This section introduces the types of contextual information we experiment with. They are
all depicted in Fig. 7.1 which does also include what we refer to as “baseline” (see red part
in Fig. 7.1). The baseline represents the common code completion scenario experimented
in the literature, in which the DL model is only fed with the piece of code to complete. We
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adopt the method-level completion recently experimented by Ciniselli et al. [CCP+21a] in
which one or more statements are masked in a Java method (see the <MISSING CODE> tag
Fig. 7.1) with the model in charge of predicting them. The baseline will be used to assess the
boost in performance (if any) provided by the additional contextual information provided to
the model. The examples in Fig. 7.1 are extracted from a real instance present in the training
dataset that will be described in Section 7.3.

In the following we use I Mi to refer to the incomplete method provided to the model (i.e.,
handleDataProcessException in Fig. 7.1). All contexts we describe represent additional
information that is provided to the model on top of the “baseline” representation.

The goal of this section is not to provide all technical details about how we create these
contexts, but rather to present and justify them. Technicalities about how we built the dif-
ferent datasets needed to experiment with these contexts are presented in Section 7.3.

We experiment with three families of contexts: coding (green in Fig. 7.1), process (blue),
and developer (yellow).

7.2.1 Coding Context

The basic idea here is to augment what the model knows about the code to complete with
additional information extracted from the code base. We devise three types of coding con-
texts.

The first, method calls, provides the model with the complete signature of the methods
invoked by or invoking the method to complete (I Mi). Note that, being I Mi an “artificial” in-
complete method we created by replacing some of its statements with the<MISSING CODE>

tag, methods that were invoked in the replaced statements are not included in the context.
Indeed, in a real usage scenario, those statements would not exist (i.e., the developer is writ-
ing them). In Fig. 7.1 it can be seen that we use the special tag <OUT> to mark methods
invoked by I Mi and <IN> for methods invoking I Mi .

The rationale behind this context is that the model might benefit from knowing the code
components structurally coupled (via method calls) to I Mi . It is important to discuss at this
point why we only include the signatures of the coupled methods rather than their full im-
plementation which, in theory, could provide even more information to the model. Such a
choice is due to technical limitations of the DL models, which are able to deal with input
sequences of limited length. For example, recent work in the SE literature capped the input
instances to 512 tokens [GRL+21, YX19b, YX19a, CCP+21b, ABLY19, CCP+21a, AKL21]. In
our work, we pushed this boundary to 1,024 tokens which still limits the contextual informa-
tion size. Thus, in all contexts, we present such a tradeoff between the amount of additional
information and the size of the input sequence that has been considered.

The second coding context we define is the class signatures, providing the model with
the signature of all other methods contained in the class implementing I Mi (bottom-left cor-
ner of Fig. 7.1). The rationale behind this context is that, accordingly to the “high cohesion”
principle [SMC74], classes are supposed to group together related methods (e.g., methods
implementing related responsibilities).

Finally, most similar method is the third coding context we defined. When experiment-
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ing with DL models for code completion there must be no duplicates between the training
and the test datasets. Otherwise, the model would be asked to complete methods it has
already seen during training, thus artificially inflating its performance. However, it is rea-
sonable to think that, given an incomplete method I Mi from the test set, a “similar” method
may exist in the training set. A concrete example from our dataset is depicted in the bottom-
right corner of Fig. 7.1: The method connectionClose from our training set is the most
similar to handleDataProcessException (our I Mi). Indeed, it can be seen that they share
some logic. Our assumption is that such an additional contextual information can help the
model in predicting the missing statements. Note that we retrieve the most similar method
only from the training set. This is important since, in a real scenario, the instances in the
training set are the only ones known to the model. We detail in Section 7.3 how the most
similar method is identified.

7.2.2 Process Context

The process contexts provide the model with information capturing “what is going on” in the
project when a recommendation must be triggered to complete I Mi . We define two types of
process contexts, both exploiting information from the issue tracker of the project I Mi be-
longs to. The assumption is that if a developer is implementing code aimed at addressing an
open issue (e.g., a bug to fix, a new feature to implement), information extracted from such
an issue may help the model in recommending the needed code. An issue is usually com-
posed by a title, which summarizes its content, and a body, which provides a more detailed
description of the issue.

These two elements are the ones driving the definition of our two contexts, named issue
title and issue body (see Fig. 7.1). For both of them we start by identifying for the given
I Mi the most similar open issue at the time t the code completion on I Mi is invoked (i.e., the
issue most likely describing needed implementation tasks which may affect I Mi — details in
Section 7.3). We use such an open issue to create the two contexts, one featuring the issue
title and the other one the issue body. While a context featuring their combination would
make sense, this is not presented since in our experiment we test with several combinations
of contexts both from the same family (i.e., the two process contexts together) and from
different families (i.e., a process context mixed up with a coding context).
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7.2.3 Developer Context

The last family of contexts provides the DL model with information about the developer Dj
currently working on I Mi (i.e., the one who will receive the completion recommendation).
The idea is that different developers may have different coding styles [CGP07, HDB21] (e.g.,
may favor the usage of specific APIs they are familiar with).

The first context in this family is the developer’s most similar statements (top-right
corner in Fig. 7.1). We mine the recent commits performed by Dj and extract from each of
them the source code statements they added, deleted, or edited. Each statement in this set
is then compared with the method to complete I Mi to identify the statements being more
similar to the code under development. The most similar statements are added as contextual
information to the model input, separated by an <S> tag as shown in Fig. 7.1.

The second developer context is the developer’s frequent method invocations, providing
the model with information about method calls (both internal and external to the project)
recently and frequently used by Dj , as depicted in Fig. 7.1. Technical details about the
building of the two developer contexts are presented in Section 7.3.

7.3 Building the “context datasets”

Experimenting with the contexts described in Section 7.2 requires the building of several
datasets aimed at training/testing the DL model to assess the impact of the different contex-
tual information on its performance. The first step in this process is the selection of software
repositories from which the information needed for the different contexts can be extracted.
We used the tool by Dabic et al. [DAB21] to select all GitHub non-forked Java repositories
having more than 100 commits, 10 contributors, 50 issues, and 10 stars. These filters ensure
that the selected projects (i) have a substantial history, needed to extract information related
to the developer context; (ii) are not personal/toy projects, since at least 10 contributors took
part in their development; and (iii) use the issue tracker, a requirement for the extraction of
the process context. The 10-star filter is mandatory in the search tool by Dabic et al. [DAB21],
since projects with less than 10 stars are not indexed. The result of this query was a list of
5,632 candidate repositories. The extraction of the coding context (e.g., the identification of
the methods invoked by or invoking the method of interest) requires the source code of the
selected projects to be compilable. For this reason, we excluded projects that do not explic-
itly tagging releases in GitHub and, for the remaining ones (i.e., those tagging releases), we
checked out their last two releases trying to compile them using Maven or Gradle.

The choice of focusing on the last two releases rather than only on the last one aimed at
increasing the number of projects suitable for our study. Through this process, we success-
fully compiled at least one release for 1,072 repositories. For each of these repositories, we
indicate with Rc the successfully compiled release.

We use these repositories to build eight training/testing datasets, one for the baseline
approach emulating the work by Ciniselli et al. [CCP+21a] and one for each of the seven
contexts introduced in Section 7.2. It is important to remember that all datasets will feature
instances in the form I Mi → Cr , where I Mi represents an incomplete method (i.e., a method
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from which specific statements have been masked) and Cr represents the expected comple-
tion (i.e., the code the model should generate). Cr is identical across all eight datasets, while
I Mi changes based on the contextual representation it features.

We start by checking out all 1,072 compilable releases from which we randomly selected
up to 1,000 Java files per project. The cap at 1,000 files per repository has been defined
to avoid very large repositories to influence too much the final dataset (e.g., contributing
50% of the final instances). Also, when selecting those files, we ignored those containing
the word “test” in their name or belonging to a package having “test” in their path. This was
done in an attempt to exclude test files, thus building a more cohesive dataset only featuring
production code instances. From each of the selected files, we extracted the implemented
methods using JAVALANG [javc]. We then removed all methods exceeding 682 tokens. While
this may look like a magic number, it represents two-thirds of the space available for the
model’s input. Indeed, as detailed in Section 7.4, our DL model accepts inputs up to 1,024
tokens in length. We decided to dedicate up to 682 tokens to the representation of I Mi and
at least 342 tokens for representing the additional contextual information. The contextual
information is appended to I Mi (i.e., it comes after). Thus, in case the contextual information
makes the input longer than 1,024 tokens, part of it will be cut and ignored by the model. For
example, if I Mi requires 550 tokens and a specific type of contextual information requires
750 tokens, the last 276 tokens of the context will not be seen by the model.

The above-described process resulted in 42,182 collected methods. Ciniselli et al. [CCP+21a]
masked randomly selected statements in methods to create the instances I Mi → Cr . We de-
cided to adopt a different approach for the masking, with the goal of better simulating a de-
veloper writing code and receiving completion recommendations. In particular, rather than
masking randomly selected statements, we run git blame on each method in our dataset,
retrieving the latest commit before Rc (i.e., the compiled release) which changed at least one
code statement in the method. Let us assume that the identified commit changes a single
statement sk: We create an instance I Mi → Cr in which I Mi has sk masked and Cr = sk. Such
an instance simulates a realistic change which has been actually performed in the history of
the project. It could also happen that the identified commit changes several statements in
the method. To limit the complexity of the code completion problem, we decided to mask
at most two complete statements when creating an I Mi . Thus, if five statements have been
modified (s1, s2, s3, s4, and s5), we create three I Mi → Cr instances from the corresponding
method: The first has s1 and s2 masked, the second has s3 and s4 masked, the third has only
s5 masked.

The above-described process generates the “baseline” dataset, in which the I Mi in the
instances is only composed by the incomplete method, with no additional contextual infor-
mation. In the following we describe how we built the remaining seven datasets. We ensure
no duplicates in our datasets, removing instances having identical I Mi . It is important to
clarify since now that, in order to fairly compare the performance of the DL model when
exploiting different contextual information, all eight datasets must feature exactly the same
I Mi → Cr instances, with the only difference being the representation of I Mi . Since specific
contextual information (e.g., open issues) cannot be extracted for all instances, once built
all datasets we computed their intersection, featuring 85,266 I Mi → Cr instances which are



102
Deep Learning-based Code Completion: On the Impact on Performance of Additional Contextual

Information

present in all datasets.

7.3.1 Coding Context

To extract the method calls context, we run JAVA-CALLGRAPH [java] on the corresponding
compiled release, thus identifying the I Mi ’s call graph. As previously explained, methods
invoked in the masked part of I Mi have been ignored, since in a real scenario those are the
statements that the developer is writing (i.e., for which they expect a recommendation).

Concerning the class signatures context, we relied on the methods previously extracted
using JAVALANG [javc], appending to I Mi those being implemented in its same class as shown
in Fig. 7.1.

Finally, for the most similar method context, we defined a process to identify, among
all methods in the training set, the most similar to I Mi (not considering in I Mi the masked
statements). Given the size of the datasets usually adopted to train DL models, we need a
scalable and accurate procedure to compute the similarity between a given input method
I Mi and all methods in the training set. We start by computing the token-level Jaccard
similarity [Han04] between I Mi and each instance in the training set. Such a metric is
very efficient to compute and basically indicates the overlap in code tokens between two
methods. Then, we select the top-k methods in the training set which, accordingly to the
Jaccard similarity, are the most similar to I Mi . Finally, for each of these k methods we
compute their CrystalBLEU [EP22] similarity with I Mi , re-ranking them based on this metric.
The recently proposed CrystalBLEU has been shown to be the metric better correlating with
human assessment when judging the similarity between code snippets. The drawback of
this metric is its scalability, which makes it unsuitable to compute the similarity between
all instances in the training set and I Mi . In summary, we use the Jaccard similarity as a
preliminary filter to identify candidate similar methods. Then, we refine such a set using
a more reliable metric with the goal of selecting the most similar method, being the one
augmenting the contextual information. In our implementation, we set k=20 to achieve
a good compromise between scalability and accuracy. While different values may lead to
better performance, the goal of our study is not to find the best possible (combination of)
contextual information for code completion, but rather to show that this information can
play a substantial role in the model’s performance.

7.3.2 Process Context

The creation of the two process contexts described in Section 7.2.2 requires the identification
of the I Mi “most similar issue”.

We trained a Transformers and Sequential Denoising Auto-Encoder (TSDAE) [WRG21]
model for such a task. TSDAE is a denoising auto-encoder based on BERT that can be used to
create embeddings (i.e., high dimensional real-valued representations of text). By providing
a textual instance to TSDAE, it returns an embedding representing that specific text. We
leverage these embeddings to measure the similarity between I Mi and the set of open issues.

To train TSDAE for such a task we built a dataset to make the model learn when an issue
is relevant for a given I Mi . We used the instances in the “baseline” training set as a starting
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point. As explained, each I Mi → Cr instance has been built by looking for the latest commit
(lc) that changed the method from which I Mi derived. We indicate the date in which lc has
been performed with t. Given an instance, we identify all issues whose status was open at
time t. Then, we checked if lc can be “linked” to one of the open issues. A link between lc and
an open issue is established if lc ’s commit message contains an explicit reference to the issue
id (e.g., “fixed issue #134”) or to the issue url (e.g., “working on issues/134”). We established
such a link for 27,851 instances in our training set. Each of them was used to train TSDAE for
the task of identifying the “open issue” relevant for a given I Mi . Indeed: (i) lc is the commit
that lastly modified the method from which I Mi is derived; (ii) lc has been performed at time
t and can be linked to a specific issue OIn that was open at that time. As a consequence, we
can create one training instance for TSDAE indicating that OIn is relevant for I Mi . Both I Mi
and the text composing OIn are subject to standard pre-processing before they are provided
to TSDAE: We exclude Java keywords, remove punctuation, and split camelCase identifiers.

To choose the best configuration for TSDAE, we performed hyperparameters tuning and
experimented with the different configurations on a validation set we built starting from the
“baseline” validation set using the same procedure described for the training set (3,434 in-
stances). We experimented with six different configurations of TSDAE involving three differ-
ent schedulers and two different learning rates. Each model has been trained for four epochs,
since we did not observe any improvement increasing the training time. The best configura-
tion has been identified as the one having the highest Mean Reciprocal Rank (MRR), indicat-
ing the ability of the model to correctly rank in the first positions the issue relevant for I Mi .
Once identified the best configuration (complete data in our replication package [repb]), we
assessed the performance of the trained TSDAE on a test set derived from the “baseline” test
set (3,256 instances). We achieved a MRR of 0.34, which is substantially better as compared
to that of a random ranker which, on our test dataset, would obtain a MRR of 0.14.

We create the issue title and issue body context datasets by exploiting the trained TSDAE
to identify the most relevant open issue for each I Mi . Instances for which no open issues
were found at time t are excluded from this dataset and, as a consequence, from all other
datasets and our experiment for the reasons previously explained (i.e., the need to compare
the DL models when trained/tested on exactly the same instances).

7.3.3 Developer Context

The core idea is to provide the model with information characterizing the developer who
will receive the completion recommendation.

In our dataset every I Mi → Cr instance has been derived from a lc commit that impacted
the method I Mi by changing the Cr statements. Being a commit, lc has been authored by a
developer Dj which, in our study design, is the one who would have received the completion
recommendation while working on I Mi . Thus, we start by retrieving up to ten past commits
performed by Dj before lc and impacting at least one Java file. We store the diff of these
commits as the set of lines of code they added, deleted, and modified.

Then, we create the developer’s most similar statements context by identifying, in this
set, the ten statements having the highest similarity with the method I Mi (see Fig. 7.1). As
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usual, we do not consider the masked statements (i.e., the ones to complete) when comput-
ing the similarity. The similarity is based on the percentage of overlapping tokens between
each statement and I Mi excluding Java keywords and punctuation.

Concerning the developer’s frequent method invocations, we use srcML [src] to parse
the same set of lines recently added, deleted, or changed by Dj to extract all impacted method
calls (both internal or external to the project). Then, we sort them by frequency, keeping up
to 100 most frequent calls in the additional context (see Fig. 7.1 for an example).

The choice of keeping only the top-10 most similar statements as compared to the top-
100 most frequent calls, is due to the fact that entire statements are usually longer than
method calls. Thus, given the space available to represent contextual information, we can
fit more method calls as compared to entire statements.

7.4 Study Design

The goal of this study is to assess the impact on the performance of a DL-based code com-
pletion technique of additional contextual information provided to it as input. The context
is represented by the datasets described in Section 7.3 that provide eight different types of
contexts including the “baseline” one.

We answer the following research question (RQ):

RQ. To what extent do different types of contextual information impact the performance of
DL-based code completion models?

We assess “performance” by looking at the number of correct predictions generated by the
different variations of the DL model (i.e., those trained using the different datasets presented
in Section 7.3, each of which represents a different context). In addition to that, we test
combinations of the contextual information presented before (e.g., issue title + issue body),
for a total of 18 different models involved in our study. In the following we detail the DL
model we use and how we trained it (Section 7.4.1), and the process we use to collect and
analyze the data output of our study (Section 7.4.2).

7.4.1 DL Model and Training Procedure

As previously explained, we build on top of the work by Ciniselli et al. [CCP+21a] that we
use as “baseline”. Thus, we adopt their same DL model, namely the Text-To-Text-Transfer-
Transformer (T5) [RSR+20]. T5 has been presented by Raffel et al. [RSR+20] in five variants
characterized by different architectures and, consequently, by a different number of trainable
parameters going from 60 Million for T5small up to 11 Billion for T511B.

A larger number of parameters implies better performance at the cost of longer training
times [RSR+20]. While Ciniselli et al. [CCP+21a] opted for the smallest T5small , we decided
to adopt the T5base (220 Million parameters), being it more representative of large language
models which may be deployed in practice. For architectural details about T5base we point
the reader to the work by Raffel et al. [RSR+20].



7.4 Study Design 105

Before being specialized for a task at hand (in our case, code completion), T5 can be
pre-trained using a self-supervised task. The goal of the pre-training is to expose the model
to the language of interest, making it learning its structure. A typical pre-training objective
is the masked language model: Assuming the interest in teaching T5 the structure of the
Java language, we can provide the model with Java snippets in which 15% of the tokens
composing them have been masked, asking T5 to guess those tokens. Once pre-trained, the
model can then be subject to the second training phase, named fine-tuning, in which it is
exposed to the specific task of interest (e.g., completing entire code statements).

Concerning the pre-training, we start from an already pre-trained T5 that has been
trained for 1M steps on the C4 dataset [RSR+20], featuring 20TB of web-extracted English
text. Indeed, previous work showed that starting from a model pre-trained on English is
beneficial when dealing with code as compared to the randomly initialized weights of a non
pre-trained model [TDS+20]. Starting from this checkpoint, we additionally pre-train the
model for 500k steps using the previously described masked language model objective on a
Java pre-training dataset we built. The dataset features 12,671,475 Java methods that have
been extracted from GitHub projects also in this case identified using the search platform by
Dabic et al. [DAB21]. Also in this case we targeted non-forked projects with a long change
history (>500 commits), at least a small development team (>10 contributors), and at least
10 stars. Java methods containing non-ASCII characters, being longer than 512 tokens, or
being already present in the fine-tuning datasets have been excluded.

Table 7.1. Fine-tuning Datasets.

Context
Instances Length

Mean Median St. Dev.

Baseline 243 205 166
Method Calls 380 326 253
Class Signatures 733 481 1,128
Most Similar Method 447 384 296
Issue Title 260 222 167
Issue Body 550 361 1,429
Frequent Invocations 467 418 252
Most Similar Statements 517 445 2,355

Most Similar Method + Class Signatures 941 693 1,169
Method Calls + Class Signatures 871 621 1,153
Most Similar Method + Method Calls 584 507 374
Most Similar Method + Method Calls + Class Signatures 1,079 829 1,200
Issue Title + Issue Body 567 378 1,430
Frequent Invocations + Most Similar Statements 741 647 2,365

Best Code + Best Process 601 525 376
Best Code + Best Developer 808 735 423
Best Developer + Best Process 484 435 254
Best Code+ Best Developer + Best Process 825 753 425

The fine-tuning datasets are the ones described in Section 7.3 plus their combinations
as reported in Table 7.1. All datasets are composed by instances in the form I Mi → Cr , in
which I Mi is the method to complete possibly augmented with contextual information, and
Cr the expected completion.
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Table 7.1 also reports statistics about the length of the instances (in terms of number
of tokens) in each dataset. All fine-tuning datasets feature 85,266 instances, split into 80%
training (68,215), 10% evaluation (8,526), and 10% test set (8,525). While the datasets
have been randomly split, all instances referring to the same method belong to the same set,
to avoid biasing our results. Indeed, it is worth remembering that a method may generate
multiple instances in our dataset, since we could mask different parts of it.

As shown in Table 7.1, we experiment with: (i) the baseline model; (ii) the seven types of
context introduced in Section 7.3; (iii) all combinations of contexts within the same family
(e.g., combinations of the three coding contexts; and (iv) combinations of contexts across
different families (e.g., combining a coding context with a process context). For these cross-
families combinations, we reduce the number of experiments to run by only considering the
best combination within each family. This means that we combine the best coding context
(which could be a single context or a combination of multiple coding contexts) with the best
process context; then, we combine the best coding context with the best developer context; etc.
We assess what the best context is within each family by looking at the number of correct
predictions (i.e., cases in which the recommended code is identical to the expected one)
generated by the models.

Training procedure. We pre-trained and fine-tuned T5 using a Google Colab’s 2x2 TPU
topology (8 cores) [col]. We also trained a 32k word-pieces SentencePiece tokenizer [KR18]
used by the model to represent the input/output. The tokenizer has been trained on 1M Java
methods randomly extracted from the pre-training dataset and 712,634 English sentences
from C4 [RSR+20]. The maximum number of tokens for the input has been set to 1,024 and
the batch size to 32.

We performed hyperparameters tuning assessing the performance of the four different
T5 configurations experimented by Ciniselli et al. [CCP+21a]. These configurations differ
in the way they handle the learning rate. We fine-tuned each configuration for 30k steps
and assessed its performance on the evaluation set in terms of its ability to generate correct
predictions. To reduce the cost of such a procedure, we found the best configuration only
on the “baseline” dataset (i.e., no additional contextual information provided), and used it
in all experiments. The best configuration found was the one using a constant learning rate
equal to 0.001.

Such a configuration has been used to fine-tune the 18 different models (i.e., different
contexts and combinations of contexts). Each of these models has been fine-tuned for 160k
steps, corresponding to ∼75 epochs on the 68,215 instances of the training dataset. To
avoid overfitting, we saved a checkpoint for each model every 5k training steps. Then, we
evaluated the performance of the different checkpoints on the evaluation set, picking the
best one as the final model to use in our experiments on the test set.

7.4.2 Data Collection and Analysis

We run the 18 trained models on the test set assessing their performance in terms of correct
predictions. To evaluate whether the difference in correct predictions generated by two
models is statistically significant, we use the McNemar’s test [McN47], useful to compare
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dichotomous results of two different treatments, together with the Odds Ratio (OR) effect
size. We account for multiple comparisons by adjusting p-values using the Holm’s correction
[Hol79].

We also assess the complementarity between the baseline and each contextual model
by computing the percentage of correct predictions generated by (i) both models (i.e., for
a given code completion instance, both models correctly recommend the completion); (ii)
the baseline only; (iii) the contextual model only. This analysis allows us to understand the
potential of combining multiple models.

7.5 Results

Table 7.2 reports the percentage of correct predictions generated by T5 when trained using
the baseline representation, the different types of contexts, and their combinations (within-
and cross-family).

The baseline achieves 30.58% of correct predictions which is in line with what observed
by Ciniselli et al. [CCP+21a] when investigating the ability of T5 to generate entire state-
ments (in our case, up to two statements). When providing the model with additional con-
textual information of a specific type (Context Type = “Single” in Table 7.2), we observe an
increase in performance ranging from a relative +0.6% (issue body) to a +7% (most similar
method). Also providing the model with the method calls context (i.e., the methods invoking
and invoked by the method to complete) provides a substantial boost in correct predictions
(+6%).

Table 7.2. Percentage of correct predictions.

Context
Context

%Correct
Type Prediction

None Baseline 30.58%

Method Calls 32.46%
Class Signatures 31.33%
Most Similar Method 32.68%

Single Issue Title 31.32%
Issue Body 30.77%
Frequent Invocations 31.80%
Most Similar Statements 31.00%

Within-family

Most Similar Method + Class Signatures 32.72%
Method Calls + Class Signatures 33.03%
Most Similar Method + Method Calls 33.35%
Most Similar Method + Method Calls + Class Signatures 33.88%
Issue Title + Issue Body 31.20%
Frequent Invocations + Most Similar Statements 31.17%

Cross-family

Best Code + Best Process 33.75%
Best Code + Best Developer 33.58%
Best Developer + Best Process 31.50%
Best Code+ Best Developer + Best Process 33.54%

When statistically comparing the performance of the baseline with the models exploit-
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INPUT METHOD

<C> StringBuilder.append(String) 
<C> lang.StringBuilder() 
<C> StringBuilder.toString() 
<C> NodeState.isExpanded() 
<C> HierarchicalStreamWriter.endNode() 
<C> Iterator.next() 
<C> TreeState.states()
<C> Map.entrySet() 
<C> NodeState.isSelected() 
<C> Set.iterator() 
<C> Entry.getKey() 

CONTEXT

PREDICTION BASELINE
for ( final Map.Entry<String, NodeState> entry : 
    treeState.getMap ().entrySet () )

@Override
public void marshal ( final Object source, final HierarchicalStreamWriter writer, 
                      final MarshallingContext context )
{
final TreeState treeState = ( TreeState ) source;
<MISSING CODE>
{
final String nodeId = entry.getKey ();
final NodeState nodeState = entry.getValue ();
writer.startNode ( "node" );
writer.addAttribute ( "id", nodeId );
writer.addAttribute ( "expanded", "" + nodeState.isExpanded () );
writer.addAttribute ( "selected", "" + nodeState.isSelected () );
writer.endNode ();
}
}

PREDICTION CONTEXTUAL MODEL
for ( final Map.Entry<String, NodeState> entry : 
    treeState.state ().entrySet () )

Figure 7.2. Method calls context helping the prediction.

ing individual types of contextual information, we found significant differences (adjusted
p-value < 0.05) in all cases but for issue body and most similar statements. The OR for the
significant differences ranges between 1.23 (class signatures) and 1.64 (method calls). An
OR=1.64 indicates 64% higher odds of obtaining a correct prediction using the contextual
model as compared to the baseline. The complete results of the statistical analysis are avail-
able in our replication package [repb].

Fig. 7.2 provides an example in which the baseline model was not able to generate the
expected completion, wrongly recommending treeState.getMap in the for loop. Instead,
when providing the model with method calls context, the model was able to exploit such
information to identify treeState.state as the correct method call to feature in the for.

Fig. 7.3 provides instead an example in which the baseline model wrongly recommends
ability.accept(ability); as completion. Instead, when providing the model with the
most similar method as additional context (in this case, a Type-II clone), the model was able
to exploit such a similarity to match readyMap in the method to complete to activatedMap

in the contextual method, thus realizing the need for generating readyMap.put(ability,

false);.
Worth mentioning is also the+4% ensured by the frequent invocations context (OR=1.44),

featuring the method calls frequently used by the developer receiving the recommendation.
Among the process contexts, feeding the model with the title of the most relevant open

issue seems to help (+2.5%), while the improvement is close to zero when the issue body is
provided.

By combining the contexts belonging to the same family (Context Type= “Within-family”
in Table 7.2), the improvement in performance can be pushed further when it comes to
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INPUT METHOD

CONTEXT

PREDICTION BASELINE PREDICTION CONTEXTUAL MODEL
ability.accept(ability); readyMap.put(ability, false);

public boolean isActivated(UUID id, MAbility ability) {
    Map<MAbility, Boolean> activatedMap = activated.get(id);
    if (activatedMap == null) {
        activated.put(id, new HashMap<>());
        return false;
    }
    Boolean activatedValue = activatedMap.get(ability);
    if (activatedValue != null) {
        return activatedValue;
    } else {
        activatedMap.put(ability, false);
    return false;
    }
}

public boolean isReady(UUID id, MAbility ability) {
    Map<MAbility, Boolean> readyMap = ready.get(id);
    if (readyMap == null) {
        ready.put(id, new HashMap<>());
        return false;
    }
    Boolean readyValue = readyMap.get(ability);
    if (readyValue != null) {
        return readyValue;
    } else {
        <MISSING CODE>
    return false;
    }
}

Figure 7.3. Most similar method context helping the prediction.

the coding contexts. The three coding contexts together result in a relative +11% in correct
predictions as compared to the baseline (33.88% vs 30.58%) — p-value <0.0001, OR=1.9.
Such an improvement is not obtained, instead, for the other two families of contexts (i.e.,
process and developer), for which the performance of the combinations is in line or slightly
worse than the single context types taken in isolation.

The bottom part of Table 7.2 reports the results achieved by combining the contexts being
the best performing of each of the three families. This includes the issue title as represen-
tative of the process context, and the frequent method invocations for the developer context.
Concerning the coding context a longer discussion is needed: The best performing model is
the one exploiting a combination of all information (i.e., most similar method + method calls
+ class signatures). However, such a context tends to saturate the 1,024 tokens available for
the model’s input. Thus, combining it with even additional contextual information would
not make sense, since the input will be cut in most of cases. For this reason, we selected
the second best-performing model among the coding contexts, namely most similar method
+ method calls. The latter, while ensuring performance similar to the best one (33.35% vs
33.88% of correct predictions) requires, on average, half of the tokens for its representation.

As it can be seen from Table 7.2, while improvements can be obtained in terms of cor-
rect predictions as compared to the baseline (p-value < 0.0001 in all comparisons, with ORs
ranging between 1.31 and 1.9), none of the experimented cross-family combinations outper-
forms the best within-family combination featuring all coding contexts. Such a result may
be due to the fact that we did not manage to experiment with cross-family combinations



110
Deep Learning-based Code Completion: On the Impact on Performance of Additional Contextual

Information

involving the best within-family context (due to limitations in the input size).

Take-away. Additional contextual information can have a substantial impact on the model’s
performance. Our experiments showed relative improvements up to +11% in terms of correct
predictions.

Complementarity Analysis and Confidence of the Predictions

Table 7.3 reports the results of the complementarity analysis concerning the correct predic-
tions generated by the baseline and by the models using different combinations of contextual
information. Given the baseline and a specific context Ci , this means computing the union
of the correct predictions generated by both approaches, and then counting those (i) gener-
ated by both models (i.e., both models generated a correct prediction for a given instance),
(ii) generated by the baseline only, and (iii) generated by the model exploiting Ci only. For
example, in the case of the method calls context, 78.12% of correct predictions are shared
with the baseline, 8.29% are only generated by the baseline, and 13.59% are only generated
by the model exploiting the method calls context.

Table 7.3. Complementarity analysis: between the correct predictions (CP) generated by the baseline
and by the models exploiting different contextual information.

Context
%CP %CP Only %CP Only

Shared Baseline Context

Method Calls 78.12% 8.29% 13.59%
Class Signatures 79.03% 9.4% 11.57%
Most Similar Method 73.8% 10.22% 15.98%
Issue Title 82.85% 7.48% 9.67%
Issue Body 82.74% 8.35% 8.91%
Frequent Invocations 80.45% 8.01% 11.54%
Most Similar Statements 79.79% 9.49% 10.72%

Most Similar Method + Class Signatures 72.62% 10.78% 16.6%
Method Calls + Class Signatures 75.73% 8.75% 15.52%
Most Similar Method + Method Calls 72.52% 10% 17.48%
Most Similar Method + Method Calls + Class Signatures 71.72% 9.75% 18.53%
Issue Title + Issue Body 81.68% 8.24% 10.08%
Frequent Invocations + Most Similar Statements 78.01% 10.15% 11.84%

Best Code + Best Process 72.72% 9.39% 17.89%
Best Code + Best Developer 73.27% 9.31% 17.42
Best Developer + Best Process 80.37% 8.48% 11.15%
Best Code+ Best Developer + Best Process 71.46% 10.32% 18.22%

The results in Table 7.3 provide one important message: There is a good complementar-
ity between the baseline and the models exploiting additional contextual information. For
example, while the best-performing model (i.e., most similar method + method calls + class
signatures) generates 18.53% of correct predictions which are missed by the baseline, the lat-
ter is still able to generate 9.75% of correct predictions which are missed by the contextual
model.

Such a result points to the possibility of combining multiple models (i.e., models ex-
ploiting different input representations) to boost performance. One possibility is to trigger,
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Figure 7.4. Percentage of correct predictions when varying the confidence of the model.

for a given code completion scenario, the model having the highest confidence in its pre-
diction. Indeed, as most of DL models, T5 provides a score for each generated prediction.
The score is a value lower than 0 representing the log-likelihood of the prediction. For
example, having a log-likelihood of -1 means that the prediction has a likelihood of 0.37
(ln(x) = −1 =⇒ x = 0.37). The likelihood can be interpreted as the confidence of the
model about the correctness of the prediction on a scale from 0.00 to 1.00 (the higher the
better).

Fig. 7.4 shows the relationship between the percentage of correct predictions (Y -axis),
and the T5 confidence (X -axis). We grouped the predictions into different buckets based on
their confidence (i.e., from 0.00 to 0.10, from 0.11 to 0.20, . . . , from 0.91 to 1.00). The
results are shown for the baseline and for the models exploiting each contextual information
in isolation. There is a clear and strong trend indicating that the higher the confidence of the
prediction, the higher the likelihood of obtaining a correct prediction. When the confidence
is greater than 0.90, the models are usually able to recommend the correct completion in
more than 70% of cases.

Given the complementarity observed for the different models and the reliability of the
confidence as a “proxy” for the prediction quality, we experimented with a confidence-based
model which, given a code completion scenario from our test set, recommends as completion
the output of the model having the highest confidence among all those we experimented with
(i.e., the baseline and the ones exploiting different combinations of contextual information).
Table 7.4 shows in the top part a performance comparison between the baseline and the
confidence-based model in terms of correct predictions. As it can be seen, the confidence-
based model is by far the best we experimented with, increasing the percentage of correct
predictions generated by the baseline by a relative +22.4% (from 30.58% to 37.43%). This
results in a statistically significant difference (p-value < 0.0001) with an OR=6.56.

Finally, the bottom part of Table 7.4 shows the complementarity analysis between the
baseline and the confidence-based model. As it can be seen, there is a 20.9% of correct pre-
dictions only generated by the confidence-based model. Only a 3.19% of correct predictions
is instead generated only by the baseline model.
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Table 7.4. Baseline vs confidence-based model.

Measure Baseline Conf. model

PERFORMANCE COMPARISON

Correct Predictions (#) 2,607 3,191
Correct Predictions (%) 30.58 37.43

COMPLEMENTARITY ANALYSIS

Exact Match Prediction Shared 2,502/3,296 (75.91%)
Exact Match Predictions only Baseline 105/3,296 (3.19%)
Exact Match Predictions only Score model 689/3,296 (20.90%)

Take-away. Combining models using different contextual information by exploiting the
confidence of their prediction can provide substantial benefits in terms of correct predictions for
code completion.

7.6 Validity Discussion

Construct validity. The usage of the correct predictions metric provides a limited view
about the performance of the experimented models. For example, a model may generate a
code completion prediction different but behaviorally equivalent to the expected one. Our
experimental design simply considers such a prediction as wrong. However, given the goal
of our study, we preferred to use a single and easy to interpret metric. For example, when
comparing techniques it might be difficult to interpret what a +3% in terms of average
CrystalBLEU [EP22] means in practice.

Internal validity. An important factor influencing DL performance is the calibration of
hyperparameters which, due to feasibility reasons, we limited to the baseline model, assum-
ing the others would benefit from the same configuration. However, a hyperparameters
tuning also extended to the contextual models may only improve the performance of the
latter, thus further reinforcing our finding: Additional contextual information can have a
substantial impact on the model’s performance.

Our experiment only focuses on “expanding” the contextual information provided to
the model as compared to the baseline. One may wonder if good results can be obtained
by, instead, shrinking the input representation. We experimented with this scenario, by
creating two representations of the method to complete in which, given S the set of masked
statements, we only provide the model with up to six or four statements surrounding it
(rather than the whole method containing S as done with the baseline). To better understand,
the representation using up to six surrounding statements inputs to the model S (the masked
part to generate) with up to three statements above and below it. We say “up to”, since not in
all cases there will be at least three statements above/below S. We found that shrinking the
contextual information provided to the model results in a strong drop of performance, with
a relative loss in terms of correct predictions of -19.48% and -22.24% when providing only
the six and the four surrounding statements, respectively. Complete results are available in
our replication package [repb].
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Conclusion validity. As explained in Section 7.4.2 we used appropriate statistical pro-
cedures, also adopting p-value adjustment when multiple tests were used within the same
analysis.

The differences in performance among the different models might look minor at a first
sight. For example, the confidence-based model achieves 37.43% of correct predictions versus
the 30.58% of the baseline, resulting in a+22.4% relative improvement but only in a+6.85%
absolute improvement.

Even the latter actually is a major improvement as compared, for example, to previous
work in the literature proposing novel code completion techniques (e.g., +0.8% in accuracy,
Table 3 in [IGG22]).

External validity. We used T5 as representative of DL-based code completion techniques
[CCP+21a]. Other DL models may lead to different results. Also, our study only targets Java
and statement-level code completion (i.e., completing up to two complete statements). Our
findings may not generalize to other settings.

7.7 Conclusion and Future Work

We investigated how augmenting the contextual information provided to a DL model can
benefit its performance in the context of code completion. We experimented with three
families of contexts, namely coding context, process context, and developer context, showing
that they can boost the correct predictions of the baseline up to a relative +11%. Also, the
models exploiting different contextual information exhibit a good complementarity. For this
reason, we combined them by exploiting the confidence of their predictions (i.e., for a given
code completion scenario the recommendation is triggered by the model having the highest
confidence). This allowed us to achieve a relative improvement of +22% over the baseline.

Future work will mostly point to the generalizability of our findings to different languages
and code-related tasks.
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8
Conclusions and Future Work

In this thesis, we presented our research towards gaining a deeper understanding of the
strengths and limitations of DL-based code recommenders. We started by investigating the
behavior of DL models when facing complex code completions. Our findings, elaborated in
Chapter 3, showed that DL models are still struggling when the code to recommend extends
across multiple lines, while still producing some quite surprising (correct) predictions.

Based on these findings and the remarkable predictions offered by tools like GitHub
Copilot, we started wondering whether DL models tend to copy the code encountered during
the training phase at inference time. In Chapter 4 we found out that DL models did not
exhibit a strong inclination to copy a significant amount of code from the training set. Then,
in Chapter 5, we delved into the capability of DL models to generalize across different Java
versions of the same programming language. Our findings revealed that DL models are
strongly susceptible to the concept drift problem, resulting in a substantial degradation in
performance when applied to a Java version not included in their training data.

We complemented the mostly quantitative investigations summarized above with a more
qualitative study investigating which code recommender features are important from the
developer’s perspective. We conducted a survey involving 80 developers and the insights,
discussed in Chapter 6, led to the identification of a taxonomy of 70 different characteristics
of code recommenders that are crucial for developers. This taxonomy serves as a valuable
guide for researchers in improving future recommender systems (see Chapter 6). As a con-
crete example of how our taxonomy can be used, we investigated the role of the additional
contextual information on the performance of code recommender systems. Our results, pre-
sented in Chapter 7, showcased the capabilities of DL models to exploit the more complete
contextual information, resulting in a substantial boost of performance.
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8.1 Limitations and Future Work

8.1.1 Generalizability of our results to different programming languages and mod-
els

Our primary focus has been on the Java language, widely employed by developers all over the
world. However, we believe that our findings could be generalized to different languages.
Indeed, most of the languages share similar constructs and logical structures. Moreover,
several of the models used in our experiments were at least pre-trained on CodeSearch-
Net dataset, that includes six different programming languages (Java, JavaScript, PHP, Go,
Python, and Ruby). Despite this, a multi-language study assessing the generalizability of our
results would be welcome.

Furthermore, we experimented with encoder-decoder models, like T5 and CodeT5. It
would be interesting to validate whether the same findings hold also for decoder-only mod-
els, like the GPT-based models, that form the foundation of several state-of-the-art tools (e.g.,
ChatGPT).

8.1.2 Focus on the developer’s coding style

DL models, like GitHub Copilot, have demonstrated surprising capabilities to strongly tailor
their suggestions to the input they receive. For instance, creating an ad-hoc context to aug-
ment the model’s awareness, enhanced the quality of the code suggestions. This can be seen
like an archetypal attempt to customize the prediction for a specific input. However, it poses
the premise to developer-centric code recommenders, able to fit the suggestions to the user
that is asking for support. However, integrating such “individual knowledge” into the recom-
mender presents substantial challenges, since the model should be aware of a multitude of
factors, including the libraries and design patterns that are familiar to each developer. Our
future work will involve the extension of our context definitions, to create a novel context
tailored to each developer, thus enabling the recommendation of personalized code.

8.1.3 Reduce the training time with small task-specific fine-tunings

Recently, the concern for the amount of energy wasted in nowadays society, has prompted
interest in the research community to reduce the carbon footprint [PGL+21, SGM19] as-
sociated with the training of Large Language Models. During a MIT event, Sam Altman,
CEO of OpenAI, a company that released several state-of-the-art models for text genera-
tion, revealed that training GPT-4 costed over 100 million USD. Moreover, training GPT-3, a
model with 175 billion of parameters, required 14.8 days using 10,000 V100 GPUs [PGL+21].
These resource-intensive training processes can potentially have a disruptive environmental
impact. To address these concerns and at the same time reduce the training cost, several
researchers relied on already pre-trained models. Our analysis has confirmed the general
sentiment regarding the generalizability of DL results on different java versions, showing
the effectiveness of small fine-tunings to adapt a pre-trained model and give a significant
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boost in the performance. In the future, we aim to delve deeper into the impact of small
version-specific fine-tunings for increased efficiency.

8.1.4 Leverage suggestion from developers’ community

Our survey with developers has shed some light on possible ways for improving code rec-
ommenders. We started focusing on enhancing the “awareness of code recommenders”,
leveraging the developers’ knowledge to generate more contextually relevant recommenda-
tions. However, multiple suggestions from the developer community deserve exploration.
For example, developers stressed the importance of the coverage of support (i.e., the differ-
ent situations in which the tool can assist them), with possible improvement for multi-lingual
code, also highlighting the usability of the tool as a crucial aspect. In the future, we want to
leverage these insights for improving the user experience with code recommenders.

8.2 Closing Words

In conclusion, our research has attempted to study the strengths and weaknesses of code
recommender systems in order to build better tools, with an emphasis on identifying po-
tential limitations and crafting developer-centric solutions. Our findings can contribute to
enhance the functionality of code assistants to facilitate a harmonious collaboration between
developers and AI models, also amplifying their productivity and effectiveness.

One emerging question is whether the advent of tools like GitHub Copilot and ChatGPT
can impact the results described in this thesis, potentially rendering our results obsolete or
even challenging their validity. Clearly, results highlighted in Chapter 3 can now be con-
sidered surpassed, since the task of generating a couple of statements can now be easily
addressed by these models, even able to recommend entire functions. Investigating whether
DL models tend to copy is still an interesting question, since it is possible that these models,
trained on an unprecedented amount of lines of code, may tend to verbatim copy statements
from the training data. We believe that even the generalizability across different versions of
a programming language discussed in Chapter 5 is still a valid question, since the natural
evolution of the languages should be always kept into account by researchers and practi-
tioners, continuously updating their model when a new language version is released. The
results presented in our taxonomy, exhaustively described in Chapter 6, could slightly be re-
vised, since these models could potentially have sparked interest in different features which
have been prompted to the practitioners’ mind by the superior capabilities of these novel
approaches. However, we asked the participants to envision characteristics for code recom-
menders, with no mention to the feasibility of their suggestions. For this reason, we believe
that the changes to the taxonomy would be limited. The results we achieved by leverag-
ing the contextual information are really promising, and they can be applied to any model.
Hence, we believe that also GitHub Copilot and ChatGPT may benefit from this additional
information and it would be really interesting to evaluate their performance when exploiting
additional contextual information.
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