
Empirical Software Engineering (2024) 29:38
https://doi.org/10.1007/s10664-023-10430-8

HyperPUT: generating synthetic faulty programs to challenge
bug-finding tools

Riccardo Felici1 · Laura Pozzi1 · Carlo A. Furia2

Accepted: 22 November 2023
© The Author(s) 2024

Abstract
As research in automatically detecting bugs grows and produces new techniques, having
suitable collections of programs with known bugs becomes crucial to reliably and meaning-
fully compare the effectiveness of these techniques. Most of the existing approaches rely on
benchmarks collecting manually curated real-world bugs, or synthetic bugs seeded into real-
world programs. Using real-world programs entails that extending the existing benchmarks
or creating new ones remains a complex time-consuming task. In this paper, we propose a
complementary approach that automatically generates programs with seeded bugs. Our tech-
nique, called HyperPUT, builds C programs from a “seed” bug by incrementally applying
program transformations (introducing programming constructs such as conditionals, loops,
etc.) until a program of the desired size is generated. In our experimental evaluation, we
demonstrate how HyperPUT can generate buggy programs that can challenge in different
ways the capabilities of modern bug-finding tools, and some of whose characteristics are
comparable to those of bugs in existing benchmarks. These results suggest that HyperPUT
can be a useful tool to support further research in bug-finding techniques—in particular their
empirical evaluation.

Keywords Program generation · Testing benchmarks · Synthetic bug injection ·
Testing frameworks · Fuzzing · Symbolic execution

1 Introduction

Research in detecting bugs automatically spans several decades, and has produced a wide
array of diverse tools such as static analyzers, symbolic execution engines, and fuzzers—to
mention just a few. In contrast to this long and successful history of developing bug-finding
tools, there still is a somewhat limited agreement about how to rigorously evaluate and
compare their bug-finding capabilities in realistic settings.

Communicated by: Tingting Yu

B Riccardo Felici
felicri@usi.ch

1 Computer Systems Institute, Università della Svizzera italiana (USI), Lugano, Switzerland

2 Software Institute, Università della Svizzera italiana (USI), Lugano, Switzerland

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10430-8&domain=pdf

 38 Page 2 of 34 Empirical Software Engineering (2024) 29:38

In the last few years, to address this conspicuous gap, we have seen several propos-
als of ground-truth benchmarks: curated collection of real programs including known bugs
(Hazimehet al. 2021) or seededwith synthetic bugs (Dolan-Gavitt et al. 2016;Royet al. 2018),
complete with detailed information about the bugs’ location, triggering inputs, and other fun-
damental characteristics. Ground-truth benchmarks have been instrumental in improving the
rigor and thoroughness of bug-finding tools—especially those that generate test inputs using
symbolic execution or fuzzing, which are the benchmarks’ usual primary focus. While the
usefulness of ground-truth benchmarks is undeniable, extending a benchmark with addi-
tional bugs and programs—not to mention creating a new domain-specific benchmark from
scratch—remains a complex and time-consuming endeavor.

In this paper, we explore a complementary approach to building ground-truth bench-
marks, where we automatically generate from scratch programs with seeded bugs. The idea
of constructing programs to be used as test inputs (PUTs: programs under test) has been
successfully used for other purposes, such as to detect semantic compiler bugs that result in
incorrect compilation (Yang et al. 2011).

Our technique,whichwe callHyperPUT, builds programs starting froma seed that consists
of a simple block that fails when executed; this represents a seeded bug. Then, it repeatedly
grows the program by adding features (branching, looping, and so on) that make it larger and
more complex to test. HyperPUT is highly configurable: the user can choose aspects such as
how many programs to generate, which syntactic features they should include, and the range
of variability of their branching conditions. Clearly, there is no a priori guarantee that the
synthetic PUTs generated by HyperPUT are representative of real-world bugs. However, a
fully synthetic approach also has clear advantages over manually curated collections: since
the whole process is automatic and customizable, producing new benchmarks collecting
programs with specific characteristics is inexpensive. In addition, HyperPUT’s PUTs come
with precise information about the bug location and any bug-triggering inputs. Thus, they
can supplement the programs in curated ground-truth benchmarks to better evaluate the
capabilities of bug-finding tools according to metrics such as number of discovered bugs and
bug detection time, as well as to investigate which syntactic features of the faulty programs
are more amenable to which bug-finding tools.

After discussing HyperPUT’s design and implementation in Section 3, in Section 4 we
design some experiments where we generated hundreds of PUTs with bugs using Hyper-
PUT, and we ran three popular, mature bug-finding tools—AFL++, CBMC, and KLEE—on
these PUTs. Our goal is demonstrating that HyperPUT can generate bugs with diverse char-
acteristics, which can challenge different capabilities of bug-finding tools and can usefully
complement the programs in ground-truth benchmarks. To this end, we follow Roy et al.
(2018)’s description of the features of “ecologically valid” bugs, and analyze whether Hyper-
PUT can generate bugs that are fair, reproducible, deep, and rare, and that can exercise the
different capabilities of common bug-finding techniques. The high-level summary of the
experiments, which we detail in Section 5, confirms that HyperPUT is capable of generat-
ing “interesting” buggy programs that share some characteristics with those of benchmarks.
Thus, HyperPUT can support flexible empirical analysis of the capabilities of the various bug-
finding tools in a way that complements and extends what is possible using manually-curated
benchmarks.

Contributions This paper makes the following contributions:

– HyperPUT, a configurable technique to automatically generate PUTs with certain char-
acteristics and seeded bugs.

123

Empirical Software Engineering (2024) 29:38 Page 3 of 34 38

– An open-source implementation of the HyperPUT technique in a tool—also named
HyperPUT.

– An experimental evaluation of HyperPUT that demonstrates its ability to generate bugs
with characteristics comparable to “ecologically valid” ones (Roy et al. 2018), which
exercise from different angles the capabilities of bug-finding tools.

The prototype implementation of HyperPUT is available in a public repository (HyperPUT
2022).

Organization The rest of the paper is organized as follows. Section 2 discusses the main
related work in the development of benchmarks of bugs, as well as bug-finding techniques
and tools. Section 3 describes the HyperPUT technique and its current implementation as
a tool with the same name that generates programs in C. Section 4 introduces the paper’s
research questions, and the experiments that we carried out to answer the questions. Section 5
presents the results of the experiments, and how they address the research questions. Finally,
Sections 6 and 7 conclude with a discussion and summary of the paper’s contributions.

2 RelatedWork

We discuss related work in two areas: benchmarks of bugs to evaluate bug-finding tools
(Section 2.1), and the main techniques and tools to find bugs and vulnerabilities in programs
(Section 2.2). Consistently with the paper’s main focus, we principally consider techniques
and tools that work on programs written in the C programming language used for systems
programming.

2.1 Benchmarks of Bugs

Different applications of program analysis, including different approaches to test-case gener-
ation, use different benchmarks, consistent with the goals of the program analysis evaluated
using the benchmark. Here, we focus on extensible benchmarks to evaluate the bug-finding
capabilities of test-case generation frameworks (for brevity, testing framework).

Table 1 shows a natural classification in terms of the origin of programs and their bugs,
and displays the category several well-known benchmarks belong to. A program included
in a benchmark can be organic or synthetic. The bugs of a benchmark’s PUTs can also be
organic or synthetic.

Table 1 Classification of evaluation benchmarks according to whether they consist of organic or synthetic
bugs within organic or synthetic programs (PUTs)

Organic PUTs Synthetic PUTs

Organic bugs FuzzBench

MAGMA

CGC, Test-Comp, SV-Comp (datasets)

Synthetic bugs LAVA CSmith

Apocalypse HyperPUT

Underlined systems support the automatic generation of new benchmarks by seeding bugs into existing pro-
grams

123

 38 Page 4 of 34 Empirical Software Engineering (2024) 29:38

Organic programsAn organic program is one that was designed and implemented by human
programmers, and hence reflects the characteristics of real-world programs (or at least a
sample of them). For this reason, many existing benchmarks are based on organic PUTs. For
example, the International Competition on Software Testing (Test-Comp) (Beyer 2021a) is
a comparative evaluation of automatic tools for software test generation, which uses bench-
marks consisting of C programs equipped with testing objectives (such as coverage, and bug
finding). Similar benchmarks are used by the Competition on Software Verification (SV-
Comp) (Beyer 2021). Another example is the CGC dataset, which collects about 300 small
manually-written programs produced for the Darpa Cyber Grand Challenge (DARPA CGC
2018); for each bug in the programs, the CGC also includes a triggering input.

Google’s FuzzBench is an open benchmarking platform and service (Metzman et al. 2021)
based on open source programs. FuzzBench has been useful both in the industrial and the
academic fields—both to evaluate the capabilities of fuzzing frameworks and to identify their
limitations and own bugs.

Organic benchmarks exist also for other programming languages, such as the DaCapo
benchmarks (Blackburn et al. 2006) andDefects4J (Just et al. 2014) for the Java programming
language.

Synthetic programs In contrast, a synthetic program is one that is generated automatically
from a set of templates, rules, or heuristics.

CSmith (Yang et al. 2011) is a program generator mainly employed for validating compil-
ers through differential testing (McKeeman 1998). It has been used to find several security
problems in popular compiler frameworks (Marcozzi et al. 2019; Even-Mendoza et al. 2020),
including GCC (Stallman 2023) and LLVM (Lattner and Adve 2004). Timotej and Cadar
Kapus and Cadar (2017) applied a similar combination of grammar-based program genera-
tion and differential testing in order to find bugs in symbolic execution engines. While tools
such as CSmith could be used to build benchmarks that challenge testing frameworks, they
are most directly useful for differential testing, where the goal is comparing the behavior
of different versions of a compiler. HyperPUT revisits some of the ideas behind tools like
CSmith (in particular, grammar-based program generation) so that they are directly appli-
cable to generate PUTs with seeded bugs. Differently from CSmith, HyperPUT can also
produce a triggering input for each buggy program it generates, which serves as the ground
truth to assess and compare the capabilities of different bug-finding tools.

Organic bugs An organic bug is one that occurred “in the wild”, and hence comes from
a program’s actual development history. Just like organic programs, organic bugs have the
clear advantage of being realistic. In fact, the majority of current systems for the evaluation
of testing frameworks consist of organic PUTs and organic bugs. The MAGMA benchmark
(Hazimeh et al. 2021) can extend the usability of such “fully organic” benchmarks by per-
forming “forward-porting” of real bugs to recent version of the target PUT. This way, a
historically relevant bug can still be reproduced (and tested for) in up-to-date setups. Still,
applying MAGMA to new bugs and new PUTs requires substantial manual effort.

Synthetic bugs Seeding synthetic bugs into an existing program has become an increasingly
popular approach to generate large benchmarks of bugs, thanks to its scalability compared to
manual selection and curation. The Large-scale Automated Vulnerability Addition (LAVA)
dataset (Dolan-Gavitt et al. 2016)—commonly used to compare fuzzing frameworks—
consists of synthetic bugs seeded into existing programs. LAVA’s bug injection is based
on the PANDA dynamic analysis platform (Dolan-Gavitt et al. 2015), built on top of the
QEMU emulator (Bellard 2005). First, an analysis of the target program identifies dead,

123

Empirical Software Engineering (2024) 29:38 Page 5 of 34 38

unused, and available (DUA) bytes of the input, which can be altered (“fuzzed”) without
affecting the program’s behavior. Then, LAVA seeds vulnerabilities, such as buffer overflows
or other kinds of inconsistent memory access, that are triggered when an execution accesses
the DUA bytes.

Apocalypse (Roy et al. 2018) is a bug injection system similar to LAVA and based on
synthetic bugs and symbolic execution. It generates and seeds into existing programs bugs
with specific requirements (some of which we describe in Section 4 in relation to our exper-
iments). Apocalypse was experimentally evaluated to show it can generate seeded bugs with
characteristics comparable to organic ones. In Section 5, we will assess the PUTs generated
by HyperPUT using several of the same metrics.

In order to work on real-world programs, LAVA and Apocalypse incur some limitations.
First, one cannot seed bugs at arbitrary locations but only at those that have been reached in
a previous execution. Second, since they rely on symbolic execution to discover triggering
inputs for the seeded bugs, it may be practically hard to find such triggering inputs for bugs
that are nested very deeply into the program’s control flow structure. Since HyperPUT builds
PUTs with seeded bugs from scratch, it does not incur these limitations and can generate
programs with arbitrarily complex nesting structure (as we demonstrate in Section 5.3).

Ferrer et al.’s work (Ferrer et al. 2011) is an example of fully synthetic benchmarks
(consisting of synthetic bugs and synthetic PUTs) for the Java programming language. Their
main goal is generating programs where every branch is reachable to serve as ground truth
when evaluating the branch-coverage capabilities of testing frameworks.

Mutation testing is another approach based on injecting synthetic bugs in organic programs
(Kontar et al. 2019; Kusano and Wang 2013). The original goal of mutation testing was to
measure the bug-detection capabilities of a test suite: the more “mutants” (i.e., variants of
program with injected bugs) trigger failures in the test suite, the more comprehensive the
test suite is Pezzè M, Young et al. (2007). More recently, mutation testing ideas have been
applied to different dynamic analysis techniques, such as fault localization (Papadakis et al.
2015; Bowes et al. 2016). As a bug-injection technique (Fraser and Zeller 2012), mutation
testing suffers from the problem of equivalent mutants, which occur when a mutation does
not alter a program’s behavior, and hence the mutant does not actually have a bug; a number
of approaches have tried to address this problem (Papadakis et al. 2015; Yao et al. 2014;
Schuler and Zeller 2013).

It is also interesting to consider which metrics are supported by the benchmarks. The most
common ones are number of detected bugs, detection time, and maximum code coverage
achieved during testing; these are easily applicable to all benchmarks. In addition, one may
want to relate the syntactic features of the buggy programs to the capabilities of the bug-
finding tools; HyperPUT’s approach supports this kind of experiments, since it can generate
batches programs with similar characteristics (e.g., nesting structure or kinds of statements).

2.2 Bug-Finding Tools

A detailed discussion of the main techniques used to find bugs in programs is beyond the
scope of the present paper; we refer the interested readers to surveys (Candea and Godefroid
2019; Cadar and Sen 2013; Baldoni et al. 2018) and textbooks (Ammann and Offutt 2007;
Pezzè M, Young et al. 2007). In this section, we briefly describe the bug-finding techniques
and tools that feature in our evaluation of HyperPUT—which are also widely used outside
of research.

123

 38 Page 6 of 34 Empirical Software Engineering (2024) 29:38

Fuzzing Fuzz testing (or fuzzing) encompasses a broad spectrum of dynamic techniques to
generate program inputs (Manès et al. 2021; Klees et al. 2018). It is widely used to find bugs
in software; Google, for instance, found thousands of security-related bugs in their software
using fuzzing (Babic et al. 2019). The key idea of fuzzing is to randomly mutate a known
valid program input (the “seed”) to generate new inputs that may cause the program to crash
or expose other kinds of vulnerabilities. Fuzzers differ according to the kind of strategies they
use to randomly mutate program inputs. In particular, black-box fuzzers do not have access
to the target program’s control flow, and hence can only generate new inputs independently
of the program’s structure. In contrast, white-box fuzzers can take the program’s control flow
into account in order to generate new inputs that exercise specific portions of the program.

American Fuzzy Lop (AFL) is one of the most popular fuzzing frameworks for C pro-
grams. It is a gray-box coverage-based fuzzer, whichmeans that some of its fuzzing strategies
are driven by coverage information about the analyzed program. Originally developed by
Zalewsky (Zalewski et al. 2016), different extensions of AFL —such as RED-QUEEN
(Aschermann et al. 2019), AFLFast (Böhme et al. 2016) and AFL++ (Fioraldi et al. 2020)—
have been introduced more recently and remain widely used.

Symbolic execution As the name suggests, symbolic execution executes a program with
symbolic inputs, which are placeholders for every possible valid inputs (Cadar and Sen
2013; Baldoni et al. 2018). As it enumerates different execution paths, symbolic execution
builds path constraints, which are logic formula that encode each path’s feasibility. Then, a
constraint solver such as Z3 (Moura and Bjørner 2008) determines which abstract paths are
feasible, and generates matching concrete inputs.

Most modern implementations of symbolic execution perform dynamic symbolic execu-
tion (also called “concolic” execution), which combines symbolic and concrete state in order
to overcome some limitations of symbolic execution (such as its scalability and applicability
to realistic programs) (Bornholt and Torlak 2018). EXE (Cadar et al. 2008) andDART (Gode-
froid et al. 2005) pioneered the idea of dynamic symbolic execution.More recently, other tools
perfecting and extending this technique include KLEE (Cadar et al. 2008), SAGE (Gode-
froid et al. 2012), S2e (Chipounov et al. 2012), and Angr (Shoshitaishvili et al. 2016). KLEE
is one of the most widely used dynamic symbolic execution engines for C programs. It is
implemented on top of LLVM (Lattner and Adve 2004), and has been successfully employed
to find several bugs in production software, such as the MINIX (Tanenbaum et al. 2010) and
BUSYBOX (Busybox 2023) tools.

Driller is a vulnerability discovery tool that combines symbolic execution and fuzzing
(Stephens et al. 2016).When the latter fails tomake progress, it uses the former to continue the
exploration of new execution paths. This approach is effective to improve code coverage, and
to test features such as cryptographic hash functions and random number generators, which
are notoriously difficult for approaches that are exclusively based on constraint solving. The
T-Fuzz fuzzer (Peng et al. 2018) applies program transformations in order to remove the
conditions guarding some code blocks that are hard to reach. If a crash occurs in these code
blocks, it then checks a posteriori whether the locations are actually reachable in the original
program.

Model checking In a nutshell, model checking is a verification technique for finite-state
models, which can exhaustively check properties expressed in temporal logic (including
reachability properties, which can be expressed as assertions in the code) or find counterex-
amples when the properties do not hold in general (Clarke et al. 1986).

123

Empirical Software Engineering (2024) 29:38 Page 7 of 34 38

Since real-world programs are not finite state, one needs to introduce some kind of finite-
state abstraction in order to be able to apply model checking to them. A natural way of doing
so is by bounding the program state to be within a finite (but possibly very large) range.
Then, model checking such a bounded abstraction is not equivalent to verifying the original
program, but can still be a very effective way of thoroughly testing the program and finding
bugs. In this paper, we experiment with the popular CBMC (Clarke et al. 2004) boundedmodel
checker for C programs.

An alternative classification for testing framework benchmarks is based on the employed
evaluation criteria. The most common ones are the detection time for a particular bug, the
number of detected bugs in the benchmark and the code coverage testing frameworks achieve
during program execution, measured in terms of number of lines or branches visited in the
PUT control flow graph. Every benchmark described in this section supports the first two
mentioned criteria, while coverage measurements can be easily incorporated at compilation
time. HyperPUT, in addition, can also evaluate testing frameworks depending on the structure
of the produced PUT, as described in Section 3.

3 Methodology and Implementation

HyperPUT builds arbitrarily complex PUTs by recursively applying parametric transforma-
tions of different kinds to an initial simple program.

3.1 Transformations

A transformation consists of a program templatewith (typed) parameters and holes.Whenwe
apply a transformation, we choose concrete values for its parameters and holes. A parameter
can be replaced with any constant or variable of suitable type. A hole is replaced by another
snippet of code, which can be given explicitly or as the result of nesting another transforma-
tion. Table 2 lists the transformations HyperPUT currently supports, together with the code
they correspond to. There are five main kinds of transformations:

IC (integer comparison) introduces a conditional that checks whether the two integer
parameters v1, v2 are equal.

Table 2 HyperPUT’s transformations and the corresponding generated code

Transformation Category Code

C

C

L

W

W

In a transformation, lowercase letters denote parameters and uppercase letters denote holes. Each transforma-
tion belongs to one of three main categories: comparisons (C), loops (L), and widgets (W)

123

 38 Page 8 of 34 Empirical Software Engineering (2024) 29:38

SC (string comparison) introduces a conditional that checks whether the two string param-
eters s1, s2 are equal.

FL (for loop) introduces a loop that iterates e times (where e is the transformation’s integer
parameter), and then executes code B.

PC (palindrome check) introduces a loop that checks whether the string parameter s is a
palindrome of length at least n; if it is, it executes code B.

CC (character counting) introduces a loop that counts the number of occurrences of char-
acter parameter c in string parameter s; if the count equals the integer parameter n, it
executes code T ; if not, it executes code E .

Let’s present a few more details about transformation IC, as an example to illustrate how
transformations work. Transformation IC consists of two parameters v1 and v2 and two holes
T and E . The parameters denote two integer values or variables. Then, the transformation
introduces a conditional if that checks whether v1 and v2 have the same value. If they have,
T executes; otherwise, E executes.

3.1.1 Transformation Categories

To present the rationale behind this selection of transformations, it is useful to classify them
into three broad categories: transformations IC and SC are pure conditionals; transformation
FL consists of a loop; and transformations PC and CC are more complex combinations of
conditions and iterations that capture widgets (that is, simple parameterized algorithms).

We selected these transformations to demonstrate how HyperPUT can generate, from a
small number of basic programming elements, a large number of PUTs that can effectively
challenge different testing frameworks, and some of whose features are comparable to those
of curated bug collections. To this end, we introduced elementary conditional transformations
that are based on string and integer comparisons; these are frequently sources of serious bugs
and vulnerabilities in real-world C programs (Younan et al. 2012), and can result in PUTs that
are challenging to analyze for techniques such as black-box and gray-box fuzzing (Stephens et
al. 2016). Tomake the PUTsmore diverse and to add layers of complexity, we also introduced
loops and widgets (which algorithmically combine loops and conditionals): loops complicate
the control flow of the generated PUTs (increasing measures such as cyclomatic complexity,
as discussed in Section 4.6.1), and widgets introduce complex feasibility constraints, which
can challenge even testing frameworks based on constraint solving (such as KLEE).

Despite these considerations, the currently supported transformations are not meant to
capture all—or even a large part of—the variety and complexity of real-world C programs.
This paper’s goals are simply to demonstrate the potential usefulness of HyperPUT. In future
work, users may add or change HyperPUT’s transformations according to their specific goals
and needs.

3.2 Transformation Sequences

More complex PUTs combine several transformations by nesting one inside another.
When we specify a sequence of transformations, we can give a concrete value to any
transformation parameter or use a fresh identifier. In the latter case, HyperPUT will
instantiate the parameter with a suitable random value (usually within a range)—for
every PUT generated from the transformation sequence. For example, the expression

123

Empirical Software Engineering (2024) 29:38 Page 9 of 34 38

Fig. 1 Specification of a PUT
that combines transformations SC
and IC as in (1)

IC(atoll(argv[1]), β, assert 0 == 1, exit(0)), where β is a fresh identifier, denotes a con-
ditional that checks whether the first command-line argument argv[1] , when interpreted a
s an integer, is equal to a random integer value; if it is, the program fails (assert 0 == 1),
otherwise, it exits normally (exit(0)).

We can also use fresh identifiers, instead of concrete code snippets, for holes, to denote that
the next transformation in the sequence will instantiate the hole. In other words, this is just
a notational shorthand that helps readability by avoiding nesting transformations explicitly.
For example, the sequence of two transformations

SC(argv[2], "hello", ;, E) IC(atoll(argv[1]), 67, assert 0 == 1, return(0)) (1)

nests an integer comparison inside the else branch of a string comparison, and thus it is
equivalent to the explicitly nested expression

SC
(
argv[2], "hello", ;,

(
IC(atoll(argv[1]), 67, assert 0 == 1, return(0))

))

and determines the PUT in Fig. 1.
Figure 1 also shows that HyperPUT inserts the code generated by applying a sequence of

transformations into a template main function, so that the PUT is a complete program. Hyper-
PUT also automatically generates boilerplate code—such as library includes, and checks that
the required command-line arguments are indeed present— that makes PUTs syntactically
correct programs. For simplicity, Fig. 1 and all other PUTs shown in the paper omit this
boilerplate code.

3.2.1 Reaching Inputs

The structure of every transformation suggests which values of the transformation’s param-
eters determine an execution of the resulting PUT that reaches code in any of the
transformation’s holes. For example, hole T in transformation IC executes for any v1 = v2;
hole B in transformation FL always executes; hole T in transformation CC executes if s
includes n occurrences of characters c; and so on. In Fig. 1’s example, there are two variables
argv[1] and argv[2], and three leaf holes at lines 3, 6, and 8; hence, the inputs 〈"", "hello"〉,
〈"67", ""〉, and 〈"", ""〉 respectively reach each of the leaves.

For each transformation in Table 2, HyperPUT is equipped with an input-generation
function that returns concrete values for the transformation’s typed parameters that reach any
of the holes in the transformation’s code. For transformations IC and SC, the input-generation
function simply draws a random integer v (IC) or string s (SC); for transformation FL, the
input-generation function draws a randompositive integer e; for transformation PC, the input-
generation function constructs a palindrome string s of length n by randomly constructing

123

 38 Page 10 of 34 Empirical Software Engineering (2024) 29:38

a string t of length n/2, and then by concatenating t and its reversal to construct s; for
transformation CC, the input-generation function constructs a random string s with n random
occurrences of character c.

Using input-generation functions, HyperPUT can—under certain conditions—construct
a program input that reaches the bug location. Precisely, consider a transformation sequence
such that:

i) In every occurrence of transformation IC, exactly one parameter v1 or v2 is instantiated
with atoll(argv[k]), for some positive integer k; ii) In every occurrence of transformation
SC, exactly one parameter s1 or s2 is instantiated with argv[k] , for some positive integer
k; iii) In every occurrence of transformations PC and CC, parameter s is instantiated with
argv[k] , for some positive integer k; iv) In the whole transformation sequence, any argv[k]

occurs at most once.
Under these restrictions, HyperPUT simply collects the values returned by each trans-

formation’s input-generation function along the path that reaches the seeded bug, and
concatenates them to instantiate the generated PUT’s input arguments argv , which Hyper-
PUT returns as the bug-triggering input. Consider Fig. 1’s example again; the corresponding
transformation sequence (1) satisfies the above constraints. Hence, HyperPUT uses "67" as
the triggering input for argv[1] and "" (a random string different from "hello") as the
triggering input for argv[2] ; altogether, 〈"67", ""〉 is the input reaching the assertion failure
at line 6.

As we discuss in Section 4.2, all the transformation sequences used in our experiments
satisfy these constraints, so that HyperPUT can generate suitable triggering inputs for every
PUT. In some cases, a PUT admits multiple triggering inputs; by default HyperPUT returns
only one of them, randomly, but it can also produce additional ones. Finally, if we supply a
transformation sequence that does not satisfy the above constraints (which can be determined
with a simple syntactic check), HyperPUTmay fail to generate any triggering input, although
it may still generate valid PUTs with a “best effort” approach.

3.3 Implementation Details

We implemented the HyperPUT technique in a tool with the same name. The tool is imple-
mented in a combination of C (for the core program-generation functionalities), Python (front
end and connection of the various modules), and Bash scripts (to run batches of experiments).

The user input to HyperPUT consists of a sequence of transformations specified as
described in Section 3.2, and a number of PUTs to be generated. HyperPUT’s front end
processes this input and passes the information to the generator engine, which takes care of
generating PUTs by applying the transformation sequences, embedding the resulting code
into a main function to build a complete program, and also recording a reaching input for
every generated PUT.

ExtensibilityHyperPUT is extensible with new transformations. However, as we demonstrate
in Section 5, the current selection of transformations is already sufficient to generate a large
number of “interesting” PUTs, which can challenge different test-case generators and share
some characteristics with the programs in widely used test-case generation benchmarks.

In principle, HyperPUT’s pipeline could also generate PUTs in programming languages
other than C. To this end, one should extend it with transformations that generate valid
snippets of code in other programming languages.

123

Empirical Software Engineering (2024) 29:38 Page 11 of 34 38

4 Experimental Design

The experimental evaluation of HyperPUT addresses the following research questions:

RQ1: Can HyperPUT generate bugs that are fair?
RQ2: Are the bugs generated by HyperPUT reproducible?
RQ3: Can HyperPUT generate bugs that are deep and rare?
RQ4: Can HyperPUT generate diverse programs that exercise different capabilities of bug-

finding techniques?

This section describes the experiments we designed to answer these research questions. Our
experimental design is after Roy et al. (2018)’s, modified to suit our goal of evaluating the
characteristics of HyperPUT’s synthetic PUTs.

4.1 Testing Frameworks

To assess the characteristics of the bugs generated byHyperPUT,we ran several testing frame-
works on the generated PUTs and determined which bugs each framework could uncover.

We used testing frameworks implementing different bug-finding techniques for C pro-
grams:

– AFL++ (Fioraldi et al. 2020) is a popular grey-box fuzzer, which combines random
generation of input and coverage metrics. It extends the original AFL (Zalewski et al.
2016) with several research improvements.

– CBMC (Clarke et al. 2004) is a bounded model checker for C/C++ programs. Bounded
model-checking exhaustively explores a program’s state-space up to a finite size bound,
checking for the violation of basic correctness properties (such as memory safety) and
assertions within this explored space.

– KLEE (Cadar et al. 2008) is a state of the art dynamic-symbolic execution engine.
Dynamic-symbolic execution is a white-box testing technique, which uses constraint
solving to generate inputs that lead to exploring new paths in the PUT.

These tools offer numerous configuration options; Table 3 lists the configurations that
we used in the experiments. We deploy each tool in two configurations: we first execute it

Table 3 Configurations of the
testing tools used in the
experiments

ID Framework Configurations

A AFL++ afl-clang-fast with options
CMPLOG (Cmplog instrumentation 2023),
LAF (Circumventing fuzzing roadblockswith
compiler transformations 2016), MOpt (Lyu
et al. 2019)

afl-clang-fast with default options

C CBMC automated bounded loop unwinding

loop unwinding with bound 10

K KLEE symbolic arguments, random state search,
LLVM optimization

symbolic arguments, default options

Each row specifies two configurations for a testing tool in terms of the
used options

123

 38 Page 12 of 34 Empirical Software Engineering (2024) 29:38

Table 4 List of the batches of
PUTs used in HyperPUT’s
experimental evaluation to
answer RQ1, RQ2, and RQ3

Batch n #puts Inputs used as parameters v1, s1, s

B1 1 10 argv[1]

B2 2 45 argv[1], argv[2]

B10 2–10 200 argv[1], . . . , argv[10]

B100 100 100 argv[1], . . . , argv[100]

B1000 1000 100 argv[1], . . . , argv[1000]

For each batch, the table lists the number n of transformations used to
generate each PUT in the batch, the number #puts of different PUTs in
the batch, and the command-line input arguments used as parameters in
the transformations

with its first configuration; if it fails to find a bug before the timeout expires, we execute it
again on the same PUTwith its second configuration (using any remaining time). For brevity,
henceforth we use the expression “we run X on a program P” to mean “we run the testing
framework X using sequentially the two configurations in Table 3 on P”.

4.2 Experimental Subjects

We generate PUTs in batches, where each batch runs HyperPUT with a sequence of n ≥ 1
transformations:

T1(p1,1, p1,2, . . . , H1,1, . . .) T2(p2,1, p2,2, . . . , H2,1, . . .) . . . Tn (pn,1, pn,2, . . . ,fail(), . . .) (2)

and a matching sequence of actual parameters p1,1, p1,2, . . . , pn,1, pn,2, Each transfor-
mation Tk in (2) is one of IC, SC, FL,PC, and CC listed inTable 2. In the experiments,we always
nest into the “then” hole T of conditional transformations IC and SC; therefore, all “else”
holes E are simply filled with a “skip” snippet that does nothing. Snippet fail() indicates
code that triggers a crashing bug when executed (i.e., an assertion failure assert(0 == 1)) .
In our experiments, we always add the snippet fail() in the innermost transformation Tn .

Each actual parameter p j is either a random constant of the appropriate type (chosen
within a limited range) or i) argv[i] (for i ≥ 1, as shown in Table 4) for parameters of type
char* ; ii) atoll(argv[i]) (for i ≥ 1) for parameters of integer type (int, long, long long

). More precisely, parameters v1 in transformation IC, s1 in transformation SC, and s in
transformations PC and CC are always instantiated with a command-line argument; all other
parameters are chosen as random constants within a small range. Table 5 shows the actual
ranges for the randomly chosen parameters in each transformation in the batches that we
used in the experiments. For example, every instance of IC uses an integer between 0 and
255 as its second parameter v2.

Table 5 Range of values,
between a minimum and a
maximum value, for the
parameters of the
transformations in Table 2
used in the experiments

Transformation Parameter Min Max

IC v2 0 255

SC s2 "0" "255"

FL e 0 255

PC n 1 20

CC n 1 20

123

Empirical Software Engineering (2024) 29:38 Page 13 of 34 38

Finally, in each PUT that consists of n transformations, each command-line argument
argv[k] , for 1 ≤ k ≤ n, is used exactly once.

We introduce these restrictions on the choice of parameters so as to generate PUTs of
homogeneous characteristics,where the number andkinds of transformations used to generate
them are the primary determinant of their complexity. These constraints also ensure that, in
every generated PUT, i) there is exactly one bug; ii) there is (at least one) program input that
triggers the bug.

As we discussed in Section 3.2.1, under these conditions HyperPUT can automatically
construct a reaching input for the unique bug’s location, which is thus also a triggering input
that ensures that the bug is executable.

4.2.1 Batches

For the experiments with HyperPUT to answer RQ1, RQ2, and RQ3, we generated a total of
455 PUTs in 5 batches. Table 4 outlines the characteristics of each batch.

Batch B1 includes 10 PUTs, each consisting of a single transformation.
Batch B2 includes 45 PUTs, each consisting of two different transformations.
Batch B10 includes 200 PUTs, each consisting of between 2 and 10 transformations (possi-

bly with repetitions), with the transformations and the actual length chosen randomly.
More precisely, this batch includes: i)1 PUT consisting of 2 transformations; ii) PUTs
consisting of 3 transformations; iii) 9 PUTs consisting of 4 transformations; iv) 41
PUTs consisting of 5 transformations; v) 44 PUTs consisting of 6 transformations;
vi) 43 PUTs consisting of 7 transformations; vii) 29 PUTs consisting of 8 transfor-
mations; viii) 20 PUTs consisting of 9 transformations; ix) 9 PUTs consisting of 10
transformations. The rationale for selecting the PUTs in batch B10 is as follows. The
bulk of the PUTs are of intermediate sizes (5, 6, and 7 transformations), which hit a
sweet spot in effectively exercising the various testing frameworks: they are neither
trivial nor excessively difficult to analyze. Then, a decent number of larger PUTs (8,
9, and 10 transformations) demonstrate the limits of the various testing frameworks.
The smaller PUTs (2, 3, and 4 transformations) are not particularly discriminating;
we include a few for completeness’s sake, but adding more would not significantly
change our experimental results.1

Batch B100 includes 100 PUTs, each consisting of exactly 100 transformations (possibly
with repetitions) chosen randomly.

Batch B1000 includes 100 PUTs, each consisting of exactly 1000 transformations (possibly
with repetitions) chosen randomly.

Henceforth, B denotes the union of all batches B1 ∪ B2 ∪ B10 ∪ B100 ∪ B1000. Figure 2
overviews the distribution of all PUTs in B.

For the experiments with HyperPUT to answer RQ4, we generated another 60 PUTs in 6
batches BIC, BSC, BFL, BPC, BCC, B�. For each transformation T among IC, SC, FL, PC, and

1 To corroborate the hypothesis that including more PUTs of small size would not significantly affect the
experimental results about fairness, we ran a few additional experiments. First, we added 43 new PUTs of
“small” sizes 2, 3, and 4 to batch B10, so that the size distribution of this extended batch B+

10 is more balanced.
We found that 90.7% of the added bugs were detected by at least one tool among AFL++, CBMC, and KLEE;
this percentage is considerably higher than the 75.5% obtained with the original batch B10 (see Table 6).
Correspondingly, the overall percentage over the extended batch B+

10 only grows by 2.7% (from 75.5% to
78.2%). This confirms that “small” PUTs are not particularly discriminating, and validates our selection of
batch B10.

123

 38 Page 14 of 34 Empirical Software Engineering (2024) 29:38

Fig. 2 Distribution of size (in number of transformations) of the PUTs used in the experimental evaluation

CC, batch BT consists of 10 PUTs P1
T , . . . , P10

T . Each PUT Pm
T corresponds to the sequence

of transformations

T (p1,1, p1,2, . . . , H1,1, . . .) T (p2,1, p2,2, . . . , H2,1, . . .) . . . T (pm,1, pm,2, . . . , fail(), . . .) (3)

with m transformations, all equal to T . In other words, BT consists of increasingly long
sequences of the same transformation T repeated multiple times. Similarly, batch B� con-
sists of 10 PUTs P1

� , . . . , P10
� ; each PUT Pm

� corresponds to the sequence of transformations
(2), with n = m transformations, each transformation randomly chosen (possibly with repe-
titions) among IC, SC, FL, PC, and CC.

4.2.2 Seeded Bugs

In principle, HyperPUT’s seeded bugs can be any piece of code, matching any kind of error;
in our experimental evaluation, however, all seeded bugs are simply assertion failures. This
is consistent with how the capabilities of testing frameworks are commonly evaluated on
(curated) collections of bugs: an experiment challenges a testing framework to generate a
program input that reaches an error location in the PUT. Since our experimental evaluation
aims at demonstrating whether HyperPUT can generate bugs with some characteristics com-
parable to those in manually-curated benchmarks, using assertions (which are equivalent to
reachability properties) as seeded bugs is a reasonable choice.

Besides being commonly used as targets of fuzzing techniques (Candea and Gode-
froid 2019; Malik and Pastore 2023; Payer 2019), assertions can model a broad range
of safety properties (Lamport 1977). These include memory-related errors (e.g., violating
assert (p != null) corresponds to a null pointer dereferencing error), as well as (partial)

123

Empirical Software Engineering (2024) 29:38 Page 15 of 34 38

correctness errors (e.g., violating assert (result == 0) corresponds to a postcondition
error), but exclude liveness properties such as termination.2

4.3 Experimental Setup

We ran all experiments on an Intel® CoreTM i5 machine with 2 cores and 8 GB of RAM
running Ubuntu 18.04 Bionic, LLVM 6.0.1, AFL++ 2.68c, CBMC 5.10, and KLEE 2.1.

Every PUT generated by HyperPUT accepts command-line arguments as input for its
main function. This is the only input that a testing tool controls when testing a PUT. For
example, when running KLEE, the command line argument array argv is instrumented with
klee_make_symbolic, and the rest of the PUT is unmodified.

Each experiment runs one of the tools in Table 3 on a PUT with a timeout of 1 hour. The
outcome is success if the testing framework successfully generates command-line inputs
that trigger the fail() injected bug in the PUT. To accommodate fluctuations due to the
operating system’s nondeterministic scheduling, as well as in possible randomization used
by the testing frameworks, we repeat each experiment four to ten times, and report the average
wall-clock running time as the experiment’s duration. The outcome is success if at least one
of the repeated runs is successful (i.e., it triggers the bug).

4.4 RQ1: Fairness

A collection of bugs is fair if state-of-the-art bug detection techniques, especially those that
are widely used in practice, can discover the bugs with reasonable effort; and if it is not
strongly biased in favor or against any one detection technique. For a PUT-generation system
like HyperPUT, fairness means that it should be capable of generating bugs with a broad
spectrum of “detection hardness”—from simple to very challenging to discover.

To demonstrate fairness, we ran each of the tools AFL++, CBMC, and KLEE on all PUTs
in B. We then analyzed which tools were successful in triggering the bugs in the PUTs within
the timeout.

In particular, the percentage of bugs that is detected by at least one of the tools is a
fundamental measure of fairness. As a rule of thumb (Roy et al. 2018), this percentage
should be definitely above 50%, meaning that the majority of bugs are discoverable given the
(combined) capabilities of the testing frameworks. Conversely, this percentage should not be
too close to 100%; if it were, it would mean that the bugs are not sufficiently elusive, failing
to fully stress the testing frameworks’ capabilities.

4.5 RQ2: Reproducibility

A bug is reproducible if there is a known input that consistently triggers the bug. For a PUT-
generation system like HyperPUT, reproducibility also entails that the PUTs compile without
errors and do not rely on any undefined behavior of the C language.

As explained in Section 3.2, all PUTs generated by HyperPUT in our experiments have a
unique bug and should come with an input that triggers it.

To assess reproducibility,we ran eachPUTgenerated in the experimentswith the triggering
input, and checked whether the bug was triggered as expected.

2 Extending HyperPUT to support different kinds of bugs (for example those targeted by termination check-
ers (Cook et al. 2011)) is an interesting direction for future work.

123

 38 Page 16 of 34 Empirical Software Engineering (2024) 29:38

HyperPUT generates PUTs that should be syntactically and semantically correct. To con-
firm this, we compiled each PUT generated in the experiments using both GCC (with options
-O0 -Wall and -O1 -Wall) and LLVM (with options -O0 -Wall and -O1 -Wall), and checked
that: i) both compilations succeeded without errors; and ii) both compiled versions behaved
in the same way—namely, they fail when executed with the triggering input. To detect
the potential presence of undefined behavior, we also checked every generated PUT using
LLVM’s Undefined Behavior Sanitizer (Undefined behavior sanitizer (ubsan) 2023), a com-
piler instrumentation that can detect several instances of undefined behavior.

4.6 RQ3: Depth and Rarity

Depth and rarity are two different ways of assessing the “hardness” of a bug for bug-detection
techniques.

4.6.1 Depth

Abug isdeep if triggering it requires to followa long sequence of statements and branches. For
a PUT-generation system like HyperPUT, bug depth depends on the structure and complexity
of the PUTs themselves. To determine whether HyperPUT’s bugs are deep, we measured the
following on every PUT in batch B generated in the experiments:

– The cyclomatic complexity of the PUT.3 Cyclomatic complexity (McCabe 1976) is a
staticmeasure of complexity of a program’s branching structure,which counts the number
of distinct simple execution paths a program has.
Cyclomatic complexity is used as a fundamental measure of control-flow (and cognitive)
complexity (SWE-220 2023), which negatively correlates with software qualities such
as testing coverage (Kochhar et al. 2014). Procedures with cyclomatic complexity higher
than 10 usually correspond to programs that are challenging to analyze (Lanza and
Marinescu 2006).
In order to assess the complexity of HyperPUT’s PUTs compared to that of programs
in other benchmarks, we compare the cyclomatic complexity of PUTs in B to that of
programs in CGC (DARPA CGC 2018) and LAVA-1 (Dolan-Gavitt et al. 2016). Note
that the PUTs generated by HyperPUT consist of a single main function, but programs
in other benchmarks usually consist of several different functions; thus, we measure the
cyclomatic complexity of each function in the programs in isolation, and report statistics
about their distribution in each benchmark. We only measure the cyclomatic complexity
of functions in the actual PUTs, not in any external library that is used by the PUTs.

– The length (in number of instructions executed at runtime) of the execution path that
goes from the PUT’s entry to the bug-triggering statement, when the PUT is executed
with a triggering input.4 Path length is a dynamic measure of how deep a bug is within a
path that triggers it. Similarly to cyclomatic complexity, we compare the path length of
bugs in B to that of bugs in benchmark LAVA-1.
Path length complements cyclomatic complexity as a measure of depth:

i) path length is a dynamic measure, whereas cyclomatic complexity is static;
ii) path length directly measures the depth of a bug, whereas cyclomatic complexity

measures the complexity of the PUT that contains a bug.

3 Measured using CCCC (Littlefair 2005) and PMCCABE (Bame 2023) open source tools.
4 This metric has been measured using the profiling tool Cachegrind (Nethercote 2004).

123

Empirical Software Engineering (2024) 29:38 Page 17 of 34 38

4.6.2 Rarity

A bug is rare if it is only triggered by a small fraction of all possible program inputs. To
determine whether HyperPUT is capable of producing PUTs with rare bugs, we followed
the same protocol of Roy et al. (2018): we ran KLEE on each buggy PUT with a timeout of
1 hour and measured the following.

– The number f of test cases generated by KLEE before first triggering the bug.
– The number t of test cases, among those generated within the timeout, that trigger the
bug.

These measures give an idea of how sparse the bug-triggering inputs are in the space of all
inputs that are generated by a systematic strategy.

In order to be able to compare HyperPUT’s measures of rarity with those of other bench-
marks’, we only considered PUTs in batch B≥6 for this experiment. Batch B≥6 consists of
the 72 PUTs in B10 with 6, 7, 8, 9, or 10 transformations that KLEE can discover within the
1-hour timeout. We exclude PUTs whose bugs KLEE cannot uncover, as the measures f and
t are undefined in these cases.We also exclude PUTs that are much smaller (e.g., B2) and
much larger (e.g., B100). PUTs larger than ten transformations are exceedingly unlikely to be
detectable by KLEE, and hence they are not relevant to assess rarity. As for the smaller PUTs,
we deliberately exclude them as they are not representative of rare bugs. This is consistent
with how we addressed every question in this empirical evaluation: HyperPUT is a highly
configurable tool, which can produce PUTs with different characteristics. In answering RQ3,
our aim is demonstrate how one can configure HyperPUT to produce PUTs with rare bugs.
If rarity is not a desired property to the user, HyperPUT may be configured differently to
produce PUTs with other characteristics.

We compare these metrics of rarity for HyperPUT to those reported by Roy et al. (2018)
for 41 manually seeded bugs in the TCAS benchmark (Do et al. 2005), as well as 82 synthetic
bugs seeded using their Apocalypse system in the same TCAS programs. More precisely,
(Roy et al. 2018, Table 4) reports the number of all bug-triggering tests generated by KLEE
within 1 hour, which corresponds to measure t . In addition, (Roy et al. 2018, Fig. 5) plots the
number of tests generated by KLEE before hitting a first bug, which corresponds to measure
f . We directly compare these to the same measures on HyperPUT’s PUTs, without repeating
(Roy et al. 2018)’s experiments. We only use KLEE to investigate rarity both because it is
a standard choice for this kind of assessment (Roy et al. 2018), and because its systematic
exploration of program paths provides a more robust measure than others (such as testing
time) that are strongly affected by the sheer size and complexity of the PUT as a whole—as
opposed to its bugs’ specifically.

4.7 RQ4: Capabilities

To further demonstrate the flexibility of HyperPUT’s generation, we lookmore closely at how
different bug-finding tools perform on different batches of PUTs generated by HyperPUT.
Which PUTs are easier or harder to analyze suggests which capabilities of the bug-finding
tools are more or less effective to analyze programs with certain features.

We ran each of the tools AFL++, CBMC, and KLEE on the PUTs in BIC, BSC, BFL, BPC,
BCC, and B�. Since these batches include multiple repetitions of the same transformation,
they demonstrate the generation of PUTs with homogeneous characteristics. By observing
how each tool’s bug-finding capabilities change in different batches, and within each batch

123

 38 Page 18 of 34 Empirical Software Engineering (2024) 29:38

Ta
bl
e
6

Fo
r
ea
ch

co
m
bi
na
tio

n
of

to
ol
s,
fo
r
ea
ch

ba
tc

h
of

PU
T
s
us
ed

in
th
e
ex
pe
ri
m
en
ts
,t
he

pe
rc
en
ta
ge

%
an
d
th
e
ab
so
lu
te
nu

m
be
r
#
of

PU
T
s
in

th
e
ba
tc
h
w
ho

se
un

iq
ue

bu
gs

w
er
e
tr
ig
ge
re
d
by

th
e
te
st
s
ge
ne
ra
te
d
by

th
os
e
to
ol
s

ba
tc

h
%

#
%

#
%

#
%

#
%

#
%

#
%

#
%

#
%

#
%

#
%

#

B
1

0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
10

0.
0%

10
0.
0%

0
10

0.
0%

10
10

0.
0%

10
10

0.
0%

10

B
2

0.
0%

0
2.
2%

1
0.
0%

0
15

.6
%

7
17

.8
%

8
0.
0%

0
64

.4
%

29
0.
0%

0
97

.8
%

44
82

.2
%

37
82

.2
%

37

B
10

14
.0
%

28
9.
5%

19
23

.0
%

46
2.
5%

5
16

.5
%

33
3.
0%

6
7.
0%

14
24

.5
%

49
40

.0
%

80
22

.0
%

44
49

.5
%

99

B
10
0

0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
10

0.
0%

10
0

0.
0%

0
0.
0%

0
0.
0%

0

B
10
00

0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
0.
0%

0
10

0.
0%

10
0

0.
0%

0
0.
0%

0
0.
0%

0

B
6.
2%

28
4.
4%

20
10

.1
%

46
2.
6%

12
9.
0%

41
1.
3%

6
11

.7
%

53
54

.7
%

24
9

29
.5
%

13
4

20
.0
%

91
32

.1
%

14
6

A
○

○␣
○␣

○
○

○␣
○

○␣
○

C
○␣

○
○␣

○
○␣

○
○

○␣
○

K
○␣

○␣
○

○␣
○

○
○

○␣
○

T
he

le
ft
m
os
tc
ol
um

ns
re
po

rt
bu
gs

tr
ig
ge
re
d
ex
cl
us
iv
el
y
by

ea
ch

to
ol
co
m
bi
na
tio

n
(t
ho

se
m
ar
ke
d
by

○
in
ea
ch

co
lu
m
n)
;t
he

ri
gh

tm
os
tc
ol
um

ns
re
po

rt
bu
gs

tr
ig
ge
re
d
no

n-
ex
cl
us
iv
el
y

by
ea
ch

to
ol

(t
ho

se
m
ar
ke
d
by

○
fo
r
A
F
L
+
+
,○

fo
r
C
B
M
C
,a
nd

○
fo
r
K
L
E
E
).
Fo

r
ex
am

pl
e,
th
e
le
ft
m
os
tc
ol
um

n
in
di
ca
te
s
th
at
to
ol

A
m
an
ag
ed

to
fin

d
bu
gs

in
28

PU
T
s
in

ba
tc
h

B
(6
.2
%

of
al
lP

U
T
s
in

B
),
w
hi
ch

no
ot
he
rt
oo

lc
ou

ld
fin

d;
th
e
ri
gh

tm
os
tc
ol
um

n
in
di
ca
te
s
th
at
to
ol

K
m
an
ag
ed

to
fin

d
bu
gs

in
a
to
ta
lo

f1
46

PU
T
s
in

ba
tc
h
B
(3
2.
1%

of
al
lP

U
T
s

in
B
)

123

Empirical Software Engineering (2024) 29:38 Page 19 of 34 38

as the same transformation is repeated multiple times, we can outline each tool’s strengths
and weaknesses in comparison with the other tools’ and link them to the characteristics of
the transformations.

5 Experimental Results

5.1 RQ1: Fairness

Table 6 reports, for each batch of PUTs in Table 4, which testing tools were able to generate
inputs triggering the PUTs’ unique bugs in our experiments. Row B corresponds to all PUTs
used in these experiments. At least one of the tools A, C , and K managed to detect bugs
in 80.8% of all PUTs with less than 100 transformations.5 The distribution is not strongly
biased in favor of any tool—even though K was noticeably more effective than A and C , as
it was the only tool capable of detecting the bugs in 10.1% of all PUTs. On the other hand,
every tool was somewhat effective, and all three of them detected 11.6% of the bugs.

Among the individual batches of PUTs, B10 is the “fairest”, in that it includes PUTs that
are challenging for each individual testing tool. In contrast, the PUTs in batches B1 and B2

are generally simple to analyze for most of the tools; and the PUTs in batches B100 and B1000

are overly complex, so much that no testing tool could detect their bugs in the allotted time.
These results are a consequence of the different parameters chosen to create the PUTs in
these batches. Overall, these results (also summarized in Fig. 3) suggest that HyperPUT can
generate PUTs with bugs that are fair, as they are a mix of elusive (highly challenging) bugs
and simpler bugs that most practical testing frameworks can discover.

5.2 RQ2: Reproducibility

As expected, all PUTs produced byHyperPUT for our experiments passed the reproducibility
checks discussed in Section 4.5. Namely:

i) Running each PUT on HyperPUT’s generated input triggers the unique bug in the PUT.
ii) The PUTs compile without errors or warnings.
iii) The PUTs behave in the same way regardless of which compiler is used to compile them.
iv) LLVM’s Undefined Behavior Sanitizer does not report any source of undefined behavior

in the PUTs.

These checks confirm that HyperPUT produces PUTs with reproducible seeded bugs, since
they are well-formed and behave consistently as expected.

5.3 RQ3: Depth and Rarity

5.3.1 Depth

Figure 4 summarizes the distribution of cyclomatic complexity measures for the functions in
the PUTs generated by HyperPUT (batch B), and compares it to the functions featuring in the
benchmarks CGC and LAVA-1. HyperPUT can generate very complex PUTs according to
this metric: even though some of CGC’s programs are an order of magnitude more complex,

5 Corresponding to batch B1 ∪ B2 ∪ B10.

123

 38 Page 20 of 34 Empirical Software Engineering (2024) 29:38

Fig. 3 For each batch of PUTs B1, B2, B10 and B used in the experiments, the Venn diagram reports the
number of PUTs in the batchwhose bugswere triggered by each tool. The numbers in black in each intersection
are the bugs triggered exclusively by the corresponding tool combination; the numbers in color below each
tool name are the bugs triggered overall by the corresponding tool

HyperPUT’s PUTs cover a broad range of cyclomatic complexities, and are those with the
highest average complexity. This is a consequence of the way we configured HyperPUT to
generate also large and complex PUTs in batches B100 and B1000 (as described in Section 4.2).
In particular, the outliers in HyperPUT’s box plot in Fig. 4a correspond to several PUTs
in batch B1000 with very high cyclomatic complexity—hence, among those with the most
complex and deep control flow.

Overall, these results suggest that HyperPUT is capable of generating simple as well as
complex PUTs, and hence can generate a diverse collection of synthetic buggy programs.

Cyclomatic complexity measures the branching complexity of programs, which is only
a proxy for the complexity of the bugs that appear in the programs. In principle, a very

123

Empirical Software Engineering (2024) 29:38 Page 21 of 34 38

Fig. 4 Distributions of cyclomatic complexity per function in three collections of buggy programs: the PUTs
in batch B generated by HyperPUT, and benchmarks CGC (DARPA CGC 2018) and LAVA-1 (Dolan-Gavitt
et al. 2016)

complex programmay have very shallow bugs if they occur in the first few lines of executable
code. Path length—the number of instructions executed from program entry until the bug is
triggered—better assesses the depth of the synthetic bugs in HyperPUT’s generated PUTs.
Figure 5 summarizes the distribution of path length for each bug in the PUTs generated by
HyperPUT (batch B), and compares it to the path length of synthetic bugs in the benchmark
LAVA-1.

HyperPUT’s synthetic bugs are deeper on average (mean), but LAVA-1’s bugs are not
that far behind, and have a much higher median. In fact, HyperPUT’s have a higher standard
deviation, as the batch B includes both small PUTs with shallow short-path bugs and large
PUTs with bugs that are deeply nested.

Fig. 5 Distributions of the length of the execution path on a bug-triggering input in two collections of buggy
programs: the PUTs in batch B generated by HyperPUT, and benchmark LAVA-1 (Dolan-Gavitt et al. 2016)

123

 38 Page 22 of 34 Empirical Software Engineering (2024) 29:38

As for other measures, this variety is a direct consequence of the way we configured
HyperPUT (as described in Section 4.2). Overall, HyperPUT can generate shallow as well
as deep bugs, including several that exhibit metrics similar to those of organic bugs.

5.3.2 Rarity

Table 7 shows statistics about the rarity of bugs in HyperPUT’s PUTs in B≥6, and compares
them to the analogous measures reported in Roy et al. (2018, Table 4 and Fig. 5) and in
Roy et al. (2018, Table 4) about: i) bugs in the TCAS benchmark, which consist of manually
seeded bugs in several variants of an organic program; ii) bugs seeded using the Apocalypse
system (introduced in Roy et al. (2018)) in the same programs of the TCAS benchmark.

Table 7 Number of KLEE-generated inputs as a measure of bug rarity

(a) Statistics about the number f of all test inputs generated by KLEE per bug before triggering the bug in:
HyperPUT’s batch B≥6, manually seeded bugs in TCAS, and synthetic bugs seeded with Apocalypse; the
latter two are after (Roy et al. 2018, Fig. 5)

(Roy et al. 2018, Fig. 5)

HyperPUT tcas Apocalypse

Mean
44345 23 345

Median
23244 17 165

Stddev
82429 22 569

Min
29 8 7

Max
486428 152 4366

Bugs
72 41 82

(b) Statistics about the number t of bug-triggering test inputs per bug generated by KLEE: HyperPUT’s
batch B≥6, manually seeded bugs in TCAS, and synthetic bugs seeded with Apocalypse; the latter two
are after (Roy et al. 2018, Table 4)

(Roy et al. 2018, Table 4)

HyperPUT tcas Apocalypse

Mean
2127 (86) 363 13

Median
1 (1) 213 1

Stddev
6683 (304) 431 51

Min
1 (1) 24 1

Max
40708 (1402) 1805 341

Bugs
72 41 82

123

Empirical Software Engineering (2024) 29:38 Page 23 of 34 38

According to Table 7a, compared to its behavior on the other benchmarks TCAS and
Apocalypse, KLEE needs to generate a much higher number of test inputs before it can
detect a bug in HyperPUT’s batch B≥6. On the other hand, Table 7b suggests that, once
KLEE finds the first bug-triggering input, it can fairly easily find other bug-triggering inputs
in batch B≥6 if they exist; whereas, on average, KLEE finds one-two orders of magnitude
fewer bug-triggering inputs on the other benchmarks. To explain this discrepancy, consider
the semantics of transformations FL,PC, and CC, which admit several different reaching inputs
(see Section 3.2.1). Once KLEE finds a set of constraints that characterize a triggering input,
it can easily find other solutions to the same constraints that reach the same error location.
For example, transformation PC requires that the input is a palindrome string of length n;
given one such string, we can get other palindromes by changing any pair of characters at
opposite positions in the string. Consequently, the values in parenthesis refer to the number
of triggering test cases for PUTs in Batch B≥6 with non-negligible parameter size (n > 3 for
transformation PC and e >= 90 for transformation FL).

As with other research questions, we demonstrated one way of configuring HyperPUT
so that it produces artificial bugs with some characteristics comparable to those of other
benchmarks of bugs. Users with different requirements could adapt the generation of PUTs
to match their needs; for example, one could only include transformations that determine
PUTs with a single triggering input (such as a combination of multiple SC with different
parameters).

5.4 RQ4: Capabilities

The previous research questions demonstrated that HyperPUT is capable of producing PUTs
with bugs with a broad range of characteristics, some comparable to those present in com-
monly used benchmarks for bug-finding tools. In particular, Section 5.1 suggests that different
PUTs are more or less challenging for different bug-finding tools.

To this end, we generated new batches of PUTs BIC, BSC, BFL, BPC, BCC, B�. As described
in Section 4.7, PUTs in each batch BT only use the same transformation T , and differ only in
their size—measured as the number of repetitions of T . This way, we can understand how the
characteristics of each transformation challenge a tool’s bug-finding capabilities. Figure 6
plots the running time of the considered testing frameworks when searching for bugs in these
PUTs. Unsurprisingly, the performance of a tool clearly depends on the transformations that
make up a PUT. Let’s look into each tool’s performance on the different batches. Table 8
provides another qualitative summary of Fig. 6’s experimental results.

CBMC is very effective on PUTs using transformations IC, SC, and FL, where it scales
effortlessly. PUTs using transformations IC and SC have no loops, and hence CBMC can easily
build an exhaustive finite-state abstraction. For example, CBMC found the bug in Fig. 7a’s
PUT in less than a second.

PUTs using transformations FL do have loops, but in this case CBMC manages to find
a suitable loop unrolling bound that makes the analysis exhaustive without blowing up the
search space. In contrast, CBMC’s performance quickly degrades for the largest PUTs using
10 transformations CC and PC (such as the one shown in Fig. 7c); in these case, loops whose
exit condition depends on an input string become hard to summarize with a fixed, small
unrolling bound past a certain size. Similarly, CBMC’s performance on batch B� depends
on how many and which transformations are used; in particular, as soon as the randomly
generated PUTs include several nested loops with transformations PC or CC, CBMC runs out
of resources and terminates in about 40 minutes without detecting the bugs.

123

 38 Page 24 of 34 Empirical Software Engineering (2024) 29:38

Fig. 6 Running time to discover the bug in each PUT in batches BIC, BSC, BFL, BPC, BCC, B�. The horizontal
axis enumerates the 10 PUTs in each batch in order of size (number of transformations). The vertical axis
measures the running time (in seconds) until the tool terminates or times out (as in all other experiments, we
report the average of 4 repeated runs). A colored filled disc indicates that the tool terminated successfully (it
discovered the bug); a grayed out circle indicates that the tool terminated or timed out without discovering the
bug. Data about AFL++ are in color blue, about CBMC are in color black, about KLEE are in color yellow

123

Empirical Software Engineering (2024) 29:38 Page 25 of 34 38

Table 8 A qualitative summary
of which transformations are
harder/easier for each testing
framework

transformation
tool IC SC FL PC CC

AFL++ M M L L L

CBMC L L L M M

KLEE S L L L L

For each combination of tool/transformation, the table reports the
size (among Small, Medium, and Large) of PUTs consisting of rep-
etitions of that transformation that the tool successfully analyzed in
Fig. 6’s experiments

KLEE is as effective as CBMC on PUTs using transformation SC. It outperforms CBMC
on PUTs using transformations PC and CC, where it scales graciously to the largest PUTs
thanks to its symbolic reasoning capabilities. On PUTs using transformation FL, KLEE is
always effective, but its running times fluctuate somewhat unpredictably—albeit remaining
reasonably low in absolute value. This is probably a result of running KLEEwith randomized
search (see Table 3), a feature that can speed up the search for bugs but also introduces
random fluctuations from run to run. In contrast, KLEE struggles to scale on PUTs using
transformation IC both in batch BIC and in batch B�—such as the one in Fig. 7a, but even
with smaller PUTs consisting of just four nested transformations, such as the one in Fig. 7b.

The problem here is not the transformation per se, but rather how it is instantiated in
the PUTs generated for the experiments. As we explain in Section 4.2, parameter v1 in
transformation IC is instantiated with atoll(argv[i]) , which interprets a string command-
line argument as an integer; since KLEE does not have access to the source code of library
function atoll , it treats it as a black box, and hence its constraint solving capabilities are of
little use to find efficiently a suitable string argument that atoll converts to the integer v2 (the
transformation’s second parameter, instantiated with a random integer). This also explains
the difference in performance with transformation SC, where there is no black-box function
involved, and hence KLEE can easily find a suitable input string from the transformation’s
condition itself.

AFL++ remains reasonably effective largely independent of which transformations are
used; however, its running time tends to grow with the size of the analyzed PUT. This
behavior—complementary to KLEE’s and CBMC’s—is a result of AFL++ being a gray box
tool. In a nutshell, this means that AFL++ does not have direct access to the source code of
the analyzed functions; thus, it cannot extract path constraints from it but has to “guess” them
indirectly by trial and error. AFL++’s gray-box strategy, combined with its many heuristics
and optimizations, achieves a different trade off than white-box tools like KLEE and CBMC:
AFL++ is an overall more flexible tool (in that it is less dependent on the characteristics of the
analyzed software), but usually requires more time and has more random fluctuations in its
behavior. Another difference is in scalability: AFL++’s analysis time necessarily grows with
the size of the inputs; in contrast, symbolic techniques like KLEE are much more insensitive
to input size, as long as the complexity of the symbolic constraints does not vary.

Figure 7c depicts an example showcasing AFL++’s effectiveness. Thanks to its speed
generating thousands of inputs per second, and to its coverage-driven search that leads to
incrementally constructing one suitable input at a time, AFL++ finds a bug-triggering input
in about one minute; in contrast, CBMC times out trying to find suitable unrolling factors for
the ten loops. In this example, AFL++’s coverage-based heuristics even outperform KLEE,
which manages to discover the bug in Fig. 7c but takes about five times longer than AFL++.

123

 38 Page 26 of 34 Empirical Software Engineering (2024) 29:38

Fig. 7 Examples of PUTs that are challenging for different testing frameworks

123

Empirical Software Engineering (2024) 29:38 Page 27 of 34 38

Still,AFL++’s heuristics and speed run out of steam as the size of the program to be analyzed,
and the resulting constraints on failing inputs, increas; therefore, AFL++ times out analyzing
the bug in Fig. 7a—which is just a bigger, more complex version of the one in Fig. 7c.

Overall, these results demonstrate how HyperPUT can be used to generate PUTs with
heterogeneous characteristics and sizes, which challenge different capabilities of diverse
bug-finding techniques.

5.5 Limitations and Threats to Validity

We discuss the main limitations of HyperPUT’s technique, its current implementation, and
other threats to the validity of the experiments described in this section, as well as how we
mitigated them.

Construct validity depends on whether the measurements taken in the experiments reflect the
features that are being evaluated. In our experiments, wemainly collected standardmeasures,
such as running time, whether a bug-finding tool managed to trigger a bug, and static (cyclo-
matic complexity) and dynamic (path length) measures of complexity. For the experiments to
answer RQ3, we also counted the number of triggering test cases and generated test cases for
each bug—the same measures used by Roy et al. (2018) to assess bug rarity. Using standard
measures reduces the risk of threats to construct validity, and helps ensure that our results
are meaningfully comparable with those in related work.

Our experiments to answer RQ4 were limited by the transformations currently supported
by HyperPUT, and by how we combined them. These restrictions are still consistent with
RQ4’s aim, which is to explore HyperPUT’s capabilities to exercise different testing tech-
niques with PUTs of different characteristics.

Internal validity depends on whether the experiments adequately control for possible con-
founding factors. One obvious threat follows from possible bugs in our implementation of
HyperPUT. As usual, we mitigated this threat with standard software development practices,
such as (manual) regression testing, code reviews, and periodic revisions and refactoring.

To account for fluctuations due to the nondeterministic/randomized behavior of some
testing tools, we followed standard practices by repeating each experiment multiple times,
and reporting the average values (see Section 4.3). We usually observed only a limited
variance in the experiments, which indicates that the practical impact of randomness was
usually limited.

Our experiments ran with a timeout of one hour per analyzed bug; it is possible that
some experiments would have resulted in success if they had been allowed a longer running
time. We chose this timeout as it is standard in such experiments (Roy et al. 2018), and
compatible with running a good number of meaningful experiments in a reasonable time.
Our experiments showed a considerable variety of behavior, which suggests that the testing
tools we used can be successful within this timeout.

A related threat is in how we configured the testing tools (see Table 3). AFL++, CBMC,
and KLEE are highly-configurable tools, and their performance can vary greatly depending
on which options are selected. Our goal was not an exhaustive exploration of all capabilities
of these tools, but rather a demonstration of their “average” behavior. Correspondingly, we
mitigated this threat by: i)running each tool with two configurations; ii) including the default
configuration (with no overriding of default options); iii) using common,widely used options.

To answer RQ3 in Section 4.6.2, we compared some measures taken on PUTs generated
by HyperPUT with the same measures reported by Roy et al. (2018). Since we did not repeat

123

 38 Page 28 of 34 Empirical Software Engineering (2024) 29:38

(Roy et al. 2018)’s experiments in the same environment where we ran HyperPUT, we cannot
make strong, quantitative claims about the results of this comparison. This limitation does
not, however, significantly threaten our overall answer to RQ3, which is that HyperPUT can
generate bugs whose rarity is realistic. Roy et al. (2018)’s experiments are used as a reference
for what “realistic” means, whereas our work’s aims are largely complementary.

External validity depends on whether the experimental results generalize, and to what extent.
HyperPUT currently generates PUTswith a trivialmodular structure, consisting of a single

function that only uses a handful of standard C libraries. On the other hand, each function can
be structurally quite intricate, with bugs nested deep in the function’s control-flow structure.
This is partly a limitation of the current implementation, but also an attempt to focus on
generating PUTs that are complementary to organic bug-seeded programs. Detecting “deep”
bugs is a relevant open challenge in test automation (Böhme et al. 2021), and synthetic buggy
programs may be interesting subjects to demonstrate progress in addressing the challenge.

HyperPUT generates programs in C since this is a widely popular target for the research
on automated testing and fuzzing. The ideas behind HyperPUT can certainly be applied to
other programming languages, possibly with different results.

Similarly, the choice of transformations currently supported by HyperPUT obviously
limits its broader applicability. HyperPUT’s implementation is extensible with new transfor-
mations; deciding which ones to add depends on the goal of the experiments one would like
to make.

6 Discussion

The bulk of this paper described HyperPUT’s experimental evaluation, which aimed at
demonstrating how HyperPUT can be flexibly configured to produce diverse PUTs with
various characteristics. As summarized by Table 9, we customized HyperPUT’s parameters
so as to produce PUTs that are suitable to address each research question.

For research questions RQ1 and RQ2, we produced a wide collection of PUTs (batch B),
ranging from trivial oneswith a single transformation (batch B1) up to very large and complex
ones with up to 1000 transformations (batch B1000). Each PUT randomly combines any of the
five transformations currently supported by HyperPUT (see Section 3.1). At least one among
the testing frameworks AFL++, CBMC, and KLEE detected 45.3% of all bugs in batch B,
58.0% of all bugs in batches B1, B2, B10, B100 and 80.8% of all bugs in batches B1, B2, B10.
This demonstrates that HyperPUT can produce PUTs that are fair, that is, neither trivial nor
completely inaccessible for the capabilities of the state-of-the-art testing frameworks. All

Table 9 For each research question rq with a certain target property to investigate, the batches of PUTs
generated by HyperPUT used in the experimental evaluation of that question, and the sizes (in number of
transformations) of those PUTs

rq Target Batches Size

1 fairness B = B1 ∪ B2 ∪ B10 ∪ B100 ∪ B1000 1, 2–10, 100, 1000

2 reproducibility B = B1 ∪ B2 ∪ B10 ∪ B100 ∪ B1000 1, 2–10, 100, 1000

3 depth B = B1 ∪ B2 ∪ B10 ∪ B100 ∪ B1000 1, 2–10, 100, 1000

3 rarity B≥6 ⊂ B10 6–10

4 capabilities BIC ∪ BSC ∪ BFL ∪ BPC ∪ BCC ∪ B� 1–10

123

Empirical Software Engineering (2024) 29:38 Page 29 of 34 38

PUTs produced in the experiments were configured so that HyperPUT can also produce a
triggering input that reaches the location of the seeded bugs.We confirmed that the triggering
inputs produced by HyperPUT work in all experiments, as well as that the PUTs compile
correctly without warnings (thus answering RQ2).

The complex PUTs in batches B100 and B1000 are also useful to demonstrate that Hyper-
PUT can easily produce deep bugs (research question RQ3), nested within complex and long
control flow paths. Investigating rarity turned out to be more subtle. On the one hand, we
cannot assess rarity using very large, overly complex PUTs: if no testing framework can
generate a triggering input for a bug within a reasonable time, any measure of rarity would be
undefined. On the other hand, including very small, trivial PUTs in the experiments on rarity
would also be pointless, as we do not expect these PUTs to challenge in any meaningful way
the capabilities of state-of-the-art testing frameworks. In our experiments, we selected a batch
B≥6 of “Goldilocks” PUTs that are neither too complex nor too trivial, which we used to
demonstrate how HyperPUT compares to other benchmarks in terms of rarity. As remarked
in Section 5.3.2, one could configure HyperPUT differently to produce bugs that are more
rare (for example, using only transformations that determine bugs with unique triggering
inputs)—in exchange for losing some heterogeneity.

With research question RQ4, we wanted to discriminate between the capabilities of dif-
ferent testing frameworks, connecting them to different features of the PUTs we supply to
them. To this end, we generated different batches of PUTs that consist of repetitions of a
single transformations among those of Table 2. These experiments confirmed how the differ-
ent testing techniques of fuzzing (AFL++), model checking (CBMC), and symbolic execution
(KLEE) are challenged by different program features: CBMC could not complete the analysis
of PUTswith loops that cannot be summarized symbolically; KLEE struggled especiallywith
complex path constraints (for example in deeply nested conditionals); AFL++’s heuristics
make it quite flexible, but tend to fail when analyzing bugs with few triggering inputs.

Based on the above discussion, here are somehigh-levelguidelines that users ofHyperPUT
can follow to generate PUTs that meet their requirements. Specifically, requirements refer to
different characteristics of the generated PUTs that one wants to enforce:

Size The number of transformations is the fundamental determinant of the size of
the generated PUTs. Each transformation corresponds to a parametric snippet
of code; hence, each transformation instance adds as many lines of code as in
the snippet.

Nesting depth HyperPUT generates PUTs given transformation sequences (Section
3.2), which chain transformations in different ways. This gives user control
over the nesting depth of the resulting PUTs, as measured by metrics such as
cyclomatic complexity.

Triggering inputs As we discussed in Section 3.2.1, HyperPUT can produce triggering
inputs with every bug it generates provided we compose transformations under
certain restrictions. This feature of HyperPUT can also be extended, for example
to produce multiple triggering inputs, or to support the generation of triggering
inputs with new user-defined transformations.

Bug kinds While all our experiments used simple bugs consisting of assertion fail-
ures, HyperPUT can use an arbitrary piece of code as seeded bug. Users could
take advantage of this capability in order to produce PUTs that exercise spe-
cialized program analysis frameworks that can only detect certain kinds of bugs
(e.g., null-pointer dereferences Banerjee et al. 2019).

123

 38 Page 30 of 34 Empirical Software Engineering (2024) 29:38

Program features To generate PUTs with specific, homogeneous features (for example,
that do not include loops, or that only use variables of type string), users of
HyperPUT select some or all of the transformation categories to be used for
generation. The current version of HyperPUT is limited to a core subset of fea-
tures of the C programming language, which was sufficient to demonstrate its
capabilities in our experiments. However, one can still define new transforma-
tions, and combine them with the others in HyperPUT, so as to cater to their
specific needs.

7 Conclusions

In this paper, we presented HyperPUT, a technique and tool to generate PUTs (Program
Under Tests) with seeded bugs automatically, according to desired characteristics. The PUTs
generated by HyperPUT can be useful as experimental subjects to assess the capabilities
of bug-finding tools, and how they change according to the characteristics of the analyzed
PUT. To demonstrate this, we generated hundreds of PUTs using HyperPUT, and ran the
popular bug-finding tools AFL++, CBMC, and KLEE on them. Our experiments suggest that
HyperPUT can generate heterogeneous collections of PUTs, with several characteristics that
resemble those of “ecologically valid” bugs (Roy et al. 2018).

The implementation of HyperPUT is extensible, so that users can easily add transforma-
tions and parameters to configure the generation of bugs according to the intended usage.
As future work, we plan to further extend the flexibility of HyperPUT, so that it can also
automate the process of analyzing its experimental results (without the manual intervention
normally needed to study the produced data or to generate graphical representations from it),
or so that it can extend an existing program with new functions and seeded bugs.

Acknowledgements The authors gratefully acknowledge the financial support of the Swiss National Science
Foundation for the work (SNF Grant Number 200020-188613).

Funding Open access funding provided by Università della Svizzera italiana.

Data Availability The prototype implementation of HyperPUT is available in a public repository (HyperPUT
2022).

Declarations

Competing interest The authors declare that they have no known competing interests that could have appeared
to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2024) 29:38 Page 31 of 34 38

References

Ammann P, Offutt J (2007) Introduction to software testing, 2nd edn. Cambridge University Press
Aschermann C, Schumilo S, Blazytko T, Gawlik R, Holz T (2019) REDQUEEN: fuzzing with input-to-

state correspondence. In: 26th annual network and distributed system security symposium, NDSS 2019.
The Internet Society, San Diego. https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-
input-to-state-correspondence/

BabicD,Bucur S, ChenY, Ivancic F,KingT,KusanoM,LemieuxC, Szekeres L,WangW (2019) FUDGE: fuzz
driver generation at scale. In: Dumas M, Pfahl D, Apel S, Russo A (eds) Proceedings of the ACM joint
meeting on European software engineering conference and symposium on the foundations of software
engineering, ESEC/SIGSOFT FSE 2019. ACM, Tallinn, pp 975–985. https://doi.org/10.1145/3338906.
3340456

Baldoni R, Coppa E, D’Elia DC, Demetrescu C, Finocchi I (2018) A survey of symbolic execution techniques.
ACM Comput Surv 51(3):50:1–50:39. https://doi.org/10.1145/3182657

Bame P (2023) McCabe cyclomatic complexity for C and Cpp. https://manpages.ubuntu.com/manpages/
jammy/en/man1/pmccabe.1.html. Accessed 08 Aug 2023

Banerjee S,ClappL, SridharanM(2019)NullAway: practical type-based null safety for Java. In: Proceedings of
the ACM joint meeting on European software engineering conference and symposium on the foundations
of software engineering, ESEC/SIGSOFT FSE 2019. ACM, Tallinn, pp 740–750

Bellard F (2005) QEMU, a fast and portable dynamic translator. In: Proceedings of the FREENIX track: 2005
USENIX annual technical conference. USENIX, Anaheim, pp 41–46. http://www.usenix.org/events/
usenix05/tech/freenix/bellard.html

BeyerD (2021) Software verification: 10th comparative evaluation (SV-COMP2021). In:Groote JF, LarsenKG
(eds) Tools and algorithms for the construction and analysis of systems - 27th international conference,
TACAS 2021, held as part of the European joint conferences on theory and practice of software, ETAS
2021, proceedings, part II, lecture notes in computer science, vol 12652. Springer, Luxembourg, pp
401–422. https://doi.org/10.1007/978-3-030-72013-1_24

Beyer D (2021a) Status report on software testing: test-comp 2021. In: Guerra E, Stoelinga M (eds) Funda-
mental approaches to software engineering - 24th international conference, FASE 2021, held as part of
the European joint conferences on theory and practice of software, ETAPS 2021, proceedings, lecture
notes in computer science, vol 12649. Springer, Luxembourg, pp 341–357. https://doi.org/10.1007/978-
3-030-71500-7_17

Blackburn SM, Garner R, Hoffmann C, Khan AM, McKinley KS, Bentzur R, Diwan A, Feinberg D, Framp-
ton D, Guyer SZ, Hirzel M, Hosking AL, Jump M, Lee HB, Moss JEB, Phansalkar A, Stefanovic D,
VanDrunen T, von Dincklage D, Wiedermann B (2006) The DaCapo benchmarks: Java benchmarking
development and analysis. In: Tarr PL, Cook WR (eds) Proceedings of the 21th Annual ACM SIG-
PLAN conference on object-oriented programming, systems, languages, and applications, OOPSLA
2006. ACM, Portland, pp 169–190. https://doi.org/10.1145/1167473.1167488

Böhme M, Cadar C, Roychoudhury A (2021) Fuzzing: challenges and reflections. IEEE Softw 38(3):79–86.
https://doi.org/10.1109/MS.2020.3016773

Böhme M, Pham V, Roychoudhury A (2016) Coverage-based grey box fuzzing as Markov chain. In: Weippl
ER, Katzenbeisser S, Kruegel C, Myers AC, Halevi S (eds) Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. ACM, Vienna, pp 1032–1043. https://doi.org/10.
1145/2976749.2978428

Bornholt J, Torlak E (2018) Finding code that explodes under symbolic evaluation. Proc ACM Program Lang
2(OOPSLA):149:1–149:26. https://doi.org/10.1145/3276519

Bowes D, Hall T, Harman M, Jia Y, Sarro F, Wu F (2016) Mutation-aware fault prediction. In: Proceedings of
the 25th international symposium on software testing and analysis, ISSTA 2016. ACM, Saarbrücken, pp
330–341. https://doi.org/10.1145/2931037.2931039

Busybox (2023). https://www.busybox.net/. Accessed 08 Aug 2023
Cadar C, Sen K (2013) Symbolic execution for software testing: three decades later. Commun ACM 56(2):82–

90. https://doi.org/10.1145/2408776.2408795
Cadar C, Dunbar D, Engler DR (2008) KLEE: unassisted and automatic generation of high-coverage tests for

complex systems programs. In: Draves R, van Renesse R (eds) Proceedings 8th USENIX symposium
on operating systems design and implementation, OSDI 2008. USENIX Association, San Diego, pp
209–224. http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf

Cadar C, Ganesh V, Pawlowski PM, Dill DL, Engler DR (2008) EXE: automatically generating inputs of
death. ACM Trans Inf Syst Secur 12(2):10:1–10:38. https://doi.org/10.1145/1455518.1455522

Candea G, Godefroid P (2019) Automated software test generation: some challenges, solutions, and recent
advances. In: Steffen B, Woeginger GJ (eds) Computing and software science - state of the art and

123

https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3182657
https://manpages.ubuntu.com/manpages/jammy/en/man1/pmccabe.1.html
https://manpages.ubuntu.com/manpages/jammy/en/man1/pmccabe.1.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/3276519
https://doi.org/10.1145/2931037.2931039
https://www.busybox.net/
https://doi.org/10.1145/2408776.2408795
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/1455518.1455522

 38 Page 32 of 34 Empirical Software Engineering (2024) 29:38

perspectives, lecture notes in computer science, vol 10000. Springer, pp 505–531. https://doi.org/10.
1007/978-3-319-91908-9_24

Chipounov V, Kuznetsov V, Candea G (2012) The S2E platform: design, implementation, and applications.
ACM Trans Comput Syst 30(1):2:1–2:49. https://doi.org/10.1145/2110356.2110358

Circumventing fuzzing roadblocks with compiler transformations. https://lafintel.wordpress.com/ (2016).
Accessed 08 Aug 2023

Clarke EM, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs. In: Jensen K, Podelski A (eds)
Tools and algorithms for the construction and analysis of systems, 10th international conference, TACAS
2004, held as part of the joint European conferences on theory and practice of software, ETAPS 2004,
proceedings, lecture notes in computer science, vol 2988. Springer, Barcelona, pp 168–176. https://doi.
org/10.1007/978-3-540-24730-2_15

Clarke EM, Emerson EA, Sistla AP (1986) Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Trans Program Lang Syst 8(2):244–263. https://doi.org/10.1145/
5397.5399

Cmplog instrumentation (2023). https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/
README.cmplog.md. Accessed 08 Aug 2023

CookB, PodelskiA,RybalchenkoA (2011) Proving program termination.CommunACM54(5):88–98. https://
doi.org/10.1145/1941487.1941509

DARPA CGC (2018). https://github.com/CyberGrandChallenge/. Accessed 08 Aug 2023
Do H, Elbaum SG, Rothermel G (2005) Supporting controlled experimentation with testing techniques: an

infrastructure and its potential impact. Empir Softw Eng 10(4):405–435. https://doi.org/10.1007/s10664-
005-3861-2

Dolan-Gavitt B, Hodosh J, Hulin P, Leek T, Whelan R (2015) Repeatable reverse engineering with PANDA.
In: McDonald JT, Preda MD, Stakhanova N (eds) Proceedings of the 5th program protection and reverse
engineering workshop, PPREW@ACSAC. ACM, Los Angeles, pp 4:1–4:11. https://doi.org/10.1145/
2843859.2843867

Dolan-Gavitt B, Hulin P, Kirda E, Leek T, Mambretti A, Robertson WK, Ulrich F, Whelan R (2016) LAVA:
large-scale automated vulnerability addition. In: IEEE symposium on security and privacy, SP 2016.
IEEE Computer Society, San Jose, pp 110–121. https://doi.org/10.1109/SP.2016.15

Even-Mendoza K, Cadar C, Donaldson AF (2020) Closer to the edge: testing compilers more thoroughly
by being less conservative about undefined behaviour. In: 35th IEEE/ACM international conference on
automated software engineering, ASE 2020. IEEE, Melbourne, pp 1219–1223. https://doi.org/10.1145/
3324884.3418933

Ferrer J, Chicano F, Alba E (2011) Benchmark generator for software testers. In: Iliadis LS, Maglogiannis
I, Papadopoulos H (eds) Artificial intelligence applications and innovations - 12th INNS EANN-SIG
international conference, EANN 2011 and 7th IFIP WG 12.5 international conference, AIAI 2011,
proceedings, part II, IFIP advances in information and communication technology, vol 364. Springer,
Corfu, pp 378–388. https://doi.org/10.1007/978-3-642-23960-1_45

Fioraldi A, Maier D, Eißfeldt H, Heuse M (2020) AFL++ : combining incremental steps of fuzzing research.
In: Yarom Y, Zennou S (eds) 14th USENIX workshop on offensive technologies, WOOT 2020. USENIX
Association. https://www.usenix.org/conference/woot20/presentation/fioraldi

Fraser G, Zeller A (2012) Mutation-driven generation of unit tests and oracles. IEEE Trans Softw Eng
38(2):278–292. https://doi.org/10.1109/TSE.2011.93

Godefroid P, Levin MY, Molnar DA (2012) SAGE: whitebox fuzzing for security testing. Commun ACM
55(3):40–44. https://doi.org/10.1145/2093548.2093564

Godefroid P, Klarlund N, Sen K (2005) DART: directed automated random testing. In: Sarkar V, Hall MW
(eds) Proceedings of the ACM SIGPLAN 2005 conference on programming language design and imple-
mentation. ACM, Chicago, pp 213–223. https://doi.org/10.1145/1065010.1065036

Hazimeh A, Herrera A, Payer M (2021) Magma: a ground-truth fuzzing benchmark. In: Huang L, Gandhi
A, Kiyavash N, Wang J (eds) SIGMETRICS ’21: ACM SIGMETRICS/international conference on
measurement and modeling of computer systems, virtual event. ACM, China, pp 81–82. https://doi.
org/10.1145/3410220.3456276

HyperPUT (2022). github. https://github.com/user28134zx2734/HyperPUT. Accessed 08 Aug 2023
Just R, Jalali D, Ernst M (2014) Defects4J: a database of existing faults to enable controlled testing studies for

Java programs. https://doi.org/10.1145/2610384.2628055
Kapus T, Cadar C (2017) Automatic testing of symbolic execution engines via program generation and differ-

ential testing. In: Rosu G, PentaMD, Nguyen TN (eds) Proceedings of the 32nd IEEE/ACM international
conference on automated software engineering, ASE 2017. IEEEComputer Society, Urbana, pp 590–600.
https://doi.org/10.1109/ASE.2017.8115669

123

https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1145/2110356.2110358
https://lafintel.wordpress.com/
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.cmplog.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.cmplog.md
https://doi.org/10.1145/1941487.1941509
https://doi.org/10.1145/1941487.1941509
https://github.com/CyberGrandChallenge/
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1145/2843859.2843867
https://doi.org/10.1145/2843859.2843867
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/3324884.3418933
https://doi.org/10.1145/3324884.3418933
https://doi.org/10.1007/978-3-642-23960-1_45
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1109/TSE.2011.93
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/3410220.3456276
https://doi.org/10.1145/3410220.3456276
https://github.com/user28134zx2734/HyperPUT
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ASE.2017.8115669

Empirical Software Engineering (2024) 29:38 Page 33 of 34 38

Klees G, Ruef A, Cooper B, Wei S, Hicks M (2018) Evaluating fuzz testing. In: Lie D, Mannan M, Backes
M, Wang X (eds) Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security, CCS 2018. ACM, Toronto, pp 2123–2138. https://doi.org/10.1145/3243734.3243804

Kochhar PS, Thung F, Lo D, Lawall J (2014) An empirical study on the adequacy of testing in open source
projects. In: Cha SS, Guéhéneuc Y, Kwon G (eds) 21st Asia-pacific software engineering conference,
APSEC 2014, research papers, vol 1. IEEE Computer Society, Jeju, pp 215–222. https://doi.org/10.1109/
APSEC.2014.42

Kontar KA, Naji F, Demiane S, Haraty R (2019) A survey on mutation testing approaches. In: 2019 IEEE
CHILEAN conference on electrical, electronics engineering, information and communication technolo-
gies (CHILECON), pp 1–7. https://doi.org/10.1109/CHILECON47746.2019.8987448

Kusano M, Wang C (2013) CCmutator: a mutation generator for concurrency constructs in multithreaded
C/C++applications. In:DenneyE,BultanT,ZellerA (eds) 201328th IEEE/ACMinternational conference
on automated software engineering, ASE 2013. IEEE, Silicon Valley, pp 722–725. https://doi.org/10.
1109/ASE.2013.6693142

Lamport L (1977) Proving the correctness of multiprocess programs. IEEETrans Softw Eng SE-3(2):125–143.
https://doi.org/10.1109/TSE.1977.229904

Lanza M, Marinescu R (2006) Object-oriented metrics in practice - using software metrics to characterize,
evaluate, and improve the design of object-oriented systems. Springer. https://doi.org/10.1007/3-540-
39538-5

Lattner C, Adve VS (2004) LLVM: a compilation framework for lifelong program analysis & transformation.
In: 2nd IEEE/ACM international symposium on code generation and optimization (CGO 2004). IEEE
Computer Society, San Jose, pp 75–88. https://doi.org/10.1109/CGO.2004.1281665

Littlefair T (2005) C and Cpp code counter. http://cccc.sourceforge.net/. Accessed Aug 08 2023
Lyu C, Ji S, Zhang C, Li Y, Lee W, Song Y, Beyah R (2019) MOPT: optimized mutation scheduling

for fuzzers. In: Heninger N, Traynor P (eds) 28th USENIX security symposium, USENIX secu-
rity 2019. USENIX Association, Santa Clara, pp. 1949–1966. https://www.usenix.org/conference/
usenixsecurity19/presentation/lyu

Malik J, Pastore F (2023) An empirical study of vulnerabilities in edge frameworks to support security testing
improvement. Empir Softw Eng 28(4):99. https://doi.org/10.1007/s10664-023-10330-x

ManèsVJM,HanH,HanC, Cha SK, EgeleM, Schwartz EJ,WooM (2021) The art, science, and engineering of
fuzzing: a survey. IEEETrans Softw Eng 47(11):2312–2331. https://doi.org/10.1109/TSE.2019.2946563

Marcozzi M, Tang Q, Donaldson AF, Cadar C (2019) Compiler fuzzing: how much does it matter? Proc ACM
Program Lang 3(OOPSLA):155:1–155:29. https://doi.org/10.1145/3360581

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 2(4):308–320. https://doi.org/10.1109/TSE.
1976.233837

McKeemanWM (1998) Differential testing for software. Digit Tech J 10(1):100–107. http://www.hpl.hp.com/
hpjournal/dtj/vol10num1/vol10num1art9.pdf

Metzman J, Szekeres L, Simon L, Sprabery R, Arya A (2021) FuzzBench: an open fuzzer benchmarking
platform and service. In: Spinellis D, Gousios G, Chechik M, Penta MD (eds) ESEC/FSE ’21: 29th
ACM joint European software engineering conference and symposium on the foundations of software
engineering. ACM, Athens, pp 1393–1403. https://doi.org/10.1145/3468264.3473932

Moura LMD, Bjørner N (2008) Z3: An Efficient SMT Solver. In: Ramakrishnan CR, Rehof J (eds) Tools and
algorithms for the construction and analysis of systems, 14th international conference, TACAS 2008, held
as part of the joint European conferences on theory and practice of software, ETAPS 2008, proceedings,
lecture notes in computer science, vol 4963. Springer, Budapest, pp 337–340. https://doi.org/10.1007/
978-3-540-78800-3_24

Nethercote N (2004) Dynamic binary analysis and instrumentation: or building tools is easy. Ph.D. thesis,
University of Cambridge, UK

Papadakis M, Le Traon Y (2015) Metallaxis-FL: mutation-based fault localization. Softw Test Verification
Reliab 25(5–7):605–628. https://doi.org/10.1002/stvr.1509

Papadakis M, Jia Y, Harman M, Traon YL (2015) Trivial compiler equivalence: a large scale empirical study
of a simple, fast and effective equivalent mutant detection technique. In: 37th IEEE/ACM international
conference on software engineering, ICSE 2015, vol 1. IEEE Computer Society, Florence, pp 936–946.
https://doi.org/10.1109/ICSE.2015.103

Payer M (2019) The fuzzing hype-train: how random testing triggers thousands of crashes. IEEE Secur Priv
17(1):78–82. https://doi.org/10.1109/MSEC.2018.2889892

Peng H, Shoshitaishvili Y, Payer M (2018) T-Fuzz: fuzzing by program transformation. In: (2018) IEEE
symposium on security and privacy, SP 2018, proceedings. IEEE Computer Society, San Francisco, pp
697–710. https://doi.org/10.1109/SP.2018.00056

Pezzè M, Young M (2007) Software testing and analysis. Process, principles and techniques. Wiley

123

https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/APSEC.2014.42
https://doi.org/10.1109/APSEC.2014.42
https://doi.org/10.1109/CHILECON47746.2019.8987448
https://doi.org/10.1109/ASE.2013.6693142
https://doi.org/10.1109/ASE.2013.6693142
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/3-540-39538-5
https://doi.org/10.1007/3-540-39538-5
https://doi.org/10.1109/CGO.2004.1281665
http://cccc.sourceforge.net/
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1007/s10664-023-10330-x
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/3360581
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1002/stvr.1509
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1109/MSEC.2018.2889892
https://doi.org/10.1109/SP.2018.00056

 38 Page 34 of 34 Empirical Software Engineering (2024) 29:38

Roy S, Pandey A, Dolan-Gavitt B, Hu Y (2018) Bug synthesis: challenging bug-finding tools with deep
faults. In: Leavens GT, Garcia A, Pasareanu CS (eds) Proceedings of the 2018 ACM joint meeting on
European software engineering conference and symposium on the foundations of software engineering,
ESEC/SIGSOFT FSE 2018. ACM, Lake Buena Vista, pp 224–234. https://doi.org/10.1145/3236024.
3236084

Schuler D, Zeller A (2013) Covering and uncovering equivalent mutants. Softw Test Verification Reliab
23(5):353–374. https://doi.org/10.1002/stvr.1473

Shoshitaishvili Y, Wang R, Salls C, Stephens N, Polino M, Dutcher A, Grosen J, Feng S, Hauser C, Krügel
C, Vigna G (2016) SOK: (state of) the art of war: offensive techniques in binary analysis. In: IEEE
symposium on security and privacy, SP 2016. IEEE Computer Society, San Jose, pp 138–157. https://
doi.org/10.1109/SP.2016.17

Stallman R (2023) The GCC developer community: using the GNU compiler collection (GCC). GCC version
10.2.0. https://gcc.gnu.org/onlinedocs/gcc/. Accessed 08 Aug 2023

Stephens N, Grosen J, Salls C, Dutcher A, Wang R, Corbetta J, Shoshitaishvili Y, Kruegel
C, Vigna G (2016) Driller: augmenting fuzzing through selective symbolic execution. In:
23rd annual network and distributed system security symposium, NDSS 2016. The Internet
Society, San Diego. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-
augmenting-fuzzing-through-selective-symbolic-execution.pdf

SWE-220 - cyclomatic complexity for safety-critical software. NASA software engineering and assurance
handbook. NASA-HDBK-2203. https://swehb.nasa.gov/display/SWEHBVD (2023). Accessed 10 July
2023

Tanenbaum AS, Appuswamy R, Bos H, Cavallaro L, Giuffrida C, Hrubý T, Herder JN, van der
Kouwe E, van Moolenbroek DC (2010) MINIX 3: status report and current research. Login
Usenix Mag 35(3). https://www.usenix.org/publications/login/june-2010-volume-35-number-3/minix-
3-status-report-and-current-research

Undefined behavior sanitizer (ubsan) (2023). https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html.
Accessed 08 Aug 2023

Yang X, Chen Y, Eide E, Regehr J (2011) Finding and understanding bugs in C compilers. In: Hall MW, Padua
DA (eds) Proceedings of the 32nd ACM SIGPLAN conference on programming language design and
implementation, PLDI 2011. ACM, San Jose, pp 283–294. https://doi.org/10.1145/1993498.1993532

Yao X, Harman M, Jia Y (2014) A study of equivalent and stubborn mutation operators using human analysis
of equivalence. In: 36th international conference on software engineering, ICSE ’14. ACM, Hyderabad,
pp 919–930. https://doi.org/10.1145/2568225.2568265

Younan Y, Joosen W, Piessens F (2012) Runtime countermeasures for code injection attacks against C and
C++ programs. ACM Comput Surv 44(3):17:1–17:28. https://doi.org/10.1145/2187671.2187679

Zalewski M (2016) American fuzzing lop (AFL). http://lcamtuf.coredump.cx/afl/. Accessed 08 Aug 2023

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1145/3236024.3236084
https://doi.org/10.1145/3236024.3236084
https://doi.org/10.1002/stvr.1473
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://gcc.gnu.org/onlinedocs/gcc/
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://swehb.nasa.gov/display/SWEHBVD
https://www.usenix.org/publications/login/june-2010-volume-35-number-3/minix-3-status-report-and-current-research
https://www.usenix.org/publications/login/june-2010-volume-35-number-3/minix-3-status-report-and-current-research
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/2568225.2568265
https://doi.org/10.1145/2187671.2187679
http://lcamtuf.coredump.cx/afl/

	HyperPUT: generating synthetic faulty programs to challenge bug-finding tools
	Abstract
	1 Introduction
	2 Related Work
	2.1 Benchmarks of Bugs
	2.2 Bug-Finding Tools

	3 Methodology and Implementation
	3.1 Transformations
	3.1.1 Transformation Categories

	3.2 Transformation Sequences
	3.2.1 Reaching Inputs

	3.3 Implementation Details

	4 Experimental Design
	4.1 Testing Frameworks
	4.2 Experimental Subjects
	4.2.1 Batches
	4.2.2 Seeded Bugs

	4.3 Experimental Setup
	4.4 RQ1: Fairness
	4.5 RQ2: Reproducibility
	4.6 RQ3: Depth and Rarity
	4.6.1 Depth
	4.6.2 Rarity

	4.7 RQ4: Capabilities

	5 Experimental Results
	5.1 RQ1: Fairness
	5.2 RQ2: Reproducibility
	5.3 RQ3: Depth and Rarity
	5.3.1 Depth
	5.3.2 Rarity

	5.4 RQ4: Capabilities
	5.5 Limitations and Threats to Validity

	6 Discussion
	7 Conclusions
	Acknowledgements
	References

