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Abstract. A test is adaptive when the sequence and number of ques-
tions is dynamically tuned on the basis of the estimated skills of the taker.
Graphical models, such as Bayesian networks, are used for adaptive tests
as they allow to model the uncertainty about the questions and the skills
in an explainable fashion, especially when coping with multiple skills. A
better elicitation of the uncertainty in the question/skills relations can be
achieved by interval probabilities. This turns the model into a credal net-
work, thus increasing the inferential complexity of the queries required to
select questions. This is especially the case for the information-theoretic
quantities used as scores to drive the adaptive mechanism. We present
an alternative family of scores, based on the mode of the posterior proba-
bilities, and hence easier to explain. This makes considerably simpler the
evaluation in the credal case, without significantly affecting the quality
of the adaptive process. Numerical tests on synthetic and real-world data
are used to support this claim.

Keywords: adaptive tests - information theory - credal networks - Bayesian
networks - index of qualitative variation

1 Introduction

A test or an exam can be naturally intended as a measurement process, with the
questions acting as sensors measuring the skills of the test taker in a particular
discipline. Such measurement is typically imperfect with the skills modeled as
latent variables whose actual values cannot be revealed in a perfectly reliable
way. The role of the questions, whose answers are regarded instead as mani-
fest variables, is to reduce the uncertainty about the latent skills. Following this
perspective, probabilistic models are an obvious framework to describe tests.
Consider for instance the example in Figure 1, where a Bayesian network evalu-
ates the probability that the test taker knows how to multiply integers. In such
framework making the test adaptive, i.e., picking a next question on the basis of
the current knowledge level of the test taker is also very natural. The information
gain for the available questions might be used to select the question leading to
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the more informative results (e.g., according to Table 1, 1 is more informative
than @2 no matter what the answer is). This might also be done before the
answer on the basis of expectations over the possible alternatives.

A critical point when coping with such approaches is to provide a realistic
assessment for the probabilistic parameters associated with the modeling of the
relations between the questions and the skills. Having to provide sharp numerical
values for these probabilities might be difficult. As the skill is a latent quantity,
complete data are not available for a statistical learning and a direct elicitation
should be provided by experts (e.g., a teacher). Yet, it might be not obvious to
express such a domain knowledge by single numbers and a more robust elicita-
tion, such as a probability interval (e.g., P(Q1 = 1|5, = 1) € [0.85,0.95]), might
add realism and robustness to the modeling process [15]. With such generalized
assessments of the parameters a Bayesian network simply becomes a credal net-
work [22]. The counterpart of such increased realism is the higher computational
complexity of inference in credal networks [21]. This is an issue especially when
coping with information-theoretic measures such as the information gain, whose
computation in credal networks might lead to complex non-linear optimization
tasks [19].

The goal of this paper is to investigate the potential of alternatives to the
information-theoretic scores driving the question selection in adaptive tests based
on directed graphical models, no matter whether these are Bayesian or credal
networks. In particular, we consider a family of scores based on the (expected)
mode of the posterior distributions over the skills. We show that, when coping
with credal networks, the computation of these scores can be reduced to a se-
quence of linear programming task. Moreover, we show that these scores benefit
of better explainability properties, thus allowing for a more transparent process
in the question selection.

P(@Q=1]S=0)=03
P(Q:=1S=1)=06
P(Qa=1|S=0)=04

Fig. 1. A Bayesian network over Boolean variables modeling a simple test to evaluate
integer multiplication skill. Probabilities of correct answers are also depicted.

The paper is organized as follows. A critical discussion about the existing
work in this area is in Section 2. The necessary background material is reviewed
in Section 3. The adaptive testing concepts are introduced in Section 4 and
specialized to graphical models in 5. The technical part of the paper is in Section
6, where the new scores are discussed and specialized to the credal case, while
the experiments are in Section 7. Conclusions and outlooks are in Section 8.
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Table 1. Posterior probabilities of the skill after one or two questions in the test based
on the Bayesian network in Figure 1. A uniform prior over the skill is considered.
Probabilities are regarded as grades and sorted from the lowest one. Bounds obtained
with a perturbation € = +0.05 of all the input parameters are also reported.

Q1 Q2 P(S = 1|q1,92) P(S = 1|q1,q2) P(S = 1]q1,q2)

0 0 0.087 0.028 0.187
0 — 0.125 0.052 0.220
0 1 0.176 0.092 0.256
- 0 0.400 0.306 0.506
-1 0.600 0.599 0.603
10 0.667 0.626 0.708
1 - 0.750 0.748 0.757
11 0.818 0.784 0.852

2 Related Work

Tests are modeled as a process relating latent and manifest variables since the
classical item response theory (IRT), that has been widely used even to imple-
ment adaptive sequences [14]. Despite its success related to the ease of implemen-
tation and inference, IRT might be inadequate when coping with multiple latent
skills, especially when these are dependent. This moved researchers towards the
area of probabilistic graphical models [17], as practical tools to implement IRT
in more complex setups [2]. Eventually, Bayesian networks have been identified
as a suitable formalism to model tests, even behind the IRT framework [25],
this being especially the case for adaptive models [26] and coached solving [12].
In order to cope with latent skills, some authors successfully adopted EM ap-
proaches to these models [23], this also involving the extreme situation of no
ground truth information about the answers [6]. As an alternative approach to
the same issue, some authors considered relaxations of the Bayesian formalism,
such as fuzzy models [7] and imprecise probabilities [19]. The latter is the di-
rection we consider here, but trying to overcome the computational limitations
of that approach when coping with information-theoretic scores. This has some
analogy with the approach in [11], that is focused on the Bayesian case only, but
whose score, based on the same-decision problem, appears hard to be extended
to the imprecise framework without increasing the computational complexity.

3 Background on Bayesian and Credal Networks

We denote variables by Latin uppercase letters, while using lowercase for their
generic values, and calligraphic for the set of their possible values. Thus, v € V
is a possible value of V. Here we only consider discrete variables.!

L IRT uses instead continuous skills. Yet, with probabilistic models, discrete skills do
not prevent evaluations to range over continuous domains. E.g., see Table 1, where
the grade corresponds to a (continuous) probability.
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3.1 Bayesian Networks

A probability mass function (PMF) over V is denoted as P(V), while P(v) is
the probability assigned to state v. Given a function f of V', its expectation with
respect to P(V) is Ep(f) := >,y P(v)f(v). The expectation of —log,[P(V')]
is called entropy and denoted also as H(V').In particular we assume b := |V| to
have the maximum of the entropy, achieved for uniform PMFs, equal to one.
Given a joint PMF P(U,V), the marginal PMF P(V) is obtained by sum-
ming out the other variable, i.e., P(v) =3 ., P(u,v). Conditional PMFs such
as P(Ulv) are similarly obtained by Bayes’s rule, i.e., P(ulv) = P(u,v)/P(v)
provided that P(v) > 0. The notation P(U|V) := {P(U|v)}vey is used for
such a conditional probability table (CPT). The entropy of a conditional PMF
is defined as in the unconditional case and denoted as H(U|v). The condi-
tional entropy is a weighted average of entropies of the conditional PMFs, i.e.,
HU|V) =3, ey H{Uv)P(v). If P(u,v) = P(u)P(v) for eachu € Y and v € V,
variables U and V are independent. Conditional formulations are also considered.
We assume the set of variables V := (Vq,...,V}) to be in one-to-one corre-
spondence with a directed acyclic graph G. For each V' € V', the parents of V,
i.e., the predecessors of V in G, are denoted as Pay . The graph G together with
the collection of CPTs { P(V|Pay ) }vev provides a Bayesian network (BN) spec-
ification [17]. Under the Markov condition, i.e., every variable is conditionally
independent of its non-descendants non-parents given its parents, a BN com-
pactly defines a joint PMF P(V') that factorizes as P(v) =[] ¢y P(v|pay).
Inference, intended as the computation of the posterior PMF of a single
(queried) variable given some evidence about other variables, is in general NP-
hard, but exact and approximate schemes are available (see [17] for details).

3.2 Credal Sets and Credal Networks

A set of PMFs over V is denoted as K (V) and called credal set (CS). Expec-
tations based on CSs are the bounds of the PMF expectations with respect to
the CS. Thus E[f] := inf p(vyex(v) E[f] and similarly for the supremum E. Ex-
pectations of events are in particular called lower and upper probabilities and
denoted as P and P. Notation K (U|v) is used for a set of conditional CSs, while
K(U|V):={K(Ulv)}yey is a credal CPT (CCPT).

Analogously to a BN, a credal network (CN) is specified by graph G together
with a family of CCPTs {K (V|Pay)}vev [13]. A CN defines a joint CS K(V)
corresponding to all the joint PMFs induced by BNs whose CPTs are consistent
with the CN CCPTs.

For CNs, we intend inference as the computation of the lower and upper
posterior probabilities. The task generalizes BN inference being therefore NP-
hard, see [21] for a deeper characterization. Yet, exact and approximate schemes
are also available to practically compute inferences [4, 5, 16].
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4 Testing Algorithms

A typical test aims at evaluating the knowledge level of a test taker o on the basis
of her answers to a number of questions. Let @ denote a repository of questions
available to the instructor. The order and the number of questions picked from
Q@ to be asked to o might not be defined in advance. We call testing algorithm
(TA) a procedure taking care of the selection of the sequence of questions asked
to the test taker, and deciding when the test stops. Algorithm 1 depicts a general
TA scheme, with e denoting the array of the answers collected from taker o.

Algorithm 1 General TA: given the profile o and repository @, an evaluation
based on answers e is returned.
1: e« 0
while not Stopping(e) do
Q" + Pick(Q,e)
q" + Answer(Q*, o)
e eU{Q" =q"}
Q—Q\{Q"}
end while
return Evaluate(e)

The Boolean function Stopping decides whether the test should end, this
choice being possibly based on the previous answers in e. Trivial stopping rules
might be based on the number of questions asked to the test taker (Stopping(e) =
1 if and only if |e| > n) or on the number of correct answers provided that a
maximum number of questions is not exceeded. Function Pick selects instead
the question to be asked to the student from the repository Q. A TA is called
adaptive when this function takes into account the previous answers e. Trivial
non-adaptive strategies might consist in randomly picking an element of @ or
following a fixed order. The function Answer is simply collecting (or simulating)
the answer of test taker o to a particular question (). In our assumptions, this
answer is independent of the previous answers to other questions.?

Finally, Evaluate is a function returning the overall judgment of the test
(e.g., a numerical grade or a pass/fail Boolean) on the basis of all the answers
collected after the test termination. Trivial examples of such functions are the
percentage of correct answers or a Boolean that is true when a sufficient number
of correct answers has been provided. Note also that in our assumptions the TA
is exchangeable, i.e., the stopping rule, the question finder and the evaluation
function are invariant with respect to permutations in e [24]. In other words,

2 Generalized setups where the quality of the student answer is affected by the previous
answers will be discussed at the end of the paper. This might include a fatigue
model negatively affecting the quality of the answers when many questions have
been already answered as well as the presence of revealing questions that might
improve the quality of other answers [18].
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the same next question, the same evaluation and the same stopping decision is
produced for any two students who provided the same list of answers in two
different orders.

A TA is supposed to achieve reliable evaluation of taker o from the answers
e. As each answer is individually assumed to improve such quality, asking all the
questions, no matter the order because of the exchangeability assumption, is an
obvious choice. Yet, this might be impractical (e.g., because of time limitations)
or just provide an unnecessary burden to the test taker. The goal of a good TA
is therefore to trade off the evaluation accuracy and the number of questions.?

5 Adaptive Testing in Bayesian and Credal Networks

The general TA setup in Algorithm 1 can be easily specialized to BNs as fol-
lows. First, we identify the profile o of the test taker with the actual states of a
number of latent discrete variables, called skills. Let S = {S;}7.; denote these
skill variables, and s, the actual values of the skills for the taker. Skills are
typically ordinal variables, whose states correspond to increasing knowledge lev-
els. Questions in Q are still described as manifest variables whose actual values
are returned by the Answer function. This is achieved by a (possibly stochas-
tic) function of the actual profile s,. This reflects the taker perspective, while
the teacher has clearly no access to s,. As a remark, note that we might often
coarsen the set of possible values Q for each @ € @Q: for instance, a multiple
choice question with three options might have a single right answer, the two
other answers being indistinguishable from the evaluation point of view.*

A joint PMF over the skills S and the questions @ is supposed to be avail-
able. In particular we assume this to correspond to a BN whose graph has the
questions as leaf nodes. Thus, for each Q € Q, Pag C S and we call Pag the
scope of question (). Note that this assumption about the graph is simply reflect-
ing a statement about the conditional independence between (the answer to) a
question and all the other skills and questions given scope of the question. This
basically means that the answers to other questions are not directly affecting
the answer to a particular question.’

As the available data are typically incomplete because of the latent nature
of the skills, dedicated learning strategies, such as various forms of constrained
EM should be considered to train a BN from data. We refer the reader to the
various contributions of Plajner and Vomlel in this field (e.g., [23]) for a complete
discussion of that approach. Here we assume the BN quantification available.

3 In some generalized setups, other elements such as a serendipity in choice in order
to avoid tedious sequences of questions might be also considered [8].

4 The case of abstention to an answer and the consequent problem of modeling the
incompleteness is a topic we do not consider here for the sake of conciseness. Yet,
general approaches based on the ideas in [20] could be easily adopted.

5 Moving to other setups would not be really critical because of the separation prop-
erties of observed nodes in Bayesian and credal networks, see for instance [3,9].
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In such a BN framework, Stopping(e) might be naturally based on an eval-
uation of the posterior PMF P(S|e), this being also the case for Evaluate. Re-
garding the question selection, Pick might be similarly based on the (posterior)
CPT P(S|Q, e), whose values for the different answers to ¢ might be weighted
by the marginal P(Ql|e). More specifically, entropies and conditional entropies
are considered by Algorithm 2, while the evaluation is based on a conditional
expectation for a given utility function.

Algorithm 2 Information Theoretic TA in a BN over the questions @ and
the skills S: given the student profile s, the algorithm returns an evaluation
corresponding to the expectation of an evaluation function f with respect to the
posterior for the skills given the answers e.
e=10
while H(S|e) > H* do

Q" + argmaxqgeq [H(S|e) — H(S|Q,e)]

q" < Answer(Q", ss)

e—eU{Q" =q"}

Q< Q\{Q"}
end while
return Ep(ge)[f(S)]

When no data are available for the BN training, elicitation techniques should
be considered instead. As already discussed, CNs might offer a better formalism
to capture domain knowledge, especially by providing interval-valued probabili-
ties instead of sharp values. If this is the case, a CN version of Algorithm 2 can
be considered. To achieve that, in line 3, a score taking into account the fact that
the entropies in a CN are not anymore precisely specified should be adopted.
Similar considerations apply to the evaluation function in line 8.

The price of such increased realism in the elicitation is the higher complexity
characterizing inferences based on CNs. The work in [19] offers a critical dis-
cussion of those issues, that are only partially addressed by heuristic techniques
used there to approximate the upper bounds of conditional entropies. In the next
section we consider an alternative approach to cope with CNs and adaptive TAs
based on different scores used to select the questions.

6 A New Score for Testing Algorithms

Following [27], we can regard the PMF entropy (and its conditional version)
used by Algorithm 2 as an example of an index of qualitative variation (IQV).
An IQV is just a normalized number that takes value zero for degenerate PMF's,
one on uniform ones, being independent on the number of possible states (and
samples for empirical models). The closer to uniform is the PMF, the higher is
the index and vice versa.
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In order to bypass the computational issues related to its application with
CNs, we want to consider alternative IQVs to replace entropy in Algorithm 2.
Wilkox deviation from the mode (DM) appears a sensible option. Given a PMF
P(V), this corresponds to:

MV):=1-Y"

veY

max, ¢y P(v') — P(v)
-1 W

It is a trivial exercise to check that this is a proper IQV, with the same unimodal
behavior of the entropy. In terms of explainability, being a linear function of the
modal probability, the numerical value of the DM offers a more transparent
interpretation than the entropy. From a computational point of view, for both
marginal and conditional PMFs, both the entropy and the DM can be directly
obtained from the probabilities of the singletons.

The situation is different when computing the bounds of these quantities
with respect to a CS. For the upper bound, by simple algebra, we obtain:

— 1 — minp e g vy max, ey P(v')
M) .= MV)= . 2
V)= o iy M) - 1/ ®

As we assume CSs defined by a finite number of linear constraints, such a min-
imax objective function can be easily reduced to a linear programming task by
adding an auxiliary variable corresponding to the maximum and the constraints
modeling the fact that this variable is the maximum. The situation is even sim-
pler for the lower bound M (V'), which reduces to a mazimaz corresponding to
the identification of the singleton state with the highest upper probability. Opti-
mizing entropy requires instead a non-trivial, but convex, optimization. See for
instance [1] for an iterative procedure to find the maximum when coping with
CSs defined by probability intervals. The situation is even more critical for the
minimization, that has been proved to be NP-hard in [28].

The optimization becomes more challenging for conditional entropies, as
these are mixtures of entropies of conditional distributions based on imprecise
weights. Consequently, in [19], only an inner approximation for the upper bound
have been derived. The situation is different for conditional DMs. The following
result offers a feasible approach in a simplified setup, to be later extended to the
general case.

Theorem 1. Under the setup of Section 5, consider a CN with a single skill
S and a single question Q, that is a child of S. Let K(S) and K(Q|S) be the
CCPTs of such CN. Let also Q = {q*,...,q"} and S = {s',...,s™}. The upper
conditional DM, i.e.,

M(S =1- i P(silg)| P(q), 3
(S1Q) P Z; Leﬁ“?fm} (sjlai)| Plas) (3)
P(QISIEK(Q]S) =

where the denominator in (2) was omitted for the sake of brevity, is such that:

M(S|Q):=1—  min Q01 dn), (4)

Fireeorin€{l,...m}
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where _Q(jl, e ,jn) is the solution of the following linear programming task.
min Z ;s
i
ij

zi; >0 Vi, j (6)
> wn; > P(s;) V) (7)
k

D ak <Pls;) V) (8)
k

P(qi]s;) fokj < @y Vi, j 9)
k
ﬁ(qﬂS]‘) Zl‘k]‘ Z Lij VZ,] (10)
k
Assignments of (317 e ,jn) such that the corresponding linear programming task

is unfeasible are just removed from the minimization in Equation (4). Note that
the bounds on the sums over the indexes and on the universal quantifiers are
also omitted for the sake of brevity.

Proof. Equation (3) rewrites as:

n

MsiQ)=1- | min z;[j_q{afmz?(sj)z?(qisj) S )
P(Q|S)EK(Q|S) =

We define the variables of such constrained optimization as x;; == P(s;)-P(¢;|s;)
for eachie {1,...,n} and j € {1,...,m}. The CCPT constraints can be easily
reformulated with respect to such new variables by noticing that x;; = P(sj,q;),
and hence P(s;) = >, xi; and P(qi|s;) = xi;/ (3, xkj). Consequently, the in-
terval constraints on P(S) correspond to the linear constraints in Equations (7)
and (8). Similarly, for P(Q|S), we obtain:

T

Plgilsj) < =2— < Plails;), (13)

k Tki
that easily gives the linear constraints in Equations (9) and (10) (as we cope
with strictly positive probabilities of the skills, the denominator in Equation (13)
cannot be zero). The non-negativity of the probabilities corresponds to Equation

(6), while Equation (5) gives the normalization of P(S,Q) and the normalization
of P(QIS) is by construction. Equation (12) rewrites therefore as:

M(S|Q)=1— min ;mjaxzij, (14)

{zi;}er
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where I' denotes the linear constraints in Equations (5)-(10). If j; := arg max; z;;,
Equation (14) rewrites as:

M(S|Q) =1~ min Z:vj : (15)
where I are the constraints in I' with the additional (linear) constraints in
Equation (11) implementing the definition of 7. The minimization in the right-
hand side of Equation (15) is not a linear programming task, as the values of the
indezes j; are potentially different for different assignments of the optimization
variables consistent with the constraints in I'. Yet, we might address such opti-
mazation as a brute-force task with respect to all the possible assignation of the
indezes j;. This is exactly what is done by Equation (4) where all the m™ possible
assignations are considered. Finally, regarding the feasibility of the constraints,
as the constraints in Equation (14) are feasible by construction, there is at least

a value of (3'1, e ,jn), i.e., the one corresponding to the optimum, for which also
the constraints in Equation (15) are feasible. O

An analogous result holds for the computation of M (S|Q). In that case a max-
imum should replace the minimum in both Equation (3) and in the linear pro-
gramming tasks. The overall complexity is O(m™) with n := |Q]|. This means
quadratic complexity for any test where only the difference between a wrong
and a right answer is considered from an elicitation perspective, and tractable
computations provided that the number of distinct answers to the same question
is bounded by a small constant. Coping with multiple questions becomes trivial
by means of the results in [3], that allows to merge multiple observed children
into a single one. Finally, the case of multiple skills might be similarly considered
by using the marginal bounds of the single skills in Equations (7) and (8).

7 Experiments

We validate the ideas outlined in the previous section in order to check whether or
not the DM can be used for TAs as a sensible alternative to information-theoretic
scores such as the entropy. In the BN context, this is achieved by computing the
necessary posterior probabilities, while Theorem 1 is used instead for CNs.

7.1 Single-Skill Experiments on Synthetic Data

For a very first validation of our approach, we consider a simple setup made of a
single Boolean skill .S and a repository with 18 Boolean questions based on nine
different parametrizations (two questions for each parametrization). In such a
BN, the CPT of a question can be parametrized by two numbers. E.g., in the
example in Figure 1, we used the probabilities of correctly answering the question
given that the skill is present or not, i.e., P(Q = 1]S = 1) and P(Q = 1|S = 0).
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A more interpretable parametrization can be obtained as follows:

6::1—%[P(Q:1|S:1)+P(Q:1\S:O)], (16)
k= P(Q=1|S=1) = P(Q=1]S = 0). (17)

Note that P(Q = 1|S = 1) > P(Q = 1|S = 0) is an obvious rationality constraint
for questions, otherwise having the skill would make it less likely to answer prop-
erly to a question. Both parameters are therefore non-negative. The parameter
§, corresponding to the average probability of a wrong answer over the different
skill values, can be regarded as a normalized index of the question difficulty. E.g.,
in Figure 1, @ (§ = 0.4) is less difficult than Q2 (§ = 0.5). The parameter x can
be instead regarded as a descriptor of the difference of the conditional PMFs as-
sociated with the different skill values. In the most extreme case k = 1, the CPT
P(QIS) is diagonal implementing an identity mapping between the skill and the
question. We therefore regard  as a indicator of the discriminative power of the
question. In our tests, for the BN quantification, we consider the nine possible
parametrizations corresponding to (d,7) € [0.4,0.5,0.6]2. For P(S) we use in-
stead a uniform PMF. For the CN approach we perturb all the BN parameters
with € = 40.05, thus obtaining a CN quantification. A group of 1024 simulated
students, half of them having S = 0 and half with S = 1 is used for simulations.
The student answers are sampled from the CPT of the asked question on the
basis of the student profile. Figure 2 (left) depicts the accuracy of the BN and
CN approaches based on both the entropy and the DM scores. To force credal
models to give a single output, decisions are based on the mid-point between
the lower and the upper probability, while lower entropies are used. Pure credal
approaches returning multiple options will be considered in a future work. We
notably see all the adaptive approaches outperforming a non-adaptive, random,
choice of the questions. To better investigate the strong overlap between these
trajectories, in Figure 2 (right) we compute the Brier score and we observe a
strong similarity between DM and entropy approaches in both the Bayesian and
the credal case, with the credal slightly outperforming the Bayesian approach.

\ —— Credal Entropy

\ —— Credal Mode

L 044 W - - - Random

- - - Bayesian Entropy
\ \\\ - - - Bayesian Mode

0.8

0.6 1 0.3 4

Accuracy

0.4 -

o
I

Brier Distance

0.2+

T T T T T
0 5 10 15 20 0 5 10 15 20
Number of questions Number of questions

Fig. 2. Accuracy (left) and Brier distance (right) of TAs for a single-skill BN/CN
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7.2  Multi-Skill Experiments on Real Data

For a validation on real data, we consider an online German language placement
test (see also [19]). Four different Boolean skills associated with different abilities
(vocabulary, communication, listening and reading) are considered and modeled
by a chain-shaped graph, for which BN and CN quantification are already avail-
able. A repository of 64 Boolean questions, 16 for each skill, with four different
levels of difficulty and discriminative power, have been used. Experiments have
been achieved by means of the CREMA library for credal networks [16].° The
Java code used for the simulations is available together with the Python scripts
used to analyze the results and the model specifications.” Performances are eval-
uated as for the previous model, the only difference being that here the accuracy
is aggregated by average over the separate accuracies for the four skills. The re-
sults (Figure 3) are analogous to those for the single-skill case: entropy-based
and mode-based scores are providing similar results, with the credal approach
typically leading to more accurate evaluations.

o
3
L

o
EY
I

S
=
L

—— Credal Entropy
Credal Mode
0.24 - - - Random -
- - - Bayesian Entropy
- - - Bayesian Mode

Aggregated Accuracy

T T T T T
0 10 20 30 40 50 60

Number of questions

Fig. 3. Aggregated accuracy for a multi-skill TA

8 Outlooks and Conclusions

A new score for adaptive testing in Bayesian and credal networks has been
proposed. Our proposal is based on indexes of qualitative variation, being in
particular focused on the modal probability for their explainability features. An
algorithm to evaluate this quantity in the credal case is derived. Our experi-
ments show that moving to these scores does not really affect the quality of the
selection process. Besides a deeper experimental validation, a necessary future
work consists in the derivation of simpler elicitation strategies for these mod-
els in order to promote their application to real-world testing environments. To
achieve that we also intend to embed these new scores in a software we recently
developed for the practical implementation of web-based adaptive tests [10].8

6 github.com/IDSIA/crema
" github.com/IDSIA/crema-adaptive.
8 github.com/IDSIA/adapquest
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