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Abstract—Automatic assessment of learner competencies is a
fundamental task in intelligent tutoring systems. An assessment
rubric typically and effectively describes relevant competencies
and competence levels. This paper presents an approach to
deriving a learner model directly from an assessment rubric
defining some (partial) ordering of competence levels. The model
is based on Bayesian networks and exploits logical gates with
uncertainty (often referred to as noisy gates) to reduce the
number of parameters of the model, so to simplify their elicitation
by experts and allow real-time inference in intelligent tutoring
systems. We illustrate how the approach can be applied to
automatize the human assessment of an activity developed for
testing computational thinking skills. The simple elicitation of
the model starting from the assessment rubric opens up the
possibility of quickly automating the assessment of several tasks,
making them more easily exploitable in the context of adaptive
assessment tools and intelligent tutoring systems.

Index Terms—Probabilistic reasoning, Noisy-OR Bayesian net-
works, Assessment rubrics, Computational thinking

I. INTRODUCTION

Intelligent tutoring systems (ITSs) are technological devices
that support learning by interacting with the user, without
the mediation of a teacher, supplying hints and suggestions
which can be effective only if calibrated to the actual user
competence level. Therefore, ITSs collect data during the
accomplishment of the assigned tasks, analyse the learner ac-
tivities and infer its competence profile based on a predefined
model of the learner skills, knowledge and behaviours, and
use it to select the most appropriate intervention. The new
knowledge collected along with the learning activity continu-
ously updates the competence profile, making the interventions
more focused. Therefore, a central element in developing a
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successful AI-based educational tool is the learner model,
aiming to describe the learner by a set of hidden variables
representing competencies and their relations to the observable
actions performed while solving the task.

A combination of knowledge, skills, and attitudes expressed
in a context defines competencies. To assess them, teachers
should set up realistic, authentic situations where students
can apply their knowledge, skills and attitudes and compare
the level of competence activated during these activities with
a competence model, often specified through an assessment
rubric. [1]. A general assessment rubric consists of a list
of competence components to be assessed and a qualitative
description of possible observable behaviours corresponding
to different levels of such components. A rubric, therefore,
describes the relationship between competencies and observ-
able behaviours that one needs to codify in the learner model
formally. Several sources of uncertainty and variability affect
the relation between the non-observable competencies and
the corresponding observable actions. A deterministic relation
cannot correctly model it. Instead, probabilistic reasoning is
a more appropriate approach to translating qualitative as-
sessment rubrics into a quantitative, standardised, coherent
measure of student proficiency. In the literature, Bayesian
knowledge tracing (BKT), Item response theory (IRT), and
Bayesian networks (BN) are all popular probabilistic ap-
proaches to model learner knowledge. BNs are a powerful
framework for describing dependencies between skills and
students’ behaviours in facing complex tasks; furthermore,
being graphical models highly intelligible, they are usable by
experts in the elicitation of the student model. In Desmarais
review of all most successful ITS experiences since Bloom
seminal paper [2], it is acknowledged that ”Probabilistic
models for skill assessment are playing a key role in these



advanced learning environments” and BNs are presented as the
most general approach for modelling learner skills. Building
on these results, we focused on BNs approaches.

Designing a BN may require a deep understanding of BNs
theory and a significant effort in eliciting the network structure
and parameters or the availability of a large dataset for learning
the model directly from the data. Although BN arcs can be
interpreted as a causal model, their definition by experts is not
always trivial due to the complexity of causal relations at play
and the presence of hidden causes. On the other hand, even
when the learner model structure can be accurately defined,
the elicitation or learning of the BNs parameters and the
computation of inferences can quickly become unmanageable.
The number of parameters and the problem complexity can
quickly increase with the number of arcs in the network.
This issue can discourage ITS practitioners from using these
tools in their applications when many skills are affecting the
learner’s actions. To avoid it, a solution to reduce the number
of parameters in a BN-based learner model was proposed in
our previous paper [3], which exploited the so-called noisy-OR
gates [4]. We could reduce the number of parameters to elicit
from exponential to linear for the number of parents/skills.
Similar advantages also concern the inference. We adopted
such solution to set up a general approach for translating
assessment rubrics into interpretable BN-based learner models
with a complexity compatible with real-time assessment. To
illustrate this approach, we focused on the activity proposed in
[5] for the standardised assessment of algorithmic skills along
the entire K-12 school path, derived two learner models with
different sets of expert-elicited parameters and applied them
to the dataset collected in [3]. Overall, we obtain a compact
and general approach to implementing a learner model given a
set of competencies of interest and the corresponding assess-
ment rubric. The resulting model has a simple structure and
interpretable parameters, requiring a reasonable effort for their
elicitation by experts and fast inferences allowing for real-time
ITS interactions.

The paper is organised as follows: Section II provides some
background about learner modelling based on BNs and noisy-
OR gates; the approach is applied to a general assessment
rubric in Section III; in Section IV we illustrate the procedure
on the assessment rubric developed for the CAT activity, and
analyse the model inferences based on the results of the pupils
observed in the CAT study [5].

II. EXPLOITING NOISY GATES IN BN-BASED LEARNER
MODELS

A. BN-based learner model

The structure of a Bayesian network (BNs) over a set of
variables is described by a directed acyclic graph G whose
nodes are in one-to-one correspondence with the variables in
the set. We call parents of a variable X , according to G, all the
variables connected directly with X with an arc pointing to it.
Learner models usually include a set of n latent (i.e., hidden)
variables X := (X1, . . . , Xn) (to be called skill nodes in the
following) describing the competence profile of the learner and

some m manifest variables Y := (Y1, . . . , Ym) (answer nodes)
describing the observable actions implemented by the learner
to answer each specific task. Typically a bipartite structure
with arcs from the skill nodes to the answer nodes, but not
vice versa, is adopted.This structure is well-suited to model
assessment rubrics, resulting in a simple and interpretable set
of relations modelling the fact that the presence or absence of a
competence directly affects the learner’s answers to questions
requiring such competence. For this work, we focus on the
case of binary skill nodes, taking value 1 if the pupil possesses
the skill, and binary answers nodes, indicating whether the
pupil has shown the desired behaviour or not.

The example shown in Fig. 1 graphically depicts these
relations. Long multiplication skill (X2) can be applied to
answer both multiplications, and therefore X2 is a parent node
for both answer nodes Y1 and Y2; instead, the multiplication in
Y2 cannot be computed by fingers, and thus there is no direct
arc from X1 to Y2.

(X1) Finger Mult. (X2) Long Mult.

(Y1) 3 × 4 =? (Y2) 13× 14 =?

Fig. 1. Example of BN-based learner model. Adapted from [3].

Once graph G structuring the BN is established, the
definition of the BN over the n + m variables V =
(V1, V2, . . . , Vn+m) of the network, including both skill (X)
and answer (Y ), consists in a collection of conditional proba-
bility tables (CPTs) giving the probabilities P (Yi = 1|Pa(Yi))
that Yi takes value 1 given all possible joint states of its parent
nodes Pa(Yi). Let V take values in ΩV , the independence
relations imposed from G by the Markov condition induce
a joint probability mass function over the BN variables that
factorises as follows:

P (v = (x,y)) =
∏
v∈v

P (v|pa(V )) , (1)

where (v1, v2, . . . , vn+m) represents a given joint state of the
variable nodes in V . BN inference consists in the computation
of queries based on Eq. (1). In particular, we are interested in
updating tasks consisting in the computation of the (posterior)
probability mass function for a single skill node Xq ∈ X given
the observed state yE of the answer nodes YE ⊆ Y :

P (xq|yE) =

∑
v∈ΩV ′

∏
v∈v P (v|pa(V ))∑

v∈{ΩV ′ ,Xq}
∏

v∈v P (v|pa(V ))
, (2)

where V ′ := V \ {YE , Xq}.
According to the above model, multiple parent skills may be

relevant to the same answer. If the answer node Yj has n parent
skills, this results in 2n parameters to be elicited by experts.
Besides the elicitation effort, also the inferential complexity
can become critical. [3] discusses this and demonstrates how
the use of noisy gates can avoids these issues. In the following
section, we focus on the disjunctive noisy-OR gate, which



shapes interchangeable skills and is suitable for modelling
the assessment rubric of the activity from [5]. The proposed
approach shares with BKT some similarities which will be
emphasised later in this section, but, while the latter, in its
common implementation, traces the evolution of a single skill
over time, the former focuses on fine-grained skills modelling
in a specific moment.

B. Noisy-OR

The CPT of a noisy-OR gate is specified as [4]:

P (Yj = 0|x1, . . . , xn) =

n∏
i=1

(Ixi=0 + λiIxi=1) , (3)

where λij > 0, i = 1, . . . , n are the model parameters defining
the relation between Yj and its n parent nodes, and IA is an
indicator function returning 1 if A is true and 0 otherwise. To
better understand Eq. (3), a typical representation of the noisy-
OR networks structure, introducing n auxiliary variables (also
called inhibitor nodes), is shown in Fig 2. The state of Yj

is deterministically imposed as the logical disjuction (OR) of
the auxiliary parent nodes. This first simplification removes
the need of specify the answer node CPT given the state of
its parent nodes. Furthermore, we set the input variable Xi

as the unique parent of X ′
i,j and constrain X ′

i,j to be 0 with
probability 1 when Xi = 0. Thus, the only parameter to be
determined is λi,j = P (X ′

i,j = 0|Xi = 1). We can regard the
auxiliary variable X ′

i,j as an inhibitor of skill Xi in performing
the action described by Yj , since with probability λi,j it makes
the skill unavailable to the success of Yj even if the skill Xi

is indeed mastered by the learner. It can be regarded as the
analogous of the slip probability in BKT models.

X1 X2 . . . Xn

X ′
1,j X ′

2,j . . . X ′
n,j

Yj

Fig. 2. A noisy gate (explicit formulation).

In accordance with the above description of the noisy-OR
gate, missing skill i implies the inability to apply it to any
question j, whereas if the learner has the skill, the probability
of being able to apply it depends on the specific task and
is equal to 1 − λi,j ; the parameters of the model should
therefore be related in some sense to the difficulty of the task.
For instance, setting λi,j = 1, implies that having skill Xi

has no effects on the capability of the learner to succeed in
the task Yj and that the inability to answer the question Yj

does not provide any information about the learner possessing
skill Xi. This corresponds to a missing arc in the BN graph.
On the other hand, λi,j = 0 means that the presence of
skill Xi ensures that the learner will succeed in the task
Yj . Consequently, a question of this kind would be the most
informative about skill Xi, especially in case of failure, since

it would imply with probability 1 that the learner does not
master skill Xi.

The noisy-OR can be used to describe a situation where a
single skill is sufficient to answer a specific question, as in
the case of Fig. 1 where multiplications are solved either by
fingers or by long multiplication. In that example, the relations
described by that network can be modelled by a noisy-OR with
four parameters, one for each skill-answer pair, with λ1,2 = 1
to describe the fact that skill X1 does not allow answering
question Y2.

To apply the above model, the domain expert (e.g., the
teacher) should first list the parentless skill nodes X1, . . . , Xn

(with Xi = 1 meaning that the learner possesses skill i), the
childless answer nodes Y1, . . . , Ym (with Yj = 1 meaning
a correct answer) and the parents skills relevant to each of
them (setting to 1 the parameter λij for all non-relevant skills).
Then, he should quantify for each skill relevant to Yj the value
of λi,j for a total of n ·m parameters at most to be elicited.
Finally, he should state the marginal prior probabilities πi of
each skill, which plays the role of the initial probabilities of
possessing a skill in BKT. Notice that, since the proposed
approach does not model the learning process (differently
from BKT which describes it through the transit probability),
the concept of initial probability here represents our initial
knowledge of the learner competence profile rather than its
initial level.

Leaky Models: In a noisy-OR gate, when all skills are
missing, all auxiliary variables are in the false state and,
therefore, all answers must be wrong. Such model excludes
the possibility of a lucky guess. To avoid this, the noisy-gates
are made leaky by adding the leak node, a Boolean variable
playing the role of an auxiliary skill Xj,leak, parent of Yj and
set to Xleak = 1. Parameter 1− λj,leak describes the chances
of guessing answer Yj at random, i.e., without mastering any
of the relevant competences. For instance, in a multiple choice
question with four options, one of which is correct, one should
set 1 − λleak = 1/4. 1 − λleak can therefore be seen as the
analogous of the guess probability in BKT.

Posterior Probabilities: After gathering the answers from
the learner, the model computes posterior inferences about the
probability of the learner possing each skill. When the given
answer is wrong, i.e., YE is false, the noisy-OR implies that all
its parent nodes (X ′

1, . . . , X
′
n) are in the false state, meaning

that the learner was unable to apply any of the skill that would
have led him to perform the desired action, either because the
skills are indeed missing or because they were inhibited. Then,
the posterior probability of having Xq when failing answer YE

is related to the parameter λq,E by

P (Xq = 1|YE = 0) =
πqλq,E

πqλq,E + (1− πq)
, (4)

implying a reduction in the probability that the student has the
competence, the smaller the greater the inhibition probability
λq,E . When instead the answer is correct, i.e., YE = 1, it is
not possible to directly propagate the evidence to the auxiliary
skill nodes since it can only be stated that the learner was able



to apply at least one of the competences relevant to YE . In this
case, P (Xq = 1|YE = 1) depends also on the parameters λj,E

assigned to the other parent skills Xj as follows:

P (Xq = 1|YE = 1) =

=
πq − πqλq,E

∏
j ̸=q(1− πj(1− λj,E))

1−
∏n

j=1(1− πj(1− λj,E))
.

(5)

This implies an increased probability that the student has the
competence, which is smaller the greater λq,E , since a skill
with large inhibition probability is not likely to be the one
which enabled the success in the task.

III. TRANSLATING ASSESSMENT RUBRIC INTO BNS

In this paper, we consider only assessment methods based
on a task-specific assessment rubric [6] defined for assessing
a given competence through a given task or family of similar
tasks. IT consists of a two-entry table with rows corresponding
to a component of the given competence, described in the light
of the given task, and columns describing the competence
levels, from initial to complete mastery of the competence
component in the given task. During the solution of the task,
for each combination of component and level, a qualitative
description of the behaviour expected from a person with
the given level in the given component is defined. Assessing
a person’s skill through a task-specific assessment rubric
consists of matching the behaviours of the person solving the
given task (or a battery of similar tasks) with those described
in the assessment rubric to identify his/her competence level in
each competence component. Each cell in the rubric is called
competence level.

We define an ordering between competence levels by con-
sidering a competence level higher than another if the former is
sufficient to perform all tasks requiring the latter. Each column
of an assessment rubric represents the competence levels in
increasing order. Therefore, all the competence levels are
higher than those on their left. As shown in the CAT example
below, when the competence components are conceptually
overlapping, a hierarchical ordering between the rubric rows
is also possible.

The competence level matching the student’s behaviours
may not match his/her actual level, e.g., if he is under-
performing. When the task is composed of similar sub-tasks
sharing the same assessment rubric, it is, therefore, possible
to observe behaviours matching different competence levels
in the different sub-tasks. This uncertainty is handled using
the BN-based approach described in Section II to describe
learner behaviours according to the defined assessment rubric
probabilistically. Consider an assessment rubric with R rows
and C columns. We define R ·C hidden competence variables
Xrc taking value 1 if the student masters the competence level
corresponding to the assessment rubric’s cell (r, c). For each
task t (in a battery of T similar tasks) and each competence
variable, we define an observable binary variable Y t

rc, taking
value 1 if the behaviour described in the cell (r, c) is observed
while solving task t.

Variables Xrc and Y t
rc represent, respectively, the skill and

answer nodes of the network described in Section II. To
account for the partial ordering defined by the assessment
rubric, we set as parent nodes of each answer node Y t

rc

the skill node Xrc corresponding to the same cell of the
assessment rubric, together with all other skill nodes referring
to higher competence levels. This structure assumes that an
observed behaviour can be explained by the student mastering
the corresponding competence level or a higher one.

IV. A CASE STUDY ON K-12 ALGORITHMIC SKILLS

To illustrate our method, we consider the Cross Array
Task (CAT), an unplugged activity to assess the algorithmic
skills of pupils between 3 and 16 years of age [5]. Pupils
are given a coloured cross array (Figure 3, top) and asked
to provide the teacher instructions to reproduce the same
colouring pattern. Different levels of complexity characterise
the schemes. If challenged, pupils have two aids at their
disposal: an empty CAT scheme (S) at which they can point
to illustrate their instruction through gestures, and feedback
(F), i.e., they can see how the other person is colouring the
scheme. The instructions provided by each pupil, called an
algorithm, are classified into three hierarchical categories. (1)
0D: 0-dimensional algorithms are based on the use of Color-
One-Dot (COD) operations only. (2) 1D, structures such as
rows, diagonal, squares etc. are also used. (3) 2D, repetitions
(loops) on dots or structures are also used. The complexity of
the produced algorithms defines the competence components
of the assessment rubric. The tools used to accomplish the
task determine the rubric’s levels (columns). The maximum
level (V) is achieved when providing instructions by voice
only, without seeing the scheme being coloured; level (VS)
when requesting the help of the empty scheme; level (VSF)
when also asking for the feedback. We have, thus, defined a
CAT assessment rubric with three rows and three columns.
Furthermore, a CAT score, ranging from 0 to 4 (Table I), was
defined to summarise the performance of a pupil in a single
scheme [5].

TABLE I
DEFINITION OF THE CAT-SCORE METRIC.

VSF VS V

0D 0 1 2
1D 1 2 3
2D 2 3 4

Besides ordering the levels in the columns of the rubric,
we define an ordering also on the rows, since mastering
algorithms of higher complexity implies mastering simpler
ones. Therefore, we can say that competence levels Xrc are
higher than Xr′c′ whenever c > c′ and r >= r′, or c = c′ and
r > r′. When, instead, c > c′ but r < r′, neither skill can be
said to dominate the other.

As described in the previous section, all competence levels
in the rubric are assigned both a hidden variable Xrc (skill
nodes) and an observable variable Y t

rc (answer nodes) for



Fig. 3. Cross array schemes (top) and corresponding parameters (bottom). The rows represent answers, columns the skills, and darker shades of grey lower
skill-answer inhibition probabilities (white for non-relevant skills).

each task t = 1, . . . , 12. Observing Y t
rc = 1 means that the

pupil has solved the CAT t using an algorithm of complexity
corresponding to the c-th row of the rubric, and asking the
help admitted by the r-th column. As an example, Y k

11 = 1
means that the pupil has solved the k-th scheme by a 0D
algorithm, using all helps (VSF). Theoretically, all answer
nodes should be observed (or observable) through specific
interactions with the learner. However, the dataset in [5], here
used to test the proposed approach, was collected by proposing
CATs to pupils and letting them choose the algorithm and the
help they wished to use. We, therefore, encoded the collected
answers as follows, to make such a dataset compatible with
our model. A task t solved at level c∗ by an algorithm with
complexity r∗ was translated into Y t

rc = 1 for all competence
levels rc lower than or equal to r∗c∗, thus assuming that
the pupil would have been able (if requested) to implement
solutions requiring a lower competence level; similarly, we
set Y t

rc = 0 for all higher levels while leaving non-comparable
answer nodes unobserved.

Concerning parameters’ elicitation, uniform prior probabil-
ities, i.e., πrc = 0.5, are assigned to each skill, while two
sets of values are considered for the inhibition probabilities
λt
i,j . The first one, hereafter referred to as Model 1, is very

basic, as it assigns the same value, namely λt
i,j = 0.2, to all

parameters, except those corresponding to skills non-relevant
to answer Y t

i,j , in which case λt
i,j = 1. The goal of this

model is to analyse the effect of the constraints resulting
from the ordering of the skills alone. The second, called
Model 2, aims at describing more in detail the difficulty
that the pupils can encounter in applying their skills to
different schemes. Left aside non-relevant skills for which
λt
i,j remains equal to 1, the strength of the remaining skill-

question relation was given ten possible levels, namely, λt
i,j ∈

1 − {0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90}
depending on the characteristics of each CAT scheme. Our
succinct elicitation setup allows summarizing graphically both
the BN topology and its parameter values at the bottom of
Figure 3. For both models, a leak node with guess probability
1 − λleak = 0.1 has been associated to all answer nodes.
We implemented the underlying BN within the CREMA Java
library [7].

V. RESULTS

We considered the responses provided by all 109 pupils
included in the study by Piatti et al. [5], calculated the stu-
dent’s average CAT scores over the twelve administered CAT

schemes and compared them to probabilistic CAT scores com-
puted for the BN-based models and defined as the expected
number of competence levels mastered by the student, which
corresponds to the sum of the marginal posterior probabilities
of all skill nodes. The correlation between the original CAT
score and the probabilistic scores is high (Pearson correla-
tion coefficient of 0.94 for both BN-models) showing the
consistency between the probabilistic assessment and the one
by experts. The BN-based models, however, provide more
detailed information about student competence profiles in the
form of posterior probabilities for each competence level.

The probabilistic scores of the two BN-based models de-
fined are similar. However, it is possible to discern relevant
differences in the posterior probabilities of the individual skill
nodes. To show this and to demonstrate the interpretability of
the model results, we show in Table II hereafter the answers
provided by three representative pupils and the corresponding
posterior probabilities inferred by the models. Less straight-
forward is the situation of pupil 1 which was unsuccessful in
using 1D algorithms with voice (1D-V) in schemes 3, 8, 10,
11, and 12 but was successful in all other schemes. Then,
according to Model 1, which weights all schemes equally,
he is not proficient in the 1D-V skill but only in the 1D-
VS one (i.e., e must be supported by the empty scheme to
produce a successfull 1D algorithm). Model 2 grants a larger
probability to the 1D-V skill since it assigns larger inhibition
probability to the 1D-V skill nodes when the task is more
difficult. Therefore, failing to apply the 1D-V strategy to more
difficult scheme does not reflect a lack of this skill if it is,
instead, correctly implemented in easier tasks. Pupil 75 usually
achieves medium to low-level solutions using 1D or 0D VS
skills. He never approaches the problem using higher-level VS
skills. Since 1D-VS fails on easy schemes, both models assign
non-negligible probabilities to 0D-VS and 1D-VSF. Notice
that, since low competence levels are associated with fewer
answer nodes, their presence is less accurately assessed by
the administered tasks than that of higher levels.

VI. CONCLUSIONS

In this work, we have proposed a procedure for deriving a
learner model for automatic skill assessment directly from the
competence rubric of any set of tasks. The approach has been
illustrated and its feasibility demonstrated by implementing
the automatic assessment of the cross-array task [5]. Results
show that the derived model and its inferences can be easily



TABLE II
POSTERIOR PROBABILITIES P (Xrc = 1|y(j)) OF MODEL 1/MODEL 2 FOR THREE REPRESENTATIVE PUPILS.

P (Xrc = 1|y(j))
Student X11 X12 X13 X21 X22 X23 X31 X32 X33

j 0D-VSF 0D-VS 0D-V 1D-VSF 1D-VS 1D-V 2D-VSF 2D-VS 2D-V

1 0.54/0.55 0.70/0.76 0.92/0.98 0.64/0.66 0.71/0.89 0.17/0.99 0.71/0.74 0.21/0.79 0.00/0.05
21 0.54/0.55 0.70/0.76 0.99/1.00 0.69/0.74 0.97/0.99 1.00/1.00 0.89/0.93 1.00/1.00 1.00/1.00
75 0.54/0.55 0.31/0.50 0.00/0.01 0.64/0.66 0.00/0.04 0.00/0.00 0.07/0.19 0.00/0.00 0.00/0.00

interpreted. The model will be used in an application for the
adaptive assessment of pupil computational skills.

The merits of the approach are the simple elicitation,
and the fast inferences resulting from the use of nosy-OR
BNs [3]. Its limitations are mainly two: either disjunctive or
conjunctive gates must be used, while sometimes it would be
useful to combine both or implement more general relations
between skills; although partially implied by the structure of
the model, the ordering between competence levels is not
strictly enforced. Therefore, the current work extends the
model to overcome these limitations while avoiding increasing
the computational burden significantly.
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