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We present an efficient and massively parallel solution strategy for the transfer problem of 
polarized radiation, for a 3D stationary medium out of local thermodynamic equilibrium. 
Scattering processes are included accounting for partial frequency redistribution effects. 
Such a setting is one of the most challenging ones in radiative transfer modeling. The 
problem is formulated for a two-level atomic model, which allows linearization. The 
discrete ordinate method alongside an exponential integrator are used for discretization. 
Efficient solution is obtained with a Krylov method equipped with a tailored physics-based 
preconditioner. A matrix-free approach results in a lightweight implementation, suited 
for tackling large problems. Near-optimal strong and weak scalability are obtained with 
two complementary decompositions of the computational domain. The presented approach 
made it possible to perform simulations for the Ca i line at 4227 Å with more than 109

degrees of freedom in less than half an hour on massively parallel machines, always 
converging in a few iterations for the proposed tests.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Modeling the propagation of radiation in a given medium is a key task in many scientific fields, such as astrophysics 
[1–3], heat transfer [4], and climate science [5]. This gives rise to a large class of problems, commonly referred to as 
radiative transfer (RT) problems, which in general can only be solved numerically. In the astrophysical context, the numerical 
solution of the RT problem is a key element to interpret the information encoded in the electromagnetic radiation collected 
by telescopes [3]. The present work focuses on an RT problem for polarized radiation that is of high interest in solar physics 
research.

Currently, one of the main goals in solar physics is to improve our understanding of the magnetism in the upper layers 
of the solar atmosphere (the chromosphere and the transition region).2 Indeed, the magnetic field present in these regions 
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plays a key role in various phenomena of high interest (e.g., coronal heating, flares, coronal mass ejections), but our knowl-
edge of its intensity and orientation is still largely unsatisfactory. The magnetic fields in the solar atmosphere (as well as 
in any other astrophysical object) can be investigated by modeling the fingerprints that they leave in the polarization of 
the emitted radiation through a series of physical mechanisms. Unfortunately, the diagnostic methods based on the polar-
ization signals produced by the well-known Zeeman effect, which are successfully applied at the photospheric level, are 
of reduced utility in the outer solar atmosphere [6]. On the other hand, during the last decades, it has been shown that 
the linear polarization signals produced by the scattering of anisotropic radiation in several strong resonance lines of the 
solar spectrum, such as H i Ly-α, Mg ii k, Ca ii K, Ca i 4227 Å, or Na i D2, are sensitive to the elusive magnetic fields of 
the chromosphere [6,7]. Such signals presently represent one of the most promising tools to investigate the magnetic and 
geometrical properties of this region [8,9], and strong efforts are today devoted to their observation [10,11] and theoretical 
modeling [12–16].

The scattering polarization signals of strong resonance lines are primarily produced by scattering processes that are co-
herent in frequency in the atomic reference frame, and subject to Doppler redistribution in the observer’s frame. To correctly 
model these signals it is essential to solve the RT problem for polarized radiation without assuming local thermodynamic 
equilibrium (i.e. in non-LTE conditions), and taking partial frequency redistribution (PRD) effects (i.e. correlations between 
the frequencies of the incoming and outgoing radiation in scattering processes) into account [17–20]. A convenient way to 
model PRD effects is through the redistribution matrix formalism [21–23]. In the observer’s frame, the Doppler redistribu-
tion induces a complex coupling between the frequencies and propagation directions of the incident and scattered radiation, 
and simplifying approximations for the redistribution matrix, such as the angle-average one [21,24,22], are frequently used. 
However, when scattering polarization is considered, given the crucial role played by the anisotropy of the radiation field 
and by the geometry of the problem, such approximation can induce relevant (and not easily quantifiable) inaccuracies 
[25,26,16], nullifying the effort of taking the three-dimensional (3D) structure of the solar atmosphere into account. In 
this work, we thus consider the exact, angle-dependent (AD) expression of the redistribution matrix. We refer to [27] for a 
Fourier decomposition technique in the context of multidimensional RT modeling of scattering polarization with AD PRD.

In non-LTE conditions, the quantum state of the atoms throughout the medium is non-locally coupled via the radiation 
field, whose properties are themselves affected by the atomic state. Due to this coupling, the problem is in general nonlocal 
and nonlinear. Moreover, modeling PRD effects, considering the exact AD expression of the redistribution matrix, requires 
taking into account the detailed angular and frequency dependencies of the radiation field, which has to be fully stored 
at each spatial point, making the problem highly demanding in terms of memory, especially in 3D applications. Overall, 
solving numerically the discretized RT problem for polarized radiation, within a heterogeneous medium in non-LTE, and 
taking AD PRD effects into account, is a non-local vectorial problem in high dimensions (up to seven for the non-stationary 
3D case), with high memory requirements. Such an ambitious problem requires the development and application of scalable 
and efficient computational strategies and the use of last generation supercomputers, as in [28,14,29].

In this work, we consider a two-level atomic model and we introduce a convenient physical assumption that allows 
linearization. We present an efficient solution strategy, employing a matrix-free Krylov solver coupled with tailored pre-
conditioning and a novel parallelization strategy to ensure scalability. The presented numerical strategy and its parallel 
implementation make it possible to get fast and accurate solutions and to handle the high memory requirements of the 
problem, which would be nearly unfeasible with previous techniques. By applying these tools, we present, for the first 
time in the literature, illustrative numerical experiments of non-LTE RT calculations of scattering polarization with AD PRD 
effects, carried out in a heterogeneous 3D atmospheric model.

The article is organized as follows: in Section 2 the polarized RT problem is introduced and described. In Section 3 we 
present the discretization setting, followed in Section 4 by a convenient algebraic formulation of the discrete RT problem. 
In Section 5 we describe the parallel solution strategy and its implementation. In Section 6 numerical experiments are 
reported. Finally, Section 7 provides remarks and conclusions.

2. The radiative transfer problem for polarized radiation

The intensity and polarization of a beam of radiation are fully described by the four Stokes parameters, I, Q , U , V ∈ R, 
with the intensity I being non-negative3 and the polarization being encoded by Q , U , and V [30]. The Stokes parameters 
can be combined in the four-component Stokes vector

I = (I, Q , U , V )T = (I1, I2, I3, I4)
T .

The Stokes parameters, as well as the other physical quantities entering the problem, are in general functions of the fre-
quency and propagation direction of the considered beam, as well as of the spatial point and time. In this work, we assume 
that all quantities are independent of time (stationary conditions). This is a common assumption in the astrophysical con-
text, unless highly dynamic phenomena, like, for instance, solar and stellar flares, are considered [31].

When a beam of radiation propagates in a medium, such as the plasma of a stellar atmosphere, its intensity and polar-
ization get modified as a result of the interaction with the particles present therein, and the possible presence of external 

3 The inequality Q 2 + U 2 + V 2 ≤ I2 holds.
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Fig. 1. We consider a right-handed Cartesian reference system with the z-axis directed along the vertical, corresponding to the radial direction in a stellar 
atmosphere. The position vector r is specified by its Cartesian coordinates (x, y, z) ∈ D . The unit vector � is specified by its spherical coordinates: the 
inclination θ ∈ [0, π ] measured with respect to the vertical, and the azimuth χ ∈ [0, 2π), measured on the x − y plane, counter-clockwise (for an observer 
at z > 0) from the x-axis. The one-dimensional spatial coordinate along the propagation direction � is denoted by s and � · ∇ I = dI/ds.

magnetic and/or electric fields. This modification is described by the transfer equation for polarized radiation, which is 
integro-differential by nature. Given a domain D ⊂R3, the RT equation for a beam of polarized radiation propagating along 
the unit vector � = (θ, χ) ∈ [0, π ] × [0, 2π) can be written as

� · ∇ I(r,�, ν) = −K (r,�, ν)I(r,�, ν) + ε(r,�, ν), (1)

where r = (x, y, z) ∈ D denotes the spatial point and ν ∈R+ the frequency. The coordinate system considered in this work 
is illustrated in Fig. 1. Equation (1) is equipped with suitable boundary conditions on ∂ D , and describes a set of coupled 
initial values problems: non-homogeneous systems of first order ODEs of size four. The elements of the propagation matrix

K =

⎛
⎜⎜⎝

η1 η2 η3 η4
η2 η1 ρ4 −ρ3
η3 −ρ4 η1 ρ2
η4 ρ3 −ρ2 η1

⎞
⎟⎟⎠ ∈R4×4,

describe the phenomena of absorption (η1), dichroism (η2, η3, and η4), and anomalous dispersion (ρ2, ρ3, and ρ4). The 
four-component vector

ε = (ε1, ε2, ε3, ε4)
T ∈ R4

describes the radiation emitted by the medium in the four Stokes parameters. More details on the physical meaning of K
and ε can be found, for instance, in [30].

The propagation matrix K and the emission vector ε receive contributions from two types of physical processes charac-
terizing the interaction between matter and radiation: line processes (i.e. transitions between bound states of a given atom 
or molecule) and continuum processes (i.e, transitions between bound and free states or between free states). The former 
give rise to the spectral lines, while the latter occur on a spectral range much broader than the immediate vicinity of the 
line resonant frequency. The contributions from line and continuum processes (hereafter labelled with the apices � and c) 
simply add to each other.

2.1. Line processes

The line contributions to the elements of K and ε depend on the excitation state of the atom or molecule giving rise to 
the spectral line of interest. In general, this state has to be determined by solving a set of rate equations (statistical equilib-
rium equations), which describe the interaction of the atom (or molecule) with the radiation field (radiative processes), the 
other particles present in the medium (collisional processes), and the possible presence of external magnetic and/or electric 
fields.

In this work, we consider an atomic model composed of two energy levels (two-level atom). Moreover, we assume that 
the lower level is infinitely sharp and unpolarized. These are generally suitable assumptions when the lower level is either 
the ground level or a metastable level of the considered atom [30]. The explicit expression of the line contribution to the 
elements of the propagation matrix (η�

i and ρ�
i ) for this atomic model can be found in [30, Sect. 7.2 and Appendix A13]. 

In addition, we neglect the role of stimulated emission; this approximation is fairly good for strong resonant lines at the 
shorter-wavelength part of the spectrum.

For the considered atomic model, the statistical equilibrium equations have an analytic solution, and the emission vector 
can be directly related to the radiation field that illuminates the atom. More precisely, the line contribution to the emission 
vector can be expressed as the sum of two terms:
3
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ε�(r,�, ν) = ε�,sc(r,�, ν) + ε�,th(r,�, ν), (2)

where the first one describes the contribution from radiatively excited atoms (scattering term), and the second one the con-
tribution from atoms excited by inelastic collisions (collisional or thermal term). Using the redistribution matrix formalism, 
the scattering term ε�,sc is given by the following integral operator (scattering integral)

ε�,sc(r,�, ν) = kL(r)
∫
R+

dν ′
∮

d�′

4π
R(r,�′,�, ν ′, ν) I(r,�′, ν ′), (3)

where the convention that primed and unprimed quantities refer to the incident and scattered radiation, respectively, is 
used. The quantity kL is the frequency-integrated line absorption coefficient, which is proportional to the population of the 
lower level. The redistribution matrix R ∈R4×4 couples, in general, all Stokes parameters, all directions, and all frequencies 
at each spatial point. In practice, the integral over frequencies is evaluated on an appropriate finite frequency interval 
[νmin, νmax].

The thermal term ε�,th does not directly depend on the radiation field. Its explicit expression for the considered two-level 
atomic model, under the hypothesis (always assumed in this work) of isotropic collisions can be found in [32].

2.1.1. The redistribution matrix and PRD effects
We consider the redistribution matrix for a two-level atom with an unpolarized and infinitely-sharp lower level derived 

by [22]. This is given by the sum of two terms:

R(r,�′,�, ν ′, ν) = R II(r,�′,�, ν ′, ν) + R III(r,�′,�, ν ′, ν) , (4)

where R II characterizes scattering processes that are coherent in frequency in the atomic frame (i.e. a reference frame in 
which the atom is at rest), and R III characterizes scattering processes that are totally incoherent in the same reference frame. 
These terms contain the branching ratio for the scattering contribution to the emissivity (quantified by the balance between 
inelastic collisions and spontaneous emission) as well as the branching ratio between coherent and incoherent scattering 
(quantified by the balance between elastic collisions and spontaneous emission). The sum of R II and R III thus accounts for 
the relaxation of the coherence of scattering in the atomic frame due to elastic collisions.

By following a standard procedure (e.g., [21,33]), the redistribution matrix can be transformed from the atomic frame 
into the observer’s frame, taking into account the Doppler effect due to the atomic motions. Both thermal motions, which 
we assume to be described by a Maxwellian distribution, and bulk motions are taken into account. The Doppler effect 
gives rise to further PRD phenomena in the observer’s frame and induces a complex coupling between frequencies and 
directions in both R II and R III . In this work, we consider the exact angle-dependent expression of R II in the observer’s frame. 
In contrast, for R III we consider the approximation of complete frequency redistribution (CRD) in the observer’s frame, see 
[32], thanks to which the angular and frequency dependencies can be decoupled.

Using the formalism of irreducible spherical tensors for polarimetry [30, Sect. 5.11], the redistribution matrices in the 
observer’s frame can be written as

R II(r,�,�′, ν, ν ′) =
∑

K K ′ Q

RII,K K ′
Q (r,�,�′, ν, ν ′)PK K ′

Q (r,�,�′) , (5)

R III−CRD(r,�,�′, ν, ν ′) =
∑

K K ′ Q

RIII−CRD,K K ′
Q (r, ν, ν ′)PK K ′

Q (r,�,�′) . (6)

The explicit expression of the complex functions RII,K K ′
Q , RIII−CRD,K K ′

Q and of the scattering phase matrices P K K ′
Q ∈C4×4 can 

be found in [32]. The computational complexity of evaluating these quantities as well as the calculation strategy used in 
this work are discussed in Section 3.5. Due to the complex coupling between frequencies and propagation directions in R II

(in its general AD form), solving the RT problem taking this redistribution matrix into account is notoriously challenging 
from the computational point of view. On the other hand, the PRD effects described by this matrix play a crucial role in 
shaping the scattering polarization profiles of strong spectral lines.

2.1.2. The CRD limit
Under certain conditions, namely when elastic collisions are very efficient and completely relax the coherence of scat-

tering, or when the radiation field is spectrally flat, scattering processes can be suitably described as a temporal succession 
of independent absorption and re-emission processes [34]. This is the so-called limit of complete frequency redistribution 
(CRD) in which no correlation is present between the incident and scattered radiation. A solid CRD theory for the generation 
and transfer of polarized radiation, valid under the flat-spectrum assumption, is the one described in [30]. From the physical 
point of view, the CRD limit represents an excellent approximation for modeling weak photospheric lines, such as the Sr i

line at 4607 Å [35], and a good one for modeling the Doppler core of strong chromospheric lines, such as H i Ly-α at 1215 Å 
[13]. From the computational and storage point of view, the limit of CRD represents a lightweight description of scattering 
processes, and it can be suitably applied as a preconditioner in the solution of the RT problem with PRD effects [36]. In fact, 
4
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in this limit, the incident and scattered radiation are completely decoupled, and the evaluation of the scattering integral (3)
is considerably simpler than in the case of R II . The explicit expression of the scattering term in the limit of CRD, for the 
considered atomic model, can be found in [30, Sect. 10.6].

2.2. Continuum processes

Continuum processes contribute to the emission vector through a scattering term and a thermal term, formally analogous 
to those brought by line processes:

εc(r,�, ν) = εc,sc(r,�, ν) + εc,th(r,�, ν). (7)

The scattering terms εc,sc
i can be written in the integral form (3), by introducing a suitable redistribution matrix Rc . An 

explicit representation of Rc , under the assumption (considered also in this work) that continuum scattering processes are 
coherent in frequency in the observer’s frame, can be found in [32]. Concerning εc,th, it is generally a good approximation 
to assume that this term is isotropic and only contributes to the intensity (εc,th

i = εc,th
1 (r, ν)δi1). Regarding the propagation 

matrix K , under the conditions typically found in the solar atmosphere, continuum processes only contribute to the diagonal 
element with an isotropic term (i.e. ηc

i = ηc
1(r, ν)δi1 and ρc

i = 0). The quantities εc,th
1 and ηc

1, as well as the continuum 
opacity for scattering σ (which appears in the expression of Rc ) can be calculated with publicly available routines [e.g., 37]. 
Hereafter we assume that they are known a priori.

2.3. Linearization

Adding line (2) and continuum (7) contributions, the emission vector is given by

ε(r,�, ν) = ε�(r,�, ν) + εc(r,�, ν)

= ε�,sc(r,�, ν) + ε�,th(r,�, ν) + εc,sc(r,�, ν) + εc,th(r, ν).

Observing that both scattering terms explicitly depend on I through a scattering integral of the form of (3), and that both 
thermal terms do not explicitly depend on I , from a computational point of view it is convenient to group the various terms 
as follows

ε(r,�, ν) = εsc(r,�, ν) + εth(r,�, ν), (8)

where each term in the right-hand side contains both line and continuum contributions, e.g. εsc = ε�,sc + εc,sc.
It should be noted that the dependence of ε on I is not limited to the scattering integrals. Indeed, the line contributions 

to ε (both ε�,sc and ε�,th) and K are all proportional, through kL , to the population of the lower term, which in turn 
depends on I in a nonlinear way through the statistical equilibrium equations. A way to linearize the problem with respect 
to I is to fix a priori the population of the lower level, and therefore the coefficient kL . By so doing, K and ε�,th become 
independent of I and can be calculated from the atmospheric model, while ε depends on I only through the scattering 
integrals. Under this assumption, whose suitability was discussed in previous works [e.g., 32,38,39], the whole RT problem 
thus consists in the system of linear ODEs (1) linearly coupled through the integrals (3) of the scattering contributions.

The population of the lower level is taken either from the considered atmospheric model (if provided) or from indepen-
dent RT calculations. The latter can be performed with available RT codes for multi-level atoms, which possibly disregard 
polarization (this is expected to have little impact on the population of ground or metastable levels) but include other 
bound-bound and bound-free transitions (e.g., ionization). In this way, accurate values of the lower level population can be 
used, and various spectral lines of diagnostic interest can be suitably modeled, in spite of the simplicity of the considered 
atomic system [19,12,16,15].

2.4. Atmospheric model and boundary conditions

We consider a cuboid domain D = (xmin, xmax) × (ymin, ymax) × (zmin, zmax). The radiation entering the cuboid from the 
top and bottom boundary faces is prescribed for all (x, y):]

I(x, y, zmin, θ,χ,ν) = I in for θ ∈ [0,π/2),∀χ,∀ν, (9)

I(x, y, zmax, θ,χ,ν) = 0 for θ ∈ (π/2,π ],∀χ,∀ν, (10)

meaning that no radiation is entering D from outer space. For the bottom boundary face, we consider an isotropic, 
spectrally-flat, and unpolarized incident radiation I in = [B(x, y, zmin), 0, 0, 0]T , where

B(x, y, z) = 2hν3
0

c2

1

exp hν0 − 1
kB T

5
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Fig. 2. Representation of the problem setting: the spatial domain D is a cuboid portion of the solar atmosphere (not in scale). The boundary data I in consists 
in the incident radiation in zmin. Emerging radiation Iout from zmax is observed for a particular direction and frequency. Periodic boundary conditions are 
enforced for x ∈ {xmin, xmax} and y ∈ {ymin, ymax}, i.e. on the vertical faces of the domain D .

is the Planck function with ν0 the line-center frequency, h the Planck constant, c the speed of light, and T = T (x, y, z)
the effective temperature. This boundary condition is suitable for atmospheric models that are semi-infinite in the vertical 
direction (e.g., the chromosphere), and the medium reaches thermodynamic equilibrium at its lower boundary. On the 
remaining boundary faces, periodic boundary conditions are imposed for all z and for all rays (�, ν):

I(xmin, y, z,�, ν) = I(xmax, y, z,�, ν),

I(x, ymin, z,�, ν) = I(x, ymax, z,�, ν).

We remark that the main quantity of interest is the radiation emergent from the upper boundary of the solar atmosphere, 
which we can observe from Earth, i.e. I(x, y, zmax, �, ν) for θ ∈ [0, π/2). The problem set-up is illustrated in Fig. 2.

In practice, a given atmospheric model (e.g., a model from [40], resulting from a magneto-hydrodynamic simulation of 
the solar atmosphere) determines the spatial domain D , fixes the discrete spatial grid, and provides a series of thermody-
namic quantities (e.g., temperature, density, magnetic field vector, etc.) at each spatial point. From the atmospheric model it 
is possible to evaluate a-priori the redistribution matrix R and, under the assumption that the coefficient kL is known, the 
propagation matrix K , and the thermal emissivity εth.

3. Discretization

Depending on the particular application, the RT problem has been discretized using a variety of methods. For the angular 
discretization, we recall the spherical harmonics method [41], used to recover smooth solutions when scattering depends 
only on the scattering angle � = arccos(� · �′) [5]. In the more general case, the discrete ordinates method (DOM), also 
known as SN method, is often used [42–44]: in order to compute scattering integrals, the angular coordinates � = (θ, χ)

are discretized with appropriate angular quadrature weights, leading to a set of semi-discrete RT equations.
The angular discretization is then coupled with a discretization of the spatial variable r. In this context, finite element 

or finite volume methods can be used to discretize (1), especially when dealing with complex geometries [45–47]. The 
discontinuous Galerkin (DG) method [48,49], or hybrid methods [50–53] have also been employed. For structured spatial 
grids, finite difference [54], Runge-Kutta [55], or the short characteristic method [56] are commonly used.

In this work, being D a cuboid, we use a DOM angular discretization coupled with an exponential integrator method in 
space, which are briefly described in Sections 3.1-3.3.

3.1. Angular discretization

For the angular discretization of � = (θ, χ), we use a tensor product quadrature. For the inclination μ = cos(θ) ∈ [−1, 1], 
we consider two Gauss-Legendre grids (and corresponding weights) with Nθ /2 nodes each, namely

−1 < μ1 < μ2 < · · · < μNθ /2 < 0 < μNθ /2+1 < · · · < μNθ < 1,

for μ ∈ (−1, 0) and μ ∈ (0, 1), respectively. These grid nodes correspond to the angles θl = arccos(μl) ∈ (0, π), for l =
1, . . . , Nθ , with Nθ even. For the azimuth χ ∈ (0, 2π ], we consider an equidistant grid (and corresponding trapezoidal 
weights) with Nχ nodes, namely

χm = (m − 1/2) · 2π

Nχ
for m = 1, . . . , Nχ .

For notational convenience, we introduce multi-indices, so that �l = (θl, χm) denotes the angular grid, with l = 1, ..., M and 
M = (Nθ , Nχ ), ordered with a lexicographic criterion.
6
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3.2. Frequency discretization

The considered spectral interval [νmin, νmax] is discretized with a unevenly spaced grid with Nν nodes, namely

νmin = ν1 < ν2 < · · · < νNν = νmax.

The frequency grid {νn}Nν
n=1 is usually finer in the line core (i.e. in a neighbourhood of ν0), where the nodes are equally 

spaced, and coarser in the wings, where the nodes distance increases logarithmically (e.g. Section 6.2).

3.3. Spatial discretization

The spatial domain D is discretized with Ns = NxN y Nz nodes on an unevenly spaced grid, with nodes ri = (xi, y j, zk)

and i = 1, ..., N, using multi-indices i = (i, j, k) with N = (Nx, N y, Nz) and a lexicographic ordering; taking into account 
periodic boundary conditions we have:

xmin = x1 < x2 < · · · < xNx < xmax

and similarly for y. For z we have

zmin = z1 < z2 < · · · < zNz = zmax.

Given the total number of degrees of freedom N = 4 · Ns Nθ Nχ Nν , we consider the collocation vectors of the Stokes and 
emission vectors, respectively I, ε ∈RN , ordered with a lexicographic criterion, namely

I = [I1, I2, I3, ..., IN]T , ε = [ε1,ε2,ε3...,εN]T , (11)

where Ii, ε i ∈R4Nθ Nχ Nν collect all the rays in ri , i.e.

Ii = [I1(ri,�1, ν1), . . . , I4(ri,�1, ν1), I1(ri,�1, ν2), . . . , I3(ri,�M, νNν ), I4(ri,�M, νNν )]T ,

and similarly for ε i . Likewise, the vectors η, ρ ∈RN can be used to collect the entries of K (the unphysical component ρ1
is formally set to zero in ρ). For notational simplicity, an abuse of notation is employed: the symbols I and I are used to 
denote both the continuous solution of (1) and its numerical approximation.

3.4. 3D formal solution

If the propagation matrix K and the emission vector ε are known at each spatial point, the solution of the ODEs 
system (1) can be numerically approximated for each ray (�l, νn) and spatial node ri applying a suitable integrator: in the 
astrophysical context this process is known as formal solution. More compactly, the formal solution is the numerical process 
to obtain I through (1) given ε , the propagation matrix, and the boundary data.

A common choice for the solution of (1) are exponential integrators (a.k.a. DELO methods in the RT context) [57–59], 
which we briefly describe. For any ray (�, ν) and initial point r0 ∈ D , given K and the emissivity ε, one first rewrites (1), 
introducing the one-dimensional local coordinate s along �, with s = 0 corresponding to r0 (cf. Fig. 1)

d

ds
I(s,�, ν) = η1(s,�, ν)[S(s,�, ν) − I(s,�, ν)], (12)

I(0,�, ν) = I 0(�, ν),

where I 0(�, ν) = I(r0, �, ν) is known either from the boundary conditions (9)-(10) or from the solution of the same 
equation up to r0 (propagating the ray back until the boundary is reached) and

S(s,�, ν) =
(

Id − K (s,�, ν)

η1(s,�, ν)

)
I(s,�, ν) + ε(s,�, ν)

η1(s,�, ν)
.

The exact integration of (12) yields to the variation of constants formula

I(s,�, ν) = e−�τ(s) I 0(�, ν) −
s∫

0

dx e−�τ(x) S(x,�, ν), (13)

where �τ(y) = �τ(y, �, ν) is given by

�τ(y,�, ν) =
y∫

dxη1(x,�, ν). (14)
0

7
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x
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zmin = z1

zk−1
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zk+1

zmax = zNz

ri

I 0,ε0

ε1 ε2

ε3

ε4

θ

θ ′

ri′

I ′
0,ε

′
0

ε′
1

Fig. 3. Example of formal solution along two rays. For simplicity we consider a 2D setting, corresponding to χ = 0 or χ = π ; the extension to the general 
3D case is natural. The first ray on the left corresponds to θ < π/2 and is used to compute I(ri , θ, 0, ν) for any ν . In this case, we consider the ray up to 
zk−1 and P = 5 intersections with the grid are found. The initial condition I0 is found through linear interpolation from I(xn, ym, zk−1, θ, 0, ν), which is 
known for all n, m. Similarly, the emission vectors εp for p = 0, .., 3 can be computed by interpolating (e.g., as shown in red for ε0 and ε2) while ε4 is 
known. Then, I(ri , θ, 0, ν) is numerically computed solving four ODEs systems in sequence. The left ray illustrates a case for which P = 2, θ ′ > π/2, χ = π
and i′ = (i + 2, j, k). A single ODEs system has to be solved in this case to obtain I(ri′ , θ ′, 0, ν). In both cases propagation matrices K p are also obtained 
using linear interpolation. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

A large variety of numerical schemes are available to approximate the integral in (13). In particular, a linear approximation 
of S in the integration interval produces the DELO-linear method, which is an L-stable method particularly suited for the 
solution of (12) since it guarantees stability, resolving exactly the exponential decay of the solution due to absorption 
processes. The DELO-linear method will be used in Section 6, for numerical experiments. We refer to [59–62] for a detailed 
review of DELO methods and their convergence and stability properties in the context of transfer of polarized radiation. 
It is worth mentioning that any other formal solver, e.g. high-order methods, which would be more suited for realistic 
applications, can be applied without altering the essence of this work. In this regard, a parabolic BESSER method [28] has 
been successfully tested. We finally remark that DELO methods require the spatial scale conversion from the geometrical 
scale to the optical depth scale described by (14); details on this conversion are given in [61]. The numerical solution of 
(12) is carried out at each spatial point ri for all the Nθ Nχ Nν rays. The ordering in which the spatial domain is crossed 
depends on the direction �l = (θl, χm) under consideration so that an initial condition is available. More precisely: for 
θl < π/2 deeper layers are considered first (i.e. D is crossed from zmin = z1 to zmax = zNz ); the reverse ordering is used if 
θl > π/2. A lexicographic (resp. reverse) ordering is used in x if cos(χm) > 0 (resp. cos(χm) < 0). Similarly, a lexicographic 
(resp. reverse) ordering is used in y if sin(χm) > 0 (resp. sin(χm) < 0).

The initial condition is obtained from the previous (zk±1) atmospheric height. If more than a single grid cell is crossed by 
a ray, the solution is split into multiple steps and quantities outside spatial nodes are obtained through linear interpolation. 
Details about this geometric algorithm are reported in Algorithm 1 and illustrated in Fig. 3. Crucially, the formal solution 
requires O (N) = O (Ns Nθ Nχ Nν) operations and consists of Nθ Nχ Nν independent ODEs systems (12) for each spatial point. 
Its execution is well suited for an embarrassingly parallel implementation, using up to Nθ Nχ Nν processors.

Algorithm 1: Perform a formal solution in 3D, i.e. compute I = �ε , with � the formal solver operator.

Input: ε ∈RN

Data: boundary data and vectors η,ρ ∈RN to build the propagation matrices K on demand.
for l = 1, . . . , M do

Given �l = (θl, χm), depending on cos(θl), cos(χm), and sin(χm) signs, identify the ordering for the spatial loop over i = (i, j, k) (the loop on k
being always the outer one).

for n = 1, . . . , Nν do
for i ∈ {1, . . . , N} do

Find P ≥ 2 intersection points between the direction �l at ri and the spatial grid up to the previous horizontal plane (corresponding 
to zk−1 or zk+1), where I(xs, yq, zk±1, �l, νn) is known for all s, q from the previous spatial iterate or from boundary conditions.

Using linear interpolation, for p = 0, ..., P − 1 compute emission vectors εp ∈R4 (resp. matrices K p ) at the intersection points from ε
(resp. η,ρ). Similarly compute initial condition I0 ∈R4 from I , cf. Fig. 3.

Numerically solve the ODEs (12) P − 1 times (e.g. using the DELO-linear method) given {εp}P
p=0 and I0.

Obtain I(ri , �l, νn).
end

end
end
Output: I ∈RN
8
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3.5. Scattering integral

Recalling equations (4)-(8), the scattering contribution to the emission coefficient εsc can be written as

εsc = εsc,II + εsc,III + εsc,c, (15)

where εsc,II and εsc,III are the line contributions associated to the R II and R III redistribution matrices, respectively, and εsc,c

is the continuum contribution. In this section, we briefly describe the strategy devised to compute εsc,II , which is by far the 
most demanding contribution in terms of computational complexity.

The quantity εsc,II is calculated in a reference system in which the bulk velocity is zero (comoving system). If bulk ve-
locities are present, their value in the observer’s system is found via interpolations on the frequency axis. In this procedure, 
corrections to the propagation directions due to aberration and relativistic effects are neglected. When evaluating the inte-
gral in (3), we first perform the integration over the frequency ν ′ , and then the one over the direction �′ . The evaluation 
of the frequency integral presents two main difficulties: a) R II exhibits a very complex behaviour as a function of ν ′ , which 
is strongly influenced by the scattering angle � = arccos

(
� · �′) and by the frequency ν of the emitted radiation, thus 

making necessary the use of a priori adapted unstructured grids; b) the computation of R II implies several evaluations of 
the Faddeeva function, requiring iterative algorithms and considerable computational resources.

By considering the aforementioned difficulties, we developed a strategy that minimizes the number of evaluations of the 
Faddeeva function, which we compute using the efficient algorithm developed by S.G. Johnson.4 In particular, we exploit the 
fact that the function RII,K K ′

Q defined in equation (5) depends on the scattering angle �. If the considered angular grid is 
sufficiently regular, the number of different values that this angle can take, N� , is much smaller than the total number of 
direction pairs, N2

θ N2
χ . To perform the quadrature over ν ′ , for any set of parameters β = (ri, νn, �p), we build a dedicated 

grid G of size S , which contains the quadrature nodes and weights, and the corresponding values of RII,K K ′
Q :

G(β) =
{
ν ′G

d , wG
d ,

(
RII,K K ′

Q

)G
d

}S(β)

d=1
.

We point out that the quadrature nodes {ν ′G
d }S

d=1 do not coincide with the nodes of the frequency grid of the problem 
{νn}Nν

n=1, and the values of the radiation field at such frequencies must be calculated through interpolations. In 3D appli-
cations, due to the large number of degrees of freedom, it is not feasible to precompute and store the grids G for all 
possible sets of parameters β . In this case, the grids G are therefore computed on the fly when required. Our strategy, with 
complexity O (Ns N2

θ N2
χ N2

ν), is summarized in Algorithm 2.

Algorithm 2: Compute εsc,II .

Input: I ∈RN ,

Data: angular quadrature weights {wm}M
m=1 , scattering angles {�p

}N�

p=1, atomic and atmospheric parameters.

for i = 1, . . . , N do
Build database for G in ri for all {�p}N�

p=1 and {νn}Nν
n=1

for l = 1, . . . , M do
for n = 1, . . . , Nν do

εsc,II(ri , �l, νn) = 0
for m = 1, . . . , M do

Find scattering angle �p corresponding to pair (�l, �′
m)

From database select grid G(β) of size S(β), corresponding to parameters β = (ri , νn, �p)

εsc,II(ri,�l, νn) = εsc,II(ri,�l, νn) + wm

∑
K K ′ Q

P K K ′
Q

(
ri,�l,�

′
m

) S∑
d=1

wG
d

(
RII,K K ′

Q

)G
d

I(ri,�
′
m, ν ′G

d )

end
end

end
Free database for G .

end
Output: εsc,II ∈RN

As far as εsc,III is concerned, the approximation of CRD in the observer’s frame for the R III redistribution matrix (cf. 
Section 2.1.1) allows decoupling the dependencies on the incoming and outgoing beams. For this term, fast computational 
methods with O (Ns Nθ Nχ Nν) complexity are therefore possible. The same applies when the limit of CRD (cf. Section 2.1.2) 

4 http://ab -initio .mit .edu /wiki /index .php /Faddeeva _Package.
9
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is considered. Thanks to the assumption that continuum scattering processes are coherent in frequency in the observer’s 
frame (cf. Section 2.2), also the evaluation of εc,sc does not present particular difficulties. Numerical experiments in Section 6
confirm that the computation of εsc,II is by far the most demanding step in the calculation of the emission vector in the 
PRD setting.

4. Algebraic formulation

A suitable algebraic formulation of the problem is a key step for the setup of an efficient solution strategy. We consider 
the algebraic formulation presented in [36] for the 1D case. The solution of the RT problem is divided into two components 
(cf. Sections 3.4-3.5): the solution of the RT equation (1) (i.e. the formal solution) and the calculation of the emissivity (8). 
We recall that both the initial value problem (12) and the integral (3) are linear w.r.t. I and ε. Given a discrete emissivity 
ε , the solution of all discretized transfer ODEs systems in (1), i.e. the application of Algorithm 1 can be written as

I = �ε + t, (16)

where � : RN → RN is the linear transfer operator, encoding the used numerical scheme (e.g. the DELO-linear formal 
solver) and the set of K matrices. The vector t ∈RN encodes boundary conditions. The action of � alone can be encoded in 
a matrix-free form, i.e. using Algorithm 1 with zero boundary conditions. The vector t can be computed using Algorithm 1, 
setting ε = 0 and using the prescribed boundary conditions from (9)-(10).

Similarly, the discrete computation of the emissivity (8) can be written as

ε = εsc + εth = �I + εth, (17)

where the linear operator � :RN →RN , cf. Algorithm 2, encodes the discretized scattering integral (3), and depends on the 
numerical quadrature. Under the considered assumptions (see Section 2.3), the thermal term εth can be evaluated a priori 
from the atmospheric parameters. Using the ordering in (11) we have

� =

⎛
⎜⎜⎜⎝

�1
�2

. . .

�N

⎞
⎟⎟⎟⎠ ,

where the �i blocks are dense because of the structure of R in (3). The block diagonal structure of � is well suited for 
a parallel evaluation on each spatial node, as the structure of Algorithm 2 suggests. On the other hand, the action of �
couples different spatial nodes, but each ray (�l, νm) can be evaluated independently. As for the operator �, also the action 
of � can be encoded in a matrix-free form to avoid storage and assembly costs. As pointed out in Sections 3.4-3.5, the 
application of � and � comes at different computational complexities (O (N) and O (N Nθ Nχ Nν) respectively).

Combining (16) and (17), we can formulate the whole discrete RT problem as a single size N linear system with unknown 
I, namely

(Id − ��)I = �εth + t, (18)

where Id is the identity matrix. In realistic settings, where anisotropic and heterogeneous coefficients, as well as unevenly 
spaced grids, are present, Id − �� is not symmetric.

5. Scalable solution strategy

The structure of the linear system (18) suggests the use of a fixed point iteration (a.k.a. �-iteration or source iteration), 
i.e. iterating between (16) and (17) until convergence. However, this iterative process converges too slowly for practical 
applications. Therefore, more effective strategies are employed, such as diagonal or block-diagonal5 preconditioning [63,64,
38], diffusion based preconditioning [65], and multigrid techniques [66].

More recently, preconditioned Krylov methods gained popularity in the RT context [67–71,29,72,39]. Crucially, Krylov 
methods are well suited for matrix-free approaches and proved to be highly effective solution strategies for large linear 
systems. We refer to [36] for a study about matrix-free approaches in polarized RT and to [73] for a recent work with 
a semi-matrix-free setting. We recall that the explicit assembly of the dense matrix Id − �� in (18) is not suitable for 
practical 3D applications, where typically N > 109.

5 Diagonal or Jacobi preconditioners are also known as accelerated lambda iteration (ALI) in the astrophysical context.
10
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5.1. Matrix-free preconditioned Krylov method

For the solution of the linear system (18), we use the matrix-free preconditioned GMRES (PGMRES) method introduced 
in [36]. Effective preconditioning is obtained in a physics-based framework, using P = Id −��̃ where �̃ is a cheap approxi-
mation of �. In particular, �̃ corresponds to the CRD scattering model (cf. Section 2.1.2), with highly reduced computational 
complexity (cf. Section 3.5). The action of P−1 is obtained using, again, a matrix-free GMRES method, so that the solution 
strategy consists of two nested GMRES iterations.6 As shown in [36] for a 1D plane-parallel geometry, and confirmed herein 
for a more general setting, the proposed solution strategy is robust w.r.t. discretization parameters.

5.2. Parallel implementation

As pointed out in Sections 3-4, different algorithmic stages can be executed in parallel in different dimensions, in a 
mutually exclusive way. To take advantage of parallelization in each stage, two copies of the quantities of interest are stored, 
with different distributions among processors. A primary grid, where the radiation field I and all atmospheric quantities are 
stored, and where the scattering integral � is calculated, is distributed spatially, with each processor corresponding to a 
subdomain of D with Ns/Np spatial grid points, where Np is the number of processors.7 On a second grid, where only the 
formal solution � is performed, auxiliary vectors Ia, εa, ηa, ρa ∈RN are stored with a ray-wise distribution: each processor 
owns these quantities in all spatial points for a subset of rays with size Nr = Nθ Nχ Nν/Np . In order to reduce memory 
requirements and message size in the communication, we can subdivide Nr into T tiles hence allocating a buffer for 
processing of size (Nr/T )Ns for each MPI process. Tiles are communicated using the MPI collective MPI_Alltoall(). 
Fig. 4 illustrates the data and domain decompositions for an example with N p = 4. The parallel evaluation of the operator 
Id − �� is summarized in Algorithm 3.

In terms of memory, the auxiliary grid corresponds to a minor overhead (by a factor of ≈ 1.5) w.r.t. the primary one, at 
least for Np ≤ Nθ Nχ Nν . For larger Np , the storage requirements of the auxiliary grid are no longer scaling and the memory 
overhead will increase unless the auxiliary grid is further decomposed, e.g. along the z axis.8 We remark that for a typical 
RT application in a state-of-the-art 3D model of the solar atmosphere, Ns = 5003 and Nθ Nχ Nν = 104, so that the storage of 
a single field (e.g. I) would require N ·8 bytes = 40 TB. To put this number into context, with the same grid, a two-level atom 
CRD simulation would approximately require 10 GB only, since significantly fewer unknowns (e.g., the nine components of 
the frequency-averaged radiation field tensor [30]) need to be stored at each spatial point. For this reason, parallelization 
techniques where the spatial domain is only decomposed on the z-axis [28] are suited for the CRD setting but completely 
inadequate for the AD PRD case.

We remark that parallel scheduling for structured grids [74–76] can be used to further increase the scalability of the 
formal solution for Np > Nθ Nχ Nν . Nevertheless, in the PRD setting, the formal solution is negligible in terms of run-time 
(cf. scaling experiments in Section 6), as opposed to the CRD case where it is dominant.

Algorithm 3: Parallel evaluation of the RT operator Id − ��.

Input: I ∈RN defined on the primary grid, spatially distributed
Data: data from Algorithms 1-2 on the primary grid. Setup: copy η, ρ in the auxiliary grids and obtain ηa, ρa.
Compute ε = �I with Algorithm 2, in parallel on different spatial nodes.
All-to-all communication: ε → εa , copying the emission vector on the auxiliary grids.
Compute Ia = �εa with Algorithm 1, in parallel on different rays.
All-to-all communication: Ia → Itmp, copying back the intensity vector on the primary grid.
Output: I − Itmp ∈RN

For the distributed algebraic operations and Krylov solver we use the C library PETSc [77–79]. For the grid management, 
data-redistribution, and tiling strategy we developed the open-source C++ code SGRID [80].

6. Numerical experiments

Numerical experiments have been performed on the Cray XC40 nodes of the Piz Daint supercomputer of the Swiss 
national supercomputing centre (CSCS).9 The used partition features 1813 computation nodes, each of which holds two 
18-core Intel Xeon E5-2695v4 (2.10GHz) processors. We use the default GMRES settings from PETSc, i.e. a zero initial guess, 
restart after 30 iterations, and a threshold of 10−5 for the preconditioned relative residual norm as a stopping criterion.

6 This technique is also known as flexible GMRES (FGMRES), where the action of the preconditioner P−1 is approximated iteratively, e.g. with a second 
GMRES method.

7 For simplicity, we assume both Ns and Nθ Nχ Nν being divisible by Np .
8 Applying � for a spatial grid decomposed in the x, y axis is notoriously challenging since arbitrary far subdomains can be coupled, especially for rays 

with θ ≈ π/2.
9 https://www.cscs .ch /computers /piz -daint/.
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x

y
(θ,χ,ν)

Primary grid (for �) Auxiliary grids (for �)

D1 D2

D3 D4

D

A1

A2

A3

A4

P1 P2 P3 P4

Fig. 4. Decomposition of primary and auxiliary grids for Np = 4. The spatial domain is only illustrated for two spatial dimensions x and y; the third 
dimension is used to include different rays (θ, χ, ν). Left: domain decomposition D = ∪i=1,...,4 Di . Each processor Pi is assigned to a subdomain Di . Right: 
data-decomposition. Each processor Pi is assigned to a block Ai of data (i.e. a subset of rays) for the whole spatial domain D . Each block Ai is partitioned 
into T tiles. The tiling is illustrated by means of dashed lines for T = 2. The two decompositions correspond to the coupling induced by � and �
respectively, which can be applied without communication on the two partitions.

6.1. Spectral line and atmospheric model

We consider the Ca i line at 4227 Å, an ideal test case for new approaches to the non-LTE RT modeling of scattering 
polarization including PRD effects. Indeed, this line can be suitably modeled by considering a simple two-level atomic model, 
and it shows a clear scattering polarization signal, with a peculiar triplet-peak structure produced by PRD effects [e.g., 
17,81,16]. We consider the frequency interval corresponding to the wavelength interval [λmin, λmax] = [4226.2, 4227.2] Å, 
discretized with Nν = 64 nodes.

As a model of the solar atmosphere, we consider model C of [82] (hereafter, FAL-C). In particular, we consider the 
atmospheric height interval [zmin, zmax] = [−100, 2210] km, discretized with Nz = 64 nodes. In the x and y directions we 
use an equidistant grid with Nx = N y , xmin = ymin = 0, xmax = ymax, and �x = �y = xmax/Nx . Case by case, the full list of 
dimensions can be found in tables and figures captions. If not specified, no magnetic and bulk velocity fields are included 
in the calculations. Regarding data decomposition, we used a single tile, i.e. T = 1.

The population of the lower level (i.e., the ground level of neutral calcium) is calculated with the 1D module of the RH 
code [37], considering an atomic model composed of 25 levels (including 5 levels of Ca ii and the ground level of Ca iii), 
and taking AD PRD effects into account.

6.2. Validation and physical insights

For validation, we consider a 3D plane-parallel setting where the FAL-C atmospheric parameters and the population of 
the lower level are constant w.r.t. x and y. In this case, we obtain the same Stokes profiles as in the 1D FAL-C model10 (e.g., 
see the red solid profile and blue circles in Fig. 5 for Q /I). Due to the cylindrical symmetry and to the absence of magnetic 
fields, Stokes U/I (see blue dashed profile in Fig. 5) and V /I are zero. Moreover, the profiles coincide with those obtained 
in previous 1D investigations [16,36]. The agreement is equally good for non-zero magnetic fields and/or bulk velocities, 
thus no plot is shown.

The robustness of the proposed iterative strategy to more complex atmospheric models is tested by considering a sinu-
soidal temperature

Tc = TFAL-C(z)(1 + cos(2πx/xmax) cos(2π y/ymax)/2),

resulting in the same convergence behaviour as in the plane parallel case. Crucially, the breaking of the cylindrical symmetry 
induced by the horizontal variations of the temperature gives rise to a non-zero U/I polarization signal also in the absence 
of magnetic fields (green dashed profile in Fig. 5). Notably, the sign of U/I changes depending on the considered line of 
sight (see U/I panel in the upper row of Fig. 6).

In Fig. 6 polarization profiles with and without magnetic fields are presented. As expected, the presence of a non-zero 
magnetic field influences the polarization signals Q /I , U/I , and V /I , but not the intensity profile. The variation of the 
Q /I and U/I signals in the line-core region is due to the Hanle effect, while the variation of the wing lobes is due to the 
magneto-optical effects. The V /I signal is instead produced by the Zeeman effect.

10 The 1D solution is obtained with the 1D code developed in [36], which implements the same formal solver and iterative strategy of the present study.
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Fig. 5. Emergent fractional linear polarization profiles Q /I (left) and U/I (right) at r = (0, 0, zmax) for � = (1.40, 0.39). We consider a 1D FAL-C model, 
a 3D plane-parallel FAL-C model, and the same 3D model but with temperature Tc . A setting with Nx = N y = Nχ = 8, Nθ = 12, Nz = Nν = 64, and 
�x = �y = 100 km is used. The reference direction for positive Stokes Q is parallel to the x − y plane. Four PGMRES iterations are needed to converge in 
all cases.

Fig. 6. Intensity and fractional polarization signals of the radiation emergent at r0 = (0, 0, zmax) and r1 = (200, 200, zmax), with � = (1.40, 0.39). A setting 
with Nx = N y = Nχ = 8, Nθ = 12, Nz = Nν = 64, �x = �y = 100 km, and T = Tc is considered. Upper row: profiles obtained without magnetic fields. Lower 
row: profiles obtained including a magnetic field of 20 Gauss with direction �B = (π/2, 0), uniform in all the atmosphere. The reference direction for 
positive Stokes Q is parallel to the x − y plane.

6.3. Scaling

In scaling results the total run-time is decomposed in its main components: the evaluation of �, �̃, and �. The evalua-
tion of � is further decomposed into communication costs (MPI_Alltoall()) and numerics (ODEs solutions).

In Table 1 and Fig. 7, we present a strong scaling study for a problem with N 
 67.1 · 106 total degrees of freedom. For 
Np = 4096, a processor is assigned to each spatial node and ray (�, ν), i.e. Np = Ns = Nθ Nχ Nν , the scaling limit. In Table 2
and Fig. 8 we present a larger strong scaling study with N 
 1.61 · 109. As expected, for Np > Nθ Nχ Nν the formal solution 
13
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Table 1
Timings (s) for the solution of the discretized RT problem (18) with Nx = N y = Nθ =
Nχ = 8, Nz = Nν = 64, N 
 67.1 · 106, and �x = �y = 100 km, varying the number of 
processors Np . All presented runs required 4 PGMRES iterations to converge.

N p 64 128 256 512 1024 4096

Total runtime 6924 3471 1748 901 452 122

PRD scattering (�) 5341 2678 1343 651 318 79.9
CRD scattering (�̃) 989 494 247 113 55.7 14.1
Formal solution (�) 108 61.8 33.2 29.0 19.3 11.6

�: MPI_Alltoall() 63.7 40.5 22.2 21.2 15.4 10.8
�: ODEs solution 42.3 21.2 10.6 5.4 2.7 0.67

Fig. 7. Strong scaling and efficiency plots corresponding to Table 1.

Table 2
Run-times (s) for the solution of the discretized RT problem (18) with Nx = N y = 32, Nθ =
12, Nχ = 8, Nz = Nν = 64, N 
 1.61 · 109, and �x = �y = 100 km, varying the number of 
processors Np . All presented runs required 4 PGMRES iterations to converge.

N p 192 384 768 1536 3072 6144 12288

Total runtime 22002 10490 5240 2860 1576

PRD scattering (�) 17762 8418 4190 2248 1043
CRD scattering (�̃) 6882 3404 1860 930 465 242 112
Formal solution (�) 1060 614 391 242 151 111 223

�: MPI_Alltoall() 725 446 298 186 129 93 186
�: ODEs solution 316 167 83.7 44.6 22.3 11.2 13.0

Fig. 8. Strong scaling and efficiency plots corresponding to Table 2.

is no longer scaling; on the other hand total runtime exhibits a near-optimal scaling since the computation of the emissivity 
remains the computational bottleneck.
14



P. Benedusi, S. Riva, P. Zulian et al. Journal of Computational Physics 479 (2023) 112013
Table 3
Runtimes (s) for the solution of the discretized RT problem (18) varying Nx = N y such that N/Np is constant. 
We used Nθ = Nχ = 8 and Nz = Nν = 64. All presented runs required 4 PGMRES iterations to converge.

N p 4 16 64 256 1024 4096
Nx = N y 1 2 4 8 16 32
N 1.6 · 106 6.3 · 106 2.5 · 107 1.0 · 108 4.0 · 108 1.6 · 109

Total runtime 1341 1613 1693 1670 1788 1795

PRD scattering (�) 1115 1265 1361 1356 1302 1266
CRD scattering (�̃) 173 219 216 220 220 220
Formal solution (�) 11.6 27.0 46.3 55.9 57.9 100

�: MPI_Alltoall() 3.9 15.4 34.7 44.4 42.5 81.1
�: ODEs solution 7.7 9.7 9.7 9.7 9.7 15.4

Fig. 9. Weak scaling plots corresponding to Table 3.

In Table 3 and Fig. 9 we present a weak scaling study with constant N/Np ratio with xmax = ymax = 1000 km. We remark 
that an optimal weak scaling is crucial to tackle problems with finer spatial discretizations, e.g. with Nx N y Nz > 106.

7. Conclusions

One of the main priorities in solar physics research is the development of novel diagnostic techniques for investigating 
the ever elusive magnetic fields of the outer layers of the solar atmosphere. In this context, a key step is to model the 
linear and circular polarization of strong resonance lines in state-of-the-art 3D models of the solar atmosphere, taking into 
account PRD effects, as well as the impact of arbitrary magnetic fields and bulk velocities. In this work, we presented a 
scalable solution strategy for the 3D non-LTE RT problem for polarized radiation in anisotropic and heterogeneous media, 
linearized as discussed in Section 2.3. The inclusion of PRD effects in the general AD setting and the high dimensionality 
of this vectorial RT problem make it computationally challenging. We employed well-studied discretization techniques for 
RT and a state-of-art iterative solution strategy, based on a physics-based preconditioner solving for a simpler scattering 
model (i.e., the CRD limit), to get a highly accurate solution in four iterations. A complete matrix-free approach made the 
implementation relatively lightweight, making a 3D RT simulation of scattering polarization with AD PRD effects possible, 
for the first time in the literature.

We presented numerical experiments for a two-level atom in a heterogeneous atmospheric model (based on FAL-C), pos-
sibly in the presence of arbitrary magnetic and bulk velocity fields. Experiments show a parallel efficiency close to 90%, up 
to the theoretical scaling limit (i.e. Np = Ns = Nθ Nχ Nν ). Full parallelism both in the spatial domain (for the computation of 
the emissivity) and in the ray propagation algorithm (for the formal solution) is obtained using two complementary decom-
positions. This strategy results in a simple implementation of the parallel ray propagation, with a single MPI_Alltoall()
for every iteration and no need of ghost layers. Note that this decomposition approach requires the entirety of the data to 
be rearranged, hence its performance is bounded by the network bandwidth. Consequently, the MPI_Alltoall() call is 
the bottleneck for the formal solution computation, and tuning might become beneficial for larger scale runs. Nevertheless, 
its cost is negligible w.r.t. the total runtime, which is dominated by the computation of emissivity. Finally, we show how 
highly accurate 3D simulations of intensity and polarization profiles, accounting for PRD effects, with more than one bil-
lion of degrees of freedom, can be obtained on massively parallel machines in less than 30 minutes. We remark that the 
auxiliary grid decomposition currently limits memory scalability (for N p > Nθ Nχ Nν ) and therefore the spatial resolution 
of the problem. An additional spatial decomposition of the auxiliary grid and the use of MPI sub-communicators (avoiding 
the MPI_Alltoall() call) would lead to better scaling, both in terms of computing and memory, making it possible to 
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consider larger problems. Applications for realistic atmospheric models (with more than 1010 degrees of freedom), obtained 
from radiation magnetohydrodynamic simulations, will be the object of forthcoming studies.

We remark that the presented approach can be extended without significant difficulties to more complex atomic models 
for which the statistical equilibrium equations have an analytic solution and the problem can thus be linearized. One 
example is the case of a two-term atom with unpolarized lower term, which would allow modeling scattering polarization 
in various lines of high interest for investigating the solar chromosphere (e.g., Mg ii h and k). In order to consider multi-
level atomic systems, for which the statistical equilibrium equations need to be solved numerically, it is instead necessary to 
extend the approach to a non-linear setting. This would also be feasible but would require developing and testing non-linear 
solution strategies and it is foreseen as future research.
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[43] J. Štěpán, J. Jaume Bestard, J. Trujillo Bueno, Near optimal angular quadratures for polarised radiative transfer, A & A 636 (2020) A24, https://doi .org /

10 .1051 /0004 -6361 /202037566, arXiv:2002 .12736.
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