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The complexity of computing the flip distance between two triangulations of a simple 
convex polygon is unknown. Here we approach the problem from a parameterized 
complexity perspective and improve upon the 2k kernel of Lucas [12]. Specifically, we 
describe a kernel of size 4k

3 and then show how it can be improved to (1 + ε)k for every 
constant ε > 0. By ensuring that the kernel consists of a single instance our result yields 
a kernel of the same magnitude (up to additive terms) for the almost equivalent rotation 
distance problem on rooted, ordered binary trees. The earlier work of Lucas left the kernel 
as a disjoint set of instances, potentially allowing very minor differences in the definition of 
the size of instances to accumulate, causing a constant-factor distortion in the kernel size 
when switching between flip distance and rotation distance formulations. Our approach 
avoids this sensitivity. We have also undertaken experiments to understand how much 
reduction is achieved by our kernel in practice.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Triangulating a set of points on a plane is a common 
operation in computational geometry. The operation of flip-
ping a diagonal is defined as removing one edge of a trian-
gulation, creating a convex quadrangle, and then adding to 
the triangulation the opposing diagonal of that quadrangle, 
as seen in Fig. 1.

✩ A preliminary version of this article, without experimental section, 
appeared in the proceedings of CCCG2021.
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Fig. 1. Flipping a diagonal of a triangulation of a simple convex polygon.

The flip distance between two triangulations of the same 
set of points on a plane is the minimum number of flips 
needed to transform one triangulation into another. Com-
puting flip distance is NP-hard, even for the case of simple 
polygons [1].

In this article we will be working in a more restricted 
setup by considering only triangulations of simple convex
polygons. The complexity of the problem is unknown. In-
deed, there is a well known correspondence - essentially, 
an equivalence - between this problem and the compu-
ss article under the CC BY license (http://

https://doi.org/10.1016/j.ipl.2023.106381
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2023.106381&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:miguel.boschcalvo@idsia.ch
https://doi.org/10.1016/j.ipl.2023.106381
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


M. Bosch-Calvo and S. Kelk Information Processing Letters 182 (2023) 106381
tation of rotation distance between two rooted, ordered 
binary trees. It has been an open question for several 
decades whether rotation distance is polynomial-time solv-
able. Some of the results in this area have been obtained 
using the rotation distance formulation, but most of the 
work has been undertaken in the flip distance formulation.

Here we adopt a parameterized complexity perspec-
tive; in particular, a kernelization perspective [7]. Cleary et 
al. [4] proved that the problem is fixed parameter tractable, 
by providing a 5k kernel, where the parameter k is the flip 
distance. Lucas [12] employed different reduction strate-
gies to obtain a kernel of size 2k. In this article we will 
show how to improve upon the kernelization result of Lu-
cas. We describe a 4k

3 kernel and then extend the approach 
to yield a (1 +ε)k kernel for every constant ε > 0; the run-
ning time grows sharply in 1/ε but remains polynomial 
for fixed ε . Our article extends the decomposition-based 
approach of Lucas in two ways. We strengthen the bound 
on the size of the kernel, and potentially lower the flip 
distance, by solving small decomposed instances to opti-
mality. Secondly, we show how to “reverse” the decompo-
sition strategy adopted by Lucas, thus merging the separate 
instances into a single reduced instance at the end. This 
merging step ensures that the size of the kernel remains 
(up to additive terms) unchanged whether we view the 
problem from the flip distance or rotation distance per-
spective. As we note in the Discussion section, this is not 
as straightforward for Lucas’ kernel result: there a subtle 
constant-factor distortion occurs when switching from one 
formulation to the other.

Finally, we conduct a number of experiments to un-
derstand the way our kernelization algorithm performs on 
synthetic data. We find that the reduced instances are sub-
stantially smaller than the worst-case theoretical bound, 
and that the 4k

3 kernel achieves significantly more reduc-
tion than Lucas’ kernel without requiring any extra invest-
ment in running time.

2. Preliminaries

We are working here with simple convex polygons. 
Such a polygon can be viewed without loss of generality as 
a simple cycle on n edges and n vertices. A triangulation of 
a simple convex polygon on n edges contains exactly n − 3
diagonals. Hence a triangulation of a simple convex poly-
gon can be represented as a list of n − 3 edges and two 
triangulations are considered equal if the n − 3 edges (i.e. 
the diagonals) are identical.

Thus, there is a finite number of triangulations of sim-
ple convex polygons of a given size. Precisely, the number 
of triangulations of a simple convex polygon of size n is 
given by the (n − 2)th Catalan number Cn = 1

n+1

(2n
n

)
.

We define Pn as the set containing all triangulations 
of simple convex polygons of size n. Thus |Pn| = Cn−2. 
Henceforth, for the sake of brevity, we will refer to tri-
angulations of simple convex polygons as triangulations or 
simply polygons.

Given P , P ′ ∈ Pn , we call a shortest path from P to P ′
to the sequence of polygons P = P0, P1, P2, . . . , Pm = P ′
such that we can transform Pi into Pi+1 by just flipping 
one diagonal and m is the minimum among all possible 
2

sequences. Given two polygons P , P ′ ∈ Pn , the flip distance
d(P , P ′) between P and P ′ is the length of a shortest path 
from P to P ′ .

Since in our approach we will be dealing with multiple 
pairs of polygons, we usually denote the pairs of polygons 
of which their flip distance is relevant to us as (P , P ′) ∈
Pn , where P and P ′ are both in Pn .

One of the earliest results in this area is the upper 
bound on flip distance proved by Culik et al. [5]. Precisely, 
the flip distance between two polygons (P , P ′) ∈ Pn is at 
most 2n − 6 for all (P , P ′) ∈ Pn . Later, Sleator et al. [14]
improved the bound to 2n − 10 for all (P , P ′) ∈Pn, n > 12, 
and by making use of hyperbolic geometry proved that the 
bound is tight.

Also, since every flip of a diagonal only affects one di-
agonal, the flip distance between (P , P ′) is at least the 
number of non-common diagonals of (P , P ′) [12].

There is another result from Sleator et al. [14] that is of 
importance to us. It implies that common diagonals belong 
to every polygon of every shortest path, and therefore that 
they should not be flipped at any point: Given (P , P ′) ∈Pn , 
if there is a common diagonal between P and P ′ , then ev-
ery shortest path from P to P ′ does not flip that diagonal.

We now present a formal definition of the Parameter-

ized Flip Distance problem, which is the problem we will 
be addressing in this article:

Parameterized Flip Distance

Input: A pair of polygons (P , P ′) ∈Pn and a parameter k ∈
N .
Question: Is the flip distance between P and P ′ at most 
k?

As is standard in the study of kernelization, we will 
apply polynomial-time reduction rules to yield instances 
whose size is bounded by a function purely of k. We omit 
a formal definition of kernelization, referring to standard 
texts such as [7] for more details. We emphasize that the 
size of an instance, n, refers to the number of outer edges 
in the polygons.

The kernel we propose uses some of the ideas pre-
sented by Lucas at [12] combined with new reduction 
rules to tighten the bound on the kernel, plus a new merg-
ing step. Lucas’ idea is based on dividing the original pair 
of polygons along their common diagonals by using the re-
sults by Sleator et al. [14]. An example of such division is 
shown in Fig. 2.

We will first present the operations that allows us to 
obtain a 4k

3 kernel and then we will extend those ideas to 
derive the (1 + ε)k kernel.

3. Results

3.1. 4k
3 kernel

Lucas [12], using the results of Sleator et al. [14], 
showed that given two polygons (P , P ′) ∈ Pn with m − 1
common diagonals, we can create m disjoint pairs of poly-
gons (Pi, P ′

i), i ∈ [1, m] by dividing the original polygons 
along their common diagonals, so each common diagonal 
becomes an outer edge of one of the instances (Pi , P ′) and 
i
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Fig. 2. An example of splitting a polygon pair (P , P ′) along its common 
diagonals into m disjoint pairs. Here the instances (P , P ′) have size 12, 
so (P , P ′) ∈ P12, and they have 3 common diagonals, so they are divided 
into m = 4 disjoint pairs (P1, P ′

1), (P2, P ′
2), (P3, P ′

3), (P4, P ′
4).

each pair does not have any common diagonal. Thus we 
derive the following lemma:

Lemma 1. The flip distance of (P , P ′) ∈ Pn is equal to the sum 
of the distances between all m pairs (Pi, P ′

i) resulting from 
the division of (P , P ′) along its m − 1 common diagonals, i.e. 
d(P , P ′) = ∑m

i=1 d(Pi, P ′
i).

It is useful to apply the division along common diag-
onals into m pairs to the parameterized version of the 
problem, given by (P , P ′) ∈Pn, k ∈N .

Given a set of m pairs of polygons (Pi, P ′
i) ∈ Pni , let 

di be the number of diagonals of instance i, so that di =
ni − 3.

The upper bound of the problem of roughly 2n can be 
applied to every pair, and the pairs do not have any com-
mon diagonal, so we can deduce di ≤ d(Pi, P ′

i) ≤ 2di . Since 
d(P , P ′) = ∑m

i=1 d(Pi, P ′
i) we can output a trivial YES an-

swer if 
∑m

i=1 di ≤ k/2, and a trivial NO if 
∑m

i=1 di > k, so 
for all non-trivial instances we have k/2 <

∑m
i=1 di ≤ k.

Now we present a trivial observation and a lemma that 
will be useful to prove our final result.

Observation 1. A pair of quadrilaterals with no common diag-
onals have distance 1. Similarly, a pair of pentagons with no 
common diagonals have distance 2.

Lemma 2. Given a set of m pairs of polygons (Pi, P ′
i) ∈Pni , we 

can build a pair of polygons (P , P ′) ∈ Pn with n = ∑m
i=1 di +

m + 2, and d(P , P ′) = ∑m
i=1 d(Pi, P ′

i).

Proof. Given two pairs of polygons (P1, P ′
1), (P2, P ′

2) with 
sets of outer edges {e1

1, e
1
2, . . . , e

1
n1

} and {e2
1, e

2
2, . . . , e

2
n2

} we 
can create a pair of polygons with edges:

{e1
1, e1

2, . . . , e1
n1−1, e2

1, e2
2, . . . , e2

n2−1}
We add to that polygon all diagonals present in both 

(P1, P ′
1) and (P2, P ′

2), plus a diagonal δs in place of e1
n1

and e2
n . It is clear that we can add those diagonals and 
2

3
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Fig. 3. Given two pairs of polygons (P1, P ′
1) and (P2, P ′

2) we can 
generate a new pair (P , P ′) that has distance equal to the sum 
of the distances of the original pair. In this example (P1, P ′

1) has 
8 outer edges {e1

1, e1
2, e1

3, e1
4, e1

5, e1
6, e1

7, e1
8} and (P2, P ′

2) has 6 outer 
edges {e2

1, e2
2, e2

3, e2
4, e2

5, e2
6}, resulting in a pair (P , P ′) with 12 edges 

{e1
1, e1

2, e1
3, e1

4, e1
5, e1

6, e1
7, e2

1, e2
2, e2

3, e2
4, e2

5} (in this figure only one of the 
polygons of the pair is shown since we operate identically with the other).

they will be non-crossing. We can see an example of this 
operation in Fig. 3.

This way we have a new pair of polygons (P , P ′) in 
which the edges {e1

1, e
1
2, . . . , e

1
n1−1, δs} induce the polygons 

(P1, P ′
1) and {e2

1, e
2
2, . . . , e

2
n2−1, δs} the polygons (P2, P ′

2). 
Since δs is a common diagonal and thus is never flipped in 
a shortest path, d(P , P ′) = d(P1, P ′

1) + d(P2, P ′
2). The size 

of (P , P ′) is n1 +n2 −2 = d1 +d2 +4, and it has d1 +d2 +1
diagonals, of which at least one of them is common. Re-
peated applications of this operation complete the proof.

Theorem 3. There is a kernel of size 4k
3 +O(1) for the Param-

eterized Flip Distance problem. Specifically, given a pair of 
polygons (P , P ′) ∈Pn and a parameter k we can output in poly-
nomial time another pair of polygons (P∗, P∗′) of size at most 
4k
3 + 2, and a parameter k′ ≤ k such that:

d(P , P ′) ≤ k ⇐⇒ d(P∗, P∗′
) ≤ k′

Proof. Given (P , P ′) ∈ Pn , and a parameter k, the follow-
ing algorithm outputs a kernel of the problem of size at 
most 4k

3 + 2.

1. Divide (P , P ′) along their common diagonals to obtain 
m pairs of polygons (Pi, P ′

i) and discard all pairs that 
have only three edges, because their distance is 0. Now 
we have m′ pairs, with m′ ≤ m, so we re-number the 
pairs to have (Pi, P ′

i), i ∈ [1, m′].
2. Making use of Observation 1, discard all pairs with 

four edges and reduce the parameter k by one per 
each pair removed that way. Proceed the same way 
with pairs of five edges reducing the parameter by two 
instead and renumber the pairs as we did in the pre-
vious step. We get a new parameter k′ ≤ k.



M. Bosch-Calvo and S. Kelk Information Processing Letters 182 (2023) 106381
3. If 
∑m′

i=1 di > k′ output NO. If 
∑m′

i=1 di ≤ k′/2 output 
YES.

4. Use Lemma 2 to create a new polygon (P∗, P∗′) from 
all the remaining pairs. The new instance is defined by 
(P∗, P∗′) and k′ .

Since we have removed all pairs with di < 3, each 
pair has at least 3 diagonals, none of them common, so 
m′ is at most k′/3, or otherwise 

∑m′
i=1 di > k′ , and we 

could have output a trivial NO answer. Also, we have that 
k′/2 <

∑m′
i=1 di ≤ k′ , and by making use of Lemma 2 to ob-

tain the pair of polygons (P∗, P∗′), they will be of size 
∑m′

i=1 di + m′ + 2 ≤ k′ + k′/3 + 2 ≤ 4k/3 + 2.
Also, from Lemma 1, Lemma 2 and Observation 1 it is 

clear that d(P , P ′) ≤ k if and only if d(P∗, P∗′) ≤ k′ , and 
Lucas [11] showed that the first step can be done in O(n2)

time, while the last step can be done in time O(n), com-
pleting the proof.

3.2. (1 + ε)k-kernel

In this section we will show a procedure that allows us 
to obtain a kernel of size (1 + ε)k + O(1) in time that is 
polynomial in n when ε > 0 is constant. The procedure is 
based on the algorithm of the previous section and on the 
trivial exponential-time algorithm that allows us to solve 
an instance of size n in time O(n2n) by trying all possible 
diagonal flips recursively.

Theorem 4. Given a pair of polygons (P , P ′) ∈ Pn and a pa-
rameter k, we can output another pair of polygons (P∗, P∗′) of 
size at most (1 + ε)k + 2 and a parameter k′ ≤ k such that:

d(P , P ′) ≤ k ⇐⇒ d(P∗, P∗′
) ≤ k′

In time O(n2 + f (ε)n), where f (ε) is a function that only 
depends on ε .

Proof. Given two polygons (P , P ′) ∈ Pn , a parameter k ∈
N and some ε > 0, apply steps 1 and 2 of the algorithm 
described in Theorem 3. Then solve all instances of size 
less than 1/ε + 3, i.e. instances that have fewer than 1/ε
diagonals, using the trivial exponential-time algorithm. We 
can do this in time O((1/ε)2/ε ·n), (because there can be at 
most n −2 instances after splitting common diagonals) and 
discard all pairs solved this way, reducing the parameter k
by the sum of the flip distances of the pairs solved this 
way. Finally, apply steps 3 and 4 of the algorithm.

Now each remaining pair before step 3 will have at 
least 1/ε diagonals, so m′ must be at most εk′ , by a similar 
reasoning as in Theorem 3. Then we have that the poly-
gons (P∗, P∗′) will have size at most 

∑m′
i=1 di + m′ + 2 ≤

k′ + εk′ + 2 ≤ (1 + ε)k + 2.
Since the steps common with the 4k

3 kernelization algo-
rithm can be done in time O(n2), and the additional time 
spent on solving small instances is at most O((1/ε)2/ε ·n), 
the total time required to produce the kernel is O(n2 +
(1/ε)2/ε · n) =O(n2 + f (ε)n), as we wanted to prove.

We note that by using recent fixed parameter tractable 
algorithms – such as those of Feng et al. [6] or Haohong 
4

et al. [10] – instead of the trivial exponential-time algo-
rithm, we can solve an instance of size less than 1/ε in 
time O(321/ε · poly(1/ε)) by leveraging [6] or O(3.821/ε ·
poly(1/ε)) by leveraging the very recent result in [10], 
which is a significant improvement.

As mentioned earlier there is a near equivalence be-
tween the flip distance problem on simple convex poly-
gons, and the rotation distance problem on two ordered, 
rooted binary trees. The definition of the rotation distance 
problem is rather technical so we omit details. In any case, 
it is well-known that an instance of rotation distance of 
size n (where the size here denotes the number of non-
leaf nodes in one of the input trees) can be easily mapped 
to an instance of flip distance of size n + 2, such that the 
distance is preserved. The mapping goes both ways [14]. 
Hence, the kernel obtained in Theorem 4 (and that of The-
orem 3) also goes through for rotation distance, up to ad-
ditive terms.

Corollary 5. For each ε > 0 there is a kernel of size (1 + ε)k for 
the rotation distance problem.

4. Experimental results

It is natural to ask how the kernels described in The-
orems 3 and 4 function in practice. In this section we 
undertake a simple experiment to partially answer this 
question.

4.1. Experimental setup

The dataset for our experiment consists of pairs of ran-
dom polygons of a certain size n and maximum distance 
D . The polygon pairs have been obtained through the fol-
lowing procedure1:

1. Generate a random polygon by selecting uniformly at 
random two non-consecutive vertices to form a diago-
nal. Then split the polygon through that diagonal and 
recursively apply the same operation to both subpoly-
gons until no more diagonals can be added.

2. Starting from the previous polygon we perform D ran-
dom flips to it to obtain a second polygon. By random 
flip we mean that the diagonal we flip is selected uni-
formly at random.

This way we have an easy to compute lower bound on 
the distance, which is the number of non-common diago-
nals of the pair, and an upper bound on the distance which 
is given by D .

For each n ∈ {10, 50, 100, 500, 1000}, maximum dis-
tance D ∈ {0.1, 0.5, 1, 1.5, 2}n and ε ∈ {1, 1/3, 1/6, 
1/9, 1/12, 1/15, 1/18, 1/21, 1/24, 1/27, 1/30} we have 
generated 100 random pairs of polygons and executed a 
slightly modified version of the (1 + ε)k kernel algorithm 

1 We remark that this procedure does not produce a uniform distribu-
tion over all possible polygons. Nevertheless, we find this an acceptable 
simplification for such a first, indicative experiment.
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described in Theorem 4. Note that ε = 1 actually corre-
sponds to the previous best kernel by Lucas, and ε = 1/3
to the kernel from Theorem 3. Note also that we have cho-
sen to express the maximum distance D as a fraction of 
the instance size n.

We modify the (1 + ε)k kernel as follows. First, we do 
not compute the flip distances of the small polygons that 
are created by the decomposition procedure, i.e. those of 
size less than 1/ε + 3. We simply remove them. Removing 
them is reasonable because we are primarily interested in 
the reduction achieved by the kernel, not its running time. 
To obtain this information it is not necessary to solve the 
small instances. In particular, as explained in Theorem 4, 
the size of the kernel will be the result of merging all the 
polygons that remain. Of course, in a practical setting the 
running time of the kernel, which increases for decreasing 
ε , would have to be taken into account; we return to this 
point later.

Second, we will not use a parameter k, since the pa-
rameter k is actually only used to determine whether an 
early YES or NO conclusion can be reached (see Step 3 of 
Theorem 3). By leaving k out of the experiments we there-
fore potentially underestimate the power of the kernel: we 
might allow large NO instances to survive. However, this 
simplification is safe in the sense that, if the simplified 
kernel we have implemented performs well, a full-blown 
implementation of the kernel (that does take k into ac-
count) would perform at least as well.

For each of the mentioned combinations we measure 
the average, over the 100 pairs generated, of the following 
statistics:

• Kernel size. The size of the single pair of polygons after 
applying the kernel.

• Kernel size as a fraction of n. That is, kernel size/n.
• Theoretical kernel size. Let NC be the number of non-

common diagonals before applying the kernel, then, 
the theoretical kernel size is defined as (1 + ε)NC + 2. 
When applying the kernel for a certain k, we know 
that the size is at most (1 + ε)k + 2. Since NC is a 
lower bound for the distance, we have (1 + ε)k + 2 ≥
(1 + ε)NC + 2, so that the theoretical kernel size is 
lower than the upper bound for the size for every k. 
We do this because we do not know the true dis-
tance. Note that comparing the kernel size obtained 
in practice, to the theoretical kernel size, is safe in the 
following sense: if the obtained kernel is smaller than 
the theoretical kernel size, then it will definitely be 
smaller than the true kernel bound i.e. the bound that 
is a function of the actual distance.

• Number of non-common diagonals before applying the 
kernel.

• Number of non-common diagonals after applying the 
kernel.

• Number of sub-instances removed. This is the num-
ber of small, i.e. of size less than 1/ε + 3, instances 
removed by the kernelization algorithm before the 
merging step.
5

Not all these values are elaborated as results, for a de-
tailed report on these values we refer to the repository2

that contains all the code and data from the experiments.

4.2. Results

4.2.1. Kernel size
In Fig. 4 we show for n = 1000 and D = 1n = 1000 how 

the size of the kernel evolves as ε decreases. We only show 
this n and D combination because, as can be observed in 
the full results in the repository, a similar pattern is ob-
served regardless of D and n.

A number of observations can be made. First, the kernel 
size (blue line) is significantly smaller than the theoretical 
kernel size (orange line), meaning that the gap between 
the achieved reduction and the real upper bound will be 
even larger. Second, the kernel size is also significantly 
smaller than the natural lower bound of the number of 
non-common diagonals NC (dashed green line). Third, the 
4k/3 kernel (blue line at ε = 1/3) achieves more reduction 
than Lucas’ kernel (red dashed line), despite requiring no 
additional computational time.

4.2.2. Computational effort required to solve small instances
As mentioned earlier the running time of our kernel-

ization algorithm increases as ε decreases due to the need 
to exactly solve small instances i.e. those of size less than 
1/ε + 3 (see Theorem 4). In Table 1 we can see the max-
imum size of small instances that in theory would have 
to be computed exactly by the kernel, compared to the 
largest such instances we encountered during the exper-
iment for D = n = 1000.

We see that here the observed maximum size of the 
small instances is somewhat smaller than the theoreti-
cal maximum. This was not always the case: for example, 
when D becomes very large relative to n the observed 
maximum often approaches the theoretical maximum. In 
any case, the table gives an idea of how future speed-ups 
of algorithms for exactly solving (small) flip distance in-
stances can contribute to a pre-processing framework. Note 
also that, as we can see in Fig. 4, the size of the kernel ap-
proaches zero for our smallest choices of ε , meaning that 
we have effectively reduced the problem of solving an in-
stance of size 1000 to that of solving instances of size at 
most 32 (and often much smaller).

5. Discussion

Our kernel makes use of the fact that two polygons of 
size n with no common diagonals have n − 3 non-common 
diagonals, which is a lower bound on the flip distance. 
Hence, for such “fully reduced” instances the ratio of the 
instance size to the flip distance is at most n

n−3 which is 
1 + o(1). In this sense, our (1 + ε)k kernel feels like a nat-
ural result for this problem. We would like to remark that, 
unlike previous kernels, our approach manages to reduce 
the number of non-common diagonals in some instances, 
when discarding small instances of size larger than 3.

2 See: https://github .com /mbosch95 /tri _kernel _exp.

https://github.com/mbosch95/tri_kernel_exp
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Fig. 4. Results for the experiment when n = 1000 and D = 1n = 1000. Each datapoint is the average of the 100 polygon pairs generated for that specific 
combination of experimental parameters. The blue line shows the empirically observed kernel size, while the orange line indicates the theoretical kernel 
size. The dashed red line shows the observed size of the previous best kernel (by Lucas), and the dashed purple line shows its theoretical kernel size. 
Finally, the number of non-common diagonals of the original pair (before kernelization) is shown by the dashed green line. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Table 1
(Average of) the observed maximum size n of small instances that need to be solved exactly when n = D = 1000 for each ε , 
compared to the theoretical maximum size (largest integer strictly less than 1/ε + 3) of small instances that we are required to 
solve.

ε 1/3 9/30 8/30 7/30 6/30 5/30 4/30 3/30 2/30 1/30

observed max n 5.00 6.00 6.00 7.00 7.00 8.00 9.98 11.82 15.26 19.11
theoretical max n 5 6 6 7 7 8 10 12 17 32
It would be interesting to explore alternative, less in-
flated parameterizations of the problem. For example, if we 
let d denote the number of non-common diagonals in an 
instance, we could ask: is the flip distance ≤ d + k? Next, 
there has been quite sophisticated parameterized complex-
ity work undertaken on the flip distance problem in recent 
years. Most of it has been done on more general versions 
of it: in triangulations of point sets on the plane [6,9], al-
though very recently there have been significant improve-
ments for the version of simple convex polygons [10]. We 
wonder if the branching algorithm in [10] gives any clues 
as to how future kernelization results might be improved.

In terms of complexity implications we remark that 
our improved kernel does not lead to an improvement of 
the polynomial-time approximation algorithm by Cleary et 
al. [3]. That article uses a similar technique to Lucas, but 
the limiting factor there is the algorithmic upper bound, 
which is an algorithm that takes in the worse case two 
flips to fix each non-common diagonal. From a parameter-
ized complexity perspective, it is known that (arbitrarily) 
small linear kernels can, when technical conditions around 
so-called size functions are satisfied, impose lower bounds 
on how small kernels can be for the “dual” problem: is the 
flip distance at most k below a natural upper bound? It is 
however unclear whether our problem satisfies these tech-
nical conditions; we refer to [2] for further discussions of 
this phenomenon and defer this question to future work.
6

Finally, we return to rotation distance. As stated in 
Corollary 5, we obtain (up to an additive difference of 2) 
the same kernel result for rotation distance. For us, the ad-
ditive term is insignificant, but for Lucas [12] it can be 
of importance. Lucas uses the correspondence with rota-
tion distance to derive the 2k kernel. The bound there 
is based on the observation that, after splitting at com-
mon diagonals and deleting distance-0 subinstances, and 
letting d be the total number of non-common diagonals, 
there can be at most d subinstances of pairs of polygons, 
each with a corresponding pair of trees, and each such 
subinstance (i.e. pair of trees) has at least one non-root 
interior node. The worst case is when there are d subin-
stances, each with exactly one non-root interior node. (In 
the rotation distance problem non-root interior nodes cor-
respond to diagonals in the flip distance problem.) In the 
rotation distance literature the size of an instance is usu-
ally taken to be the number of interior nodes, including
the root ([5,11,13,14] among others). This yields a bound 
of 2d ≤ 2k. However, when translated to flip distance, the 
worst case corresponds to d subinstances, each of which 
has exactly one non-common diagonal (and no common 
diagonals). Such subinstances are squares, and in the vast 
majority of the literature the size of the polygons is re-
garded as the number of outer edges [6,8,9,14]. Taking that 
metric, Lucas’ kernel would yield 4d ≤ 4k for flip distance, 
not 2k, so the kernel distorts when using the usual sizes of 
the problems. In a nutshell: Lucas left the kernel as a set 
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of subinstances, but this can cause small additive terms to 
accumulate when switching between frameworks. Our ker-
nel avoids such problems by merging the subinstances into 
a single instance at the end; this is the significance of the 
merging step.
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