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Abstract
We examine the dual formulation of the frictionless Signorini problem for a
deformable body in contact with a rigid obstacle. We discretize the problem by
means of the finite element method. Since the dual formulation solves directly
for the stress variable and is not affected by locking, it is very attractive for
many engineering applications. However, it is hard to solve it efficiently, since
many challenges arise. First, the stress belongs to the non-Sobolev space Hdiv.
Second, the matrix block related to the stress is only semi-positive definite in
the incompressible limit. Third, global equality constraints and box-constraints
are enforced. In this paper, we propose a novel and optimal nonlinear multigrid
method for the dual formulation of the Signorini problem, that works even in
the incompressible limit. We opt for the combination of a truncation of the basis
functions strategy and a nonlinear monolithic patch smoother with Robin condi-
tions of parameter 𝛼. Numerical experiments show that multigrid performance
is recovered if 𝛼 is chosen properly. We propose an algorithm to dynamically
update the parameter 𝛼 during the multigrid process, in order to provide a near
optimal value of 𝛼.
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1 INTRODUCTION

In contact problems, the body of interest, subject to external displacements and forces, cannot penetrate a given obstacle.
We assume the main body to be deformable and the obstacle to be rigid. This kind of setting is called Signorini problem.
In this paper, we neglect friction and therefore we only focus on the frictionless Signorini problem. We refer the reader to
Reference 1 for further reading on this topic.

In many engineering contact problems, it is necessary to deal with nearly-incompressible or incompressible materi-
als and to have a good approximation of the internal stresses. For example, a building is structure composed by many
parts that come into contact and that can be assumed to be nearly-incompressible or even incompressible. To determine
if the project of the building satisfies the standard or not, usually the internal stresses generated by the deformation
have to be computed. Therefore, it can be useful to apply a formulation that describes the Signorini problem for nearly
incompressible and incompressible materials and that gives direct access to the stress.
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The physical unknowns of the strong form of the Signorini problem are the displacement u and the stress 𝝈. How-
ever, when it comes to the weak formulations, typically only one of the two variables is the unknown, while the other
one has to be postprocessed. For example, the primal weak form solves for the only displacement u ∈ H1 and computes
the stress 𝝈 by differentiation of the displacement. Furthermore, it is affected by locking, thus it cannot easily handle
nearly-incompressible or incompressible materials. On the other hand, the dual formulation directly computes the stress
𝝈 ∈ Hdiv. To this purpose, the conservation of linear and angular momenta has to be enforced using the Lagrange multi-
pliers u and 𝜽 and an LBB (Ladyzhenskaya–Babuška-Brezzi) condition must be satisfied. The main advantages of the dual
formulation are twofold. First, it can deal with nearly incompressible and incompressible materials with no additional
effort. Second, the dual formulation does not have to postprocess the stress. For these reasons, in this paper, we examine
the dual formulation for the frictionless Signorini problem, that we discretize by means of the finite element (FE) method.
To satisfy the discrete LBB condition, we use the first-order Raviart–Thomas elements for the stress 𝝈, while for u and 𝜽
we, respectively, use discontinuous linear Lagrangian elements and skew-symmetric continuous linear Lagrangian ten-
sors. We refer the reader to Reference 2 for further details on this choice. For the sake of simplicity, only homogeneous and
isotropic materials will be examined. Our aim is to design a novel optimal multigrid method (MGM) for the discretized
weak form of the dual frictionless Signorini problem. Our method can be interpreted as a combination of a MGM with
smoothing property and an inexact active set strategy. To the authors’ knowledge, an optimal solver for this problem has
not been proposed yet.

MGMs are iterative solvers that aim for optimal complexity—the convergence rate is independent of the dimension
of the problem. However, in case of contact mechanics, it is challenging to define an optimal MGM. Indeed, the presence
of the obstacle introduces a nonlinearity into the problem. Such nonlinearity, in the primal and in the dual formulations,
can be expressed in terms of box-constraints. In order to maintain optimal complexity, a MGM for the Signorini problem
has to directly tackle the nonlinearity at each iteration. The primal formulation of the frictionless Signorini problem
can be interpreted as the minimization problem of a quadratic functional on a closed convex set, where box-constraints
are enforced. The monotone multigrid for this formulation is a nonlinear multigrid with optimal complexity. The main
idea is to sequentially minimize the energy functional by means of fine and coarse local corrections that satisfy the fine
constraints. Global convergence is ensured on the fine level by using, as a smoother, the projected Gauss–Seidel method.
On the coarser levels, the same smoother can be used. However, to ensure that it satisfies the fine constraints, monotone
restriction operators are used on the box-constraints. To accelerate the overall process, a truncation strategy of the basis
functions is carried out. For other details on this topic, see References 3-11. However, the only primal case is investigated
by these papers.

In contrast to the primal formulation of the Signorini problem, the dual formulation is also subject to global
equality constraints. They could be directly applied on the coarser problems, but would be redundant and make the
method suboptimal. Instead, we project them on the coarser levels, as done in Reference 12. However, since the
fine global constraints cannot be satisfied anymore on the coarser levels, we cannot ensure sequential energy mini-
mization. For this reason, we can also avoid to use the monotone restrictions operators for the box-constraints and
solve for linear coarse problems. Even though the energy cannot be sequentially minimized, we can still exploit
two main ideas of the monotone MGM: the resolution of box-constraints at the fine level and the truncation of the
basis functions. In this way, we would still be able to encorporate the nonlinearity at the fine and at the coarser
levels.

To fulfill the box-constraints on the fine level, we could use the standard projected Gauss-Seidel method, that acts
on mono-dimensional subspaces. However, this smoother is not able to handle the issues explained in Reference 12.
First, the stress variable 𝝈 belongs to the non-Sobolev space Hdiv and divergence-free components of the error have
to be properly smoothed. Second, in the incompressible limit, the bilinear form related to the stress variable is only
semi-positive definite and thus it is not invertible. Third, the global equality constraints have to be fulfilled. All these
features are solved by the monolithic patch smoother with Robin boundary conditions of parameter 𝛼, introduced in
Reference 12 for the dual formulation of linear elasticity. In addition, a fourth difficulty has to be taken into account:
the box-constraints. Therefore, on the fine level, we consider a monolithic patch smoother that solves for local correc-
tions that satisfy the box-constraints and that fulfill local Robin boundary conditions. On coarser levels, we only project
the global equality constraints but not the box-constraints, so we can reuse the linear monolithic patch smoother of
Reference 12. As we will see, even though the coarser problems are linear, the nonlinear information at the fine level
is transferred to the coarser levels by means of the truncation strategy. By gluing all these ingredients, we recover a
nonlinear MGM for the dual formulation of the frictionless Signorini problem that works even in the incompressible
limit.
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In Section 2, we introduce the strong formulation of the frictionless Signorini problem for a homogeneous and
isotropic body. Here, we discuss the choice of the constitutive law to describe also nearly incompressible and incom-
pressible materials. In Section 3, the dual formulation of the Signorini problem is presented as a minimization
problem. In Section 4, we use the finite-element method to discretize it. Thanks to a local orthogonal transforma-
tion, the nonlinearity reduces to box-constraints. In order to solve the problem, we design a MGM in Section 5. We
discuss its main ingredients, the truncation and the smoother, and the algorithms, respectively in Sections 5.1,5.2,
and 5.3. In Section 6, we present numerical experiments for the proposed MGM. Since the smoother enforces local
Robin boundary conditions of parameter 𝛼, the simulations are carried out for different values of this parame-
ter. We recover optimality of the method for specific values of 𝛼, that unfortunately are not known in advance.
For this reason, in Section 6.3, we propose a very simple algorithm to dynamically update the value of 𝛼k at each
multigrid iteration k. If the initial value 𝛼0 is chosen sufficiently large and smaller than one, then we recover
optimality.

2 THE STRONG FORMULATION OF THE FRICTIONLESS
SIGNORINI PROBLEM

In this section, we examine the strong formulation of the frictionless Signorini problem for a homogeneous and isotropic
body that can come into contact with a rigid obstacle. With respect to the linear elastic case presented in Reference 12,
we must take into account also the contact conditions, prescribed on the surface of the contact boundary. For this reason,
we first recall the volumetric equations, that are the same as for the linear elastic case, and then discuss the ones on the
boundary.

Let Ω ⊂ Rd, for d = 2, 3, be the domain of an elastic body, subject to the external volumetric force f ∶ Ω→ Rd on Ω.
The conservation of linear and angular momenta of the body Ω are given by the following relations:

div 𝝈 = −f in Ω, (1a)
skw 𝝈 = 0 in Ω, (1b)

where we define the skew-symmetric part of the stress 𝝈 as:

skw𝝈 ∶= 1
2
(𝝈 − 𝝈T). (2)

We assume the strain 𝜺 to be small enough, so that the kinematic relation between the strain 𝜺 and displacement u is
linear:

𝜺(u) ∶= 1
2
(
∇u + (∇u)T

)
. (3)

We also assume the body to be homogeneous and isotropic, subject to a linear constitutive law. In particular, we consider
the strain 𝜺 as a function of the stress 𝝈:

𝜺 = 𝝈 ∶= 1
2𝜇

(
𝝈 − 𝜆

d𝜆 + 2𝜇
(tr𝝈)I

)
, (4)

where  is the compliance tensor, 𝜇 and 𝜆 are the Lamé parameters, I is the identity matrix in d-dimension and tr ∶
Rd,d → R, defined such that tr(⋅) ∶=

∑d
i=1[⋅]ii, is the trace operator.

The body’s surface 𝜕Ω is divided into three disjoint open sets, the Neumann boundary ΓN , the Dirichlet boundary
ΓD and the contact boundary ΓC, so that 𝜕Ω = ΓD ∪ ΓN ∪ ΓC and Γi ∩ Γj = ∅, for i, j = C,D,N and i ≠ j. Furthermore, we
assume ΓC to be surrounded by ΓN . We prescribe the force gN ∶ ΓN → Rd on ΓN and the displacement gD on ΓD. The
corresponding Neumann and Dirichlet boundary conditions are the following:

𝝈n = gN on ΓN , (5a)
u = gD on ΓD, (5b)
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2370 ROVI et al.

where n represents the outward normal of the boundary 𝜕Ω. In order to close the problem, the contact conditions must
be enforced on ΓC. Let us denote with g the distance in the normal direction between ΓC and the rigid obstacle. We
denote with the subscripts n and t the normal and tangential components. So, we define un ∶= u ⋅ n, 𝜎n = nT ⋅ (𝝈n) and
(𝝈n)t ∶= 𝝈n − 𝜎nn. Then the frictionless contact conditions read as follows:

g − un ≤ 0 on ΓC, (6a)
𝜎n ≤ 0 on ΓC, (6b)

𝜎n(g − un) = 0 on ΓC, (6c)
(𝝈n)t = 0 on ΓC. (6d)

The first inequality (6a) implies that the body Ω can never penetrate the obstacle and for this reason it is called nonpen-
etration condition. The second inequality (6b) states that, in case of contact, only negative pressure is permitted and no
adhesion force can occur. The third equation (6c) is referred as complementarity condition. It says that the body can be
subject to an external pressure only if it is in contact with the obstacle. The last equation (6d) is known as frictionless con-
dition: we assume that no friction force can arise during the contact process. Therefore we seek for sufficiently smooth
displacements u ∶ Ω→ Rd and internal stresses 𝝈 ∶ Ω → Rd,d that solve the Signorini problem, given by (1), (4), (5), (6).

Remark 1. In the constitutive law (4), the strain 𝜺 remains bounded even in the incompressible limit 𝜆 →∞. Thus, a for-
mulation that exploits this kind of relation can easily deal with incompressible and nearly incompressible materials. This
is the case of the dual formulation that will be introduced in the next section. On the other hand, the primal formulation
typically uses the Hooke’s law:

𝝈 = 𝜺 ∶= 2𝜇𝜺 + 𝜆(tr(𝜺))I, (7)

in which the stress 𝝈 is expressed as a function of the strain 𝜺 by means of the stiffness tensor . Since the constitutive law
(7) is not bounded anymore for any entry, locking phenomena arise and it is more challenging to consider incompressible
and nearly incompressible bodies for the primal formulation.

3 THE DUAL FORMULATION OF THE FRICTIONLESS
SIGNORINI PROBLEM

We define the following sets:

Hdiv(Ω) ∶= {𝝈 ∈ L2(Ω) ∶ div𝝈 ∈ L2(Ω)}, (8a)

𝚺 ∶= {𝝈 ∈ [Hdiv(Ω)]d}, (8b)

𝚺t ∶= {𝝈 ∈ [Hdiv(Ω)]d ∶ 𝝈n|ΓN = gN , (𝝈n)t|ΓC = 0}. (8c)

U ∶=
[
L2(Ω)

]d
, (8d)

𝚯 ∶= {𝜸 ∈
[
L2(Ω)

]d,d ∶ 𝜸 + 𝜸T = 0}, (8e)

where the space 𝚺t encorporates the Neumann conditions and the frictionless contact conditions. Furthermore, the
bilinear and linear forms of the problem are the following:

a(𝝈, 𝝉) ∶=
∫Ω
𝝈 ∶ 𝝉 , (9a)

b(𝝈,u) ∶=
∫Ω

u ⋅ div𝝈, (9b)

c(𝝈,𝜽) ∶=
∫Ω
𝜽 ∶ skw(𝝈), (9c)

fa(𝝈) ∶=
∫ΓD

𝝈n ⋅ gD + ∫ΓC

𝜎n g, (9d)

fb(v) ∶= −
∫Ω

f ⋅ v. (9e)
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ROVI et al. 2371

The Signorini problem can be formulated as the minimization of the quadratic functional  ∶ 𝚺 → R over the nonempty
closed convex set K:

 (𝝈) ∶ = 1
2

a(𝝈,𝝈) − fa(𝝈), (10a)

K ∶ = {𝝈 ∈ 𝚺t ∶ b(𝝈, v) = fb(v) ∀v ∈ U,
c(𝝈, 𝜸) = 0 ∀𝜸 ∈ 𝚯,
𝜎n ≤ 0 on ΓC}. (10b)

The equality constraints div 𝝈 = −f and skw𝝈 = 0 are written weakly in (10b) and can be, respectively, enforced by the
Lagrange multipliers, u ∈ U and 𝜽 ∈ 𝚯. The closed convex set K is nonempty due to the fulfilment of an LBB condition.
In Reference 2, it is proven that there exists 𝛽 > 0 such that:

inf
uU∈𝜽∈𝚯

sup
𝝈𝚺∈

b(𝝈,u) + c(𝝈,𝜽)
||𝝈||𝚺(||u||U + ||𝜽||𝚯)

≥ 𝛽 > 0. (11)

Then the solution 𝝈̂ is the minimizer 𝝈̂ = argmin
𝝈∈K (𝝈). For further details on the formulation and the existence and

uniqueness of the solution of the Signorini problem, see.13

4 MIXED DISCRETIZATION

Let h = {K1, … ,KNe} be a shape-regular simplicial mesh ofΩwith Ne elements. The element K is a simplex in d dimen-
sion: a triangle for d = 2, a tetrahedron for d = 3. The subscript h represents the maximal diameter of h. We discretize
the continuous spaces 𝚺, U and 𝚯 on the mesh h by means of the finite element method. We get 𝚺h, Uh and 𝚯h. The
discretization of all the other known functions, such as n, f, gD, gN , g, gives rise to nh, fh, gh,D, gh,N , gh. The discretized
bilinear and linear forms in (9) are denoted with the subscript h. The discrete bilinear forms (9b) and (9c) must satisfy
the discrete version of the LBB condition (11). To this purpose, the discrete spaces must be chosen properly. We opt for
the same triplet as in References 2,12,13:

𝚺h =
[
RT1(h)

]d
, (12a)

Uh =
[
DP1(h)

]d
, (12b)

𝚯h =
[
P1(h)

]d×d ∩𝚯, (12c)

where RT1, P1, and DP1 are, respectively, the spaces of first-order Raviart–Thomas, continuous linear Lagrangian and dis-
continuous linear Lagrangian functions. See References 2,14. We seek for 𝝈h ∈ 𝚺t,h such that it minimizes the functional
h over the closed convex set Kh:

h(𝝈h) ∶ =
1
2

ah(𝝈h,𝝈h) − fa,h(𝝈h), (13a)

Kh ∶ = {𝝈h ∈ 𝚺t,h ∶ bh(𝝈h, vh) = fb,h(vh) ∀vh ∈ Uh,

ch(𝝈h, 𝜸h) = 0 ∀𝜸h ∈ 𝚯h,

𝜎n,h ≤ 0 on ΓC,h}. (13b)

Remark 2 (Householder transformation). In general the condition 𝜎n,h ≤ 0 in (13b) is not a box constraint. Indeed all the
components of the force 𝝈n, for i = 1, … , d, are involved in the single inequality constraint: (𝝈hnh) ⋅ nh ≤ 0. However,
we can change the local coordinate system, by means of an Householder transformation, from Cartesian to an orthogonal
coordinate system with first component identified by the direction of the normal n. In this way, only the first component
is involved in the inequality 𝜎n,h ≤ 0, that becomes a box-constraint in the FE setting. In the following, we assume the
formulation (13) to be written by means of local orthogonal transformations.

Once the spaces, their bases and degrees of freedom (dofs) are chosen, it is also possibile to reformulate (13) in a
vector-matrix form. Let n and m be the dimensions of the spaces, respectively, of the unknown and of the Lagrange

 10970207, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7214 by B
iblioteca universitaria di L

ugano, W
iley O

nline L
ibrary on [25/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2372 ROVI et al.

multipliers related to global constraints, that is, n = dim(𝚺h) and m = dim(Uh) + dim(𝚯h). Furthermore let yh ∈ Yh = Rn

and zh ∈ Zh = Rm be the vectors that collect the values of the dofs, respectively, of 𝝈h and [uh,𝜽h]T . The problem (13)
can be equivalently written in a vector-matrix form. Find yh ∈ Yh such that it minimizes h ∶ Yh → R over the closed
convex set Kh:

h(yh) =
1
2

yT
h Ahyh − yT

h fh, (14a)

Kh = {yh ∈ Yh ∶ Bhyh = hh, lowh ≤ yh ≤ uph}, (14b)

where Ah ∈ Rn×n, Bh ∈ Rm×n, fh, lowh,uph ∈ Rn and hh ∈ Rm. The inequalities lowh ≤ yh ≤ uph are meant
component-wise and encorporate both point-wise equality and box-constraints. Indeed the vectors lowh,uph are
defined as:

[lowh]i =
⎧
⎪
⎨
⎪
⎩

[gN,h]i on ΓN

0 on ΓC and if the component is tangential
−∞ otherwise

. (15a)

[uph]i =
⎧
⎪
⎨
⎪
⎩

[gN,h]i if on ΓN

0 on ΓC

+∞ otherwise

. (15b)

For the sake of simplicity, no Lagrange multiplier is noticeably present in the formulation (14). However, we can explicit
all the Lagrange multipliers, by writing the problem in a vector-matrix form. First, we introduce the Lagrangian function:

Λh(yh, zh, sh, th) =
1
2

yT
h Ahyh − zT

h (Bhyh − hh) − sT
h (yh − lowh) − tT

h (uph − yh), (16)

where the vectors zh ∈ Rm and sh, th ∈ Rn are the Lagrange multipliers, respectively, for the global equality constraints
Bhyh = hh and the box-constraints lowh ≤ yh ≤ uph. In terms of the KKT (Karush−Kuhn−Tucker) conditions, the
problem is rewritten as:

[
Ah BT

h

Bh 0

][
yh

zh

]

=

[
fh

hh

]

(17a)

[yh]i ≥ [lowh]i i = 1, … n (17b)
[yh]i ≤ [uph]i, i = 1, … n (17c)
[sh]i ≥ 0 i = 1, … n (17d)
[th]i ≥ 0 i = 1, … n (17e)

sT
h (yh − lowh) = 0 (17f)
tT

h (uph − yh) = 0 (17g)
zT

h (Bhyh − hh) = 0 (17h)

In the nonlinear MGM of Section 5, for the sake of simplicity, we will focus only on the Lagrange multiplier zh used to
enforce the global constraint Bhyh = hh on the fine level and on the coarser levels as well.

Remark 3. In this paper, as done in Reference 12, we rewrite the space 𝚯h in terms of its components. In particular, for
the case d = 2, we can write:

𝚯h =

{[
0 −p
p 0

]

, p ∈ P1(h)

}

d = 2, (18)

so that we can use only the component p as the new unknown. Thus, the space 𝚯h =
[
P1(h)

]d×d ∩𝚯 is substituted by
Θh = P1(h).
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5 NONLINEAR MGM

The MGM is an iterative solver that aims for optimal convergence. The single kth iteration of the MGM is called V-Cycle.
Then the MGM iterates for k = 0, 1, … , kmax, with kmax ∈ N, and at every iteration k a V-Cycle is carried out. If the number
of iterations required to get convergence is independent of the dimension of the problem, then the MGM is optimal. For
further references, see References 15-20.

A fundamental ingredient of the MGM is the smoother. The smoother is another iterative method that, in few
iterations, can damp the high-frequency components of the error. As a stand-alone solver, the smoother performance
deteriorates with the increase of the dimension of the problem. However, the MGM exploits the smoothing property
by representing the error on different coarser subspaces. In fact, in this way, the low-frequency components become
high-frequency components on the coarser subspaces and can be easily smoothed. Therefore, a V-Cycle can be interpreted
as the application of few smoothing steps on all the frequencies of the error. Thus, with respect to the only smoother,
the overall convergence of the MGM is accelerated and can even produce optimal performances. Therefore, to define a
MGM, we require two main ingredients: a hierarchy of nested spaces and the smoother. We first introduce the coarsening
process in Section 5.1 and then we examine the smoother in Section 5.2.

For standard linear problems, the MGM is optimal. However, for nonlinear and nonstandard problems, achieving
optimality can be more challenging. In this section, we introduce a nonlinear MGM, combined with an inexact active
set strategy, for the problem described in (13) and in (14). In particular, we discuss our design choices to achieve optimal
convergence. The main difficulties to be faced are the following:

1. 𝝈h ∈ [Hdiv(Ω)]d;
2. The semi-positive definiteness of Ah, in the incompressible limit, 𝜆 →∞;
3. The presence of global equality constraints Bhyh = hh;
4. The nonlinear box-constraint 𝜎n,h ≤ 0;

If ΓC = ∅, then the Signorini problem boils down to the linear elasticity problem. Then, the MGM has to take into
consideration only 1, 2, and 3. A working MGM for this case is proposed in Reference 12. However, ifΓC ≠ ∅, the condition
4 is added to the other ones and a nonlinear problem is recovered. In the nonlinear MGM that we propose, the nonlinearity
𝜎n,h ≤ 0 affects both the coarsening, by means of the truncation of the basis functions discussed in Section 5.1, and the
smoother, examined in Section 5.2.

5.1 Truncation of the basis

Let us introduce a sequence of nested meshes {j}J
j=0 such that 0 ⊂ 1 ⊂ · · · ⊂ J−1 ⊂ J ∶= h. We can define the fol-

lowing sequences of nested subspaces:𝚺0 ⊂ 𝚺1 ⊂ · · · ⊂ 𝚺J−1 ⊂ 𝚺J ∶= 𝚺h, U0 ⊂ U1 ⊂ · · · ⊂ UJ−1 ⊂ UJ ∶= Uh,𝚯0 ⊂ 𝚯1 ⊂

… ⊂ 𝚯J−1 ⊂ 𝚯J ∶= 𝚯h. Each 𝚺j/Uj/𝚯j is the coarse space on the level j of the space 𝚺h/Uh/𝚯h, related to the mesh j.
For j = 0, … , J, we can bijectively relate 𝚺j and [Uj,𝚯j] to the spaces of their coefficients, Yj and Zj. For j = 0, … , J − 1,
𝚷j+1

j ∶ Yj → Yj+1 and Qj+1
j ∶ Zj → Zj+1 represent the corresponding interpolation operators between the levels j and j + 1.

The spaces {Yj}J
j=0 refer to the coefficients of the FE functions belonging to {𝚺j}J

j=0. We can bijectively relate each ith
coefficient [yj]i to the ith shape function of the corresponding FE space 𝚺j on level j. Furthermore, since the hierarchy of
the spaces is nested, that is, 𝚺0 ⊂ · · · ⊂ 𝚺J , the basis functions of the coarse levels, for j = 0, … , J − 1, are built as linear
combinations of the basis functions on level J.

At the kth multigrid iteration, the ith dof on level J can become active: [yk
J ]i = [lowJ]i or [yk

J ]i = [upJ]i. We call active
set W k the set of dofs that are active:

W k ∶= {i ∈ N ∶ [yk
J ]i = [lowJ]i or [yk

J ]i = [upJ]i}. (19)

We can assume, at least for this iteration, that all the real values [yk
J ]i, with i ∈ W k, are known and no further corrections

from the coarser spaces are needed in the direction of the corresponding subspaces. We can interpret each dof i ∈ W k

as subject to a momentary boundary condition, that is, [yk
J ]i = [lowJ]i or [yk

J ]i = [upJ]i. These boundary conditions on
the fine level cannot necessarily be represented directly onto the coarser levels. See, for example, Figure 1. However, the
truncation of the fine basis functions is a way to transfer the information gathered so far in W k to the coarser levels. It
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2374 ROVI et al.

F I G U R E 1 On the red edges, we assume the degree of freedoms (dofs) to be active. On the green edges, the dofs are inactive. The fine
information cannot be directly represented on the coarse mesh (B).

F I G U R E 2 The coarse basis function 𝜙C,2 in black is hat function given by the linear combination of 𝜙F,2, 𝜙F,3, 𝜙F,4. If 𝜙F,3 is
truncated, the function 𝜙̃C,2 is now only a linear combination of 𝜙F,2, 𝜙F,4 and no more a hat function.

consists in temporarily removing, for the whole iteration k, all the basis functions on level J corresponding to the dofs in
W k. The coarse basis functions are modified as well, as now they are linear combinations of the truncated basis functions
on level J. As a consequence, the corrections computed on the coarser levels have no influence on the dofs i ∈ W k. For
further reading on truncation, see again References 3,5. As an example of a truncated shape function for one-dimensional
linear Lagrangian elements, see Figure 2. The coarse basis function 𝜙C,2 is a hat function that can be written as 𝜙C,2 =
1
2
𝜙F,2 + 𝜙F,3 + 1

2
𝜙F,4. If the fine central dof is active, its basis function 𝜙F,3 is removed and 𝜙C,2 is consequently truncated

as 𝜙̃C,2 =
1
2
𝜙F,2 + 1

2
𝜙F,4 and is no more a hat function.

In terms of implementation, truncation involves the interpolation operator 𝚷J
J−1 ∶ YJ−1 → YJ . All the rows of

𝚷J
J−1 corresponding to the active dofs in W k are set to zero. We obtain the truncated interpolation operator
̃𝚷J

J−1. Since the box-constraints are considered only at level J, truncation is used only between levels J and J −
1. Thus, for all other levels j = 0, … , J − 2, the interpolation operators are not changed. We define the operator
̂𝚷j+1

j in (21a) so that these conditions are fulfilled. Then, the coarse problems, for j = 0, … , J − 1, are iteratively
defined as:

[
Aj BT

j

Bj 0

][
yj

zj

]

=

[
fj

hj

]

, (20)

where
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ROVI et al. 2375

̂𝚷j+1
j ∶=

{
̃𝚷j+1

j j = J − 1
𝚷j+1

j j = 0, … , J − 2
(21a)

Aj ∶=
[
̂𝚷j+1

j

]T
Aj+1 ̂𝚷

j+1
j , (21b)

Bj ∶=
[
Qj+1

j

]T
Bj+1 ̂𝚷

j+1
j , (21c)

fj ∶=
[
̂𝚷j+1

j

]T (
fj+1 −Aj+1yj+1 − BT

j+1zj+1

)
, (21d)

hj ∶=
[
Qj+1

j

]T
(hj+1 − Bj+1yj+1). (21e)

Each coarse problem (20) at level j depends on the one at level j + 1 and, recursively, on all the other finer levels. Therefore,
the modification of 𝚷J

J−1 into ̃𝚷J
J−1 is sufficient to make the fine information on the active dofs travel from level J to

level j = 0. As an implication, whenever W k changes, we must repeat the assembly of the coarse matrices Aj and Bj, for
j = 0, … , J − 1. Therefore truncation makes necessary the Galerkin assembly everytime a dof is added or removed from
the active set. Dofs related to the essential boundary conditions (5a), (6d), can be considered always active. Thus, the
re-assembly of coarse levels is determined only by the box-constraint (6b). Furthermore, we notice that the assembly on
coarse levels concern only the dofs related to the boundary ΓC. Thus, in principle, it is required only a partial assembly of
Aj and Bj, with j = 0, … , J − 1.

Remark 4. In general, the i th coarse basis function on level j can be the linear combination of shape functions on level J all
of which have been truncated. If this is the case, the truncated coarse basis function coincides with the zero function. Then
the matrix of the saddle point in (20) has no more full rank. Therefore, whenever we compute fine or coarse corrections,
we must enforce a zero boundary condition on the corresponding i th dof. In the following, we assume the system (20) for
j = 0 and the system in Algorithm 2 to be modified accordingly. However, for the sake of simplicity, we will not rewrite
the algorithms and we just highlight this fact in this remark.

5.2 Smoother

The smoother defined in this paper works as a subspace correction method. See Reference 15. In particular, we introduce
two different versions: a linear one on the coarser spaces and a nonlinear one for the level J. For each level j, we define
the decomposition Yj =

∑nj

i=1Yj,i, where each of the nj subspaces Yj,i is related to Yj by means of the interpolation operator
𝚷j,i ∶ Yj,i → Yj. Similarly we do for Zj =

∑nj

i=1Zj,i, with the interpolation Qj,i ∶ Zj,i → Zj. Then the smoother must solve for
local problems on these subspaces. We need to determine the support of these subspace, so that certain requirements are
fulfilled.

As a linear smoother, we use the same discussed in Reference 12, where a MGM for the dual weak form of the linear
elasticity problem is presented. The nonlinear smoother for the level J is defined as the one in Reference 12, but it solves
for local constrained optimization problems. To define a smoother of this kind, the following main difficulties have to be
tackled:

• The error components related to the stress 𝝈 ∈ [Hdiv(Ω)]d cannot be smoothed with standard Gauss–Seidel, that
sequentially acts on one-dimensional subspaces. Indeed, divergence-free components must be tackled by means of a
patch smoother, like the Arnold-Falk-Winther smoother, that computes corrections on larger subspaces. See References
21-23. In Figure 3, we represent the patch subspace for the only stress variable. Since the problem is d-dimensional,
each green circle represents the d-dof components of the stress. The Lagrange multipliers, the red triangles for the
displacement and the blue circles for the rotation, are not present.

• In the incompressible limit, for 𝜆 →∞, the matrix Ah becomes only semi-positive definite and thus it is not invertible.
However, since the LBB condition is fulfilled, the whole system (22) is invertible:

[
Ah BT

h

Bh 0

][
yh

zh

]

=

[
fh

hh

]

. (22)
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2376 ROVI et al.

F I G U R E 3 Patch subspace for tackling divergence-free components of the stress. Only the green stress degrees of freedom (dofs),
𝝈h ∈ RT1, are present. No global equality constraint and thus no Lagrange multiplier, uh ∈ P1 and 𝜃h ∈ P1, is considered. The figure is
presented also in Reference 12.

F I G U R E 4 Subspace related to a patch with Neumann boundary conditions. The LBB condition is satisfied. The figure is presented
also in Reference 12.

For this reason, a monolithic patch smoother that takes into account altogether the main unknown yh and the Lagrange
multipliers zh must be considered. Otherwise, even locally, the subproblem does not satisfy the LBB condition and can-
not be well-posed. However, if we take into account only the internal stress dofs, a pure Neumann boundary condition
is enforced on the patch boundary. In this way, the subproblem is still not well-posed, see Figure 4.

• To get convergence of the whole smoothing process, stress components must be considered also on the boundary of
the patch. In particular, to increase the overall performance, Robin boundary conditions of parameter 𝛼 ≥ 0 can be
enforced. The Robin boundary conditions must be enforced only for dofs that lie on the boundary of the patch that,
however, is not part of the boundary of the mesh. Indeed the parameter 𝛼 is used to enhance the overall communi-
cation process among patches. The effect of these conditions is to damp the components of the stress correction on
the boundary, so that, locally, the global equality constraints (Bhyh = hh) are violated in a minor way. For details, see
Reference 12.

• Since the box-constraint 𝜎n,h ≤ 0 has to be fulfilled on ΓC, on the fine level J, the smoother must solve local constrained
optimization problems. Boundary dofs satisfying 𝜎n,h ≤ 0 lie on the mesh boundary, so they are not subject to the local
Robin boundary conditions. The same happens for all the dofs belonging to the boundary, where no communication
with other patches is required.

The subspace of a patch smoother, that takes into account all the ingredients introduced above, is represented in
Figure 5. An iterative subspaces correction method of this kind is a monolithic patch smoother with local Robin boundary
conditions. Then it can be linear or nonlinear, depending on the nature of the local subproblem.

Once the subspaces are defined, the local matrices and vectors, for j = 0, … , J, can be defined as follows:

Aj,i ∶= 𝚷T
j,iAj𝚷j,i, (23a)

Bj,i ∶= QT
j,iBj𝚷j,i, (23b)

fj,i ∶= 𝚷T
j,i

(
fj −Ajyj − BT

j zj

)
, (23c)

hj,i ∶= QT
j,i(hj − Bjyj), (23d)

while, for j = J, the local box-constraints are:
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ROVI et al. 2377

F I G U R E 5 Subspace referred to a patch where local Robin boundary conditions are enforced on the portion of the boundary patch that
is not a subset of the mesh boundary. The purple stress dofs lie on the boundary of the mesh corresponding to ΓC, ΓD, or ΓN . The black dofs
are related to stress dofs that communicate with other patches. For simplicity, each circle and triangle represents all the dofs components of
the given quantity.

lowJ,i = lowJ − yJ , (24a)
upJ,i = upJ − yJ . (24b)

The dofs related to the subspace Yj,i can be distinguished between internal and boundary dofs, respectively, denoted with
the subscripts “int” and “ext.” On the external dofs, local discrete Robin boundary conditions of parameter 𝛼 ≥ 0 are
applied. We remind that the external dofs are the ones on the boundary patch that are not on the boundary mesh. Indeed,
the Robin conditions are used to improve the global communication process among patches. If a dof is not common
between two or more patches, then no communication has to be improved. We introduce a diagonal matrix G = G(𝛼):

[G(𝛼)]p,q =
⎧
⎪
⎨
⎪
⎩

𝛼max
s

max
(
|(Aext,ext)p,s|, |(AT

int,ext)p,s|, |(B
T
int,ext)p,s|

)
p = q

0 p ≠ q
, (25)

and the new matrix Âj,i that takes into account also the discrete Robin conditions:

Âj,i =

[
Aext,ext + G(𝛼) AT

int,ext

Aint,ext Aint,int

]

. (26)

The subproblem on the fine level J and related to the ith subspace is the following: find yj,i and zj,i so that the following
problem is minimized:

j,i(yj,i) =
1
2

yT
j,iÂhyj,i − yT

j,ifh ∶, (27a)

Kj,i = {yj,i ∶ Bj,iyj,i = hj,i, lowj,i ≤ yj,i ≤ upj,i}, (27b)

where zj,i represents the Lagrange multiplier vector used in the KKT condition to enforce Bj,iyj,i = hj,i. On the other hand,
for j = 0, … , J − 1, the local subproblems can be written as saddle point systems: find yj,i and zj,i that solve the following
system:

[
Âj,i BT

j,i

Bj,i 0

][
yj,i

zj,i

]

=

[
fj,i

hj,i

]

, (28)

5.3 MGM algorithm

The algorithms for the fine and coarse smoothers, where 𝜈 smoothing steps have to be carried out, are presented, respec-
tively, in Algorithm 1 and in Algorithm 2. Finally, all the ingredients introduced so far for our nonlinear multigrid
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2378 ROVI et al.

are condensed in Algorithm 3, where a single V-Cycle of the method is presented. Our nonlinear MGM iterates for
k = 0, 1, … , kmax, with kmax ∈ N, until convergence. The convergence criterion is determined by the norm of the residual
of (22) where the vector components corresponding to the active dofs i ∈ W k are set to zero. If this norm is smaller than
a given tolerance, then we stop; otherwise, we continue to the next V-Cycle.

Algorithm 1. [yJ , zJ ,W]=FineSmoothing (yJ , zJ , W , AJ , fJ , BJ , hJ , lowJ , upJ , 𝜈)

while s = 1,… , 𝜈 do
while i = 1,… ,nJ do
[AJ,i,BJ,i, fJ,i,hJ,i, lowJ,i,upJ,i]=LocalFineProblem(yJ , zJ , AJ ,BJ , fJ ,hJ , lowJ ,upJ) ⊳ Compute (23), (24)
[yJ , zJ ,W]=ConstrainedMinProblem(W ,AJ,i,BJ,i, fJ,i,hJ,i, lowJ,i,upJ,i) ⊳ Solve (27)
yJ ← yJ +𝚷J,iyJ,i
zJ ← yJ +𝚷J,izJ,i

end while
end while

Algorithm 2. [yj, zj]=CoarseSmoothing(yj, zj, Aj, fj, Bj, hj, 𝜈)

while s = 1,… , 𝜈 do
while i = 1,… ,nj do
[Aj,i,Bj,i, fj,i,hj,i]=LocalCoarseProblem(yj, zj, Aj,Bj, fj,hj) ⊳ Compute (23)
[yj, zj]=SolveSaddlePoint(Aj,i,Bj,i, fj,i,hj,i) ⊳ Solve (28)
yj ← yj +𝚷j,iyj,i
zj ← yj +𝚷j,izj,i

end while
end while

We notice that in Algorithm 3 only the global equality constraints are projected onto the coarser levels, while
the box-constraints are not. In principle, also the box-constraints could be projected by means of the monotone
restriction operators, as done for the monotone MGM in References 3-5. The idea would be to define lowj/ upj on
the coarser levels, for j = 0, … , J − 1, so that also the coarse correction does not violate the finer constraints. The
authors have tried the strategy, but the convergence is not beneficially affected and, sometimes, it is even slower.
Furthermore, the fine global equality constraints BJyJ = hJ are just projected onto the coarser levels and, thus, they
already cannot be fulfilled exactly. As also observed in Reference 7, after the prolongation process, the fine smoother
would take care of any violation of the box-constraints. For this reason, satisfying, exactly or in an approximate way,
the box constraints is not necessary: other constraints are already not fully represented on coarser levels. There-
fore, on the fine level J, we use the nonlinear smoother of Algorithm 1. On the levels, j = 0, … , J − 1, we opt for
Algorithm 2.

The two main ingredients of the MGM are the fine smoothing and the computation of the coarse correction. In our
approach, the two are strongly interconnected and depend on the parameter 𝛼. In Section 6, we examine both the non-
linear smoother and the MGM. We will see that the value of 𝛼 can influence the convergence speed of the smoother,
see Figures 6 and 7. For some values of 𝛼, the convergence is better than for other values, especially for small meshes.
For larger meshes, the convergence rate is smaller and is practically the same for different values of 𝛼. However, in all
cases, the norm of the residual always decreases. That means that the nonlinear smoother applied on the fine level is
convergent.

Nevertheless, as a smoother, its convergence rate deteriorates by increasing the dimension of the problem. That is
why a MGM is needed. However, in contrast to the nonlinear smoother case, the MGM convergence is attained only for
certain values of 𝛼, see Figures 8 and 9. The fact that the nonlinear smoother is convergent for different values of 𝛼, while
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ROVI et al. 2379

Algorithm 3. [yk+1
J , zk+1

J , W k+1] = VCycle (yk
J , zk

J , W k, 𝜈pre, 𝜈post)

[yk
J , z

k
J ,W

k]=FineSmoothing
(

yk
J , zk

J , W k, AJ , fJ , BJ , hJ , lowJ , upJ , 𝜈pre

)
⊳ Use Algorithm 1

while j = J − 1,… , 0 do
if j=J-1 then ̂𝚷j+1,k

j =Truncate(𝚷j+1
j ,W k) ⊳ Compute (21a)

else if j < J − 1 then ̂𝚷j+1,k
j =𝚷j+1

j
end if
[Ak

j , f
k
j ,B

k
j ,h

k
j ]=CoarseProblem

(
Ak

j+1, fk
j+1, Bk

j+1, hk
j+1, ̂𝚷j+1,k

j , Qj+1
j

)
⊳ Compute (21b), (21c), (21d), (21e)

if j > 0 then
yk

j , z
k
j ← 0

[yk
j , z

k
j ]=CoarseSmoothing

(
yk

j , zk
j , Ak

j , fk
j , Bk

j , hk
j , 𝜈pre

)
⊳ Use Algorithm 2

else if j=0 then
[yk

0, z
k
0]=Solve(yk

0, zk
0, Ak

0, fk
0, Bk

0, hk
0) ⊳ Solve the problem (20) for j = 0

end if
end while
while j = 0,… , J − 2 do

yk
j+1 ← yk

j+1 + ̂𝚷j+1,k
j yk

j
zk

j+1 ← yk
j+1 +Qj+1zk

j

[yk
j+1, z

k
j+1]=CoarseSmoothing

(
yk

j+1, zk
j+1, Ak

j+1, fk
j+1, Bk

j+1, hk
j+1, 𝜈post

)
⊳ Use Algorithm 2

end while
yk

J ← yk
J + ̂𝚷J,k

J−1yk
J−1

zk
J ← yk

J +QJ
J−1zk

J−1

[yk
J , z

k
J ,W

k]=FineSmoothing
(

yk
J , zk

J , W k, AJ , fJ , BJ , hJ , lowJ , upJ , 𝜈post

)
⊳ Use Algorithm 1

yk+1
J ← yk

J
zk+1

J ← zk
J

W k+1 ← W k

,

,

,

F I G U R E 6 log10 of the Euclidean norm of the residual for the smoother method applied to the dual formulation for the Signorini
problem of Figure 10 with a uniform mesh. Parameters: 𝜇 = 1, 𝜆 = ∞.
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2380 ROVI et al.

,

,

,

,

,

F I G U R E 7 log10 of the Euclidean norm of the residual for the smoother method applied to the dual formulation for the Signorini
problem of Figure 12 with a nonuniform mesh. Parameters: 𝜇 = 1, 𝜆 = ∞.

,

,

,

,

,

,

F I G U R E 8 log10 of the Euclidean norm of the residual for the multigrid method (MGM) applied to the dual formulation for the Signorini
problem of Figure 10 with a uniform mesh. Parameters: 𝜇 = 1, 𝜆 = ∞, number of smoothing steps = 3. Coarse level dimension Ncoarse = 1097.
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,

,

,

,

,

F I G U R E 9 log10 of the Euclidean norm of the residual for the multigrid method applied to the dual formulation for the Signorini
problem of Figure 12. Parameters: 𝜇 = 1, 𝜆 = ∞, number of smoothing steps = 3. Coarse level dimension Ncoarse = 579.

the MGM is not, suggests that a working smoother is not enough. As it is well known from the multigrid literature, the
entire MGM process must be examined by studying all together, the smoothing and the coarsening.

We have already investigated this kind of behavior for a two-grid method applied to the linear elastic case. In Reference
12, we compute an exact coarse correction, so that it is the same for any value of 𝛼. In this way, the process is influenced by
𝛼 only at the fine level. The addition of the coarse correction ensures global communication that only the fine smoother
cannot guarantee. Thus, its computation is still fundamental, as for all MGMs. So, it is clear that the overall convergence
behavior of the MGM depends on how the fine smoothing steps act on the current solution after the addition of the
interpolated coarse correction.

From the experiments, it is evident that the parameter 𝛼 plays an important role. In the linear case, convergence
can be always attained, but the speed depends heavily on 𝛼. In the nonlinear case, the choice of 𝛼 is not only rele-
vant for the convergence speed, but also for the convergence itself. This is because the fine smoothing must not only
smooth the high-frequency components of the error but also take care of the constraints. Thus, it is not sufficient to study
the smoother as a stand-alone solver. The multigrid process has to be examined as a whole and even more so in the
Signorini case.

In conclusion, the parameter 𝛼 used for the smoother on the fine level has a direct impact also on what happens on
the coarser levels, due to the presence of constraints. It does not only govern the communication among the patches, but
it is also important for ensuring the admissibility of the iterate with respect to the global constraints.

6 NUMERICAL EXPERIMENTS

In this section, we examine both our nonlinear smoother on the fine level and MGM for a convex and a nonconvex
domains, respectively in Sections 6.1 and 6.2. We repeat the experiments for different values of 𝛼.
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2382 ROVI et al.

6.1 Uniform square mesh against circular obstacle

Let Ω = [0, 1] × [0, 1] be a square domain, with 𝜇 = 1 and 𝜆 = ∞. On the left and right edges, we enforce free Neu-
mann boundary conditions: gN |left = gN |right = [0, 0]T . On the bottom, we set a uniform vertical displacement gD|bottom =
[0, 0.01]T . The top side is the contact boundary ΓC. The obstacle is described by a semicircle of center c = [0.5, 1.5]T and
radius r = 0.5. See Figure 10. We have tested our nonlinear smoother at the fine level and our nonlinear MGM with
different values of 𝛼 ∈ [0, 1]. However, we discuss the most representative ones: 𝛼 = 0, 0.001, 0.01, 0.1, 1. Parameters
𝛼 > 1 make the MGM method divergent. This can happen even for the linear case, see the numerical experiments in
Reference 12.

We consider the coarsest uniform square mesh 0 to be the one corresponding to Ncoarse = 1097 dofs. We sequentially
refine it, by means of a bisection algorithm. We get the hierarchy of nested meshes {j}9

j=0. Then we examine the MGM for
different fine leves J = 1, … , 9, where level J = 9 corresponds to Nfine = 541,953. We set 𝜈pre = 𝜈post = 3. So we do three
presmoothing steps and three postsmoothing steps at each level, except for the coarsest one, where an exact solver is used.
Solutions of the problem can be found in Figure 11. The convergence results are represented in Figure 8. The convergence
is optimal for 𝛼 = 0.1, since it does not depend on the number of levels and the number of dofs. At least among the values
used, we can state 𝛼opt = 0.1. The more 𝛼 is chosen far away from this value, the more iterations are required for the MGM
to converge, and the more the number of levels has an important effect. Furthermore, if 𝛼 is too far away, then the method
can even not converge. In particular, it is interesting to notice that for too small values of 𝛼, for example, 𝛼 ∈ [0, 0, 0.001],
and for sufficiently fine meshes, the MGM does not converge. Thus, in contrast to the linear case, where 𝛼 = 0 for a mul-
tilevel strategy could be chosen with no problem, now the local Robin conditions are fundamental for the convergence of
the method.

6.2 Square mesh with hole against two circular obstacles with different radii

We consider a square domain Ω = [0, 1] × [0, 1], with a square hole [0.25, 0.75] × [0.25, 0.75]. The Lamé parameters
of the body are 𝜇 = 1 and 𝜆 = ∞. The contact boundary ΓC consist of the top external and the bottom internal edges.
The two circular rigid obstacles have, respectively, centers c1 = [0.75, 1.5]T and c2 = [3∕8, 5∕12]T , and radii r = 0.5 and
r = 1∕6. On the bottom external edge, we enforce a uniform vertical displacement gD|bottom = [0, 0.01]T . On the rest
of 𝜕Ω, we set free Neumann boundary conditions. See Figure 12 for the setting and Figure 13 for the solution of the
problem.

F I G U R E 10 One body contact problem with rigid body obstacle.
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ROVI et al. 2383

(A) (B)

(C) (D)

(E) (F)

(G) (H)

F I G U R E 11 Results for the problem in Figure 10 with a uniform mesh. Parameters: 𝜇 = 1, 𝜆 = ∞. (A) ux; (B) uy; (C) 𝜎xx; (D) 𝜎xy; (E)
𝜎yx; (F) 𝜎yy; (G) 𝜌; (H) five times deformed mesh.
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2384 ROVI et al.

F I G U R E 12 Nonconvex body with a hole in contact with two rigid body obstacles. Contact boundaries are fixed to be the top external
and the bottom internal edges. There, both 𝜎n ≤ 0 and 𝝈n − 𝜎nn = 0 hold. On the bottom external edge a uniform vertical displacement is
enforced, that is, gD|bottom = [0, 0.01]T . Everywhere else, free Neumann boundary conditions 𝝈n = 0 are imposed.

We consider a coarse mesh of Ncoarse = 579 dofs. The coarse mesh is already created so that it is more refined in
the neighborhood of the two obstacles. In this way, we do not require any adaptive-mesh refinement and we can use a
bisection algorithm as for the previous example.

We again use 𝜈pre = 𝜈post = 3. We examine the MGM for varying values of 𝛼 = 0, 0.001, 0.01, 0.1, 1. From Figure 9,
we can state that 𝛼opt = 0.01 make the MGM optimal. Furthermore, the behavior of the MGM is more sensi-
tive to the choice of 𝛼. We can guess that the more complex is the problem, the more 𝛼 has to be chosen
carefully.

6.3 Dynamic reduction of 𝜶

The choice of the parameter 𝛼 ≥ 0 has a very important influence on the convergence of the MGM and depends
on the specific problem. We know that 𝛼 cannot be too large or too small, that is, 𝛼 ∈ (0, 1] . Furthermore, we
know that the closer 𝛼 is to 𝛼opt, the better the convergence. Thus, we can define the “number of iterations”
as a function of 𝛼. Experimentally, we can see that this function has a global minimum 𝛼opt ∈ [0, 1], decreases
in [0, 𝛼opt] and increases in 𝛼 ∈ [𝛼opt, 1]. See Figure 14. We do propose a dynamic strategy that is based on this
assumption.

Given an initial value 𝛼0 ∈ (0, 1], at each kth V-Cycle, we update the value 𝛼k. For simplicity, we have decided to make
𝛼 belong to a countable set A, defined as follows:

A ∶= {25 ⋅ 10−k
, 50 ⋅ 10−k

, 75 ⋅ 10−k
, 100 ⋅ 10−k

, k ∈ N}. (29)

The initial value for 𝛼 is 𝛼0 ∈ A. Then, at the iteration k ≥ 0, given 𝛼k ∈ A, we need to find 𝛼k+1 ∈ A. We define rk =
log10 ||rk||, where rk is the residual of (22) at the kth iteration, with [rk]i = 0 for i ∈ W k. If the kth residual decrease is large
enough, the same value for 𝛼 is kept and thus 𝛼k+1 = 𝛼k. This happens if rk − rk−1 < −𝜂, where 𝜂 is a positive number that
we choose to be 𝜂 = 0.6. Otherwise we decrease the value:

𝛼k+1 = argmax{𝛼 ∈ A ∶ 𝛼 < 𝛼k}. (30)
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ROVI et al. 2385

(A) (B)

(C) (D)

(E) (F)

(G) (H)

F I G U R E 13 Results for the problem of Figure 12. Parameters: 𝜇 = 1, 𝜆 = ∞. (A) ux; (B) uy; (C) 𝜎xx ; (D) 𝜎xy; (E) 𝜎yx; (F) 𝜎yy; (G) 𝜌; (H)
deformed mesh.
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2386 ROVI et al.

, ,

F I G U R E 14 Number of multigrid method iterations, with a maximum of 20 iterations, against 𝛼. Left: problem of Figure 10. Right:
problem of Figure 12.

The whole process is described in Algorithm 4. Given 𝜂 = 0.6, results for Algorithm 4 can be found in Figure 15. We have
considered the cases with the smallest and the largest fine meshes. In the row related to 𝛼, we see that, if Nfine is small
enough, 𝛼 is almost unchanged. On the other hand, for larger meshes, the method is more sensitive to the value of 𝛼0.
However, we see that fast convergence is obtained in all cases if the value 𝛼0 is such that 𝛼0 ≥ 𝛼opt and if it is not too large.
If 𝛼0 ≪ 𝛼opt, no convergence is attained. Furthermore, the number of iterations to get convergence is almost the same for
the smallest or the largest fine mesh.

This means that Algorithm 4 makes the MGM optimal, that is dimension and level independent, if 𝛼0 ∈ [𝛼opt, 1].
If at first, it was necessary to determine from the beginning a value 𝛼 sufficiently close to 𝛼opt, now with Algorithm 4

it is sufficient to choose it in a larger range of values, 𝛼0 ∈ [𝛼opt, 1]. The combination of Algorithm 4 and the MGM
method, if 𝛼0 ∈ [𝛼opt, 1], gives rise to multigrid performance for the dual weak form of the Signorini problem in the nearly
incompressible and incompressible cases.

Remark 5. The set A is arbitrary and we can define it with many more values for a given k. Furthermore, the number of
values could vary for varying k. For example, we could increase the number of values for increasing of the parameter k,
so that the research of 𝛼opt becomes more and more accurate.

Remark 6. We have tried many other different strategies for updating 𝛼. We can mention the most important ones
in this remark. The first one is to optimize 𝛼 on a each patch. However, it is not possible to compute 𝛼 on each
patch independently from the other patches. The role of 𝛼 is to enhance the global communication process among
the patches and this can be done only if 𝛼 is the same for a whole smoothing process. Thus, another strategy could
be to update 𝛼k between different smoothing steps or V-Cycles. For example, we could increase or decrease the
value of 𝛼k. Even though this strategy is admissible, it is unstable and it depends too much on the problem and on
the initial value 𝛼0. A monotone reduction of 𝛼k is the simplest but also the most effective strategy that we have
examined.

Algorithm 4. 𝛼k+1=AlphaReduction(𝜂, rk, rk−1, 𝛼k, A)

if rk − rk−1 < −𝜂 then 𝛼k+1 ← 𝛼k
else 𝛼k+1 ← argmax{𝛼 ∈ A ∶ 𝛼 < 𝛼k}
end if
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,

, ,

,

F I G U R E 15 Results related to Algorithm 4.

7 CONCLUSION

In this paper, we have designed an optimal nonlinear MGM for the dual Signorini problem for nearly incompressible
and incompressible materials, discretized by means of the FE method. A linear MGM for the dual problem of linear
elasticity has been proposed in Reference 12, where a monolithic patch smoother with local Robin boundary conditions
of parameter 𝛼 is used. With respect to the linear elastic case, the main difference of the dual Signorini problem resides
in the negativity of the pressure condition, that is, 𝜎n ≤ 0. In the FE setting, if local Householder transformations are
exploited, such nonlinearity reduces to box-constraints. In order to maintain the overall optimality, the box-constraints
must be tackled on the fine and on the coarser levels. On the fine level, we do so by using a nonlinear smoother that
solves for constrained optimization problems on patches where Robin conditions are imposed. On coarser levels, we
transfer the fine information of the momentary active set by means of the truncation of the basis functions strategy.
Numerical experiments show that our MGM is optimal for certain values of 𝛼. However, the optimal value 𝛼opt is not
known a priori. For this reason, we do also propose an algorithm for its dynamic update at every kth V-Cycle. If the initial
value 𝛼0 ∈ [𝛼opt, 1], then our MGM method, for the dual Signorini problem for nearly incompressible and incompressible
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2388 ROVI et al.

materials, exhibits an optimal convergence rate. Future works on this topic should try to come up with a more general
strategy to determine 𝛼. Nevertheless, the authors are confident that this paper could help the scientific community in
this purpose.
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