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When you can measure what you
are speaking about and express it
in numbers, you know something
about it.

Lord Kelvin
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Abstract

This doctoral dissertation contributes to the field of financial network analysis
by exploring contagion risk estimation through a causal inference framework,
specifically within the Forex market. By integrating causal inference, network
contagion analysis, and machine learning techniques, this research introduces
innovative metrics and frameworks that surpass traditional risk management
methodologies. It offers a nuanced understanding of contagion dynamics among
individual currencies, detailing the pathways of contagion and evaluating the
systemic risk impact of major events, such as the COVID-19 pandemic.

Building on traditional methods, this research introduces a distinctive mea-
sure of contagion in the Forex market through a causal network approach. This
stands in contrast to the widely used instrumental variable and Granger causality
methods. Employing causal inference theory – already validated in fields such
as genetics, medicine, and climate science, to distinguish causality from corre-
lation in observational data – contagion pathways are identified. The resulting
Network Contagion (NECO) measure evaluates both the market as a whole and
individual currencies in terms of diversification and exposure to systemic risk.

Further advancing the domain, the dissertation provides a unique framework
for Value at Risk. This framework takes into account the intricate dynamics of
contagion, improving its dependability in volatile market situations. This new
method specifically addresses long-standing challenges related to non-normality,
non-stationarity, and unforeseen market shocks. When compared with conven-
tional VaR measures, the superior accuracy of this approach is evident.
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Chapter 1

Introduction

This dissertation comprises three essays within the domain of financial network
analysis, focusing on contagion risk estimation through a causal inference frame-
work. It is submitted as a requisite for the attainment of a PhD in Economics from
the Università della Svizzera italiana and of a PhD in Finance at the Swiss Finance
Institute.

In this introductory chapter, we describe the main ideas and lay the theoret-
ical foundation for our research. We start by introducing key financial concepts,
specifically, contagion and its importance in risk management. The analytical
framework used in this dissertation is based on network theory and causal graph-
ical models. Afterward, we provide a summary of the following three chapters
and highlight the main contributions of each of the three essays.

1.1 Contagion

Contagion plays a pivotal role in the spreading and subsequent assessment of
risk associated with asset or financial instrument holdings. This has been in-
creasingly recognised in the past 20 years within financial research [66, 159, 3,
82, 53, 135, 93, 177]. The precise delineation of contagion remains, however,
a subject of ongoing debate within the financial literature. This is highlighted
by the absence of a unanimous consensus on its exact definition [68, 42, 35].
Various interpretations and methods exist to quantify the spread of the infection,
which adds to the complexity of the matter.

Drawing inspiration from epidemiology, which deals with the transmission of
diseases between individuals or organisms, contagion can be seen as the diffu-
sion of financial shocks among market participants [152, 91, 164]. The histor-
ical roots of contagion in the financial domain can be traced back to the 19th
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2 1.1 Contagion

century, when it was frequently invoked to describe the rapid spread of panics
and bank runs [121, 169, 92]. These early conceptualisations mainly revolved
around what today would be categorised under the domain of behavioural fi-
nance, focussing on sentiments, emotions, behavioural biases, and crowd psy-
chology [116, 101].

Prompted by significant events, such as the 1987 market crash and the 1997
Asian financial crisis, contagion emerged as a phenomenon characterised by un-
explained shocks or correlations, setting it apart from anticipated changes called
spillovers and interdependence [178]. The idea of “pure contagion" was devel-
oped, referring to fluctuations in asset prices that cannot be explained by indi-
vidual trends, which are instead believed to be influenced by factors transmitted
from one asset to another [214]. This definition highlights the causal aspirations
of research on contagion: It is crucial to understand both the source and the
target of contagion.

The global financial crisis of 2007-2010 marked a pivotal moment in conta-
gion research, highlighting the need for robust estimation and modelling tech-
niques to enhance preparedness for future crises [156, 71, 58, 82, 52, 195, 20].
This resurgence of interest in contagion stemmed from the recognition of its role
in financial instability and systemic risk. Researchers focused mainly on identify-
ing the sources of contagion and explaining the global financial crisis. As part of
a comprehensive approach to measure and identify contagion, several method-
ological approaches were developed, including a copula approach [179, 218],
vector moving average, and vector autoregression (VAR) models [45, 14, 15].
However, these approaches often lacked a causal interpretation and the ability
to effectively handle system shocks.

For financial regulators, gaining a complete understanding of contagion mech-
anisms and their sources is crucial. This understanding is vital to assessing the
resilience of financial networks, particularly in the context of systemic risk [202].
Regulators and central banks must closely scrutinise contagion dynamics to safe-
guard the stability of the financial system. In a broader context of risk man-
agement, understanding contagion remains paramount. It transcends the tra-
ditional focus on individual asset holdings, extending to a systemic perspective.
This perspective recognises the intricate web of interconnections within finan-
cial markets that can lead to contagion effects [70]. Effective risk management
should encompass both aspects: securing individual asset portfolios and mitigat-
ing systemic risks. Therefore, understanding the dynamics of contagion becomes
essential not only for macroeconomic dynamics, but also for prudent risk man-
agement within the investment and banking sectors, ensuring financial stability
and improving overall risk management strategies.
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1.2 Risk Management and Contagion

Risk management has long been an essential pillar of finance and investment,
guiding strategies to assess, control, and mitigate potential losses associated with
financial decisions [109]. Central to the concept of risk management is the idea
of understanding the vulnerabilities inherent in financial instruments and the
broader market environment. With the evolution of global markets, the com-
plexities surrounding risk management have increased, underpinning the need
to address sources of risk beyond traditional methods [147, 40].

Value-at-Risk (VaR) is a prevalent risk metric used by banks and financial in-
stitutions to quantify the maximum potential loss of a portfolio over a specified
time horizon for a given confidence level [115]. While VaR remains a cornerstone
in risk management, its traditional implementations often make assumptions
about the normality of return distributions and the linearity of asset relation-
ships, which have been criticised as being simplistic and potentially misleading
[16, 90, 157]. This can be particularly problematic when considering the poten-
tial of contagion effects, as contagion inherently challenges these assumptions
[143, 23, 64].

Contagion introduces an additional layer of complexity to risk management
by highlighting the need to account for the interdependencies among different
financial instruments and markets. Traditional risk assessment methods, when
relying solely on the historical performance of a single asset, may be blind to
potential systemic shocks. On the other hand, incorporation of contagion into
the analysis leverages the intricate web of relationships among assets, allowing
the extraction of valuable insights from the behaviour of related assets that could
affect the asset of interest [2].

Thus, it becomes evident that to enhance the accuracy of risk assessment, it is
indispensable to incorporate contagion effects. Recognising the potential of one
asset’s behaviour to be influenced by others permits a more informed evaluation
of potential risks. This approach allows for the incorporation of information
from a spectrum of assets, rather than limiting the analysis to a single asset past
performance.

So far, the discussion about contagion may be confused with inter-correlations.
Although correlations have some predictive power, this is only true if the exter-
nal circumstances do not change. Correlations are not robust against external
shocks, which are common in financial markets. On the other hand, causal rela-
tionships persist in the presence of shock [167, 168, 97]. Therefore, our aim is to
focus on a causal interpretation of contagion: causal contagion. Addressing the
assumptions that underlie most risk assessment methods and integrating causal
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Figure 1.1: Example of a network

contagion provides a more robust framework to protect against unexpected fi-
nancial shocks.

In conclusion, as markets become increasingly interconnected, the impor-
tance of considering contagion in risk management increases. Incorporating
causal contagion aids to capture the multifaceted nature of risks associated with
asset prices. By doing so, it paves the way for more resilient financial systems, ca-
pable of withstanding and mitigating the adverse impacts of unexpected shocks,
ensuring a more stable and secure financial landscape for all market participants.

1.3 Networks Theory in Finance

This thesis relies on network theory to study contagion within financial systems.
Network theory offers a structured approach to understanding the interrelations
of entities within a system. Conceptually, a network consists of interconnected
entities which could be items, individuals, or larger groups such as institutions
or nations. Mathematically, these networks take the form of graphs. In these
graphs, the entities, termed nodes or vertices, are connected by lines known as
links or edges. A good overview of the theoretical background can be found in
[155].

Figure 1.1 shows an example of a network. There are eight nodes that are
varyingly connected by links. Not all nodes have to be connected; for example,
node 4 is on its own and has no relationship, as defined by the model, with the
other nodes. There are two subgroups within the network {6,7} and {1, 2,3, 5,8}
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Figure 1.2: Simple examples of: an undirected network (A), a directed acyclic graph
or DAG (B) and a directed cyclic graph (C).

— each are called connected components. The sequence of links {1 − 3,3 − 8}
is called a path from node 1 to node 8. In network theory, a component of an
undirected network is a subgraph, in which any two nodes are connected to each
other by paths but that is not connected to the rest of the network.

Network theory is increasingly being used to analyse financial issues, par-
ticularly those related to contagion and systemic risk [23, 2, 196, 195, 59]. In
finance, there are two main types of networks that can be analysed. One group
analyses the interconnections between objects that have clearly defined links,
like ownership relationships between companies, and so it is a question of data
mining in order to recreate such a network. When the relationships are not ob-
served, like how different assets and financial instruments affect each other, then
the links themselves have to be estimated before being analysed.

Networks theory further distinguishes between directed and undirected net-
works. Undirected networks show relationships that are either symmetric by
nature or defined in a way where the direction is irrelevant to the researcher.
For instance, in social networks, if one individual is acquainted with another, the
reverse is inherently true. An example of a undirected network in finance can
be one where the links between investors show the presence of having common
assets under management. Figure 1.2(A) shows an example of an undirected
network. A directed network has arrows that go from one node to the other, as
in Figure 1.2(B) and 1.2(C), and describe relationships that are not automatically
reciprocal by nature. Examples of directed networks include payment networks,
where transactions between entities have a clearly defined direction, and trade
networks, where imports and exports between countries are distinctly directed.
Finally a correlation network where nodes represent assets, and edges indicate
a significant correlation in their price movements, are an example of undirected
network. Whereas causal networks, used to depict causal relationships between
various financial variables, are an example of a directed network.

Links can be further quantified by a weight. In the case of import-export
networks for example, the dollar amount of the transactions would represent the
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Figure 1.3: Example of a causal network

weight of the links between each pair of nodes, in this case countries. The density
of a graph or network G is calculated as the ratio of the size of the network, that
is, the number of links, relative to the maximum size, that is, the total number
of possible links. The density for an undirected network G:

density(Gundirected) =
size of G

maximum size of G
=

#l inks
N(N − 1)/2

(1.3.1)

where N is the number of nodes in the network.

For directed networks, there are twice as many possible links as for undirected
networks, because each pair of nodes may be joined by up to two links.

density(Gdirected) =
size of G

maximum size of G
=

#l inks
N(N − 1)

(1.3.2)

Within directed networks, we distinguish between acyclic and cyclic net-
works. An acyclic network represents a network where no path can be found
such that a node is connected to itself. Figure 1.2(C) shows an example of a
cyclic network where there is a path for all nodes such that one goes back to
itself. A network that is directed without such cycles is called a directed acyclic
graph (DAG).

We are going to represent our causal networks as DAGs. We will interpret
Figure 1.3 as saying that X has a causal effect on the variable Y directly and on
Z indirectly. In such a diagram, Y is a child of X and X is the parent of Y. Y and
Z are descendants of X and X and Y are ancestors of Z. This allows us to look at
the acyclicity condition of a DAG such that no variable represented as a node in
our causal network can be an ancestor of itself.
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1.4 Causal Inference in Finance

In finance, it is essential to understand complex systems and their multifaceted
interactions and relationships. While traditional methods provide insight into
correlations, the growing complexity of financial systems requires techniques
that can elucidate causality. Granger causality, instrumental variables, and causal
graphical models present three important methodologies in the field of financial
causality research. Whereas the former two have a long history in economic and
econometrical research, the application of the latter is more rare in this area.
Causal Graphic Models, anchored in causal inference, offer a robust alternative
framework to discern the underlying causal structures [83].

1.4.1 Granger Causality

Historically rooted in economics and econometrics, Granger Causality was intro-
duced as a convenient technique within the broader category of transfer entropy-
based methods for causal analysis [186]. Granger causality relies on temporal
correlations within time series to establish causal relationships [88, 57]. Its core
tenet suggests that if the past values of one variable can improve our understand-
ing of the future trajectory of another variable, then a Granger-causal relation-
ship is said to exist [87, 103].

The foundational idea behind Granger causality is that if a variable X pro-
vides unique information that enhances our prediction of a future value of an-
other variable Y , then X is said to Granger-cause Y . This is underscored by two
essential principles: the causal event precedes its effect, and the causal event
possesses exclusive insights about the subsequent values of the effect.

Formally, the hypothesis for Granger-causality of X on Y can be denoted as:

P[Y (t + 1) ∈ A|I (t)] ̸= P[Y (t + 1) ∈ A|I−X (t)] (1.4.1)

In this equation, P signifies probability, A denotes an arbitrary non-empty set,
and I (t) and I−X (t) represent the information sets available up to time t inclu-
sive and exclusive of X , respectively. Acceptance of this hypothesis suggests that
X Granger-causes Y . However, Granger causality does not imply actual cause-
and-effect relations, but identifies potential predictive chronologically ordered
associations.

The approach is, in fact, not without pitfalls. By leaning heavily on temporal
correlations, Granger causality sometimes falls short in nonlinear systems where
past patterns are not necessarily predictive for future behaviours [205, 102].
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Additionally, inherent assumptions like linearity, the need for stationary data,
and perfect-time measurements can prove restrictive, especially in the dynamic
world of finance marked by abrupt market shifts [144, 193].

Furthermore, the methodology can sometimes skirt the edges of true causal
relationships, potentially missing crucial variables or being ensnared by hid-
den confounders, leading to possibly misleading interpretations [203, 144, 193].
While Granger causality serves as an insightful tool for preliminary explorations
of potential causal dynamics, it is imperative to approach its results with a critical
lens, especially when other causal inference techniques are available.

1.4.2 Instrumental Variables

Instrumental Variables (IV) present an alternative paradigm to Granger causality,
stemming from quasi-experimental designs. At the heart of the IV approach is
the use of instruments, variables that exert influence on predictors, but remain
uncorrelated with the outcome’s error terms. This allows researchers to control
for potential endogeneity, an issue in which predictors could be correlated with
the error term, leading to biased estimates [8].

For a comprehensive grasp of IV, consider a typical econometric model,

y = Xβ + ε (1.4.2)

In this representation, y stands for a T × 1 vector of dependent variables, X
is a T × k matrix of independent variables, β is a k × 1 vector of parameters
we seek to estimate, and ε denotes a k× 1 vector of error terms. Ordinary Least
Squares (OLS) might be the immediate consideration for estimating β . However,
consider scenarios where X might be correlated with ε. This correlation could
lead to biased OLS estimators.

To address this, we introduce a matrix of instrumental variables, Z . This T×k
matrix Z is correlated with X but is not correlated with ε. In other words, it is
only related to y through X . With Z in place, we can construct a consistent IV
estimator as:

βIV = (Z
′X )−1Z ′ y (1.4.3)

The key insight here is that the exogenous variables Z operate as instrumental
variables. The instruments, represented by (Z ′Z)−1Z ′X , offer estimates of the
component of X that remains uncorrelated with ε. The two-stage least squares
is a notable extension of this IV approach. A good overview can be found in
[207].
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This methodology situates itself within a broader framework of quasi-experi-
mental methods. These techniques, including Difference-in-Differences, regres-
sion discontinuity designs, matching, propensity score designs, and comparative
interrupted time series designs, aim to replicate the robustness of experimen-
tal designs in observational settings [190]. Each method offers unique ways to
address common issues in causal inference, from selection bias to endogeneity,
without the need for randomised control.

However, just as with Granger causality, instrumental variables are not with-
out their own set of limitations. The foundational assumptions underpinning
the IV method, especially the validity and relevance of the instruments, can be
challenging to verify in real-world scenarios. Ensuring that the chosen instru-
ment only affects the outcome through the predictor (the exclusion restriction)
is crucial, and any violation could lead to misleading causal estimates [96]. Ad-
ditionally, similar to Granger causality, the IV approach is contingent on specific
model dependencies and, at times, leans on assumptions that may appear strin-
gent or unrealistic in certain contexts [220, 162].

1.4.3 Causal Graphical Models

X1

X2 X3

XN

Figure 1.4: A Directed Acyclic Graph (DAG) GX representing the relationships
among financial assets. Nodes (e.g., X1, X2) represent distinct financial assets,
while the arrows indicate conditional dependencies. For example, an arrow from
X1 to X2 indicates that X2 is conditionally dependent on X1. In this DAG, X2 and
X3 are conditionally independent, but both depend on X1.
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Directed Graphical Models Directed Graphical Models (GM) employ directed
graphs to represent conditional dependencies between random variables. Their
primary objective is to represent the joint probability distribution and to decom-
pose it based on the graph structure. For example, in the context of finance
where we consider N distinct financial assets, their logarithmic returns can be
represented by the multivariate random variable X = (X1, . . . , XN ). In this repre-
sentation, each of the N assets corresponds to a node in our network. This setup
allows us to associate X with a set of N nodes, integrated into a Directed Acyclic
Graph (DAG), as illustrated in Figure 1.4. The absence of arrows within the DAG
GX defines conditional independence. Such a perspective enables us to trans-
form the intricate multivariate distribution into a product of simpler univariate
densities:

PX (x) =
N
∏

i=1

PX i

�

x i | xpa(i)

�

(1.4.4)

where xpa(i) denotes the parent nodes of the i-th node.
In directed GMs, the directed edges primarily signify statistical or probabilis-

tic dependencies. They do not always allude to causal relationships. If a directed
edge comes from node X1 and ends at node X2, it suggests that X2 is conditionally
dependent on X1, given the remaining nodes. However, it does not infer a causal
relationship between X1 and X2. It is possible for a directed GM to represent
contagion effects, but such representation might lack causal underpinning.

In the context of directed GMs, the global Markov property offers a way to
describe conditional independence using the structure of the graph. It states
that if there is no d-connecting path (also referred to as an active trail) between
two sets of nodes, given a conditioning set within the graph, then the associated
random variables for these nodes are conditionally independent based on the
variables in the conditioning set.

This property is notable for its ability to simplify the understanding of condi-
tional independence relationships in a directed GM. Rather than delving deeply
into the joint distribution, one can infer these relationships directly from the
graph. By ensuring that the graph accurately captures the conditional indepen-
dencies of the distribution, the Global Markov property emphasises the utility
and reliability of directed GMs in representing complex distributions and facili-
tating insights into relationships between variables.

Causal Graphical Models Causal Graphical Models are specialised versions of
directed GMs, where the directed edges represent explicit causal relationships as
opposed to mere probabilistic associations. To ensure that a directed GM can be
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interpreted causally, an additional intervention stability criterion is introduced.
This criterion requires that

p (x | do(x1)) =
∏

x i ̸=x1

p
�

x i | xpa(i)

�

(1.4.5)

This equation delineates the essence of causality, differentiating between mere
conditional probabilities and genuine causal interactions. The need for this dis-
tinction arises from the inherent inadequacy of traditional statistical and prob-
abilistic frameworks in capturing causal relationships. The act of intervention,
often denoted as do(x1) or symbolised by ∥x1, essentially “forces a value” on X1,
making X1 independent of its immediate precursors. This renders it possible to
define the causal effect X1 exerts on its dependents. Pearl’s notation, P(Y |do(T )),
conveys the probability distribution of an outcome Y when an intervention modi-
fies the treatment T . Specifically, P(Y |do(T = 1)) describes the outcome’s distri-
bution given the treatment, while P(Y |do(T = 0)) reflects the outcome without
the treatment. Challenges emerge in observational studies where interventions
are not feasible. However, the right hand side of formula 1.4.5, which depends
entirely on observables, suggests that it is still possible to calculate the causal
effect.

Causal Inference If we could randomly intervene in any of the nodes within our
causal GM and measure the consequences, we would have no problem discover-
ing the causal effects within our systems. However, randomised experiments are
not always feasible or ethical. For example, when determining whether smoking
cigarettes causes cancer without randomly selecting individuals and forcing them
to smoke. We cannot make the EUR/USD exchange rate fall 20%, just for our
experiment. This is where causal inference theory such as formula 1.4.5 can be
used and why it has received such attention in fields such as genetics, medicine,
and climate change [163]. It offers a way to estimate causal effects without con-
ducting experiments, using only correlations from observed data. Formally, the
additional assumption needed is that of faithfulness, where it is assumed that no
causal effect exactly cancels out downstream. In fact, two cancelling-out effects
might not even be regarded as causal. If this is satisfied, algorithms like the PC
algorithm can be used to interactively extract from correlation data the causal
structure of a casual graphical model.

PC Algorithm The PC algorithm, named after its developers Peter Spirtes and
Clark Glymour, is a widely adopted constraint-based method for the discovery
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of causal structures in directed graphs, specifically in the context of causal GMs.
Given a data set, the algorithm starts by constructing an undirected graph in
which all pairs of variables are connected. Subsequently, it uses conditional in-
dependence tests iteratively to prune edges that are statistically independent,
thereby revealing the underlying graphical skeleton. In a subsequent step, the
skeleton can be (partially) directed by identifying colliders and applying various
logical rules, such as avoiding the introduction of cycles and additional colliders.

The PC-Stable algorithm is an extension of the PC algorithm, an approach
in causal inference. It enhances the robustness of the original algorithm by ac-
counting for sampling variability and noise in the data, providing a more reliable
identification of causal relationships. By iteratively applying the PC algorithm
on multiple bootstrapped samples of the data and aggregating the results, PC-
Stable produces a more stable and accurate causal graph representation of the
underlying relationships among variables. This is the algorithm that will be used
as a basis of this dissertation research on causal continuity networks.

The primacy of causal inference is gaining momentum, particularly in are-
nas such as predictive modelling, stress testing scenarios (akin to central bank
evaluations under hypothetical conditions such as a 20% plunge in the USD),
and disciplines spanning machine learning to software engineering. Embracing
causal inference accentuates models transcending mere predictive capabilities,
illuminating the foundational causal architectures. Such insights are instrumen-
tal in fostering informed decision-making, especially within intricate scenarios.

1.5 Overview of the Dissertation

This section covers an overview of each of three essays. Chapters 2 and 3 can
be found as co-authored papers with Ernst C. Wit and Sam Cook in [177] and
[176].

1.5.1 First Essay: A New Way of Measuring Effects of Financial
Crisis on Contagion in Currency Markets

Although various approaches to quantifying contagion have been proposed, many
of them lack a causal interpretation. This lack of causality can result in unsta-
ble and non-robust predictions, especially during times of financial crises. We
will present a new measure for contagion among individual currencies within
the foreign exchange market and show how the paths of contagion work within
the Forex market using causal inference. This approach will allow us to pinpoint
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sources of contagion and find which currencies offer good options for diversifi-
cation and which are more susceptible to systemic risk, ultimately resulting in
feedback on the level of global systemic risk. Special attention is paid to the
effects of the global pandemic COVID-19.

We introduce a parsimonious causal model to describe market fluctuations in
currency returns. From the causal interpretation of the model, we define a new
measure of network contagion (NECO) that can be used to assess the market as
a whole and analyse individual currencies. We examine the dynamic behaviour
of the NECO measure in the Forex market between 2000 and 2021. Our find-
ings indicate that financial contagion increases for most currencies during times
of crisis, with the notable exception of safe haven currencies such as the Swiss
Franc.

1.5.2 Second Essay: Causal Network Contagion Risk

Building upon the foundational concepts of contagion network analysis intro-
duced in the first essay, the second essay delves deeper, exploring the intricacies
of contagion and its implications for risk management. This chapter introduces
an innovative approach to understanding risk in financial markets and a new
way of calculating the Value at Risk (VaR): the Causal Network Contagion Value
at Risk (Causal-NECO VaR). This approach quantifies VaR by especially consid-
ering the inherent risk dynamics caused by contagion. In doing so, it seeks to be
a more reliable measure, particularly during unpredictable market conditions.
The use of causal-based contagion makes the method less affected by spurious
correlations and consequently more robust to change, such as sudden volatility
clustering.

A major highlight of the chapter is the integration of causal inference-based
networks and copula transformations in VaR computation. By taking this route,
the authors effectively address challenges such as handling skewed distributions
and adapting to external shocks in the market. The Causal-NECO VaR design
is particularly attractive for its invariance properties, which can be vital during
transitional financial periods like economic crises. This method does not merely
present another alternative to VaR computation; it introduces a robust measure
designed with the intricacies of real-world market disruptions in mind.

The most significant contribution of this essay lies in its potential to transform
risk management decisions by eliminating spurious correlations. It successfully
lays the foundation for incorporating causal inference in finance, showcasing
the tangible benefits of deciphering the underlying causal system from existing
financial data. In conclusion, this essay not only presents a novel method for VaR
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computation; it also paves the way for a more comprehensive and causal under-
standing of financial risk, setting the stage for more accurate risk management
strategies in the face of financial unpredictability.

1.5.3 Third Essay: Conformal Updating and Causal Network Con-
tagion

Expanding on the core insights of the first two essays, this third essay navi-
gates the intricacies of risk estimation during unprecedented financial turbu-
lence. Specifically, we address the enduring challenges associated with non-
normality, non-stationarity, and unexpected market shocks. To address these
challenges, we introduce the Conformal Causal Network Contagion Value at Risk
(CCNC VaR), a novel framework that combines the resilience of causal network
contagion analysis with an innovatively adapted form of conformal updating,
tailored specifically for the VaR metric.

Conformal updating, an innovative technique primarily rooted in machine
learning, is used to enhance the reliability of predictive models by fine-tuning
predictions adaptively as new data becomes available, without altering the foun-
dational prediction model. Recognising the method’s potential, we have tailored
it for our context by enabling it to adjust to uncertainties stemming from model
assumptions and potential changes in the underlying causal structure. Rather
than sticking to a static algorithm, our adaptation of conformal updating allows
for slow adjustments to the targeted VaR levels (αt), ensuring the model remains
robust, all while accounting for potential misspecifications that might skew ex-
post results away from the desired confidence level (α).

The integration of conformal updating, a technique borrowed from the realm
of machine learning, ensures our framework’s accuracy, especially in scenarios
where market disruptions are abrupt and wholly unexpected. We validate the
effectiveness of our framework by applying it to the Forex market, a domain
that has recently faced increased volatility, structural shifts, and notable central
bank interventions during the COVID-19 recession. A comparative analysis with
standard VaR measures from the literature underscores our method’s superior
accuracy.

In conclusion, the CCNC VaR not only offers a refined theoretical foundation
but also holds considerable practical merit, effectively handling non-normality
and non-stationarity in financial data. This essay underscores the potential of
an integrative approach to capture the complexities of risk in today’s financial
landscape.



Chapter 2

A New Way of Measuring Effects of
Financial Crisis on Contagion in
Currency Markets

The following chapter was published as:
Katerina Rigana, Ernst-Jan Camiel Wit, and Samantha Cook. A new way of mea-
suring effects of financial crisis on contagion in currency markets. International
Review of Financial Analysis, 90:102764, 2023. doi:10.1016/j.irfa.2023.102764.

2.1 Introduction

In order to see how resilient financial networks are to contagion, financial reg-
ulators need to understand how contagion propagates and where the sources of
contagion reside [202]. There are various ways to define financial contagion.

The first descriptions of contagion are predominantly in terms of what to-
day we would call behavioural finance — in terms of sentiments, emotions, be-
havioural biases and crowd effects [93]. Modern research into contagion within
the academic literature began to appear in the wake of the 1987 market crash and
exploded during the 1995 Mexican crisis, the 1997 Asian financial crisis, and the
related 1998 Russian financial crisis that followed. The main goal was to explain
how a series of potentially local issues could spread from country to country, cre-
ating a financial crisis with global repercussions [55, 35]. These events caught
many economists off guard and so most papers during this period concentrate
on explaining [55, 30], or explaining away [67, 36, 119], this new market be-
haviour. Most of the definitions of contagion during the period define it as shocks
or correlations that are unexplained or unexpected or significantly higher than

15
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usual, in contrast to expected and explainable changes and correlations, called
spillovers and interdependence [178].

The 2007-2010 global financial crisis rekindled interest in analysing conta-
gion. This time around there has been less research into whether contagion exists
and more into how to estimate and model it properly to be ready for future crises.
During this period we see the appearance of network theory applications that set
the tone for future research [156, 71, 58, 82, 195, 20].

There have been various approaches to contagion estimation: the copula ap-
proach [179, 218]; the vector moving average and variance decomposition, re-
lated to the Impulse Response modelling [45, 14, 15]; and new approaches of
Vector Autoregression (VAR) estimation in structural models [39, 57, 79, 78,
11, 5, 80, 4]. Each of these methods has its own advantages, but they lack
an intervention-based causality interpretation. Traditionally when it comes to
causality economists have relied on the Granger causality concept [201], but this
concept merely relies on temporal correlations rather than structural causation
[205].

We will analyse contagion through changes in price due to factors spreading
from currency to currency that cannot be explained by individual trends. This
type of contagion can be interpreted as “pure contagion” defined by [214]. Com-
bining causal networks with a structural VAR model, we are able to extract from
the log-returns of the exchange rates which part of a change in the value of a
currency is caused by the idiosyncratic characteristics of the currency and which
part is caused by contemporaneous contagion effects from other currencies. The
structural VAR part of our approach is an extension of [79]. Similar VAR ap-
proaches have been used to analyse systemic risk within the foreign exchange
market; however, none look at the causal direction of such effects.

In order to analyse the contagion paths in the foreign exchange market, we
will recreate directed partial correlation-based networks using the causality con-
cepts of [161] extended into practical methods by [198] and [37].

The remainder of this paper is organised as follows. In Section 2.2, we first
explain the basic concepts of network theory and causal inference and then de-
scribe how we estimate contagion using Causal Graphical models within a struc-
tural VAR model. In Section 2.3, we present the dataset and in Section 2.4 we
analyse contagion within a subset of currencies on the Forex market during the
years 2000-2021; and in Section 2.5 we conclude by summarising the main ad-
vantages of this approach to measuring contagion in finance, while noting the
remaining challenges.



17 2.2 A Structural Equation Model for Contagion

2.2 A Structural Equation Model for Contagion

Our measure of contagion within a network is based on the theory of causal
graphical models. In this section, we will introduce the main underlying concepts
and notation. A network is a collection or system of interconnected objects such
as things, people or groups of people (like institutions or countries, for example).
In mathematics, these interconnections are represented as graphs, defined as a
set of nodes or vertices that are connected by links or edges.

In this work, we will analyse directed networks by estimating causal links that
are not directly observed between financial instruments or assets. Such networks
are called causal networks, a specific type of graphical model (also often called
Bayesian or belief networks). These networks incorporate probabilistic relation-
ships between nodes in the form of a Directed Acyclic Graph or DAG [108, 160].

Bayesian networks can be analysed using several different types of algorithm.
There are the so-called constraint-based algorithms that look for conditional in-
dependence [37], and the main algorithm of this group, the PC algorithm [198],
is the one we will use in Section 2.2.3. The other group of algorithms is the
so-called score-based algorithms, which maximise a causal objective function. A
comparison between these methods in terms of speed and accuracy can be found
in [187]. Importantly, they find that “constraint-based algorithms are more ac-
curate than score-based algorithms for small sample sizes.”

2.2.1 Causal Graphical Models

Here we present the mathematics underlying the causal graphical models. We
consider the N assets that we want to analyse and their logarithmic returns are
represented as the multivariate random variable X = (X1, . . . , XN ). Each of these
N assets will represent a node in our network. We can analyse X as a directed
graphical model (GM) represented by a causal DAG. The arrows in the network
GX are to be interpreted in terms of conditional independence (CI) with the ad-
ditional causal interpretation.

A DAG GX is causal for a probability distribution f (x) if f (x) recursively
factorizes with respect to GX and the following intervention formula holds for all
subsets A in V , the set of all nodes:

∀A⊆ V f (x∥x∗A) =
∏

α∈V\A

f (xα|X pa(α) = xpa(α))
�

�

�

XA= x∗A
(2.2.1)

where f (x∥x∗A) = f (x |do{XA = x∗A}) is the distribution of X under the interven-
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tion in which a subset A of the nodes V in the network have been imposed a value
x∗A. An example of this could be when a central bank decides to fix its exchange
rate with respect to another currency and we want to see the impact on the other
currencies in the market. The conditional distributions f (xα|X pa(α)) are assumed
stable under interventions that do not involve xα — hence the condition that α
represent nodes in V but not in in the intervention subset A. This conditioning by
intervention allows for a much more specific causal interpretation than the con-
ditional distribution. The random variable of interest X is a causal GM if it is a
directed GM, as described above, such that the intervention factorization in Equa-
tion 2.2.1 holds. This definition is often referred to as Lauritzen’s causal graph
with interventions by replacement [131] or as Pearl’s do-intervention [161].

2.2.2 Defining Contagion

In this section, we will present a network-based measure for contagion. It is
based on the causal graphical models presented in the previous section, com-
bined with an autoregressive approach to contagion as described in [79]. [79]
introduce a structural vector autoregression (VAR) to analyse the contagion im-
pact on the cost of insuring public debt during the European sovereign debt crisis.

We propose a structural equation model for the evolution of the log returns X i t

on a financial asset i at time t through a structural VAR consisting of an autore-
gressive part AR(i, t) and a network contagion part that we will call NECO(i, t):

X i,t
︸︷︷︸

LogReturn on Asset i

← α0,i +

AR(i,t)
︷ ︸︸ ︷

L
∑

ℓ=1

αℓi X i,t−l +

Contagion=NECO(i,t)
︷ ︸︸ ︷

∑

j∈pa(i)

β ji X j,t
︸︷︷︸

Assets that affect asset i

+ ϵi,t
︸︷︷︸

Noise
(2.2.2)

where ℓ are the number of considered lags for the autoregressive part, αℓi are the
autoregressive coefficients at lag ℓ for asset i and β ji the causal effects of asset
j on asset i or X j on X i. In the causal literature, causal effects are defined as
the partial derivative of the expected log return d

d x j
E(X i,t |X−i,t , X i,t−ℓ) which in

our case is equal to β ji. Just like we did for the autoregressive part, lags can
be added to the NECO part. We leave this extension for future research. The
arrow in Equation 2.2.2 is to be interpreted in a generative manner, such as in a
structural equation model [25]. The right-hand side is the driving force behind
the value of X i t .
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Equation 2.2.2 can be summarised as:

X i t = α0,i +ARi t +NECOi t + ϵi t (2.2.3)

where the NECOi t measures the totality of the contagion effect on the market.
As a measure of the impact of contagion on the price of an individual asset, we
propose the Network Contagion Factor (NECOF), which is computed as follows:

NECOF(i) =
σ2

i,NC

σ2
i,AR +σ

2
i,NC +σ

2
i

= 1 −
σ2

i,AR +σ
2
i

σ2
i,AR +σ

2
i,NC +σ

2
i

(2.2.4)

where σ2
i,AR = V (ARi t), σ2

i,NC = V (NECOi t) and σ2
i = V (ϵi t), under the assump-

tion that ARi t , NECOi t and ϵi t are independent. This independence assumption
is realistic, given that the considered contagion is assumed to be instantaneous
and therefore by definition isolated from the idiosyncratic effects ARi t .

The NECOF is expressed in percentages and shows the impact of contagion
on the return of the asset i. A NECOF of 0% would mean that contagion has no
impact on the considered asset. On the opposite end of the spectrum, a NECOF
of 100% would indicate that the impact of contagion for the given asset is ab-
solute. The NECOF measure alone is very useful to identify which assets are at
higher risk of outside influence - information that can be useful for investment
and diversification strategies alike. We call the NECO a network-based measure
because it depends on the underlying causal graph.

2.2.3 Identifying Contagion Paths

This section shows how the causal networks and causal NECO coefficients β ji in
Equation 2.2.2 are estimated. Once we estimate the NECO coefficients and the
NECOF we can recover the contagion factor for each financial instrument. In
order to estimate the causal coefficients correctly, we first need to establish the
causal structure, which means finding all the causal parents for every considered
asset i in our graph.

We estimate the causal structure using a more robust version of the standard
PC-algorithm from [198] called the PC-stable algorithm [37]1. The PC-Algorithm
uses two steps in order to find the sources of contagion, which are summarised
in A.1. We add a third step to estimate the size of the contagion effects, β ji,
by performing a series of linear regressions on Equation 2.2.4. Given the set of
parents for each asset, the non-zero β ji are to be estimated from the obtained

1We perform the PC-Algorithm using the pcalg package in R as described in [118, 94]
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DAG. If at the end of Step 2, we achieve a Completed Partially Directed Acyclic
Graph (CPDAG), a subset of Markov equivalent DAGs that can explain our data,
we will also find a multiset of possible NECO estimates β̂i j. We can combine
these into a range estimator as in [137]. Once we have estimated the NECO we
can estimate the NECOF of interest for each financial instrument in our model
using the following equation:

ÚNECOFi = 1−
RSSN ECO(i)

SS(i)
(2.2.5)

that we obtain by applying the Type II2 Sums of Squares to Equation 2.2.3 such
that:

RSSN ECO(i) =
∑

t

�

X i,t −ØNECO(i, t)
�2

and SS(i) =
∑

t

�

X i,t −µi,t

�2
(2.2.6)

2.2.4 Community Detection

Using the contagion paths established in the previous section we can identify
communities of financial instruments. These communities are groups of nodes
that are more connected among themselves within the group than with the other
groups. These groups are called communities, clusters or modules. Communities
can be seen as sub-graphs that have specific properties not shared by the whole
network and this allows for a next-level analysis of the network, moving from
a single node to a more meaningful structure. These communities can be also
seen as meta-nodes when representing and analysing very large networks, where
considering and plotting each singular node would not be practically feasible.

There are many different algorithms to identify communities within a net-
work; for a comparative study see [130]. We will be using the Louvain algorithm
from [24] to establish communities among the nodes, because it is a benchmark
among the clustering algorithm thanks to its robust and efficient results, making
the results easier to compare with other studies.

2.2.5 Creating Dynamic Contagion Maps

In the previous sections, we defined a measurement of the contagion and the
sources of this contagion, assuming that the NECO and its coefficients would
remain constant for the entire time period in consideration. In this section, we
will add a dynamic component, and in doing so not only allow for the AR(i, t)

2Similar to Type I but not dependent on the order of entry of terms into the model [225].
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and NECO(i, t) in Equation 2.2.2 to change with time but also for the whole
causal structure of our contagion graph to change with time. A dynamic version
of (2.2.2) is written as,

X i,t ← α0,i +
L
∑

l=1

αt
l,iX i,t−l +
∑

∀ j∈pa(i,t)

β t
j,iX j,t + ϵi,t (2.2.7)

describing a dynamic causal graphical model. From an inferential point of view,
we will estimate the coefficients in a piecewise-constant way. At each timepoint t
we evaluate a new DAG and the associatedÚNECOF estimates, creating a sequence
of contagion maps. The contagion effect is considered to be contemporaneous
within the considered window of time [t − 1, t]. The length of the window will
vary with the use case and depends on the data being analysed, what kind of
short or long-term trends are associated and the purpose of the study.

2.3 Description of Empirical Exchange Rates 2000-2021

The Forex market is an important financial market, trading $6.6 trillion per day
[221]. Given that the most traded exchange rates are those over the USD we
consider the interaction of 23 exchange rates over the USD for the years 2000-
2021 as published daily by the Federal Reserve of New York. This allows us to
evaluate the networks among highly traded currencies by expressing their value
in terms of the US Dollar, the most liquid of all currencies, based on reliable
historical data. Alternative approaches include using exchange rates based on a
special drawing right (SDR) as in [215] or a benchmark based on the average, or
geometric average, of different exchange rates as in [107] and [81]. SDR reflects
the price of a basket of five major currencies and is periodically rebalanced and
published on a daily basis by the International Monetary Fund (IMF). Another
option for the base currency is to choose a currency that is of lesser importance,
but still not completely illiquid. An example of this approach can be found in
[122]which uses the Turkish Lira as a base. A comparison of different currencies
being used as the base currency can be found in [128]. One final approach taken
by [63] is that of ignoring the base currency issue altogether and using each
exchange rate as a separate financial asset.

We consider the log returns on the spot exchange rates. Table 2.1 shows
summary statistics for the 23 currencies considered here. The distribution of log
returns on the exchange rates is often assumed normal, but as with most finan-
cial assets, there is the presence of fat tails as can be seen in the last column
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Code Currency Name Minimum Median Mean Maximum StDev Skewness Kurtosis Jarque Bera
AUD Australian Dollar -0.0771 -0.0003 -0.0000 0.0822 0.0080 0.6261 11.8178 31335
BRL Brazilian Real -0.0967 0.0000 0.0002 0.0867 0.0104 -0.0052 8.3711 15548
CAD Canadian Dollar -0.0507 0.0000 -0.0000 0.0381 0.0056 -0.0714 5.6143 6998
CHF Swiss Franc -0.1302 0.0000 -0.0001 0.0889 0.0067 -1.1203 35.1797 275708
CNY Chinese Yuan Renminbi -0.0202 0.0000 -0.0000 0.0182 0.0015 0.1610 22.2054 109425
DKK Danish Krone -0.0580 -0.0000 -0.0000 0.0494 0.0061 -0.1555 4.5734 4662
EUR Euro -0.0463 0.0000 -0.0000 0.0300 0.0060 -0.0775 2.4789 1369
GBP British Pound -0.0443 0.0000 0.0000 0.0817 0.0060 0.6707 10.6119 25385
HKD Hong Kong Dollar -0.0045 0.0000 0.0000 0.0033 0.0003 -1.2511 26.3958 155978
INR Indian Rupee -0.0376 0.0000 0.0001 0.0394 0.0044 0.1993 10.2796 23481
JPY Japanese Yen -0.0522 0.0001 0.0000 0.0334 0.0062 -0.3187 4.3307 4251

KRW South Korean Won -0.1322 -0.0001 -0.0000 0.1014 0.0067 -0.5492 50.7331 571339
LKR Sri Lankan Rupee -0.0339 0.0000 0.0002 0.0641 0.0029 2.7858 75.1652 1260440

MYR Malaysian Ringgit -0.0366 0.0000 0.0000 0.0277 0.0035 -0.2993 8.5426 16271
NOK Norwegian Krone -0.0644 -0.0001 0.0000 0.0612 0.0077 0.2195 4.7907 5135
NZD New Zealand Dollar -0.0593 -0.0002 -0.0001 0.0618 0.0082 0.3886 4.7691 5180
SEK Swedish Krona -0.0530 -0.0000 0.0000 0.0547 0.0074 -0.0544 3.8772 3338
SGD Singapore Dollar -0.0238 -0.0001 -0.0000 0.0269 0.0033 0.0239 4.9815 5507
THB Thai Baht -0.0353 0.0000 -0.0000 0.0447 0.0037 0.1773 11.5344 29547

TWD New Taiwan Dollar -0.0342 0.0000 -0.0000 0.0320 0.0031 -0.3537 16.1074 57676
VEB Venezuelan Bolivar -11.5129 0.0000 0.0028 5.8126 0.1857 -37.8364 2974.1949 1963940216
ZAR South African Rand -0.0916 -0.0001 0.0002 0.0843 0.0108 0.2563 4.3936 4341

Table 2.1: Overview of the summary statistics for the dataset of log returns on
individual 23 exchange rates over the USD, for the period January 2000 to April
2021. The higher the Jarque Bera Test the less normally distributed the data is (all
of the statistics have a p-value < 0.0001 ). There are 5325 observations for each
currency, with no missing values.

of Table 2.1. [112] analyse this problem, without finding any better alternative
that would hold for every currency and time frame. Some studies even find that
trading strategies based on the assumption of log-normality do in fact maximise
profit [184]. The presence of fat tails will cause the significance level for the indi-
vidual conditional independence tests within the PC-Algorithm to be empirically
slightly higher than the nominal value.

Figure 2.1 shows the series of 23 log returns for our time frame, from January
2000 until April 2021. As we can see the CNY, HKD, LKR, MYR and VEB present
periods of very low variance. These currencies have been pegged to the USD,
whereby the Central Banks keep their exchange rate within a clearly pre-defined
band. Within these bands, the market is allowed to operate, and therefore some
level of contagion can spread to and from these currencies. China switched from
a fixed exchange rate to a less restricted regime in July 2005, with Malaysia fol-
lowing suit. This has resulted in the value of those currencies getting closer to
their perceived market value — for the MYR an appreciation and for the CNY
a depreciation. The Chinese government is only slowly allowing more flexibil-
ity of the exchange rate [174], but it remains a highly influential rate and is
the first emerging market currency to be held as a reserve by the International
Monetary Fund (IMF). The Venezuelan Bolívar (VEB) also shows an unusual his-
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Figure 2.1: Log returns for each currency. The financial crises highlighted are the
Global Financial Crisis (August 2007 - April 2010) with the following Sovereign
Debt Crisis (May 2010 - December 2012), the Chinese Market Crisis (June 2015 -
February 2016) and the COVID-19 Recession (starting March 2020).

tory of returns. This dynamic reflects periods of hyperinflation and the subse-
quent government-sanctioned devaluation of the currency. We will show that
our model is capable of handling even these extreme types of behaviour.

In Figure 2.1 the highlighted areas show the financial crisis considered in the
subsequent analysis. The financial crises highlighted are the Global Financial
Crisis (August 2007 - April 2010) with the following Sovereign Debt Crisis (May
2010 - December 2012), the Chinese Market Crisis (June 2015 - February 2016),
and the COVID-19 Recession (starting March 2020). All exchange rates have
been impacted by the Global Financial Crisis at least in some way; even highly
managed currencies like the Venezuelan Bolvar (VEB) or the Chinese Yuan Ren-
minbi (CNY) show some turbulence during this period. In the following sections,
we will analyse the impact of these crises on contagion in the Forex market.

2.4 Contagion in the Currency Markets

This section will present the results of applying the methods in Section 2.2 to the
Forex returns data described in Section 2.3. There is a vast amount of research
into the interdependencies within the Forex market. The scope of this paper is to
show how this innovative causal approach can find these dependencies within a
single model with an immediate and easy interpretability of the results and gain
a better understanding of the underlying dynamics of the market.
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Figure 2.2: Correlation heatmap for the time period 2000-2021

What a static approach using the correlation networks can reveal is shown
in Figure 2.2, which represents the correlation heatmap between the currencies
considered. The heatmap can detect the outline of the main clusters present on
the Forex market. The clusters include a European cluster (EUR, NOK, SEK, DKK,
GDP, CHF), the Commonwealth cluster (AUD, NZD, CAD, ZAR, SGP), a small
cluster of emerging economies (BRL and MXN) and then a somewhat sparse
geographically based cluster of the Asian currencies. Applying the models from
Section 2.2.1 we will be able to look more deeply and in more detail at the
dynamics within the Forex of these currencies.

Figure 2.3 shows the causal network created from the complete set of returns
data (2000 - 2021). The nodes are the 23 currencies in our dataset, and the links
represent the causal effects of contagion from one currency to the other. The
colour of the nodes shows the community classification, based on the Louvain
clustering algorithm described in Section 2.2.4. The green arrows indicate a
positive contagion coefficient, and the red arrows a negative coefficient of the
corresponding causal effect. The width of the links reflects the strength of the
causal effect.

The network shows some obvious connections, like the Euro (EUR) having an
impact on the Danish Krone (DKK) exchange rate, and whole contagion paths,
like the one starting from the Euro (EUR) to the British Pound (GBP), to the Cana-
dian Dollar (CAD) and ending with an effect on the Mexican Peso (MXN). Most of
the contagion coefficients are positive, apart from the effect of the Japanese Yen
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Figure 2.3: Causal network showing the interconnections and contagion paths
within the 23 foreign exchange rates for years 2000-2021. Note that node colours
represent Louvain clusters; green (red) arrows indicate a positive (negative) conta-
gion coefficient of the corresponding causal effect; the width of the arrows reflects
the strength of the causal effect.

(JPY) on the Mexican Peso (MXN), which is indicative of the carry trade activity
between the pair [95, 165, 226]. With causal networks, we can establish where
the currency of interest is positioned and, from a systemic risk point of view,
where contagion could come from. Informed readers will be aware of some of
these connections. Since causal inference has not been applied to the analysis of
contagion within the Forex market before, we use them to validate our model.
A key takeaway from this section is how much more informative Figure 2.3 is
compared to Figure 2.2. Furthermore, our approach enables us to quantify these
causal effects and compare them through time, as seen in the next Section.

2.4.1 Overall Development of Contagion on Forex

We estimate the model in Section 2.2.5 with a time window of one year (250
business days), rolled over every three months. This allows us to analyse the
development of contagion on the Forex from a macroeconomic point of view. For
each contagion map, we estimate the NECOF for each time period. We consider
and analyse three contagion indices: Market NECOF, number of clusters and
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market density. We tested the reaction of these indices to major financial crises
and reported detailed results in A.3.

Figure 2.4(a) shows the evolution of the market NECOF. The contagion in-
creased significantly at the beginning of the 2000s from a NECOF of 17% to
37%, and then oscillated at a higher level, between 25% and 35%. For a more
in-depth analysis of the change in contagion network statistics over time, refer
to A.3. The rise at the beginning is caused by some of the currencies that were
formerly pegged to the USD becoming freer, and hence more connected to the
other currencies on the Forex. This initial rise is interrupted by a peak around
the sovereign debt crisis of low- and middle-income countries that began in 2002
as defined by [129]. We tested the reaction of the three contagion indices to ma-
jor financial crises and reported the results in A.3. After major events during
financial crises, the market NECOF tends to increase (p-value < 0.0001). This is
particularly evident in the case of the Global Financial Crisis (p-value = 0.001),
the Sovereign Debt Crisis (p-value < 0.0001), and the COVID-19 Recession (p-
value = 0.036). The NECOF values appear to be promising indicators of what is
happening in the economy and how systemic risk evolves during periods of high
uncertainty.

Figure 2.4(b) shows how clustering evolves over time and in response to
economic events. The clustering effect is represented by counting the number
of clusters present on the network using the Louvain algorithm: the lower the
number of clusters, the higher the clustering of the network. The high number of
clusters at the beginning of the considered period is driven by the many curren-
cies that were pegged to the USD during the 2000s, whose exchange rates over
the USD remained nearly constant. If a currency does not show any variation,
it will by definition be counted as its own cluster, hence increasing the overall
number of clusters detected. As currencies became more freely traded, similarly
to the market NECOF rose, so did the number of clusters drop. This negative
relationship is confirmed by a correlation between the market NECOF and the
number of clusters of -0.6. Clustering is an important topic when analysing the
Forex topology, especially during periods of financial crisis [215, 122, 128, 216].
There is no evidence that the number of clusters in the causal contagion network
changes during periods of financial crisis (p-value = 0.38), although in the next
section we will find that the structure of the clusters changes.

Figure 2.4 (c) shows that Forex is predominantly a sparse graph with a rel-
atively low market network density overall. The effect of globalisation and in-
creased interconnectedness is reflected in the positive trend in density develop-
ment over the first decade of the 2000s. Once the Global Financial Crisis began in
2007, however, the density decreased slightly and then levelled off. What we can
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Figure 2.4: (a) The market NECOF as the average over all the currencies; (b) The
number of Louvain clusters as a measure of clustering; (c) The market network
density of the Causal Network, which is the percentage of links to all possible links.
The financial crises highlighted are the Global Financial Crisis (August 2007 - April
2010) with the following Sovereign Debt Crisis (May 2010 - December 2012), the
Chinese Market Crisis (June 2015 - February 2016) and the COVID-19 Recession
(starting March 2020).

observe is that the contagion network tends to become denser during financial
crises (p-value = 0.009).

2.4.2 Contagion Clustering in Forex

In Figure 2.5 we show the evolution of the clustering over 21 years of data. The
structure of these cluster plots is similar to that of an adjacency matrix and shows
the rows and columns labelled with the different currencies. However, instead
of showing links or link weights, the matrix shows how often pairs of currencies
belong to the same cluster. The more often two currencies are assigned to the
same community by the Louvain algorithm during the specified time frame, the
darker and larger the dot at the intersection of the pair becomes. When the
dot linking two currencies is a solid dark blue, it indicates that the currency pair
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remained in the same cluster throughout the considered period. The Euro (EUR)
and the Danish Krone (DKK) are the only pairs with a perfect 100% connection.
Empty cells represent currencies that were never in the same cluster during the
specified time frame.

The classically assumed geographically based clusters can be roughly identi-
fied within these cluster plots — but the structure is not so obvious and, more
importantly, it changes in reaction to economic events. The main clusters can be
roughly divided into a European cluster, a Commonwealth cluster, an Emerging
Economies cluster and finally an Asian cluster. Within the European clusters, we
have some clear oddities. The British Pound (GBP) switches between the Euro-
pean cluster and the Commonwealth cluster. The Japanese Yen (JPY) is often
more connected to the European cluster and specifically the Swiss Franc (CHF),
especially during a crisis. The behaviour of CHF and JPY during a financial crisis
is very interesting and will be described in more depth in Section 2.4.3.

As stated in the previous section, we do not find a significant change in the
number of clusters before and during a financial crisis. Where we find a differ-
ence however is in the stability of memberships within a cluster. Stability refers
to whether a currency remains within the same cluster between two periods. In
Figure 2.5 the increased stability is reflected in the prevalence of large, dark blue
dots and fewer, smaller, light dots. By testing the stability of memberships within
a cluster, we find that during the Sovereign Debt Crisis, the clustering stability
was higher than that in the Global Financial Crisis (p.value=0.0139).

This effect is visible when we compare Figure 2.5(b) and Figure 2.5(c) – the
clusters in Figure 2.5(c) (the sovereign debt crisis) are much more defined than
the ones in Figure 2.5(b) (the Global Financial Crisis). The European cluster
fully de-constructed during this period and does not really ever recover its origi-
nal structure, unlike the other clusters. The European sovereign debt crisis seems
to have caused structural changes to the contagion structure between the Euro
and the rest of the European currencies, with effects still lasting to date. These
changes cannot really be attributed to the growth and change within the Euro-
zone as such, because most of these changes took place well before the sovereign
debt crisis hit.

During the turbulent times of the Global Financial Crisis, there was a notable
shift in clustering. The Commonwealth cluster, traditionally comprised of na-
tions like New Zealand, Australia, Canada, South Africa, and occasionally Britain,
merged with the New Economies cluster, which includes countries such as Mex-
ico and Brazil. The clustering effect of the Global Financial Crisis period can be
seen much more clearly when considering changes in clustering during specific
time periods than when considering clusters using the full 21-year time series.
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During the Chinese Market Crash, the market NECOF only minimally went
up and the global number of clusters did not change much during this crisis, but
Figure 2.5(e) shows some signs of clustering nonetheless. The European, the
Commonwealth and the Emerging Economies clusters are notably more defined.
There are some changes within these communities: the Norwegian Krone (NEK)
and Swedish Krona (SEK) join the Commonwealth cluster and the Indian Rupee
(INR) and the South African Rand (ZAR) move from their respective clusters to
the Emerging Economies cluster. It is notable that India, although a member of
the Commonwealth, finds itself rarely if at all within the Commonwealth cluster.

Unsurprisingly, the Chinese Market Crash seems to have had the largest im-
pact on the structure of the Asian cluster. Even though Figure 2.5(e) covers a
relatively short period, the Asian currencies are spread all over the map and al-
most do not look like a clear cluster at all. During the crisis, several of the Asian
currencies found more connection with currencies outside of the Asian cluster.
The Chinese Yuan Renminbi (CNY), for example, interacts much more with other
currencies than in the previous periods. Also, interesting is the behaviour of the
Swiss Franc (CHF) during this crisis — it completely leaves the Euro-centred
community and has only connections with Asian currencies, probably due to its
traditional role of a safe-haven currency [98, 43, 111].

The period from March 2016 until February 2020 is a period of relative calm,
and the clustering resembles the first plot of similar calm, apart of course from the
European cluster. One other interesting mention is the Japanese Yen (JPY) which
finally moves away from the Asian cluster almost completely. In March 2020
the COVID-19 Pandemic became a global crisis, and the COVID-19 Recession
officially started. We see from Figure 2.4 that the market contagion expressed
in the market NECOF increased immediately at the beginning of the pandemic,
but the number of clusters did not change very much. What changed, as in the
previous crisis, is the redistribution of the currencies within the clusters them-
selves — but in a different and more dramatic fashion. Figure 2.6 shows this
redistribution. The network is much more compact and in fact, the density does
sharply go down, i.e. the network has fewer links. This means we have new
clustering with a lower number of links, but more significant links that lead to
a much higher contagion on the markets. The CNY and the INR join the Eu-
ropean cluster, whereas the GBP, SEK and NOK move together to join the Com-
monwealth cluster. That the impact of the COVID-19 pandemic on the contagion
map and clustering within the Forex market would be somewhat different from
the previous financial crisis was to be expected — even the markets reacted very
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Figure 2.5: These figures show the evolution of the clustering over time and the
impact of financial crises. The results are normalised to account for the different
lengths of each period. We subdivide our dataset into the following periods: (a)
Beginning Period: January 2000 - July 2007; (b) Global Financial Crisis: August
2007 - April 2010; (c) Sovereign Debt Crisis: May 2010 - December 2012; (d)
Intermediate Period January 2013 - May 2015; (e) Chinese Stock Market Crash:
June 2015 - February 2016; (f) Post-Crisis Period: March 2016 - February 2020.

differently. The stock markets fell faster than ever before3 and the impact of the
COVID-19 Recession seems to be having an impact on the global structure of
the world economy [32, 206]. The cross-border financial interventions and for-
eign aid spending reached unprecedented levels during the COVID-19 pandemic
[158]. All of these could also explain changes within the clustering.

2.4.3 Individual Network Contagion Dynamics

In this section, we will examine some interesting behaviours of individual curren-
cies to illustrate the different types of scenarios that can be encountered on the

3For example the S&P 500 index fell by 34% between Feb. 19 and March 23, which consti-
tutes the fastest fall in market in history, for further details see [181].
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Figure 2.6: (a) Impact of the COVID-19 Recession on the contagion-based clustering,
for the period starting in March 2020. (b) Louvain clustering of the contagion
network during the COVID-19 Recession. Green Cluster: CHF, CNY, DKK, EUR, HKD,
INR, JPY, KRW, MYR, SGD, TWD; Orange cluster: BRL, MXN, ZAR; Blue cluster:
AUD, CAD, GBP, NOK, NZD, SEK, THB, VEB; Turquoise Cluster: LKR. The countries
in black are not part of the analysis.

Forex market. Figure 2.7 shows how the individual network contagion factors,
NECOFs, evolve for the chosen currencies: Swiss Franc (CHF), Danish Krone
(DKK), Euro (EUR), British Pounds (GBP), Japanese Yen (JPY) and Malaysian
Ringgit (MYR). EUR and DKK represent currencies with consistent high and low
levels of contagion, respectively. As the membership of the cluster changes fre-
quently in the GBP, it demonstrates the importance of dynamic analysis. In times
of crisis, CHF and JPY are considered safe haven currencies. MYR was pegged
to the USD until 2005 when it was abandoned and became a floating currency.
We look at MYR in more detail to demonstrate how our model can deal with
artificially controlled market movements.

We previously discussed the pair EUR and DKK and their very high correla-
tion. As described in [210], this is a well-known special relationship and serves
as a good example of how to read the causality network and NECOFs. Consid-
ering the causality links we are able to see immediately that it is the EUR that
influences the DKK and not vice versa, as shown in Figure 2.8 and 2.2(b). The
NECOF measure is much more meaningful than a correlation analysis in describ-
ing the risk of contagion of a financial asset. Two currencies can have a very
high correlation and yet completely opposite NECOFs. In this example, the DKK
shows a NECOF of almost 100% most of the time, with a median of 99.6%, while
the NECOF of the EUR is usually at 0% — increasing significantly only once at
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Figure 2.7: NECOF through time for the currencies CHF, DKK, EUR, GBP, JPY and
MYR. The financial crises highlighted are the Global Financial Crisis (August 2007 -
April 2010) with the following Sovereign Debt Crisis (May 2010 - December 2012),
the Chinese Market Crisis (June 2015 - February 2016) and the COVID-19 Recession
(starting March 2020).

the beginning of the Global Financial Crisis in 2007. It is evident that this causal
relationship between the EUR and the DKK has been maintained throughout the
21-year period considered, demonstrating that the model can identify such a rela-
tionship simply by reviewing observational data on the prices, without requiring
further analysis.

The next interesting example of a NECOF path is that of the GBP. In the pre-
vious section, we saw that the GBP has a tendency to switch clusters between
Europe and the Commonwealth cluster. It usually is a currency that influences
others and generally has a low NECOF around 0% — this is in line with what [79]
find for the United Kingdom based on Corporate Default Swap spreads (CDS). In
our study, however, we find that GBP’s NECOF doesn’t stay at zero throughout.
This is especially true for the Global Financial Crisis (p-value = 0.0292). From a
qualitative point of view, we see a NECOF for the GBP rise from 26% before the
start of the Global Financial Crisis to 57% in the first months. Curiously, the GBP
was hardly ever under the influence, from a contagion point of view, of the EUR
— unless, again, there was a crisis. The GBP experienced contagion from the
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Figure 2.8: Subgraph of the Causal Network for the GBP in 2019.

EUR in 2007, during the Global Financial Crisis, and then during Brexit, around
the time when the first draft withdrawal agreement was negotiated and endorsed
by the EU members at the end of 2019, as seen in Figure 2.8.

The CHF is traditionally considered a safe-haven currency [98, 43, 111]. The
CHF presents a relatively volatile and often high NECOF which is in contrast to
the assumed safety of the CHF. CHF has a mean NECOF 62% and the highest
volatility in terms of NECOF among all of the currencies considered, with a stan-
dard deviation of 28.5. What speaks for the safe haven status is CHF’s behaviour
during periods of financial crises: CHF NECOF reacts significantly to a period of
financial crisis (p-value < 0.0001) and it goes down during the Global Finan-
cial Crisis (p-value 0.0016), the Sovereign Debt Crisis (p-value < 0.0001) and
Chinese Market Crisis (p-value < 0.0001). The details of all the tests performed
are in A.3. The low NECOFs in Figure 2.7 during the European Sovereign Debt
Crisis are an example of this behaviour. The sharp fall of the NECOF at the end
of 2014 was due to the intervention of the Swiss central bank, which tried to
peg the currency to the EUR to prevent the increase in the value of CHF. This
attempt was however scrapped in January 2015. And after the Chinese market
crash passed, the NECOF shot up again.

In the past, the JPY was seen predominantly “as a low-interest rate or funding
currency” [98], but the most recent studies classify it as a safe haven currency
[27, 111]. As with the CHF, the JPY seems to appreciate in value during a crisis
and during high volatility periods [173]. As Figure 2.7 shows, the JPY presents a
very low NECOF most of the time. A median NECOF of 0% and a mean NECOF
of 7% seem to validate the consideration of the JPY as a safe-haven currency.
We further find a dependency of the CHF on the JPY, illustrated in Figure 2.8.
The arrow goes from the JPY to the CHF in 75% of the networks (never in the
opposite direction), which indicates that there is contagion that goes from the
JPY to the CHF. The causal effect from the JPY to the CHF and the lower NECOF
of the JPY in general would suggest that the JPY could be even considered a
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better safe haven than the CHF. This is exactly what [62] and [43] find when
comparing these two currencies in terms of safe-haven characteristics.

The last currency we will consider in detail is the MYR. The MYR shows the
NECOF evolution of an Asian currency that was pegged to the USD until the 2005.
The NECOF fell in 2008 and after the 2015 Chinese stock market crash, mainly
because of the intervention by the Bank Negara (the Central Bank of Malaysia)
to prevent the exchange rate over the USD from plummeting. At times of impor-
tant intervention by a central bank, the contagion from other currencies clearly
decreases. The Malaysian economy and financial sector have grown during the
20 years considered here, and it is interesting how resilient to contagion it seems
to be, unlike the other South Asian currencies maintaining an average NECOF of
20.5% with a maximum of 57% during the Sovereign Debt Crisis. Details for all
NECOFs of all currencies can be found in the A.2.

2.5 Conclusion

Financial contagion measures have always had causal aspirations. In this work,
we have unified this concept of causality with a defined measure that allows
for a quantifiable causal interpretation of contagion relationships on the Forex
market. We corroborate and extend results from different studies within one
unifying framework and are able to answer very practical questions like how
contagion spreads on the Forex market and which currencies are at the highest
risk of contagion at any given time.

We have recreated a series of causal networks based on 23 exchange rates
over the USD, spanning over 21 years, and present both the overall development
of contagion on the Forex market as well as individual network contagion dy-
namics. We have shown how to read these causal networks as contagion maps
to pinpoint sources of contagion and how the contagion paths on the Forex mar-
ket evolve through time. We were able to identify a new promising group of
financial indicators that take contagion and systemic risk directly into account.
The newly identified measure of network contagion (NECO) seems to be of value
for both a market level evaluation and the analysis of single currency alike. We
discussed the network contagion factors’ (NECOF) evolution for a subset of cur-
rencies, to demonstrate how this metric can be used to identify and evaluate a
currency from an investment and hedging point of view.

In contrast to correlation networks, we obtain causal directions. Because
they are inherently sparse, causal networks do not have to be filtered, e.g. via
Minimum Spanning Tree (MST) methods [140], and can be easily analysed and
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evaluated. [120] compare the use of different centrality measures in construct-
ing MSTs for the Forex market, (including degree, betweenness, closeness and
eigenvector). Filtering is found to be important, but results are sensitive to the
exact measure of correlation used as well as the distance measure. There are
other filtering methods and so the choice of the method itself will also affect
results [195, 213, 188, 141].

The application of causal graphical models to financial data is in its infancy
and there are still interesting challenges. In our case, we assumed normality for
log returns and found our sample to be stationary, but a model that could deal au-
tomatically with non-normality, fat-tails, heteroskedasticity and non-stationarity
of the data would be advantageous for further applications in finance. The trad-
ing on the Forex market is active 24 hours a day [85] so we were able to use prices
for all currencies at the same time instant. This is not the case for most other mar-
kets and assets being traded, and hence the impact of asynchronously observed
returns on the analysis would have to be taken into account [28]. Whereas the
contemporaneous contagion is the most significant in a fast moving and liquid
market, it could also be of interest to consider economic cycles and longer time
delays. Lastly, any measurable confounder can be added to our model, should
we want to see how other variables, e.g. interest rates or inflation, impact the
contagion. For unmeasured confounders and latent variables the Fast Causal
Inference algorithm (FCI) [199, 200] can be used. Although our approach has
been validated on the Forex market, it can be extended to markets of many other
financial instruments. Looking at applications beyond financial contagion, our
approach fits well the recent demand for explainability of machine learning and
artificial intelligence methods [126].



Chapter 3

Causal Network Contagion Risk

3.1 Introduction

Risk is a crucial aspect of financial research, encompassing its definition, mea-
surement, management, and pricing [182, 147]. Whatever its precise definition,
there seems to be a consensus that contagion plays a role when evaluating the
risk of holding an asset or financial instrument [66, 159, 3, 82, 53, 135, 93, 177].

Causal inference refers to strategies that allow one to draw causal conclusions
based on data [161]. This is particularly challenging when experiments are not
feasible and the researcher must rely solely on observational data [100, 217].
Separating correlation from causality has always been an important issue in any
field of empirical research. The increased use of machine learning and AI meth-
ods has not only led to a major overhaul in the approach to handling data but
a careful re-evaluation of causal algorithms for big data [175, 171, 209]. In
medicine, this has already led to a renewed evaluation of causal inference meth-
ods [75, 192, 89, 125, 219]. As machine-learning and AI methods evolve, more
and more research fields are adopting causal inference principles for actionable
results, explainability, and safety in applications [7, 163, 194, 185].

The finance industry has been more reluctant to embrace novel developments
in causal inference, partly as a result of the age-old conundrum of correlation
versus causality [60, 105]. However, recently there have been some examples
of using causal inference to improve stress testing [72], empirical research in
the accounting field [86] and assessing causal factors determining the success
of start-ups [74]. In finance, the two most common modeling approaches are
Granger causality [87, 57] and Instrumental Variables [8]. Granger Causality
can be seen as part of the transfer entropy based methods of causal analysis
[186] and for nonlinear systems [102, 154]. The instrumental variable designs

36
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Figure 3.1: The Value at Risk, VaRα, is the α quantile of the distribution of a finan-
cial instrument. In the example above, the VaR for α= 5% is depicted for a normally
distributed instrument both cross-sectionally (left) and longitudinally (right).

are part of the quasi-experimental approaches [190].
Most modelling approaches of the effect of contagion on VaR do not have

any explicit causal outset [64]. Most contagion-based VaR approaches, such as
CoVaR [212], SDSVaR [3] and various other alternative attempts to integrate
contagion within the risk management and the VaR measure [166, 151, 12],
focus on correlations in systemic risk rather than causality.

In principle, the use of causal models offers the prospect of robust prediction
[167, 168, 97]. If cause and effect are correctly identified, then the prediction
will offer clear risk guarantees under any novel circumstances. There are some
drawbacks as well. Any causal analysis is subject to model uncertainty, or it is pos-
sible that in stable financial circumstances, purely predictive methods perform
better. However, as the financial system is subject to constant external shock, it
is rare for the financial system to be in an ergodic equilibrium state. The financial
system is subject to continuous outside influences, such as systemic, behavioural,
and regulatory moves, ranging from wars to central bank interventions.

In this paper, we apply a causal network approach to risk management. In
Section 3.2 we introduce a risk measure that relies on network contagion to cap-
ture volatility and spillover effects. When assessing the risk position, we consider
price changes in related assets that have been identified from the data. Section
3.3 analyses the performance of this new approach in a simulation study. Section
3.4 applies the method to the Forex market and Section 3.5 concludes.

3.2 Value at Risk and Network Contagion

Value at Risk (VaR) is an established risk measurement used in finance to evaluate
and compare the risk of holding a specific financial instrument or portfolio of
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different instruments. The VaR represents the α% quantile loss under normal
market conditions for a specific holding time period [115, 114, 133, 48]. The
future value of an asset can be considered as a random variable. Identification
of the distribution of the value of this instrument X gives access to the value at
risk at any level α,

VaRα(X ) = inf{x ≤ R : FX (x)> α} (3.2.1)

where FX is the cumulative distribution function of X [10]. This corresponds to
the α-quantile qα(X ) of the distribution, shown in Figure 3.1. In practical terms,
the portfolio value or return will be smaller than the corresponding VaR over the
holding period with a probability of at most α per cent.

Usually in finance, the Value at Risk is computed on the basis of the returns
or log-returns on investment instead of the price for their statistical properties
and computational ease. The returns-based VaR is then easily recomposed into
the dollar loss VaR using the current price of such a portfolio. The Value at Risk
measure has been developed within the investment banking sector to estimate
market risk of their market positions, a task becoming more difficult especially
due to the high volatility and interconnectedness of the markets and an increas-
ing use of derivative instruments.

The base of the VaR measure, looking into establishing the probability of a
loss, can be traced back to [54]. A more specific risk measure resembling VaR
dates back to the 1920s, when the New York Stock Exchange imposed capital
requirements on its member firms based on a similar metric [104]. The mod-
ern development of the VaR resembling today’s approaches started in the 1980s
[73]. It gained prominence in the 1990s when VaR was made the official risk
measure for capital requirements for all financial institutions [19]. The success
of the VaR measure was facilitated by the development of more accurate and rig-
orous estimation techniques. The most prominent example of such a method is
the RiskMetricsT M by J.P.Morgan [136]. For further analysis and more in-depth
history see [50] and [115].

The VaR has some caveats. It does not represent the absolute worst-case
scenario. Moreover, it has to be recomputed for each portfolio, as it is not an
additive measure. Furthermore, it is not a coherent measure of risk, as the VaR
of a portfolio can be larger than the VaR of the individual components of such
a portfolio [10]. It is also important to choose the appropriate computational
method for the particular scenario of interest. Nevertheless, the advantages of
VaR are (i) it is an easily interpretable, standardized metric, (ii) it can be used
to compare financial instruments and investments (iii) its probabilistic definition
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allows it to be tuned to the risk profile of the investor. An alternative to the
value at risk is the expected shortfall (ES). The ES tends to need more data to be
accurate [223], but it is a coherent measure of risk. There are ways to link the
VaR to the ES [208].

3.2.1 Most Common Ways to Estimate Value at Risk

There are various methods for estimating the VaR. A parametric approach is
the variance-covariance method, also called the delta-normal method, popu-
larised by J.P. Morgan as the RiskMetrics method [136]. The parametric variance-
covariance approach assumes a distribution for the returns on each instrument
whose parameters are then estimated to find the VaR. The most common method
is based on the multivariate normal distribution, which leads to an easy and
quick estimation of the VaRVC

α
(X ) = µx − zα · σx , where µx is the mean and

the σx the standard deviation of past realisations of the log-return X , and zα is
the Z-score of a standard Normal distribution at α%. The biggest drawbacks of
this method are the, not always realistic, underlying assumptions of normally
distributed log-returns, a constant volatility through time, and no correlations
among the financial instruments.

To counteract the latter drawback, volatility can also be modelled using ARCH
and GARCH models. When dealing with non-linearly priced instruments like
options, the VaR is usually estimated using a Monte Carlo or stochastic simulation
[133, 134]. The Monte Carlo VaR is computed as the quantile of the simulated
returns X sim, simulated from a chosen stochastic model for the behaviour of X –
usually a GARCH process, VaRGARCH

α
(X ) = q̂α(X sim)

In nonparametric VaR models, the joint risk factor distribution is constructed
using historical data rather than assuming a specific functional form [29]. The
easiest method would be to resample the past returns within the estimation
window and pick the α-quantile for the VaR directly. The Historical Simula-
tion (HS) develops this idea further by bootstrapping from the past returns,
VaRHS

α
= q̂α(X boot), where X boot represent the increased sample through boot-

strapping. The HS is an easy and fast method. Even though it is nonparamet-
ric, it still relies on an assumption of stationarity in distribution and specifically
volatility, often violated in practice due for example volatility clusterings [90].

Filtered historical simulation (FHS) combines the best of both parametric and
non-parametric approaches [17, 18]. FHS runs an HS on volatility-rescaled past
returns, thus maintaining the non-parametric nature of HS while allowing for
varying volatility. Rescaling is done in two steps within a conditional volatility
model (e.g., GARCH or AGARCH). Returns are first standardised by the estimated
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volatility of the day of the return and then rescaled by the forecasted volatility
for the VaR holding period, VaRFHS = qα(X boot

re−scaled) This transformation reflects
current market conditions and thus requires shorter estimation windows to sim-
ulate extreme events. In contrast to other Monte Carlo based approaches, the
correlation matrix does not have to be estimated, as all rescaled returns at a
specific event time are sampled together. Extreme observations or time-varying
correlations may not be adequately considered by the FHS VaR [170]. Extensions
of the FHS have been proposed by [110] as the Volatility-weighted HS and by
[146], who combine FHS with extreme value theory. For comparisons, see [48],
[142] and [170].

3.2.2 Definition of Causal Network Contagion Value at Risk

In this section, we propose a novel VaR procedure, based on causal network con-
tagion. The method is based on the causal framework proposed by [177]. What
separates this approach from standard dependencies analysis like [113], is the
ability to identify the direction of the contagion: which assets influence, or ex-
port contagion risk to, each other and vice versa. The method does not assume
any a priori causal model and considers only what can be gathered through ob-
served data — through the external manifestation through the path of returns
for each asset and their co-dependences.

Gaussian Causal VaR. In this paragraph, we first derive the form for the value
at risk in case the causal contagion system can be described by Gaussian noise.
We assume that the log returns for each instrument X i,t is described by a struc-
tural equation model (SEM), consisting of an autoregressive part and a contagion
part,

X i,t
︸︷︷︸

LogReturn of Asset i

← α0,i +

Autoregressive
︷ ︸︸ ︷

L
∑

ℓ=1

αℓi X i,t−l +

Contagion
︷ ︸︸ ︷

∑

j∈pa(i)

β ji X j,t
︸︷︷︸

Assets that affect asset i

+ ϵi,t
︸︷︷︸

Noise
(3.2.2)

where L is the number of lags considered for the autoregressive part, α0 is the
intercept, αℓi are the autoregressive coefficients of lag ℓ for asset i, pa(i) are the
causal parents of instrument i, β ji are the causal effects of instrument j on instru-
ment i, and εi,t are the error terms, assumed to be independent and normally
distributed with variance σ2. Contagion here is defined as the instantaneous
causal structure of the financial system.
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The SEM can be written more concisely in matrix form:

X t = (1− B)−1 (α0 + A · X t−1:t−ℓ + ϵt) (3.2.3)

where εt ∼ N(0,Σ), where A is the matrix of the autoregressive coefficients and
B the matrix of contagion effects. So conditional on the previous log returns, the
log return is given as

X t |X t−1:t−ℓ ∼ N
�

(1− B)−1 (α0 + A · X t−1:t−ℓ) , (1− B)−1Σ(1− B)−⊤
�

(3.2.4)

Using the distribution in Equation 3.2.4, we can incorporate the causal network
contagion (NECO) into the VaR definition. The Gaussian Causal VaR for each
instrument i corresponding to a level of risk at α% is given as

VaRNECO
α

(X(t,i)) =
�

(1− B)−1 (α0 + AX t−1:t−ℓ)
�

i
− zα
Æ

[(1− B)−1Σ(1− B)−⊤]ii
(3.2.5)

General Causal VaR. The definition of the Causal VaR above is based on the
assumption of a multivariate normal distribution for the instruments considered
for the causal networks. This assumption represents log-returns relatively well,
but it is still often violated in reality where financial instruments are concerned.
In this paragraph, we will relax the normality assumption by using the Gaussian
copula transformation to capture the fat tails and other non-Gaussian behaviour
typical for the returns on financial instruments [46, 1]. Copulas provide a flexible
tool for understanding dependence between random variables, in particular for
non-Gaussian multivariate data [153].

The log returns of the instrument i follow a marginal distribution Fi. We
assume that there is a latent temporal process Z , which can be described by
the mean of the causal SEM in Equation 3.2.2. This SEM describes the ideal-
ized, Gaussian version of the financial process, centred around zero with vari-
ance one. The connection between the idealized process Z and observable X is
given through the copula transformation,

X t,i = F−1
i

�

Φ
�

Zt,i

��

, (3.2.6)

where Φ is the CDF of a standard normal distribution. This gives us a direct way
of defining a general causal VaR,

VaRNECO
α (X(t,i)) = F−1

i

�

Φ
�

�

(1− B)−1AZt−1:t−ℓ
�

i − zα
Æ

[(1− B)−1(1− B)−⊤]ii
��

,
(3.2.7)
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where Zt,i = Φ−1(Fi(X t,i)). The copula transformation allows us to perform our
analysis in the latent space without the need to assume lognormal distribution
for the returns. The other advantage of using a Gaussian Copula is that, unlike
most other copulas, it can handle high dimensionality, i.e., many interrelated
financial instruments.

3.2.3 Estimation of Causal NECO Value at Risk

We assume that we observe multivariate time-series, DX =
�

x t,i

	

i t
, of log-returns

of p financial instruments instruments across N epochs. The estimation of the
Causal NECO VaR is done in four steps. First, we estimate the underlying marginal
distributions Fi for the instruments. Secondly, we estimate the causal structure
on the transformed scale to see what financial instruments impact the risk of the
instrument of interest. Thirdly, given the causal structure, we then estimate the
contagion coefficients from Equation 3.2.2. Finally, the estimated marginal dis-
tributions bFi and coefficients bA and bB are used to compute the VaR as in Equation
3.2.7.

Estimating the marginal distribution of financial instruments. For each in-
strument i, we estimate its marginal distribution Fi non-parametrically as the
adjusted empirical distribution function,

bFi(x) =
0.5+
∑N

i=1 1{x i≤x}

N + 1
.

We then use this empirical distribution, to define a transformed dataset, DZ , of
normally distributed variables, DZ =

�

zt ∈Rp | zt,i = Φ−1(bFi(x t,i)), t = 1, . . . , N
	

.
We use the adjusted empirical distributions, in order not to get degenerate values
for z.

Discovery of Causal Structure We estimate the causal structure based on the
transformed data DZ in the form of a causal network as in [177], which is based
on the PC-stable algorithm from [37]. The PC-stable algorithm is a more ro-
bust version of the original PC algorithm [198]. We implement the PC-stable
algorithm with the R package pcalg [118, 94].

The causal connections in the structural equation model can be estimated on
purely observational data. The algorithm is based on two main insights. The
first insight is that if there exists a separating variable S that makes Z1 and Z2

conditionally independent, then Z1 and Z2 are not directly causally connected.
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Secondly, if no such separating sets can be found between Z1 and Z2 as well as
between Z2 and Z3, but Z1 and Z3 are separated, but not by Z2, then it must be
that Z1 and Z3 are direct causes of Z2.

Estimation of Causal Effects Given the structure of the structural equation
model in Equation 3.2.2, the coefficients A and B can be estimated via standard
least squares. If there are no links present on the causal network, then the coef-
ficient is put to zero. If the algorithm from the previous step is unable to deliver
a fully directed network — where for some couples of instruments both direc-
tions of the contagion are just as likely given the structure of the causal network
— we obtain a multiset of possible coefficients and combine these into a range
estimator [137]. Given that the financial system is very big and interconnected,
the chances of finding a fully directed network are very high.

Causal NECO Value at Risk With the estimated bFi, bA and bB we can then com-
pute the VaR using Equation 3.2.7. We assume that any interim payments on
the considered assets are either zero or reinvested continually in the asset itself,
as is done in mutual funds. Furthermore, we take the time period for the VaR
evaluation to be equal to the frequency of the recorded log returns — so if we
consider daily log returns, we will compute the 1-day VaRα.

3.3 Performance of NECO Value at Risk

In this section, we analyse the performance of the Causal NECO Value at Risk
in predicting the correct levels of risk in various simulation studies. The per-
formance of the Causal NECO VaR will be compared to the other four standard
methods defined in Section 3.2.1, and analysed for different contagion struc-
tures. We consider the most common backtesting methods defined in Section
3.3.1, which are model-free and are good for comparing different methods.

3.3.1 Backtesting Measures

Backtesting allows for testing how well the VaR performed, using simulations or
past historical data. An overview of the most common backtesting methods can
be found in [31]. Part of the backtesting will be performed using the R package
MSGARCH [9]. Below we describe the tests we will consider.
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Average Exceedance Rate. The computationally easiest and most immediate
test for the performance of the VaR is looking at the number of times the actual
X t log returns fell below the VaR, called violations or exceedances. Given the VaR
definition from Equation 3.2.1, we expect X t to be smaller than the VaRα about
α% times. The average exceedance rate α̂ should therefore be near the targeted
α level of the VaRα.

Actual over Expected Ratio. Actual over Expected Ratio (AE) measures whether
the VaR computation method tends to have more or fewer violations than ex-
pected given the target α. A good method has the number of exceedances n1

being αN . Defining AE = n1
αN , AE > 1 signifies that the method is not restrictive

enough and underestimates the risk of the underlying investment. An AE < 1
shows the opposite — a method that is overly conservative and overestimates
the risk. Both directions of this error can lead to costly mistakes.

LR Test of Unconditional Coverage. The coverage rate for the targeted rate α.
The unconditional coverage test from [127] tests if the proportion of violations
is significantly far away from the expected level or not, using the likelihood ratio
test statistic LRUC = −2ln

�

(1−α)n0 ·αn1

(1−α̂)n0 ·α̂n1

�

that asymptotically has a χ2 distribution
under the null hypothesis H0 : Eα̂= α.

LR Test of Conditional Coverage. Conditional Coverage (CC) Test from [34]
expands the UC test for the detection of violations clustering in time. No violation
occurrence should be informative about the performance of the next-step VaR.
CC checks that exceedance realisations {1{x1,i≤VaRα(1,i)}, · · · ,1{xT,i≤VaRα(T,i)}}, often
called hit series, are distributed independently and identically. It uses a likelihood
ratio test with 2 degrees of freedom.

Dynamic Quantile Test. The Dynamic Quantile (DQ) test described in [61]
and [51] tests whether the violations, i.e. exceedance realisations, are not only
uncorrelated among themselves but also with other lagged variables. The LRDQ

follows asymptotically a χ2
p distribution with p degrees of freedom.

Absolute Deviation. The mean and max absolute deviation (AD) show the ac-
tual loss that would occur if an investor or bank had relied on the VaR prediction.
As pointed out by [145] the AD measure is of great importance as large violations
can lead to bank failures when capital requirements implied by the VaR threshold
forecasts are not sufficient to protect against losses that are actually realized.
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Figure 3.2: Simulated financial network with 5 instruments related to section 3.3.2

Average Quantile Loss. The Average Quantile Loss [84] is a weighted loss mea-

sure, defined as QLi(α) =
∑N

t=1

�

α−1{xt,i≤VaRα(t,i)}
�

(x i,t−VaRα(t,i))
N . If for two methods we

have QL1 <QL2, then method 1 is preferable over method 2.

3.3.2 Comparison of NECO VaR with Other Methods

We start by comparing the performance of our causal VaR method with the more
traditional methods. We simulate data for the contagion network of 5 financial
instruments, as shown in Figure 3.2. To test the ability of the various methods to
deal with non-normality, we take exponentially distributed returns with an added
shock to the system every 100 days. The procedures are trained on 250 time
points, and tested for a further 100 days for their out-of-sample performance.
This process is repeated 20 times.

Figure 3.3 shows both the temporal performance and the overall performance
of the various VaR methods targeting α = 0.05. It shows that the causal NECO
VaR outperforms the other methods, both in its ability to deal with the non-
normality and the external shocks to the system. Table 3.1 shows that the causal
NECO method has good coverage for the three tests, LRUC , LRCC and LRDQ,
achieving 94%, 96% and 88%, respectively. Each simulated sample contains
100 out of sample VaR predictions each. From Figure 3.3 it is immediately clear
that the two methods struggling the most are VarCovar and GARCH; these two
methods rely heavily on the assumption of normality. The FHS-GARCH improves
the GARCH method significantly, but as it is based on merging the HIST and the
GARCH, it is swayed by the shocks as much as HIST in underestimating the risk.
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Figure 3.3: Fraction of VaR exceedances within the out-of-sample window of 100
days for each Value-at-Risk model for all of the considered financial instruments.
(a) shows how closely it follows the target of 5% and (b) shows the overall precision
through a boxplot.

3.3.3 Effect of Training Window

The performance of any VaR method depends on the accuracy of the estimated
model. In this simulation study, we vary the training window from N = 50 up
to N = 500 observations for fitting the causal model. Then we apply the causal
NECO VaR to an out-of-sample time series of 100 time points. Figure 3.4 shows
the results. Although the standard deviation of the achieved VaR level does not
depend much on the size of the training window N as seen in Figure 3.4 (b),
the VaR tends to have a lower bias with the increase of the estimation window
as seen in Figure 3.4 (a), (c), (d). This impact is especially significant when
targeting an α below 5%.

3.3.4 Effect of Number of Variables

Next, we study the effect of the size of the financial system on the performance
of the causal NECO VaR. We simulate log-return financial networks with p =
5,10, 20,50 instruments. The training window is set to N = 250. We fit the
causal NECO on the training window, and results are collected on 100 out-of-
sample data. The simulations are repeated 20 times. From Figure 3.5 we see the
impact of the size of the network is negligent, especially for the more common
levels of α below 10%.
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Figure 3.4: Causal NECO VaR: (a) Comparison on the log scale between different
target α levels and different lengths of the estimation window in terms of the con-
sidered number of observations (N). (b) Standard deviation for the individual α̂.
(c) Comparison for target α = 1% for the different N. (d) Comparison for target
α= 5% for the different N.
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Causal-NECO VarCovar HIST GARCH FHS
mean(α̂) 0.0458 0.0050 0.0632 0.0168 0.0637
st.dev(α̂) 0.0203 0 0.0196 0.0236 0.0257

LRuc.accept 0.9400 0 0.9400 0.2100 0.8600
LRcc.accept 0.9600 0 0.9300 0.2900 0.8200

DQ.accept 0.8800 1.0000 0.7400 0.8800 0.6200
AE.mean 0.9160 0.0000 1.1760 0.2400 1.1860

AE.sd 0.4052 0.0000 0.3962 0.4774 0.5182
AD.mean 0.0303 NA 0.0375 0.1249 0.0634

AD.max 0.1200 -Inf 0.1300 1.9500 2.2600
CompareQL 1.0000 2.5811 0.9997 1.9885 1.0329

Table 3.1: Simulation Backtesting Results, for α= 5%

3.3.5 Effect of Market Contagion

We compare the impact of market contagion, expressed in market NECOF, on the
achieved α̂ VaR level. The study is performed on a network of p = 10 instruments
and an estimation window of N = 250. Market contagion is a function of a num-
ber of causal links in the financial network and of the size of the causal contagion
effects. We simulate different network structures with varying effect sizes and
express the market contagion in terms of network contagion factor (NECOF).
Figure 3.6 (a) and Table 3.2 show that there is no discernible trend in the effi-
ciency of the VaR estimation as the contagion levels on the market increase. For
small α below the 5%, the method fares slightly better for lower contagion lev-
els, which would suggest that the choice of the length N of the training window
is especially crucial when targeting lower α levels in the case of extreme conta-
gion levels. However, extreme contagion levels would suggest a dense financial
contagion network, which is not a typical situation for the financial market.

3.3.6 Effect of Volatility

Volatility, captured by the termΣ= σ2I in Equation 3.2.4, is the system’s stochas-
ticity. We simulate systems with p = 5 instruments, contagion level 47%. We fit
each system using a training window of N = 250 time points. We consider five
different volatility levels σ, with additional shocks three times the standard de-
viation. As Figure 3.6 (b) and Table 3.1 show, the volatility change appears to
have a negligible effect on the performance of causal NECO VaR. Irrespective of
volatility, the NECO VaR tends to be somewhat liberal at low VaR target values
α. This is mainly due to the external shocks included in the simulation.
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Out−of−sample exceedances (α̂) vs. true α
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Figure 3.5: Causal NECO VaR: (a) Log-scale comparison between achieved α̂ and
target α VaR levels for a different number of instruments (P); (b) Standard deviation
of the achieved VaR levels for different values of the target α VaR level for different
number of instruments (P).

3.3.7 Computational Time

The underlying causal inference approach [177] is well adapted to sparse net-
works, that have relatively few causal links. This seems to be the case for fi-
nancial networks, as there are usually clear pathways through which contagion
flows. Figure 3.7 shows that for such sparse networks, computational time is
low, even for a high number of financial instruments. It has to be said, that for
very dense networks or for very high number of nodes, the PC-stable algorithm
at the core of our method can have convergence issues [117].

3.4 Measuring Risk on Forex

The Forex is a very liquid and important financial market, trading $6.6 trillion
per day [221]. Most traded exchange rates are those over the US Dollar (USD).
In this study, we analyse the Forex market of 20 exchange rates over the USD,
selected to provide a representative overview of the most commonly traded cur-
rencies, as well as some less common ones to showcase different challenges in
risk estimation. Given that we consider liquid assets we will consider a VaR with
a 1-day holding period.

Alternative approaches to considering the US dollar as base currency could
consider exchange rates based on the special drawing right (SDR) as in [215].
SDR reflects the price of a basket of five major currencies and is periodically re-
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Figure 3.6: Causal NECO VaR: log-scale comparison for the between target α and
achieved α̂ VaR levels, as a function of (a) different levels of market contagion
(NECOF) and (b) different levels of volatility (σ).
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Contagion (NECOF) Volatility (sd)
0% 19% 47% 73% 83% 0.005 0.05 0.5 1 2

mean(α̂) 0.039 0.041 0.046 0.051 0.042 0.054 0.049 0.052 0.049 0.050
sd(α̂) 0.015 0.017 0.022 0.021 0.020 0.027 0.025 0.026 0.026 0.032

LRuc.accept 0.960 0.940 0.920 0.940 0.900 0.910 0.880 0.910 0.860 0.860
LRcc.accept 0.990 0.980 0.960 0.950 0.960 0.870 0.910 0.950 0.890 0.900

DQ.accept 0.880 0.860 0.820 0.810 0.880 0.850 0.890 0.830 0.860 0.840
AE.mean 0.786 0.819 0.922 1.017 0.849 1.074 0.988 1.036 0.972 1.098

AE.sd 0.306 0.329 0.436 0.427 0.399 0.538 0.495 0.531 0.525 0.643
AD.mean 0.024 0.026 0.029 0.035 0.035 0.000 0.000 0.000 0.000 0.000
AD.max 0.150 0.120 0.130 0.160 0.240 0.010 0.000 0.010 0.020 0.000

CompareQL 0.963 0.972 1.000 0.959 1.032 0.983 1.034 1.000 1.028 0.986

Table 3.2: Backtesting results for target α= 5% at different levels of market conta-
gion (left) and different levels of volatility (right).

balanced. It is published on a daily basis by the International Monetary Fund
(IMF). Another option for the base currency is to choose a currency that is of
lesser importance, but not completely illiquid. An example of this approach can
be found in [122] which uses the Turkish Lira as a base. A comparison of the
different currencies that are used as the base currency can be found in [128].
Finally, [63] ignores the issue of the base currency altogether and uses each ex-
change rate as a separate financial asset.

3.4.1 Foreign Exchange Rates 2000-2021

We consider the log returns on the spot exchange rates over the USD. Table 3.3
shows the summary statistics of the 20 considered exchange rates for the years
2000-2021. Most of the currencies have considerable fat tails in their log returns.
The source of the exchange rates is the Federal Reserve of New York.

3.4.2 Fitting Causal Network Contagion on Forex

We consider causal networks with different values of the lag L in Equation 3.2.2.
In order to choose the best number of lags, we make use of the Akaike informa-
tion criterion, given as AIC(ℓ) = 2k(ℓ) − 2lℓ(DX ), where l is the log-likelihood,
and k(ℓ) is the number of all non-zero autoregressive parameters A and conta-
gion coefficients B. Figure 3.8 shows the value of the AIC for different lags. The
minimum is obtained at lag ℓ= 1, which is used in the estimated NECO model.

Given the presence of fat tails in the log return, we use a copula transfor-
mation, as described in section 3.2.2. We fit a marginal distribution Fi for the
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ÚNECOF Minimum Median Mean Maximum StDev Skewness Kurtosis Jarque Bera
AUD 0% -0.0771 -0.0003 -0.0001 0.0822 0.0080 0.6197 12.0299 31085
EUR 0% -0.0463 0 -0.0001 0.0300 0.0059 -0.0557 2.5411 1375
NZD 63.9% -0.0593 -0.0003 -0.0001 0.0618 0.0082 0.3770 4.8517 5124
GBP 20.2% -0.0443 -0.0001 0 0.0817 0.0060 0.7047 10.8604 25491
BRL 5.8% -0.0967 0 0.0002 0.0867 0.0105 -0.0040 8.1012 13949
CAD 37.6% -0.0507 -0.0001 -0 0.0381 0.0057 -0.0669 5.4645 6350
DKK 98.5% -0.0580 -0.0001 -0.0001 0.0494 0.0060 -0.1284 4.7956 4902
HKD 0.3% -0.0045 0 -0 0.0033 0.0003 -1.2257 25.3347 137697
INR 1.3% -0.0376 0 0.0001 0.0394 0.0045 0.1980 9.9731 21174
JPY 6.2% -0.0522 0.0001 -0 0.0334 0.0062 -0.3144 4.4245 4245

KRW 13.3% -0.1322 -0.0001 -0 0.1014 0.0068 -0.5511 49.7260 525804
MXN 37.8% -0.0596 -0.0001 0.0001 0.0811 0.0072 0.7485 11.0121 26250
NOK 40.6% -0.0644 -0.0002 -0 0.0612 0.0078 0.2380 4.8194 4985
SEK 63.3% -0.0530 -0 -0 0.0547 0.0074 -0.0482 3.9502 3319
ZAR 42.4% -0.0916 -0.0002 0.0001 0.0843 0.0109 0.2626 4.2637 3922
SGD 59.5% -0.0238 -0.0001 -0.0001 0.0269 0.0033 0.0313 4.9083 5121
LKR 0.4% -0.0339 0 0.0002 0.0641 0.0029 2.5329 76.6587 1254466
CHF 65.6% -0.1302 0 -0.0001 0.0889 0.0067 -1.1545 36.8482 289720

TWD 39.5% -0.0342 0 -0 0.0248 0.0030 -0.3858 9.8420 20714
THB 37.9% -0.0353 0 -0.0001 0.0447 0.0037 0.1609 12.2860 32104

Table 3.3: Overview of the summary statistics for the dataset of log returns on indi-
vidual 20 exchange rates over the USD, for the period January 2000 to April 2021.
The higher the Jarque Bera test statistic the less likely the data are normally dis-
tributed — all of the statistics have a p-value of 0. Each sample is 5101 observations
long with no values missing.

log returns for each of the 20 currencies. We fit the causal network to the trans-
formed log returns as explained in Section 3.2.3. Finally, we obtain the 1-day
ahead causal NECO VaR values via Equation 3.2.7.

3.4.3 Results and Backtesting

We will consider the Value at Risk for each individual currency rate at the α level
of 5%. We consider a training window of N = 250 trading days. We will compare
the performance of the Causal NECO approach to the more established methods
HIST, VarCovar, GARCH and FHS-GARCH with the backtesting measures from
Section 3.3.1 applied to 100 out-of-sample VaR predictions, for each of the 20
currencies during 20 non-overlapping periods between 2000 and 2021.

Table 3.4 shows that the causal NECO VaR beats all other methods in most of
the categories. Given that at least during calm periods, the overall Forex volatil-
ity is quite low, the losses are not extreme for any of the methods. In fact, the
maximum loss AD.max is the same for all, and most other comparisons are rela-
tively close. The FHS seems to be the best competition for the causal NECO VaR
on this level.
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Figure 3.8: Overall AIC for each number of lags on the whole of the Forex dataset
considered.

Causal-NECO VarCovar HIST GARCH FHS
mean(α̂) 0.0511 0.0597 0.0594 0.0549 0.0574
st.dev(α̂) 0.0202 0.0603 0.0392 0.0338 0.0318

LRuc.accept 0.9500 0.8100 0.6700 0.7600 0.7800
LRcc.accept 0.9600 0.9000 0.8000 0.8700 0.8800

DQ.accept 0.8500 0.8000 0.7800 0.8200 0.8500
AE.mean 1.0220 1.1060 1.0995 1.0085 1.0595

AE.sd 0.4046 1.2171 0.7928 0.6818 0.6416
AD.mean 0.0032 0.0031 0.0032 0.0030 0.0030

AD.max 0.1200 0.1200 0.1200 0.1200 0.1200
CompareQL 1.0000 0.9804 1.0247 0.9934 0.9801

Table 3.4: Backtesting of the VaR out-of-sample predictions in the Forex market
(2000-2021) for the different methods at target α = 5%. The best results are
presented in bold.

Figure 3.9 (a) shows the distribution of actual exceedances for all currencies
and periods. The Causal-NECO is the most centred around the target value of 5%.
Figure 3.9 (b) shows how these exceedances change through time. The Causal-
NECO method seems to be able to adapt properly to changing conditions of the
underlying network. Unlike the other methods, it is barely affected by the various
financial crises in this period and achieves the nominal 5% level throughout the
evaluation period.

In addition, we consider each of the 20 currencies individually. Figure 3.10
shows the individual boxplots of the exceedance fractions for each of the given
methods. The causal NECO performance is consistently less variable and more
centred around the 5% level.
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Figure 3.9: (a) Overall fraction of exceedances α̂ within the out-of-sample window
of 100 days for each Value-at-Risk model across the Forex market (2000-2021). (b)
Fraction of the exceedances over time.
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3.5 Conclusion

This paper introduces an innovative way of eliminating spurious correlations
from risk management decisions. It lays the groundwork for using causal infer-
ence in finance showing how practical advantages can be obtained by inferring
the underlying causal system from available financial data.

The value at risk measure is calculated every day by financial managers at
banks and investment firms alike. The causal NECO VaR could be an interesting
addition, that is easy to compute and offers a robust and competitive addition to
the standard approaches. The volatility is not modelled directly but is addressed
through the contagion effect and in part through the copula transformation, of-
fering an alternative view on modelling volatility.

As a way to deal with the non-normality of financial data, we use a Gaus-
sian copula transformation. Gaussian copulas are not always appropriate for the
analysis of financial data and have received quite a bad reputation after their ap-
parent role in the 2008 financial crisis. [47] and [138] analyse what happened
and show the consequences of the indiscriminate use of a Gaussian copula to
estimate risk, without checking the appropriateness of the assumptions and as a
stand-in to compensate for a lack of data and information on correlations. When
used correctly the Gaussian copula can prove rather useful. [139] find for exam-
ple that “most pairs of currencies and pairs of major stocks are compatible with
the Gaussian copula”. In our case, it is also important to note that we do not
treat the Gaussian copula as a way to model risk but to improve the estimation
of our causal estimation of contagion.

Possible extensions could attempt to account for a wider class of distributions
using a Student-t copula instead of a Gaussian copula and time-varying errors
with an added GARCH component [113]. Both these extensions, however, are
beyond the scope of this paper, and could in theory be incorporated without
affecting the underlying causal structure of our model.

It is possible to add any measurable confounder to our model, in order to
determine how other variables, like interest rates, inflation or any other stock
market returns, might affect Forex contagion. When unmeasured confounders
and latent variables are present, the Fast Causal Inference algorithm (FCI) [199,
200] is a viable option.



Chapter 4

Conformal Updating and Causal
Network Contagion

4.1 Introduction

The foreign exchange market (Forex) is a critical component of international
trade and finance, with a daily turnover of more than 7.5t r il l ionin2022[49].Thisd ynamicmarketpla ysapivotal roleintheglobaleconomyandisnot l imited tolar get radi t ionalinst i tut ions.Newf inancial inst i tut ions, includinghigh−
f requenc y t raders, onlineretail investors, andsmallercommercial banks, aregrowing theirpresenceandreshaping themarket landscape[49,
33].Thisunderscorestheneed f ornewresearchonForexd ynamics, providinganoppor tunit y todevelopinnovativeapproachestoriskmanagement thatcanhandleperiodso f st ructuralchange.

Value-at-risk (VaR) is a fundamental and pivotal risk measure in the con-
temporary financial industry, systematically quantifying the potential downside
loss in the value of an asset or portfolio over a specified temporal horizon, all
within a predetermined level of confidence [115]. Particularly within the intri-
cate realm of the Forex, VaR provides invaluable information on potential risk ex-
posure and equips decision makers with the analytical tools necessary to devise
robust and comprehensive risk management strategies, especially when faced
with the uncertainties of currency risk or when actively navigating the tumul-
tuous seas of currency trading. To this day, it remains the most widely adopted
risk measure and holds a central position within the international banking reg-
ulatory framework, as emphasised by its role in the Basel Accords conventions
[124]. However, as the global financial markets evolve, conventional VaR mod-
els, which once held the limelight within the financial industry, are increasingly
being viewed as inadequate in deciphering the multilayered complexities of to-
day’s Forex environment. These traditional approaches often anchor themselves
on rather simplistic assumptions of normality and stationarity, often turning a
blind eye to the intricate dynamics, unpredictable volatilities, and unanticipated
structural shifts that are now hallmarks of financial data [147, 123]. Resorting
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to such oversimplified frameworks can culminate in misleading risk assessments,
thereby posing amplified challenges not only to market participants, but also to
the broader interconnected global economy.

Research into VaR methods has decreased after the Global Financial Crisis
in 2008. New approaches introduced the Expected Shortfall (ES) measure, also
known as Conditional Value at Risk (CVaR). ES complements VaR by providing
insights into the expected losses beyond the VaR level [224]. It represents the
average loss that can be expected if the portfolio’s returns fall beyond the VaR
threshold. ES offers a more comprehensive view of tail risk, which is crucial for
risk management. However, the method is intrinsically connected to the calcula-
tion of VaR [208]. For this reason, we will focus on the VaR in this paper, leaving
further extensions for future work.

We introduce an innovative approach to measuring VaR by leveraging a com-
prehensive framework that combines elements from causal analysis based on
causal inference [161], network contagion [177] and conformal updating tech-
niques [13]. This blended approach, referred to as Conformal Causal Network
Contagion VaR (CCNC VaR), seeks to uncover the intricate web of causal relation-
ships and interconnectedness that underlie the behaviour of currency exchange
rates [178].

The first and possibly most innovative contribution in this paper is the de-
velopment of a conformal updating for the network contagion approach to VaR
estimations. Traditional VaR models often struggle with the non-normality and
non-stationarity of financial data. Conformal updating, mainly used in machine
learning, allows for frequent rechecking of whether the target quantile is being
reached as model estimation continues. This information is used to improve es-
timations without any model assumptions. These models adapt to changing dis-
tributions and variability, offering a more accurate representation of risk [44].
Secondly, we apply a causal approach, based on causal inference [161]. These
are especially good for the analysis during a crisis. Thirdly, the presence of con-
tagion in the financial markets motivates the use of network modelling.

In this chapter, we will provide an in-depth analysis of each of these three
components, highlighting their significance in the context of Forex risk man-
agement. By incorporating the CCNC VaR framework into their standard risk
management tools, financial institutions can improve their risk assessment capa-
bilities and make informed decisions in an ever-evolving Forex. This framework
can be easily extended to other markets and applications. Section 4.2 provides
an introduction to the Forex and the empirical challenges it presents for risk man-
agement. Section 4.3 introduces the CCNC approach to VaR estimation. Section
4.4 presents the performance of CCNC on the Forex dataset, with a specific focus
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on the impact of the COVID-19 recession. Finally, Section 4.5 provides conclud-
ing remarks.

4.2 Empirical Problem

4.2.1 Forex and Data Source

We examined the interactions between the 20 most liquid exchange rates over
the US Dollar (USD) published daily by the Federal Reserve of New York for the
years 2000-2021 for our dataset. We consider the following currencies: the Aus-
tralian Dollar (AUD), Brazilian Real (BRL), Canadian Dollar (CAD), Danish Krone
(DKK), Euro (EUR), British Pound (GBP), Hong Kong Dollar (HKD), Indian Rupee
(INR), Japanese Yen (JPY), South Korean Won (KRW), Sri Lankan Rupee (LKR),
Mexican Peso (MXN), New Zealand Dollar (NZD), Norwegian Krone (NOK), Sin-
gapore Dollar (SGD), Swiss Franc (CHF), Swedish Krona (SEK), South African
Rand (ZAR), New Taiwan Dollar (TWD), and Thai Baht (THB).

We chose the US Dollar (USD) as the base currency for the exchange rates in
the analysis, as it is the most liquid currency and holds the status of the dominant
international currency. According to [49] “the USD was involved in nearly 90%
of global FX transactions, making it the single most traded currency in the FX
market”. The global significance and role of the USD is often challenged and
discussed during financial crises [38, 204, 56, 22]. Despite the rise of potential
currency competitors, for the period considered in this chapter, it remains the
international currency of reference [49].

4.2.2 Forex Summary Statistics and Lognormality

For the selected 20 currencies, the evolution of their log-returns from January
2000 until April 2021 is depicted in Figure 4.1. The summary statistics of the
considered time series are presented in Table 4.1. In addition to the typical sum-
mary statistics, we also incorporate a metric for network contagion - the Network
Contagion Factor (NECOF) - for each currency. Understanding network conta-
gion is a crucial element when analysing the behaviour of exchange rates, and
relying solely on correlation and volatility levels may not provide reliable indi-
cations [81, 69, 177]. The higher the NECOF the higher the contagion for that
particular currency.

As shown in Table 4.1, the data exhibits non-normality and fat tails with sig-
nificant differences in contagion levels among individual currencies. Both HKD
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Figure 4.1: Log returns for each currency. The financial crises highlighted are the
Global Financial Crisis (August 2007 - April 2010) with the following Sovereign
Debt Crisis (May 2010 - December 2012), the 2015/2016 Crises (March 2015 -
June 2016) and the COVID-19 recession (starting March 2020).

and LKR show unusual periods of very low variability. This can be attributed
to the fact that respective Central Banks pegged these currencies to the USD,
keeping their exchange rate within a pre-defined band. However, some level of
contagion can still spread to and from these currencies within these bands and is
seen from the NECO not being zero for these currencies. AUD, EUR, INR and JPY
have a NECO of 0 %, which shows that contagion from other currencies tends
not to be of importance to estimate their price. The EUR is the only platykurtic
currency, with a kurtosis below three. Currencies with log returns closest to that
of a normal distribution and only slightly leptokurtic include DKK, JPY, NOK,
NZD, SEK, SGD and ZAR. The least normally distributed currencies with very
high kurtosis and Jarque-Bera values are the CHF, HKD, KRW, LKR and TWD.

The log transformation seems to make the log-returns more stationary when
considering the whole period, as confirmed by performing the Augmented Dickey-
Fuller test (ADF). Our approach can also handle non-stationarity. The overall
volatility on the Forex has a tendency to be relatively low, which makes the spike
in volatility and correlations during a crisis all the more difficult to handle by
standard statistical approaches to risk management and forecasting. A deeper
analysis of the dynamics of the volatility on the Forex can be found in [150].
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ÚNECOF Minimum Median Mean Maximum StDev Skewness Kurtosis Jarque Bera
AUD 0% -0.0771 -0.0003 0 0.0822 0.008 0.6261 11.8178 31335.1735
BRL 18.3% -0.0967 0 0.0002 0.0867 0.0104 -0.0052 8.3711 15547.9966
CAD 43.8% -0.0507 0 0 0.0381 0.0056 -0.0714 5.6143 6998.1322
CHF 64.4% -0.1302 0 -0.0001 0.0889 0.0067 -1.1203 35.1797 275708.2298
DKK 96% -0.058 0 0 0.0494 0.0061 -0.1555 4.5734 4662.0828
EUR 0% -0.0463 0 0 0.03 0.006 -0.0775 2.4789 1368.7587
GBP 44.3% -0.0443 0 0 0.0817 0.006 0.6707 10.6119 25385.1549
HKD 1.6% -0.0045 0 0 0.0033 0.0003 -1.2511 26.3958 155978.276
INR 0% -0.0376 0 0.0001 0.0394 0.0044 0.1993 10.2796 23480.9216
JPY 0% -0.0522 0.0001 0 0.0334 0.0062 -0.3187 4.3307 4251.4023

KRW 21.6% -0.1322 -0.0001 0 0.1014 0.0067 -0.5492 50.7331 571338.979
LKR 0.3% -0.0339 0 0.0002 0.0641 0.0029 2.7858 75.1652 1260440.0855

MXN 40.2% -0.0596 -0.0001 0.0001 0.0811 0.0071 0.7336 11.1455 28039.508
NOK 63.6% -0.0644 -0.0001 0 0.0612 0.0077 0.2195 4.7907 5135.0209
NZD 68.1% -0.0593 -0.0002 -0.0001 0.0618 0.0082 0.3886 4.7691 5180.4432
SEK 75.6% -0.053 0 0 0.0547 0.0074 -0.0544 3.8772 3337.9567
SGD 64.6% -0.0238 -0.0001 0 0.0269 0.0033 0.0239 4.9815 5506.5174
THB 24.3% -0.0353 0 0 0.0447 0.0037 0.1773 11.5344 29546.8524

TWD 35.4% -0.0342 0 0 0.032 0.0031 -0.3537 16.1074 57675.9338
ZAR 41.8% -0.0916 -0.0001 0.0002 0.0843 0.0108 0.2563 4.3936 4341.3691

Table 4.1: Summary statistics for the log-returns of the considered 20 currencies
from January 2000 to April 2021. High Jarque Bera Test results mean higher devi-
ation from a normally distributed sample (all of the statistics have a p-value of 0).

4.2.3 Crises in the Currency Markets

Crises are periods of structural instability and tend to be times when traditional
methods struggle. As our method is designed to be partially useful during these
periods, we considered various crisis periods in the 2000-2021 range. The main
four financial crises periods considered are the Global Financial Crisis (August
2007 - April 2010), the following Sovereign Debt Crisis (May 2010 - December
2012), the Crises of 2015/2016 (March 2015 - June 2016) and the COVID-19
recession (starting March 2020). The timing of the different crises was chosen
according to the literature [149, 21] and the financial news, coordinated with
the change in volatility on the market. There is a vast literature analysing the
first two crises, [6] and [149] give a good overview.

The two-year period 2015/2016 presents several critical events for the Forex.
In 2015 to the beginning of 2016, the global economy experienced a significant
slowdown and, as the US was experiencing an earnings recession, the markets
began to worry about a possible new recession coming [77]. On March 18, 2015,
the USD experienced a flash crash when the USD fell more than 3% in under
four minutes [172]. The Chinese Market Crash, often marketed as the period of
March 2015 to June 201, had an impact not only on Asian economies, but also on
other markets on a global scale [197, 227]. Finally, the Brexit vote that decided
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the UK to leave the European Union took place in June 2016. This event has
had a primary impact on the volatility of the GBP. Other studies found changes
in correlation and correlation-based contagion on the Forex [41]. We will refer
to this partially overlapping sequence of events as the 2015/2016 Crises. The
COVID-19 recession was the most recent crisis that had an impact on global
financial markets. It differed from previous crises in that it was a real exogenous
shock that did not originate within the financial system. The crisis had a global
impact and resulted in long-term structural changes in multiple sectors, as well as
unprecedented government interventions [26]. The Forex was also affected, with
central banks implementing significant interventions. The crisis also had a high
impact on volatility and contagion [21]. Network contagion grew rapidly at the
beginning of the crisis, and the redistribution of clusters among currencies shifted
to new patterns. While the number of causal links decreased, the contagion rates
were much higher than before. Similar structural changes were observed in [32,
206]. We can see these changes in the dataset. Average volatility almost doubled
and the mean correlation increased from 28.4% to 42.7% in the year before and
after March 1, 2020. Table 4.2 shows that the 10-day rolling window volatility
increases significantly for almost all currencies considered. Notable exemptions
are the HKD, where volatility decreased, given central bank interventions on the
peg to USD. Given all the changes in the Forex during the COVID-19 period, it is
hypothesised that there may be significant disparities in VaR predictions between
models based on observed correlation and those grounded in causal inference.

Òsdbefore
Òsdafter p-value

AUD 0.0069 0.0072 0.009
BRL 0.0086 0.013 < 0.001
CAD 0.005 0.0049 0.734
CHF 0.006 0.0043 < 0.001
DKK 0.0056 0.0043 < 0.001
EUR 0.0056 0.0043 < 0.001
GBP 0.0054 0.0061 < 0.001
HKD 2e-04 2e-04 < 0.001
INR 0.0036 0.0036 0.101
JPY 0.0057 0.004 < 0.001

Òsdbefore
Òsdafter p-value

KRW 0.0053 0.0047 0.339
LKR 0.0018 0.0032 < 0.001

MXN 0.0058 0.0102 < 0.001
NOK 0.0069 0.0094 < 0.001
NZD 0.0074 0.0074 0.52
SEK 0.0068 0.0063 0.003
SGD 0.003 0.0028 0.026
THB 0.0031 0.003 0.007

TWD 0.0026 0.0018 < 0.001
ZAR 0.0098 0.0101 0.005

Table 4.2: Mean rolling 10-days volatility before and after COVID-19, and the p-
value from the Wilcoxon Rank-Sum test, to see if there is a difference in the volatility
before and after the start of COVID-19. In bold if p-value > 0.05.
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4.3 Conformal Causal Network Contagion Approach to
Value at Risk

4.3.1 Modelling the Log-Returns

Causal Graphical Model Nothing happens in a vacuum in the real world and
network theory is one way to operationalise complex interactions. For situations
where randomized experiments cannot be used to study such interactions, causal
inference is one successful approach [161]. The causal network contagion ap-
proach unifies these two concepts and strives to explain the interactions among
the development of log-returns of different financial assets, showing how net-
work contagion reacts in financial crises [176]. The assumed underlying struc-
ture for logarithmic returns Zi,t for asset i at time t is the result of the autore-
gressive part {Zi,t−1, · · · , Zi,t−l}, the contemporaneous contagion effects from so-
called causal parents within the estimated causal networks, and a noise compo-
nent of independent and identically normally distributed ϵi,t:

Zi,t ← α0,i +
L
∑

ℓ=1

αℓi Zi,t−l +
∑

j∈pa(i)

β ji Z j,t + ϵi,t (4.3.1)

where α0,i is the intercept, pa(i) are the causal parents of instrument i and L is
the maximal lag of the autoregressive components. Crucially, before being able
to estimate the coefficients of this structural vector autoregressive model we need
to first find the causal parents for each instrument, or, in other words, the causal
network structure.

The PC-stable algorithm [37] is an extension of the PC algorithm [198]. The
PC algorithm is a widely used causal inference method in observational data
analysis. The aim is to uncover potential causal relationships among variables
by identifying conditional independence relationships in the data. By iteratively
testing for statistical independence and gradually building a causal graph struc-
ture, the PC algorithm infers plausible causal connections while accounting for
confounding factors. By iteratively applying the PC algorithm to multiple boot-
strapped samples of the data and aggregating the results, PC-Stable produces a
more stable and accurate causal graph representation of the underlying relation-
ships between variables and gives us the parents we need for Equation 4.3.1.

Gaussian Copula Transformation Many financial assets do not adhere to nor-
mality or lognormality assumptions, as seen in Section 4.2. To address this is-
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Figure 4.2: Value at Risk (VaRα) as the α quantile for the returns of a financial
instrument.

sue, we consider a multivariate Gaussian copula as part of the underlying causal
graphical model:

X t,i = F−1
i

�

Φ
�

Zt,i

��

(4.3.2)

where the Fi represents a non-parametric empirical cumulative distribution func-
tion. The variable Z represents the ideal data, which is assumed to follow a
normal distribution, whereas X are the real-world observed log returns. This
specific approach has been developed in [46] and [1]. In this context, the cop-
ula transformation is not utilised to examine the observed dependence structure
among various financial assets [183]. Instead, it is part of the causal inference
framework.

4.3.2 Conformal Causal Network Contagion Value at Risk (CCNC
VaR)

Value at Risk Value at Risk (VaR) is a risk measure used in financial risk assess-
ment and management. It serves as a tool to quantify and compare the potential
risk associated with holding specific financial instruments or portfolios. VaR of-
fers insights into the potential loss, at a given confidence level, over a defined
holding time period under normal market conditions [115, 114, 133, 48].

The VaR at a level α is defined as the threshold below which the value or
return of the future value of an asset or portfolio may potentially fall with a
probability of α (Figure 4.2). For a financial instrument X , the VaR can be math-
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ematically expressed as:

VaRα(X ) = inf{x ≤ R : FX (x)> α} (4.3.3)

where FX (x) represents the cumulative distribution function (CDF) of the log-
return X .

Conformal updating Conformal updating is a technique used in machine learn-
ing and data analysis to improve the reliability of predictive models by incorpo-
rating adaptive tuning into their predictions [191]. This approach adapts the
prediction regions as new data points are observed, without changing the un-
derlying prediction model. Currently, conformal predictions are the most widely
used prediction framework in deep learning models [65, 222]. This approach has
found applications in various fields such as medicine, drug discovery, computer
vision, and anomaly detection, where accurate and well-calibrated uncertainty
estimates play a crucial role in decision-making [13].

It works by adapting to the uncertainty that arises from the assumptions of the
model and potential yet undiscovered changes in the underlying causal structure.
This is done by allowing slow adjustments to the targeted levels of αt . This
approach maintains the underlying model unchanged while countering potential
misspecifications that could deviate the ex-post results from the required level α.

Given a step size parameter γ > 0, we consider the simple online update of
the operational VaR level αt , in order to achieve the VaR target level α:

αt+1 := αt × e{γ(α−α̂∆t )} (4.3.4)

where the α is the desired target quantile, α̂∆t is the realised exceedance rate
over the past ∆t period computed as follows:

α̂t =

∑N
j=1

∑∆t
δ=0 1VaR(t−δ), j>x(t−δ), j

N ·∆t
(4.3.5)

This conformal updating approach is based on theoretical work by [180], [132],
[211], [76] and [189]. They present the conformal prediction in the context of
quantile regressions and extend the underlying theoretical assumptions. We have
confirmed that the choice of the γ has minimal impact. Whereas larger step sizes
get fast adaptation, closer to the target α, it can result in less smooth predictions.
While this may have practical implications when deciding on hedging positions
based on the predictions, it has less impact on the precision evaluation, which is
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our focus in this paper.

Conformal Causal Network Contagion VaR The copula transformation from
Equation 4.3.2 says Zi t follows a normal distribution, which when combined
with conformal updating, enables us to compute our Conformal Causal Network
Contagion VaR (CCNC VaR) measure on the transformed scale as follows:

VaRα(Zi,t) = µZi,t
− zαt

·σZi,t
(4.3.6)

where the αt is updated each ∆t steps as in Equation 4.3.4. Using the copula
transformation we can then define the CCNC VaR on the original scale as:

VaRα(X i,t) = F−1
X i

�

Φ0,1

�

VaRα
�

Zi,t

���

(4.3.7)

For a more comprehensive understanding of the CCNC computation, please
refer to the pseudo-code provided in Appendix B.1.

4.4 CCNC VaR Performance on Forex

We will analyse the performance of the Conformal Causal Network Contagion
approach in forecasting VaR on the dataset described in Section 4.2. We com-
pare the results to four representative alternative methods. The direct competitor
and the underlying method for the Conformal NECO is the parametric variance-
covariance (VarCovar) method. The difference in performance between the Con-
formal NECO method and the VarCovar can be directly attributed to the confor-
mal updating and the underlying causal approach. Another parametric approach
is the GARCH method [133, 134]. The GARCH method simulates possible future
returns with Monte Carlo assuming an underlying GARCH process and taking the
appropriate α quantile. GARCH is an improvement over the VarCovar method
because it allows for time-varying volatility and correlation, while still assuming
normally distributed standardized residuals. However, GARCH struggles to ac-
curately model asymmetric volatility clusters, as these are more prevalent during
financial crises. A detailed analysis can be found, for example, in [157]. A non-
parametric alternative is the historical simulation (HIST) method [29]. Historical
simulation computes the quantile for the VaR based on bootstrapped, sampled
with replacement, and past returns. Using realised returns eliminates the need
to create models that perfectly describe the reality, but makes the model highly
sensitive to what is included in the considered estimation window and hence its
length [99, 106]. This method still depends on the stationarity in distribution,
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which is often violated during a financial crisis, when markets experience volatil-
ity clusterings [90]. The fourth and final method considered is the filtered histor-
ical simulation (FHS) that unites both the GARCH and HIST methods [17, 18].
FHS improves both the GARCH and HIST methods, performing better than these
two separately. [170] shows that extreme observations or time-varying correla-
tions degrade the performance of FHS.

This study compares the performance of VaR prediction techniques using
eight backtesting measures presented in Table 4.3. Backtesting is a systematic
and quantitative approach to evaluating and comparing VaR prediction tech-
niques based on out-of-sample realizations. These measures evaluate different
aspects of VaR predictions, including the extent to which they capture actual
losses (coverage), whether violations of VaR predictions are independent, and
the size of the prediction errors.

4.4.1 Global Backtesting Results

Table 4.4 displays the backtesting results of predicting 100 out-of-sample 1-
day ahead VaR predictions over 50 rounds, using an estimation window of 250
throughout the dataset, for all of the 20 currencies considered. Results for α =
1% and α = 10% are shown in Appendix B.2. For the CCNC approach, we eval-
uate the underlying causal network structure only once and apply it separately
to all individual currencies. The performance of all methods is relatively good
on average over the whole period. The CCNC shows very good and most im-
portantly consistent results, given the low standard deviations of the average
exceedance rate and actual over-expected ratio. When compared to the theo-
retical counterpart VarCovar method, we see a huge improvement thanks to the
causal network contagion and conformal updating. CCNC demonstrates remark-
able stability with low variability in its out-of-sample α estimates. The α values
consistently hover closely around the α target, reflecting a high degree of preci-
sion and reliability in its predictions. This can be seen in the boxplots in Figure
4.3. Figure 4.4 presents the actual quantile realisation out of the sample, with
the target set at 5% and an expected exceedance rate close to this desired level.
The performance is depicted over the years and four critical periods, as described
in Section 4.4.2.

It is worth noting that the HIST and VarCovar approaches display high volatil-
ity and significant deviation, particularly during periods of crises. These methods
exhibit a high percentage of failure in predicting losses accurately when market
conditions change. On the other hand, they tend to overcompensate and fail to
identify the return to a new normal by returning very restrictive predictions after
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Figure 4.3: Boxplots illustrating the distribution of out-of-sample exceedance rates
(α̂) for 20 currencies, allowing us to assess how closely each model aligns with the
targeted α= 5% throughout the entire period.

a sharp overcorrection.
Compared to these methods, FHS and GARCH tend to remain closer to the 5%

target, especially FHS. However, a complete failure in prediction was observed
during the first period of the Global Financial Crisis and the COVID-19 recession.

The tight out-of-sample predictions of the CCNC throughout the entire 21-
year period are also confirmed by Figure 4.3. This figure shows the boxplots
of all estimated exceedance rates, with CCNC being centred at the target and
presenting a very narrow range. In comparison, the method VarCovar is wide
and slightly off-centre. This tight band around the target for CCNC is precisely
why conformal updating is used.

AE ratios above or below 1, mean that the VaR model underestimates or
overestimates respectively, the number of exceedances. Both GARCH and CCNC
achieve a target performance. In terms of the DQ and QL, FHS and GARCH
slightly outperform CCNC, but the differences are small.

4.4.2 COVID-19 Recession and Handling Exogenous Shocks

For the analysis of the COVID-19 recession period, our analysis focuses on the
period from December 2019 to March 2021, with the crisis period identified
as starting in March 2020. The results of our backtesting for this sub-sample
are summarized in Table 4.5. Only the conformal CCNC approach remained
efficient and achieved the α target during this challenging period for the Forex.
The CCNC method outperformed all other backtesting measures considered. The
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Figure 4.4: The average out-of-sample exceedance rates α̂ over the 20 currencies.
The CCNC tends to track the target α = 5% more accurately during periods of
financial crises than other methods.

Dynamic Quantile Test (DQ) results are particularly interesting, as only the CCNC
approach maintained a high acceptance (non-rejection) rate. It is worth noting
that extreme outliers or rare events can significantly impact the results of this
test. Moreover, as the only method, CCNC keeps the AE close to 1 consistently
(low standard deviation).

Figure 4.5 shows that the CCNC method has an out-of-sample exceedance
rate that is close to the target α, while the other methods take significantly longer
after the start of the COVID-19 crisis to get back to the target level, and often
exceed 10% exceedance rates. HIST and VarCovar have the tendency to over-
compensate when high volatility is inside the estimation window, making the
length of the estimation window an important parameter for these methods dur-
ing crisis periods, as confirmed in other studies as well.

Both the FHS and GARCH models demonstrated relatively strong perfor-
mance when assessing their overall performance over a 20-year data period, as
illustrated in Section 4.4.1. However, their performance notably deteriorates
when analysing the COVID-19 period, and they even underperform some of the
less complex methods like HIST and VarCovar in certain backtesting measures.
In particular, the exceedance rate α̂, the AE, the DQ, and QL measures show a
significant decline in accuracy. It appears that both FHS and GARCH models are
highly sensitive to their estimations when log-returns encounter sudden shocks,
resulting in incorrect predictions for a considerable duration. These methods are
particularly affected by the challenge of maintaining a balance between accom-
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Figure 4.5: During the Covid Recession, the average out-of-sample exceedance rates
α̂ of the CCNC more accurately tracks the target α= 5% than other methods.

modating changes in the system and refraining from overweighting the tempo-
rary increases in volatility.

In order to evaluate the effect of conformal prediction, we include in Fig-
ure 4.5 and 4.6, and Table 4.5 an explicit comparison with CCNC non-conformal
sister, NECO. Although the NECO method performs well compared to other meth-
ods, CCNC outperforms the NECO method across all backtesting statistics.

During the prediction process, conformal updating is applied when the model
starts to fail. In the CCNC method, this might happen when there is minimal con-
tagion within the considered causal network, and the parametric part fails if the
autoregressive part lacks sufficient information. To provide a clearer illustra-
tion of this process, we examine four distinct currencies: AUD, NZD, HKD, and
NOK.1 We analyse the pair AUD and NZD, where AUD has little contagion, but
has a significant impact on NZD, which shows high levels of contagion. HKD is
an example of a currency that is highly managed by its central bank. It is also
the only currency for which volatility decreased significantly during the COVID-
19 crisis period. The final currency is NZD, which experienced a significant and
sudden increase in volatility as the crisis unfolded, making risk estimation more
challenging. The log-returns of the exchange rates for these four currencies are
plotted against the different VaR predictions in Figure 4.7.

1For a comprehensive view of the performance across all 20 currencies, please refer to Ap-
pendix B.3 where the results for the remaining currencies are presented.
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Figure 4.6: During the Covid Recession, all methods except for the CCNC experience
bias and higher levels of variability in achieving the target VaR of α= 5%.

-0.02

0.00

0.02

Jan Apr Jul

Time

L
o

g
 R

e
tu

rn
s

Covid Recession Log Returns

C-NECO VaR
ᾱ = 4.33%, sd = 0.2%

NECO VaR
ᾱ = 5.78%, sd = 0.23%

FHS-GARCH VaR
ᾱ = 11.91%, sd = 0.32%

GARCH VaR
ᾱ = 11.55%, sd = 0.32%

HIST VaR
ᾱ = 7.94%, sd = 0.27% sd

VarCovar VaR
ᾱ = 6.5%, sd = 0.25%

Log Returns vs VaR for currency AUD

-0.02

0.00

0.02

Jan Apr Jul

Time

L
o

g
 R

e
tu

rn
s

Log Returns

C-NECO VaR
ᾱ = 4.33%, sd = 0.2%

NECO VaR
ᾱ = 5.78%, sd = 0.23%

FHS-GARCH VaR
ᾱ = 14.8%, sd = 0.36%

GARCH VaR
ᾱ = 13.36%, sd = 0.34%

HIST VaR
ᾱ = 8.66%, sd = 0.28% sd

VarCovar VaR
ᾱ = 6.14%, sd = 0.24%

Covid Recession

Log Returns vs VaR for currency NZD

(a) (b)

-0.002

-0.001

0.000

0.001

0.002

Jan Apr Jul

Time

L
o

g
 R

e
tu

rn
s

Covid Recession Log Returns

C-NECO VaR
ᾱ = 3.97%, sd = 0.2%

NECO VaR
ᾱ = 1.44%, sd = 0.12%

FHS-GARCH VaR
ᾱ = 3.25%, sd = 0.18%

GARCH VaR
ᾱ = 2.89%, sd = 0.17%

HIST VaR
ᾱ = 2.17%, sd = 0.15% sd

VarCovar VaR
ᾱ = 2.89%, sd = 0.17%

Log Returns vs VaR for currency HKD

-0.03

0.00

0.03

0.06

Jan Apr Jul

Time

L
o

g
 R

e
tu

rn
s

Log Returns

C-NECO VaR
ᾱ = 5.05%, sd = 0.22%

NECO VaR
ᾱ = 5.42%, sd = 0.23%

FHS-GARCH VaR
ᾱ = 11.55%, sd = 0.32%

GARCH VaR
ᾱ = 10.47%, sd = 0.31%

HIST VaR
ᾱ = 7.94%, sd = 0.27% sd

VarCovar VaR
ᾱ = 5.05%, sd = 0.22%

Covid Recession

Log Returns vs VaR for currency NOK

(c) (d)

Figure 4.7: Out-of-sample predictions of VaR for six methods, including NECO with-
out conformal updating. The predictions are plotted against the respective log-
return realizations of the AUD, NZD, HKD, and NOK exchange rates over the USD
during the Covid period. The VaR should closely follow the 5% quantile as possible.
CCNC is the method that quickly identifies a sudden change in the volatility struc-
ture, both when volatility increases and when volatility goes down.
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The performance of various parametric and non-parametric methods in han-
dling the arrival of Covid for currencies such as AUD and NZD was found to
be poor, with a significant amount of time passing before they returned to the
targeted exceedance rate α. However, CCNC managed to follow the develop-
ment of the log-return for both currencies. The next two currencies, HKD and
NOK, highlight the importance of conformal updating and the difference between
NECO, which does not use conformal updating, and CCNC. NOK experienced a
significant jump in volatility after COVID-19, but the causal network contagion
model was able to handle this change very well. Therefore, even though CCNC
performed better, NECO was also able to perform well. When dealing with the
HKD, which is a pegged currency, the central bank’s interventions were signifi-
cant and during the crisis, beyond the causal network measurements. As a result,
NECO was unable to accurately predict the VaR for HKD, while CCNC was able
to do so, due to the conformal updating that corrected the causal predictions.

4.5 Conclusion

The proposed Conformal Causal Network Contagion VaR (CCNC VaR) frame-
work, which combines causal analysis, network contagion, and conformal up-
dating techniques, represents a significant contribution to the field of risk man-
agement. This innovative approach offers a robust solution for addressing non-
normality and non-stationarity in financial data. By incorporating conformal up-
dating into the NECO approach, the CCNC VaR framework achieves improved
accuracy and robustness, enhancing risk assessment capabilities.

The CCNC VaR framework has demonstrated its efficacy during times of cri-
sis, proving robust measures even in the face of significant exogenous shocks
to the system. By equipping financial institutions with a powerful tool for risk
management, the CCNC VaR framework promises enhanced risk assessment and
informed decision-making. Its versatility extends beyond the Forex, opening av-
enues for application in other markets and domains.

This paper also presented the theoretical background to the CCNC VaR frame-
work and demonstrated its efficiency and robustness on the Forex through back-
testing and comparisons with standard VaR measures. The COVID-19 recession
served as a prime example of an exogenous shock to the system that highlights
the potential of conformal updating for risk management, in general. We rec-
ommend further research to evaluate the performance of CCNC in other markets
and domains.
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Measure Equation Description

α̂

Average
Exceedance
Rate

α̂=

∑N
i=11α

N

sd(α̂) =

√

√

√

∑N
i=1(1α,i − α̂)2

N − 1

1α =

¨

0, if x i < VaRαi ,

1, otherwise.

Computes the average ex-
ceedance rate, indicating
how often the actual log
returns fall below the VaR
threshold for asset i.

AE
Actual over
Expected Ratio AE =

∑N
i=11α

α ∗ N

Measures whether the VaR
method underestimates or
overestimates the number
of exceedances compared to
the expected level.

UC
Likelihood Test
Unconditional
Coverage

LRUC = −2 ln
�

(1−α)n0 ·αn1

(1− α̂)n0 · α̂n1

�

n1 =
N
∑

i=1

1α, n0 = N − n1

UC=% Not-rejected LRUC

Tests if the proportion of
violations significantly devi-
ates from the expected level
using a likelihood ratio test
[127].

CC
Likelihood Test
Conditional
Coverage

LRCC = LRUC + LRIN D

CC =% Not-rejected LRCC

Extends the UC test to ac-
count for violations cluster-
ing in time [34].

DQ
Dynamic
Quantile Test

LRDQ = HitN Z(ZN Z)−1ZN Hit
α(1−α)

Hit= {1α,t −α , · · · , 1α,N −α}
DQ =% Not-rejected LRDQ

Tests for dependence among
violations and explanatory
lagged variables Z , using a
dynamic quantile approach
[61, 51].

QL
Average
Quantile Loss

QLα,B
i =

∑N
t=1

�

α−1α,t

�

�

x i,t − VaRα,B
i,t

�

N

QL =
ÓQL

B

ÓQL
C

Computes the mean quan-
tile loss penalising losses
from VaR violations. When
QL < 1 then the method
B is more efficient than the
benchmark method C [84].

Table 4.3: Backtesting measures to evaluate VaR performance
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CCNC FHS GARCH HIST VarCovar
α̂ 0.050 0.052 0.050 0.054 0.052
sd(α̂) 0.019 0.033 0.034 0.040 0.073
AE 1.003 1.048 1.000 1.086 1.032
sd(AE) 0.389 0.653 0.682 0.794 1.457
UC 0.970 0.820 0.810 0.700 0.690
CC 0.970 0.900 0.890 0.820 0.820
DQ 0.840 0.880 0.870 0.780 0.830
QL 1.000 0.976 0.984 1.025 1.016

Table 4.4: Backtesting study of different VaR models in the Forex for 20 currencies
(2000-2021), using a 250-day estimation window for the target α = 5%. The
best-performing results are in bold. If more than one result per row is in bold, no
statistically significant difference was found (5% significance level).

CCNC NECO FHS GARCH HIST VarCovar
α̂ 0.0518 0.0521 0.0783 0.0790 0.0677 0.0585

sd(α̂) 0.0216 0.0428 0.0524 0.0560 0.0480 0.0431
AE 1.0368 1.0418 1.5668 1.5804 1.3539 1.1696

sd(AE) 0.4310 0.8557 1.0486 1.1197 0.9596 0.8624
UC 0.9400 0.6200 0.7100 0.6800 0.6800 0.6500
CC 0.9600 0.7400 0.7700 0.7200 0.7200 0.7400
DQ 0.8000 0.7500 0.6800 0.6600 0.6900 0.7200
QL 1.0000 1.0520 1.0604 1.0768 1.0687 1.0166

Table 4.5: Backtesting study of different VaR models in the Forex for 20 currencies
for the Covid Recession period, using a 250-day estimation window for the target
α= 5%. The best-performing results are in bold. If more than one result per row is
in bold, no statistically significant difference was found (5% significance level).



Appendix A

Supplementary Material for Chapter 2

A.1 PC Stable Algorithm

STEP 1 - Finding the Skeleton We begin the procedure by defining all nodes
of interest X and link all of them to create a complete graph, as in Figure A.1
(A).

Once we have the complete graph, we eliminate links between nodes X i and
X j that are independent or conditionally independent, conditioning iteratively
on a growing subset of the other nodes XC in the graph. The algorithm considers
all possible separating subsets XC for each pair of nodes to test the hypothesis
H0 that nodes X i and X j are independent. If there is any subset XC for which H0

is not rejected at the specified significance level (often set at α = 0.05), the link
between the two nodes is removed from the network. Whatever is left at the end
of the process is the so-called skeleton, an undirected graph G such that nodes
(X i, X j) are connected with a link if and only if no set XC can be found to make
them conditionally independent. See an example of a skeleton in Figure A.1 (B).

STEP 2 - Applying causal orientation rules First, for each pair of nodes X i and
X j that are not connected by a link, but both connecting to a common neighbour
Xk, we check whether Xk belongs to the subset of links XC from the previous step.
Since we do not have a link between X i and X j, we know that a subset XC exists
such that these two are conditionally independent. If Xk does not belong to the
subset XC and yet we still have a link between these three nodes, we know that X i

and X j influence Xk and not vice versa. This means we add directions X i → Xk

and X j → Xk as seen in Figure A.2. This primary orientation is often referred
to as a collider or inverted fork or V orientation. We can think of colliders as
nodes that stop a path unless the analysis is conditioned on them — colliders
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(A)

XN
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X2

X1

(B)

Figure A.1: (A) Complete causal graph for five financial instruments of interest. (B)
The skeleton obtained from the complete graph using STEP 1.

X i

Xk

X j

+ X i ⊥⊥ X j

X i

Xk

X j

(A) (B)

Figure A.2: Example of a collider.
Knowing that Xk is not a parent node for X i and/or X j as shown in (A), only one direction
for the links between the three variables is logically possible – the red arrows shown in (B).

are random variables that appear on the left-hand side in a structural equation
model with multiple variables on the right-hand side.

Once we have established all colliders within the graph, the PC algorithm tries
to orient as many of the remaining links as possible by a set of consistency rules,
as in [148]. The rules ensure that no newly directed link disrupts the previously
established structure and no cycle is created. An example of such a rule is shown
in Figure A.3.

Not all links can always be successfully oriented at the end of this step. If the
graph we obtain after implementing the orientation rules is not fully directed,
it is referred to as a Completed Partially Directed Acyclic Graph (CPDAG). In
that case, a CPDAG is the best possible outcome we can obtain. It describes
an equivalence class of DAGs that cannot be distinguished even with an infinite
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X i

Xk

X j X i

Xk

X j

(A) (B)

Figure A.3: Example of a consistency rule. The graph in (A) necessarily implies the
graph in (B), because if the link went in the other direction the three nodes would
form a cycle.

X i

Xk

X j

X i ⊥̸⊥ X j

+ X i

Xk

X j X i

Xk

X j X i

Xk

X j

(A) (B) (C) (D)

Figure A.4: Example of a CPDAG based on the Skeleton shown in (A). (B), (C) and
(D) are Markov equivalent DAGs, or CPDAGs, under the assumption that Xk belongs
to the subset of XC that made X i and X j independent and so a collider solution as
in Figure A.2 was not possible.

amount of data. An example of a CPDAG can be seen in Figure A.4. Unlike in
Figure A.2, we cannot find a collider, and so all three DAGs (B),(C) and (D) can
equally explain the skeleton in (A).

The more nodes or variables we have in a network, and therefore the more
connectivity we have, the easier it is for the PC Algorithm to detect directions.
This is in contrast to the curse of dimensionality that most models have. A trivial
example would be a network with just two nodes: In such a situation no amount
of observational data on these two nodes would allow the PC Algorithm to orient
the graph and decide on the direction of the arrow between the two nodes.

A.2 Individual NECOFs

In this section, we present the individual NECOFs for all 23 currencies, according
to formula 2.2.5. The values in Table A.1 are in percentages (0-100) and express
the amount of contagion from other currencies in the overall period 2000-2021.
Figure A.5 shows the development of the NECOF scores through time for each of
the currencies.
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Code Currency Name Minimum Median Mean Maximum StDev
AUD AUSTRALIAN DOLLAR 0 0 0 0 0
BRL BRAZILIAN REAL 0 0 5.68 52.1 14.73
CAD CANADIAN DOLLAR 0 33.95 36.53 68.3 18.43
CHF SWISS FRANC 0 72.9 61.73 92.3 28.48
CNY CHINESE YUAN RENMINBI 0 0 0.08 7.2 0.78
DKK DANISH KRONE 64.3 99.6 97.42 99.9 7.29
EUR EURO 0 0 0.44 38 4.1
GBP BRITISH POUND 0 0 15.51 57.4 21.76
HKD HONG KONG DOLLAR 0 0 1.48 25 4.5
INR INDIAN RUPEE 0 0 2.99 24.1 5.97
JPY JAPANESE YEN 0 0 6.77 49.6 13.48

KRW SOUTH KOREAN WON 0 6.4 11.42 47.5 13.68
LKR SRI LANKAN RUPEE 0 0 1.28 13.9 3.07

MXN MEXICAN PESO 0 37.1 36.48 73 20.13
MYR MALAYSIAN RINGGIT 0 20.5 20.5 57.6 18.33
NOK NORWEGIAN KRONE 0 40.2 38.5 81.4 26.76
NZD NEW ZEALAND DOLLAR 34.7 64.55 63.89 81.9 12.3
SEK SWEDISH KRONA 0 63.95 62.99 89.7 18.19
SGD SINGAPORE DOLLAR 17.2 65.75 62.57 83.2 16.22
THB THAI BAHT 0 39.9 38.27 62.6 15.58

TWD NEW TAIWAN DOLLAR 2.9 39.6 39.1 75.8 18.74
VEB VENEZUELAN BOLIVAR 0 0 0.57 10 1.68
ZAR SOUTH AFRICAN RAND 0 48.45 41.43 75.1 20.64

Table A.1: Overview of the summary statistics for the Network Contagion Factors
(NECOFs) on individual 23 exchange rates over the USD, for the period January
2000 to April 2021. The values are in percentages between 0 and 100.

A.3 Supplement for Section 2.4

In these supplementary materials, we provide the details of the various analyses
performed in the manuscript.

A.3.1 Change in Contagion Network Statistics Over Time

In the paper, it was claimed that the various statistics describing the contagion in
the Forex market change through time. Figures A.6-A.8 show the development of
the Market NECOF, the number of clusters in the causal network and the market
density, respectively. Table A.2 shows the significance level of the test for the
need for a temporal spline for each of the three contagion indices. They show
a highly significant result, meaning that the indices are not constant over time.
From Figure A.6 it is clear that the market NECOF increases over time. Figure A.7
shows that the number of clusters in the contagion network decreases over time,
whereas Figure A.8 illustrates the increase of the market density.
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Figure A.5: NECOF through time for each currency. The financial crises highlighted
are: the Global Financial Crisis (August 2007 - April 2010) with the following
Sovereign Debt Crisis (May 2010 - December 2012), the Chinese Market Crisis (June
2015 - February 2016) and the COVID-19 Recession (starting March 2020).

A.3.2 Significance Test of the Reaction of Contagion Indices to
Major Financial Crises

This section describes the formal tests for the various contagion indices to the
various financial crises. We performed an Analysis of Variance and the results are
shown in Table A.3. Both market NECOF and network density are significantly
affected by the financial crises, whereas the number of clusters is not. Table A.4
and Table A.5 show the results of the linear regression for the market NECOF and
the market density each. The market NECOF increased significantly during the
Global Financial Crisis, the Sovereign Debt Crisis and the COVID-19 Recession,
but stayed relatively flat during the Chinese Market Crisis. The market network
density reacted mainly to the Sovereign Debt Crisis, the Chinese Market Crisis,
and the COVID-19 Recession.
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Estimate Std. Error t value Pr(>| t |)
Market NECOF 28.0709 0.3212 87.38 <2e-16 ***
Number of Clusters 7.8023 0.1329 58.7 <2e-16 ***
Market density 9.53663 0.08548 111.6 <2e-16 ***

Table A.2: Significance test for the temporal change in, respectively, market NECOF,
number of clusters, and market density.
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Market NECOF
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Figure A.6: Thin plate spline of the temporal change in market NECOF between
2000 and 2021. The upper and lower dotted lines are at 2 standard errors above
and below the estimate.

A.3.3 Stability of Clustering Effects during the Global Financial
Crisis and the Sovereign Debt Crisis

We tested cluster membership stability during the Global Financial Crisis and the
Sovereign Debt Crisis. The results of the Welch two-sample t-test are shown in
Table A.6. The test suggests greater stability during the Sovereign Debt Crisis
than the Global Financial Crisis. Figure A.9 visually supports this finding.

Df Sum Sq Mean Sq F value Pr(>F)
Market NECOF 4 511.5 127.88 7.916 1.95e-05 ***
Number of Clusters 4 10.77 2.692 1.064 0.38
Contagion Network Density 4 39.1 9.775 3.601 0.00941 **

Table A.3: Analysis of Variance of the reaction of market NECOF to financial crises.
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Figure A.7: Thin plate spline of the temporal development of the number of clusters
between 2000 and 2021. The upper and lower dotted lines are at 2 standard errors
above and below the estimate.

Parametric coefficients Estimate Std. Error t-value Pr(>| t |)
(Intercept) 26.36189 0.56280 46.840 < 2e− 16 ***
Global Financial Crisis 4.38811 1.28955 3.403 0.00104 **
Sovereign Debt Crisis 6.38356 1.33616 4.778 7.79e-06 ***
Chinese Market Crisis -0.01233 1.88350 -0.007 0.99479
COVID-19 Recession 3.45177 1.62003 2.131 0.03615 *

Table A.4: Result of the linear regression showing the reaction of the market NECOF
during the Global Financial Crisis, the Sovereign Debt Crisis, the Chinese Market
Crisis and the COVID-19 Recession.

A.3.4 CHF NECOF Behaviour during a Financial Crisis

We claimed in Section 2.4.3 that NECOF of the Swiss Franc (CHF) has a tendency
to go down in times of financial crises. Table A.7 presents the results of the Anal-
ysis of Variance on the NECOF of the CHF. The results show that financial crises
have a notable and highly significant effect on the NECOF of the CHF during the
four crisis periods considered.

Table A.8 shows the estimates, standard errors, t-values and p-values for the
individual contagion effects during crises. The results indicate that the CHF
NECOF is significantly affected by the Global Financial Crisis, Sovereign Debt
Crisis, and Chinese Market Crisis with p-values less than 0.0001.
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Parametric coefficients Estimate Std. Error t-value Pr(>| t |)
(Intercept) 9.0359 0.2307 39.163 < 2e− 16 ***
Global Financial Crisis 0.8133 0.5287 1.538 0.12785
Sovereign Debt Crisis 1.1350 0.5478 2.072 0.04144 *
Chinese Market Crisis 2.2681 0.7722 2.937 0.00431 **
COVID-19 Recession 1.3541 0.6641 2.039 0.04472 *

Table A.5: Result of the linear regression showing the reaction of the market density
during the Global Financial Crisis, the Sovereign Debt Crisis, the Chinese Market
Crisis and the COVID-19 Recession.

Difference GFC SDC df t-value p-value
Clustering stability 208.9 222.4 13.787 -2.818 0.01385

Table A.6: Welch Two Sample t-test result comparing the clustering stability between
the Global Financial Crisis (GFC) and Sovereign Debt Crisis (SDC).

Df Sum Sq Mean Sq F value Pr(>F)
Crises 4 28085 7021 13.91 1.1e-08 ***

Residuals 81 40871 505

Table A.7: Analysis of Variance of the reaction of NECOF for the CHF to financial
crises.

Parametric coefficients Estimate Std. Error t-value Pr(>| t |)
(Intercept) 74.137 3.145 23.570 < 2e-16 ***

Global Financial Crisis -23.596 7.207 -3.274 0.00156 **
Sovereign Debt Crisis -39.037 7.468 -5.228 1.31e-06 ***
Chinese Market Crisis -58.937 10.527 -5.599 2.86e-07 ***
COVID-19 Recession -8.523 9.054 -0.941 0.34933

Table A.8: Result of the linear regression showing the reaction of the CHF NECOF
during the Global Financial Crisis, the Sovereign Debt Crisis, the Chinese Market
Crisis and the COVID-19 Recession.
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Figure A.8: Thin plate spline of the market density between 2000 and 2021. The
upper and lower dotted lines are at 2 standard errors above and below the estimate.

Df Sum Sq Mean Sq F value Pr(>F)
Crises 4 5603 1400.6 3.274 0.0154 *

Residuals 81 34655 427.8

Table A.9: Analysis of Variance of the reaction of NECOF for the GBP to financial
crises.

GBP NECOF Behaviour during a Financial Crisis

We claimed in Section 2.4.3 that the NECOF of the British Pound (GBP) reacts
to periods of financial crises. The Analysis of Variance results presented in Table
A.9 indicate that being in a period of financial crisis has a statistically significant
effect on the NECOF of the GBP. These results suggest that financial crises are an
important factor in explaining the variation in the NECOF of the GBP, and should
be carefully considered when analyzing the factors that affect this variable.

Table A.10 shows the individual contagion factors for the four financial crises.
These estimates indicate the effect of each crisis on the NECOF of the GBP. The
most significant effect observed is the increase in the GBP NECOF during the
Global Financial Crisis.
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Figure A.9: Comparison of the estimated probability density function for the sta-
bility of memberships within a cluster during the Global Financial Crisis and the
Sovereign Debt Crisis, where the right shift during the Sovereign Debt Crisis indi-
cates higher stability in the clustering.

Parametric coefficients Estimate Std. Error t-value Pr(>| t |)
(Intercept) 16.461 2.896 5.683 2.01e-07 ***

Global Financial Crisis 14.731 6.636 2.220 0.0292 *
European Debt Crisis -9.679 6.876 -1.408 0.1631
Chinese Market Crisis -16.461 9.693 -1.698 0.0933
COVID-19 Recession -9.932 8.337 -1.191 0.2370

Table A.10: Result of the linear regression showing the reaction of the GBP NECOF
during the Global Financial Crisis, the Sovereign Debt Crisis, the Chinese Market
Crisis and the COVID-19 Recession.



Appendix B

Supplementary Material for Chapter 3

B.1 Pseudo-Code for the CCNC VaR

Algorithm 1 provides the pseudo-code for the CCNC VaR estimation framework.
This framework consists of a series of steps, including data transformation with
copula, causal network analysis, estimation of the causal graphical model, VaR
computation, and conformal updating. As conformal updating is designed for
online updating, steps 4 and 5 must be iteratively executed, continuously adapt-
ing to new data as it becomes available.

B.2 Target α 1% and 10%

To show the consistency of the conformal NECO method we show the results of
the backtesting for the α = 1% in Table B.1 and α = 10% in Table B.2. The
boxplots can be seen in Figure B.1 (a) and Figure B.1 (b) respectively. There is
minimal effect of the α level chosen on the performance.
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Algorithm 1: CCNC VaR Estimation Pseudo Code
1 Step 1: Data Transformation with Copula

Data: Input data - log returns on forex exchange rates over USD
Result: Transformed data using copula
Fit a copula to the data: copula← f i t_copula(data)
Transform the data using the fitted copula:

t rans f ormed_data← t rans f orm_with_copula(data, copula)
2 Step 2: Analyse Causal Network

Data: Transformed data
Result: Causal network estimation
Apply the PC algorithm to estimate the causal network:

causal_network← pc_al gori thm(t rans f ormed_data)
Additional steps to validate and refine the causal network, if needed

3 Step 3: Estimate the Causal Graphical Model
Data: Transformed data, causal network
Result: Causal Graphical Model parameters

Knowing the causal structure, estimate : Ûcausal_graphical_model ←
st ructural_VAR_est imation(t rans f ormed_data, causal_network)

4 Step 4: Value at Risk Computation
Data: Transformed data, Causal Graphical Model parameters
Result: Value at Risk (VaR) estimation
Calculate VaR using the estimated causal network and other relevant
parameters: predic t_mean, predic t_sd ←
predic t(t rans f ormed_data, Ûcausal_graphical_model)
VaR_t rans f ormed ← VaR_compute(predic t_mean, predic t_sd,α)
VaR← inverse_copula(VaR_t rans f ormed, t rans f ormed_data)

5 Step 5: Conformal Updating - Chaining the Alpha Target at each δt step
Data: t realised VaR, t realised data, α_target, γ step size
Result: α
Determine direction and size of the error in prediction in the last t predictions:

er ror ←
distance_ f rom_tar get(previous_VaR, previous_data, alpha_tar get)

Update the α_target: α← con f ormal_update(er ror,γ)
6 Repeat Step 4 and 5 each ∆t
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CCNC FHS GARCH HIST VarCovar
α̂ 0.0126 0.0132 0.0170 0.0153 0.0198
sd(α̂) 0.0129 0.0167 0.0214 0.0177 0.0569
AE 1.2560 1.3190 1.6980 1.5340 1.9840
sd(AE) 1.2947 1.6703 2.1432 1.7731 5.6946
LRUC 0.9300 0.9100 0.8800 0.8700 0.8500
LRCC 0.9500 0.9400 0.9100 0.8900 0.8700
DQ 0.8200 0.8900 0.8300 0.7700 0.7800
QL 1.0000 0.9404 0.9530 1.0335 1.0171

Table B.1: Backtesting study of different VaR models in the Forex market for 20
currencies (2000-2021), using a 250-day estimation window for the target α= 1%.
The best-performing results are in bold. If more than one result per row is in bold,
no statistically significant difference was found (5% significance level).

CCNC FHS GARCH HIST VarCovar
α̂ 0.1014 0.1013 0.0907 0.1032 0.0893
sd(α̂) 0.0275 0.0449 0.0466 0.0525 0.0832
AE 1.0223 1.0126 0.9069 1.0317 0.8934
sd(AE) 0.3045 0.4493 0.4664 0.5250 0.8317
LRUC 0.9600 0.8500 0.8200 0.7700 0.7200
LRCC 0.9500 0.8600 0.8500 0.8200 0.7600
DQ 0.8600 0.8900 0.9000 0.8200 0.8800
QL 1.0000 0.9809 0.9946 1.0090 1.0112

Table B.2: Backtesting study of different VaR models in the Forex market for 20
currencies (2000-2021), using a 250-day estimation window for the target α =
10%. The best-performing results are in bold. If more than one result per row is in
bold, no statistically significant difference was found (5% significance level).
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Figure B.1: Boxplots illustrating the distribution of out-of-sample exceedance rates
(α̂) for 20 currencies, allowing to assess how closely each model aligns with the
targeted α throughout the entire period. (a) has the target α = 1% and in (b)
target α= 10%.



87 B.3 Individual Currencies during COVID-19

-0.02

0.00

0.02

Jan Apr Jul

Time

L
o

g
 R

e
tu

rn
s

Covid Recession Log Returns

C-NECO VaR
ᾱ = 4.33%, sd = 0.2%

NECO VaR
ᾱ = 5.78%, sd = 0.23%

FHS-GARCH VaR
ᾱ = 11.91%, sd = 0.32%

GARCH VaR
ᾱ = 11.55%, sd = 0.32%

HIST VaR
ᾱ = 7.94%, sd = 0.27% sd

VarCovar VaR
ᾱ = 6.5%, sd = 0.25%

Log Returns vs VaR for currency AUD

-0.025

0.000

0.025

Jan Apr Jul

Time

L
o

g
 R

e
tu

rn
s

Log Returns

C-NECO VaR
ᾱ = 5.42%, sd = 0.23%

NECO VaR
ᾱ = 7.22%, sd = 0.26%

FHS-GARCH VaR
ᾱ = 13.72%, sd = 0.34%

GARCH VaR
ᾱ = 12.27%, sd = 0.33%

HIST VaR
ᾱ = 11.19%, sd = 0.32% sd

VarCovar VaR
ᾱ = 9.39%, sd = 0.29%

Covid Recession

Log Returns vs VaR for currency BRL

-0.02

-0.01

0.00

0.01

0.02

Jan Apr Jul

Time

L
o

g
 R

e
tu

rn
s

Covid Recession Log Returns

C-NECO VaR
ᾱ = 6.14%, sd = 0.24%

NECO VaR
ᾱ = 5.78%, sd = 0.23%

FHS-GARCH VaR
ᾱ = 9.39%, sd = 0.29%

GARCH VaR
ᾱ = 9.39%, sd = 0.29%

HIST VaR
ᾱ = 6.14%, sd = 0.24% sd

VarCovar VaR
ᾱ = 5.05%, sd = 0.22%

Log Returns vs VaR for currency CAD

-0.01

0.00

0.01

0.02

Jan Apr Jul

Time

L
o

g
 R

e
tu

rn
s

Log Returns

C-NECO VaR
ᾱ = 6.5%, sd = 0.25%

NECO VaR
ᾱ = 5.78%, sd = 0.23%

FHS-GARCH VaR
ᾱ = 6.14%, sd = 0.24%

GARCH VaR
ᾱ = 10.11%, sd = 0.3%

HIST VaR
ᾱ = 5.78%, sd = 0.23% sd

VarCovar VaR
ᾱ = 6.5%, sd = 0.25%

Covid Recession

Log Returns vs VaR for currency CHF

Figure B.2: Out-of-sample predictions of VaR for six methods, including NECO with-
out conformal updating. The predictions are plotted against the respective log-
return realizations of individual exchange rates over the USD during the COVID-19
period. The VaR are computed for all methods with an estimation window of 250
days, for 1-day ahead rolling predictions.

B.3 Individual Currencies during COVID-19

In this Section, we present the performance of each of the VaR estimations for
all 20 individual currencies in our dataset. Out-of-sample predictions of VaR for
the six methods, including NECO without conformal updating are presented in
Figure B.2.
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Figure B.2: Out-of-sample predictions of VaR for six methods, including NECO with-
out conformal updating. The predictions are plotted against the respective log-
return realizations of individual exchange rates over the USD during the COVID-19
period. The VaR are computed for all methods with an estimation window of 250
days, for 1-day ahead rolling predictions.
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Figure B.2: Out-of-sample predictions of VaR for six methods, including NECO with-
out conformal updating. The predictions are plotted against the respective log-
return realizations of individual exchange rates over the USD during the COVID-19
period. The VaR are computed for all methods with an estimation window of 250
days, for 1-day ahead rolling predictions.
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