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Abstract

Interactive mobile apps are extremely popular, and there is a strong demand
for short time to market, high quality, and low costs. It is important to auto-
mate testing analysis to efficiently and effectively verify these applications, and
comply with market requirements. In the last decades, many researchers have
proposed several approaches to automatically generate test cases for interactive
applications.

Most approaches for testing interactive applications consider structural in-
formation, and ignore semantic information. As a result, they are not effective
in revealing non-crashing semantic errors and wrong outputs. TEST REUSE is
a recent promising research line that aim to generate semantically relevant test
cases by migrating test cases across similar applications. TEST REUSE approaches
leverages semantic information available in the GUI of applications to migrate
test cases from a source application to a target application that shares similar
functionalities. TEST REUSE approaches rely on semantic matching to find similar
events between source and target applications based on the textual descriptor of
GUI widgets. TEST REUSE approaches use semantic matching techniques based
on simple considerations, and do not carefully investigate the different design
choices and their effects. Understanding the design choices, that is, identifying
commonalities and differences in semantic matching techniques in the context
of test generation approaches, can help us develop effective migration strategies.

In this thesis, we study the semantic matching of events in approaches that
reuse test cases across interactive applications: We study the components of se-
mantic matching of events available in the GUI, and identify the best choices for
TEST REUSE among available solutions and those that we propose in this thesis.
In the thesis, we (i) define a general context for TEST REUSE approaches that
encompasses common components of all TEST REUSE approaches, (ii) introduce
a framework to automatically evaluate semantic matching both in-isolation and
in the context of test reuse, (iii) conduct a comprehensive empirical study, and
(iv) provide important insights about the components of semantic matching and
its effect on test reuse.
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Chapter 1

Introduction

In this chapter we discuss the importance of testing and the need for
automation. It highlights the importance and role of test reuse, and
overviews the main results of the PhD research.

Interactive mobile applications are widely spread in the everyday life. They
become increasingly complex, and continuously grow with new functionalities
to meet the requirements of a fast changing market [92]. The wide spread of
interactive mobile applications largely emphasizes the costs of failures in pro-
duction, and the fast evolving demand of the market makes it extremely effort
demanding to thoroughly test such applications.

Automatically generating test cases can largely reduce the cost of testing,
and can make it feasible to thoroughly test applications and reveal faults be-
fore expensive impacts in production. The research on automatically generating
test cases for interactive mobile applications produced many approaches that
we classify in four main categories: random [59], coverage-based [60], model-
based [80], and similarity-based approaches [76]. Random approaches ran-
domly interact with the GUI. Model-based approaches build a GUI model that
they use to explore the execution space of the application. Coverage-based ap-
proaches generate test cases that maximize some structural coverage criteria.
Similarity-based approaches migrate test cases across similar applications. All
but similarity-based approaches are agnostic to the semantics of the applications,
and as such they cannot reveal failures that depend on the semantics of the appli-
cations. Semantic-agnostic approaches can generate a large number of test cases,
achieve high coverage, and reveal simple crashes. However, semantic-agnostic
approaches cannot systematically exercise meaningful scenarios and reveal non-
crashing faults such as wrong output. For instance, let us consider an application
that identifies the type of the input graphs. Semantic-agnostic approaches inter-
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act with the application by creating simple graphs with random nodes connected
with random edges. They unlikely create well-formed graphs that can check the
correct behavior of the application for all types of graphs.

Applications that address similar requirements and share similar functionali-
ties are a relevant phenomenon in the context of mobile applications. Similarity-
based approaches largely reduce the effort to generate semantically relevant test
cases, by taking advantage of this phenomenon. Many studies indicate an enor-
mous availability of similar applications: Hu et al. report that 196 (63.4%) of
the top 309 non-game mobile apps in the Google Play Store can be classified
into 15 groups such that each group share many common functionalities [42];
Ebrahimi et al. classify the 1.8M apps of Apple App Store in 23 categories, and
the 2.87M apps of Google Play in 35 distinct categories [31]. The large availabil-
ity of similar applications makes it extremely promising to automatically share
test cases among similar applications.

We classify similarity-based approaches as PATTERN-BASED [67] and TEST

REUSE [53, 10, 68] approaches. PATTERN-BASED approaches identify patterns
that abstract the knowledge embedded in test cases, and generate test cases by
pattern-matching events that comprise the test cases of the source applications
with events that comprise the test cases of the target applications. PATTERN-
BASED approaches either rely on manually-defined patterns [67] or automati-
cally extract patterns from test cases [65]. Manually defining patterns require a
conceivable human effort, while automatically extracting patterns requires to an-
alyze a large number of test cases. Both activities are expensive and produce only
a limited amount of patterns. TEST REUSE approaches migrate the knowledge of
testing a functionality from the test case of a source application to a target ap-
plication [53, 10, 68]. The enormous amount of well-tested mobile applications
that share similar functionalities can produce a large amount of test cases with
no expensive preprocessing.

TEST REUSE approaches semantically match events that comprise the test
cases of a well-tested source application to events that comprise test cases for
a target application. TEST REUSE approaches consider oracles expressed as as-
sertions as events that may require some extra checks. Developers use differ-
ent terms for similar semantic information and approaches to migrate test cases
must address two key challenges: (i) semantically similar events expressed with
syntactically different terms, and (ii) a many-to-many mapping between semanti-
cally similar events. TEST REUSE approaches identify semantic similarities among
syntactically different items, by semantically matching textual information with
word embedding techniques. Also, they identify many-to-many mappings with
different selection strategies that steer the exploration toward generating test
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cases that exercise the target application realistically [53, 10]. Zhao et al. [109]
developed FrUITeR to comparatively assess TEST REUSE approaches. FrUITeR
compares approaches monolithically, however, it does not offer a way to com-
pare the contribution of the different components of the approaches.

In this thesis, we address the problem of migrating test cases across seman-
tically similar mobile applications, which is the most promising approach to au-
tomatically generate semantically relevant test cases for mobile apps. We define
approaches general enough to be applied to general interactive applications. We
present the results of experimenting with Android apps. The following char-
acteristics of the ANDROID platform make ANDROID applications an ideal target
for studying testing interactive applications [21]: (i) ANDROID has the largest
share of the mobile market (ii) Cross-version incompatibilities of ANDROID OS
and diversity of devices increase the necessity for automated testing (iii) The
open-source nature of the ANDROID platform and its related technologies makes
it a more suitable target for academic researchers.

The most relevant characteristics of mobile devices that challenge develop-
ments and testing are the heterogeneity of hardware configurations of the devices
and the variability of the running conditions [2]. The hardware configurations
vary in the types of sensors, displays and CPUs. Moreover, the devices support
different mobile networks and communications technologies, resulting in a big
variety of configurations that challenge both development and testing.

In this thesis, we (i) discuss the results of an in-depth study of TEST REUSE

approaches, (ii) identify the main limitations of current approaches, (iii) define
and evaluate solutions to overcome the main limitations of state-of-the-art ap-
proaches, and (iv) introduce two frameworks to automatically evaluate the in-
ternal components of TEST REUSE.

1.1 Research Hypothesis and Contributions

The main research hypothesis of this thesis is the following:

The in-depth study of semantic matching provides insights that facili-
tate the definition of mature TEST REUSE approaches.

TEST REUSE approaches share many similarities and interesting distinctive
factors. To study both the contribution of similarities and the impact of differ-
ences, we need to identify the common conceptual components of TEST REUSE

approaches, and compare TEST REUSE approaches at a fine granularity level. By
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studying TEST REUSE approaches at the granularity of components, we can iden-
tify the contributions and limitations at a fine granularity level, and thus identify
optimal and sub-optimal combinations of the different components, to define
adequate solutions. In this thesis we propose a conceptual architecture that ab-
stracts internal components of TEST REUSE, along with their interactions. We use
the ARCHITECTURE to investigate and evaluate the design choices of the current
TEST REUSE approaches. The ARCHITECTURE is composed of five components
that all TEST REUSE approaches have in common: Corpus of Documents, Word
Embedding, Event Descriptor Extractor, Semantic Matching Algorithm, Event Se-
lector.

Different choices for designing and implementing the conceptual components
of test reuse approaches may result in different performance of semantic match-
ing and TEST REUSE. In this thesis we compare both the instances of the main
components of TEST REUSE available in the current approaches, and alternative
instances of components that may improve effectiveness and efficiency of TEST

REUSE. In addition, we propose new instances for SEMANTIC MATCHING ALGO-
RITHM and CORPUS OF DOCUMENTS components that outperform existing ones.

The components’ instances of TEST REUSE approaches cooperate and affect
on each other. In this thesis, we present the results of our study of different
combinations of component instances, and discuss the impact of the interactions
of different instances of the different conceptual components. A systematic ex-
ploration of the possible combinations for TEST REUSE requires an effective in-
frastructure that automate the process. We propose a framework that integrates
different instances of the main components, to automatically evaluate different
choices of component instances.

We discuss the results of a thorough empirical evaluation of the components
both in-isolation by 8,099 GUI events and in context of the TEST REUSE by 6,000
test migrations. The evaluation of the individual component provides in-depth
insights of their contributions and limitations in TEST REUSE. The results of our
evaluation indicate both that there exist a lot of space for improving the current
semantic matching techniques, and the semantic matching is only one of the key
factors for effectively and efficiently migrating test cases across applications.

The TEST REUSE ARCHITECTURE and the frameworks that we introduce en-
ables an evolutionary way of creating TEST REUSE approaches by combining dif-
ferent instances of the components. We offer the TEST REUSE ARCHITECTURE

and the frameworks in a replication package to allow interested researchers and
practitioners to propose new TEST REUSE approaches, by experimenting with
new instances of some components in combination with currently available in-
stances of other components.
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Finally, we propose a new generation of TEST REUSE approaches based on
best choices of each components, as indicated by the results of our experimental
evaluation.

We follow an inductive methodology: we first review the current TEST REUSE

approaches, and propose a general ARCHITECTURE that consist of abstract compo-
nents. We then augments the instances of the different components that current
approaches propose with new instances to address limitations of the components
proposed so far. Each combination of instances yield a different semantic match-
ing configuration which performs uniquely. We evaluate the configurations in
two steps: in isolation and in test reuse context.
In the first step, we synthesis a data set of evens, and study the components of
semantic matching. We build the data set base on the test migration scenarios
that have been used in the previous studies. Then we build a framework that sys-
tematically incorporates different combinations of instances for semantic match-
ing and evaluate their performance with the metrics dedicated for matching of
events.
In the second step, we build a framework that integrates the TEST REUSE ap-
proaches available in the literature with different semantic matching configura-
tions. We use the framework to migrate scenarios that we considered in the first
step with different semantic matching configurations. We evaluate performance
of the configurations with metrics dedicated to quality of migrations. At the end
of each step we discuss the insights that we gained based on the empirical results
and we indicate the best and worst performing instances.

Our study both offers a comparative evaluation of the instances of the differ-
ent components and indicates the most relevant component for semantic match-
ing and test reuse. Our insights highlight the limitation of the current semantic
matching approaches for reusing test cases and indicates the horizon of future
studies.
In the thesis, we propose a new approach that we define by assembling the best
instance of the different components of test reuse.

1.2 Thesis Structure

This thesis is organized as follows:

• Chapter 2 introduces the core terminology used in the thesis and presents
the state of the art in TEST REUSE approaches.

• Chapter 3 introduces the ARCHITECTURE that we propose to abstract TEST
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REUSE internal component, and discuss the instances that we considered
for each components.

• Chapter 4 presents the framework we propose to evaluate the components
both in isolation and in TEST REUSE context.

• Chapter 5 reports the results of evaluating TEST REUSE component in iso-
lation.

• Chapter 6 reports the results of evaluating domain specific word embed-
ding models in isolation.

• Chapter 7 reports the results of our evaluation of the TEST REUSE compo-
nents in TEST REUSE context.

• Chapter 8 Summarizes the contributions of the thesis and discusses open-
research directions.



Chapter 2

Migrating Tests Across Interactive
Applications, State of the Art

In this chapter we first introduce the core concepts of testing interactive
applications that are relevant in this thesis, and presents the notations
that we use in the thesis, to make the thesis self-contained. Then, we
overview the approaches to automatically generate test cases for inter-
active applications.

Testing software systems in general and in particular interactive applications
requires to both generate and execute test cases to reveal faults. Capture and re-
play (C&R) tools automatically generate test cases for interactive applications by
recording user interactions and converting them to test cases. C&R tools are easy
to use and a tester with limited testing knowledge can generate scripts in a short
time. However, C&R tools are fragile with respect to app evolution, in particular
GUI changes [77, 102]. Also, they suffer from portability issues: The more ac-
curate the recorded events are (timing, coordinate of events), the more coupled
the generated test is to the device characteristics it was recorded on [55]. More
importantly, C&R tools require a conceivable manual effort and the effectiveness
of C&R tools depends on the effort of the testers [27].

Automated test generation approaches reduce the manual effort required to
generate test cases. Automatically generating test cases is still an open challenge,
despite the many approaches and tools developed in the last decades. Linares
et.al observe than C&R tools are more effective that automatic generators in
terms of code coverage if the tester has enough time and information about the
AUT [27], since automatic approaches hardly execute branches that are reach-
able only with complex interactions.

7



8 2.1 Terminology

In this chapter, we introduce the main terminology that we use thorough the
thesis, and overview the relevant approaches to automatically generate test cases
for interactive applications.

2.1 Terminology

A Graphical User Interface of a mobile app, GUI, is a forest of hierarchical win-
dows where only an active window is available to be used at any time ([73]).
Windows include widgets, atomic elements that are characterized by attributes
(such as text and identifier). At any time, the active window has a state S that en-
compasses the attribute values of the displayed widgets. The type of the widgets
depends on their functionality. Some widgets expose user-actionable events to
let users interact with the app ([28]). For example, Label widgets provide textual
information and users cannot interact with them, while Button widgets enable
click actions.

An event is an atomic interaction on a widget. GUI events are human-computer
interactions, for instance, click on widgets of type Button, or fill widgets of type
EditText. Following previous studies, we abstract the implemented widget types
and group GUI events into clickable and fillable. Clickable events include simple
click, swipe and long click, and are applicable to a wide range of widget types.
Some clickable events allow navigating across different pages, like event es

1 in
Figure 2.1. Other events execute some functionality, for instance, event es

4 saves
an expense. The ANDROID context offers different widget types that support click
events, such as Button, ListView, Dialog, and ImageButton. Fillable events insert
a text into an EditText widget. They provide information that are required for
a functionality, for instance, event es

3 of Figure 2.1 allows to insert the amount
of an expense. Oracle events check the state of the widgets, for instance, event
os

1 exist(restaurant) of Figure 2.1. checks if there is widget in the current state
with a text attribute equal to hello. An event is a triple 〈wid get, t ype, input〉, in
which widget refers to the GUI element that event will be executed on; type of
event could be clickable, fillable or oracle; Input is the string that should be used
to fill a fillable widget or needs to be checked in case of the oracle event.

A GUI test t is an ordered sequence of events 〈e1, ..., en〉 on widgets of the
active windows. A test execution induces a sequence of state transitions S0

e1−→
S1

e2−→ S2 . . .
en−→ Sn where Si−1 and Si denote the states of the active window before

and after the execution of ei, respectively. A GUI test case can have one or more
assertion oracles that check the correctness of the state Si obtained after the
execution of an event ei ([7]), for example, checking for the absence or presence



9 2.2 Testing Interactive Applications

of widgets with specific attributes values.
A GUI model (TARGET APPLICATION MODEL) is a directed graph where nodes

correspond to the states of the GUI, and edges are labelled with the events that
lead from the state that corresponds to the source to the state that corresponds
to the target node of the edge, respectively.

Test Reuse is the process of migrating GUI test cases across apps that share
similar functionalities. More formally, given two apps As (source) and At (tar-
get), and a “source” test t s for As, TEST REUSE approaches generate “target” test
case t t that tests At as t s tests As. TEST REUSE approaches create t t by searching
At for events that are semantically similar to events in t s. We refer to a pair of
source test case and target application 〈t s, At〉 as a scenario. Each scenario is
paired with the ground truth that is defined as the events et

g t ∈ t t that match
the events es ∈ t s. The target test case t t may include ancillary events ([109]),
that is, events in t t that do not correspond to any event in t s, and that are re-
quired to reach relevant states in the app. The source test case t s may include
unmatchable events, that is, events that do not have any equivalent in the tar-
get application. Ancillary and unmatchable events exist because the applications
implement functionalities in different ways.

Figure 2.1 shows an example of a migration from a test designed for the
source app Money Tracker (A) to the target app EasyBudget (B). The two test
cases verify the same feature, namely adding an item. The example shows events
of all types, including clickable, fillable, and oracle, with oval lines that indicate
position of interactions. Events in the target test case may either match events
in the source test case or be ancillary events needed to move from states in the
target app. Event et

1 is an example of an ancillary event that leads to the next
state, where events es

1 and et
2 match each other.

2.2 Testing Interactive Applications

We classify approaches that test interactive applications into 4 categories: ran-
dom, coverage-based, model-based, similarity-based approaches. In the next sec-
tion, we introduce each category, discuss the core ideas of representative ap-
proaches, and highlight the main limitations of each category.

2.2.1 Random approaches

Random approaches generate GUI test cases by randomly executing GUI events.
While these approaches are the most simple ones, some of them included heuris-
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Figure 2.1. Test reuse example, the target test cases (B) is obtained by migrating the
source test case (A)

tics to avoid irrelevant events.

ANDROID toolkit offers MONKEY [121], a tool for stress testing of Android
applications. MONKEY randomly clicks on different positions of the application’s
window, regardless of its effect on the application.

Machiry et al. define DYNODROID ([59]) an approach that introduces observe-
select-execute cycles. In each cycle, DYNODROID observes which widgets are avail-
able in the current GUI state, selects an event and executes it. DYNODROID select
executable events according to two criteria: all widgets should be executed even-
tually and no widgets should be selected too frequently. In contrast to MONKEY,
DYNODROID both excludes useless actions and considers text input events. For
example, MONKEY might click on a label widget which is not clickable, and DYN-
ODROID avoids such actions by considering the type of the widgets. DYNODROID

is constrained to specific ANDROID SDK since it needs instrumentation of the SDK
to identify available event listeners and infers the type of the widgets. Similar to
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DYNODROID, TESTAR [100] generates random test cases while considering proper
events in each state. TESTAR uses the operating system accessibility API to infer
the type of the widgets available in each GUI state.

Eruth et al. introduce the idea of macro events: sequences of low-level GUI
events that abstract single logical steps, such as filling and submitting a form [32].
Their approach leverages well-known data mining techniques to automatically
extract macro events from execution traces of human users. Their approach com-
bines macro events with random testing to generate more effective test cases than
purely random test cases, since they consider realistic sequence that correspond
to common paths that users will take.

DEEPGUI [105] extends MONKEY and leverages Deep Reinforcement Learn-
ing to identify actionable widgets. DEEPGUI trains its model using screenshots
and executed events of GUI states from random crawling of many applications.

The Simplicity of random approaches enables them to quickly generate and
execute many test cases [14]. In contrast to low coverage of random testing
in other areas [52], random approaches for testing interactive applications can
achieve a high coverage. However, they are unaware how much of the applica-
tion behavior they covered. They both generate many redundant test cases [6]
and miss important scenario [67]. Finally, they consider manually specified time-
out rather than a stopping criterion that indicates the success of the exploration.

2.2.2 Coverage-based approaches

Coverage-based approaches generate GUI test cases that maximize the coverage
of the application under the test. Coverage-based approaches are either search-
based or symbolic-execution-based.

Searched-based solutions are used in many software engineering domains
[85] such as test prioritization [39], refactoring [71], and software correction [45].
Search-based software engineering (SBSE) reformulates software engineering
activities as optimization problems and uses search algorithms to automatically
solve the problems [41]. A key element in SBSE is to define the fitness function,
which allows to both numerically assess the quality of solutions and guides the
search algorithm. Researchers usually use software metrics as fitness function.
For instance, they use code coverage to minimize test suites. Researchers widely
applied evolutionary algorithms to solve the optimization problems [110]. Evo-
lutionary algorithms first create a population of random solutions (individuals)
then they evolved the population. The algorithms iteratively select high quality
individuals to act as parents, which generate new solutions by applying crossover
and mutation operators. In the context of testing interactive applications, the op-
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timisation problem can be defined as finding the set of test cases that maximize
statement coverage or multi-objective optimization such as high coverage and
high number of faults revealed.

EXSYST is the first approach that uses an evolutionary algorithm to generate
test suites for desktop applications [36]. The cross-over operator in the evolu-
tionary algorithm of EXSYST creates two offspring test suites from two parent
test suites. The mutation operator works both at test suite level by inserting a
test case and at test case level by deleting, changing or adding an event. EXSYST

calculates the fitness value for a test suite by aggregating the minimum branch
distances [72] of all the branches in the program. The fitness function estimates
how close a test suite is to covering all branches of a program. The coverage of
the final population is no better than the initial population (randomly generated
tests), as EXSYST mainly uses the evolutionary algorithm to minimize the number
of test cases.

EVODROID [60] generate test cases that maximize the coverage of unique
paths in call graph from the starting node of an app to all its leaf nodes. EVO-
DROID generates the call graph by statically analyzing the program, partitions
the call graph nodes to different segments based on their activity and services,
and incrementally generates test cases by finding a test case for each segment
from the root to leaves.

SAPIENZ uses a multi-objective fitness function with three competing objec-
tives: (i) short sequence of events, (ii) high coverage, (iii) high number of re-
vealed crashes. Other approaches do not simultaneously optimize these compet-
ing objectives, whereas SAPIENZ provides a set of optimal tradeoff solutions.

Recently, Dong et al. introduced TIMEMACHINE that extends MONKEY by keep-
ing track of states with high fitness and get back to them when it cannot progress
in test generation [29]. TIMEMACHINE takes random actions to reach new states,
and restart from one of the most fitted states, when it cannot progress anymore.
Differently from other SBSE approaches that consider a population of test suites,
TIMEMACHINE evolves a population of app states. TIMEMACHINE defines the fit-
ness function based on how many times the state and its neighbors are visited
and trigger the execution of new code.

Symbolic-based approaches adapt either symbolic or concolic execution for
GUI testing. BARAD [34] introduces a symbolic abstraction of widgets that en-
ables symbolic analysis of the GUI control flow. Symbolic execution is very ex-
pensive due to combinatorial explosion and is typically used in small software
systems and at the unit level. BARAD tackles this issue with two strategies: It only
considers events with registered event listeners, thus pruning the state space, and
introduces symbolic widget to symbolically manipulate GUI widgets and obtain
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an executable symbolic version of the GUI.
ACTEVE [4] and GUICAT [19] use concolic execution to generates sequence

of events systematically [4]. ACTEVE tackles the combinatorial explosion prob-
lem by considering a subsumption condition between event sequences to prune
redundant event sequences, while being complete with respect to classic concolic
execution. GUICAT [4] propose a cloud based parallel algorithm for mitigating
both event sequence explosion and data value explosion.

SYMJS introduces the first symbolic virtual machine for JavaScript and lever-
ages that to generates event sequences for web applications written in JavaScript [50].
SYMJS uses a symbolic and dynamic feedback to direct input space exploration
and reduce testing time.

Coverage-based approaches systematically explore the application state space,
results in high coverage, and exercise behaviors that would be hard to reach with
random techniques. However, there is no guarantee that such high-coverage test
suites exercise the application in a realistic way or be effective in revealing faults.
These approaches are considerably less scalable and require to instrument the
app to measure coverage and possibly execute it symbolically.

2.2.3 Model-based approaches

Model-based approaches generate test cases driven by a GUI model. Models
are typically built by dynamically exercising the GUI of the application under
test [73]. Model-based approaches either cover the GUI model based on coverage
criteria or use the model to make decisions in each state.

GUITAR [80] is the first model-based approach for GUI applications. Re-
searchers deployed GUITAR for desktop [80], mobile [3] and web [74] platforms.
The effectiveness of model-based approaches depends on the completeness and
quality of the models. Fine-grained models suffer from the state explosion prob-
lem, while coarse-grained model do not provide enough information for an ef-
fective guidance. ORBIT [104] tackles quality and size issues of GUI models by
statically analyzing the application to extract the set of events the GUI applica-
tion supports, and uses the extracted events to dynamically crawl the application.
DroidBot [106] creates a GUI model on-the-fly using method log and process
information in addition to GUI state information. DroidBot does not require in-
strumentation and allows testers to integrate their strategies to exercise the GUI
model. APE [37] dynamically adjusts the granularity of the model as needed,
instead of operating on a fixed abstraction granularity. APE observes feedback
during testing and gradually refines the model while maintaining a balance be-
tween the size and precision of the model.
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SWIFT [20] uses a machine learning adaptive algorithm (automata learning)
that operate on unknown random environments. SWIFT learns a model of the
application during testing and uses the learned model to generate events that
visit unexplored states of the app. The automata learning algorithm uses the
execution of the app on the generated events to refine the model. A key feature
of SWIFT is that it avoids restarting the app to reduce the cost.

Many approaches use Q-learning [95] to model behavior of the GUI. Q-learning
based approaches determine the reward of an action from the differences among
the states reached with the actions. The more two states are different, the higher
the reward is, and thus the probability to move in that direction. AUTOBLACK-
TEST [69] uses Q-learning to generate test cases for desktop applications. It
rewards GUI events that activate many changes in the GUI state, and penalizes
events that activate marginal changes. A-TEST adapts reinforcement learning
to the ANDROID environment [101]. Q-TESTING [81] differentiates states at the
granularity of functional scenarios by considering previous states to calculate
the reward function. Remembering past states guides Q-TESTING towards unfa-
miliar functionalities. ARES uses deep learning to infer state similarity and the
action-value function, while other approaches use Tabular Reinforcement Learn-
ing [89]. Deep Reinforcement Learning is more effective than Tabular when state
space is extremely large, like GUI of Android applications.

The effectiveness of model-based approaches is limited to the ability of the
model to abstract the behavior of the application, and creating a high quality
models is expensive. Similarly to coverage based-approaches, model-based ap-
proaches cannot distinguish between semantically relevant and irrelevant tests.

2.2.4 Similarity-based approaches

There are millions of interactive applications and many of them share similar
functionalities. The similarity among functionalities offers an opportunity to mi-
grate the knowledge encoded in test cases across applications that share sim-
ilar functionalities. We classify similarity-based approaches as PATTERN-BASED

and TEST REUSE approaches. PATTERN-BASED approaches consider knowledge of
testing the functionality as patterns of recurrent events, TEST REUSE approaches
reuse test cases of an application for another application. Similarity-based ap-
proaches generate test cases that are realistic and semantically relevant. Similarly-
based approaches also address the fragility and portability issues of C&R tools:
Testers can record test cases of an app and reuse them to test both an evolution of
the app and new devices incompatible with the ones used in the recorded testing.
Similarly-based approaches can benefit from test cases that C&R tools generate
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and that encompass knowledge of testing a functionality: PATTERN-BASED ap-
proaches can extract the patterns from the test cases or TEST REUSE approaches
use a test case as the source for migration.

PATTERN-BASED approaches abstract the functionalities of the applications as
patterns, and match patterns’ elements with the events of the application under
the test. These approaches either use patterns that are predefined manually or
extract patterns from execution traces.

PARADIGM [76] generates GUI test cases for web and mobile applications
from user-defined GUI interaction patterns, expressed with a domain-specific
language [76, 78]. AUGUSTO [67] introduces the notion of Application Inde-
pendent Functionalities (AIF) to abstract recurrent patterns that are prevalent
among applications of different domains. Previous approaches only used textual
information from GUI’s DOM, while APPFLOW [42] considers both textual and
visual information (by using computer vision) to map elements of predefined
patterns to target app events. The effectiveness of PARADIGM, APPFLOW and AU-
GUSTO depends on the availability of pre-defined patterns, which are difficult
and expensive to create manually.

Recent approaches propose different strategies to extract patterns automati-
cally. Linares et al. propose MONKEYLAB: a language GUI model that encode the
probability of occurrence of a sentence (words are events in this context) [56].
They train the language model by mining developers’ usage of apps and analyz-
ing the APK of android applications. MONKEYLAB can generate test cases that
reflect both common and uncommon (corner) cases. POLARIZE [65] extracts mo-
tifs, a short sequence of recurrent events, from large sets of execution traces of
multiple apps, and feed the motifs to a genetic algorithm, to generate test cases
for other apps, aiming to maximize coverage. Mao et al. [66] propose data min-
ing techniques to extract usage behavior patterns at the granularity of functional
scenarios from user traces. AVGUST [108] leverages computer vision and NLP
techniques to extract usage patterns from screen recordings of multiple apps. AV-
GUST is a developer-in-the-loop technique: It ranks the target events based on
their similarity to the pattern elements and recommends top events to developers
to choose from.

Manually defining patterns for these approaches is expensive, and automati-
cally extracting patterns requires a big data set of execution traces.

TEST REUSE approaches for GUI applications ([109]) automatically migrate GUI
test cases (including oracles) across apps that share similar functionalities. Re-
searcher proposed TEST REUSE approaches that migrate test cases of the same
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applications cross different platforms. TESTMIG [84] reuses test cases of IOS
applications to generate test cases for the ANDROID version of the same applica-
tions. TESTMIG uses tf-idf to convert text to vectors of real numbers, and uses
the cosine similarity formula to compute the similarity of events between the two
versions of the same app. Then, it maps events by using probabilistic sequence
transduction – a probabilistic model widely used in machine translation. MAPIT
migrates test cases in bidirectional way between ANDROID and IOS version of the
same application [97]. TRANSDROID [54]migrates test cases of Web apps to their
corresponding ANDROID version, with a SEMANTIC MATCHING ALGORITHM simi-
lar to CRAFTDROID. Migrating test cases of the same application across different
platforms is generally easier than migrating test cases across different apps.

Other TEST REUSE approaches migrate test cases between different applica-
tions on the same platform. Rau et al. [86] propose to use semantic matching
of GUI elements to migrate test cases across web applications. CRAFTDROID [53]
migrates tests across ANDROID applications. GUITESTMIGRATOR [11] migrates
test cases between prototype applications with the same specifications. APPTEST-
MIGRATOR (ATM) [9] extends GUITESTMIGRATOR to migrate test cases of real
applications with similar functionality. ADAPTDROID formulates the problem of
reusing test cases as a search problem, and explores the space of possible GUI
test case with an evolutionary approach. ADAPTDROID uses a fitness function that
rewards the tests cases that are most similar to the donor test case [68].

In this thesis we study TEST REUSE approaches, and we focus on the most rel-
evant state-of-the-art TEST REUSE approaches: ATM, CRAFTDROID, and ADAPT-
DROID that we discuss in detail in the next sections. The three approaches lever-
age WORD EMBEDDING to semantically match event across applications, and they
build a GUI model for guiding the migration process. However, they differ in
strategies that they consider for matching of events and guiding the TEST REUSE

process.

2.3 Limitations and open problems

Random, coverage-based, and model-based approaches miss important scenar-
ios, even though they might achieve high coverage [107, 21]. For example, it is
unlikely that these approaches generate a test case for booking a flight success-
fully. An approach should enter a valid city name and dates for inputs. It also
requires considering certain preconditions related to the booking functionality,
such as setting the departure date before the return date. Similarity-based ap-
proaches tackle this problem by migrating knowledge from existing test cases or
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user executions. PATTERN-BASED approaches require providing patterns, which
is expensive. TEST REUSE approach are the most recent and promising category
of automatic testing of interactive application and they require more study.

FrUITeR studies TEST REUSE approaches by comparatively evaluating the ap-
proaches [109]. FrUITeR defines a set of metrics and automatically evaluates
the quality of the generated test cases, thus targeting end-to-end effectiveness of
TEST REUSE approaches. Assessing the effectiveness of TEST REUSE approaches
is a great step to understands the approaches, however, knowing the factors that
lead to the different effectiveness of TEST REUSE provides the essential insights
to direct future researches and improve the state-of-the-art.

In this thesis, we study the important distinctive factors of TEST REUSE ap-
proaches. We identify the common conceptual components and compare them at
a fine granularity level that enables us to identify optimal combination of compo-
nents and define solutions for their limitations. We propose a conceptual ARCHI-
TECTURE that encompasses components of TEST REUSE and their interactions.
We investigate and evaluate the design choices of the current TEST REUSE ap-
proaches by using the ARCHITECTURE. We propose a framework that integrates
different instances of the main components to systematically explore the pos-
sible combinations of the instances. In our evaluation framework we consider
instances from different sources: available instances in the current TEST REUSE

approaches, alternative instances from other research areas, and new instances
that we propose. We recommend the best instances to be combined to create ef-
fective TEST REUSE approaches based on our empirical evaluation, and provide
practical insights about TEST REUSE components.

The ARCHITECTURE and the frameworks that we introduce indicates new re-
search directions towards test reuse approaches that combine new instances of
some components with currently available instances of others. The insights from
our experiments offers practical guidelines about TEST REUSE approaches.
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Chapter 3

Test Reuse Architecture

In this chapter, we introduce the ARCHITECTURE that we propose, and
discuss the instances that we considered for each component of the ar-
chitecture. We derived the ARCHITECTURE taking advantage of both
a thorough inspection of the source code of the state-of-the-art TEST

REUSE approaches that are publicly available and a complete replica of
the experiments reported in the papers. We considered a set of common
functionalities between the state-of-the-art TEST REUSE approaches and
we identified input and output of each component.

Figure 3.1 overviews the GUI TEST REUSE ARCHITECTURE in a coarse grain
level. GUI TEST REUSE combines semantic matching of GUI events with test gen-
eration. Semantic matching of GUI events identifies semantically similar events
across source and target apps. Test generation exploits the similarities identi-
fied with semantic matching to migrate GUI test cases from the source to the
target app. TEST REUSE can be abstracted into two coarse grain components:
TEST GENERATOR and SEMANTIC MATCHER. We describe the two components in
Section 3.1.

TEST REUSE approaches match semantically similar GUI events across apps.
The semantic matching captures the event semantics, while abstracting the im-
plementation details. Indeed, two different apps might implement the same log-
ical action with different widgets (for instance, a button in one case and an im-
age button in another). Intuitively, TEST REUSE approaches aim to generate test
cases for the target app that maximize the number of semantically similar events,
possibly in the order prescribed by the source test.

19
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Figure 3.1. TEST REUSE Overview

3.1 Architecture Workflow

In this section, we describe the TEST REUSE ARCHITECTURE that characterizes
TEST REUSE across ANDROID applications and its interaction. We discuss the im-
plementation of the different components, and report the choices that we used
in our experimental study. We indicate the alternative implementation of each
component, and discuss the choices that characterize the current approaches,
ATM, CRAFTDROID and ADAPTDROID. The ARCHITECTURE allows us to identify
and compare combinations of different choices for each component, and iden-
tify SEMFINDER, a new SEMANTIC MATCHING ALGORITHM that supersedes current
approaches.

Figure 3.2 shows the ARCHITECTURE of TEST REUSE at a fine grain level. Given
a test case t s = {es

0, es
1, · · · es

n} from a source application, the TEST GENERATOR

explores the target application At to find a match for each event in t s, and it
generates a test case t t for the target application. When the TEST GENERATOR

does not find a match of an event because of different implementations of the
functionality in AsandAt , it skips the event. The TEST GENERATOR retrieves a set
E t = {et

0, et
1, · · · et

n} of candidate events from both the current state and TARGET

APPLICATION MODEL, and queries the SEMANTIC MATCHER to sort events accord-
ing to their similarity with the events es ∈ t s. The TARGET APPLICATION MODEL

is the GUI model containing GUI states and events which lead to the transition
between states. The SEMANTIC MATCHER sorts the candidate events et

i according
to the similarity score 〈es, et

i 〉 that it computes by aggregating the scores that it
retrieves from the WORD EMBEDDING MODEL for each pair of attributes in the
events descriptors (Score(t x t s, t x t t) in Figure 3.2). The TEST REUSE ARCHITEC-
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TURE combines five main components:

(C1) CORPUS OF DOCUMENTS is the set of documents that WORD EMBEDDING uses
to build a WORD EMBEDDING MODEL.

(C2) WORD EMBEDDING creates a WORD EMBEDDING MODEL that encodes the
semantic space of words and sentences, by mapping words and sentences
to vectors that encode the semantic distance of corresponding elements in
the CORPUS OF DOCUMENTS.

(C3) EVENT DESCRIPTOR EXTRACTOR extracts the (textual) descriptors D of both
the source event es and the set of candidate target events E t = {et

0, et
1, · · · et

n}
from the GUI states.

(C4) SEMANTIC MATCHING ALGORITHM returns the set E t of elements sorted ac-
cording to the similarity score of the descriptors of the target {Dt

0, Dt
1, · · ·Dt

n}
and source Ds events.

(C5) EVENT SELECTOR returns a test case t t = 〈et
0 . . . et

n〉 for the target applica-
tion At , where the event et

i either matches an event es
i in the test case t s of

the source application As or complete the sequence of events to obtain an
executable test.
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We refer to the implementations of TEST REUSE components as instances. A
combination of the instances for the SEMANTIC MATCHER’s component composes
a SEMANTIC MATCHING CONFIGURATION.

3.2 CORPUS OF DOCUMENTS

The quality of a WORD EMBEDDING model depends on the CORPUS OF DOCU-
MENTS used to train the model. There are two characteristics that the CORPUS

OF DOCUMENTS should have to obtain an effective WORD EMBEDDING model.
The corpus shall both include as many distinct words as possible, as the model
cannot compute similarity scores of words not represented in the vector space
(Out-of-Vocabulary issue ([15])), and reflect the way mobile apps commonly use
words. Indeed, a word can have a different meaning depending on the context
of usage, and WORD EMBEDDING models trained with domain-specific corpora
often outperform those trained with general corpora ([51]).

We considered both general and mobile apps specific corpora, to study and
quantify the importance of the context of usage. Our study considers four corpora
of English documents that are available in our replication package:

Blog Authorship Corpus (BLOGS) ([90]) that consists of 681,288 posts from
19,320 bloggers. This is a well-known corpus often used by the NLP and infor-
mation science communities ([91, 1]).

User Manuals of ANDROID apps (MANUALS) ([10]) that consists of the user
manuals of 500 ANDROID applications. This corpus was built by the authors
of ATM ([10]), who used it to train a WORD2VEC WORD EMBEDDING model for
running ATM.

Apps Descriptions (GOOGLE-PLAY) that consists of the English descriptions of
900,805 ANDROID apps in the Google Play Store. We constructed this corpus by
crawling the list of similar apps of each crawled page. We used as seeds of the
crawler the pages of the apps returned by searching random words in the Google
Play search bar.

Domain specific corpora (TOPICS): We propose to use a set of word embedding
models that are built by the corpus of documents specific to migration scenarios.
It is well known to NLP community that specialized word embedding models
can affect down stream tasks positively ([51]); In our case, semantic matching
is the down stream task. In fact, same words have different meaning in different
domains. Following this intuition, we hypothesis that we can further improve the
semantic matching by exploiting word embedding models trained on specialized
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corpora. We used topic modeling to partition the GOOGLE-PLAY corpus into finer-
grained corpora. We build word embedding models for each cluster and use
them for semantic matching. In more details, for each migration scenario we use
the description of the source application to identify the domain and we used a
word embedding model that is built by corpus of the documents with the same
domain.

3.3 WORD EMBEDDING

WORD EMBEDDING ([75]) is a class of unsupervised language modeling and fea-
ture learning techniques that map words and sentences from a CORPUS OF DOC-
UMENTS to vectors of real numbers ([99]). A WORD EMBEDDING model assigns
each word in the corpus to a unique vector in the space. Words that share com-
mon contexts in the corpus are close in the space. TEST REUSE approaches use
WORD EMBEDDING models to identify semantically similar, although syntactically
different words that independent developers may use to name actions with simi-
lar semantics. We experimented with the WORD EMBEDDING techniques that are
most commonly used in software engineering ([44]).

WORD2VEC ([75]): one of the most popular WORD EMBEDDING techniques de-
veloped in 2013 in Google. It implements a two-layer neural network that is
trained to reconstruct linguistic contexts of words.

Global Vectors (GLOVE) ([83]): a probabilistic technique that learns vectors
or words from their co-occurrence information (how frequently they appear to-
gether in the corpus).

Word Mover’s distance (WM) ([47]): a WORD EMBEDDING technique based on
the observation that semantic relationships are often preserved in vector opera-
tions on WORD2VEC models. For instance, vector(London) - vector(England)
+ vector(Germany) is close to vector(Berlin). WM exploits this property by
finding the minimum traveling distance between strings ([47]). As such, WM con-
siders distance between strings (one or more words) ([99]) and not only among
pairs of words like the distances based on WORD2VEC or GLOVE ([99]). In the
context of TEST REUSE this could be useful, because event descriptors often con-
tain multiple words ([10, 53]). WM returns an integer greater than zero, that
we normalize from 0 to 1, with a standard normalization 1/(1+WM(txts ,txtt )).

FASTTEXT (Fast) ([15]): an extension of WORD2VEC developed in Facebook. While
WORD2VEC treats words as the smallest unit to train on, FASTTEXT learns vectors
for the n-grams that are found within each word. FASTTEXT computes the vector
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of a word as the sum of its n-grams. For example, the word "aquarium" has the
n-grams: "aqu/qua/uar/ari/riu/ium". FASTTEXT is designed to alleviate the Out-
of-Vocabulary issue ([15]). In fact, even if the word "aquarius" is not present in
the corpus, FASTTEXT would embed "aquarius" near to "aquarium" because they
share five n-grams.

Bidirectional Encoder Representations from Transformers (BERT) ([26]): a
context-sensitive WORD EMBEDDING technique that infers the meaning of words
from its surroundings, by training a model on 15% of masked words in sentences.
While directional models read the text input sequentially either left-to-right or
right-to-left, BERT reads the entire sequence of words at once, thus allowing the
model to learn the context of a word in its left and right surrounding.

Neural Network Language Model (NNLM) ([5]): a family of neural network
techniques that learn WORD EMBEDDING models jointly with a language model.
The model is expressed as a function that captures the distribution of sequences
of words in a natural language. The language model estimates the probability of
words occurring after a prefix. Thus, NNLM are context-sensitive. In our study,
we consider the NNLM technique proposed by Google ([122]).

Universal Sentence Encoder (USE) ([16]): a context-sensitive WORD EMBED-
DING technique that Google proposes in two variants, Transformer-based and
Deep Averaging Network-based, that privilege accuracy and consumption of com-
puting resources, respectively. We used the Deep Averaging Network variant in
our study.

Both ATM and CRAFTDROID rely on models built with WORD2VEC, ADAPT-
DROID works with Word Movers Distance.

3.4 EVENT DESCRIPTOR EXTRACTOR

The EVENT DESCRIPTOR EXTRACTOR gets the descriptors of the events that SE-
MANTIC MATCHING ALGORITHM needs to compute the similarity among the source
event es and candidate target events 〈et

0, et
1, · · · et

n, 〉. An event descriptor D is a
set of textual attributes {a1, a2 · · · am} in the GUI states.

Each attribute is a 〈t ype, value〉 pair, for instance 〈tex t, press ok〉. Our
study considers all the attribute types used in ATM, CRAFTDROID, and ADAPT-
DROID ([53, 10, 68]). All approaches consider both primitive and derived at-
tributes. Primitive attributes are directly associated with the widget of the event
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under consideration. Derived attributes are attributes that are not directly as-
sociated with the widget itself, but to some near widgets ([8]). For instance in
the second window of Figure 2.1 (A), the attributes of widget es

2 are empty, the
corresponding field in the window is blank, and we infer the semantics of the
widget from the text attribute "Price" of a neighbor widget in the same window.

The primitive attributes of a widget w are:

text, the visible label associated with w (xml attribute android:text).

content-description, a textual description of w that is not visible in the GUI. It
is often used by ANDROID Accessibility APIs as alternate text for describing the
widget to visually impaired users (xml attribute android:contentDescription).

hint, a textual description of w that is used in editable widgets to help the user
to fill the correct content (xml attribute android:hint).

resource-id, the unique identifier of w that developers assign to each widget to
reference them in the code (xml attribute android:id).

file-name, the name of the file associated with w. For example, the name of the
image file associated with a widget.

activity-name, the name of the ANDROID activity of the widget w.

Both ATM and ADAPTDROID define derived attributes from the spatial posi-
tions of the widgets ([10, 68]). CRAFTDROID defines derived attributes from the
hierarchical structure of the ANDROID GUI states ([53]), in which widgets have a
parent-child-sibling relationship. The parent element directly precedes the child
element in the hierarchy, and siblings elements share the same parent.

The derived attributes of a widget w are:

parent-text, the text attribute of the parent widget of w.

sibling-text, the text attribute of the sibling widget before w in the widget hier-
archy.

neighbor-text, the text attribute of the widget closest to w in the page within a
given distance.

Some attributes of a widget can be undefined (empty). For example, most
widgets lack the hint or content-desc attributes.

In our experiments we consider the groups of attributes of ATM ("A" in Ta-
ble 3.1), CRAFTDROID ("C" in the table), their intersection (A ∩ C) and union (A
∪ C). The attributes of ADAPTDROID are the same of ATM, except for hint that
ATM considers, and ADAPTDROID does not, and that is empty in our case studies.
These groups allow us to evaluate also the impact of sets attributes that are used
by an approach only. For example, we can evaluate the impact of the descriptors
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Table 3.1. Groups of event descriptors

attribute attribute ATM ADAPTDROID CRAFTDROID intersection union
category type A A C A ∩ C A ∪ C

primitive

text 3 3 3 3 3

resource-id 3 3 3 3 3

content-desc 3 3 3 3 3

hint 3 3 3 3 3

file-name 3 3 3

activity-name 3 3

derived
neighbor-text 3 3 3

parent-text 3 3

sibling-text 3 3

Algorithm 1: Semantic Similarity Calculator
Input: two sentences txts and txtt , a word embedding modelM , aggregator aggr ∈

{avg, sum}
Output: similarity score between txts and txtt

1 function GETSIMSCORE

2 〈txts, txtt〉 ← PREPROCESSING(txts, txtt)
3 switchM do
4 case model at "word" level (WORD2VEC, GLOVE, FASTTEXT) do
5 score[][]←∅
6 for each word wd1 ∈ txts do
7 for each word wd2 ∈ txtt do
8 score[wd1][wd2]← COSINESIM(M (wd1),M (wd2))

9 mappedScores← GETMATCHEDWORDS(score[][])
10 return aggr{mappedScores}
11 case model at "sentence" level (WMD, BERT, NNLM, USE) do
12 return SIM(M ( txts),M ( txtt))

neighbor-text and file-name, by comparing the results of groups "A" and "A ∩ C".
The two attributes are available in the group "A" and they are absent in group "A
∩ C" and if group "A" performs better than the other group, it means neighbor-text
and file-name attribute have positive impact on the semantic matching.
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3.5 SEMANTIC MATCHING ALGORITHM

SEMANTIC MATCHING ALGORITHM returns the set of candidate target events E t

that correspond to a source event es, sorted according to the similarity scores
between Ds and Dt

i , where Ds is the descriptor of the source event es, and Dt
i are

the descriptors of the event et
i ∈ E t .

In our study we consider the SEMANTIC MATCHING ALGORITHM of ATM, CRAFT-
DROID, ADAPTDROID, as well as SEMFINDER, a novel SEMANTIC MATCHING ALGO-
RITHM that we propose. All the algorithms compute the semantic similarity scores
among the attribute values of the source and target descriptors using a WORD EM-
BEDDING modelM . All algorithms compute the semantic similarity of values of
the textual attributes of the source and target descriptors, txts and txtt , with Al-
gorithm 1 (Function GETSIMSCORE). The function GETSIMSCORE computes a real
number that expresses the similarity score between txts and txtt . The, function
GETSIMSCORE first pre-processes the strings by removing stop words, lemmatiz-
ing the strings, and splitting words originally in camel case notation (Line 2). It
then scores the similarity of the pre-preprocessed strings with respect to either
a word (WORD2VEC, GLOVE, FASTTEXT) or a sentence (WM, BERT, NNLM, USE)
level modelM .
Word level models: Function GETSIMSCORE computes the cosine similarity of
vector(wd1) and vector(wd2) for all possible pairs of words of the two strings
〈wd1 ∈ txts, wd2 ∈ txtt〉 (Lines 6–8). Then it identifies the best match among
the pairs as the pair with the highest cosine similarity, where(Line 9). It fi-
nally returns the similarity score computed with the input aggregation func-
tion (Line 10). ATM aggregates by summing the scores (sum), while CRAFT-
DROID, ADAPTDROID, and SEMFINDER aggregate by averaging the scores (avg).
For example, The algorithm 1 considers the following matrix for the two strings,
txts = ”wd1, wd2, wd3” and txtt = ”wd4, wd5”, in which cells represent semantic
similarity score of the corresponding words. The algorithm considers 〈wd3, wd4〉
as a match since they have the highest score (0.8). The pair of 〈wd3, wd5〉 has
the next highest score (0.6), but they cannot be matched since wd3 is already
matched. The algorithm considers 〈wd2, wd5〉 as a match since they have the next
highest score (0.4). The algorithm ignores wd1, since no other word is available
in txtt . The algorithm results similarity score of 1.2 and 0.6 for 〈txts, txtt〉 using
sum and average functions respectively.

� wd1 wd2 wd3

wd4 0.15 0.2 0.8
wd5 0.3 0.4 0.6

�



28 3.5 SEMANTIC MATCHING ALGORITHM

Algorithm 2: Semantic Matching Algorithm of ATM
Input: source descriptor Ds, set of target descriptors {Dt

0, Dt
1, · · ·Dt

n}
Output: sorting of E t based on the semantic similarity with es

13 function ATM
14 descScores[]←∅
15 labels1← GETFIRSTDEF(Ds[neighbor-text], Ds[resource-id] + Ds[file-name])
16 labels2← GETFIRSTDEF(Ds[text], Ds[content-desc], Ds[hint])
17 for each i from 1 to n do
18 if type(es) = type(et

i ) then
19 labelt

1← GETFIRSTDEF(Dt
i [neighbor-text], Dt

i [resourse-id] + Ds[file name])
20 labelt

2← GETFIRSTDEF(Dt
i [text], Dt

i [content-desc] or Dt
i [hint])

21 scores←∅
22 for each labels ∈ {labels1, labels2} do
23 for each labelt ∈ {labelt

1, labelt
2} do

24 add GETSIMSCORE(labels, labelt ,M , "sum") to scores

25 descScores[Dt
i ]← max{ scores }

26 return E t sorted by descScore

Sentence level models: Function GETSIMSCORE queries the modelM with the
strings as a whole. Notably, both ATM and CRAFTDROID use models at word level,
we add Lines 11 and 12 to make the algorithm compatible with the sentence level
WORD EMBEDDING models that we considered in our study.

We now describe the four algorithms and their key differences.

Semantic Matching of ATM ([10]) Lines 13 to 26 of Algorithm 2 encode the
SEMANTIC MATCHING ALGORITHM of ATM. The algorithm collects two textual
representations of the source event: labels1 (Line 15) and labels2 (Line 16). The
algorithm initializes labels1 to the first defined attribute among 〈neighbor-text,
resource-id + file-name〉 in Ds. If all of such attributes are undefined, the al-
gorithm initializes labels1 to the empty string. ATM extracts the neighbor-text at-
tribute only for filling events, while for clicking events it considers the attribute
as undefined. The algorithm initializes labels2 to the first defined attribute among
〈text, content-desc, hint〉 in Ds (Line 16). For each event et

i ∈ E t that has the same
type of es (either both filling or both clicking events), the algorithm collects labelt

1
and labelt

2 in the same way it collects labels1 and labels2, respectively. Then, the
algorithm invokes Function GETSIMSCORE (Algorithm 1) for each combination
of 〈labels ∈ {labels1, labels2}, labelt ∈ {labelt

1, labelt
2}〉, using "sum" as aggregation

function. The algorithm assigns the highest returned value to the score of the
current target event (score[Dt

i ] Line 25), and sorts E t based on the final scores
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Algorithm 3: Semantic Matching Algorithm of CRAFTDROID

Input: source descriptor Ds, set of target descriptors {Dt
0, Dt

1, · · ·Dt
n}

Output: sorting of E t based on the semantic similarity with es

27 function CRAFTDROID

28 descScores[]←∅
29 for each i from 1 to n do
30 if type(es) = type(et

i ) then
31 scores←∅
32 for each ai ∈{ text ∪ hint, resource-id, content-desc, actitivty-name, parent-text,

sibiling-text} do
33 add GETSIMSCORE(Ds[ai], Dt

i [ai],M , "avg") to scores

34

35 descScores[Dt
i ]← avg{ scores }

36 return E t sorted by descScore

(Line 26).

Semantic Matching of CRAFTDROID ([53]) Lines 27 to 36 of Algorithm 3 encode
the SEMANTIC MATCHING ALGORITHM of CRAFTDROID. For each target event et

i
of the same type of es (either both filling or both clicking events), CRAFTDROID

gets the similarity scores of their descriptor attributes (Line 32) and adds them to
List scores. The algorithm only compares corresponding attributes. For example,
it compares resource-id of the source descriptor only to resource-id of the target
descriptor. CRAFTDROID computes the final score of the current target descriptor
as the average of List scores (Line 35).

Semantic Matching of ADAPTDROID ([68]) Lines 37 to 50 of Algorithm 4 encode
the SEMANTIC MATCHING ALGORITHM of ADAPTDROID. For each event et

i ∈ E t

that has the same type of es (either both filling or both clicking events), ADAPT-
DROID builds two strings txts and txtt , by concatenating the values of the at-
tributes of Ds (separated by a white space) and Dt as follows: (step i) It adds
〈text, neighbor〉 in Ds to txts (Line 41); (step ii) If txts is still empty, it adds 〈file-
name〉 to the txts (Line 45); (step iii) If either txts remains empty or there is
an associated file (file-name not empty), it adds 〈resource-id, content-desc〉 to the
txts (Line 47); (step iv) It adds 〈activity-name, hint, sibling-text, parent-text〉 (Line
48). It computes the score of the current target descriptor by averaging the sim-
ilarity scores between txts and txtt (Line 49). ADAPTDROID SEMANTIC MATCHING

ALGORITHM balances the effect of too many attributes that may lead to a noisy
text and too few attributes that may lead to insufficient semantic information, by
adding attributes in a specific order, only if necessary. For example, a non-empty
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Algorithm 4: Semantic Matching Algorithm of ADAPTDROID

Input: source descriptor Ds, set of target descriptors {Dt
0, Dt

1, · · ·Dt
n}

Output: sorting of E t based on the semantic similarity with es

37 function ADAPTDROID

38 descScores[]←∅
39 for each i from 1 to n do
40 if type(es) = type(et

i ) then
41 〈txts, txtt〉 ← 〈∅,∅〉
42 for each j ∈{s, t} do
43 txt j ← D j[text]∪ D j[neighbor-text]
44 if txt j =∅ then
45 txt j ← D j[file-name]

46 if txt j =∅ or D j[file-name]!=∅ then
47 txt j ← D j[resource-id]∪ D j[content-desc]

48 txt j ← D j[activity-name]∪ D j[hint]∪ D j[parent-text]∪ D j[sibling-text]

49 descScores[Dt
i ]← GETSIMSCORE(txts, txtt ,M , "avg")

50 return E t sorted by descScore

Algorithm 5: Semantic Matching Algorithms of SEMFINDER

Input: source descriptor Ds, set of target descriptors {Dt
0, Dt

1, · · ·Dt
n}

Output: sorting of E t based on the semantic similarity with es

51 function SEMFINDER

52 descScores[]←∅
53 for each i from 1 to n do
54 if type(es) = type(et

i ) then
55 〈txts, txtt〉 ← 〈∅,∅〉
56 for each ai ∈{ text, resource-id, content-desc, hint, file-name, neighbour-text} do
57 txts ← txts ∪ Ds[ai]
58 txtt ← txtt ∪ Dt[ai]

59 descScores[Dt
i ]← GETSIMSCORE(txts, txtt ,M , "avg")

60 return E t sorted by descScore

〈file-name〉 attribute usually indicates the presence of an ImageButton, and conse-
quently the need of additional textual information to get an accurate semantics.

Semantic Matching of SEMFINDER Lines 51 to 60 of Algorithm 5 encode the
SEMANTIC MATCHING ALGORITHM SEMFINDER that we propose in this PhD work.
For each event et

i ∈ E t that shares the type of es (either both filling or both clicking
events), SEMFINDER builds two strings txts and txtt . It (i) builds txts by concate-
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nating all the values of the attributes of Ds (separated with a space), (ii) builds
txtt with the values in Dt

i , (iii) prunes words repeated in the same string, (iv) gets
the similarity score between txts and txtt and uses average in case of word level
WORD EMBEDDING model, (v) assigns the result to the final score of the current
target descriptor (Line 59). The SEMFINDERS intuition is that even though some
attributes could be sometime more important than others, strict prioritization
could result in information loss. While collecting the values of a fixed subset of
attributes and concatenating them without prioritization could be a safer option.
A relevant word that is important for matching may be the value of different at-
tributes in the two applications. Both strictly prioritizing and comparing subsets
of attributes may miss the semantic relation of the word in the two apps. Sen-
tence based approaches that concatenate words benefit from the full capacity of
sentence level embedding that considers contextual information from neighbors
words in a sentence. The EVENT DESCRIPTOR EXTRACTOR of SEMFINDER is the
only responsible to select a fixed subset of attributes.

ATM, CRAFTDROID, ADAPTDROID, and SEMFINDER share the general framework,
and differ in three main aspects: the type of attributes they consider, as we dis-
cuss in Section 3.4, the way they aggregate the similarity scores of multiple pairs
of attributes, and the way they aggregate the similarity scores of word-level mod-
els.

Attributes of source and target descriptors The algorithms compare attributes
by considering either specific combinations of types of source and target at-
tributes or a priority between attributes. CRAFTDROID selects attributes by type
only, and compares only attributes with the same type. ATM selects attributes
by both type and priority, and compares attributes of a subset of combinations
of types, and prioritizes attributes according to their order, by considering the
first not-empty attribute. ADAPTDROID selects attributes by priority only, accord-
ing to the types of the attributes. SEMFINDER compares the set of attributes as a
whole. For example, let us consider a source event es, with descriptor Ds = [text:
"address"] that indicates an attribute of type text, and a target event et

1, with a
descriptor Dt

1 = [neighbor-text: "search", resource-id: "location"] that reports two
attributes. CRAFTDROID does not compare any pairs of attributes, since the types
are different. ATM compares the pair "address"–"search" since it selects the first
non-empty attribute of the target event based on the predefined order. ADAPT-
DROID also compares the pair "address"–"search" that it selects according to the
higher priority of type "neightbor-text" than "resource-id". SEMFINDER compares
the pair "address"–"search location".
Table 3.2 gives an example of how SEMANTIC MATCHING ALGORITHMS calculate



32 3.5 SEMANTIC MATCHING ALGORITHM

the similarity score of two target events, et
1 and et

2, and the source event es using
a pre-trained WORD2VEC model. In case of other WORD EMBEDDING models the
process would be the same, but the numbers varies. In the example, es and et

1 are
semantically the correct match. Source and target events have different type of
attributes, thus CRAFTDROID do not compare any pairs of attributes and results
score of 0 for both target events. ATM only considers combination of labels2 and
labelt

1 based on the available attributes. Other pairs of labels contains one or two
empty labels and receive score of 0. For example, empty values of neighbor-text,
resource-id and file-name attributes compose an empty value for labels1 and any
combination of labels1 will result 0 score. In the last step, ATM uses max ag-
gregation function and chooses the only non-zero combination of labels as the
final score. ADAPTDROID creates txts by the only available attribute of es and it
selects the neighbor-text attribute for the target events since the attribute has a
higher priority over resource-id attribute. SEMFINDER considers all the available
attribute to create txts and txtt . ADAPTDROID and SEMFINDER consider only one
string for each source and target event pair (txts, txtt) and that makes aggrega-
tion function irrelevant. SEMFINDER is the only SEMANTIC MATCHING ALGORITHM

that chooses the correct match in the example.

Table 3.2. Example of attribute selection by each SEMANTIC MATCHING ALGORITHM

Event
Source a

Algorithm
Event
Targetb

Pairs for similarity score Aggregtion Scorec

es

et
1 No pairs average 0

CRAFTDROID
et

2 No pairs average 0

ATM
et

1 〈labels2:address, labelt
1:search〉= 0.13, other pairs get score of 0 max 0.13

et
2 〈labels2:address, labelt

1:number〉= 0.18, other pairs get score of 0 max 0.18
et

1 〈txts:address, txtt:search〉= 0.13 NA 0.13
ADAPTDROID

et
2 〈txts:address, txtt:number〉= 0.18 NA 0.18

SEMFINDER
et

1 〈txts:address, txts:search location〉= 0.22 s NA 0.22
et

2 〈txts:address, txtt:number one〉 = 0.18 NA 0.18
a The descriptor of es is Ds = [text : address]
b The descriptor of et

1 and et
2 are Dt

1 = [neighbor: search, id: location] and Dt
2 = [neighbor: number, id: one], respectively

c SEMANTIC MATCHING ALGORITHMS used WORD2VEC pre-trained model to calculate similarity scores

Similarity score aggregation of attribute types ATM and CRAFTDROID aggre-
gate similarity score of attributes, while ADAPTDROID and SEMFINDER do not.
ATM aggregates the similarity score of multiple pairs of attribute types by using
maximum (Line 25 of Algorithm 2), while CRAFTDROID aggregates them by av-
erage (Line 34 of Algorithm 3). ATM aggregation by maximum misses pairs of
attributes that may be relevant but with low score, while CRAFTDROID s aggre-
gation by average does not. For example, let us consider a source event es, with
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descriptor Ds= [resource-id: "button", text: "save"], and two target events et
1 and

et
2 with descriptors Dt

1 =[resource-id: "button", text: "save"] and Dt
2=[resource-id:

"button", text: "exit"], respectively. Maximum assigns the same similarity score
of 1 to both target events. Average assigns similarity scores of 1 and 0.56 to
et

1 and et
2 using a pre-trained WORD2VEC model, respectively. SEMFINDER and

ADAPTDROID consider attributes combined in a string, and do not combine the
similarity scores of multiple pairs of attribute types.

Similarity scores aggregation of word embedding models ATM aggregates
the similarity scores of words in a string by summing the similarity scores of
words (Line 24 of Algorithm 2). CRAFTDROID aggregates the scores of words by
average (Line 33 and 49 of Algorithm 3). ADAPTDROID works directly at sen-
tence level with Word Mover. We use average to aggregate the similarity scores
of words when we combine the ADAPTDROID and SEMFINDER SEMANTIC MATCH-
ING ALGORITHM with word level WORD EMBEDDING. Sum privileges (assign high
score to) strings with many words, and may assign higher score to two attributes
with many unrelated words than to two attributes with fewer highly related (se-
mantically similar) words, as the semantic score of two words in the model is
always positive. For example, let us consider a source event es with descriptor
Ds = [text : "new todo task"], and two candidate events et

1 and et
2 with descrip-

tors Ds
1 = [text: "add todo"] and Dt

2 = [text: "add todo reminder"], respectively.
A pre-trained WORD2VEC model scores the pairs of words in the attributes as
〈todo, todo〉 = 1, 〈new, add〉 = 0.28, 〈 task, reminder〉 = 0.14. CRAFTDROID ag-
gregates the scores by average: score(et

1) = 0.64 and score(et
2) = 0.47, while ATM

aggregates by sum score(et
1) = 1.28 and score(et

2) = 1.4.

3.6 EVENT SELECTOR

The EVENT SELECTOR builds a test case t t for the target application At by chain-
ing the candidate events that the SEMANTIC MATCHING ALGORITHM suggests as
semantic matches of the events in the source test case t s. The EVENT SELECTOR

incrementally processes the events es
i of the source test case t s. It retrieves a

set E t of candidate events that correspond to the current event es
i from both the

current state of the target application At and the TARGET APPLICATION MODEL.
ATM retrieves the candidate events from the current state of the app under

test, and considers the events in the TARGET APPLICATION MODEL only if the SE-
MANTIC MATCHER does not find any event in the current state with a semantic
similarity score above a constant threshold. CRAFTDROID retrieves the candidate
events from both the current state and the TARGET APPLICATION MODEL. ADAPT-
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DROID retrieves events from the current state, and selects the candidate events
as the events with a semantic similarity score above a constant threshold. If ATM
and CRAFTDROID do not find events in the current state, the EVENT SELECTOR

looks for an event that belongs to a state different from the current state, and
they selects a sequence of events that head to the candidate event, from the TAR-
GET APPLICATION MODEL (ancillary events in FrUITeR ([109]), leading events in
CRAFTDROID ([53])).

Once identified a matching event et for es
i , EVENT SELECTOR adds the event

(and the leading events, if any) to the test case for the target application t t ,
and computes the next current state of the target application At by executing the
added events. Both ATM and CRAFTDROID consider backtracking: if the TEST

GENERATOR cannot proceed, it rolls back to previously selected events and con-
tinues with different choice of events. ATM and CRAFTDROID consider backtrack-
ing differently. ATM backtracks when it cannot find a matching event for asource
event es

i . CRAFTDROID backtracks when it cannot find a path to a target candidate
that it has selected from the Target Application Model. When ATM and CRAFT-
DROID do not find a matching event, they skip es

i and proceed with es
i+1, while

ADAPTDROID randomly selects an event as next match. ADAPTDROID improves
the migrated test cases t t with a genetic algorithm that uses the test cases as the
initial population and the TARGET APPLICATION MODEL to repair infeasible tests
that the crossover operations generate during the evolution. In our study, we
considered the implementations of EVENT SELECTOR of both CRAFTDROID and
ATM. We excluded the EVENT SELECTOR of ADAPTDROID from our study as its
genetic algorithm is too computationally expensive, which would have drasti-
cally limited the scale of our experiments. Nevertheless, CRAFTDROID and ATM
are two state-of-the-art approaches, which are representative of TEST REUSE for
ANDROID applications.

ATM EVENT SELECTOR: Lines 62 to 83 of Algorithm 6 encode the ATM EVENT

SELECTOR algorithm that initializes a TARGET APPLICATION MODEL (Line 63), and
iteratively looks for next events that match the input source events, until either
a matching event is found or a timeout expires (call Function FINDNEXTEVENT at
Line 69).

Function FINDNEXTEVENT selects the next event that corresponds to es
i (Line 1)

by (1) looking for a matching event in the current state (Lines 5-12), (2) looking
for a matching event in the TARGET APPLICATION MODEL (WTG in ATM terminol-
ogy), if it does not find a matching event in the current state and the source event
is a GUI event (and not an oracle event) (Lines 13-20), (3) randomly selecting
an event in the current state, if it does not find a matching event in the TARGET
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APPLICATION MODEL (Lines 22-24), (4) moving back to the former page, after a
maximum number of randomly selected events (Lines 25-27).

It computes the next current state by executing the events that FINDNEX-
TEVENT selects (Line 70), adds the events to a buffer (Line 70), and updates both
the TARGET APPLICATION MODEL (Line 71) and the target test case t t (Lines 73-
76). It updates the target test case t t by adding the events (Line 76) after simple
syntactic checks if the events are oracle events (Line 74). If the EVENT SELECTOR

cannot find a matching event within a timeout, it backtracks to the state of the
previously matched event, and restarts from an alternative event.

Algorithm 6: ATM EVENT SELECTOR Algorithm
Input: source test case t s, set of source events {es

1, es
2, . . . es

n}
Output: migrated test case t t , set of target events {et

1, et
2, . . . et

m}
62 function ATMEVENTSELECTOR

63 WTG← static GUI model of target app
64 for each i from 1 to n do
65 executedEvents←∅
66 matched← false
67 randomEventCounter← 0
68 while ! timeout do
69 et

i , matched← FINDNEXTEVENT(es
i )

70 execute(et
i )

71 add et
i to executedEvents

72 update(WTG)
73 if matched = true then
74 if type(es

i ) = oracle and !extraChecks(es
i , et

i ) then
75 break

76 add executedEvents to t t

77 break

78 if matched = false and type(es) = GUI and hasAlternative(et
i−1) then

79 i← i - 1
80 et

i ← getFirstAltrenative(et
i )

81 execute t t

82

83 return t t

CRAFTDROID EVENT SELECTOR: Lines 110 to 129 of Algorithm 8 encode the
CRAFTDROID EVENT SELECTOR algorithm. CRAFTDROID initializes the TARGET AP-
PLICATION MODEL (UITG in CRAFTDROID terminology) (Line 111), and iteratively
generates test cases that correspond to the input source test case t s (Lines 112-
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Algorithm 7: Find Next Event Algorithm
Input: A source event es

Output: A target event et , A boolean that indicates if the et is a match for es

1 function FINDNEXTEVENT

2 et ←∅
3 matched← false
4 randomEventCounter← 0
5 currentState← current GUI state of the target application
6 candidates← getCandidates(currentState, es)
7 sortedCandidates← SEMANTIC MATCHER (candidates, es)
8 sortedCandidates← getAboveThreshold(sortedCandidates)
9 if sortedCandidates 6=∅ then

10 et ← firstItem(sortedCandidates)
11 setAltrenatives(et , sortedCandidates − et )
12 matched← true

13 if et = ∅ and type(es) = GUI then
14 candidates← getCandidates(WTG, es)
15 sortedCandidates← SEMANTIC MATCHER (candidates, es)
16 sortedCandidates← getAboveThreshold(sortedCandidates)
17 if sortedCandidates 6=∅ then
18 temp← firstItem(sortedCandidates)
19 path← shortestPathTo(WTG, temp)
20 et ← fistItem(path)

21 if et = ∅ then
22 if randomEventCounter ≤ RANDOM_EVENT_THRESHOLD then
23 et ← selectRandomEvent(currentState)
24 randomEventCounter← randomEventCounter + 1

25 else if type(es) = GUI then
26 et ← back
27 randomEventCounter← 0

28 return et , matched

129), aiming to maximize a test similarity score, computed as the average simi-
larity score of the events in the test. It terminates either when the test similarity
score does not improve (Line 129) or when a timeout expires.

It generates the tests by scanning the events es
i in the input source test case

t s, and looking for events that match the current event in t s. It selects all GUI
events in both the current state and the TARGET APPLICATION MODEL (Line 116)
and all oracle events in the current state only (Line 119), and sorts them by
semantic similarity with respect to the current event es

i in the source test cases t s

(Line 120).
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It computes the leading events for the candidate events (at the top of the
sortedCandidate list), that is, the sequences of events that lead to a state in which
the event is executable (call to GETLEADINGEVENTS at Line 122), and adds the
non-empty leading event sequence to the target test case t t (Line 126), after few
simple syntactic checks for oracle events (Line 124).

Function GETLEADINGEVENTS retrieves all paths in the TARGET APPLICATION

MODEL that lead to the event et (Line 132), and incrementally executes them
starting from the shortest ones, till it finds an executable sequence of leading
events to return (Lines 133-137).
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Algorithm 8: CraftDroid EVENT SELECTOR Algorithm
Input: source test case t s, set of source events {es

1, es
2, . . . es

n}
Output: migrated test case t t , set of target events {et

1, et
2, . . . et

m}
110 function CRAFTDROIDEVENTSELECTOR

111 UITG← static GUI model of target app
112 while true do
113 t t ←∅
114 for each i from 1 to n do
115 currentState← current GUI state of the target application
116 if type(es

i ) = GUI then
117 candidates← getCandidates([currentState, UITG], es

i )

118 else
119 candidates← getCandidates(currentState, es

i )

120 sortedCandidates← SemantiMatching(candidates, es
i )

121 for each et in sortedCandidates do
122 leadingEvents← GETLEADINGEVENTS(et)
123 if leadingEvents 6=∅ then
124 if type(es

i ) = oracle and ! extraChecks(es
i ) then

125 continue

126 add leadingEvents to t t

127 break

128 if delta-fitness(t t) < threshold or timeout then
129 return t t

Input: A target event et

Output: A set of target events E t ′ that leads to a GUI state in which et can be excuted

130 function GETLEADINGEVENTS

131 pathes←allPathesTo(UITG, et)
132 sortedPathes← sort pathes by length ascendingly
133 for each path in sortedPathes do
134 isValid← execute(path)
135 update(UITG)
136 if isValid then
137 return path + et

138 return ∅



Chapter 4

Evaluation Frameworks

In this section we present the framework we defined to evaluate the dif-
ferent components both in isolation and in combination, to thoroughly
compare the state-of-the-art approaches, identify the impact of the dif-
ferent components, and devise an ideal migration framework.

4.1 Research Questions

We evaluate semantic matching both in isolation and in the context of TEST

REUSE. The evaluation in isolation (research questions RQ1, RQ2, RQ3, RQ4)
investigates the effectiveness of semantic matching for a broad set of configura-
tions in controlled setup, without referring to a specific TEST REUSE approach.
We evaluate semantic matching in isolation by focusing on the ability of semantic
matching to match events from a data set that contains events observed during
test reuse, We evaluate semantic matching independently from the migration of
the test case, with evaluation metrics specific to matching of events. The evalu-
ation in the context of TEST REUSE (research questions RQ5, RQ6, RQ7) investi-
gates the effectiveness and impact of semantic matching when used with the test
generation process. We empirically evaluated semantic matching in isolation and
in the context of TEST REUSE with pairs of source test case and target application
〈t s, At〉 with 95 and 89 from the test migration scenarios provided by ATM and
CRAFTDROID for 30 apps, respectively.

Semantic matching in isolation

RQ1 Baseline Comparison: Do semantic approaches based on word embedding
outperform syntactic and random approaches?

39
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RQ2 Component Effectiveness in Isolation: What are the most effective in-
stances of each component on the semantic matching of events?

RQ3 Component Impact Analysis in Isolation: Which component types have
the greatest impact on the semantic matching of events?

RQ4 Effectiveness of domain specific word embedding models: Do word em-
bedding models trained by specialized corpora outperform models trained on
more general corpora?

RQ1 validates the usefulness of semantic matching for TEST REUSE by com-
paring the effectiveness of semantic approaches to both syntactic (EDIT DISTANCE

SIMILARITY and JACCARD SIMILARITY) and random approaches. RQ2 studies the
implementations of different components of semantic matching approaches, and
identifies the implementations that perform best. RQ3 studies the impact of the
component types on the effectiveness of semantic matching, and identifies the
most impactful ones. RQ4 validates our hypothesis that clustering a general
corpus of document into specialized corpora can improve effectiveness of word
embedding models built by the specialized corpora in comparison to the more
general corpus.

We created a data set, which consists of source events that we extracted from
the subjects of ATM and CRAFTDROID studies, to answer RQ1-3. The data set
consists of 337 queries that are pairs of a source event and target candidates
such as 〈es, E t〉.

We create domain specific models and used them as instances of the WORD

EMBEDDING components to answer RQ4. In this way we obtain new SEMANTIC

MATCHING CONFIGURATIONS that we evaluate as any other SEMANTIC MATCHING

CONFIGURATIONS that we consider for RQ1-3. We compare the domain specific
models with a new baseline as well as corpora introduced in section 3.3

We propose an evaluation framework named SEMANTIC MATCHING EVALUA-
TOR to experiment with 337 different configurations to answer RQ1, RQ2, RQ3
in chapter 5. We will address RQ4 in chapter 6 since it requires special setup
and we consider 240 configurations that use word embedding models that we
trained with corpora of documents available in this thesis.

Semantic matching in the context of test reuse

RQ5 Impact of Semantic Matching in the Context of Test Reuse: Does the
effectiveness of semantic matching impact on test reuse?
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RQ6 Component Effectiveness in the Context of Test Reuse: What are the
most effective instances of each component for test reuse?

RQ7 Component Impact Analysis in the Context of Test Reuse: Which com-
ponent types have the most relevant impact on test reuse?

RQ5 studies the correlation between semantic matching and TEST REUSE, and
identifies the combinations of configurations that achieve the most effective TEST

REUSE. RQ6 studies the impact of the implementations of different components
on TEST REUSE, and identifies the implementations with the best impact on TEST

REUSE. RQ7 studies the impact of the component types on TEST REUSE, and
identifies the critical component types. We report the results of experimenting
semantic matching with two state-of-the-art TEST REUSE approaches: ATM and
CRAFTDROID.

We migrate the scenarios with different SEMANTIC MATCHING CONFIGURA-
TIONS and evaluate the generated test cases individually with the general metrics
proposed in the literature [109]. We evaluate the test cases with respect to the
ideal migration. We propose TEST MIGRATION EVALUATOR, an evaluation frame-
work to migrate and assess the quality of the migrated test cases, to answer RQ5,
RQ6, RQ7.

4.2 SEMANTIC MATCHING EVALUATOR

We evaluated semantic matching in isolation (RQ1, RQ2, RQ3, RQ4), by sys-
tematically evaluating all possible configurations against every individual query
produced with any of the scenarios from subject applications.

We evaluated the queries with the SEMANTIC MATCHING EVALUATOR, a pro-
totype framework that we developed in PYTHON to evaluate semantic matching
queries. Our SEMANTIC MATCHING EVALUATOR is a general framework that can
be configured with different choices of components’ instances. We integrated
instances of components in SEMANTIC MATCHING EVALUATOR as follows:

Corpus of Documents: We used four corpora that we introduce in section 3.2
to train WORD EMBEDDING models. Pre-processing of training sets impacts ef-
fectiveness of the WORD EMBEDDING models positively ([24, 48]) and we used
the same operations that we considered for Algorithm 1 including: removing
stop words, lemmatizing the strings, and splitting words originally in camel case
notation.

Word Embedding: We built WORD EMBEDDING models with WORD2VEC, WMD,
GLOVE and FASTTEXT techniques. We used default parameters of standard PYTHON
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libraries for the training of the models. We did not build models with BERT, USE
and NNLM, because these techniques require a non-trivial parameter tuning that
goes beyond the scope of this work. We also considered seven pre-trained WORD

EMBEDDING models trained for each of the techniques introduced in section 3.3
(WORD2VEC, WDM, GLOVE, FASTTEXT, BERT, USE, NNLM) that are provided by
the authors of such techniques, and that are obtained with not-publicly-available
corpora of documents (such as, different versions of Google News and Twitter
datasets). As such, we were not able to consider such corpora as individual com-
ponents, like we did for MANUALS, BLOGS, and GOOGLE-PLAY.

Semantic Matching Algorithm: We implemented all the four algorithms intro-
duced in section 3.5 in PYTHON. After reviewing publicly available source code
of ATM 1 , CRAFTDROID 2 and ADAPTDROID, we observed their SEMANTIC MATCH-
ING ALGORITHMS are internal algorithms of the TEST REUSE components and can
be hardly executed in isolation. We re-implemented ATM and CRAFTDROID al-
gorithms by referring to their original JAVA implementation and we reused the
original PYTHON code of CRAFTDROID as much as possible.

Event Descriptor Extractor: Our implementations of the EVENT DESCRIPTOR

EXTRACTOR instances relies on an EXECUTOR-PLUGIN that we implemented to
execute source and target test cases and retrieve events from the GUI state at
runtime using the framework APPIUM. APPIUM framework facilitates interactions
between testing environments and the ANDROID platform. We used the retrieved
events to create a set of 337 queries. Our implementations of the EVENT DE-
SCRIPTOR EXTRACTOR instances extract the values of the nine widget attributes
in Table 3.1 from the events in the queries. We implemented our own extractors,
rather than rely on the implementations of ATM or CRAFTDROID, to have a com-
mon tool to collect all the descriptors. Our event extractor retrieves all types of
click and fill events that ATM and CRAFTDROID use in their experiments. We cre-
ate a set of queries by executing both the source test cases and the ground truth
test cases, and capturing the relevant attributes of the events. We built a query
by considering a source event from a test case t s and all actionable events that
have been observed during the execution of the ground truth, when migrating
the test case t s to the target application t t .

We denote descriptors and algorithms with the suffixes "_d" and _a, respec-
tively. For instance, ATM_d denotes the descriptor set and ATM_a the algorithm

1 Farnaz Behrang and Alessandro Orso. ATM implementation.
https://sites.google.com/view/apptestmigrator. 2019.

2 Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. Craftdroid implementation.
https://github.com/seal-hub/CraftDroid. 2019.

https://sites.google.com/view/apptestmigrator
https://github.com/seal-hub/CraftDroid
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of ATM, respectively. We modified the SEMANTIC MATCHING ALGORITHMS to work
with sets of descriptors different from the ones used in the original algorithms, by
either pruning the attributes that do not belong to the set from the algorithm or
appending the new attributes at the end of the text attribute in the algorithm. For
instance, we combine the CRAFTDROID_d set with ATM_a, by appending activity-
name, parent-text and sibling-text to the attribute text at Lines 16 and 20 of Al-
gorithm 2; We combine the "intersection" set with CRAFTDROID_a, by removing
activity-name, parent-text and sibling-text from the set of attribute types at Line 32
of Algorithm 3 By appending the attributes at the end of the text attribute, we
comply with both ATM and CRAFTDROID: ATM prioritizes attributes by position,
with the highest priority to text, and CRAFTDROID handles text jointly with the
hint attribute (line 32 of Algorithm 2).

4.2.1 Evaluation Metrics

Our experiment for semantic matching in isolation comprises queries that score
events in the target app according to their similarity with respect to events in
the source test case. A query q sorts a set of input events E t of the target app,
according their similarity score with respect to an event es in the source test case,
and returns a sorted list: 〈es, E t〉 q−→ (E t

sor ted). We rank each query qi according to
the position of the correct event et

g t that is the event that the query should return
according to the ground truth. The ranki of a query qi is the position of et

g t in
the list sorted according to the similarity score of qi. We rank events with the
same score as the average of their positions in the list.

We consider queries that we extract from subject applications and we mea-
sured the effectiveness of SEMANTIC MATCHING CONFIGURATIONS with two met-
rics that we compute on the returned ranks: MRR, the Mean Reciprocal Rank ([58]);
TOP1, the ratio of queries in which the rank of the correct answer is one.

The reciprocal rank of a query response is the multiplicative inverse of the
rank of the first correct answer: 1 for first place, 1/2 for second place, 1/3 for third
place and so on. The mean reciprocal rank is the average of the reciprocal ranks
of our 337 queries Q.

MRR=
1
|Q|

|Q|∑
i=1

1
ranki

∈ (0;1]

MRR is a standard statistical measure for evaluating any process that pro-
duces a list of possible responses to a query q, sorted by their probability of
correctness. MRR is suitable in our context because it focuses on a single cor-
rect answer (et

g t), while other metrics like Mean Average Precision (MAP) and
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Normalized Discounted Cumulative Gain (NDCG) focus on multiple correct an-
swers ([58]).

TOP1 is the ratio of queries in which the ground truth (et
g t) is in the first po-

sition of the returned list. TOP1 is less informative than MRR, because it ignores
the position of et

g t when it is not top in the list. However, TOP1 is significative in
our context, since most TEST REUSE approaches choose the first event in the list.

TOP1=
1
|Q|

|Q|∑
i=1

�
1 if ranki = 1
0 otherwise

�
∈ [0;1]

Table 4.1. Example of semantic matching queries

Query
Event
Source

Events
Targeta

Score
Similarity

Answer
Correct

q1 es
1

et
2 0.8 3

et
1 0.6

et
3 0.5

et
6 0.8

et
4 0.6q2 es

2
et

5 0.55 3

a Target events are ordered by similarity score of es
i and

et
j

Table 4.1 shows an example of two queries q1 and q2 with their similarity
score and the ground truth. We calculate MRR and TOP1 of the example as
follows:

MRR: The similarity scores of target events of q1 ranks the correct match first and
we assign reciprocal rank of 1 to q1. The similarity scores of target events of
q2 ranks the correct match third and we assign reciprocal rank of 1/3 to q2.
MRR averages reciprocal rank of the queries, that is Mean(1,1/3) = 0.6.

TOP1: The ratio of the queries in which the correct answer is in the first position
is 1 to two, that is 1

2 = 0.5.
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Figure 4.1. TEST MIGRATION EVALUATOR

4.3 TEST MIGRATION EVALUATOR

We assess semantic matching in the context of TEST REUSE, by comparing the
quality of the test cases that ATM and CRAFTDROID GENERATORS migrate using
different SEMANTIC MATCHING CONFIGURATIONS.

We evaluated the test reuse with TEST MIGRATION EVALUATOR, a prototype
framework that integrates the SEMANTIC MATCHING EVALUATOR with both the
ATM and CRAFTDROID TEST GENERATOR, as well as with a FIDELITY PLUG-IN that
measures the fidelity of the source and migrated test cases with respect to the
ground truth.

Figure 4.1 overviews the TEST MIGRATION EVALUATOR workflow. We used a
modified version of SEMANTIC MATCHING EVALUATOR that evaluates one query
for a given SEMANTIC MATCHING CONFIGURATION instead of evaluating a set of
configurations for a given set of queries. The SEMANTIC MATCHING EVALUATOR

receives a query 〈es, E t〉 and a SEMANTIC MATCHING CONFIGURATION csm, uses
the instances specified in the csm for the semantic matching components, and
returns E t sorted according to similarity score of events in E t and es. The TEST

GENERATOR component in TEST MIGRATION EVALUATOR operates as we described
in section 3.1: It receives a test case t s and a target application At as input, and
migrates each event in the t s based on results of queries that it sends to the SE-
MANTIC MATCHER. In the framework, the SEMANTIC MATCHING EVALUATOR plays
the role of a universal SEMANTIC MATCHER that answers queries with different
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SEMANTIC MATCHING CONFIGURATIONS. The FIDELITY PLUG-IN receives three in-
puts to calculate fidelity metrics: i) the migrated test case t t ii) mapping of source
test case events to ground truth events stg(t s) iii) the ground truth t t g .

In our implementation of TEST MIGRATION EVALUATOR we interface both
ATM and CRAFTDROID GENERATORS with SEMANTIC MATCHING EVALUATOR. In
this way, we can combine different choices of TEST GENERATORS with SEMAN-
TIC MATCHERS and build new TEST REUSE approaches. For instance, our TEST

MIGRATION EVALUATOR can evaluate the CRAFTDROID generation approach with
SEMFINDER SEMANTIC MATCHING ALGORITHM, thus extending the original CRAFT-
DROID approach.

4.3.1 FIDELITY PLUG-IN

FIDELITY PLUG-IN evaluates the quality of the migrated test cases as the fidelity
of two associations: the source-to-ground-truth and the ground-truth-to-migrated
associations. The source-to-ground-truth association maps source test cases to
ground truth test cases. It indicates the sequence of events in the source test
case for the source app that shall be migrated to obtain an optimal test case for
the target app. The ground-truth-to-generated association maps ground truth test
cases to their corresponding migrated test cases. It indicates the events of the
ground truth that are correctly mapped to the target app.

The source-to-ground-truth association is defined manually once for all (Sec-
tion 4.4). Given a source test case t s = 〈es

0, es
1, · · · es

k〉 and a ground truth test case
t g t = 〈eg t

0 , eg t
1 , · · · eg t

m 〉, we refer to this association as stg : t s → t g t 3, such that,
stg(es

i ) = eg t
j .

The FIDELITY PLUG-IN automatically builds the ground-truth-to-generated as-
sociation m : t g t → t t as follows: Each event in the ground truth test case
is associated with the event in the target test case that shares the values of the
identifier attributes, following their order of occurrence in the grounds truth test
case. More formally, let t g t = 〈eg t

0 , eg t
1 , · · · eg t

m 〉 and t t = 〈et
0, et

1, · · · et
n〉 be test cases

and a(e j
i ) be the attributes of event e j

i , the ground-truth-to-generated association
is a partial function m : t g t → t t that associates events in the ground truth test
case to events in the target test case according to the following rule:

m(et g
i ) = et

j iff a(et g
i ) = a(et

j )∧∀w< j,∃k < i | a(et g
i ) 6= a(et

w)∨m(et g
k ) = et

w

Let us define, m(t g t) =
⋃

i m(eg t
i ), that is, the set of events in the target test

case that are associated with any event in the ground truth test case.

3 For sake of notation, we represent the set of events in a test case {e1, . . . , en} with the same
symbol used to represent the test case t.
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We measure the fidelity of the associations with the F1-SCORE fidelity metric
that we compute from Precision, Recall as in FrUITeR ([109]):

Precision=
T P

T P + F P

Recal l =
T P

T P + FN

F1-score=
2× Recal l × Precision

Recal l + Precision

where we define true positives (TP), false positives (FP), and false negatives
(FN) for a source test case t s, a target test case t t , and a ground truth t g t , and
the related stg and m associations, as follows:

TP: the cardinality of m association given stg(t s) as the input, that is the number
of events that can be mapped from the source test case to the target test
case through stg and m associations:

T P =
��m(stg(t s))
��

FP: the cardinality of the difference between the migrated test and the ground-
truth-to-migrated association, that is, the number of events in the migrated
test case that do not exist in the ground truth:

F P =
��t t \m(t g t)
��

FN: the cardinality of the difference between the source-to-ground-truth and
ground-truth-to-migrated associations given the source-to-ground-truth as
the input, that is, the number of events in the source test case that have an
equivalent event in the ground truth, but their equivalent does not exist in
the migrated test case.

FN =
��stg(t s) \m(stg(t s))

��
Figure 4.2 shows an example of associations between source, ground truth

and migrated test cases. We calculate fidelity of the example migration as fol-
lows:

TP: The only source event that can be mapped to the target test case is es
1 and

that results T P = 1.
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FP: The set of 〈et
3, et

4, et
6〉 in composes the events in the migrated test case t t that

do not exist in the ground truth and they result F P = 3.

FN: The set of 〈es
2, es

4〉 composes the events in the source test case t s that have an
equivalent in the ground truth, but their equivalent does not exist in the
migrated test case. They result FN = 2.

Precision=
1

1+ 3
= 0.25

Recal l =
1

1+ 2
= 0.33

F1-score=
2× 0.33× 0.25

0.33+ 0.25
= 0.28

In general, high F1-score witness good performance. In our evaluation, we
compare the values of F1 score in different setups and configurations, to charac-
terize the setups and configurations. We do not refer to absolute thresholds.

FrUITeR computes the fidelity of the mappings between the source and mi-
grated test cases by instrumenting the TEST REUSE approaches. We compute the
fidelity between source and ground-truth test cases and between ground-truth
and migrated test case to avoid the instrumentation overhead.

We implemented our plug-in in Python, instead of extending FrUITeR ([109]),
because (i) FrUITeR requires transforming the test cases into a canonical format,
and the transformers are available for Java test cases only, while CRAFTDROID

test cases are in JSON format, and (ii) FrUITeR identifies events by resource-id or
XPath that do not uniquely identify events across the migration process: resource-
id can be shared across multiple widgets, and the migration process generates
different XPath for the same events.

4.4 Subjects

For our experiments, we considered all publicly available test migration scenar-
ios of both ATM and CRAFTDROID: 248 scenarios, from 42 ANDROID apps. We
considered the 147 scenarios of the 30 ANDROID apps that we could compile and
execute. We could not experiment with 12 apps, since some of ATM apps are
available in new versions that do not compile anymore with the ATM scenar-
ios, and some CRAFTDROID apps both require communication with a server and
are available with new API or Security protocol not compatible with the CRAFT-
DROID scenarios. We pruned 51 redundant scenarios, that is, scenarios that occur
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Figure 4.2. Example of source-to-ground-truth stg(st) and ground-truth-to-migrated
m(t g t) associations

in other scenarios, and experimented with the 95 unique and compatible scenar-
ios. We addressed RQ1, RQ2, RQ3 and RQ4 with experiments on all the 95
scenarios. We addressed RQ5, RQ6 and RQ7 with experiments on 89 scenarios
for 29 out of 30 ANDROID apps, since the FirefoxFocus app includes a key widget
with an unconventional type incompatible with APPIUM, the test automation tool
that we used in the experiments with the TEST REUSE tools. We experimented
CRAFTDROID on all scenarios, and ATM on ATM scenarios only, because ATM in-
struments the source code of the apps, and the instrumentation logic designed
in the tool works only for the scenarios in the original study. Instrumenting dif-
ferent apps results in compilation errors.

Thus, we identify two sets of scenarios:
• Shared Scenarios: 27 scenarios that both ATM and CRAFTDROID can pro-

cess. We refer to these scenarios to comparatively evaluate semantic match-
ing in the context of the two approaches applied to the same scenarios.

• All Scenarios: All 89 scenarios. We refer to these scenarios to investigate
semantic matching with a wide range of applications.

Table 4.2 summarizes the scenarios we use in our experiments.
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Table 4.2. Subjects of our experiment

subject from category test case description app name # of DLa

ATM

Expense Tracker Add an expense entry to expense list

EasyBudget [117] 100k
Expenses [127] 1K
Daily Budget [126] 50K
Open Money [141] 1K

Note Taking Add a note and save
Swiftnotes [113] -
Writely Pro [132] -
Pocket Note [134] -

Shopping List Add a shopping item

Shop.List1 [114] -
Shop.List2 [140] 100K
Shop.List3 [136] 5K
OI Shop. List [131] 1M

CRAFTDROID

Browser

Lightning [115] 10K
Go to an URL, go to another URL Privacy [138] 1K
go back to the first URL FOSS [120] -

FirefoxFocus [129] 5M

To-Do List

Minimal [135] -

Add a todo task and save
Remove the recent task

Clear List [119] -
Todo List [137] -
Simply Do [125] -
Shop. List [124] -

Shopping
1) Sign up
2) Sign in

Rainbow [133] 0.5M
Yelp [142] 50M

Mail Client
1) Search for an email
2) Send an email

Mail.ru [128] 50M
myMail [130] 10M
AnyMail [118] 10M

Tip Calculator
Add a bill with information of the tip
then calculate the share of tip
per person

TipCalculator [116]
TipCalc [116] 500
Simple Tip [139] 1K
TipCalc.Plus [143] 500
FreeTipCalc. [123] 1K

a Number of downloads



Chapter 5

Semantic Matching in Isolation

In this chapter we report the results of our evaluation of the components
of test reuse in isolation.

5.1 Experimental Setup

We thoroughly explored every possible SEMANTIC MATCHING CONFIGURATIONS by
combining the instances introduced in Chapter 3 to address RQ1, RQ2, and RQ3.
Figure 5.1 shows all the combinations of instances, which yields 337 SEMANTIC

MATCHING CONFIGURATIONS. We experimented with 19 WORD EMBEDDING mod-
els available in SEMANTIC MATCHING EVALUATOR (components C1, C2), 12 of
which obtained by training four WORD EMBEDDING techniques with three corpora
of documents and 7 pre-trained models. We added two syntactic techniques to
the SEMANTIC MATCHING EVALUATOR to compare syntactic techniques with word
embedding models which consider semantic of words. We combined the 19 em-
bedding models and the two syntactic techniques with four EVENT DESCRIPTOR

EXTRACTOR (component C3) and four SEMANTIC MATCHING ALGORITHMS (com-
ponent C4). We also experimented with the random baseline.

3
Corpus of Documents (C1) × 4

Word Embedding Technique (C2) ×

4

Event Descriptor Extractor (C3)

× 4

Semantic Matching Algorithm (C4) 
= 337

Manuals, Blogs, Google Play Word2vec, WMD, Glove, Fast

ATM (A), CRAFTDROID (C),

A ∩ C, A ∪ C

ATM, CRAFTDROID,

SEMFINDER,ADAPTDROID

7
Pre-trained (standard) Word Embedding Models ×

Word2vec, WMD, Glove, Fast, BERT, USE, NNLM

2
Syntactic Approaches ×

edit-distance based similarity (ES), Jaccard Similarity (JS)

1 Random Baseline

Figure 5.1. The 337 configurations of components’ instances considered in our study

We used both the embedding and syntactic techniques similarly: we invoke
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the technique with the two texts to obtain similarity score between [0,1], which
indicates similarity of the two texts.

Word embedding techniques calculate the position of the two input texts in
the vector space as A and B vectors, and return the cosine similarity of the two
vectors calculated as follows:

Sc(A, B) = cos(θ ) =
A.B
‖A‖‖B‖ =

n∑
i=1

AiBiq∑n
i=1 A2

i .
∑n

i=1 B2
i

We considered two canonical syntactic techniques that compute the syntactic
similarity of words/sentences: EDIT DISTANCE SIMILARITY, and JACCARD SIMI-
LARITY. EDIT DISTANCE SIMILARITY computes the distance of two words wd1 and
wd2 as

ES(wd1, wd2) =
max(|wd1|, |wd2|)− LD(wd1, wd2)

max(|wd1|, |wd2|) ∈ [0;1]

where LD(wd1 wd2) is the "Levenshtein distance ([49]) of wd1 and wd2, that
is, the minimum number of operations (deletion, insertion and substitution) re-
quired to transform wd1 into wd2 and vice versa. EDIT DISTANCE SIMILARITY

returns 1 if the words are identical. For example, EDIT DISTANCE SIMILARITY of
two words wd1 ="first" and wd2 = "last" is calculated as follows:

ES(first, last) =
max(5,4)− 3

max(5,4)
= 0.4

EDIT DISTANCE SIMILARITY operates at word level, and thus replaces the query of
the WORD EMBEDDING model at line 8 of Algorithm 1.

JACCARD SIMILARITY computes the similarity of two sentences txt1 and txt2 as
the number of elements that belong to both strings over the number of elements
that occur in either or both strings:

JS(txt1, txt2) =
|txt1 ∩ txt2|
|txt1 ∪ txt2| ∈ [0;1]

JACCARD SIMILARITY returns 1 when txt1 and txt2 have all identical words,
regardless of their position in the sentences. JACCARD SIMILARITY operates at
sentence level, and thus replaces the interrogation of the WORD EMBEDDING

model at line 12 of Algorithm 1. For example, JACCARD SIMILARITY of two strings
〈txt1 = "first name", txt2 = "last name"〉 is calculated as follows:

JS("first name", "last name") =
|{name}|

|{first, last, name}| = 0.33
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If we use EDIT DISTANCE SIMILARITY and average aggregation function (EDIT

DISTANCE SIMILARITY works at word level) to score 〈txt1 = "first name", txt2 =
"last name"〉; then we calculate the similarity score matrix as follows in which
cells indicate EDIT DISTANCE SIMILARITY of corresponding words in rows and
columns.

�first name
last 0.4 0.25
name 0.0 1

�
Similarity scores lead to matching of 〈name, name〉 and 〈first, last〉. The similar-
ity score of 〈txt1, txt2〉 is equal to average(1, 0.4) = 0.7

The random baseline assigns a random score between 0 and 1 to each pair
of events. We repeated the experiments 100 times, to cope with the stochastic
nature of the random baseline, and report the median.

We experimented with 95 unique scenarios and we obtained the ground truth
for CRAFTDROID scenarios from the original CRAFTDROID paper, and we manually
defined the ground truth for the ATM scenarios. The target test case t t may
include ancillary events ([109]), that is, events in t t that do not correspond to
any event in t s, and that are required to reach relevant states in the app. Since
this set of research questions deal with semantic matching in isolation, we do not
consider ancillary events for these questions. Some events occur multiple times in
test cases for the same app. For example, events in a dialog box containing "Ok"
and "Cancel" buttons may occur multiple times. We prune redundant events,
that is events that share all nine event descriptors with other events, and we
obtained 337 unique queries for evaluating semantic matching. For example, if
an "OK" event appears in different screens with the same descriptor, we consider
it redundant, and we only consider one occurrence.

We define the set of candidate target events E t = {et
0, et

1, · · · et
n} for each es ∈ t s

as the set of events that are actionable in all the GUI states that the ground truth
t g t visits. More formally, E t = {et : ∃ S ∈ S, et is actionable in S}, where S
is the sequence of state transitions obtained by executing t g t . We pruned redun-
dant events from E t which occur when different states share the same window.
The cardinality of E t ranges from 5 to 80, with an average of 24.03 and median
of 19 events. Our definition of E t leads to semantic matching queries that are
coherent with TEST REUSE, which matches events across applications by consid-
ering also target events in the TARGET APPLICATION MODEL that span multiple
windows ([10, 53]).

Figure 5.2 shows the process of creating queries from t s and t g t . First EXECUTOR-
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Figure 5.2. Creating semantic matching queries

PLUGIN executes the test cases and extract events. We transform t s and t g t to t s′

and t g t ′ by removing redundant events from t s and t g t , and ancillary events from
t g t . For each event es

i ∈ t s′ we consider a query in which target candidates are
all events in t g t ′ .
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Figure 5.3. Distribution of MRR (top) and TOP1 (bottom) for instances

We ran our 337 queries for each of the 337 configurations which answer
queries uniquely and we analysed 113,569 query answers in total.

Table 5.2 shows statistical description of MRR and TOP1. The best configu-
ration with respect to the both metrics is [GOOGLE-PLAY (C1), WM (C2), ATM_d
(C3), SEMFINDER (C4)] and the worst is random. MRR values are higher than
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Table 5.1. Distributions of the 337 combinations sorted by MRR and TOP1

type instance
MRR TOP1

[1:3] a [1:16] [1:33] [1:3] [1:16] [1:33]

blogs 0% 19% 12% 0% 15% 12%
C1 manuals 33% 19% 12% 0% 15% 12%

googleplay 33% 31% 27% 33% 15% 19%
w2v 0% 0% 6% 0% 0% 0%
glove 0% 0% 0% 0% 0% 0%
wm 100% 94% 56% 100% 69% 62%
fast 0% 0% 6% 0% 0% 4%
bert 0% 0% 0% 0% 0% 0%
nnlm 0% 0% 12% 0% 15% 15%
use 0% 6% 15% 0% 15% 19%
js 0% 0% 3% 0% 0% 0%

C2

es 0% 0% 0% 0% 0% 0%
ATM_d 100% 50% 36% 67% 46% 42%
CRAFTDROID_d 0% 19% 19% 0% 8% 19%
intersection 0% 6% 18% 0% 0% 15%C3

union 0% 25% 27% 33% 46% 23%
ATM_a 0% 19% 15% 0% 6% 15%
ADAPTDROID_a 0% 0% 0% 0% 0% 0%
CRAFTDROID_a 0% 0% 0% 0% 0% 0%C4

SEMFINDER 100% 81% 85% 100% 93% 81%

a The columns indicate the percentage of queries that locate the cor-
rect answer in positions [1:3] (1% percentile), [1:16] (5% percentile),
[1:33] (10% percentile) of the list of 337 configurations sorted by MRR
or TOP1

TOP1 (0.17 higher on average) since TOP1 only considers a positive score if the
correct answer ranks top, however, MRR always considers a positive score for the
correct answer, relative to its rank.

Figure 5.3 shows the distributions of MRR and TOP1 by instance. For exam-
ple, the box plot of SEMFINDER on the right of Figure 5.3 shows the distribution
of the MRR values of all the 84 configurations with SEMFINDER as the SEMANTIC

MATCHING ALGORITHM. The box plots of the same component type are sorted by
median.

The instances of the component types are unevenly distributed among the
configurations. For example, WM is present in 64 configurations, while USE only
in 16. This is because for WM we considered the pre-trained standard model and
three models built from the three corpora of documents, while for USE we only
considered the pre-trained model.

Table 5.1 shows the distributions of the various component instances for three
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Table 5.2. Statistical description of MRR and TOP1 in 337 SEMANTIC MATCHING CON-
FIGURATIONS

Min Q1 Q2 Q3 Max Average
MRR 0.201 0.649 0.693 0.724 0.795 0.685
TOP1 0.065 0.465 0.510 0.508 0.671 0.518

percentiles 1% (top 3 entries [1:3]), 5% (top 16 entries [1:16]), and 10% (top
33 entries [1:33]). The values in the cells indicate the percentage of config-
urations that use a given instance of a component (row). For instance, every
configuration that both MRR and TOP1 rank in the top three positions ([1:3])
uses WM (100% in the [1:3] cells of row C2.wm).

We tested the pairs of instances in Table 5.1 for statistical significance using
Mann-Whitney U test ([64]). We rejected the null hypothesis that the two dis-
tributions are the same with p-value <= 0.05. The null hypothesis invalidated
23 out of 51 pairs of instances from MRR metrics, and 18 for TOP1 metrics. Ap-
pendix .1 reports the results of the Mann-Whitney U test.

RQ1: Baseline Comparison.

Both MRR and TOP1 ranking indicate that all configurations perform signif-
icantly better than the random baseline. Both metrics rank random last in the
sorted list, with MRR and TOP1 values of 0.201 and 0.065, respectively, much
lower than the configurations with the second lowest values, 0.595 and 0.359,
respectively.

Table 5.1 indicates that syntactic based similarity metrics (EDIT DISTANCE SIM-
ILARITY and JACCARD SIMILARITY) perform worse than WORD EMBEDDING mod-
els. Indeed, only one of the 32 configurations with either JACCARD SIMILARITY or
EDIT DISTANCE SIMILARITY appear in the top 10% configurations sorted by either
MRR or TOP1 values. The distribution of MRR and TOP1 of Figure 5.3 confirms
EDIT DISTANCE SIMILARITY and JACCARD SIMILARITY in the leftmost side of the
distribution, sorted in increasing order.

The experimental results allow us to answer positively to RQ1: All SEMANTIC

MATCHING CONFIGURATIONS perform significantly better than the random base-
line.
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The experimental results confirm the hypothesis: The semantic approaches
that use WORD EMBEDDING perform significantly better than the syntactic
baseline, with a big gap between the random baseline and the less performant
SEMANTIC MATCHING CONFIGURATION according to both MMR and Top1.

RQ2: Component Effectiveness in Isolation.
The results reported in Table 5.1 and Figure 5.3 indicate that the most effec-

tive instances of the four components evaluated in isolation are: GOOGLE-PLAY,
WM, ATM_d, and SEMFINDER for each of the four components of Figure 5.1.
Below, we discuss the evidence from experimental data in details.

Corpus of Documents (Component C1) Table 5.1 indicates that googleplay is
the CORPUS OF DOCUMENTS that occurs more often in the top ranked combina-
tions, according to both MRR and TOP1 for all percentiles. The distribution in Fig-
ure 5.3 confirms the result with the distribution of GOOGLE-PLAY in the rightmost
position, but only provide statistical significance of the 〈GOOGLE-PLAY , MANUALS〉
pair.

The sum of the values of the columns for the three corpora of documents (C1)
is less than 100%, since the configurations include pre-trained models, some of
which with high MRR and TOP1 ranking.

We studied the impact of the Out Of Vocabulary (OOV) issue that occurs
when the query involves words that do not belong to the considered corpus. We
collected the OOV issues for the 48 configurations with WORD2VEC as WORD

EMBEDDING technique, and GOOGLE-PLAY, MANUALS, and BLOGS as corpora of
documents, and compared the cumulative number of OOV for the three clusters
that use googleplay, manuals, and blogs, respectively. The cumulative 25,119,
364,049 and 208,075 OOV for GOOGLE-PLAY, MANUALS, and BLOGS indicate that
GOOGLE-PLAY suffers significantly less than MANUALS and BLOGS from OOV.

Word Embedding (Component C2) Figure 5.3 indicates that sentence level
WORD EMBEDDING techniques, WM and USE, are the best techniques accord-
ing to both MRR and TOP1. The difference between WM and USE and other
techniques (FASTTEXT, WORD2VEC, GLOVE, BERT, JS, ES) is statistically signifi-
cant for both MRR and TOP1. Table 5.1 indicates that three out of four sentence
level techniques (WM, USE, and NNLM) dominate all other techniques. The in-
spection of GUI textual attributes indicates that many of them are expressed with
multiple words, and this explains the better performance of sentence level over
word level techniques.

EVENT DESCRIPTOR EXTRACTOR (Component C3) Figure 5.3 indicates that ATM_-
d and intersection perform better than union and CRAFTDROID_d, as event de-
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Figure 5.4. Impact analysis of the components

scriptor selectors, and the difference is statistically significant. Table 5.1 confirms
the dominance of ATM_d also in terms of occurrences in top ranked positions ac-
cording to both MRR and TOP1 for all percentiles.

A deep analysis of the results reveals an unbalanced distribution of the at-
tribute types in our subjects: 8,099 source and target events define the activity-
name attribute, 7,837 the resource-id attribute, 4,532 the text attribute, 957 the
neighbor-text attribute, 837 the content-desc attribute, 600 the parent-text at-
tribute, 554 the file-name attribute, 165 the sibiling-text attribute, and no events
defines the hint attribute. The poor performance of union and CRAFTDROID_d
may depend on the high frequency of the activity-name attribute, which is de-
fined for each event. Unrelated events in the target app that share the activity
name of the source event may yield a similarity score higher than the correct
match (et

g t), and this impact on the final score.

Semantic Matching Algorithm (Component C4) Figure 5.3 indicates that me-
dian of SEMFINDER is higher than the median of ATM_a, CRAFTDROID_a, and
ADAPTDROID_a; SEMFINDER outperforms other algorithms always with statisti-
cal significance. Table 5.1 confirms that SEMFINDER is the semantic matching
algorithm that occurs more often in the top ranked combinations, according to
both MRR and TOP1 for all percentiles.

The analysis of the performance of the algorithms indicates ADAPTDROID_a as
the best performing approach: the configurations with ADAPTDROID_a complete
all 337 queries in 170 seconds in average, the configurations with SEMFINDER

in 255 seconds, the configurations with CRAFTDROID_a in 393 seconds, and the
configurations with ATM in 600 seconds. This suggests that combining attribute
values into a single sentence can reduce the runtime while improving the results
of semantic matching, as long as there is no prioritization of attributes.
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The experimental results indicate that the most effective instances for the
SEMANTIC MATCHER components are: SEMFINDER, ATM_d, GOOGLE-PLAY, and
WM.

RQ3: Component Impact Analysis in Isolation.
The results of the impact analysis reported in Figure 5.4 indicate that Se-

mantic Matching Algorithm (C4) is the configuration with the highest impact,
followed by WORD EMBEDDING Technique (C2), EVENT DESCRIPTOR EXTRACTOR

(C3), and CORPUS OF DOCUMENTS (C1).
We studied the impact of the component types with a "local" sensitivity analy-

sis ([23]) that varies the instance of one component type at a time while holding
the others fixed ([40]). We clustered the 337 configurations of the four compo-
nent types, by varing an instance of a component while fixing all instances of the
other three components. For example, if we consider C2 and exclude the random
baseline, we have nine possible instances (7 word embedding and two syntactic
instances). Every time we fix the values for components C1, C3, C4, we define
a new cluster with 9 configurations (in which only C2 varies). We compute the
standard deviation (SD) of the MRR values of these nine configurations. This
SD value represents the impact of C2 in the cluster (if the choice of C2 has high
impact, the SD value is high, otherwise it is low) ([40]).

SD is a measure of the amount of variation or dispersion of a set of values. A
low SD indicates that the values tend to be close to the mean of the set, while a
high SD indicates that the values are spread out over a wider range. This means
that if a component has a high impact on the semantic matching, the SDs values
of each cluster must be high.

We repeated this process for C2 48 times, that is, for every possible combina-
tion of the values of components C1, C3, and C4, obtaining 3× 4× 4 = 48 SDs
that globally capture the impact of C2 on the semantic matching. We ran this
analysis for all four component types.

We computed the SDs for both the MRR and the TOP1 values. Figure 5.4
shows the distributions of the SDs values for category type, and sorts the com-
ponents left to right by impact.

The experimental results indicate that the Semantic Matching Algorithm
(Component C4) is the configuration with the highest impact, followed by
EVENT DESCRIPTOR EXTRACTOR (Component C3), WORD EMBEDDING Tech-
nique (Component C2), and CORPUS OF DOCUMENTS (Component C1).
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Chapter 6

Domain Specific Word Embedding
Models

In this chapter, we report the results of our evaluation of domain spe-
cific word embedding models in isolation by leveraging our SEMANTIC

MATCHING EVALUATOR framework.

In Section 5.2 we observed that the GOOGLE-PLAY corpus, which is specific
to the mobile applications domain, leads to better results than general corpora
when dealing with semantic matching in isolation. The results reported in Sec-
tion 5.2 confirm the common understanding that word embedding techniques
trained on domain specific corpora perform better than techniques trained on
general corpora, on downstream tasks [51]. We can create domain specific mod-
els by either fine tuning a model that has been trained on a general corpus [12]
or training a model from scratch on a corpus specific to the domain [38]. GU
et al. concluded that training a model from scratch is more effective [38]. Fol-
lowing the best practices, we also build the domain specific corpora from scratch.
We investigated whether models trained on GOOGLE-PLAY corpus reflect the same
word usage that mobile apps commonly adopt. Indeed, a word can have different
meanings depending on the context of usage (polysemy). Mobile applications re-
fer to many unrelated domains that use the same words differently. For example,
applications of categories “Fitness & Health” and “Food & Drink” use the word
“bar“ differently.

We addressed RQ4 with a study on the impact of WORD EMBEDDING models
trained on specialized corpora that contain only semantically related app descrip-
tions on the semantic matching of TEST REUSE approaches. We experimented
with various configurations and algorithms of the most common topic modeling
approaches. We leveraged topic modeling to partition GOOGLE-PLAY corpus into

61
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domain specific clusters and we create WORD EMBEDDING models for each clus-
ter. We extended our SEMANTIC MATCHING EVALUATOR to automatically select
the specialized word embedding models that corresponds to the most semanti-
cally related partition based on the Google Play descriptions of the source app.
We experimented with 48 SEMANTIC MATCHING CONFIGURATIONS that include
domain specific WORD EMBEDDING models and 192 baselines configurations.

6.1 Experimental Setup

We partitioned the app descriptions of the GOOGLE-PLAY corpus into semantically
coherent clusters by means of topic modeling ([30, 13, 98]), commonly used to
classify apps into meaningful categories ([112, 111, 93, 94]).

A topic model is a statistical model for discovering the abstract “topics” that
occur in a collection of documents. In the GOOGLE-PLAY corpus, a document is
the English description of an app in the Google Play Store. There are three key
design choices to customize a topic modeling approach to a specific problem:
(i) the topic modeling algorithm, (ii) the target number of topics, and (iii) pre-
processing of the corpus. We investigated different combinations of these design
choices to select the best approach.

Topic Modeling Algorithms We experimented with three of the most commonly
used topic modeling algorithms:

Latent semantic analysis (LSA) ([30]) is a mathematical method, based on a
distributional hypothesis that takes into account how frequently words appear in
a document and in the whole corpus.

Latent Dirichlet Allocation (LDA) ([13]) is a probabilistic method that assumes
the distributions of both topics in a document and words in topics are Dirichlet
distributions.

Hierarchical Dirichlet process (HDP) ([98]) is an extension of LDA. HDP uses
statistical inference to learn the number of topics based on the corpus.

Target Number of Topics LSA and LDA take the number of topics as an input. We
assumed the number of topics should be in the same range as the categories that
Google Play Store considers (32 non-game categories). Thus, we experimented
with a number of topics that ranges from 2 to 102.

Pre-processing In the section 4.2 we explained the canonical pre-processing
steps that we performed on the GOOGLE-PLAY corpus. We also considered ad-
ditional pre-processing steps that are often crucial to obtain a meaningful topic
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modeling ([63]): Vocabulary and document pruning. Vocabulary pruning re-
moves words that have either a very low or a very high frequency in the corpus
since such words, also called domain-specific stop words ([63]), produce noise
and result in low-quality topic models. Document pruning removes documents
that are either too short or too long, which might lead to a low-quality topic
model ([33]). Short documents might not contain enough information to char-
acterize a topic ([57]), whereas long documents usually cover multiple topics.

To identify the strategy that works best for the corpus at hand, we exper-
imented with different pre-processing strategies for vocabulary and document
pruning. Indeed, the best strategy can only be determined empirically, because
the effectiveness of such strategies depends on the intrinsic characteristics of the
corpus ([25, 61]). We experimented with the following popular strategies:

Vocabulary pruning strategies:

S1 It defines lower and upper bounds based on the word frequency. It prunes
words that either occur in more than Xup% documents or in less than X low%
documents (default values Xup = 15% and X low = 0.5% ([62, 33])).

S2 It defines lower and upper bounds by assuming a Gaussian distribution
of words frequency. It prunes words with a frequency that belongs to the
tails of the Gaussian plot: it prunes the first and last X% of the distribution
(default value X = 5%).

Document pruning strategies:

S3 It prunes documents that have more than Xup and less than X low words
(default values Xup = 1000 and X low = 50 ([33])).

S4 It sorts the documents based on their size and prunes the top and bottom
X% (default value X = 5%).

S5 It defines lower and upper bounds by assuming that documents size has
a Gaussian distribution. Similar to vocabulary pruning, it prunes the first
and last X% of the distribution (default value X = 5%).

Automated Identification of the Best Model A topic model computes the word
probability distribution over topics, which is represented as words sorted in de-
scending order with respect to their contribution to the topic. A good topic model
is interpretable, that is, the words with the highest probability in the probabil-
ity distribution are semantically coherent ([17]). We automatically evaluated
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the topic coherence, by computing the topic coherence value (cv) metric ([87]),
which uses co-occurrence of words to quantify the semantic coherence of top-
ics ([79]). We relied on cv as it is recognized to be the best quantitative metric
that captures the coherence of topic models ([87]). In fact, cv outperforms ex-
isting metrics with respect to the correlation to human judgments ([87]). This
metric captures the coherence of a model as a value between 0 and 1, represent-
ing highly coherent models with high values.

We experiment on a random sample of 50,000 documents in GOOGLE-PLAY

(∼5.5%), to efficiently identify the best configuration for topic modeling ([62]).
To reduce the number of configurations to evaluate, we incrementally consid-
ered the number of topics with step 10 from 2 to 102, for each combination of
pre-processing strategy and algorithm (LDA and LSA). After identifying the best
range for each configuration, we tried all numbers close to that range with a ra-
dius of 10 numbers, to see if we can find a number of topics that leads to a better
result (higher cv). For each pruning strategy, we explored different parameters
values in addition to default ones and selected the value that yields the better
performance.

The configuration with the best performance among the ones that we ex-
plored (cv = 0.64) uses the LDA topic modeling algorithm with a target of 27
topics, and applies strategies S1 for vocabulary pruning using the default values
(words that either occur in more than 15% or less than 0.5% of documents), fol-
lowed by S5 for document pruning using the tuned value of X = 15% (document
that has size of the first and last 15% of the Gaussian distribution).

The results of these experiments gave us three important insights: (i) The
order in which the vocabulary and document pruning are performed affects the
results, and we generally get better results if we apply vocabulary pruning first;
(ii) The LDA algorithm performs better than HDP and LSA; and (iii) There are
some domain-specific common words (such as "Application" and "Google") that
appear as the most contributing words for some of the topics of the best models.
Such common words reduce the quality of the models.

Best Model Validation We recomputed the coherence values of the three models
that achieved the highest values on the random sample by referring to the whole
GOOGLE-PLAY corpus. We confirmed that the selected topic model configuration
achieves the best performance indeed. We observed an even higher coherence
value cv = 0.71 (cv = 0.64 on the 5.5% random sample of GOOGLE-PLAY).

We enriched the vocabulary by adding a manually created list of domain-
specific common words based on the topics in the sampled dataset, to prune some
domain-specific common words (insight (iii)). We build a new topic model with
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the same configuration, and obtained a model of improved quality, cv = 0.73.
We confirmed the high quality of the selected model by manually inspecting

the obtained model according to a standard protocol used in previous works ([96,
18, 103, 43]). We checked the following conditions: (i) The 15 most probable
words in the word probability distribution of each topic are semantically coher-
ent ([96, 18]); (ii) The most probable words in the word probability distribution
do not contain common words ([103, 43]). We observed that there are no more
than three common words in the top 15 contributors.

6.1.1 SEMANTIC MATCHING EVALUATOR Setup

The best topic model yields 27 clusters of the GOOGLE-PLAY apps. In the rest
of the paper, we use TOPICS to refer to such a partition of GOOGLE-PLAY. The
size of each cluster varies from 8,859 to 41,936 documents. We trained 27
domain-specific word embedding models, one for each cluster. We experimented
with various hyper-parameters and architecture for building the word embedding
models. None of hyper-parameters and architectures outperformed the default
values available in related python packages that implemented the techniques,
thus we use the default values. We used our SEMANTIC MATCHING EVALUATOR to
both evaluate the word embedding models in the semantic matching in isolation
and compare them with the ones obtained by GOOGLE-PLAY and other baseline
corpora.

We considered four word embedding techniques that we chose for train-
ing the models in section 4.2: (i) WORD2VEC (ii) Word Mover’s distance (WM)
(iii) GLOVE (iv) FASTTEXT.

We considered four baseline corpora ordered from the most general to the
most domain-specific: (i) BLOGS (ii) MANUALS (iii) GOOGLE-PLAY (iv) CATEGORIES.
We introduced the first three corpora in 3.2. CATEGORIES is a partition of GOOGLE-
PLAY according to the categories of the Google Play Store. We added the CATE-
GORIES corpus to our experiments as it represents a baseline for a more special-
ized domain-specific corpus.

In this experiment, we used the same experimental setup as semantic match-
ing in isolation 5, except for the set of SEMANTIC MATCHING CONFIGURATIONS.
We considered configurations that use TOPICS and CATEGORIES in addition to
GOOGLE-PLAY, MANUALS, and BLOGS. Each corpus creates 48 configurations and
in total we experimented with 240 configurations.

While BLOGS, MANUALS, and GOOGLE-PLAY corpora lead to a single word em-
bedding model (which can be used for any pair of source and target apps), CATE-
GORIES and TOPICS lead to multiple word embedding models. Given an arbitrary
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Table 6.1. Distribution of MRR and TOP1 values of the configurations of the semantic
matching grouped by corpus of documents

MRR TOP1 rank of AVG
corpus of documents AVG Min Median Max AVG Min Median Max MRR TOP1

BLOGS 0.6991 0.6084 0.7039 0.7740 0.5147 0.3857 0.5163 0.6468 4 4
MANUALS 0.6976 0.6052 0.7042 0.7796 0.5043 0.3768 0.5148 0.6439 5 7
GOOGLE-PLAY 0.7101 0.6165 0.7134 0.7958 0.5273 0.3976 0.5222 0.6706 2 2
CATEGORIES 0.6959 0.6015 0.6999 0.7791 0.5147 0.3798 0.5014 0.6587 6* 5***
TOPICS 0.6907 0.5865 0.7034 0.7834 0.5035 0.3620 0.5059 0.6587 9 8

h_categories_edit 0.6943 0.5934 0.6991 0.7791 0.5116 0.3768 0.4955 0.6587 7 6*
h_googleplay_edit 0.7088 0.6150 0.7133 0.7958 0.5247 0.3946 0.5207 0.6706 3*** 3***
h_topics_edit 0.6908 0.5851 0.7017 0.7834 0.5031 0.3620 0.4940 0.6587 8 9

comb_topics_google-play 0.7393 0.6411 0.7438 0.8135 0.5610 0.4273 0.5608 0.6944 1*** 1***

The table reports the paired t-test [88] p-value computed for TOPICS and each of the other configurations
* p-values < 0.05
** p-values < 0.01
*** p-values < 0.001

pair of source and target apps, we select the most appropriate model as follows:
For CATEGORIES, we simply select the model associated with the category of the
source app as specified in the Google Play Store; For TOPICS, we query our topic
model from the Google Play description of the source app, to find the cluster
semantically closest to the source app. We then retrieve the word embedding
model trained on this cluster and use it for semantic matching the pairs of GUI
events from the source and the target apps. We are investigating TEST REUSE

among applications with similar functionalities, thus, we only considered the
source app, as we assume that the source and target applications belong to the
same cluster.

6.2 Experimental Results

We group the 240 configurations of semantic matching according to the corpus
of documents they use. TOPICS refer to all the 48 SEMANTIC MATCHING CONFIG-
URATIONS that use the 27 clusters of documents obtained with topic modeling
to create the word embedding models. The first five rows of Tables 6.1 report
avg, mean, median, and max of each group with respect to the metrics MRR and
TOP1. The last two columns show the performance of each group by reporting
the ranking based on the average MRR and TOP1.

The results show that the configurations that use TOPICS to train word em-
bedding models perform worse than the ones that use the other corpora, for both
TOP1 and MRR (rows from 1 to 5). This negative result does not confirm our
initial intuition.
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6.2.1 Out-of-Vocabulary Issue

A possible explanation of the negative result could be the Out-of-Vocabulary issue
(OOV) ([15]), which occurs when querying a word embedding model with words
that are not in the corpus. Indeed, the partition of GOOGLE-PLAY leads to small
clusters of documents, each of which might contain only a subset of all the unique
words in GOOGLE-PLAY. If the OOV issue occurs while semantic matching of two
GUI events, such events will not match.

To investigate if the negative result is due to the OOV issue, we produced
a hierarchy of models that avoids the OOV issue by design. If a text query
q = 〈txt1, txt2〉 involves a word that does not belong to the current word em-
bedding model, we propagate the query in the model hierarchy. If all models
return OOV, we use EDIT DISTANCE SIMILARITY, which is not based on word em-
bedding. Figure 6.1 shows the structure of the hierarchy. We considered the
following hierarchy: topics, category, google-play, and edit distance. In total, we
created three hierarchies of models. We refer to a hierarchical model by the first
and last levels of the hierarchy. For example, h_topics_edit means that we first
query the word embedding models trained on TOPICS. If a query manifests an
OOV issue, we propagate the query to the model trained on the whole corpus,
GOOGLE-PLAY. If the query still manifests an OOV issue, we compute the similar-
ity score with EDIT DISTANCE SIMILARITY. We integrated the hierarchical models
into SEMANTIC MATCHING EVALUATOR to investigate the impact of OOV issue.

The three bottom but one rows of Table 6.1 show the results. The TOP1
and MRR values of the hierarchical models with TOPICS as the first level are not
significantly better than the ones of TOPICS only. This indicates that the OOV
issue is not responsible for the poor results. Interestingly, h_googleplay_edit and
h_categories_edit perform worse than the GOOGLE-PLAY and CATEGORIES. This
suggests that the OOV issue may sometimes be beneficial by avoiding spurious
matching of events.

6.2.2 Complementary Study

None of the 337 SEMANTIC MATCHING CONFIGURATIONS achieve a perfect seman-
tic matching for all queries (the values of Columns “Max” in Table 6.1 are always
< 1.0). Thus, it is important to understand if the configurations that use TOPICS

and GOOGLE-PLAY perform poorly for different queries, that is, to see to what
extent the word embedding models trained with TOPICS and GOOGLE-PLAY are
complementary. In other words, although the configurations with TOPICS per-
form worse than those with GOOGLE-PLAY, it might be that TOPICS configurations
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Figure 6.1. Hierarchical word embedding models

achieve good results on queries for which GOOGLE-PLAY configurations perform
poorly, and vice versa.

We studied the complementarity of TOPICS and GOOGLE-PLAY by creating an
artificial semantic matching configuration: comb_topics_google-play. This con-
figuration considers the best ranking of the ground truth et

g t of either TOPICS

and GOOGLE-PLAY for each query. Note that such a configuration cannot be con-
structed in a real scenario because the ground truth et

g t would be unknown.
The results shown in the bottom row of Table 6.1 suggest that there exists

a moderate level of complementarity between TOPICS and GOOGLE-PLAY. The
average MRR and TOP1 of comb_topics_google-play are higher than the ones
of GOOGLE-PLAY and TOPICS with statistical significance. The average MRR of
comb_topics_google-play is 0.0292 and 0.0486 higher than the average MRR of
GOOGLE-PLAY and TOPICS, respectively. The average TOP1 of comb_topics_google-
play is 0.0337 and 0.0575 higher than the average TOP1 of GOOGLE-PLAY and
TOPICS, respectively.

The results indicate highly-specialized domain-specific corpora do not im-
prove the effectiveness of the semantic matching of GUI events.



Chapter 7

Test Reuse

In this chapter we report the results of our evaluation of the TEST REUSE

components in TEST REUSE context.

We evaluated semantic matching in the context of TEST REUSE (RQ5, RQ6,
RQ7) by TEST MIGRATION EVALUATOR with selected configurations against 89 test
migration scenarios. We experimented with all the scenarios that can be derived
from the 8 categories in Table 4.2.

7.1 Experimental Setup

Migrating GUI test cases is time consuming due to the cost of executing GUI
events on actual apps. It takes 15 minutes on average to migrate an ATM test
case on our server, and 30 minutes to migrate a CRAFTDROID test case, with an
overall cost of over 1,000 days of computation time to investigate the 337 config-
urations of our experimental setup. We designed a feasible evaluation context,
by sampling the SEMANTIC MATCHING CONFIGURATIONS according to a process
that considers enough configurations to study every possible instance of every
component: (i) We ordered the configurations based on the MRR values that we
computed when studying the semantic matching in isolation, and (ii) uniformly
sampled the configuration every X positions from the top. We choose X=5 that
is the highest sampling step that guarantees all the semantic matching instances
to be included at least once in the study. This process selected 68 configurations.
Table 7.1 reports the statistical description of MRR and TOP1. The data in the
table indicate that the sampled configuration set has almost the same statistical
description as the complete set of the configuration in table 5.2.

69
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Table 7.1. Statistical description of MRR and TOP1 in 68 SEMANTIC MATCHING CONFIG-
URATIONS

Min Q1 Q2 Q3 Max Average
MRR 0.201 0.649 0.694 0.724 0.795 0.686
TOP1 0.065 0.464 0.511 0.540 0.671 0.510

We also considered random and perfect configurations. The random con-
figuration assigns a random score between 0 and 1 to each pair of events, and
serves as the baseline, to quantify the impact of semantic and syntactic based
approaches. The perfect configuration assigns the score of 1 to the correct pairs
of events, based on the ground truth, 0 otherwise.

ATM considers events with a similarity score greater than a threshold as
matching events (line 8 in Algorithm 6). The original ATM paper ([10]) uses
a threshold optimized for the configuration considered in the paper. Our ex-
periments indicate that the same threshold may penalize the results of ATM for
other configurations and applications. Thus we decided to use different thresh-
olds across configurations and applications.

We derived unbiased thresholds for each pair of applications and each con-
figuration from the similarity scores computed with respect to the considered
configuration for the pairs of events that occur in the other applications. In-
tuitively, we compute the threshold for each pair of applications 〈Ai, Aj〉 as the
similarity score that best separates correct from incorrect pairs of events, by con-
sidering all pairs of applications that do not include either Ai or Aj. In details, we
consider the similarity scores computed for all pairs of events in the experiment
in-isolation. We computed the threshold of each pair of applications 〈Ai, Aj〉 from
the similarity score of all pairs of events that occur in any pair of applications,
but the pairs that include either Ai or Aj. We compute the threshold as the sim-
ilarity score that best separates the pairs of correct and incorrect matches, that
is, the score that maximizes the F1-SCORE computed for pairs above and below
the threshold.

We computed the threshold for all configurations that differ in the CORPUS

OF DOCUMENTS, WORD EMBEDDING and SEMANTIC MATCHING ALGORITHM, com-
ponents. We did not distinguish configurations that differ in EVENT DESCRIPTOR

EXTRACTOR and EVENT SELECTOR, since the semantic score does not depend on
EVENT SELECTOR, and only partially on EVENT DESCRIPTOR EXTRACTOR.

Figure 7.1 shows the process of finding a threshold for migration of test cases
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from application A1 to A4 using SEMANTIC MATCHING CONFIGURATION C2. In the
example, we consider we have a small dataset of semantic matching results in-
cluding two SEMANTIC MATCHING CONFIGURATIONS C1 and C2, and four appli-
cations with one or two queries that have been answered. Query answer qai

contains a source event es and set of target event E t = 〈et
1, et

2, . . . et
n〉 which are

ordered by their semantic similarity to es. First we select the queries that are
answered by C2 excluding those related to either of A1 or A4. Queries q12 and q13

satisfy the criteria and we assume C1 and C2 differ in a component other than
EVENT DESCRIPTOR EXTRACTOR, otherwise if all other components were the same
we should have considered q5 and q6 as well. Then, we try different thresholds
in the range of 0 to 1 with 0.01 steps. We calculate F1-SCORE of each query and
consider the median of F1-SCORE values as the indicator of how well a threshold
can separate correct from incorrect matches. In the example T=0.40 performed
better than others and we consider it as the final threshold.

Figure 7.2 shows how we calculate F1-SCORE of a query based on a given
threshold. We define the confusion matrix elements as below:

TP: It is 1 if the correct match is above the threshold, 0 otherwise.

FP: Number of incorrect events above the threshold.

TN: Number of incorrect events below the threshold.

FN: It is 1 if the correct match is below the threshold, 0 otherwise.

In the example, the query answer qa has four target candidates in which et
3 is

the correct match. We apply threshold T=0.4 and three events including the
correct match reside above the threshold. The confusion matrix elements are:
one true positive, two false positives, one true negatives, and no true negative.
The F1-SCORE of the query for T=0.4 is equal to 0.5.
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gration from application A1 to A4
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We experimented with 34 unique source test cases, 11 shared by both ATM
and CRAFTDROID and 23 test cases only with CRAFTDROID. The ground truth
indicates the expected matching, as provided by the CRAFTDROID authors for
CRAFTDROID test cases, and manually identified by us for the ATM scenarios.

Figures 7.3 (a) and (b) show the size of the ATM and ADAPTDROID test cases
in terms of number of GUI events. Figure 7.4 shows the size of the ground truth of
ATM scenarios, that is, the number of events that belong to the correct mappings
across test cases of compatible applications. CRAFTDROID refers to the source test
cases as the ground truth of compatible applications, thus the size of the ground
truth is equal to the size of the source test cases. The figures explicitly distinguish
events that correspond to assertions (oracle events). We consider both GUI and
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(a) Source test cases of ATM scenarios,
Mean = 7.1, STD = 2.27
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(b) Source test cases of CRAFTDROID scenarios,
Mean = 6.7, STD = 1.94

Figure 7.3. Size of the source test cases

oracle events, since TEST REUSE approaches migrate both GUI and oracle events
with semantic matching. Oracle events commonly occur at the end of the test
cases, thus the possibility of generating oracles depends on the ability to migrate
all previous events in the test case. We evaluate the migrated test cases with
oracles included and oracles excluded for an unbiased evaluation of both GUI
and oracle events.

We assessed semantic matching in the context of TEST REUSE, by comparing
the quality of the test cases that ATM and CRAFTDROID migrate with the 68 sam-
pled configurations. We executed some sample configurations for five hours, and
we identified an upper bound for each run as the maximum execution time after
which no tool migrates test cases. We set the maximum execution time to 2.5
hours.

7.2 Experimental Results

We migrated all 89 scenarios, that is, test cases with the ground truth, and target
application, for the 68 selected configurations, for a total of over 6,000 migra-
tions.

RQ4. Impact of Semantic Matching in the Context of Test Reuse.
We measure the impact of semantic matching on TEST REUSE as the correla-

tion between semantic matching metrics (MRR and TOP1) and the TEST REUSE

metric (F1-SCORE). The experimental results indicate a statistically significant
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Figure 7.4. Size of the ground truth for ATM scenarios, Mean = 6.6, STD = 2.5

impact of semantic matching on TEST REUSE, and similar performance of most
configurations on both ATM and CRAFTDROIDTEST GENERATOR. Tables 7.2 and
7.3 show the Pearson correlation ([82]) between the MRR and TOP1 metric val-
ues for semantic matching, on one side, and the F1-SCORE for TEST REUSE, on the
other side. The tables report the correlations from experimenting with CRAFT-
DROID on both all scenarios and shared scenarios. They report the correlations
from experimenting with ATM on the shared scenarios only, since we cannot
adapt ATM for all scenarios. The tables also report the p-values that we compute
to validate the statistical significance of the results. We indicate the correlation
as weak (≤0.3), moderate (0.3 - 0.5), or strong (≥0.5), following the widely ac-
cepted classification of Cohen ([22]), and we indicate as statistically insignificant
(-) results with p-vales smaller than 0.005. The results indicate either medium
or strong correlation for all statistically significant cases. The results in the tables
indicate that oracles do not impact significantly on the correlation.
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Table 7.2. Correlation of semantic matching metrics and test reuse metric, with oracles

Test Generator CRAFTDROID ATM CRAFTDROID

Scenarios All Shared Shared

Semantic Matching Metric MRR TOP1 MRR TOP1 MRR TOP1

correlation with F1-SCORE 0.39063 M 0.51028 S 0.33981 M 0.42692 M 0.1505 – 0.22328 –

p-value 0.00099 0.00001 0.00458 0.00028 0.22057 0.06721

S strong correlation
M moderate correlation
W weak correlation
– statistically insignificant

Table 7.3. Correlation of semantic matching metric and test reuse metric without oracles

Test Generator CRAFTDROID ATM CRAFTDROID

Scenarios All Shared Shared

Semantic Matching Metric MRR TOP1 MRR TOP1 MRR TOP1

correlation with F1-SCORE 0.39830 M 0.49938 S 0.34433M 0.45241 M 0.15759 – 0.24503 –

p-value 0.00077 0.00001 0.00404 0.00011 0.19934 0.04402

S strong correlation
M moderate correlation
W weak correlation
– statistically insignificant

Figures 7.5 and 7.6 plot the MRR and TOP1 metrics with respect to the F1-
SCORE for both CRAFTDROID and ATM executed with all and shared scenarios,
respectively. The figures report also the correlations for the perfect (green dots)
and random (red dots) baselines. The F1-SCORE of the perfect configuration is
0.6627 for CRAFTDROID and 0.557 for ATM. This shows SEMANTIC MATCHER is
not the only factor for test migration; TEST GENERATOR plays an important role as
well. The F1-SCORE of the random configuration is 0.1553 for CRAFTDROID and
0.1698 for ATM, less than most SEMANTIC MATCHING CONFIGURATIONS (blue)
dots, thus confirming the effectiveness of semantic matching for TEST REUSE.
The least squares polynomial fit with degree of one ([35]) (red lines) indicates
the trends, which are positive in all cases, confirming the correlation between
MRR and TOP1 metrics. The gap between SEMANTIC MATCHING CONFIGURATIONS
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(blue) and perfect (green) dots suggests a space for improving semantic matching
for TEST REUSE. The results for TOP1 are below the ones for MRR (TOP1 dots
are skewed to the left comparing to MRR), since TOP1 scores 1 only if the correct
candidate is exactly in the top position of the ranking while MRR scores positively
also when the candidate occurs in a high position that may be different from the
top position. Thus, TOP1 does not consider the case of many "good" but "not
perfect" candiadtes
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Figure 7.5. Correlation between semantic matching (MRR) and TEST REUSE (F1-SCORE)
with oracles
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Figure 7.6. Correlation between semantic matching (TOP1) and TEST REUSE (F1-SCORE)
with oracles

We measure the effectiveness of semantic matching across ATM and CRAFT-
DROID TEST GENERATORS as the difference ∆ (delta) between the F1-SCORE val-
ues of ATM and CRAFTDROID migrations for shared scenarios. We normalize ∆
values for each approach, separately, and use a tailed t-test to determine if a
mean of ∆ is different from zero with p-value of 0.05. Non-zero mean values of



77 7.2 Experimental Results

∆ indicate configurations with different performance for ATM and CRAFTDROID:
ATM better than CRAFTDROID for positive ∆ and vice versa for negative ∆.

Figure 7.7 plots all configurations sorted by normalized ∆ values, and marks
the negative (orange) and positive (blue) mean values. ATM and CRAFTDROID

do not differ for most (average ∆ = 0) but six configurations: Three orange
configurations on the left-hand side (CRAFTDROID better than ATM), and three
blue on the right-hand side (ATM better than CRAFTDROID). Only the left most
out of the six configurations that work better on either approaches corresponds
to a p-value less than 0.001. Thus, the data indicate that no specific pattern
between the configurations works better for one of two approaches.
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Figure 7.7. Configurations sorted by normalized ∆ of F1-SCORE

The results show

(i) a medium to strong positive correlation between semantic matching
and TEST REUSE, thus confirming that semantic matching impacts on
test reuse,

(ii) a significant gap between the best SEMANTIC MATCHING CONFIGURATION

and the perfect baseline that suggests a space for improving semantic
matching for TEST REUSE.

(iii) a uniform behavior of the TEST GENERATOR in the different SEMANTIC

MATCHING CONFIGURATIONS, thus confirming the generality of the TEST

GENERATORS.

RQ5. Component Effectiveness in the Context of Test Reuse.
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We measured the effectiveness of the components (SEMANTIC MATCHING AL-
GORITHM (C4), EVENT DESCRIPTOR EXTRACTOR (C3), WORD EMBEDDING (C2),
CORPUS OF DOCUMENTS (C1)) on TEST REUSE, by grouping the SEMANTIC MATCH-
ING CONFIGURATIONS by component instances, and ranking the groups according
to the median F1-SCORE. Tables 7.4,7.5,7.6, 7.7 show how effective instances are
with respect to a specific TEST GENERATOR and scenarios setup. The best values
are in boldface, the worst in italics.

The experimental results indicate: (i) A more stable performance of SEMFINDER

and ADAPTDROID_a across scenarios than ATM_a and CRAFTDROID_a SEMANTIC

MATCHING ALGORITHMS; (ii) A clear ranking with ATM_d on top followed by
Intersection, Union and CRAFTDROID_d as EVENT DESCRIPTOR EXTRACTOR, in
this order; (iii) A better performance of WM and FASTTEXT over WORD2VEC and
GLOVE WORD EMBEDDING; (iv) GOOGLE-PLAY as the best CORPUS OF DOCUMENTS

for CRAFTDROID, with no relevant differences among corpora for ATM.

SEMANTIC MATCHING ALGORITHM

Table 7.4 reports the median F1-SCORE for the CRAFTDROID and ATM TEST

GENERATORS grouped according to the SEMANTIC MATCHING ALGORITHM instances
for both all and shared scenarios. The values for all scenarios benefit from the
large size of the experiments. The homogeneity of values across configurations
indicates an even behaviour of the different choices of the SEMANTIC MATCHING

ALGORITHM component on TEST REUSE. The CRAFTDROID_a algorithm works
best for the CRAFTDROID TEST GENERATOR and worst for the ATM TEST GENER-
ATOR, while ATM_a works well for ATM TEST GENERATOR and worst for CRAFT-
DROID TEST GENERATOR. The SEMFINDER and ADAPTDROID algorithms work
stably well with both approaches on all scenarios.

EVENT DESCRIPTOR EXTRACTOR

Table 7.5 reports the median F1-SCORE for the CRAFTDROID and ATM TEST

GENERATOR grouped by instances of the EVENT DESCRIPTOR EXTRACTOR com-
ponent. The median F1-SCORE values in the table clearly indicate a ranking:
ATM_d, Intersection, Union, CRAFTDROID_d, with and without oracles, and for
all sets of setups, for both ATM and CRAFTDROID but CRAFTDROID with oracles
on shared scenarios.

WORD EMBEDDING
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Table 7.4. Median F1-SCORE values of MRR grouped by SEMANTIC MATCHING ALGO-
RITHM

Test Generator CRAFTDROID CRAFTDROID ATM

Scenarios All Shared Shared

Instance #conf.a oracles no oracles rankb oracles no oracles rank oracles no oracles rank

CRAFTDROID_a 13 0.3974 0.4978 1 0.1936 0.2219 1 0.1782 0.2018 4

SEMFINDER 18 0.3678 0.4503 2 0.1761 0.2050 3 0.1847 0.2160 3

ADAPTDROID_a 20 0.3496 0.4369 3 0.1841 0.2174 2 0.2251 0.2498 1

ATM_a 17 0.3336 0.4192 4 0.1741 0.1963 4 0.2127 0.2354 2

a Number of SEMANTIC MATCHING CONFIGURATIONS that use the instance
b Rank of the instance in the specific TEST GENERATOR and scenario setup

Table 7.5. Median F1-SCORE values of MRR grouped by EVENT DESCRIPTOR EXTRACTOR

Test Generator CRAFTDROID CRAFTDROID ATM

Scenarios All Shared Shared

Instance #conf.a oracles no oracles rankb oracles no oracles rank oracles no oracles rank

ATM_d 19 0.4214 0.5169 1 0.2539 0.2888 1 0.2729 0.3036 1

Intersection 14 0.3581 0.4434 2 0.1786 0.2072 2 0.2274 0.2680 2

Union 16 0.3316 0.4115 3 0.1656 0.1644 3,4 0.1888 0.2109 3

CRAFTDROID_d 19 0.3070 0.3712 4 0.1428 0.2050 4,3 0.1818 0.2081 4

a Number of SEMANTIC MATCHING CONFIGURATIONS that use the instance
b Rank of the instance in the specific TEST GENERATOR and scenario setup
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Table 7.6. Median F1-SCORE values of MRR grouped by WORD EMBEDDING

Test Generator CRAFTDROID CRAFTDROID ATM

Scenarios All Shared Shared

Instance #conf.a oracles no oracles rankb oracles no oracles rank oracles no oracles rank

WM 13 0.4190 0.5023 1 0.2019 0.2372 1 0.2017 0.2234 2

FastText 17 0.3302 0.4192 3 0.1722 0.2153 3 0.2099 0.2352 1

W2V 14 0.3432 0.4236 2 0.1880 0.2197 2 0.1513 0.1694 4

GloVE 10 0.3040 0.3700 4 0.1100 0.1224 4 0.1870 0.2071 3

a Number of SEMANTIC MATCHING CONFIGURATIONS that use the instance
b Rank of the instance in the specific TEST GENERATOR and scenario setup

Table 7.6 reports the median F1-SCORE for the CRAFTDROID and ATM TEST

GENERATORS grouped by the WORD EMBEDDING instances. The table reports the
values for the instances that occur at least ten times in the sampled configura-
tions: WM, GLOVE, FASTTEXT, and WORD2VEC. The values indicate that WM and
FASTTEXT perform better than WORD2VEC and GLOVE.

Figures 7.8 and 7.9 compare syntactic and semantic configurations, by plot-
ting the configurations sorted by mean F1-SCORE. We aggregate semantic con-
figurations by means, since both MRR and TOP1 aggregate the results by means.
The yellow box plots indicate the five configurations that implement syntactic
techniques, the green box plot indicates the perfect configuration, and the red
box plot the random configuration. The distribution of syntactic configurations
in both figures indicates no relevant differences between syntactic and seman-
tic configurations, however the limited amount of syntactic configurations does
not allow us to generalize the results. While the perfect configuration subsumes
all configurations, the random configuration subsumes some configurations for
ATM. This explains the lower F1-SCORE values for shared scenarios than all sce-
narios in Table 7.6. We argue that the effectiveness of WORD EMBEDDING models
depends on scenarios: The more the scenarios are extensive, the more they ben-
efit from semantic approaches.
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Figure 7.8. Range of F1-SCORE per SEMANTIC MATCHING CONFIGURATIONS in CRAFT-
DROID with all scenarios, Ordered by mean
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Figure 7.9. Range of F1-SCORE per SEMANTIC MATCHING CONFIGURATIONS in ATM with
shared scenarios, Ordered by mean

CORPUS OF DOCUMENTS

Table 7.7 reports the median F1-SCORE for the CRAFTDROID and ATM TEST

GENERATORS grouped by the CORPUS OF DOCUMENTS component. The values
in the table indicate the independence of ATM from the choice of CORPUS OF

DOCUMENTS, while CRAFTDROID TEST GENERATOR perform best for GOOGLE-PLAY

and worst for MANUALS.
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Table 7.7. Median F1-SCORE values of MRR grouped by CORPUS OF DOCUMENTS

Test Generator CRAFTDROID CRAFTDROID ATM

Scenarios All Shared Shared

Instance #conf.a oracles no oracles rankb oracles no oracles rank oracles no oracles rank

Google Play 9 0.3848 0.4772 1 0.2019 0.2296 1 0.1851 0.2084 3

Blogs 18 0.3382 0.4223 2 0.1804 0.2111 2 0.1906 0.2233 2,1

Manuals 15 0.3234 0.3746 3 0.1548 0.1763 3 0.1916 0.2190 1,2

a Number of SEMANTIC MATCHING CONFIGURATIONS that use the instance
b Rank of the instance in the specific TEST GENERATOR and scenario setup

The results indicate that

(i) semantic matching instances that are effective in isolation perform well
also in TEST REUSE, however, semantic matching instances that are less
effective in isolation may still perform well in TEST REUSE,

(ii) both SEMFINDER and ADAPTDROID algorithms work consistently well
across TEST GENERATORS,

(iii) ATM_d and WM are the best instances for EVENT DESCRIPTOR EXTRAC-
TOR and WORD EMBEDDING, respectively,

(iv) GOOGLE-PLAY performs best with CRAFTDROID TEST GENERATOR, while
all CORPUS OF DOCUMENTS instances work similarly with ATM TEST

GENERATOR.

RQ6. Component Impact Analysis in the Context of Test Reuse. Table 7.8
reports the median of standard deviation for both CRAFTDROID and ATM TEST

GENERATOR grouped by components. The values in the table indicate that EVENT

DESCRIPTOR EXTRACTOR is the most impactful component on TEST REUSE, with
F1-SCORE values far higher than the other components for all setups. SEMANTIC

MATCHING ALGORITHM, and WORD EMBEDDING follow EVENT DESCRIPTOR EX-
TRACTOR with different comparative performance depending on the TEST GEN-
ERATOR and scenarios. The F1-SCORE values ranks CORPUS OF DOCUMENTS as
the least impactful component on TEST REUSE for all setups.

The results in the table depend on the scenarios: SEMANTIC MATCHING AL-
GORITHM ranks third for CRAFTDROID with shared scenarios, and fourth with
all scenarios. The results with all scenarios indicate a similar impact of SEMAN-
TIC MATCHING ALGORITHM and WORD EMBEDDING for CRAFTDROID. The plots in
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Table 7.8. Median values of F1-SCORE grouped by Components

Test Generator CRAFTDROID CRAFTDROID ATM

Scenarios All Shared Shared

Component oracles no oracles rankb oracles no oracles rank oracles no oracles rank

EVENT DESCRIPTOR EXTRACTOR 0.0536 0.0835 1 0.0688 0.0779 1 0.0517 0.0704 1

WORD EMBEDDING 0.0352 0.0436 2 0.0360 0.0481 3 0.0173 0.0226 3

SEMANTIC MATCHING ALGORITHM 0.0333 0.0293 3 0.0538 0.0574 2 0.0195 0.0289 2

CORPUS OF DOCUMENTS 0.0139 0.0245 4 0.0299 0.0331 4 0.0161 0.0189 4

b Rank of the instance in the specific TEST GENERATOR and scenario setup

Figure 7.10 confirm the similar performance of SEMANTIC MATCHING ALGORITHM

and WORD EMBEDDING for CRAFTDROID and ATM TEST GENERATOR.

F1 Score
0.00

0.02
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0.14

SD

CraftDroid

F1 Score

SD

ATM

Component Type
Corpus of Documents Word Embedding Semantic Matching Algorithm Event Descriptor Extractor

Figure 7.10. Impact analysis of the components of CRAFTDROID TEST GENERATOR (all
scenarios) and ATM TEST GENERATOR (shared subjects only)

The results indicate that

(i) EVENT DESCRIPTOR EXTRACTOR is the most impactful component in
TEST REUSE,

(ii) SEMANTIC MATCHING ALGORITHM and WORD EMBEDDING are the next
impactful components and their impact depends on both the TEST GEN-
ERATOR and the subjects,

(iii) CORPUS OF DOCUMENTS is the least impactful component.
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7.2.1 Discussion

The experimental results that we discuss in this section indicate the importance of
semantic matching in TEST REUSE. They also show a substantial gap between the
best SEMANTIC MATCHING CONFIGURATIONS and the perfect mapping (Figures 7.8
and 7.9). The gap indicates space for improvement.

The results clearly indicate the contribution of the different instances for the
semantic matching components. Here we compare the results of the experiment
of semantic matching in isolation (RQ1, RQ2 and RQ3) that we discuss in de-
tail in Section 5.2, to the results in the context of TEST REUSE (RQ5, RQ6 and
RQ7) that we discuss in detail in Section 7.2. Since different metrics captured
the effectiveness of semantic matching in isolation (MRR and TOP1) and in the
context of TEST REUSE (F1-SCORE), we compare the results qualitatively.

• SEMANTIC MATCHING ALGORITHM: The evaluation in isolation indicates
that SEMFINDER performs best and ADAPTDROID worst among the evalu-
ated SEMANTIC MATCHING ALGORITHM. The evaluation in the context of
TEST REUSE does not reveal substantial differences among the evaluated
SEMANTIC MATCHING ALGORITHM, all of which perform well. SEMFINDER

and ADAPTDROID semantic matching algorithms are not paired with a spe-
cific TEST REUSE approach, and perform evenly well when paired with any
TEST GENERATOR. ATM_a and CRAFTDROID_a SEMANTIC MATCHING ALGO-
RITHMS perform best when paired with the corresponding TEST GENERA-
TOR, worst otherwise. These results suggest that SEMFINDER could be a safe
choice since it performed well in all contexts, regardless of the test genera-
tion approach used.

• EVENT DESCRIPTOR EXTRACTOR: Both the evaluation in isolation and in
the context of TEST REUSE indicate that EVENT DESCRIPTOR EXTRACTORS

perform with almost the same order of effectiveness, with ATM_d outper-
forming the others.

• WORD EMBEDDING: Both the evaluation in isolation and in the context of
TEST REUSE indicate that WM performs better than the other WORD EM-
BEDDING techniques. FASTTEXT performs well, although often worse than
WM, only in the context of TEST REUSE. We speculate that this result might
derive from the capability of FASTTEXT to handle out-of-vocabulary issues
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more effectively than the other word embedding that we consider in the
study, being out-of-vocabulary a phenomenon that occurs often when pro-
cessing a large variety of diverse words. Overall, the results clearly indicate
WM as the best option for the task of semantic matching, among the consid-
ered techniques.

• CORPUS OF DOCUMENTS: Both the evaluation in isolation and in the con-
text of TEST REUSE suggests that the best corpora to use may depend on how
the corpora is used, and this on the TEST REUSE technique. In fact, Google
Play is the best corpora for CRAFTDROID, while it performs worst for ATM.

• Impact of the components on TEST REUSE: The four components (COR-
PUS OF DOCUMENTS, WORD EMBEDDING, SEMANTIC MATCHING ALGORITHM,
EVENT DESCRIPTOR EXTRACTOR) have a different impact on TEST REUSE,
depending on the TEST GENERATOR (ATM, CRAFTDROID), and the impact
varies from evaluation in isolation and in the context of TEST REUSE (Fig-
ures 5.4, and 7.10). The evaluation in isolation ranks SEMANTIC MATCHING

ALGORITHM first, then WORD EMBEDDING, EVENT DESCRIPTOR EXTRACTOR

and CORPUS OF DOCUMENTS. The evaluation in the context of TEST REUSE

ranks EVENT DESCRIPTOR EXTRACTOR first, then SEMANTIC MATCHING AL-
GORITHM and WORD EMBEDDING between the second and third place de-
pending on the TEST REUSE TEST GENERATOR, and finally CORPUS OF DOC-
UMENTS. From these results, we can deduce that the set of extracted de-
scriptors and the way these descriptors are processed are the most important
and impactful part of the semantic matching process. While, the WORD EM-
BEDDING, and even more the choice of the CORPUS OF DOCUMENTS, play
a minor role in the semantic matching process. Interestingly, results also
highlight how there is a gap to fill with respect to the performance of the
ideal semantic matching process.

7.2.2 Implications of the results

We conclude this section by discussing the implications of the results from three
different viewpoints that can drive future research in improving semantic match-
ing for test reuse: choice of instances, impact of components and test reuse.

Choice of instances: We observe that best results when relying on the instances
that are robust in both isolation and test reuse context. The results suggest that
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the most robust instances of the different components are SEMFINDER for the
WORD EMBEDDING, WM and in general sentence level embedding for the WORD

EMBEDDING, AT M_d for the EVENT DESCRIPTOR EXTRACTOR, Google-Play for the
CORPUS OF DOCUMENTS.

Impact of components: We observe that the components impact very differently
in the context of semantic matching and test reuse. The EVENT DESCRIPTOR

EXTRACTOR is the most impactful component in the context of test reuse, even if
it follows both the SEMANTIC MATCHING ALGORITHM and the WORD EMBEDDING

when considering semantic matching only. We speculate that that choice of the
next events highly depends on the current ones, and the EVENT DESCRIPTOR

EXTRACTOR plays the most important role because it it the gateway of necessary
information for the SEMANTIC MATCHING EVALUATOR. Based on these results
we encourage exploring new attributes to add more available information. We
observe that the CORPUS OF DOCUMENTS is the least impactful, and ATM is not
very sensitive to the choice of corpus.

Test Reuse: The gap between the perfect semantic matching configuration and
the perfect Test Reuse indicates a relevant space for improving the TEST GENER-
ATOR. Our investigation indicates that the incompleteness of the Target Applica-
tion Model is an important obstacle of finding the correct match. The instances
of the TEST GENERATOR that we evaluated find it difficult to find the correct
matching when the events belong to different windows.
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Conclusions

Automatically reusing test cases across similar applications is a recent and promis-
ing way to efficiently test interactive applications. Current TEST REUSE approaches
migrate test cases from a source to a target application, and rely on semantic
matching to find corresponding events between source and target applications.
Semantic matching plays a crucial role not only in TEST REUSE, but also in some
of the PATTERN-BASED approaches that use semantic matching to match elements
of the patterns to events of target applications [66, 42].

Current TEST REUSE approaches combine different techniques and present
different results. Comparing the different approaches offers the opportunity to
define new approaches with better performance than current ones. FrUITeR, the
only publicly available framework we are aware of, allows to automatically com-
pare TEST REUSE approaches as a whole, but does not support the comparison of
the contribution of the different components of the approaches, and in particular
of the core semantic matching component.

In this thesis, we propose a general ARCHITECTURE of TEST REUSE approaches.
We define a framework to comparatively evaluate the core components of TEST

REUSE approaches and the different combinations of the instances of the different
components. We discuss combination of new instances of the components to pro-
duce new efficient TEST REUSE approaches that supersede current approaches,
and we offer the framework in an open replication package to evaluate new com-
binations of instances and obtain new TEST REUSE approaches.

The ARCHITECTURE that we proposed in this thesis encompasses a SEMAN-
TIC MATCHER and a TEST GENERATOR. The SEMANTIC MATCHER is composed of
four subcomponents: i) CORPUS OF DOCUMENTS ii) WORD EMBEDDING iii) EVENT

DESCRIPTOR EXTRACTOR iv) SEMANTIC MATCHING ALGORITHM. The TEST GEN-
ERATOR includes a EVENT SELECTOR. The SEMANTIC MATCHER identifies events
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of the source and the target application that are semantically similar by relying
on word embedding techniques, which score similarity of the textual descrip-
tor of events. The TEST GENERATOR leverages the similarities between events to
generate the test cases for the target application based on the specific strategies.
The ARCHITECTURE provides the ability to study and evaluate TEST REUSE ap-
proaches at the fine granularity of the components. In this thesis we identified
25 relevant instances for the SEMANTIC MATCHER components and two instances
of EVENT SELECTOR. Each combination of SEMANTIC MATCHER instances creates
a unique semantic matching strategy (SEMANTIC MATCHING CONFIGURATION).

We evaluated semantic matching in isolation with the SEMANTIC MATCHING

EVALUATOR, a framework that automatically evaluates the impact of the compo-
nents and the effectiveness of the instances. We conducted our empirical evalua-
tion with 147 unique test migration scenarios from 30 applications. The results of
our experiments show that i) sentence level word embedding techniques perform
better than world level ones, ii) all semantic matching components are impact-
ful, iii) the quality of semantic information is more important than the quantity,
iv) word embedding models trained on corpora of documents specific to mobile
app domain perform generally better than general corpora.

Following our insights on the effectiveness of domain specific CORPUS OF

DOCUMENTS, we hypothesized that highly specialized corpora of documents can
improve the effectiveness of semantic matching. To evaluate our hypothesis,
we used topic modeling to partition GOOGLE-PLAY corpus into 27 domain spe-
cific clusters of documents. We created word embedding models with FASTTEXT,
GLOVE, WM, and WORD2VEC techniques, and evaluated 240 SEMANTIC MATCH-
ING CONFIGURATIONS that use the specialized WORD EMBEDDING models. The
results of our experiments suggests there exists an optimal point for the spe-
cialized corpuses. We also observed the complementarity between the models
trained with GOOGLE-PLAY and the ones trained with clusters.

To evaluate semantic matching in TEST REUSE context, we proposed TEST MI-
GRATION EVALUATOR, a framework that automatically evaluates both the impact
of the components and the effectiveness of the instances, based on the quality of
the generated test cases. The results of an empirical evaluation with 89 unique
test migration scenarios show that i) the semantic matching of GUI events is
highly correlated with the performance of TEST REUSE ii) SEMANTIC MATCHING

ALGORITHM and EVENT DESCRIPTOR EXTRACTOR are the most impactful compo-
nents in context of Test Reuse, iii) our new SEMANTIC MATCHING ALGORITHM

performs consistently well both in-isolation and in the context of TEST REUSE.
iv) there is a relevant space for further improving performance of TEST REUSE.
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8.1 Contributions

This thesis offers the following contributions.

A general ARCHITECTURE of TEST REUSE approaches: We define a general con-
ceptual ARCHITECTURE for TEST REUSE approaches that abstracts internal compo-
nent of the approaches and their interactions. The ARCHITECTURE embodies both
the workflow of the current approaches and the main processes that we modu-
larize as components. The components are implemented with interchangeable
instances; From the object-oriented prospective, the components play the role of
classes, and the instances of objects.

New instances for the SEMANTIC MATCHER components: We evaluated all in-
stances proposed in the state-of-the-art TEST REUSE approaches as well as both
new instances for the identified components and popular artifacts of NLP com-
munity: SEMFINDER a new SEMANTIC MATCHING ALGORITHM, GOOGLE-PLAY a
CORPUS OF DOCUMENTS, and TOPICS a highly specialized corpora of documents.
The current SEMANTIC MATCHING ALGORITHMS are either too restrictive and thus
miss contextual information or too general and thus suffer from unavoidable
noise. SEMFINDER offers a good trade-off, and outperforms the current SEMANTIC

MATCHING ALGORITHM in semantic matching both in-isolation and in the context
of TEST REUSE.
We built the GOOGLE-PLAY corpus by crawling Google Play application descrip-
tors, and we used the GOOGLE-PLAY corpus to train WORD EMBEDDING models
specialized for the mobile app domain. We defined SEMANTIC MATCHING CON-
FIGURATIONS that uses GOOGLE-PLAY to obtain high MRR and TOP1 scores for
semantic matching in-isolation.
We defined TOPICS, corpora of documents with apps descriptions specific to the
domain of mobile applications. We used topic modeling to cluster documents
such that each cluster corresponds to the corpus of documents containing de-
scription of apps with similar functionalities. We trained WORD EMBEDDING mod-
els with TOPICS corpora to obtain models for specific domains of apps.

Evaluation Frameworks: We propose two frameworks to automatically evalu-
ate semantic matching both in isolation and in the context of TEST REUSE. The
frameworks integrate different instances of components to evaluate any combi-
nation of instances. The SEMANTIC MATCHING EVALUATOR framework assesses
SEMANTIC MATCHING CONFIGURATIONS in isolation from TEST REUSE and relies
on a data set of source and target candidate events. The TEST MIGRATION EVALU-
ATOR framework integrates a modified version of the SEMANTIC MATCHING EVAL-



90 8.2 Open Research Directions

UATOR for assessing semantic matching in isolation, and includes the TEST GEN-
ERATOR component to assess semantic matching in the context of TEST REUSE.
The frameworks can systematically explore possible combination of instances to
assess impact of components and effectiveness of instances.

In-depth insight and empirical evaluation: We discuss the results of our exper-
iments with 337 SEMANTIC MATCHING CONFIGURATIONS in isolation with a data
set of 8,099 GUI events, and of our experiments with 68 configurations on 6,000
test migrations. Our comprehensive empirical study provides important insights
about the relative impact of the different components, and the dependency of
TEST REUSE approaches on semantic matching. The results of our experiment
show that even the best SEMANTIC MATCHING CONFIGURATIONS score a max of
0.79 and 0.67 with MRR and TOP1 metrics, respectively, quite far from a perfect
semantic matching. Our results also indicates that the perfect semantic matching
achieves F1-SCORE of 0.65 in TEST REUSE context, thus indicating that semantic
matching is not the only impactful component on TEST REUSE.

We presented the results of the study of semantic matching in isolation and the
SEMANTIC MATCHING EVALUATOR framework at the 2021 International Sympo-
sium on Software Testing and Analysis [70]. We presented the results of domain
specific word embedding study at 2022 International Conference on Program
Comprehension [46]. We present the results of the study of semantic matching
in the context of TEST REUSE and the TEST MIGRATION EVALUATOR framework
in a paper that we submitted to the Empirical Software Engineering, and that is
under review at the time of writing.

8.2 Open Research Directions

The results presented in this thesis opens new research directions.

Toward perfect semantic matching: Our empirical study indicates a relevant
gap between the performance of the semantic matching approaches that we eval-
uated in the context of TEST REUSE and the ideal SEMANTIC MATCHING CONFIG-
URATION, perfect semantic matching baseline. Thus, the results indicate a big
space for improvement. A possible research direction moves towards leveraging
other sources of semantic information that are available in the GUI to reduce
the gap between current semantic matching and the perfect baseline. Another
relevant research direction moves towards the use of non-textual information.
Current semantic approaches rely on textual information only, and ignore the
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relevant visual information often available in the GUI. For example, the image
of a pencil is often attached to a button to indicate an edit functionality. Some
random approaches [105] use computer vision to find actionable events, while
some PATTERN-BASED approaches [42] use computer vision to match widgets
to patterns elements. Leveraging computer vision to take advantage of visual
information available in the GUI can enhance semantic matching of GUI events.

From one-to-one to many-to-many mapping: The current semantic matching
techniques consider only one-to-one mappings. A relevant challenge of TEST

REUSE is the presence of many-to-many mapping between source and target
events. The current TEST REUSE approaches identify some one-to-many map-
ping, since they consider ancillary events required to reach a state that contains
one-to-one mapping. However, in many scenarios finding ancillary events is
difficult, and the current TEST REUSE approaches miss many ancillary events.
Considering macro events, that is, compositions of multiple events, can enhance
semantic matching.

Improving TEST REUSE beyond semantic matching: The results of our em-
pirical study show that even the perfect matching baseline does not result into
a perfect test migration. Studying other aspects of TEST REUSE beyond seman-
tic matching may improve TEST REUSE. Our intuition is that the dependency of
TEST REUSE approaches on TARGET APPLICATION MODEL in states where semantic
matching cannot find the correct match plays an important role in TEST REUSE.
Reinforcement learning can be a suitable solution to produce effective models of
the GUI to query for the next events in the generated test.
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111 .1 Mann-Whitney U test

.1 Mann-Whitney U test

MMR

Mann-Whitney U tests of pairs of instances for different distribution (p-value ≤
0.05),according to MMR metrics. The entries with p-value ≤ 0.05 are indicated
in bold.

Component C1 CORPUS OF DOCUMENTS

googleplay manuals
blogs 0.0954 0.3228
googleplay 0.0479

Component C2 WORD EMBEDDING

es fast glove js nnlm use w2v wm
bert 0.3188 0.1022 0.0770 0.2670 0.0125 0.0006 0.0899 0.0007
es 0.1519 0.1547 0.2796 0.0285 0.0075 0.2016 0.0032
fast 0.4012 0.3524 0.0361 0.0015 0.4086 0.0001
glove 0.4308 0.0316 0.0027 0.4291 0.0001
js 0.0506 0.0028 0.3887 0.0031
nnlm 0.1103 0.0361 0.1982
use 0.0011 0.2718
w2v 0.0001

Component C3 EVENT DESCRIPTOR EXTRACTOR

CRAFTDROID_d intersection union
ATM_d 0.0000 0.0209 0.0000
CRAFTDROID_d 0.0000 0.3689
intersection 0.0001

Component C4 SEMANTIC MATCHING ALGORITHM

ATM_a CRAFTDROID_a SEMFINDER

adaptdroid_a 0.0000 0.0000 0.0000
ATM_a 0.3931 0.0000
CRAFTDROID_a 0.0000



112 .1 Mann-Whitney U test

Top1

Mann-Whitney U tests of pairs of instances for different distribution (p-value ≤
0.05),according to Top1 metrics. The entries with p-value ≤ 0.05 are indicated
in bold.

Component C1 CORPUS OF DOCUMENTS

googleplay manuals
blogs 0.1219 0.1293
googleplay 0.0123

Component C2 WORD EMBEDDING

es fast glove js nnlm use w2v wm
bert 0.2427 0.1982 0.1802 0.1778 0.0046 0.0001 0.2638 0.0003
es 0.0735 0.0478 0.3886 0.0028 0.0000 0.0989 0.0001
fast 0.4962 0.0246 0.0033 0.0000 0.4030 0.0000
glove 0.0213 0.0031 0.0000 0.3675 0.0000
js 0.0004 0.0000 0.0337 0.0000
nnlm 0.0787 0.0019 0.3749
use 0.0000 0.0787
w2v 0.0000

Component C3 EVENT DESCRIPTOR EXTRACTOR

CRAFTDROID_d intersection union
ATM_d 0.0000 0.0004 0.0000
CRAFTDROID_d 0.0000 0.0964
intersection 0.0005

Component C4 SEMANTIC MATCHING ALGORITHM

ATM_a CRAFTDROID_a SEMFINDER

adaptdroid_a 0.4464 0.0000 0.0000
ATM_a 0.0048 0.0000
CRAFTDROID_a 0.0000
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