W) Check for updates

Received: 21 November 2022 Revised: 2 March 2023 Accepted: 16 April 2023

DOI: 10.1002/spe.3213

RESEARCH ARTICLE WILEY

Large-scale characterization of Java streams

Eduardo Rosales®™ | Matteo Basso | Andrea Rosa | Walter Binder

Faculty of Informatics, Universita della

Svizzera Italiana, Lugano, Switzerland Abstract

Java streams are receiving the attention of developers targeting the Java virtual

Correspondence) machine (JVM) as they ease the development of data-processing logic, while also
Eduardo Rosales, Faculty of Informatics, . e]) » .

Universita della Svizzera Italiana, 6900, favoring code extensibility and maintainability through a concise and declar-
Lugano, Switzerland. ative style based on functional programming. Recent studies aim to shedding

Email: rosale@usi.ch . q
@ light on how Java developers use streams. However, they consider only small

Funding information sets of applications and mainly apply manual code inspection and static analy-
The Swiss National Science Foundation, sis techniques. As a result, the large-scale dynamic analysis of stream processing
Grant/Award Number: 200020188683 remains an open research question. In this article, we present the first large-scale
empirical study on the use of streams in Java code exercised via unit tests. We
present stream-analyzer, a novel dynamic program analysis (DPA) that collects
runtime information and key metrics, which enable a fine-grained characteri-
zation of sequential and parallel stream processing. We use a fully automatic
approach to massively apply our DPA for the analysis of open-source software
projects hosted on GitHub. Our findings advance the understanding of the use
of Java streams. Both the scale of our analysis and the profiling of dynamic infor-
mation enable us to confirm with more confidence the outcome highlighted at
a smaller scale by related work. Moreover, our study reports the popularity of
many features of the Stream API and highlights multiple findings about run-
time characteristics unique to streams, while also revealing inefficient stream
processing and stream misuses. Finally, we present implications of our findings
for developers of the Stream API, tool builders and researchers, and educators.

KEYWORDS

code repositories, dynamic program analysis, empirical studies, GitHub, Java streams, Java virtual
machine

1 | INTRODUCTION

Since Java 8, the Stream API! stands out at supporting data processing on the Java virtual machine (JVM), leveraging
an intuitive and declarative style based on functional programming.? The Stream API offers two key abstractions. First,
the stream, a view of a sequence of elements made available by a data source. Second, the stream pipeline, a sequence

Abbreviations: DPA, dynamic program analysis; JVM, Java virtual machine.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.

© 2023 The Authors. Software: Practice and Experience published by John Wiley & Sons Ltd.

Softw: Pract Exper. 2023;53:1763-1792. wileyonlinelibrary.com/journal/spe 1763

https://orcid.org/0000-0002-6404-3128
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/SPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.3213&domain=pdf&date_stamp=2023-06-05

1764 ROSALES ET AL.
WILEY

of operations that are applied to the elements in the stream upon execution. The elements in a stream can come from
multiple data sources, including collections, arrays, generators, and files.> The operations in the pipeline allow multi-
ple actions, typically the manipulation of collections to perform MapReduce* data transformations (e.g., map, filter,
reduce).

Streams are getting the attention of developers targeting the JVM, mainly because they are versatile and can ease
writing clear and concise data-processing logic.>” Indeed, streams can be used to improve software design by leveraging
the extensibility and maintainability favored by functional-programming styles.® Another key feature of streams is that
they can be executed in parallel just by calling a single operation. As a result, streams can take advantage of modern
multicores, potentially achieving performance gains without the need for writing parallel code.

To the best of our knowledge, only three recent studies have analyzed the use of streams. Tanaka et al.® mine 100
software repositories to study the use of functional idioms in Java applications. The study focuses on lambda expres-
sions,'? streams, and the java.util.Optional class.!! Khatchadourian et al.® examine 34 Java projects to study the
use of streams in Java. The work of Khatchadourian et al. represents the first attempt to specifically discover use cases
of the Stream API. Finally, Nostas et al.” study the use of streams in 610 projects. The work is a partial replication of the
study of Khatchadourian et al. considering a larger number of projects and validating the previously obtained results.
The aforementioned work considers only a small number of projects and apply mostly manual code inspection and
static analysis techniques, letting the dynamic analysis of a representative number of software projects an open research
pathway.

This article aims at filling this gap by conducting a large-scale empirical study on the use of streams. Our work has
multiple goals. We aim at giving feedback to the community developing the Java class library. In particular, we report
the most used features of the Stream API, an information that could be considered when prioritizing future extensions
to the API. Moreover, we aim at providing suggestions that may help improve the API according to our observations on
how developers are using streams. Another goal is to provide information that can help tool builders and researchers
identify potential gaps and understand the kind of support and functionality required to guide Java developers in making
better decisions while using streams. Finally, our study aims at helping educators who train Java developers identify little
exploited features of the Stream API that can be emphasized in learning processes, such that practitioners are better aware
of code patterns enabling more efficient data processing in Java.

Our work faces several challenges. Our analysis targets stream code exercised by unit tests, which is available in a large
set of open-source software projects. Differently from related studies,®”° we use a fully automated approach avoiding
manual intervention and specifically target runtime metrics that enable a finer-grained characterization of stream pro-
cessing. This imposes challenges in carefully selecting a set of dynamic information and metrics suitable to be collected
in the wild and in developing an instrumentation” accurately tracking the key features of the Stream API. Moreover, the
information collected should enable data analyses revealing common practices in the use and misuse of streams by Java
developers.

Our work makes the following contributions. We present, Stream-Analyzer, a new dynamic program analysis (DPA)
targeting a relevant selection of metrics that allow characterizing sequential and parallel stream processing on the JVM.
Stream-Analyzer builds upon DiSL,'31> a framework for the JVM to perform dynamic analysis via bytecode instrumenta-
tion. DiSL has been successfully used to build many DPAs!®!° targeting the Java applications. Moreover, the use of DiSL
enables the complete instrumentation of the Java class library, which is crucial for the accurate detection of all streams
used in a Java application. Stream-Analyzer is also designed to run on top of NAB,? a distributed infrastructure allowing
the execution of custom analyses on code exercised via unit tests and available in large code-hosting facilities. We use a
fully automatic approach that avoids manual intervention and which eases a safe, containerized, and distributed deploy-
ment of the analysis. In comparison to related work addressing the analysis and optimization of streams,?'?” we introduce
a profiler able to detect all forms of stream creation and execution available in the Stream API. Moreover, our study is
the first to identify and profile multiple runtime metrics that are both specific to streams and suitable to be massively
collected in the wild.

We use Stream-Analyzer to conduct the first large-scale empirical study on the use of the Stream API. Our work con-
siders software projects publicly available in GitHub,?® which were last updated between January 1, 2020 and April 30,
2022. We use a fully automatic approach to dynamically analyze the stream code exercised via unit tests available in these
projects. Compared to related work studying the use of streams by Java developers,®”° our study analyzes the largest

"Program instrumentation is the process of inserting additional code into a target application with the purpose of collecting metrics at runtime.

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. 1765
WILEY—7%

number of streams specifically used in application code. Our findings confirm the observations that related work made at
a smaller scale. Moreover, our work reports for the first time the popularity of many features of the Stream API, analyzes
several carefully selected metrics describing the runtime behavior of streams, and reveals inefficient stream processing
and stream misuses currently present in publicly available software projects. Unlike related work® reporting fixed stream
misuses by manually checking the history of git commits, we detect inefficient stream processing and stream misuses
that are currently present in several open-source software projects.

This work significantly extends our previous work on characterizing Java streams at a large scale.?” We improved our
methodology enabling large-scale characterization of stream processing (Section 4). Our new methodology significantly
extends the scope of our study, that is, we consider new runtime metrics, we consider a much larger time frame, use
the latest long-term support Java version, and safely increase the analysis timeout to target long-running code. A key
difference w.r.t. our previous study is that our new methodology targets streams used in application code, discarding
streams used in test harnesses or streams internally used by the Java class library. We also revised the description of
our approach to dynamically analyze streams (Section 3). We detail the instrumentation logic required to handle some
peculiarities in the implementation of the Stream API and describe the extensions done to both Stream-Analyzer and DiSL
in the aim of profiling new and more complex stream-related metrics for this study.

Another difference w.r.t. our previous study, is that we significantly expanded the outcome of our study (Section 5) with
many findings that are presented for the first time in this article. Moreover, we report problematic stream code patterns
and stream misuses affecting multiple open-source software projects, including some popular ones. Finally, we add a
dedicated section (Section 6) for the discussion of implications of our findings from the perspective of three audiences:
developers of the Stream API, tool builders and researchers, and educators.

This article is structured as follows. Section 2 provides background information on Java streams, introducing the
terminology used in the article. Section 3 describes the entities targeted by Stream-Analyzer and outlines its implemen-
tation details. Section 4 explains our approach to conduct the large-scale characterization of streams. Section 5 presents
the results of our study. Section 6 discusses implications of our work. Section 7 explains threats to validity to our study.
Section 8 discusses work related to our study. Finally, Section 9 presents our conclusions.

2 | BACKGROUND

This section introduces key concepts and the terminology used in our study.

Stream and pipeline. A stream is a view of a sequence of data elements supporting either sequential or parallel
operations that are structured in stages within an associated pipeline. The elements in a stream can come from multiple
data sources including collections, arrays, files, and strings.>

Figure 1 shows a simple Java code example of a stream. In line 2, a stream is generated from txnList, that s, a list of
objects of class Transact ion. The pipeline contains four operations: parallel which parallelizes the execution of the
pipeline (line 3), £ i1 ter that discards invalid transactions (line 4), map which extracts the identifiers from the remaining
transactions (line 5), and collect that here accumulates the identifiers of valid transactions into a set (line 6). Hence,
the stream in the example is used to collect the set of IDs of valid transactions from txnList.

Source method. Stream creation takes place upon the call to a source method, that is, the method from the Java class
library used to create the stream. In the example, st ream (line 2) is the source method, which is defined in the interface
java.util.Collection and here generates a stream from the data source txnList.

Source collection type. Many stream data sources are collections, that is, they implement the interface Collec-
tion'. We call source collection type the specific collection type from which a stream is created, if any. In the example,
since txnList is a list, the source collection type is a concrete runtime implementation of java.util.List (e.g.,
java.util.ArrayList).

Stream type. The Stream API supports four types of streams. The interface java.util.stream. Streammodels
a stream of objects, while the interfaces Int Stream, LongStream, and DoubleStream (all these interfaces belong to
the java.util.streampackage) model streams of primitive types. In the example, we use an object-based stream type.

Characteristics of the data source. A stream has associated a spliterator, that is, the parallel analogue of an itera-
tor; it describes a (possibly infinite) collection of elements, with support for sequentially advancing, bulk traversal, and
splitting off some portion of an input data for parallel computation.!** Among others, the characteristics of the spliterator

The fully qualified name of a class/interface appears upon first occurrence in the text; thereafter, we report only the class/interface name.

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

1766 ROSALES ET AL.
WILEY
! public Set<Long> getValidIDs(List<Transaction> txnList){
return txnList.stream() class Transaction{
.parallel() 2 .
4 .filter(t -> t.getStatus() == Transaction.VALID) 3 int getIDO{...}
.map (Transaction: :getID) . int getStatus(){...}
6 .collect(Collectors.toSet()); 5 .
¥ 6 }

FIGURE 1 A simple Java code stream example.

define whether the data source has an encounter order (i.e., the data source makes its elements available in a defined
order), is sorted (i.e., the elements in the data source have a sort order), is concurrent (i.e., the data source is designed to
handle concurrent modification), is distinct (i.e., the data source does not allow duplicates), is immutable (i.e., the ele-
ments in the data source cannot be modified), is sized (i.e., the number of elements in the data source can be computed)
or is non null (i.e., the data source does not allow null values). In the example, the characteristics of the data source upon
stream creation depend on the concrete implementation of List used at runtime to create the stream. For instance, an
ArrayList by default has an encounter order (the elements are encountered in index order), is sized, and is neither
sorted, nor concurrent, nor immutable, nor distinct, nor non null.

Data-source size. The spliterator may also report the data-source size, which is the total number of elements in the
data source upon stream creation, if known. With empty stream, we denote a stream whose data-source size is exactly
zero. On the other hand, an infinite stream is a stream with a data source capable of generating an infinite number of
elements. For instance, method Stream. iterate returns an infinite sequential stream whose elements are produced
by the iterative application of a given function.?! In the example, the data-source size would correspond to the total
number of elements in txnList at the time the stream is created from it.

Operations. Upon stream creation, a pipeline is generated and it may have associated operations. Operations are
divided into intermediate (i.e., operations that produce other streams that can be further processed) and terminal (i.e.,
operations triggering the execution of the stream).

Intermediate operations. Intermediate operations are lazy, that is, they do not perform any processing until a ter-
minal operation is invoked.! There are stateless and stateful intermediate operations. In stateless operations, each element
can be processed independently from operations on other elements, while in stateful operations, the current state may
depend on the state of previously seen elements.! An example of a stateful operation is 1imi t, which truncates elements
such that the size of the resulting stream is no longer than a given length.3! In Figure 1, parallel, filter, and map
are all stateless intermediate operations.

Terminal operations. Stream execution takes place only if a stream has a terminal operation. The terminal operation
triggers the traversal of the pipeline either to return a result (e.g., an array) or to produce side effects (e.g., printing all ele-
ments to the standard output). A stream can have at most one terminal operation, which can be executed only once.! In the
example, collect is the terminal operation that triggers stream execution. Terminal operations can be non-deterministic.
Asan example, forEach, which performs a given action for each element of the stream, has a non-deterministic behavior
since the operation does not guarantee to respect the encounter order, if any.!

Both intermediate and terminal operations can be short-circuiting, that is, when operating on an infinite input, the
operation may produce a finite stream as a result.! Methods 1imit and anyMatch (i.e., a terminal operation that returns
whether at least one of the elements in the stream matches a provided criteria) are examples of intermediate and terminal,
short-circuiting operations, respectively.

Execution mode. A stream has an execution mode defining whether the stream is to be executed sequentially or in
parallel. When a parallel stream is executed, typically pipeline processing is performed by fork/join* tasks, all of which
execute in a fork/join pool.** The execution mode of a stream is first set upon stream creation. In the example, method
Collection.stream creates a sequential stream. Alternatively, calling method Collection.parallelStream
would create a parallel stream. The execution mode can be switched by calling the sequential or parallel
intermediate operations. In the example, the execution mode is parallel.

Pipeline length. A pipeline has a length, that is, the total number of operations in the pipeline. In the example, the
length is four, as the operations parallel, filter, map, and collect compose the pipeline.

*Fork/join parallelism recursively splits (fork) work into tasks that are executed in parallel, waiting for them to complete, and then typically merging
(join) the results produced by the forked tasks.?

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. 1767
WILEY—%

Collector. In line 6, collect performs a reduction using a collector, that is, an implementation of the interface
java.util.stream.Collector that enables mutable reduction operations, such as accumulating elements into
collections or summarizing elements according to various user-defined criteria.>* In the example, the collector is the
object returned by Collectors. toSet (), a method that accumulates input elements into a set.

Stream result type. After execution, the stream produces an output or a side effect. We call stream result type the
type of the output produced after the stream is executed (typically a collection, an array, or a scalar). In the example,
the stream result type is the concrete implementation of java.util.Set used at runtime by the collector, that is,
java.util.HashSet.

Stream result size. After execution, the total number of elements returned by the stream, if any. In the example, the
stream result size would correspond to the number of elements in the returned set.

Creation and execution methods. With creation method and execution method, we denote the topmost method in
the call stack (discarding methods in the Java class library) where stream creation and execution take place, respectively.
In the example, method getvValidIDs is both the creation and execution method. On the other hand, a stream can be
first created and later executed in a different class or method, such that the creation and execution method can differ.

3 | STREAM-ANALYZER

In this section, we present Stream-Analyzer, our tool for profiling stream processing on the JVM. We first detail the events
and entities targeted by our tool and describe how the metrics are collected (Section 3.1). Then, we outline implementation
details of Stream-Analyzer (Section 3.2).

3.1 | Metric collection

Stream-Analyzer is a novel DPA specifically designed to characterize streams at a large scale. To do so, our tool accurately
detects each stream used in a Java application. Moreover, Stream-Analyzer targets a careful selection of runtime metrics
suitable to be massively collected in the wild. This subsection explains the data collected by our tool.

3.1.1 | Stream creation

Upon stream creation, a pipeline associated to the new stream is created. We consider as a stream every instance of the
interface java.util.BaseStream, the top-level interface of the Stream API.3> We consider as a stream pipeline every
subtype of the abstract class java.util.stream.AbstractPipeline, the abstract class in the Stream API that
represents a stream and the operations in its pipeline (if any).

In the Stream API, the call to a source method triggers pipeline creation, instantiating a new object that represents the
first stage of the pipeline, i.e., the head. This object is created via the constructors of the subtypes of AbstractPipeline,
that is, ReferencePipeline$Head, IntPipeline$Head, LongPipelines$Head, or DoublePipeline$Head.
These classes belong to the java.util.stream package and are the core implementations of the Stream interface
and the primitive stream types (i.e., IntStream, LongStream, and DoubleStream, respectively). Stream-Analyzer
uses the reference to the newly-created object representing the head of the pipeline (which is associated only to a sin-
gle stream) to produce a unique ID identifying the stream. This identifier, which we call stream ID, is stored in class
AbstractPipeline, so that it can be queried by the instrumentation to associate operations to a specific stream (as
explained later in this section).

In the Stream API, the creation of a stream takes place in two ways. In low-level stream creation,' the user calls one of
the low-level methods supporting stream creation in class java.util.stream. StreamSupport, all of which receive
as an argument some form of a spliterator. In the second way to create streams, which we refer to as high-level stream
creation, the user calls to one of the widely available methods in the Java class library that allow creating streams from
collections, arrays, and generators of pseudo-random numbers, among others (e.g., Collection. stream). Such meth-
ods are wrappers to the methods available in class StreamSupport for creating streams, therefore high-level stream
creation always ends up using low-level stream creation. Stream-Analyzer detects the two ways of creating streams to col-
lect both the source and the creation method. When high-level stream creation is used, our instrumentation properly

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

1768 ROSALES ET AL.
WILEY

recognizes calls to other source methods within the Java class library, which are discarded to track the method explicitly
invoked to create the stream. In addition, the stream data source may implement the interface Collection, which is
instrumented by Stream-Analyzer to collect the source collection type, if any.

Stream-Analyzer also intercepts stream creation to query the characteristics of the data source from which the
stream is created, as reported by the associated spliterator. Each characteristic corresponds to the value returned by
method Spliterator.hasCharacteristics, which returns a boolean indicating whether the spliterator has the
given characteristic. In addition, Stream-Analyzer collects the data-source size as reported by method Splitera-
tor.getExactSizeIfKnown, which returns the number of elements in the data source, provided it can be computed
or —1 otherwiseS. The data-source size is a key metric to categorize streams according to the number of input elements
upon stream creation. Lastly, Stream-Analyzer captures the execution mode of the stream upon creation. Overall, the data
collected upon stream creation enables describing how a stream is generated, characterizing in detail the data source.

3.1.2 | Intermediate operation creation

Once a pipeline is created, it may have operations associated. Stream-Analyzer intercepts calls to all intermediate opera-
tions defined in the interfaces BaseStream, Stream, Int Stream, LongStream, and DoubleStream. In the Stream
API, the invocation to an intermediate operation typically involves instantiating a new object representing a new stage
of the pipeline. Stream-Analyzer uses the reference to this new stage to produce an ID which uniquely identifies the new
operation. The profiler also captures a reference to the previous stage of the pipeline, which can be either the head or
another operation. Collecting the ID of the previous stage of the pipeline allows preserving information on the structure
of the pipeline as originally created by the user.

Some intermediate operations only switch a state for the execution of the pipeline, without creating a new stage, for
example, sequential and parallel, which only switch the stream’s execution mode. Also, some intermediate opera-
tions may trigger the creation of a new stage depending on the current state of the pipeline. For instance, the intermediate
operation unordered, which makes an ordered stream unordered, creates a new stage in the pipeline only if it is not
already unordered. Our instrumentation recognizes the case when an intermediate operation does not create a new stage,
generating a unique ID for the operation, such that the full pipeline structure is captured. Lastly, we query the stream ID
stored in class AbstractPipeline (via a reference to the head of the pipeline, available to the instrumentation upon
the call to an operation) to attribute each operation to the corresponding pipeline.

Due to the design of the Stream API, some intermediate operations may internally call other operations. Our
instrumentation detects these cases so that an operation can be categorized as internally executed by the Stream API.
Stream-Analyzer also collects the name of the method used to invoke an intermediate operation, which is used to derive
type information (i.e., whether the operation is stateful or stateless, and whether it is short-circuiting). Overall, the data
profiled allows preserving the pipeline structure, tracking all the data transformations performed.

Lastly, our instrumentation treats specially the call to a £i1ter operation, which filters elements in the pipeline
according to a given criteria in the form of a predicate.! Stream-Analyzer computes the effectiveness of the predicate
of a £ilter operation, retrieving the number of elements that match the predicate. To this end, the instrumentation
replaces the given predicate by a piece of code computing its effectiveness (without altering any data element). After
profiling predicate matches, the original predicate is applied to the elements in the pipeline. Since intermediate oper-
ations are lazy, Stream-Analyzer can track the effectiveness of the predicate of a £ilter operation only upon stream
execution.

3.1.3 | Stream execution

Stream execution requires the invocation of a terminal operation that triggers the traversal of the pipeline. Stream-Analyzer
tracks calls to all methods triggering stream execution as defined in the interfaces BaseStream, Stream, IntStream,
LongStream, and DoubleStream. Upon terminal operation invocation, Stream-Analyzer assigns it a unique ID and
attributes the operation to the corresponding pipeline thanks to the stream ID.

$The value returned by Spliterator.getExactSizeIfKnown is the number of elements that would be encountered upon pipeline traversal
(Long .MAX_VALUE if the stream is infinite) or —1 if the data source is not sized or its size is too expensive to be computed.*

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. 1769
WILEY—7%

Stream-Analyzer collects the name of the method used to call the terminal operation. As an implementation detail
of the Stream API, some methods described in the documentation of the API as terminal operations, are wrappers to
terminal operations. For instance, max and min, which respectively return the maximum and minimum elements in
a stream, are wrappers to the reduce operation, which performs a reduction on the elements in the stream using an
associative accumulation function. When a wrapper is called to execute a stream, our instrumentation exclusively collects
its name to track the name of method originally called by the user. The name of the terminal operation is used to derive
type information, that is, whether the terminal operation is non-deterministic or short-circuiting.

When the terminal operation performs a reduction via collect, Stream-Analyzer captures the name of the col-
lector used. For each terminal operation, Stream-Analyzer tracks the returned result, if any. The instrumentation
determines the runtime type of the stream result when available. In addition, when the stream result is an object
which size is queryable, Stream-Analyzer obtains the stream result size. For instance, the size of collections is obtained
via the method Collection. size, implementations of the interface CharSequence (e.g.,, java.lang.String,
java.lang.StringBuffer, java.lang.StringBuilder) provide their character count via method length,
while arrays also implement a length method to query their size. We also take advantage of some terminal opera-
tions that allow us to obtain the stream result size. For instance, count returns a long representing the total number
of elements in the stream after execution. Similarly, the terminal operation summaryStatistics (which is available
for streams of primitive types and gives a summary data about the elements of the stream), returns an object which
method getCount provides the same information retrieved by count. Also, a stream executed via spliterator
returns a spliterator for the elements of the stream, which allows obtaining the stream result size via method Split-
erator.getExactSizeIfKnown. The stream result size is a key metric that allows categorizing executed streams
according to the number of output elements returned.

Finally, the length of the pipeline is computed along with the execution mode of the stream. The length is a key metric
quantifying the set of data transformations done through a pipeline. Overall, the collected data is used to analyze how a
pipeline is traversed, describing the kind of data processing performed, and the output produced by the stream.

3.2 | Implementation

This section presents implementation details of Stream-Analyzer, which high-level architecture is shown in Figure 2.

Stream-Analyzer is built on top of DiSL,'? a framework for the JVM to perform dynamic analysis via bytecode instru-
mentation. DiSL eases developers the expression of instrumentation logic that leverages the conciseness of aspect-oriented
programming®® styles. Moreover, the DiSL weaver guarantees complete bytecode coverage, that is, DiSL instruments every
Java method with a bytecode representation, enabling the complete instrumentation of the Java class library, which is
notoriously hard to instrument.3”-3¥ Complete bytecode coverage is crucial as the Stream API is fully implemented within
the Java class library, making possible for Stream-Analyzer to accurately profile all streams used by a Java application. We
emphasize that our profiling technique is independent from the mechanism used to insert the instrumentation code. As
a result, our technique can be implemented via any instrumentation framework that can cover the relevant events or by
using manual instrumentation.

During application execution, a native Java Virtual Machine Tool Interface (JVMTI)*® agent attached to the JVM
executing the application intercepts classloading, sending loaded classes to the DiSL server, that is, a Java process deployed
on a separated JVM. The DiSL server determines the methods to be targeted according to the instrumentation logic and
inserts the instrumentation code needed to collect the target metrics. Then, the instrumented classes are returned to the
JVM executing the application where they are linked,*® allowing Stream-Analyzer to characterize stream processing.

<< JVM >> << JVM >> << \JVM >> << DataBaSe >>

JVMTI JVMTI
DiSL server 2 Application 2 [ShadowVM @] [Profiles—DB @]

f——— Application execution — Post-Processing—

FIGURE 2 High-level architecture of Stream-Analyzer (UML deployment diagram).

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

1770 ROSALES ET AL.
WILEY

To further isolate the analysis from the execution of the application, Stream-Analyzer uses Shadow VM,* a deployment
setting of DiSL which allows running analyses in a separate JVM process. This feature helps mitigate the perturbations
incurred by the inserted instrumentation code while also prevents known issues inherent to non-isolated approaches.
Upon collection, the information and metrics are sent to the Shadow VM, which contains most of the logic and data
structures supporting the analysis of stream processing. This is possible thanks to a second JVMTTI agent attached to the
observed JVM, which dispatches the profiled data to the Shadow VM.

Finally, upon application completion, Stream-Analyzer performs an offline post-processing of the collected data. Dur-
ing this phase, a stream profile is produced for each stream used by the application, which includes all the information
collected upon its creation and execution (as explained in Section 3.1). Such profiles are stored in a database that can be
queried later to produce aggregated data and statistics of all analyzed software projects. We describe additional statistics
stored in the database for each analyzed project in Section 4.2 and show examples of analyses on the data collected in
Section 5. We remark that we extended DiSL for the generation and retrieval of the unique IDs assigned to the head and
operations (which allow attributing an operation to the corresponding stream) as well as to support the bytecode-level
transformations required to profile the effectiveness of the predicate in filter operations, as described in Section 3.1.2.

4 | CHARACTERIZING STREAMS

In this section, we describe our approach to characterize streams at a large scale, which steps are summarized in Figure 3.
First, we select software projects from a large-scale, open source code base. Then, we run Stream-Analyzer on each project
to characterize any stream processing. Finally, we analyze the profiles generated by Stream-Analyzer to produce aggregated
statistics that evaluate many aspects on the use of streams in application code. The rest of the section further details the
three steps of our methodology.

41 | Projectselection

To increase the representatives of our study, we target a large set of open source, publicly available software projects.
We select projects available in GitHub, which at time of writing is the largest code-hosting platform with more than 83
millions developers, 4 million organizations, and more than 200 million projects.28 We first crawl GitHub to search for
candidate software projects. To this end, we rely on NABY, a distributed infrastructure for automatically executing custom
analyses on code exercised via unit tests available in software projects hosted in large code repositories.?’ We target Java
projects last updated (at the time of analysis) between January 1, 2020 and April 30, 2022. We consider the latest version
(commit) of the projects in that period. We remark that our choice is motivated by the need for completing our study in
a reasonable time with the available resources. We also extended NAB to filter projects according to the number of stars*,
which is a very common criteria for researchers to rank software projects in GitHub according to their popularity.>*4> We
select software projects ranked with at least three stars. This is a key difference w.r.t. our previous study,?® which analyzed
a software project, regardless of its popularity. Considering projects with at least three stars enables us to better discard
too small or toy projects. Furthermore, the number of stars and the chosen time frame helps us avoid old, obsolete, or
inactive projects that could bias the study. The first step of our methodology produces as an outcome a list of selected
projects, which is the input of the second step as explained below.

4.2 | Project analysis

The analysis of a selected project starts by cloning its sources. Given the large-scale nature of our study, for each cloned
projectitis required to automatically search, build, and execute the available source code. To this end, we leverage software
tests. Specifically, we target tests executable via JUnit,*® a well-established and very popular framework for the JVM to
implement software testing. As JUnit tests can be built and run from a build system, we target all projects using maven,*’

INAB’s recursive name stands for “NAB is an Analysis Box”.
#Similarly to many popular social networks where users can like or upvote a content, the GitHub Web interface provides a button that a user can click
to increase the number of stars of a software project. The GitHub API*? allows the query of this number (i.e., the stargazerCount).

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. 1771
WILEY—7

l. Project selection

<«

Repository| | Project
crawling filtering | J Prolects

FIGURE 3 Overview of our approach to characterize stream processing.

Il. Project analysis lll. Data processing

Profiles Data Data
classification [*| analysis

Stream
profiling

Unit test
execution

Project
cloning

a popular build system which we use to download the project dependencies (as configured originally by the project devel-
opers), compile the sources, and automatically run the available unit tests. We use Stream-Analyzer to profile all streams
used during the execution of JUnit tests available in a software project, if any. Prior work?%2°4% succeed to analyze multi-
ple runtime characteristics of workloads exercised by unit tests, providing relevant statistics and revealing code patterns.
Following this approach, we leverage JUnit tests to automatically exercise code available in publicly available software
projects, enabling the otherwise extremely tedious task of locating candidate executable workloads for the massive appli-
cation of dynamic analysis. Since our analysis focuses on streams used in application code, we discard any other stream
(e.g., streams used by JVM-related processes or used in tests classes) during the data processing (see Section 4.3).

A key challenge in conducting our study is the need for automatically and massively analyzing the runtime behavior
of software projects that were not designed or tested for this purpose, and hence may fail if dynamic analyses are applied
to them. At a very early stage, the cloning of the project can fail (e.g., due to its deletion from GitHub or because its
visibility is not public anymore). In our approach, we retry cloning the project up to three times, after which we discard
it from our analysis. Another challenge we face is the need for dealing with failures both when attempting to build a
project and when trying the execution of unit tests. Build failures can be caused by dependencies that cannot be resolved
successfully by the build system (e.g., undeclared dependencies, deprecated/removed libraries), missing prerequisites or
specific settings that the owners of the project assume as properly configured in the execution environment where the
project is built (e.g., pre-installed software, credentials, datasets, files, environment variables, or paths), or problematic
sources that were committed in a state where they fail to compile. Similarly, the execution of unit tests can fail due to
multiple reasons, including missing prerequisites and wrong settings. In our approach, we retry up to three times the
execution of a project for which maven fails to execute testing code, after which we discard the project.

When the testing code can be executed, there is also the need for dealing with non-terminating code. To deal with this
issue, we set an analysis timeout, that is, a maximum execution time for the analysis to complete. While some projects
may timeout while waiting for an input (e.g., a password, a passphrase, or an explicit selection required to a user via the
standard input), other projects may execute buggy or even malicious code. In the latter case, it is crucial to ensure that the
available computing resources are not compromised during the execution of potentially harmful code. To this end, we use
containerization to isolate the underlying execution environment and operating system, to prevent potential issues trig-
gered while dynamically analyzing unverified software projects. Moreover, the use of containers also eases parallelizing
analysis execution by leveraging multicores, along with simplifying the deployment of the analysis on multiple machines.
We extended NAB to leverage the resource quotas configurable in containerization platforms such as Docker.** Thanks
to resource quotas, we prevent an analysis from excessively consuming the available resources, enabling the analysis of
long-running unit tests. We set the analysis timeout to be three hours, after which the analysis of a project is halted. The
data collected before reaching the analysis timeout is considered in our study.

Once the analysis of a project ends, analysis-related statistics are persisted in our database (the same database used
to store the stream profiles) for later query. This project-level information includes the date when the project was last
updated, the number of stars, the hash of the commit analyzed, and the total number of unit tests analyzed.

4.3 | Data processing

As explained in Section 3.2, Stream-Analyzer stores the generated profiles into a database where they can be later queried.
The data processing starts by classifying the streams detected according to their origin. The goal of this classification is to
discard all streams that were not used in application code in a three-step filtering. First, we filter all streams used outside
the dynamic extent of a unit test. We exclude such streams from our analysis as streams belonging to this group are used
in the set-up phase of unit tests (e.g., via methods tagged with the @Setup annotation) or during the building of the

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

1772 ROSALES ET AL.
WILEY

project (e.g., streams used by the build system or employed by JVM-related processes). Second, we exclude all streams
used directly by a test class, that is, any class with a method annotated with a JUnit tag (e.g., @Test) or extending a JUnit
test class (e.g., junit . framework . TestCase)or a subtype of a test class. Finally, we discard streams which execution
method indicates that the stream was executed internally by the Java class library. We consider the remaining streams as
used in application code. Our analysis focuses exclusively on these streams since their study can more effectively reveal
how Java developers are using the Stream API. This is an important difference w.r.t. our previous study,?’ which reported
the use of streams regardless of their origin, including the analysis of streams used by test-harness classes, the build
system, JVM-related processes, and streams executed internally by the Java class library.

Our data analysis is supported in Python scripting that queries the stream profiles in the database to produce statistics
on the popularity of features of the Stream API and allows the detection of singularities in the use of streams, including
code patterns and misuses, as shown in the next section.

5 | RESULTS

In this section, we present the results of our study. We first present general analysis- and project-related statistics
(Section 5.1). Then, we present an analysis on the popularity of features of the Stream API and findings on how develop-
ers are using streams (Section 5.2). Finally, we present problematic stream processing detected in the projects analyzed
(Section 5.3).

5.1 | Analysis- and project-related statistics

Table 1 shows the number of projects considered in our study, including statistics on how many of them rely on streams
processing and the number of streams detected. We initially analyzed a total of 43,496 Java projects, which distribution
per year can be seen in column Total projects. This extensive selection allows diversity in aspects such as size, domain, and
popularity. We note that a significant number of projects were last updated during the current year. As we are targeting
projects with stars, many of the analyzed projects are expected to be updated recently. From the initial set of projects, we
discarded the ones that failed to clone, failed to build, lacked JUnit tests, failed to execute unit tests, or used no stream
processing, resulting in 4063 projects (column #Projects with streams). In these software projects, we detected a total of
23,254,335 streams (column #Streams), from which 2,653,467 are used as part of application code (column #Streams in
app code) during the execution of 5818 JUnit tests. We present in Table 2 the ten software projects using the highest
number of streams. Each row reports the name of the owner of the project followed by the name of the project as in the
GitHub url (e.g., https://github.com/agarciadom/xeger) and the number of lines of code (LOC) in the project (considering
only Java code). We describe some of those projects more in detail while discussing our findings later in this section.

5.2 | Characterization

Here, we present our results regarding the degree of adoption of the main features of the Stream API by Java developers
along with the analysis of the dynamic metrics collected to show how streams are used. We show our results in the
form of findings and, where applicable, we compare them with the corresponding outcome highlighted by related work.
Table 3 summarizes all our findings. A checkmark (v) in the table indicates that related work found consistent results
at a smaller scale.

TABLE 1 Number of projects and streams detected per year.

Total #Projects #Streams in
Year projects % with streams % #Streams % app code %
2020 10,438 24.00% 897 22.08% 3,357,050 14.44% 804,561 30.32%
2021 14,331 32.95% 1365 33.60% 5,191,929 22.33% 1,364,608 51.43%
2022 18,727 43.05% 1801 44.33% 14,705,356 63.24% 484,298 18.25%
Total 43,496 4063 23,254,335 2,653,467

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

https://github.com/agarciadom/xeger

ROSALES ET AL. W] LEY 1773

TABLE 2 Projects using the highest number of streams.
Project LOC Streams %
agarciadom/xeger 348 911,000 34.33
andrewkkchan/client-ledger-core-db 3585 780,449 29.41
dmeoli/WS4J 3061 190,106 7.16
ikhoury/rstreamer 2094 167,396 6.31
awslabs/amazon-sgs-java-temporary-queues-client 6748 142,156 5.36
vangj/jbayes 7337 87,476 3.30
korlucene/argo-nori-analyzer 6931 67,919 2.56
yu-iskw/kuromoji-for-bigquery 529 60,455 2.28
finmath/finmath-forward-initial-margin 13,186 30,675 1.16
amaembo/streamex 6769 27,080 1.02

Source methods. We find a total of 60 different source methods used for stream creation and we summarize the
ten most popular ones in Table 4. Our results show that streams are created mainly from collections (94.25%, consider-
ing methods List.stream: 85.08%, List .parallelStream: 543%, SortedSet.stream: 2.18%, Set . stream:
0.88%, and Collection.stream: 0.68%), in particular, from lists and sets. Other popular source methods include
Arrays.stream: 1.72% (returns a sequential stream with the specified array as its data source®), Int Stream. range:
1.71% (returns a sequential IntStream of consecutive integers in a given range!), Stream. concat: 0.73% (returns
a new stream containing all the elements of two streams passed as input!), and Stream.generate: 0.23% (returns
an infinite sequential stream where each element is generated by the java.util.function.Supplier>® passed
as argument). We also find that less than 1% of the detected streams generated from low-level stream creation, that
is, StreamSupport . stream(0.59%), St reamSupport . intStream(0.11%), StreamSupport . longStream (7 -
107°%), and StreamSupport .doubleStream (7-107%). We are not aware of any other study characterizing the
source method from which streams generate.

F1: Streams are mainly created from collections.

Source collection types. We detect a total of 95 different source collection types, among which we summarize the
ten most popular ones in Table 5. Our findings show that developers generate streams mainly from lists and sets. We are
not aware of related work reporting the specific collection types from which streams are created.

F2: Streams generated from collections are mostly created from lists and sets.

Stream types. We find that streams of objects are the most popular ones. 97.05% of the streams detected are of type
Stream, 2.26% of type IntStream, 0.64% of type DoubleStream, and only 0.04% are of type LongStream. Our
findings show that developers prefer streams whose elements are references to objects. As far as we are aware, previous
studies do not report the popularity of the stream types used in the projects analyzed.

F3: Object-based stream types are far more popular than primitive-based stream types.

Characteristics of the data source. We characterize the data source from which the stream is generated!. We find
that most of the streams are created from a data source having an encounter order (92.45%). This is expected as most

I'We note that our instrumentation is able to capture the spliterator associated to the stream upon its creation. Such characteristics may be changed
upon stream execution.

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

7% | WILEY

TABLE 3 Summary of our findings.

F1
162

F3

F4

F5
Fé6

F7

F8

F9

F10

F11
F12

F13

F14
F15

F16

F17

F18

F19

F20

F21

Finding

modification

operations

few elements

ROSALES ET AL.
Tanaka Khatchadourian Nostas This
etal’ etal.® etal.’ study

Streams are mainly created from collections v v 4 v*

Streams generated from collections are mostly v
created from lists and sets

Object-based stream types are far more popular v
than primitive-based stream types

Stream data sources often allow null and v v
duplicated values, have ordering constraints, are
mutable, sized, and do not support concurrent

Stream data sources typically have few elements v

Mapping and filtering are by far the most popular v v v v
intermediate operations

Stateful and short-circuiting intermediate v v
operations are rarely used

50.55% of the predicates of filter operations match v
no element of the pipeline

collect, findFirst, forEach, and toArray v v v v
are the most common terminal operations

Deterministic terminal operations are more v v
popular than non-deterministic ones

Parallel streams are not popular v 4 v

Stream pipelines are typically composed of few v

Collectors returning lists, sets, strings, and maps v v v
are the most used

Concurrent collectors are not popular v v

Lists and Optionals are by far the most popular v
types collecting the stream result

Among the streams returning an Optional, v
empty optionals or null optionals are rarely used

The output produced by the stream often contains v

The most used sequential pipeline structures 4 v
follow basic map-reduce-like patterns
(filter-collect, filter-findFirst,
map-collect)

Parallel streams mostly perform iterative-style v v
processing using forEach patterns

Less than 15% of the streams detected are executed v
by third-party libraries

Streams are mostly created and executed in the v

same method

“Khatchadourian et al. report only ordering of the data source.
TUnlike related work,>”° we consider all high- and low-level stream creation methods.

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. W] LEY 1775

TABLE 4 Mostpopular source methods.
Source method Occurrences %
java.util.List.stream 2,257,693 85.08
java.util.List.parallelStream 144,128 543
java.util.SortedSet.stream 57,774 2.18
java.util.Arrays.stream 45,636 1.72
java.util.stream.IntStream.range 45,270 1.71
java.util.Set.stream 23,466 0.88
java.util.stream.Stream.concat 19,305 0.73
java.util.Collection.stream 18,107 0.68
java.util.stream.StreamSupport.stream 15,710 0.59
java.util.stream.Stream.generate 6083 0.23

TABLE 5 Most popular source collection types.

Source collection type Occurrences %o

java.util.ArraysS$SArrayList 913,521 36.47
java.util.Collections$SingletonList 782,578 31.24
java.util.ArrayList 288,161 11.50
java.util.Collections$EmptyList 161,536 6.45
software.amazon.awssdk.core.util.DefaultSdkAutoConstructList 142,058 5.67
java.util.LinkedList 85,650 3.42
jre.com.google.common.collect.Sets$FilteredSortedSet 43,296 1.73
java.util.CollectionssUnmodifiableRandomAccessList 30,641 1.22
jre.com.google.common.collect.AbstractMapBasedMultimapS$WrappedNavigableSet 15,710 0.63
java.util.HashMap$SEntrySet 12,335 0.49

streams generate from lists and arrays (data structures that typically preserve an index order). We find that most of the
data sources allow duplicates (65.40%) and null values (68.49%), which can also be explained by the fact that most of
the streams are generated from lists. Lastly, we find that most of the streams are created from data sources not having a
sort order (95.80%), which are mutable (66.10%), sized (97.98%), and do not support concurrent modification (99.96%).
Khatchadourian et al.® report that streams in the analyzed projects are largely ordered. We confirm this finding by detect-
ing ordering constraints (i.e., whether the stream data source has an encounter and/or a sort order to be preserved) as
reported at runtime by the spliterator upon stream creation.

F4: Stream data sources often allow null and duplicated values, have ordering constraints, are mutable, sized,and do
not support concurrent modification.

Our findings indicate that most of the streams detected may not be parallelized straightforwardly. As explained in the
documentation of the Stream API, operations in the pipeline typically run in parallel more efficiently in the absence of
ordering constraints.! To our knowledge, no other study analyzes the characteristics reported at runtime by the spliterator
associated to the stream.

Data-source size. Table 6 reports the distribution of the data-source size. We were able to query the data-source
size of 97.98% of all streams detected. For the remaining ones (reported as N/A in the table), the exact size
was reported as unknown. An example of this case are streams created from files (e.g., via the source methods
java.nio.file.Files.list, java.util.zip.ZipFile.stream, java.util.jar. JarFile.stream),

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

1776 ROSALES ET AL.
WILEY
TABLE 6 Distribution of the stream data-source size.
Size range Occurrences %

N/A 53,705 2.02
0 508,664 19.16
[10°, 101) 2,041,446 76.93
[10%, 10%) 37,738 1.42
[102,10%) 10,204 0.38
[103, 10%) 1234 0.05
[10%, 10%) 340 0.01
[10°, 10%) 8 3.1073
[10°,107) 9 3.1073
[107, 10%) 9 3.1073
[108, 10%) 2 7-107*
Infinite 108 4.1072

which data source is not sized. We find that most of the data sources used to generate streams contain a number of
elements between 10° and 10*. In this range, the most popular data-source sizes are 1 (35.09%), 2 (36.40%), and 3 (2.39%).
We also find that 19.16% of all the data sources analyzed contain zero elements upon creation. We detected 108 infinite
streams (explaining the last category in the table). When not considering infinite streams, the maximum data-source size
is 100,000,000 and the mean is 124. Overall, we find that streams often generate from data sources containing few ele-
ments. Since our study only focuses on the size of input data used by unit tests, we remark that these sizes can be smaller
than the ones used in production scenarios, which may lead to different conclusions regarding the data-source size, as we
discuss in Section 6. We are not aware of related work reporting the data-source size. In Section 5.3.1, we analyze projects
exposing abundant empty streams.

F5: Stream data sources typically have few elements.

Intermediate operations. We detect the occurrence of 2,666,245 intermediate operations in total. We show the ten
most popular ones in Table 7. Our analysis shows that intermediate operations used for filtering (73.92%) and mapping
(20.12%, considering operations map: 14.61%, mapToInt: 3.47%, mapToDouble: 1.63%, mapToLong: 0.27%, and map -
ToObj: 0.15%) are the most popular ones. This finding is consistent with the results by Tanaka et al.,’ Khatchadourian
et al.,® and Nostas et al.” (obtained at a smaller scale), indicating that streams are mainly used to perform MapReduce
style processing.

While we find that 47,264 of the streams detected use the sorted operation, we do not find any occurrence of
unordered. This confirms that most of the analyzed streams have ordering constraints due to the nature of the stream
data source (as previously reported) or due to pipeline transformations. We analyze inefficient ordered streams later in
this section (see Section 5.3.3).

F6: Mapping and filtering are by far the most popular intermediate operations.

We find that only 0.24% of the intermediate operations detected are short-circuiting. Lastly, Khatchadourian
et al. report that stateful operations are rarely used. We confirm this observation at a much larger scale, finding that
stateless operations are by far more popular (95.69%). The exclusive use of stateless operations is recommended as
according to the documentation of the Stream API, pipelines containing only stateless intermediate operations can

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. W] LEY 1777

TABLE 7 Mostpopular intermediate operations.
Intermediate operation Occurrences %
filter 1,970,944 73.92
map 389,505 14.61
mapToInt 92,407 3.47
sorted 47,264 1.77
mapToDouble 43,415 1.63
boxed 41,300 1.55
flatMap 31,939 1.20
mapToLong 7309 0.27
limit 6514 0.24
mapToObj 3882 0.15

TABLE 8 Distribution of the number of elements matching a predicate in filter operations.

Range Occurrences %

0 996,224 50.55
[10°, 101) 965,942 49.01
[10', 10?) 6569 0.33
[102,10%) 2150 0.11
[103, 10%) 57 3.1073
[109, 107) 2 1-107*

be processed in a single pass, whether sequential or parallel, with minimal data buffering, potentially improving
performance.!

F7: Stateful and short-circuiting intermediate operations are rarely used.

As previously reported, we detected 1,970,944 occurrences of £11ter. We find that all filter operations were executed.
The total number of elements evaluated by the predicates of the filters detected was 26,722,820. Among them, 11,936,568
elements matched the predicate of the filter operation. Table 8 reports the distribution of the elements matching the
predicate of a filter operation. We find that most of the predicates matched a number of elements between 10° and 10*.
In this range, the most popular number of elements matched by a predicate are 1 (47.46%), 3 (1.17%), and 2 (0.22%).
The maximum number of elements matched by a predicate is 5,101,466 and the mean is 12.24. We also find that 996,224
(50.55%) predicates match no element of the pipeline. In Section 5.3.2, we discuss our findings on a project with an
abundant number of predicates evaluating only a single element that is never matched.

F8: 50.55% of the predicates of filter operations match no element of the pipeline.

Terminal operations. We detect the occurrence of 2,653,451 terminal operations in total and report the ten most
popular ones in Table 9. Our results show that the most used terminal operations are collect (56.89%) and findFirst
(30.49%). The terminal operation findFirst returns an Optional describing the first element of the stream, or an
empty optional (i.e., an Opt ional which has no value present, as reported by method Opt ional . isPresent!!)if the

85UB017 SUOWWOD 8AIEa.D 3(dedl|dde ayy Aq pausenob ale sajoie YO ‘85N JO o 10y Afeiq1T8UIUO A8]IA UO (SUONIPUOD-PUE-SWBIAL0D" AB | 1WA Leiq Ul UO//Sdhy) SUOIPUOD pue SIS 1 8L 88S *[£202/80/62] Uo ARiqiTauliuo A8]im ‘ouebn ip eLesIeAlun e3e1ol|qig Aq £T2€90s/Z00T 0T/I0P/W00" A8 | 1M Afe.d 1 jpuluoy/:sdny Woiy peapeojumoq ‘6 ‘€202 ‘X720260T

1778 Wl LEY ROSALES ET AL.

TABLE 9 Mostpopular terminal operations.
Terminal operation Occurrences %
collect 1,509,663 56.89
findFirst 808,925 30.49
forEach 172,638 6.51
toArray 146,910 5.54
sum 8871 0.33
count 2048 0.08
reduce 1201 0.05
max 952 0.04
findAny 786 0.03
min 532 0.02

stream is empty.3! There is also an important presence (6.51%) of streams executed via forEach. While collect is key
for map-reduce-like data processing, the use of forEach indicates that developers rely on streams also to process data
iteratively and nondeterministically. This finding confirms the results by Tanaka et al., Khatchadourian et al., and Nostas
et al. at a larger scale. We also find the presence of toArray (5.54%), which returns an array containing the elements of
the stream, and of multiple forms of data aggregations and reductions.

F9: collect, findFirst, forEach, and toArray are the most common terminal operations.

We find that deterministic terminal operations are the most used (93.46%). In this context, our results are consistent
with the ones reported by Khatchadourian et al. We also find that forEachOrdered (the deterministic and ordered
counterpart of forEach) is less popular (0.002%) than forEach (6.51%), and that findFirst is far more popular
(30.49%) than its non-deterministic counterpart £ indAny (0.03%), which returns an Opt ional describing any element
of the stream, or an empty optional if the stream is empty.

F10: Deterministic terminal operations are more popular than non-deterministic ones.

Execution modes. Among a total of 2,653,467 streams detected, 2,508,651 were created as sequential streams and
144,816 as parallel ones. We find that switches in the execution mode are rare as only 36 sequential streams were switched
to parallel execution (we found no parallel stream switched to be sequential). We also find that 16 streams created as
sequential ones, use an unneeded sequential operation (which has no effect on an already sequential stream).

We find that 2,653,451 streams were executed whereas only 16 were not (i.e., streams that are created but lack a ter-
minal operation). Only three stream executions ended throwing an exception (i.e., java.lang.RuntimeException
due to missing data to read, java.lang.IllegalArgumentException due an incorrect HTTP response, and
java.lang.NoClassDefFoundError due a missing class at runtime).

Among the executed streams, we find that 94.54% were executed sequentially. This finding is consistent with the
results obtained on a smaller scale by Khatchadourian et al. (34 projects and 1038 streams analyzed, of which 13 were
parallel) and Nostas et al. (610 projects analyzed, among which the authors report that in 113 there was at least a single
parallel stream creation).

F11: Parallel streams are not popular.

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. WILEY 1779
TABLE 10 Distribution of the pipeline length.
Pipeline length Occurrences %
2 2,319,571 87.42
1 190,286 7.17
3 104,158 3.93
4 19,617 0.74
5 19,580 0.74
6 230 8-1072
7 19 7-1073
0 5 1-1073
8 1 3-107°

Considering the low usage of stateful operations in the analyzed stream pipelines (F7)", our finding may reveal poten-
tial missed speedups that could be obtained by parallelizing stream processing. Nonetheless, as pointed out by Lea et al.,>
when deciding whether to parallelize a stream, it is crucial to estimate if the sequential execution already exceeds a min-
imum threshold, which—as Lea et al. propose—could be measured in terms of execution time or an estimation of the
number of elements processed. The idea is finding whether, despite the presence of parallelization overheads, the parallel
execution of a stream can result in performance gains. According to our findings, stream data sources typically contain
few elements (F5), therefore only a small selection of projects processing large amount of data may truly benefit from
stream parallelization.

Pipeline length. Table 10 reports the distribution of the pipeline length. Our results show that few operations are
used in the projects analyzed, with an average length of only 2.05. Most of the streams are composed by only one (7.17%)
or two (87.42%) operations. We also find that five streams are created but no operation is called in their pipelines (meaning
that they were not executed). Overall, the results show that pipeline composition involves mostly few operations. To our
knowledge, no previous study analyzes the pipeline length.

F12: Stream pipelines are typically composed of few operations.

Collectors. As shown in Table 9, we detected a total of 1,509,663 invocations to collect, used to perform mutable
reductions. Table 11 shows the ten most popular collectors used during a mutable reduction. Note that we identify the
collector with the method used to obtain it (from class Collector). We denote as Custom the category aggregating the
occurrences of custom collectors (created by the developer and therefore not available by default in the Java class library).
Our outcome is consistent with the results reported by Khatchadourian et al. and Nostas et al. in finding that reductions
via collect mostly produce lists and sets.

F13: Collectors returning lists, sets, strings, and maps are the most used.

Like Nostas et al. we find that many streams return a concatenation of the input characters via Collec-
tors.joining or collect the reduction output into a map (e.g., via Collectors.toMap). We also confirm the
observation done by both Khatchadourian et al. and Nostas et al. that concurrent reductions'" are rarely used. In particular,
we do not find any use of a concurrent collector (e.g., Collectors.groupingByConcurrent). This finding shows

“The labels in the format F# point to the corresponding finding as presented in this section.

'In the absence of ordering constraints to process a pipeline, a reduction can use a concurrently modifiable collection, eliminating the need for
combining intermediate reduction results. This is formally known as concurrent reduction and can potentially provide a boost to the parallel execution
performance.!

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

MW ROSALES ET AL.

ILEY

TABLE 11 Most popular collectors.
Collector Occurrences %
Collectors.toList 1,420,063 94.06
Collectors.joining 52,133 3.45
Collectors.toSet 19,079 1.26
Collectors.collectingAndThen 8635 0.57
Collectors.toMap 3416 0.23
Collectors.groupingBy 2763 0.18
Custom 2235 0.15
Collectors.toCollection 1247 0.08
Collectors.toUnmodifiableMap 5 3.1073
Collectors.toUnmodifiableList 4 3.1073

TABLE 12 Most popular stream result types.

Stream result type Occurrences %

java.util.ArrayList 1,420,518 53.53
java.util.Optional 810,283 30.54
void 172,752 6.51
int [] 89,725 3.38
java.lang.String 52,125 1.96
double [] 30,324 1.14
java.lang.Object [] 24,385 0.91
java.util.HashSet 19,149 0.72
long 8438 0.32
java.util.Collections$SEmptySet 7877 0.30

that despite the Stream API offers a variety of collectors, streams seem mostly used to perform simple non-concurrent
reductions whose results are mainly stored in collections and strings.

F14: Concurrent collectors are not popular.

Stream result types. We detected a total of 114 different stream result types. Table 12 summarizes the 10 most popular
stream result types found. We find that ArrayList is the most popular data structure used to store the result of a stream
(53.53%), followed by Optional (30.54%), while 6.51% of the executed streams do not return any result (e.g., streams
performing the forEach and forEachOrdered terminal operations, which are void methods). This is expected, given
the popularity of reductions collecting the results in lists as well as of forEach-like terminal operations.

F15: Lists and Optionals are by far the most popular types collecting the stream result.

Among the streams returning a boolean, that is, executed via the terminal operations al1Match (0.011%) and any-
Match (0.004%) (no occurrence of noneMatch was detected), we find that 65.79% of the occurrences of allMatch
returned false, while all occurrences of anyMatch returned true. Among the streams returning an Optional, we

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. 1781
WILEY—2

find that 4290 streams return a null optional (i.e., an Optional containing a null value), while only 27 streams return
an empty optional. We are not aware of any related work characterizing stream result types.

F16: Among the streams returning an Optional, empty optionals or null optionals are rarely used.

Stream result size. Table 13 shows the distribution of the stream result size. We were able to query the stream result
size of 62.45% of all streams executed. For the remaining ones (reported as N/A in the table), this size could not be obtained.
This is the case for streams executed via a void terminal operation or streams returning either a scalar (except streams
executed via count), a not sized spliterator, or more in general, an object not reporting its size.

We find that most of the outputs returned by streams contain a number of elements between 10° and 10'. In this
range, the most popular sizes are 1 (38.11%), 3 (2.18%), 4 (1.52%), and 2 (1.36%). Also, many streams return zero elements
(15,20%), among which we find that their outputs are almost all of type ArrayList (373,377), followed by Hash-
Set (13,987), Collection$EmptySet (7,877), and int [] (5,119). In Section 5.3.1, we analyze some projects using
abundant streams with a result size equal to zero. We find three infinite streams, as reported by the returned splitera-
tor (explaining the last category in the table). When not considering infinite streams, the maximum data-source size is
10,000,000 and the mean is 37. Therefore, we find that among the streams returning an output, it often contains few
elements. To our knowledge, no related work reports statistics on the stream result size.

F17: The output produced by the stream often contains few elements.

Pipeline structure. We find a total of 310 different pipeline structures among all the streams detected, which ten most
used are shown in Table 14. The most common pipeline structures involve filtering and then either mutable reductions
via collect (42.13%) or searches via findFirst (30.45%), followed by map-collect (9.12%), forEach (6.21%), and
mapToInt-toArray patterns (3.38%). Our results are consistent to some extent with the work of Nostas et al. as they
find that sequential pipeline structures involving filter, map, collect, and findFirst are the most popular ones.
Complementary, we find the presence of patterns involving toArray, along with pipelines relying on the intermediate
operations mapToInt, boxed, mapToDouble, distinct, sorted, and flatMap.

Among the pipeline structures detected, only 19 correspond to parallel stream processing (144,851 occurrences in
total). We find that most of them (99.91%) are single-operation pipelines executing the forEach operation (144,721).
Similarly to Nostas et al., we find that the abundant presence of pipelines using only the forEach operation indicates

TABLE 13 Distribution of the stream result size.

Size range Occurrences %

N/A 996,374 37.55

0 407,543 15.36
[10°, 10") 1,192,568 44.94
[101,10%) 40,680 1.53
[10%,10%) 14,681 0.55
[10%, 10%) 1253 0.05
[10%, 10°) 349 0.01
[10°, 10°) 9 3-1073
[10%,107) 4 3-1073
[107, 10%) 3 1-1073
Infinite 3 1-1073

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

1782 Wl LEY ROSALES ET AL.

TABLE 14 Most popular pipeline structures.
Pipeline structure Occurrences %
filter, collect 1,118,026 42.13
filter, findFirst 808,091 30.45
map, collect 244,541 9.22
forEach 164,716 6.21
mapToInt, toArray 89,628 3.38
map, map, collect 43,365 1.63
mapToDouble, boxed, collect 29,869 1.13
collect 23,165 0.87
map, distinct, sorted, toArray 16,972 0.64
flatMap, filter, collect 14,439 0.54

TABLE 15 Most popular third-party libraries (executing streams) used by the analyzed projects.

#Projects using

Library #Streams the library
Mockito 167,596 7
Apache Lucene 89,863 6
Apache Beam 60,455 1
Hibernate ORM 18,760 8
Eclipse Glassfish 6190 14
ImgLib2 1766 5
Apache Solr 1327 1
JSON Schema Validator 1138 2
neo4j 125 2
Eclipse Yasson 41 2

that parallel streams are mostly used by developers to perform iterative, non-deterministic processing. In Section 5.3.3,
we analyze problematic streams relying on forEach.

F18: The most used sequential pipeline structures follow basic map-reduce-like patterns (filter-collect,
filter-findFirst, map-collect).

F19: Parallel streams mostly perform iterative-style processing using forEach patterns.

Creation and execution methods. We analyze the creation methods of the streams detected to classify them accord-
ing to their origin. We find that some software projects use streams executed by third-party libraries. In Table 15, we show
the ten most used libraries according to the number of streams executed by them, along with the number of projects using
such libraries. We find that less than 15% of the streams detected are executed by external libraries. In Section 5.3.4, we
analyze inefficient stream code executed by a popular open-source library. Finally, we also find that 97.76% of the streams
detected were created and executed in the same method.

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. 1783
WILEY—72

F20: Less than 15% of the streams detected are executed by third-party libraries.

F21: Streams are mostly created and executed in the same method.

5.3 | Stream-related issues

In this subsection, we present inefficient stream processing in the projects analyzed, including some misuses of the Stream
APIL Unless explicitly specified otherwise (see Section 5.3.4), the following results target streams used in application code.

53.1 | Empty streams

As previously reported, we find a total of 508,664 empty streams. Although creating an empty stream is supported by
the Stream API (i.e., via the source methods Stream. empty and Stream.ofNullable), we find that only 249 empty
streams were created using Stream. empty and we do not find any occurrence of Stream.ofNullable. The remain-
ing empty streams (508,415) are mainly created from collections (97.93%), in particular from lists (95.62%) and sets
(1.76%). Despite these streams are widely spread within 198 software projects, we find that most of them are used by only
two projects as follows.

First, we find 161,165 empty streams in dmeoli/WS4J%* (WordNet** Similarity for Java), a library providing algo-
rithms to measure the semantic similarity/relatedness between words in WordNet. All the empty streams used in
this project are executed sequentially and have a pipeline in the form map-collect, using Collectors.toList.
Moreover, we find that the stream result size of all of these streams is always zero®$. Therefore, the map operation and the
reduction are applied to no input element and the streams always produce an empty list.

Second, we find 142,058 empty streams in awslabs/amazon-sgs-javatemporary-queues-client,’ an
Amazon Simple Queue Servicel¥ Java client that supports creating lightweight queues, for use in common messaging
patterns such as Request/Response.”® All the empty streams used in this project are executed in parallel and have a
single-operation pipeline containing the forEach terminal operation. As a result, for the detected stream executions the
side effect triggered via forEach is never reached in the absence of an input element.

In both cases, the abundant use of empty streams in application code may lead to overheads due the unneeded alloca-
tion of resources to process no data (e.g., object allocations/de-allocations and extra virtual method calls*). Provided that
the usage of empty streams that we detected via unit tests matches a realistic scenario commonly taking place in applica-
tion code, these empty streams should be considered candidates for removal (e.g., avoiding using a stream when the data
source is known to be empty).

53.2 | Single-element streams

As previously shown, we find that 931,119 streams have a data-source size equal to one. We examine these streams
and find that most of them are used by a single project. In particular, 780,449 single-element streams are used in
andrewkkchan/client-ledger-core-db,> an event sourcing finance system. All of these streams have a pipeline
in the form filter-findFirst. We find that the predicate used in the £ilter operation never matches the single

HWordNet is a lexical database of semantic relations between words in more than 200 languages™

$§Since the data-source size is captured upon stream creation, it is possible that a stream is created from an empty data source which is filled before
the stream is later executed. In such a case, the stream result size of the previously empty stream would differ from zero (which is not the case for the
analyzed empty streams).

11 Amazon Simple Queue Service (SQS) is a fully managed message queuing service that enables to decouple and scale microservices, distributed
systems, and serverless applications.’

##Since the Java bytecode does not support function types, lambda expressions are treated as interfaces with a single abstract method, which can lead
to many virtual method calls. These virtual calls could prevent optimizations performed by the Just-In-Time (JIT) compiler.?

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

1784 ROSALES ET AL.
WILEY

element evaluated, such that it is never filtered. In consequence, upon the execution of findFirst, all the streams
return always the unique and unmodified input value made available by the data source.

If the aforementioned scenario (i.e., abundant single-element streams producing no transformation through the
pipeline) reflects real application-code usage, then those single-element streams should be considered for refactor-
ing or removal to help mitigate potential stream-related overheads (e.g., replacing stream processing by a conditional
recognizing a single-element data source and performing a direct action accordingly).

5.3.3 | Misuses of sorted-forEach-like patterns

As previously reported, we find that 47,264 streams rely on the sorted intermediate operation. Among them, we find
streams that are nevertheless executed via the forEach terminal operation. As stated in the documentation of the Stream
API, the behavior of forEach is explicitly non-deterministic.! On the one hand, when executed in parallel, forEach
does not guarantee to respect ordering constraints in the stream, as this would sacrifice the benefit of a parallel execution.
For any given element, the action performed by forEach may be performed at whatever time and in whatever available
thread.! On the other hand, as pointed out by Goetz et al.,°* forEach has the freedom to not preserve the encounter
order even for sequential streams.

We find that ysc/short-text-search®! (a customizable precise short text search service) uses 11 streams with
pipelines in the form sorted-1limit-forEach. These streams are created from method Set .parallelStream,
therefore the streams are parallel and their data source has no encounter neither sort order. Upon execution, the ordering
introduced by sorted in the aforementioned streams is ignored and the action delegated to the parallel forEach cannot
assume that ordering constraints are met. Moreover, if ordering is not required, the developers should consider removing
the statefulness introduced by the sorted operation, which may help speedup parallel stream processing.!

We also find 11 software projects containing sequential streams that use the sorted operation and are executed via
forEach. For instance, we find that GoogleCloudPlatform/kafka-pubsub-emulator® (an implementation of
Google Cloud Pub/Sub!ll backed by Apache Kafka®) and cryptomkt /cryptomkt -java® (the CryptoMarket™ Java
SDK), resort to streams with a pipeline implementing sorted- forEach-like patterns.

Overall, given the non-deterministic nature of forEach stream processing, the aforementioned streams can be con-
sidered as misuses of the Stream API. The code should be changed either to use forEachOrdered (which specification
ensures the encountered order regardless of sequential or parallel stream processing) or to remove the sorted operation
if no order is actually required.

5.3.4 | Inefficient streams in library code

We find five projects using streams executed by Selenium,’ a popular open-source software project encapsu-
lating tools and libraries to enable Web browser automation. All of these streams (40) share three characteris-
tics. Their source collection type is java.util.TreeMapS$SEntrySet, meaning that the data source is distinct
and it preserves an encounter and sort order. They are executed in parallel and use the distinct operation.
In particular, they implement pipelines in the form filter-distinct-filter-collect (32 occurrences) and
filter-filter-distinct-collect (eight occurrences) across five classes filtering the capabilities’" of the
browsers supported by the Selenium.

In the absence of an intermediate operation potentially introducing duplicates (e.g., a mapping), the useof distinct
is unneeded in these streams, as the data source does not allow duplicates. Moreover, as stated in the documentation of
the Stream API, pipelines containing stateful operations (such as distinct) may require multiple passes on the data
or may need to buffer significant data, resulting in limited parallel performance.! Therefore, removing the distinct
operation from the aforementioned streams may help improve parallel stream performance.

On the other hand, as pointed out by Lea et al.,> it is crucial to determine whether parallel stream execution is worth-
while despite parallelization overheads. To this end, a technique they suggest is the use of a threshold defining whether

IMGoogle Cloud Pub/Sub is a messaging middleware providing many-to-many, asynchronous messaging between services®®
**CryptoMarket is an online platform to buy cryptocurrencies.*

7In Selenium, it is possible to declare the set of capabilities that should be enabled in a browser to perform the testing of Web applications.®®

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. 1785
WILEY—7%

the pipeline is to be executed in parallel. For instance, the data-source size can be considered a factor in the estimation of
the computations to be performed by a stream. In such a case, if a data-source size is greater than a given threshold, then
the stream generated from it can be switched to be executed in parallel in the search for speedups. Otherwise, a sequen-
tial execution may be preferred to avoid parallelization overheads (e.g., due to the execution and scheduling of parallel
tasks in the fork/join pool). We find that the average data-source size of the streams detected is only 4.12. The develop-
ers of the project may consider to evaluate whether parallel execution is worthwhile (e.g., via a threshold considering the
data-source size) to better leverage parallel stream processing.

Finally, we note that for 32 of the aforementioned streams, the stream result type is com.google.common.
collect.RegularImmutableMap.® Such streams may also benefit from a pipeline refactoring to include
unordered,since RegularImmutableMap isadatastructure that does not guarantee to preserve ordering constraints.
As explained in the documentation of the Stream API, for parallel streams, relaxing ordering constraints often enables
more efficient parallel execution.!

Overall, we report the popularity of many features of the Stream API, including the analysis of an extensive selection
of runtime metrics unique to streams. Moreover, we find inefficient streams affecting application code in open-source
software projects, including supporting technologies behind two popular cloud platforms>®%? and an operative cryptocur-
rency marketplace.® Finally, through the analysis of application code in software repositories, we located inefficient
stream processing on a popular open-source library (24K+ stars) that is widely used for the automation of Web testing.®’
In the next section, we further discuss some implications of our findings.

6 | DISCUSSION

In this section, we discuss the implications of our work, which we group according to the target audience.

Developers of the Stream API. Our findings can provide feedback to the developers of the Java class library.
In particular, we report the most used features of the Stream API, an information that could be considered when
prioritizing future extensions and optimizations to the API. Complementary to prior work proposing alternatives or
extensions to the Stream API to improve data processing in Java,”®”3 we suggest improving the Stream API by leverag-
ing the knowledge that it has about both the pipeline structure and the characteristics of the data source upon stream
execution.

Concretely, our findings on empty streams (see F5 and Section 5.3.1), suggest that it can be worthwhile for the imple-
mentation of the API to consider the data-source size upon stream execution. Provided that this size is equal to zero, in
some cases (e.g., data reductions requiring multiple input elements) pipeline traversal could be fully avoided, with the
benefit of mitigating overheads due to unneeded resource allocation. Moreover, we also find inefficient stream processing
relying on the sorted and distinct intermediate operations (see Sections 5.3.3 and 5.3.4). In the current implementa-
tion of the Stream API, such operations are applied to the elements in the pipeline regardless on whether the data source
is already sorted or distinct. When no operation in the pipeline can affect such conditions (e.g., mappings), the Stream
API could query such data-source characteristics to avoid the unneeded stateful processing that sorted and distinct
require, potentially enabling performance gains, particularly for parallel streams.!

Tool builders and researchers. Our findings on inefficient stream processing (see Section 5.3) points out the need
for tools that help developers better code Java streams. We note that the automation of code assistance guiding Java devel-
opers to optimize stream processing in the form of approaches such as optimization coaching’ or automatic software
repair,”>”’7 remains an open research path. We also provide a list of publicly available open-source software projects that
heavily use stream processing (see Table 2), which could be considered as potential workload candidates for benchmark-
ing by researchers and tool builders. Indeed, prior work?°#8 has shown promising results on using JUnit tests as workloads
for benchmarking. Suitable workload candidates would use stream code from modern open-source applications, com-
plementing benchmark suites made either from stream code adaptations of traditional MapReduce algorithms’® or by
converting workloads designed for relational databases to stream-based code.”

Educators. We find that Java developers seem to rarely make use of complex stream processing that truly bene-
fits from the richness, versatility, and fluency of the Stream API. Indeed, our findings show that developers use mostly
object-based sequential streams (F3, F11), often for the manipulation of collections (mainly lists and sets) (F1, F2), con-
taining few elements (F5), relying on pipelines composed of few operations (F12) (mostly stateless operations enabling
basic map-reduce-like patterns) (F6, F7, F18, F19), and typically performing simple data reductions (F14) whose out-
put is also mainly stored in collections (F9, F13, F15) containing few elements (F17). Educators training Java developers

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

1786 ROSALES ET AL.
WILEY

could see this as a motivation to better emphasize the learning of currently little exploited features of the Stream API,
such that practitioners can do a well-supported decision making when implementing stream processing. For instance,
the unpopularity of parallel streams, concurrent collectors, and the removal of ordering constraints (F4) (e.g., via
unordered), reveals potential missed optimization opportunities, as leveraging such features can make an important
difference on the goal of speeding up data processing in Java. Also, educators could further emphasize teaching best
practices>!%53 that steer developers towards avoiding stream misuses, including the ones presented in this study (see
Section 5.3.3).

Moreover, we find problematic stream processing that may have an impact on application performance (see
Section 5.3). Academic material (e.g., books and tutorials) could more extensively discuss about stream-related perfor-
mance issues (e.g., abstraction®>8%8! and parallelization overheads®®>3 due to the use of streams), such that developers
better leverage the Stream API and are particularly well-informed while deciding on whether involving streams in the
implementation of performance-critical functionalities.

7 | THREATS TO VALIDITY

In this section, we discuss threats to validity to our work.

Like any large-scale empirical study, the validity of our findings depends on the set of analyzed projects, which may
not be representative of the general use of Java streams. A study targeting proprietary codebases may lead to different
conclusions. Nevertheless, the analyzed projects are diverse in aspects such as popularity, size and domain. Moreover,
our findings show that some of the analyzed streams are used in consolidated open-source software projects.

The time frame selected for our study limits the number of projects that were analyzed. However, complementary to
the filtering of projects based on their popularity, the chosen time frame enables us to analyze current practices in the use
of streams, while still considering a large number of software projects.

Our study targets only GitHub. Nonetheless, it is currently the largest source-code-hosting facility.?® Furthermore,
GitHub provides an advanced search API,*? enabling the crawling and filtering required for our project selection. Also,
our study only considers projects that can be built via maven. However, it has been found that more than 76% of developers
targeting the JVM use maven to build their applications,?? a tendency that has been growing during the time frame chosen
for our study.?>83 As part of our future work, we aim at extending our analysis by considering projects hosted in large-scale
repositories other than GitHub along with additional build systems.

Finally, an important limitation of our study is that it only targets source code exercised by unit tests. While we specif-
ically target streams used in application code, the patterns analyzed via unit tests may not be fully representative of real
usage scenarios of an application in production. In particular, our study is limited by the fact that unit tests may use a
smaller input data than the one used in production scenarios, which may result in different conclusions (e.g., regarding
the distribution of stream data-source sizes). However, we note that previous work?*?%48 has shown that massively apply-
ing dynamic analyses on workloads exercised by unit tests can provide useful information, highlight coding practices,
and derive statistics. We remark that we leverage unit tests because we aim at automatically running Stream-Analyzer on a
multitude of software projects. Since JUnit tests can be automatically executed by the build system via simple commands
(e.g.,mvn test), they make large-scale dynamic analysis possible.

8 | RELATED WORK
In this section, we review work related to our approach. First, we compare our work to other studies focused on the use
of streams (Section 8.1). Next, we review work addressing the optimization of streams (Section 8.2). Then, we discuss
studies analyzing unit tests in open-source Java projects (Section 8.3). Finally, we review studies targeting functional
programming in Java (Section 8.4).

8.1 | Empirical studies on the use of Java streams

To the best of our knowledge, there are only three studies examining the use of streams by Java developers, all of which
mainly rely on static analysis and manual code inspection.

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. 1787
WILEY—%

Tanaka et al.” mine 100 software projects to study the use of lambdas, streams, and the Opt ional class. They report
that developers using such idioms mainly aimed at improving performance and producing short, clear, and readable
code. Regarding streams, they find that the most popular operations are map, filter, and collect. Khatchadourian
et al.® examine 34 projects to specifically study the use of streams in Java. The authors report several findings, including
that parallel streams are not popular, that pipelines often have ordering constraints, and that streams are mostly used to
iterate over collections and to perform data reductions. Finally, Nostas et al.” study the use of streams in 610 projects.
Their work is a partial replication of the study of Khatchadourian et al. by considering a larger number of projects. The
authors mainly confirm the results obtained by Khatchadourian et al., while also revealing commonly used sequential
and parallel pipeline structures.

In comparison to the aforementioned related work, our study is conducted at a much larger scale thanks to the use
of a fully automated approach that avoids manual intervention. Furthermore, we characterize runtime information that
related work overlooks, because such studies are mainly based on static analysis techniques. Both the scale of our analysis
and the profiling of key dynamic information enable us to confirm with more confidence the findings of related work
regarding the usage of operations (F6, F7, F9, F10), execution modes (F11), collectors (F13, F14), and pipeline structures
(F18, F19). Moreover, thanks to the novel perspective enabled by dynamic analysis, our work is the first to report both the
popularity of many features of the Stream API and how developers use streams considering (both high- and low-level)
source methods (F1), source collection types (F2), stream types (F3), the effectiveness of the predicate of filter operations
(F8), pipeline lengths (F12), stream result types (F15, F16), stream result sizes (F17), and the analysis of creation and
execution methods (F20, F21). As far as we are aware, we are also the first ones to analyze several characteristics of stream
data sources as collected at runtime, including their size (F5), mutability, and support for concurrent modification, among
others (F4). Finally, complementary to the study of Khatchadourian et al., which reports stream misuses by manually
checking the history of git commits in 22 projects, we detect unsolved inefficient stream processing and stream misuses
(see Section 5.3) present at the time of writing in several publicly available software projects.

8.2 | Analysis of Java streams

Some authors have addressed the analysis and optimization of streams. While helping developers spot stream-related
drawbacks, the tools discussed above are not designed for large-scale dynamic analysis, as Stream-Analyzer does.

Ishizaki et al.?! modify the IBM J9 JVM?3* and the Testarossa compiler® to translate streams into optimized GPU
code. Hayashi et al.?? extend this work, proposing a supervised machine-learning approach producing heuristics that the
runtime can use to select between CPU or GPU to speed up parallel stream processing. However, both approaches target
only parallel Int Stream pipelines executed via forEach. Moreover, they require a proprietary compiler and a specific
JVM implementation.

Khatchadourian. et al.?>?* introduce an Eclipse plugin helping developers better code streams. The plugin evaluates
whether it would be safe and potentially advantageous to restructure a stream pipeline to improve performance. To this
end, the plugin infers how the execution of a stream would take place by analyzing it mainly via static analysis tech-
niques.?7 As highlighted by the authors, their approach is unable to assess the optimization of a stream considering
input size/overhead trade-offs.?* Indeed, the plugin relies on inferences mainly done via static analysis that may not reflect
the runtime behavior of the analyzed streams.

Other authors have focused on removing streams at a bytecode level, as stream-related overheads can sometimes
be avoided by using semantically-equivalent imperative code. Moller et al.?> present StreamLiner, a proof-of-concept
bytecode-to-bytecode tool to transform sequential streams into more efficient imperative code. Due to limitations inher-
ent to the static analysis techniques used, StreamLiner is not able to analyze streams whose creation and execution take
place in different methods. Another important limitation of StreamLiner is that it cannot analyze parallel streams. Basso
et al.2% exploit high-level static analysis and bytecode-to-bytecode transformations to remove the abstraction overhead of
parallel streams. In particular, their approach transforms parallel streams into corresponding imperative code that exe-
cutes specialized fork-join tasks. Similarly to StreamLiner, their approach cannot optimize streams that are created and
executed in different methods. However, this limitation may not greatly affect the applicability of both tools since, as
shown in F21, we find that most of the detected streams are created and executed in the same method.

Finally, in our prior work,”” we present StreamProf, a cycle-accurate stream profiler which is used to optimize
sequential and parallel stream-based workloads from the Renaissance benchmark suite,’”® enabling significant speedups.

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

1788 ROSALES ET AL.
WILEY

Differently from StreamProf, Stream-Analyzer targets multiple stream-related runtime metrics that can be collected with
no significant perturbation, making them suitable to be profiled in the wild.

8.3 | Studies targeting unit tests in Java

Some authors have explored unit tests as a source of workloads to create benchmark suites. Zheng et al.*® explore the
feasibility of using unit tests available on open-source projects as workloads for custom benchmarks. They find more than
500 Java and Scala projects containing unit tests that can be considered as good candidate workloads for benchmarking
purposes. Villazon et al.?’ conduct a large-scale study to analyze units tests available in open-source projects written
in JavaScript (109,286), Java (25,918), and Scala (4076). They study the adoption of new constructs and find common
bad coding practices in JavaScript. The authors also locate Java and Scala workloads which may be suitable to build
task-parallel benchmarks. None of the aforementioned studies aim to dynamically analyze unit tests to characterize Java
streams, which is the focus of our work.

Several empirical studies have analyzed unit tests from open-source projects for various purposes. Ma’ayan® conducts
an analysis of the quality of unit tests in 128 Java projects and finds a significant difference between best practices in unit
testing and actual practices. In particular, the authors report that 61% of the analyzed tests contain multiple assertions,
and nearly 78% of the assertTrue and assertFalse assertions lack an error message. Petri¢ et al.®® analyze the
effectiveness of unit tests on 7 Java projects (out of a pool of 5508 candidates). They find that only about 30% of defective
methods are covered by unit tests. Hilton et al.?® analyze test coverage in 47 projects, 29 of which are written in Java. The
authors find that relying only on statement coverage (computed as the ratio of statements executed by tests to the total
number of statements) is inadequate in accurately assessing code testability and capturing the nuances of code evolution
in large projects. In contrast to our work, these prior studies shed light on the characteristics of unit tests and prevailing
practices. As part of our future work, we plan to explore ways to analyze aspects such as code coverage of unit tests in the
analyzed projects. This will help us better assess the amount of application code that can be reached via the considered
unit tests.

8.4 | Studies on functional programming in Java

Some work focused on functional programming in Java. Differently from our scope, they mostly investigate the use of
lambdas.

Tsantalis et al.”! study the use of lambdas to refactor duplicated code to benefit from behavior parameterization.'
They find that lambdas are highly effective to avoid duplicated code. The study of Tsantalis et al. focuses solely on lamb-
das, disregarding streams. Mazinanian et al.> mine 241 software repositories containing over 100,000 lambdas, and survey
97 Java developers to understand how they are using lambdas. They find that developers are increasingly using lamb-
das to replace anonymous classes and for behavior parameterization. However, the study of Mazinanian et al. does not
focus on streams. Nielebock et al.”? study the use of lambdas in 2923 projects implemented in C#, C++, and Java. They
locate several lambdas in both application and testing code. Similarly to our finding showing that parallel streams are
not popular (F11), the authors find that developers tend to avoid using lambdas within concurrent code. Also the study
of Nielebock et al. does not consider streams. Finally, Mehlhorn et al.® conduct a randomized controlled trial (RCT) to
evaluate the understandability of collection operations performed on 20 participants, with response time and correct-
ness as the dependent variables. The authors report that declarative code based on lambdas and streams to manipulate
collections had a large, positive effect compared to the use of traditional loops significantly reducing the number of
erTorS.

9 | CONCLUSIONS

Our work bridges the gap between the need for understanding how Java developers are using the Stream API and
the lack of studies considering both a representative number of software projects and runtime metrics specific to
streams.

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

ROSALES ET AL. W] LEY 1789
9.1 | Summary of contributions

In this article, we present Stream-Analyzer, a novel DPA for collecting dynamic information that enable a fine-grained
characterization of modern sequential and parallel stream processing on the JVM. To the best of our knowledge,
Stream-Analyzer is the first tool enabling the large-scale characterization of stream processing. To this end, our tool allows
the accurate detection of all streams used by an application running on the JVM. Moreover, Stream-Analyzer targets a
relevant set of runtime metrics, whose analysis allows characterizing the behavior of stream processing on a wide and
diverse selection of open-source Java workloads.

With Stream-Analyzer, we conduct the first large-scale empirical study on the use of Java streams. Thanks to our fully
automated approach, we massively apply Stream-Analyzer to stream code exercised via unit tests available in software
projects hosted on GitHub. We target 43,496 open-source software projects, which were last updated (at the time of analy-
sis) between January 1, 2020 and April 30, 2022. We find 4063 projects using a total of 2,653,467 streams. We confirm at a
large scale some of the findings of related work.%”? Moreover, our work reports new insights about the adoption of many
features of the Stream API by Java developers and reveals inefficient stream-related practices currently affecting publicly
available software projects.

9.2 | Future work

The work presented in this article opens up new research pathways. We plan to address the periodical inspection of
code modifications in software hosting platforms to automatically report to the developers stream-related issues and
potentially missed optimization opportunities, in the form of approaches such as automatic software repair.”>”’” Moreover,
a continuous monitoring of stream processing in the commits performed across multiple software projects would enable
the in-depth study of historical trends and the evolution of common stream code patterns and anti-patterns. Finally, we
plan to release Stream-Analyzer as open-source software to facilitate the replicability of our results.

AUTHOR CONTRIBUTIONS

Eduardo Rosales designed and conducted the experiments. Eduardo Rosales and Matteo Basso designed the profiling
methodology and implemented it. All authors performed the analysis of the results, contributed substantially to the
writing of the manuscript, and performed multiple reviews of the article.

FUNDING INFORMATION
The research presented in this article was supported by Oracle (ERO project 1332) and by the Swiss National Science
Foundation (project 200020_188688).

CONFLICT OF INTEREST STATEMENT
The authors declare no potential conflict of interests.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in Large-scale Characterization of Java Streams at
https://doi.org/10.5281/zenodo.7681472.

ACKNOWLEDGMENT
Open access funding provided by Universita della Svizzera italiana.

ORCID
Eduardo Rosales (2 https://orcid.org/0000-0002-6404-3128

REFERENCES

1. Oracle. Package java.util.stream. 2022. https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/Stream.html

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

https://doi.org/10.5281/zenodo.7681472
https://orcid.org/0000-0002-6404-3128
https://orcid.org/0000-0002-6404-3128
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/Stream.html

1790 ROSALES ET AL.
WILEY

2. Bird R, Wadler P. An Introduction to Functional Programming. 1st ed. Prentice Hall International (UK) Ltd.; 1988.

w

Bloch J. Effective Java (2nd Edition) (The Java Series). 2nd ed. Prentice Hall PTR; 2008.

4. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun. ACM. 2008;51(1):107-113.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.
32.
33.
34.
35.

36.

doi:10.1145/1327452.1327492

Mazinanian D, Ketkar A, Tsantalis N, Dig D. Understanding the use of lambda expressions in Java. Proc. ACM Program. Lang.
2017;1(OOPSLA):1-31. d0i:10.1145/3133909

Khatchadourian R, Tang Y, Bagherzadeh M, Ray B. An Empirical Study on the Use and Misuse of Java 8 Streams. Paper presented at:
FASE. Springer. 2020:97-118. doi:10.1007/978-3-030-45234-6_5

Nostas J, Alcocer JPS, Costa DE, Bergel A. How Do Developers Use the Java Stream API? Paper presented at: ICCSA. Springer.
2021:323-335. doi:10.1007/978-3-030-87007-2_23

Mehlhorn N, Hanenberg S. Imperative versus Declarative Collection Processing: An RCT on the Understandability of Traditional Loops
versus the Stream API in Java. Paper presented at: ICSE. ACM. 2022:1157-1168. d0i:10.1145/3510003.3519016

Tanaka H, Matsumoto S, Kusumoto S. A study on the current status of functional idioms in Java. IEICE Trans Inf Syst.
2019;E102.D(12):2414-2422. d0i:10.1587/transinf.2019MPP0002

Urma RG, Fusco M, Mycroft A. Java 8 in Action: Lambdas, Streams, and Functional-Style Programming. 1st ed. Manning Publications Co;
2014.

Oracle. Class Optional<T>. 2022. https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/Optional.html

Gosain A, Sharma G. A Survey of Dynamic Program Analysis Techniques and Tools. In: FICTA. Springer. 2015:113-122.
doi:10.1007/978-3-319-11933-5_13

Marek L, Villazén A, Zheng Y, Ansaloni D, Binder W, Qi Z. DiSL: A Domain-Specific Language for Bytecode Instrumentation. Paper
presented at: AOSD. ACM. 2012:239-250. doi:10.1145/2162049.2162077

Rosa A, Rosales E, Binder W. Accurate Reification of Complete Supertype Information for Dynamic Analysis on the JVM. Paper presented
at: GPCE 2017. ACM. 2017:104-116. d0i:10.1145/3136040.3136061

Rosa A, Binder W. Optimizing type-specific instrumentation on the JVM with reflective supertype information. J Vis Lang Comput.
2018;49:29-45. doi:10.1016/j.jv1c.2018.10.007

Rosa A, Rosales E, Binder W. Analyzing and Optimizing Task Granularity on the JVM. Paper presented at: CGO. ACM. 2018:27-37.
doi:10.1145/3168828

Rosa A, Rosales E, Binder W. Analysis and optimization of task granularity on the Java virtual machine. ACM Trans. Program. Lang. Syst.
2019;41(3):1-47. doi:10.1145/3338497

Rosales E, Rosa A, Binder W. FJProf: Profiling Fork/Join Applications on the Java Virtual Machine. Paper presented at: ACM.
2020:128-135. doi:10.1145/3388831.3388851

Basso M, Rosales E, Schiavio F, Rosa A, Binder W. Accurate Fork-Join Profiling on the Java Virtual Machine. Paper presented at: EuroPar.
Springer. 2022:35-50. doi:10.1007/978-3-031-12597-3_3

Villazén A, Sun H, Rosa A, et al. Automated Large-Scale Multi-Language Dynamic Program Analysis in the Wild. Paper presented at:
ECOOP. ACM. 2019:20:1-20:27. d0i:10.4230/LIPIcs.ECOOP.2019.20

Ishizaki K, Hayashi A, Koblents G, Sarkar V. Compiling and Optimizing Java 8 Programs for GPU Execution. Paper presented at: PACT.
IEEE. 2015:419-431. doi:10.1109/PACT.2015.46

Hayashi A, Ishizaki K, Koblents G, Sarkar V. Machine-Learning-Based Performance Heuristics for Runtime CPU/GPU Selection. Paper
presented at: PPPJ. ACM. 2015:27-36. doi:10.1145/2807426.2807429

Khatchadourian R, Tang Y, Bagherzadeh M, Ahmed S. A Tool for Optimizing Java 8 Stream Software via Automated Refactoring. Paper
presented at: SCAM. IEEE. 2018:34-39. doi:10.1109/SCAM.2018.00011

Khatchadourian R, Tang Y, Bagherzadeh M, Ahmed S. Safe Automated Refactoring for Intelligent Parallelization of Java 8 Streams. Paper
presented at: ICSE. IEEE. 2019:619-630. d0i:10.1109/ICSE.2019.00072

Moller A, Veileborg OH. Eliminating abstraction overhead of java stream pipelines using ahead-of-time program optimization. Proc. ACM
Program. Lang. 2020;4(O0OPSLA):1-29. doi:10.1145/3428236

Basso M, Schiavio F, Rosa A, Binder W. Optimizing Parallel Java Streams. Paper presented at: ICECCS. IEEE. 2022:23-32.
doi:10.1109/ICECCS54210.2022.00012

Rosales E, Basso M, Rosa A, Binder W. Profiling and optimizing java streams. Art Sci Eng Program. 2023;7(3):1-39.
doi:10.22152/programming-journal.org/2023/7/10

GitHub. About GitHub. 2022. https://github.com/about

Rosales E, Rosa A, Basso M, et al. Characterizing Java Streams in the Wild. Paper presented at: ICECCS. IEEE. 2022:143-152.
doi:10.1109/ICECCS54210.2022.00025

Oracle. Interface Spliterator<T>. 2022. https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/Spliterator.html

Oracle. Interface Stream<V>. 2022. https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/Stream.html

Lea D. A Java Fork/Join Framework. In: JAVA. ACM. 2000:36-43. doi:10.1145/337449.337465

Oracle. Class ForkJoinPool. 2022. https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
Oracle. Class Collectors. 2022. https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/Collectors.html

Oracle. Interface BaseStream<T,S extends BaseStream<T,S>>. 2022. https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/
util/stream/BaseStream.html

Kiczales G, Hilsdale E. Aspect-oriented programming. SIGSOFT Softw. Eng Notes. 2001;26(5):313. doi:10.1145/503271.503260

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

http://info:doi/10.1145/1327452.1327492
http://info:doi/10.1145/3133909
http://info:doi/10.1007/978-3-030-45234-6_5
http://info:doi/10.1007/978-3-030-87007-2_23
http://info:doi/10.1145/3510003.3519016
http://info:doi/10.1587/transinf.2019MPP0002
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/Optional.html
http://info:doi/10.1007/978-3-319-11933-5_13
http://info:doi/10.1145/2162049.2162077
http://info:doi/10.1145/3136040.3136061
http://info:doi/10.1016/j.jvlc.2018.10.007
http://info:doi/10.1145/3168828
http://info:doi/10.1145/3338497
http://info:doi/10.1145/3388831.3388851
http://info:doi/10.1007/978-3-031-12597-3_3
http://info:doi/10.4230/LIPIcs.ECOOP.2019.20
http://info:doi/10.1109/PACT.2015.46
http://info:doi/10.1145/2807426.2807429
http://info:doi/10.1109/SCAM.2018.00011
http://info:doi/10.1109/ICSE.2019.00072
http://info:doi/10.1145/3428236
http://info:doi/10.1109/ICECCS54210.2022.00012
http://info:doi/10.22152/programming-journal.org/2023/7/10
https://github.com/about
http://info:doi/10.1109/ICECCS54210.2022.00025
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/Spliterator.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/Stream.html
http://info:doi/10.1145/337449.337465
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/Collectors.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/BaseStream.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/BaseStream.html
http://info:doi/10.1145/503271.503260

ROSALES ET AL. 1791
WILEY—-"
37. Binder W, Hulaas J, Moret P. Advanced Java Bytecode Instrumentation. Paper presented at: PPPJ. ACM. 2007:135-144.

38.

39.
40.

41.

42.
43.

44.
45.

46.
47.
48.

49.
50.
51.
52.
53.

54.
55.
56.
57.
58.

59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

70.

71.

72.

73.

74.

75.
76.

77.

78.

doi:10.1145/1294325.1294344

Kell S, Ansaloni D, Binder W, Marek L. The JVM is Not Observable Enough (and What to Do about It). Paper presented at: VMIL. ACM.
2012:33-38. doi:10.1145/2414740.2414747

Oracle. Java Virtual Machine Tool Interface (JVM TI). 2022. https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti

Oracle. The Java Virtual Machine Specification—Chapter 5. Loading, Linking, and Initializing. 2022. https://docs.oracle.com/javase/specs/
jvms/se19/html/jvms-5.html

Marek L, Kell S, Zheng Y, et al. ShadowVM: Robust and Comprehensive Dynamic Program Analysis for the Java Platform. Paper presented
at: ACM. 2013:105-114. doi:10.1145/2637365.2517219

GitHub. REST API. 2022. https://docs.github.com/en/rest

Borges H, Hora A, Valente MT. Predicting the Popularity of GitHub Repositories. Paper presented at: PROMISE. ACM. 2016.
doi:10.1145/2972958.2972966

Al-Rubaye A, Sukthankar G. Scoring Popularity in GitHub. Paper presented at: CSCI. 2020:217-223. d0i:10.48550/ ARXIV.2011.04865
Costa D, Andrzejak A, Seboek J, Lo D. Empirical Study of Usage and Performance of Java Collections. Paper presented at: ICPE. ACM.
2017:389-400. doi:10.1145/3030207.3030221

The JUnit Team. JUnit. 2022. https://junit.org

The Apache Software Foundation. Apache Maven Project. 2022. https://maven.apache.org

Zheng Y, Rosa A, Salucci L, et al. AutoBench: Finding Workloads That You Need Using Pluggable Hybrid Analyses. Paper presented at:
SANER. IEEE. 2016:639-643. doi:10.1109/SANER.2016.70

Docker. Docker. 2022. https://www.docker.com

Oracle. Class Arrays. 2022. https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/Arrays.html

Oracle. Interface IntStream<T>. 2022. https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/IntStream.html
Oracle. Interface Supplier<T>. 2022. https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/function/Supplier.html
Lea D, Goetz B, Sandoz P, Shipilev A, Kabutz H, Bowbee J. When to Use Parallel Streams. 2014. http://gee.cs.oswego.edu/dl/html/
StreamParallelGuidance.html

Shima H. WordNet Similarity for Java. 2022. https://github.com/dmeoli/WS4J

The Trustees of Princeton University. WordNet. 2022. https://wordnet.princeton.edu

Siri J. Amazon SQS Java Temporary Queue Client. 2022. https://github.com/awslabs/amazon-sgs-java-temporary-queues-client
Amazon Web Services. Amazon Simple Queue Service. 2022. https://aws.amazon.com/sqs

Hohpe G, Woolf B. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley Longman
Publishing Co., Inc.; 2003.

Chan A. Client Ledger Core DB. 2022. https://github.com/andrewkkchan/client-ledger-core-db

Goetz B, Bosboom J. Does Stream.forEach respect the encounter order of sequential streams? 2015. https://stackoverflow.com/a/34253279
Shangchuan Y. Customized precise short text search service. 2022. https://github.com/ysc/short-text-search

Prodonovich J. Pub/Sub Emulator for Kafka. 2022. https://github.com/GoogleCloudPlatform/kafka-pubsub-emulator

Google. Google Cloud Pub/Sub. 2022. https://cloud.google.com/pubsub

The Apache Software Foundation. Apache Kafka. 2022. https://kafka.apache.org

Bustamante P. CryptoMarket-Java. 2022. https://github.com/cryptomkt/cryptomkt-java

CryptoMarket. CryptoMarket. 2022. https://www.cryptomkt.com/en

Software Freedom Conservancy. Selenium. 2022. https://www.selenium.dev

Software Freedom Conservancy. WebDriver Capabilities. 2022. https://www.selenium.dev/documentation/webdriver/capabilities
Guava. Class ImmutableMap<K,V>. 2022. https://guava.dev/releases/snapshot-jre/api/docs/com/google/common/collect/
ImmutableMap.html

Mei H, Gray I, Wellings A. Integrating Java 8 Streams with The Real-Time Specification for Java. Paper presented at: JTRES. ACM.
2015:1-10. doi:10.1145/2822304.2822314

Biboudis A, Palladinos N, Fourtounis G, Smaragdakis Y. Streams a la carte: Extensible Pipelines with Object Algebras. Paper presented
at: ECOOP. LIPIcs. 2015:591-613. doi:10.4230/LIPIcs. ECOOP.2015.591

Kiselyov O, Biboudis A, Palladinos N, Smaragdakis Y. Stream Fusion, to Completeness. Paper presented at: POPL. ACM. 2017:285-299.
doi:10.1145/3009837.3009880

Ribeiro F, Ja S, Pardo A. Java Stream Fusion: Adapting FP Mechanisms for an OO Setting. Paper presented at: Brazilian Symposium on
Programming Languages. ACM. 2019:30-37. doi:10.1145/3355378.3355386

St-Amour V, Tobin-Hochstadt S, Felleisen M. Optimization Coaching: Optimizers Learn to Communicate with Programmers. Paper
presented at: ACM. 2012:163-178. d0i:10.1145/2398857.2384629

Monperrus M. Automatic software repair: a bibliography. ACM Comput. Surv. 2018;51(1):1-24. doi:10.1145/3105906

Monperrus M, Urli S, Durieux T, Martinez M, Baudry B, Seinturier L. Repairnator patches programs automatically. Ubiquity.
2019;2019:1-12. doi:10.1145/3349589

Weimer W, Nguyen T, Le Goues C, Forrest S. Automatically Finding Patches Using Genetic Programming. Paper presented at: ICSE. IEEE.
2009:364-374. doi:10.1109/ICSE.2009.5070536

Prokopec A, Rosa A, Leopoldseder D, et al. Renaissance: Benchmarking Suite for Parallel Applications on the JVM. Paper presented at:
ACM. 2019:31-47. d0i:10.1145/3314221.3314637

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

http://info:doi/10.1145/1294325.1294344
http://info:doi/10.1145/2414740.2414747
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti
https://docs.oracle.com/javase/specs/jvms/se19/html/jvms-5.html
https://docs.oracle.com/javase/specs/jvms/se19/html/jvms-5.html
http://info:doi/10.1145/2637365.2517219
https://docs.github.com/en/rest
http://info:doi/10.1145/2972958.2972966
http://info:doi/10.48550/ARXIV.2011.04865
http://info:doi/10.1145/3030207.3030221
https://junit.org
https://maven.apache.org
http://info:doi/10.1109/SANER.2016.70
https://www.docker.com
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/Arrays.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/IntStream.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/function/Supplier.html
http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html
http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html
https://github.com/dmeoli/WS4J
https://wordnet.princeton.edu
https://github.com/awslabs/amazon-sqs-java-temporary-queues-client
https://aws.amazon.com/sqs
https://github.com/andrewkkchan/client-ledger-core-db
https://stackoverflow.com/a/34253279
https://github.com/ysc/short-text-search
https://github.com/GoogleCloudPlatform/kafka-pubsub-emulator
https://cloud.google.com/pubsub
https://kafka.apache.org
https://github.com/cryptomkt/cryptomkt-java
https://www.cryptomkt.com/en
https://www.selenium.dev
https://www.selenium.dev/documentation/webdriver/capabilities
https://guava.dev/releases/snapshot-jre/api/docs/com/google/common/collect/ImmutableMap.html
https://guava.dev/releases/snapshot-jre/api/docs/com/google/common/collect/ImmutableMap.html
http://info:doi/10.1145/2822304.2822314
http://info:doi/10.4230/LIPIcs.ECOOP.2015.591
http://info:doi/10.1145/3009837.3009880
http://info:doi/10.1145/3355378.3355386
http://info:doi/10.1145/2398857.2384629
http://info:doi/10.1145/3105906
http://info:doi/10.1145/3349589
http://info:doi/10.1109/ICSE.2009.5070536
http://info:doi/10.1145/3314221.3314637

1792 ROSALES ET AL.
WILEY
79. Schiavio F, Rosa A, Binder W. SQL to Stream with S2S: An Automatic Benchmark Generator for the Java Stream API. Paper presented at:

80.
81.

82.
83.
84.
85.
86.

87.
88.

89.

90.

91.

92.

GPCE. ACM. 2022:179-186. d0i:10.1145/3564719.3568699

Biboudis A, Palladinos N, Smaragdakis Y. Clash of the Lambdas. 2014. doi:10.48550/arXiv.1406.6631

Kiselyov O, Biboudis A, Palladinos N, Smaragdakis Y. Stream fusion, to completeness. SIGPLAN Not. 2017;52(1):285-299.
doi:10.1145/3093333.3009880

Snyk. JVM Ecosystem Report 2021. 2022. https://snyk.io/jvm-ecosystem-report-2021

Snyk. JVM Ecosystem Report 2020. 2022. https://snyk.io/blog/jvm-ecosystem-report-2020

Renouf C. The IBM J9 Java Virtual Machine for Java 6. Apress; 2009:15-34.

Greevski N, Kielstra A, Stoodley K, Stoodley M, Sundaresan V. Java Just-in-Time Compiler and Virtual Machine Improvements for Server
and Middleware Applications. Paper presented at: VM. USENIX Association. 2004:12. https://dl.acm.org/d0i/10.5555/1267242.1267254
Fink SJ, Yahav E, Dor N, Ramalingam G, Geay E. Effective typestate verification in the presence of aliasing. ACM Trans. Softw. Eng.
Methodol. 2008;17(2):1-34. doi:10.1145/1348250.1348255

WALA Team. WALA. 2019. http://wala.sourceforge.net

Ma’ayan DD. The Quality of Junit Tests: An Empirical Study Report. Paper presented at: SQUADE. ACM. 2018:33-36.
doi:10.1145/3194095.3194102

Petri¢ J, Hall T, Bowes D. How Effectively Is Defective Code Actually Tested? An Analysis of JUnit Tests in Seven Open Source Systems.
Paper presented at: PROMISE. ACM. 2018:42-51. doi:10.1145/3273934.3273939

Hilton M, Bell J, Marinov D. A Large-Scale Study of Test Coverage Evolution. Paper presented at: ASE. ACM. 2018:53-63.
doi:10.1145/3238147.3238183

Tsantalis N, Mazinanian D, Rostami S. Clone Refactoring with Lambda Expressions. Paper presented at: ICSE. IEEE. 2017:60-70.
doi:10.1109/ICSE.2017.14

Nielebock S, Heumdiller R, Ortmeier F. Programmers do not favor lambda expressions for concurrent object-oriented code. Empir Softw.
Eng. 2019;24(1):103-138. doi:10.1007/s10664-018-9622-9

How to cite this article: Rosales E, Basso M, Rosa A, Binder W. Large-scale characterization of Java streams.
Softw: Pract Exper. 2023;53(9):1763-1792. doi: 10.1002/spe.3213

35190 SUOULLOD BAITER1D 3|ded ! ddke 31 Ag paueA0h 8.8 S9P1e YO B8N JO S3|NJ 0J AIq 1T 8UIIUO /8|1 UO (SUOIIPLOD-PUR-SLLLBIALIOD AS|IM ALe.q 1 BUIIUO//SANL) SUORIPUOD PLE S L 34} 35S *[£202/80/62] U0 Alqiaulluo A8 (1M ‘ouebin IpeLelSoAIUN €101 (d g AQ ETZE3dS/Z00T OT/10p/W0d 4| 1M Akeiq ! jpuluo//Sdny WOy papeo|umod ‘6 ‘€202 ‘X20L60T

http://info:doi/10.1145/3564719.3568699
http://info:doi/10.48550/arXiv.1406.6631
http://info:doi/10.1145/3093333.3009880
https://snyk.io/jvm-ecosystem-report-2021
https://snyk.io/blog/jvm-ecosystem-report-2020
https://dl.acm.org/doi/10.5555/1267242.1267254
http://info:doi/10.1145/1348250.1348255
http://wala.sourceforge.net
http://info:doi/10.1145/3194095.3194102
http://info:doi/10.1145/3273934.3273939
http://info:doi/10.1145/3238147.3238183
http://info:doi/10.1109/ICSE.2017.14
http://info:doi/10.1007/s10664-018-9622-9

	Large-scale characterization of Java streams
	1 INTRODUCTION
	2 BACKGROUND
	3 STREAM-ANALYZER
	3.1 Metric collection
	3.1.1 Stream creation
	3.1.2 Intermediate operation creation
	3.1.3 Stream execution

	3.2 Implementation

	4 CHARACTERIZING STREAMS
	4.1 Project selection
	4.2 Project analysis
	4.3 Data processing

	5 RESULTS
	5.1 Analysis- and project-related statistics
	5.2 Characterization
	5.3 Stream-related issues
	5.3.1 Empty streams
	5.3.2 Single-element streams
	5.3.3 Misuses of sorted-forEach-like patterns
	5.3.4 Inefficient streams in library code

	6 DISCUSSION
	7 THREATS TO VALIDITY
	8 RELATED WORK
	8.1 Empirical studies on the use of Java streams
	8.2 Analysis of Java streams
	8.3 Studies targeting unit tests in Java
	8.4 Studies on functional programming in Java

	9 CONCLUSIONS
	9.1 Summary of contributions
	9.2 Future work

	AUTHOR CONTRIBUTIONS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ACKNOWLEDGMENT
	ORCID
	REFERENCES

