
Stochastic actor oriented model with random
effects

Simulation based estimation, model evaluation, and
implementation of dynamic sets and multisets

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Giacomo Ceoldo

under the supervision of

Ernst C. Wit

July 2023

Dissertation Committee

Igor Pivkin Università della Svizzera italiana, Switzerland
Stefan Wolf Università della Svizzera italiana, Switzerland
Tom Snijders University of Oxford, United Kingdom
Alessandro Lomi Università della Svizzera italiana, Switzerland

Dissertation accepted on 20 July 2023

Research Advisor PhD Program Director

Ernst C. Wit Walter Binder, Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Giacomo Ceoldo
Lugano, 20 July 2023

ii

Abstract

This thesis advances the field of social network analysis by generalizing the stochas-
tic actor oriented model (SAOM) to allow for the inclusion of random effects,
so that the heterogeneity of the individuals can be modelled more accurately.
The method of moments estimation, with the model evaluation procedure that
are commonly used in the SAOM, are generalized to being able to estimate the
parameters of the model when there are random effects. A social network of
workers in a tailor shop has been analysed using the SAOM with random effects.
The focus of the analysis has been the comparison of different models, with or
without random effects, and the difference in the interpretation of the parame-
ters.

The algorithm developed for the SAOM has been studied in more detail in
a regression set up, also when the parameters are estimated with generalized
method of moments. The focus of the research has been on the comparison be-
tween different methods to increase the power of test statistics, when the statis-
tics used to estimate the parameters are correlated.

Algorithms that are used in social network analysis are often based on simu-
lating the underline network process, that is represented by a discrete dynamic
data structure. An efficient R implementation of sets and multisets, based on
hash tables, is discussed and applied to network processes whose state is repre-
sented by a set, and whose sufficient statistics are stored in a multiset.

iii

Acknowledgements

I would like to extend my deepest gratitude to my supervisor, Ernst Wit. Our
scholarly journey together, traversing the landscape of Bachelor’s, Master’s, and
now culminating in the Ph.D. thesis, has been an intellectually enriching and
transformative experience. Ernst’s consistent guidance has been an invaluable
help, supporting me at every step of my academic journey. His profound knowl-
edge and unwavering dedication have not only influenced the research I present
today, but have also shaped my growth as a scholar. His patience and commit-
ment have fostered an environment of learning and curiosity that has nurtured
my academic aspirations and have led me to the completion of this doctoral study.
It is under Ernst’s tutorship that I have explored the depths of our field and found
my own place within it. For this, I am deeply thankful.

Special thanks are due to Tom Snijders, who helped us greatly in developing
our generalization of the model. Your vast knowledge, keen insights, and unwa-
vering support have significantly enriched my academic journey. Your collabo-
rative spirit and dedication to the project were inspiring, and have undeniably
contributed to my success in this research.

To my colleagues and friends, I express my heartfelt appreciation for the mo-
ments we have shared. Your individual and collective inputs, criticisms, and
motivations have been instrumental in the completion of this study.

Lastly, I extend my appreciation to to everyone who indirectly contributed to
this project. This includes the members of the dissertation committee, to whom
I am grateful in advance for dedicating their time and applying their expertise to
the review of this thesis.

iv

Contents

Contents v

1 Introduction 1
1.1 Background material . 3

1.1.1 Stochastic actor oriented model 4
1.1.2 Mixed effect models . 5
1.1.3 Sets, multisets, and hash tables in the R language 6

1.2 Contributions . 7
1.3 Technical summary . 9

1.3.1 Random effects in the stochastic actor oriented model . . . 9
1.3.2 Generalizing methods to regression with mixed effects . . 13
1.3.3 Implementing sets and multisets in R 15

2 Stochastic actor oriented model with random effects 20
2.1 Introduction . 20
2.2 Stochastic actor oriented model with random effects 21
2.3 Estimation method . 25

2.3.1 Simulated method of moments with random effects 25
2.3.2 Summary estimation algorithm and implementation of the

simulating function . 28
2.3.3 Restricted models for the variance parameter 30

2.4 Model evaluation . 31
2.4.1 Score-type test for overdispersion 32
2.4.2 Standard errors for SAOM with random out-degree 34
2.4.3 Generalizations . 36

2.5 Analysing social interactions in a tailor shop 38
2.5.1 Kapferer’s tailor shop dataset 38
2.5.2 Definition estimated models 39
2.5.3 Estimation and interpretation of the results 40

v

vi Contents

2.5.4 Model comparison . 43
2.5.5 Out-degree activity and overdispersion in Tailor shop net-

work . 46
2.6 Overview and discussion . 47

3 Simulated method of moments in mixed effect models 49
3.1 Introduction . 49
3.2 Simulation based inference for mixed effect models 50

3.2.1 Regression with mixed effects 50
3.2.2 Simulated method of moments 52
3.2.3 Generalized method of moments 53
3.2.4 Approximation of derivatives in simulated inference 55

3.3 Simulation based estimation . 56
3.3.1 Stochastic and simulated gradient descent 57
3.3.2 Update state optimization . 58
3.3.3 Computation of the estimator and evaluation of convergence 60

3.4 Simulation based model evaluation 61
3.4.1 Monte-Carlo approximation of quantities for model evalu-

ation . 61
3.4.2 Score tests with Neyman’s orthogonalization procedure . . 64
3.4.3 Different orthogonalizations procedures 66
3.4.4 Orthogonalization in generalized method of moments . . . 67
3.4.5 Score tests on models with random effects 69

3.5 Poisson model with random effects and softplus link 71
3.5.1 Model . 71
3.5.2 Simulation study . 74

3.6 Conclusion . 75

4 Efficient implementation of sets and multisets in R using hash tables 78
4.1 Introduction . 78
4.2 Sets and multisets . 79

4.2.1 Mathematical definition . 79
4.2.2 Computational implementation 81
4.2.3 Semantic of hset . 83

4.3 Sets algebra . 85
4.3.1 Relations . 86
4.3.2 Operations . 89

4.4 Performance . 91
4.4.1 Relations . 91

vii Contents

4.4.2 Operations . 93
4.5 MCMC with state space of undirected graphs 95
4.6 Conclusion . 99

5 Conclusion 101

A Mathematical and computational background 103
A.1 Multivariable chain rule . 103
A.2 Derivative of a Gaussian r.v. with respect to its parameters 104
A.3 Semantics in R language . 104

Bibliography 106

Chapter 1

Introduction

An interconnected system is kept alive by the complex and dynamical structure
of relationships between who is part of the system. Network data science [42, 29],
particularly social network analysis [10], provides powerful tools to make sense
of these intricate networks of relationships among individuals. By modelling net-
works, we can gain a deeper understanding of collective behavior. In particular,
a model can be often viewed as a parametrized stochastic algorithm that sim-
ulates a network (or a sequence of networks, a process within a network, ...).
Simulation can be then used to select and evaluate a good model, in which the
simulated process mimics as much as possible the observed data.

A parametrized stochastic simulation algorithm is a method to sample from
a (parametrized) probability distribution. Statistical inference can be used to
estimate the parameters of this distribution, that is, to select one or some dis-
tributions among many, from the set of distributions defined by the model. In
simulated statistical inference [18] the parameters are adjusted until we are able
to simulate values which match on average the observed ones. In detail, a set of
functions called statistics, is assumed to summarize the “important" information
about the network. The set of statistics is used to define which characteristics
of the observed dataset should be matched on average by the simulated process.
In the simulated method of moments [39] this set of statistics is used to solve
stochastically an equation between their expected value, which depends on the
parameters, and the observed value of the same statistics, which are computed
from the dataset that is analysed.

The major contributions of this thesis are on the stochastic actor oriented model
[62, 60], known as the SAOM, which is one of the most used methods in social
network analysis. The SAOM is a dynamic network model in which the indi-
viduals (entities) have the ability to modify their connections to others based

1

2

on how much they like their “placement" in the overall network structure. The
model is very flexible in defining the linear evaluation function of the individuals.
This function encodes as a linear combination of statistics weighted by param-
eters, how much individuals “like" the possible configurations of connections.
The statistics, which in this context are usually called effects, can also depend
on attributes of the individuals, viewed as (independent, exogenous) covariates
of the network evolution. The connections are modified by stochastic choices,
to account for the element of randomness and uncertainty in how choices are
made by the entities (e.g., by humans). In a given moment, an individual has
the possibility to change one of its outgoing connections, the evaluation function
determinates the probability of the allowed choices. Consequently, the SAOM
provides a method for analyzing complex, evolving networks, offering valuable
insights into the mechanisms driving social interactions and network develop-
ment.

Our contributions partially address the current limitation in the frequentist
version of the SAOM, in which individuals are assumed to be homogeneous, in
the sense that two individuals would evaluate “equivalent placements" in the net-
work in the same way. Therefore they will also evaluate changes from “equivalent
configurations" in the same way. Mathematically, all individuals share the same
parameters (weights of the effects in the evaluation function), meaning that the
importance of each effect in the evaluation function is the same for everyone.
The homogeneity assumption is often reasonable when the attributes about the
individuals in the dataset characterize them well enough. So if the attributes
contain enough information, their inclusion as interaction effects with some sub-
graph counts can be enough to model accurately the observed dynamics. How-
ever, relevant attributes are not always available. Moreover, the researcher might
want to use a “simpler" evaluation function, with possibly much less effects com-
mon to all individuals, here considered heterogeneous in the sense that some of
the effects are modelled as random, meaning that every individual has its own
random parameter for the given effect. The price to pay for the dropping of
the homogeneity assumption is higher randomness in the model, causing more
variable estimates. There is then a dichotomy between considering a complex
social dynamics between homogeneous individuals, or a simpler social dynamics
between heterogeneous individuals. Therefore, the use of random effects can
provide different explanations for patterns that are modelled with the SAOM.
Our generalization is close “in spirit" to [57] and [55].

The simulation approach used in the SAOM to compute the solution of the
moment equation is very flexible, so some of its properties are discussed in this
thesis in the context of regression with mixed effects [46, 38]. The purpose is

3 1.1 Background material

to study the estimation algorithm that has been developed in parallel with the
SAOM, in different set-ups. The model evaluation part has been investigated
the most, mainly by discussing Neyman’s orthogonalization procedure [43] in
simulated inference based on, “standard" and “generalized" method of moments.
This procedure is used to derive test statistics with good power when the statistics
that are used to estimate the parameters with method of moments are correlated.
Different orthogonalization procedures have been compared with a simulation
study.

Many if not most limitations in network data science are computational. In
the definition of the model, which starts from specifying, and eventually imple-
menting, the algorithm which simulates the network dynamics, the computa-
tional complexity of the implementation must be taken into account. A large
component of network dynamics is often discrete in nature. The computational
representation of the current state of the process includes for example having
to store in memory sets of relations, or multisets of statistics such as the counts
of configurations used in the evaluation functions. When the updates to the
network are local (few elements are updated) these sets or multisets should be
updated quickly. We developed the hset package of the R language, of sets and
multisets that is based on the hash table data structure implemented in [11].
The implementation is efficient in computing some relations and operations in-
volving sets and multisets, as values in an hash table can be included, excluded,
accessed and modified in constant time.

In Chapter 2 the SAOM with random effects is explained in detail. The study
of its estimation algorithm in regression with random effects is discussed in Chap-
ter 3, which is based on [17]. Finally, our R implementation of sets and multisets
is discussed in Chapter 4, based on [16] Section 1.1 of this chapter describes
some background material that is helpful to understand the other chapters. The
contributions of our research are summarized in Section 1.2. In Section 1.3, the
content of the Chapters 2, 3, and 4, is summarized in detail.

1.1 Background material

In this section, some background material that is useful to understand the fol-
lowing chapters is introduced.

4 1.1 Background material

1.1.1 Stochastic actor oriented model

The stochastic actor oriented model (SAOM) provides a way of understanding the
dynamics of longitudinal social networks. It is rooted in the concept that indi-
viduals have the capacity to adjust their relationships with others based on their
satisfaction with their current position within the network structure. The net-
work evolution is modelled as a Markov chain over the state space of all possible
networks of relations between the individuals in the study. Each actor or entity
in the network can control its outgoing relations. Transitions in state space can
happen when an actor has the possibility to modify one of its outgoing relations.

For a network of N nodes, the state space of the process is X ∼= {0,1}N(N−1).
The probability of transitions are defined by specifying the linear evaluation func-
tion ui : X → R, such that ui(x) = β⊤si(x), for each individuals i ∈ {1, ..., N}.
The evaluation function is a linear combination of the effects in si(x), that are
typically counts of sub-graphs of which individual i is part of, weighted by a pa-
rameter vector β . The effects may also be interactions between sub-graph counts
and individual attributes, acting as exogenous, independent variables. These at-
tributes, viewed as covariates, could be characteristics of the actors like age, gen-
der, or other relevant properties. This flexibility in defining the effects, and so
the evaluation function, enables the model to be applied across diverse network
analyses.

The evaluation function ui determinates the probability that the network tran-
sition from the current state x0 to x , when individual i has the opportunity to
modify the network. In the SAOM the probability is

P(x |i, x0) =
eui(x)I(x ∈A i(x0))
∑

ξ∈A i(x0)
eui(ξ)

, (1.1.1)

where A i(x0) is the set of networks that differs from x0 in at most one tie that
starts from i.

The temporal dynamics of the SAOM is regulated by the rate functions, λi(t)
for i ∈ {1, ..., N}. The function λi(t) determines how frequently actor i has op-
portunities to modify its outgoing ties at a given time t. Oftenλi(t) = λ (constant
rate) for all i and t, between two consecutive observations. The opportunities
are assumed to arise by sampling for actor i ∈ {1, ..., N} a random exponentially
distributed time with rate λi(t). The actor for which the sampled time is lower
has the opportunity to change the network. The rate functions therefore dictate
the frequency of network updates and control the overall pace of the network
evolution.

5 1.1 Background material

The method of moment estimation, in which the estimated parameter is the
one for which the expected value of a set of statistic is equal to the observed one,
is often used in the SAOM for computational reasons. In the following x (0) and
x (1) denote the observed network of relations at times 0 and 1, respectively. For
a given vector of parameters, the process can be simulated with starting point
x (0), the simulated value x̂ (1), can be compared with x (1) to adjust the pa-
rameters, until the effects of the simulated networks are equal on average to the
effects of the observed one. In this way, the moment equation is solved stochas-
tically. Simulation (from the estimated parameter) is also used for the model
evaluation procedure where the quality of the estimate is assessed, for example
by computing standard errors, or by testing statistical hypothesis of irrelevance
of some effects.

Over the years, the SAOM has been employed across various research fields
due to its ability to model complex and evolving networks. In social science, the
SAOM has been utilized to study friendship networks among adolescents, help-
ing to shed light on how such networks develop and change over time [66]. In
organizational studies, the model has been used to analyze communication or
collaboration networks within and across organizations, revealing insights into
factors driving information exchange and teamwork [36]. Additionally, in health
research, the SAOM has been applied to understand the spread of health-related
behaviors, such as smoking or exercise, across social networks [54]. The flexi-
bility and comprehensiveness of the SAOM makes it a powerful tool for under-
standing the evolution and dynamics of various types of social networks.

1.1.2 Mixed effect models

A mixed effect model [46, 38] is a statistical model in which some “fixed" param-
eters are shared across all experimental units, while other “random" parameters
can vary. A regression with mixed effects extends the “usual" regression by includ-
ing mixed effects in the linear predictor. In formulas

Y ∼ Dist(µ(η)), η= Xβ + Z v, v ∼ Norm(0, In ⊗Σ(θ)), (1.1.2)

where the fixed parameters are β and θ , µ is a function that maps uniquely the
linear predictor to the parameters of the distribution Dist of the response Y , v
contains the random parameters of all n individuals in the study and its variance
is parametrized by the function Σ.

The fixed parameters of a mixed effect are shared by all individuals in the
population, and they are typically the primary interest of the analysis. On the

6 1.1 Background material

other hand, the random parameters are used to model the intrinsic variability be-
tween the individuals in the population that is studied, specified by the function
Σ. So the random parameters can be used to account for the fact that the ob-
servations, differently then in the “usual" regression, can be dependent because
there might be multiple observations of the same individual.

Various methods can be used to estimate the parameters in a mixed effect
models. The main R package to fit mixed effect models, called lme4 [5], uses
maximum likelihood and restricted maximum likelihood (REML). The methods
that we use mimic the method of moment estimation algorithm of the SAOM
[62] and its generalized version [1].

1.1.3 Sets, multisets, and hash tables in the R language

Sets and multisets are defined as unordered collections of elements. The difference
between them is that for sets the number of times an element is contained in
the collection (multiplicity) is irrelevant: an element is either in or out a set.
For multisets, the multiplicity of elements is extended to strictly positive real
numbers, so they can be viewed as weights of the elements.

The mathematical concept of set and multiset, when viewed as dynamic con-
tainer of elements, can be implemented efficiently using an hash table, that is a
data structure containing key-value pairs, which can be viewed also as maps from
keys to values. An hash function is used to compute an index into an array of
buckets or slots, which contain the values. The goal of a hash function is to dis-
tribute the keys as uniformly as possible across the array. So the keys are mapped
to indices of an array that contain the values. An ideal hash function generates
unique output (index in the array) for every unique input, but most hash func-
tions used in practice can produce hash collisions, in which different inputs are
mapped to the same output. Hash tables offer fast average-case time complexity
for search, insert, and delete operations, although the efficiency depends on the
hash function used.

In the R programming language, hash tables from the package hash [11] have
reference semantics. This is the behaviour in which computational objects are ma-
nipulated indirectly through their memory addresses or references, rather than
through the objects themselves. This approach is efficient in memory manage-
ment, especially for mutable data structures like hash tables. When an operation
involves the modification of a few key-value pairs, reference semantics ensures
that only the memory locations corresponding to these pairs are updated. This
selective updating of memory contributes to speedy operations, as it eliminates
the need for unnecessary memory alterations or duplications.

7 1.2 Contributions

In various programming languages, like C++ and Java, set and multiset data
structures are usually implemented using a hash table. These are commonly re-
ferred to as unordered sets and unordered multisets due to the absence of a specific
sequence order in which elements are stored. This arrangement doesn’t corre-
spond to any inherent notion of “order" in the mathematical definitions of sets
and multisets, which are defined as unordered collections. Thus, data structures
like ordered sets, which are typically implemented using red-black trees instead
of hash tables, can also appropriately represent the mathematical concept of a
set, regardless of the ordered storage of their elements.

1.2 Contributions

In this section the contributions described later in the thesis are summarized.

Stochastic actor oriented model with random effects.

• The evaluation function of the stochastic actor oriented model is general-
ized so that some effects can be random: with individual specific random
parameters.

• Method of moments estimation procedures of the SAOM is adapted by in-
troducing a new moment equation in the system, so that the variance of the
random effects can be estimated with the other fixed parameters. This new
equation provides a way to update the variance parameter in the stochastic
optimization algorithm (Robbins-Monro) used to estimate the parameters
(solve the system of moment equations), but the positive definiteness of
the variance parameter has to be enforced.

• The model evaluation procedure generalizes the score test used in the
SAOM to test the null hypothesis in which one effect is not statistically
significant. The generalization of the theory is described for hypotheses of
overdispersion of an effect, in which under the null the considered effect
is not random, focusing of the important example of a random out-degree
effect.

• The computation of the standard errors of the estimates is also discussed,
for models with independent random effects (diagonal variance parame-
ter).

8 1.2 Contributions

• Evaluation of score tests and standard errors require the approximation of
the derivative of the statistics with respect to the fixed parameters (rate,
evaluation and variance random effects). This derivative is computed by
using the chain rule, where the variance parameter is mapped first to the
individual random parameters, which are then used to simulate the model,
and so their contribution to the score function can be computed as if they
are fixed parameters.

• The quality of the developed model and the interpretation of the estimated
parameters is discussed in an application using the Kapferer’s Taylor Shop
dataset. The emphasis is in the difference between a model with only fixed
effects, but a more complicated dynamics (inclusion of out-degree activity
effect), and a model with the random out-degree, and so heterogeneous
individuals.

Simulated method of moments in mixed effect models

• Iterative estimation algorithms based on simulation of the model from the
generative process are studied in the method of moments framework and
in its generalized version.

• The Neyman’s orthogonalization procedure that is used to increase the
power of statistical tests when the statistics are correlated, is discussed
in detail, and in the generalized method of moments.

Efficient implementation of sets and multisets in R using hash tables

• Sets and multisets of numbers (R objects of type numeric and length 1)
are implemented in R using an hash table from the package hash.

• The implementation provides an interface specified by the S4 class hset,
in which sets and multisets can be accessed and manipulated by hiding the
details of the implementation.

• The computational advantages of this implementation are evident when
sets or multisets are viewed as dynamic “containers", as the hash table
data structure allows the possibility to include, exclude or access elements
in constant time. The performances are compared with the library sets.

9 1.3 Technical summary

1.3 Technical summary

In this section, the content of the following chapters is summarized by discussing
“directly" the relevant topics of the chapters. Therefore context and background
material, that will be given in the chapters, are not discussed here, as the goal
is to describe in a brief but detailed way the research contributions explained in
length later in the thesis.

1.3.1 Random effects in the stochastic actor oriented model

Chapter 2 focuses on addressing one of current limitations in the SAOM: the
assumption that all individuals share the same evaluation function. The assump-
tion, that limits the model’s ability to account for the heterogeneity of individuals,
is dropped by allowing some effects to be random, as described below.

The evaluation function is the main component of the SAOM, as it specifies
how much the individuals like their “placement" in the network. Consequently,
when individual i has the opportunity to modify something in the network x0,
the function determinates the probabilities of the allowed modifications, as

P(x |i, x0) =
eui(x)I(x ∈A i(x0))
∑

ξ∈A i(x0)
eui(ξ)

, (1.3.1)

where the function ui is defined below, and A i(x0) is the set of networks that
differs from x0 in at most one tie that starts from i.

As the evaluation function is linear, it can be decomposed into a fixed part
(current evaluation function of the SAOM), and a random part with individual-
specific random parameters, with variability that is determined by one or more
variance parameters. In formulas, with si(x) and ri(x) vectors of statistics sum-
marizing the placement of i in the network x , the linear evaluation function of
the SAOM is generalized as

ui(x) = β
⊤si(x) + b⊤i ri(x) =

p
∑

k=1

βksik(x) +
q
∑

h=1

bihrih(x), (1.3.2)

where the first component parametrized byβ ∈ Rp is the current evaluation func-
tion used in the SAOM, whereas the “new" second component uses as weights
the individual-specific random parameter bi ∈ Rq with distribution

bi ∼N (0q,Σ), (1.3.3)

10 1.3 Technical summary

where the q-dimensional positive definite matrix Σ is a parameter that has to be
estimated (together with β), and each bi is an independent sample. An impor-
tant example that will be described in detail, is the model with random out-degree,
which relaxes the assumption that all individuals in the network would like to
have the same number of outgoing connections, other things being equal. In this
model, q = 1, si1(x) = ri1(x) is the out-degree of actor i, and so the evaluation
function can be written as

ui(x) = (β1 + bi)si1(x) +
p
∑

k=2

βksik(x), (1.3.4)

where bi ∼N (0,σ2) i.i.d., σ2 ∈ (0,∞).

The method of moment estimation method, that is the most used one in the
frequentist version of the stochastic actor oriented model, is generalized by in-
cluding the moment equations necessary to estimate the (positive definite) vari-
ance of the random effects with all other parameters. Assuming that there are
two observed networks x (t1) and x (t2), in the model with random out-degree,
the moment equation that is included in the system for σ2 is

E
� N
∑

i=1

�

si1(X(t2))− s̄1(X(t2))
�2
�

�

� x (t1)
�

=
N
∑

i=1

�

si1(x (t2))− s̄1(x (t2))
�2

, (1.3.5)

where the expected value depends onβ ,σ2, and the rate parameters. The system
of moment equations is solved stochastically with the Robbins-Monro algorithm,
each iteration consists of two main steps. The network is first simulated from
the current parameters. Then, the difference between the statistics (used in the
moment equations) computed in the simulated and observed networks, is used
to update the parameters.

In our generalization of the Robbins-Monro algorithm, the first step is modi-
fied by including the sampling of the random parameters before simulating the
network with the SAOM. The second step of the iteration is similar to the orig-
inal one, however the positive definiteness of the variance parameter must be
enforced. In the model with random out-degree, the network x̂ is simulated as

bi ∼N (0,σ2), then x̂ ∼ S (β , b). (1.3.6)

The update step for the variance parameter is

σ2←−max
�

σ2 − ζd
�

ŵ(β , b(σ2))−w
�

, σ2
min

�

, (1.3.7)

11 1.3 Technical summary

where w is the right hand side of equation (1.3.5), ŵ(β , b(σ2)) is a simulated
value that is an unbiased estimate of the left hand side of (1.3.5), ζ and d are
positive values, σ2

min > 0 is the minimum allowed value for σ2 in the optimiza-
tion.

The model evaluation part required more substantial modifications than the
estimation method. We describe how to compute the variance of the estimator,
and how to test the null hypothesis H0 : σ2 = 0 of the absence of overdispersion in
the out-degree, against H1 : σ2 > 0 with a score-type test. The combination of the
estimation functions for β ∈ Rp and σ2 is denoted by g (x) = (s(x), w(x)), the
estimated parameter under the null is β̂ . Developing a score-type test statistic
with good power, requires however the ability to approximate the (p + 1) × p
dimensional Jacobian matrix

J(β̂) =
∂ Eβ(g (X))

∂β⊤

�

�

�

β=β̂
= Eβ
�

g (X)
∂

∂β⊤
log f (X | β)
�

�

�

�

β=β̂
, (1.3.8)

where f (x | β) is the probability mass function of the network x for parameter
β . This derivative is approximated with Monte-Carlo integration as

Ĵ(β̂) =
1
T

T
∑

t=1

(ĝt − g)l̂t, (1.3.9)

where ĝt, g ∈ Rp+1 are the simulated and observed statistics, respectively, and
l̂t ∈ R1×p are, respectively, the simulated statistics and the row-vector of contri-
butions to the score function, that is the simulated version of ∂ log f (X | β)/∂β⊤.
For the model evaluation procedure, the quantities ĝt and l̂t are computed from
networks simulated from the estimated parameter.

A test statistic for H0 obtained orthogonalizing the statistics w(X) and s(X) is

Y (β̂) = w(X)− Γ (β̂)s(X), Γ (β̂) = J2(β̂)J1(β̂)
−1, (1.3.10)

where the Jacobian J(β̂) is decomposed in the block J1(β̂), and the bottom row
J2(β̂). The p-value for the test is then computed as

α̂=
1
T

T
∑

t=1

I(ŷt > y), (1.3.11)

where y = w − Γ̂ s and ŷt = ŵt − Γ̂ ŝt are the observed and simulated (from
values in iteration t) test statistics, respectively, and Γ̂ is the matrix computed
from Ĵ(β̂).

12 1.3 Technical summary

The estimated parameter (β̂ , σ̂2) for the model with random out-degree,
computed with method of moments, has asymptotic covariance

Ĉ(β̂ , σ̂2) = Ĵ(β̂ , σ̂2)−1V̂(β̂ , σ̂2)Ĵ(β̂ , σ̂2)−⊤, (1.3.12)

where the matrices V̂ and Ĵ are Monte-Carlo approximations of

V(β̂ , σ̂2) = Eβ̂ ,σ̂2

�

(g (X)− Eβ̂ ,σ̂2(g (X))(g (X)− Eβ̂ ,σ̂2(g (X))⊤
�

,

J(β̂ , σ̂2) = Eβ ,σ2

�

g (X)
∂

∂ (β⊤ σ2)
log f (X | β , b(σ2)

�

�

�

�

β=β̂ ,σ2=σ̂2
.

(1.3.13)

The derivative of the log-density can be written as

∂

∂ (β⊤ σ2)
log f (X | β , b(σ2)) =

∂

∂ (β⊤ σ2)
log f (X , u | β ,σ2) =

=
�

∂

∂ (β⊤ b⊤)
log f (X | β , b)
�

�

∂

∂ (β⊤ σ2)

��

β

σ2

�

7→
�

β

b

���

,
(1.3.14)

with b = σ2u, because the density of u does not depend on the parameter. The
derivative of the function (β ,σ2) 7→ (β , b) is a (p+ N)× (p+ 1) block diagonal
matrix, with top-right and bottom-left blocks equal to Ip and b/2σ2, respectively.
The matrix J(β̂ , σ̂2) is then approximated as

Ĵ(β̂ , σ̂2) =
1
T

T
∑

t=1

�

(ŝt − s)l̂βt
1

2σ̂2 (ŝt − s)l̂btbt

(ŵt −w)l̂βt
1

2σ̂2 (ŵt −w)l̂btbt

�

, (1.3.15)

where (ŝt, ŵt) = gt is simulated from (β̂ , bt), bt is simulated from σ̂2, l̂βt and
l̂bt are the contribution to the score functions of the parameters β and b, respec-
tively, for the simulated network in iteration t.

We assess the SAOM with random out-degree in the Kapferer’s Tailor Shop
dataset. This longitudinal network comprises two waves with 39 individuals
of varying status (low or high). The out-degree frequencies exhibit significant
variability, suggesting the presence of a random out-degree effect. The (fixed)
out-degree activity effect also contributes to explaining this observed variability.
However, estimating a model that includes both out-degree activity and random
out-degree is unfeasible due to optimization convergence issues. The quality
of various models has been checked with score tests between pairs of “nested"
models. Also from this procedure, the two best models are the ones containing
all effects considered in the analysis, and either one of out-degree activity, or

13 1.3 Technical summary

random out-degree, but not both simultaneously. These two models cannot be
directly compared and provide distinct interpretations of individuals’ behavior
in tie formation or dissolution. In the model with a positive estimated param-
eter for out-degree activity, individuals with large out-degree are more likely to
form ties. Conversely, random out-degree is interpreted as capturing the het-
erogeneity among individuals in their preference for forming different number
of ties. Incorporating random effects increases the variability of the underlying
stochastic process, so higher standard errors are the price to pay for dropping
the homogeneity assumption. In this dataset however, the number of simulated
tie flips necessary to simulate a network “similar" to the observed one is lower
on average when the random out-degree is included Therefore, the random ef-
fect aids in achieving a more parsimonious dynamics, characterized by a reduced
number of transitions.

1.3.2 Generalizing methods to regression with mixed effects

Chapter 3 extends the generalization of the SAOM to linear models with mixed
effects. The aim here is to explore the properties of these models and gain a
deeper understanding of their capabilities and potential applications.

Part of the statistical analysis consists in estimating the values of the fixed
parameters β ∈ B = Rp and θ ∈ T ⊆ Rr , for the mixed effect model defined as
in equation (1.1.2). For the method of moment, and the generalized method of
moment procedures defined in the chapter, a vector of statistics for the parameter
is s = (sβ , sθ), whose components are defined as

sβ(y) = (X
⊤X)−1X⊤ y ∈= Rp,

sv = (Z
⊤Z)−1Z⊤(y − Xsβ(y)) ∈ Rqn,

sΣ =
1
n

n
∑

j=1

(sv j − s̄v)(sv j − s̄v)
⊤ ∈ S+q ,

sθ (y) =Σ
−1(sΣ) ∈ Rr ,

(1.3.16)

where sv j contains the elements of sv in positions from (q− 1) j + 1 to q j, with q
as the number of random effects, and s̄v is the mean of sv j across individuals j.

For α = (β ,θ) ∈ A ⊆ Rd , with d = p+ r, method of moments estimators are
defined as the solution of

L(Eα(s(Y))− s(y)) = 0d , (1.3.17)

14 1.3 Technical summary

where L ∈ Rd×d ′ is a full rank matrix, and s is a d ′ dimensional vector of statistics,
with d ′ = d in the “usual" method of moments, and d ′ > d in the generalized
version. The equation is solved stochastically with the iterative algorithm

α←− proj(α− εH L(s(Y)− s(y)),A), (1.3.18)

where Y is the simulated response variable from the current value α of the pa-
rameter, y is the observed response variable, ε and H are the learning rate and
the preconditioning matrix of the algorithm, L is defined by the moment equation
that is solved. Its optimal value is L∝ GV−1, where

G = Eα∗(∂ (Eα(s(Y))− s(y))/∂ α⊤) ∈ Rd ′×d ,

V = Eα∗((Eα(s(Y))− s(y))(Eα(s(Y))− s(y))⊤) ∈ S+d ′ ,
(1.3.19)

and α∗ is the real value of the parameter. In practise L is set at the beginning of
the algorithm by approximating with simulation G and V with the corresponding
values at the starting parameter α0. After the initial time period until iteration
b, in which the iterative process (1.3.18) has not yet reached stationarity, the
values αk, for k ∈ {b+ 1, ..., mest} are averaged to compute the estimator

α̂=
1

mest − b

mest
∑

k=b+1

αk. (1.3.20)

The matrices G and V defined in (1.3.19) are estimated with

Ĝ =
1

msim

msim
∑

k=1

�

�

s(Yk(ζk))− s(y)
�

� ∂

∂ ζ⊤k
log p(Yk(ζk)|ζk)

�∂ fk(α)
∂ α⊤

�

�

α=α̂

�

, (1.3.21)

and

V̂ =
1

msim

msim
∑

k=1

�

s(Yk(ζk))− ŝ
��

s(Yk(ζk))− ŝ
�⊤

, (1.3.22)

respectively, where for mixed effect models ζk = fk(β̂ , θ̂) = (β̂ , vk) ∈ B × Rqn,
with vk sampled from θ̂ , and ŝ is the mean of the msim simulated statistics. These
matrices are used to compute the covariance of α̂, and to evaluate test statistics
on the fixed parameters. In particular, test statistics for α, when the parameter
is estimated with method of moments, are derived from

wk = s2(Yk)− Λ̂s1(Yk),

w= s2(y)− Λ̂s1(y),
(1.3.23)

15 1.3 Technical summary

that are the simulated (at iteration k) and the observed test statistics, respec-
tively, where Λ̂= Ĝ21Ĝ−1

11 according to the decomposition of s (and G) as

s =

�

s1

s2

�

, G =

�

G11

G21

�

, (1.3.24)

with s1 that is used to estimate the parameters under the null, and s2 that is as-
sumed to contain information about the hypothesis that is tested. We generalized
the statistic wk to

w′k = s2(Yk)− Λ̂′(s′1(Yk)− b̂1), b̂1 = ŝ′1 − s′1(y), (1.3.25)

where ŝ′1 is the mean of the simulated statistics that are used to estimate the
model with generalized method of moments. The use of the estimated “bias"
b̂1 is necessary because under the alternative hypothesis the simulated statistics
are not equal to the observed ones on average, as only the linear combinations of
them determined by L, are equal on average. Moreover, Λ̂′ is computed using the
left inverse of Ĝ′11, rather than the inverse, because with generalized method of
moments the number d of parameters under the null is smaller than the number
d ′ of statistics that are used to estimate them.

A simulation study has been done to check whether and how much the or-
thogonalization procedure is useful to increase the power of the test. We found
that orthogonalization is useful when the statistics s1 (or s′1) that are used to
estimate the parameters are correlated with s2 from which the test statistic is
derived. If there is no correlation between the statistics, orthogonalization re-
duces the power of the test because of the new variability introduced on the test
statistic by using the approximated Λ̂ and the simulated s1(Yk).

1.3.3 Implementing sets and multisets in R

Chapter 4 addresses a more computational aspect: an efficient implementation
in the R language of sets and multisets, which can be used as containers in al-
gorithms. We present the R package, hset, which offers an implementation of a
class for sets and multisets of numbers.

The S4 class hset specifies an interface in which sets and multisets can be
manipulated. It contains two slots, the first with the hash table that contains
the elements (and multiplicities for multisets), the second one contains the in-
formation about whether the object is a set, or a multiset. The elements that
can be stored in our implementation are either numbers, or sets of numbers.

16 1.3 Technical summary

Mathematically, the set S of possible sets that can be stored is recursively defined
as

X = {a1, a2, ...} ∈ S,

ai ∈ S⊎ N,
(1.3.26)

where N is the set of numeric vectors of length 1, without some values such as
Inf, that are excluded. Multisets are defined similarly.

The hash table from the package hash uses C, that denotes here the set of
character vectors of length one, as the set of possible keys. So elements can be
encoded as keys by the injection k : S⊎N→ C, which labels uniquely each possible
element that is “allowed" in our implementation. For sets, the value associated
with the key ki = k(ai) is "" when ai is contained in the set, otherwise ki is
not the key of a pair in the table. The element ai is contained in the multiset
with multiplicity mi > 0, if the pair (ki, mi) is contained in the hash table that
implements the multiset.

The inclusion relation between an element a and a set X defined mathemati-
cally as

∈: (N⊎ S)× S, a ∈ X ⇐⇒ X = {a, ...}, (1.3.27)

and the inclusion relation between an element a and a multiset Y , parametrized
by the multiplicity m and the type of relation ∼, defined mathematically as

∈m
∼: (N⊎ S)× M, a ∈m

∼ Y ⇐⇒ Y = {a[n], ...}, m− n∼ 0, (1.3.28)

can be both evaluated by a predicate with signature

C× (S⊎ M)× N+ × {≤,<,=} → {TRUE,FALSE}, (1.3.29)

where N+ = N∩ (0,∞). The four arguments of the predicate are the label of the
element, the set or the multiset of which the element might be in relation to, the
multiplicity, and the type of the relation, respectively. The last two arguments are
ignored when the second one is a set. Subset relations of different types between
two sets or multisets are evaluated by a predicate with signature

(S⊎ M)× (S⊎ M)× {TRUE,FALSE} × {TRUE,FALSE} → {TRUE,FALSE}, (1.3.30)

where the third and fourth arguments specifies whether the inclusion relation is
strict and exact, respectively. The fourth one is used only if one of the first two
arguments is a multiset.

The five operations of intersection, union, difference, symmetric difference and

17 1.3 Technical summary

sum, have all signature

≈: (S⊎ M)× (S⊎ M)∗→ (S⊎ M), (1.3.31)

where Z∗ = ⊎k≥0Z k. These five operations are all implemented by functions with
the common signature

(S⊎ M)× (S⊎ M)∗ × {"refer","value"} → (S⊎ M), (1.3.32)

where the second argument contains all operands except the first one, and the
third argument specifies the semantic. These five functions are all computed
using only two basic functions with signature

S× S∗ × (B∗→ B)× B× {"refer","value"} → S,

(S⊎ M)× (S⊎ M)∗ × ((N+ ⊎ 0)∗→ N+ ⊎ 0)× B× {"refer","value"} → M,
(1.3.33)

in the case in which all operands are sets, or in the case in which at least one
operand is a multiset, respectively. In the signatures above, B = {TRUE,FALSE}.
The third argument of these functions specifies which of the five operations is
considered. The fourth argument is the identity element of the operation, that is
the universe set or multiset for the intersection, and the empty set or multiset for
all other operations. The identity element determinates whether it is necessary to
cycle through all elements of the first operand in order to either compute the re-
sult (value semantic), or to transform the first operand into the result (reference
semantic).

The performance of our implementation are compared with the package sets
[40]. Relations between an element and a set can be evaluated in constant time
with respect to the size of the set. For inclusion relations the computational
complexity is linear with respect to the size of the first component of the relation,
but constant with respect to the size of the second one. On the other hands in
sets, the computational complexity for evaluating whether an element is included
into a set is linear with respect to the size of the set. For binary operations, when
the identity element is the empty set (union, difference, symmetric difference,
sum) and reference semantic is used, the computational complexity to modify
the first operand into the result of the operation is constant with respect to the
size of the first operand, and linear with respect to the size of the second one,
allowing an important speed up when the first operand is large. Whereas in sets
the computational complexity for computing the result is linear in the size of the

18 1.3 Technical summary

largest operand, as it is in our implementation if reference semantic is not used.
For evaluating the intersection between two sets our implementation does not
provide an advantage, as evaluating this operation requires traversing through
all elements of the first operand, which is assumed here to be the largest. The
same analysis is valid when multisets are used instead of sets.

Markov processes can have a state space that is discrete or partially discrete.
An example, is a process with state (X t , Zt) ∈ X ×Z , where X t is the set of edges
of a graph and Zt is the multiset that contains the degree frequencies (number
of nodes with given degree), that is a statistic, of the same graph. The network
process evolves by tie flips in which one non-edge becomes an edge, or the oppo-
site. In particular, a tie flip is proposed, and accepted with probability computed
with the Metropolis-Hastings ratio of probability distributions over graphs. The
distribution used in this example is the beta model

P(X = x |β) =
∏

1≤i< j≤n

eβi+β j

1+ eβi+β j
, (1.3.34)

where βi ∈ R is the parameter for the vertex i ∈ {1, ..., n}. Over time, the process
converges to its stationary distribution that depends on the parameter β ∈ Rn.

The set of proposed flips F is used to compute the set IF of vertices that are
part of at least one proposed tie flip, and the proposed degrees d̃i for i ∈ IF . If
the flip is accepted, the state of the process is updated as

X t+1←− X t △ F,

Zt+1←− (Zt − {di[mi] : i ∈ IF}) + {d̃i[m̃i] : i ∈ IF},
(1.3.35)

where m̃i and mi are the multiplicities of proposed d̃i and current di degrees re-
spectively, for i ∈ IF . The update uses the symmetric difference (xor) operation
△ : S×S→ S between sets, with the sum+ : M×M→ M and difference− : M×M→ M

between multisets. In our implementation, if X t and Zt are used as first operand
of the respective operations with reference semantics, the complexity of these
three operations will not depend on the size of X t and Zt , but only on the size
of F and of IF , where |IF | ≤ 2|F |. So the complexity for updating the state is
O(|F |). The updates in equation (1.3.35) can be coded in our implementation

19 1.3 Technical summary

with reference semantic as

state$edge.set %xor% hset(flips$id)

state$degree.frequencies %-% hset(names(table.old.degrees),

as.integer(table.old.degrees))

state$degree.frequencies %+% hset(names(table.new.degrees),

as.integer(table.new.degrees))

(1.3.36)

where state$edge.set and state$degree.frequencies are hset objects rep-
resenting X t and Zt respectively, the constructor hset is used to create the set F
(with default second argument), and the multisets (with multiplicities as second
argument) containing the updates for the degree frequencies.

Chapter 2

Stochastic actor oriented model with
random effects

2.1 Introduction

Modeling the behavior of a group of people when interactions between them
emerge and dissolve, is one the most ambitious goals of social network analysis.
The first overview of statistical models used to analyze social network data ap-
peared in the 1990s [72], following pioneering work on the quantitative study
of social networks in the 1970s [e.g. 26, 27]. During this development, various
basic continuous-time Markov chains were proposed to describe the evolution of
a social network under a number of simplifying assumptions [71]. This formed
the basis for the stochastic actor-oriented model for network change [59, 60, 62],
which has become known as the SAOM. The SAOM parametrizes the evolution
of the stochastic network of relations. The parameters of the model quantify how
much a given configuration of the network, called effect, influences the choice of
forming or dissolving ties. These parameters are shared by all actors, so differ-
ences between individual rules of network change have to be defined by means
of observed covariates.

The study of social behaviour often either focuses on modelling the choices
of heterogeneous actors in a relatively simple environment, or on modelling the
choices of relatively homogeneous actors in a complex environment. The gener-
alization we are proposing is to allow some parameters to be random, to model
more accurately the heterogeneity of the actors in the choices they make. The
heterogeneity of the actors is then parametrized by the variance of the random
parameters.

In Section 2.2, longitudinal network data are introduced along with the stochas-

20

21 2.2 Stochastic actor oriented model with random effects

tic actor oriented model. The SAOM with random effects is discussed as gener-
alization of the standard SAOM, following a formulation of the model similar
to Schweinberger [55]. As an example we describe a model with random out-
degree.

The estimation method described in Section 2.3 is an extension of the Robbins-
Monro algorithm that is used in the “standard” SAOM, the main difference being
that the positive definiteness of the variance parameter must be enforced. Vari-
ous alternatives for modelling the variance parameter when there is more than
one random effect are discussed, together with various other topics relevant to
the estimation algorithm. Finally it is explained how to estimate the model with
random out-degree using the current implementation of the SAOM.

Section 2.4 explains how to test hypotheses on the variance parameters and
how to compute the standard error of the estimates. The theory is described in
detail for the hypothesis of overdispersion, i.e., heterogeneity in the out-degrees
of the actors not explained by the model with fixed effects only. It is also shown
how to compute the standard error of the estimated parameters in this model.

In Section 2.5 we apply the derived method to a tailor shop social network,
reanalyzing a study by Kapferer [31]. The study focuses on the changes in a social
network of 39 individuals in a tailor shop in Zambia at the start and the end of a 7-
month period. Previous analyses have shown a marked effect of various transitive
effects in the interactions between the individuals. Various models, with and
without random out-degree, are estimated and compared with the algorithm and
model evaluation procedures derived in previous sections. Several parameters
are interpreted in detail to discuss how, and possibly why, the inclusion of the
random out-degree affects the estimation of the other parameters. Finally, we
attempt to provide some guidelines on using random effects in the stochastic
actor oriented model.

2.2 Stochastic actor oriented model with random effects

In this section we sketch the Stochastic Actor Oriented Model (SAOM) with the
generalization that we propose. The estimation method will be discussed in de-
tail in Section 2.3.

A longitudinal network study (or panel network study) is an observational
study where, in its simplest form, a relational network on a fixed set of actors
is observed at two or more time points. We assume here that the network is
directed. An example is a friendship network between students in a classroom.

The stochastic actor oriented model (SAOM), is a method to analyse data from

22 2.2 Stochastic actor oriented model with random effects

a longitudinal network study. This is a parametric model for a stochastic pro-
cess in continuous time on the outcome space of directed graphs, assuming that
changes, when they occur, consist of a change of only one tie variable. The pro-
cess is observed at discrete time points, and unobserved in between. The SAOM
was first introduced in [60]. For a review of the model, including a discussion of
various generalizations, see [62]. An extensive discussion of the model is in the
manual of the package RSiena [49]. The SAOM is not the only model for longi-
tudinal networks. An important alternative is the temporal exponential random
graph model (TERGM) described in [23] and [34]. An extensive comparison of
the two models is in [8] and [9]. Relational event models [12, 45] can also be
used for longitudinal network data. However, this approach requires the obser-
vation of individual relational events, while in SAOM and TERGMs the history
of events between the observations is not available.

We first describe the evolution of the process in detail in a simplified set-up.
We assume that a simple directed graph without self-loops with a node set con-
sisting of N actors is observed at M = 2 time points t1 and t2. The state space
of the process (possible values for the dependent variable) is X ∼= {0,1}N(N−1),
which can be represented as the set of binary matrices with values 0 in the diag-
onal. States x ∈ X are adjacency matrices with elements x i j = 1 in row i and
column j if the tie (i j) is in the graph, otherwise x i j = 0; moreover, x ii = 0 for all
i. The observed networks are x (t1) and x (t2), respectively. The unobserved evo-
lution of the network between t1 and t2 is the right continuous random function
t 7→ X(t) such that X(t) ∈ X , X(t1) = x (t1) and X(t2) = x (t2). If the process
changes at time t, an actor, denoted here by i ∈ {1, ..., N}, has the opportunity
to add or remove one outgoing tie, or to leave the configuration as it is. There-
fore, if x0 = x (t−) is the value of the network (state of the process) immediately
before the possible change, the process can jump to the state x ∈A i(x0) ⊂ X ,
where the adjacency set A i(x0) is the set of networks that differ from x0 in at
most one tie that starts from i.

The model for the opportunity of transitions in the state space is now intro-
duced. In the stochastic actor oriented model, X(t) is a random variable with
probability distribution conditional on actor i making a network change

P(X(t) = x | i, X(t−) = x0)∝ exp(ui(x))I(x ∈Ai(x0)), (2.2.1)

where I : {F, T} → {0, 1} is the indicator function, and ui : X → R is the linear
evaluation function

ui(x) = β
⊤si(x) =

p
∑

k=1

βksik(x), (2.2.2)

23 2.2 Stochastic actor oriented model with random effects

in which β ∈ Rp is a parameter that weights the p dimensional vector of statistics
si(x), which contains information on the “position" of the focal actor i in the
network. It is assumed that x0 ∈A i(x0) for all x0, so that the “trivial" transition
in which the network does not change has always a positive probability. The
components sik(x) are called effects. Some examples are the following:

• out-degree (also called density) effect: number of ties starting from the focal
actor x i+ =
∑

j x i j,

• reciprocity effect: number of reciprocated ties
∑

j x i j x ji,

• transitive triplet effect: number of ordered pairs (j, h) of actors such that
the three ties (i j), (ih) and (h j) are all present in the graph, computed as
∑

j,h x i j x ih xh j,

• out-degree related popularity effect: sum of the out-degrees of the actors to
whom i is tied, computed as

∑

j x i j x j+.

Effects can also depend on actor covariates or dyadic covariates.

The generalization proposed in this paper, is to decompose the evaluation
function in a fixed and a random part, so that the actors in the network can have
individual parameters. The linear evaluation function (2.2.2) is replaced with

ui(x) = β
⊤si(x) + b⊤i ri(x) =

p
∑

k=1

βksik(x) +
q
∑

h=1

bihrih(x), (2.2.3)

where bi ∼ N (0,Σ) is the vector of random parameters for actor i, Σ is a q
dimensional positive definite matrix, q is the number of random effects rih(x),
which are statistics like the ones given above. The values sik(x) are now called
fixed effects. It is possible that some statistics are both fixed and random effects.
In applications it is wise to avoid the use of random effects not present in the
model also as fixed effects.

To make the discussion more concrete we will illustrate the approach using
a simple example, where the out-degree is the only random effect. The param-
eter for the out-degree effect balances creation of new ties with termination of
existing ties and plays a role similar to the intercept in logistic regression. The
stochastic actor oriented model with random out-degree is defined by (2.2.3) with
q = 1 and si1(x) = ri1(x) = x i+, yielding the evaluation function

ui(x) = (β1 + bi)si1(x) +
p
∑

k=2

βksik(x), (2.2.4)

24 2.2 Stochastic actor oriented model with random effects

where bi ∼N (0,σ2). In addition to the fixed parameter β , the variance σ2 has
to be estimated, therefore the parameter space is Rp × (0,∞).

For every network x ∈ X i(x0), the distribution (2.2.1) can be written with
ui(x) replaced by the evaluation difference

di(x , x0) = ui(x)− ui(x0) = β
⊤(si(x)− si(x0)) + b⊤i (ri(x)− ri(x0)), (2.2.5)

or by the change statistic

ci(j, x0) = (−1)I((i j)∈x0)
�

+β⊤
�

si(x0 ∪ (i j))− si(x0 \ (i j))
�

+ b⊤i
�

ri(x0 ∪ (i j))− ri(x0 \ (i j))
�

�

,
(2.2.6)

where x0∪(i j) and x0\(i j) are the graphs where the tie (i j) is forced to be in the
network, or to be excluded from it, respectively. Equivalently x0, x0 ∪ (i j) and
x0\(i j) are the binary matrices, where the last two are equal to x0 in all elements
but the one in row i and column j, which is forced to be either 1 or 0, respectively.
Note that if i decides to keep the configuration as it is, the evaluation difference
is di(x0, x0) = 0. The change statistic in (2.2.6) is convenient because the tie (i j)
that is evaluated appears directly in the formula. In particular, if x and x0 are the
evaluated and current network, and the only tie that can be different between
them is (i j), the conditional transition probability from x0 to x as a result of
actor i can be written in one of the following three equivalent ways

P(X(t) = x | i, X(t−) = x0) = eui(x)I(x ∈A i(x0))/
∑

ξ∈A i(x0)
eui(ξ)

= edi(x ,x0)I(x ∈A i(x0))/
∑

ξ∈A i(x0)
edi(ξ,x0)

= eci(j,x0)/
∑

k ̸=ie
ci(k,x0).

(2.2.7)

The first two expressions are used in the interpretation of the parameters, the
last form is convenient for computations.

We now briefly describe the temporal component of the stochastic actor ori-
ented model. The generative process is assumed to be Markovian in continu-
ous time, with exponentially distributed time between transitions. If a transition
happens at time t0 ∈ (t1, t2), the next transition can occur at a random time
computed in the following way. For all actors j in {1, ..., N}, random times ∆T j

are sampled independently from an exponential distribution with parameter λ j.
Then the next transition will happen at time t = t0 +min j(∆T j), if t < t2 (oth-
erwise the process end), and the focal actor that has the possibility to flip one of
the outgoing ties ties is i = argmin j(∆T j). Often λ j = λ for all j, but λ j can also

25 2.3 Estimation method

depend on temporal effects depending on covariates and/or network position.
The first idea of using random effects in the stochastic actor oriented model

is in [55, Chapter 4], where the estimation method, frequentist or Bayesian, is
based on the likelihood function. However, this method is not implemented in
RSiena. The algorithm that will be explained here is completely different as it is
based on the method of moments, which is the estimation algorithm most used
in the SAOM. In [57], a related model is developed in which some parameters
are shared by members of the same group while varying between groups, but its
Bayesian estimation method is also based on the likelihood function. In exponen-
tial random graph models, random effects have been introduced in a Bayesian
framework in [68], but we are not aware of the inclusion of random effects in
temporal ERGMs.

2.3 Estimation method

In this section we describe the joint estimation of the parameters β ,Σ ∈ Rp ×
S+q , where S+q is the set of q dimensional positive definite matrices, by means
of an extension of the simulated method of moments (MoM). For the standard
stochastic actor oriented model, the MoM is discussed in [60] and [64]. For
simplicity of notation, we will focus in this section on conditional estimation of
the rate parameters [60, see Section 4.2]. However, in Section 2.5 the models
will be estimated with unconditional estimation. Other estimators developed for
the SAOM include a Bayesian estimator [33], a simulated maximum likelihood
estimator [65], and a simulated generalized method of moments estimator [1, 2].
We base our estimation method on the MoM because likelihood-based algorithms
require computation times which are more than 10 times longer.

2.3.1 Simulated method of moments with random effects

We first consider the SAOM without random effects. The p dimensional moment
equation for β is

E
� N
∑

i=1

si(X(t2))
�

�

�X(t1) = x (t1),β
�

=
N
∑

i=1

si(x (t2)), (2.3.1)

the right side of the equation is called target. The simulated method of moments
procedure for solving this equation is based on simulating the generative Markov
process from t1 to t2 for a given parameter β , starting from the network at time

26 2.3 Estimation method

t1. The difference between the simulated and observed networks at time t2 is
used to update the parameter. The network at time t2 simulated for parameter
β is denoted by x̂ (β), and its statistics are ŝ(β) =

∑

i si(x̂ (β)). The observed
network at time t2 and the target (observed statistics) are denoted by x and
s =
∑

i si(x), respectively. The estimation algorithm is iterative, so a chain (βt)t
of parameters is generated via the procedure

βt+1←− βt − εD
�

ŝ(βt)− s
�

, (2.3.2)

where ε is a positive learning rate, and D is an invertible preconditioning matrix,
computed at the beginning of the algorithm to compensate for the different mag-
nitude and sensitivity of the components of ŝ(β) with respect to variations of β .
This update rule is known as the Robbins-Monro algorithm [50].

The parameter that solves (2.3.1) is approximated by the tail average of the
chain of parameters (βt)t. This method is based on Polyak and Juditsky [47].
A small learning rate in (2.3.2) ensures that the solution is approximated more
accurately, assuming that the number of iterations is large enough so that the
process has converged stochastically. However, a small learning rate increases
the auto-correlations between the elements in the chain (βt)t so that more iter-
ations are required to obtain a “good" approximation. In the algorithm used in
the RSiena package, the problem is solved with multiple sub-phases, each with
constant learning rate, and a “provisional" estimate is used as starting point for
the next sub-phase, after that the number of iterations, and the learning rate, for
next sub-phase are increased, and decreased, respectively. The last sub-phase
produces the estimator β̂ . After the estimator is computed, whether (2.3.1) is
sufficidently well approximated is checked by simulating the process multiple
times for the resulting value β̂ . These simulations are also used to approximate
the variance of the estimator. Details about the algorithm are in [63].

In the stochastic actor oriented model with a single random effect, the mo-
ment equation for β remains the same as (2.3.1), but a further equation is re-
quired for estimating the variance σ2 of the random out-degree parameter. The
moment equations are

E
� N
∑

i=1

si(X(t2))
�

�

� x (t1),β ,σ2
�

=
N
∑

i=1

si(x (t2)),

E
� N
∑

i=1

�

si1(X(t2))− s̄1(X(t2))
�2
�

�

� x (t1),β ,σ2
�

=
N
∑

i=1

�

si1(x (t2))− s̄1(x (t2))
�2

,

(2.3.3)

27 2.3 Estimation method

that are to be solved for β ,σ2 simultaneously. The first component is the i-th
out-degree si1(x) = x i+, and s̄1(x) is their average.

In the simulations for the parameter updates, model (2.2.4) is used and ran-
dom effects bi are independently sampled from N (0,σ2

t
) for each parameter

update step t. The algorithm for β is the same as (2.3.2), replacing ŝ(βt) with
ŝ(βt, b(σ2

t
)) = s(x̂ (βt, b(σ2

t
)). The update step for σ2 is

σ2
t+1
←−max
�

σ2
t
− ζd
�

ŵ(βt, b(σ2
t
))−w
�

, σ2
min

�

, (2.3.4)

where ζ is a positive learning rate, d is a preconditioning value which is set and
kept fixed in all sub-phases, the observed statistic for the variance is denoted by
w =
∑N

i=1

�

si1(x) − s̄1(x)
�2

, and the simulated statistic ŵ(βt, b(σ2
t
)) is defined

in a similar way by replacing the observed network x with the simulated net-
work x̂ (βt, b(σ2

t
)). The map σ̃2

t+1
7→ σ2

t+1
=max(σ̃2

t+1
,σ2

min) is used to force the
variance to be positive, where σ2

min is a very small positive value, for example
10−4.

The generalization to multiple random effects is straightforward. In the eval-
uation function (2.2.3) the number of random effects q is larger than one. As-
sume first that the variance is unconstrained, so that Σ ∈ S+q has q(q + 1)/2
parameters that are free to vary. The moment equations are

E
� N
∑

i=1

si(X(t2))
�

�

� x (t1),β ,Σ
�

=
N
∑

i=1

si(x (t2)),

E
� N
∑

i=1

(ri(X)− r̄ (X))(ri(X)− r̄ (X))⊤
�

�

� x (t1),β ,Σ
�

=
N
∑

i=1

(ri(x)− r̄ (x))(ri(x)− r̄ (x))⊤,

(2.3.5)

where in the lower equation X and x stand for X(t2) and x (t2), respectively.
Note that the first equation is the same as the one in (2.3.3). Instead, the second
equation is between two q dimensional positive definite matrices. The observed
covariance matrix on the right hand side of the equation is denoted by W . If the
simulated process is x̂ (β , b(Σ)), the simulated statistic is denoted succinctly as
Ŵ , or more extensively as Ŵ(β , b(Σ)) when the emphasis is on the parameters
that have simulated the process. The algorithm that generalizes (2.3.4) is

Σt+1←− proj(Σt − ζd(Ŵ(βt, b(Σt))−W),σ2
min), (2.3.6)

where the new value is projected (if necessary) to the space of positive definite

28 2.3 Estimation method

matrices. There are various ways to define the projector operator. A formal way
is to use the method discussed in [25], where the matrix outside the paramet-
ric space is projected to the closest positive definite matrix (using the distance
induced by a matrix norm). Effectively, the method changes negative or zero
eigenvalues to σ2

min, before recomputing Σt+1.
When estimating a model, it is assumed that the parameters are identifiable.

For estimation by the MoM, this means that the moment equation (2.3.5) has
a unique solution with probability 1. Proving identifiability or its absence for a
given set of effects is challenging in the SAOM, except in a few known cases in
which it is known that some combinations of effects cannot be estimated together
by the MoM in any data set. For the SAOM with random effects it will be even
more difficult to prove identifiability. Our experience is that, for models with
sensible specifications, the algorithm to solve (2.3.5) indeed leads to a unique
solution for most data sets. Sometimes, however, the combination of the model
specification and the data set has not enough information for estimating the pa-
rameter. In this case some components of the process (βt,Σt)t fail to converge,
whereas if some of the “problematic" effects are removed, the process converges.
Therefore, failures of identifiability are often identified during estimation.

2.3.2 Summary estimation algorithm and implementation of the
simulating function

Here we give the structure of the full algorithm for estimating the parameters
and to compute the quantities needed to evaluate the estimate, for the stochastic
actor oriented model with random effects.

• Phase 1. Compute preconditioning matrix D for β , and preconditioning
value d for Σ. Compute starting point β̄0 and Σ̄0.

• Phase 2. For sub-phase s ∈ {1, ...,S}:

– Set starting point β1 = β̄s-1, Σ1 = Σ̄s-1.

– For t ∈ {1, ...,Ts-1}, repeat the following iteration:

sample random parameters bi ∼N (0,Σt) i.i.d. for i ∈ {1, ..., N},

simulate process x̂ ∼ S (βt, b), compute simulated statistics ŝ , Ŝ,

update βt+1←− βt − εD(ŝ − s),

update Σt+1←− proj(Σt − ζd(Ŵ −W),σ2
min).

(2.3.7)

29 2.3 Estimation method

– Compute tail averages β̄s and Σ̄s, decrease learning rates ε and ζ.

Estimates are β̂ = β̄S and Σ̂ = Σ̄S.

• Phase 3. For t ∈ {1, ...,T}, repeat the following iteration:

bi ∼N (0, Σ̂) i.i.d. for i ∈ {1, ..., N},

x̂t ∼ S (β̂ , b),

store simulated statistics ŝt and Ŵt,

store contribution to the score function l̂t.

(2.3.8)

Evaluate convergence of β̂ and Σ̂, compute their variability.

The algorithm is a straightforward generalization of the one that is currently used
in the SAOM [60]. The contribution to the score function is needed for the model
evaluation procedure explained in Section 2.4. Note that the rate parameters are
not included in this algorithm, because they are either estimated separately (con-
ditional estimation), or estimated “together” with the parameters of the evalua-
tion function. In the latter case, the algorithm above is kept unchanged, but with
β always replaced by θ = (λ,β) and s is replaced by (sλ, s), where x 7→ sλ(x)
are the estimation statistics for the rate parameters.

The simulating function S (β) that is currently used in the SAOM, can be
generalized to S (β , b), in which the actors can also have individual parameters.
Consider the set of individual dummy covariates

δ(i) = (δ(i)n)1≤n≤N = I(n= i), (2.3.9)

for all actors i ∈ {1, ..., N}. The dummy covariates of actor i are δ(i)1 , ...,δ(i)N ,
which are all equal to 0, except for δ(i)i = 1. The random out-degree for actor i,
which is x i+, can be then obtained with the covariate-ego effect x i+δ

(i)
i , which is

the interaction between the out-degree x i+ and the dummy covariate δ(i)i . The
latter formula has the advantage that is not only defined for the focal actor i, but
also for all the other actors, taking value x i+δ

(i)
n = 0 when n ̸= i. This allows

us to “treat" random parameters b as the fixed parameters β in the simulation,
considering θ̃ = (β , b), so that each actor contains the individual parameter
of everyone, but only its own will be relevant in evaluating tie flips, because all
other random parameters will be multiplied by an effect equal to 0. In particular,

30 2.3 Estimation method

the evaluation function for actor i is

ui(x) = β1 x i+(x) +
N
∑

n=1

bn(x i+δ
(i)
n) +

p
∑

k=2

βksik(x)

= (β1 + bi)x i+ +
p
∑

k=2

βksik(x),

(2.3.10)

which is equivalent to (2.2.4), as si1 = x i+.

Then the first two steps of equations (2.3.7) and (2.3.8), for the model ran-
dom out-degree, are implemented in the following way:

bi ∼N (0,σ2), θ̃ = (β , b1, ..., bN), x̂ ∼ S (θ̃), (2.3.11)

where the current implementation of the SAOM is used in the last step. The first
p elements of the vectors of simulated and observed statistics are used to update
β , while the last N elements are used to compute the sufficient statistic for σ2,
therefore the optimization is carried on in the same way as in the algorithm de-
scribed. The same procedure can be used when there are more than one random
effects.

This implementation was used in the application that will be described in
Section 2.5. However, an important disadvantage of this method is its compu-
tational inefficiency, as evaluating every proposed tie flip involves the “useless"
computation of q(N − 1) multiplications with an operand equal to 0, where q is
the number of random effects. This can be avoided, however, in a future RSiena
implementation.

2.3.3 Restricted models for the variance parameter

The algorithms discussed so far are for the unrestricted model for the variance
in which Σ belongs to a q(q + 1)/2 dimensional parametric space. However
restricted models are possible, for example the unrestricted diagonal variance
Σ = diag(σ2

h) ∈ diag(S+q)
∼= (0,∞)q, with a q dimensional parametric space.

In this case, the second moment equation in (2.3.5) is replaced by the set of q
equations

E
� N
∑

i=1

(rih(X)− r̄h(X))
2
�

�

� x (t1),β ,Σ
�

=
N
∑

i=1

(rih(x)− r̄h(x))
2, (2.3.12)

31 2.4 Model evaluation

for h ∈ {1, ..., q}, the update step that generalizes (2.3.6) is

Σt+1←− proj
�

Σt − ζd
�

diag(Ŵ(βt, b(Σt)))− diag(W)
�

,σ2
min

�

, (2.3.13)

and the projection is much simpler.
Other examples for restricted models are the following:

• scalar: Σ = σ2I , 1 degree of freedom;

• two-parameters: Σ = σ2I+ϱ(J− I), J is the matrix of ones, ϱ ∈ (−σ2/(q−
1),σ2), 2 degrees of freedom;

• autoregressive-1: Σ = (σhh′) such that σhh′ = φ|h−h′|σ2/(1 − φ2), φ ∈
(−1, 1), 2 degrees of freedom;

• block-diagonal: Σ = blockdiag(Σl), where eachΣl can have its own model,
for example one of the models described above, the total degrees of free-
dom are the sum of the ones in each block.

Note that in the AR(1) model, the order of the effects in ri is important. An
example in which we may want to leverage this fact is the case of many waves,
and the random parameter for the effect at given wave m, depends on its values
in the previous waves. Another example is a model with a random effect in an
ordered set of networks, which is encoded as a set of graphs in which the tie
(i j) can become one only if the same tie is already 1 in the “lower" graphs. In
this case the random parameter in a given level, can depend on its values in the
lower levels.

The models that are used as default are often diagonal, which in the examples
above are unrestricted diagonal, scalar, or block-diagonal with scalar blocks. The
reason is that they are advantageous computationally, but also statistically. The
methods for model evaluation that will be described in Section 2.4 for the case
with one random effects, are easily generalizable to deal with multiple random
effects, when the variance is diagonal. Otherwise the generalization can be quite
difficult, and possibly specific for a given model of the variance.

2.4 Model evaluation

Model evaluation procedures for the SAOM with random out-degree and con-
ditional estimation of the rate parameter, are introduced in Sections 2.4.1 and
2.4.2. In Section 2.4.3, some generalizations to more complex models are briefly

32 2.4 Model evaluation

discussed. The model evaluation procedure presented here is a generalization
of the test proposed by Schweinberger [56], which requires the Monte-Carlo
approximation of the derivative of the expected statistics with respect to the pa-
rameters, developed in [58].

2.4.1 Score-type test for overdispersion

The combination of the estimation functions for β and σ2 is denoted by g (x) =
(s(x)⊤, w(x))⊤. The null hypothesis of the absence of overdispersion in the out-
degree is

H0 : σ2 = 0, (2.4.1)

and can be tested against H1 : σ2 > 0 with a score-type test that will be soon
described. In linear random effects models, the score test is also known to be a
good test for testing variance components; see [6].

Expected value and variance of the statistics, which are

m(β) = Eβ(g (X)), V(β) = Eβ
�

(g (X)−m(β))(g (X)−m(β))⊤
�

, (2.4.2)

are approximated with Monte-Carlo integration as

m̄(β) =
1
T

T
∑

t=1

ĝt, V̂(β) =
1
T

T
∑

t=1

(ĝt − m̄(β))(ĝt − m̄(β))⊤, (2.4.3)

respectively, where ĝt ∈ Rp+1 are statistics simulated with parameters β ∈ Rp.
Developing a score-type test statistic with good power, requires however the abil-
ity to approximate the (p+ 1)× p dimensional matrix

J(β) =
∂m(β)
∂β⊤

=
∑

x∈X

g (x)
� ∂

∂β⊤
f (x | β)
� f (x | β)

f (x | β)

= Eβ
�

g (X)
∂

∂β⊤
log f (X | β)
�

,
(2.4.4)

where f (x | β) is the probability mass function of the network x according to
parameter β . This derivative is approximated with Monte-Carlo integration as

Ĵ(β) =
1
T

T
∑

t=1

ĝt l̂t, or more stably as Ĵ(β) =
1
T

T
∑

t=1

(ĝt − g)l̂t, (2.4.5)

where ĝt ∈ Rp+1 and l̂t ∈ R1×p are, respectively, the simulated statistics and the

33 2.4 Model evaluation

row-vector of contributions to the score function; and g is the vector of observed
statistics. Note that l̂t is the same row-vector that is computed for the model
without random effects, because under the null hypothesis there are no random
effects. The only difference is that the variance of the out-degrees ŵt, which is
the last component of ĝt, has to be also computed, even though this statistic is
not used to estimate the parameters.

The derivation of the test statistic is based on Neyman’s orthogonalization
method [43], which is now described. The procedure is a linear transformation
that produces the test statistic from g (x), to obtain a test with high statistical
power isolating the effect of σ2 on the test statistic. The procedure is presented
here under the simplifying assumption of normality of the test statistic, however
the p-value α̂ derived below does not require normality, as the only important
assumption is the finiteness of the first two moments m(β) and V(β) of the test
statistic g (X).

Assume that
g (X)∼N (m(β), V(β)), (2.4.6)

where the vector m(β) and the matrices J(β) and V(β) are decomposed, in
correspondence to g (x) = (s(x)⊤, w(x))⊤, as

m(β) =

�

m1(β)
m2(β)

�

, J(β) =

�

J1(β)
J2(β)

�

, V(β) =

�

V11(β) v12(β)
v⊤12(β) v22(β)

�

. (2.4.7)

The component of w(X) that is uncorrelated with s(X) is

Y (β) = w(X)− Γ (β)s(X)∼N (m2(β)− Γ (β)m1(β),ξ(β)), (2.4.8)

where

Γ (β) = J2(β)J1(β)
−1,

ξ(β) = v22(β)− 2Γ (β)v12(β) + Γ (β)V11(β)Γ (β)
⊤.

(2.4.9)

If s and w are the observed statistics, the estimated parameter β̂ solves the mo-
ment equation m1(β) = s , but under the null hypothesis also m2(β) = w, as
σ2 = 0. With equation (2.4.6) this shows that

ξ(β̂)−1/2(Y (β̂)− y(β̂))∼N (0, 1) (2.4.10)

under H0, where y(β̂) = w− Γ (β̂)s .

The score-type test statistic z derived from [56], and the associated p-value α̃

34 2.4 Model evaluation

are
z(β̂) = ξ̂(β̂)−1/2(y(β̂)− ȳ(β̂)), α̃= 1−Φ(z(β̂)), (2.4.11)

where z 7→ Φ(z) is the cumulative distribution function of the standard normal,
ȳ(β̂) = m̄2 − Γ̂ (β̂)m̄1 is the average of the simulated statistics, y(β̂) and ξ̂(β̂)
are computed with Γ (β̂) replaced by Γ̂ (β̂), substituting Ĵ(β̂) for J(β̂), and V̂(β̂)
for V(β̂) in equation (2.4.9). The computation of α̃ relies on the normality in
(2.4.10), derived from the asymptotic normality in (2.4.6). The generalization
proposed here relaxes the normality assumption, and the empirical distribution
in the simulations is used to compute the p-value. From the statistics (ĝt)t simu-
lated in Phase 3 with parameter β̂ , the matrices V̂ and Ĵ are computed, and then
used to compute the simulated test statistics (ŷt = ŵt − Γ̂ ŝt)t, and their mean
ȳ = m̄2− Γ̂ m̄1. The dependence of these quantities on the estimate β̂ is implicit,
to simplify the notation. Then the empirical p-value for testing (2.4.1) is defined
as

α̂=
1
T

T
∑

t=1

I(ŷt > y) =
1
T

T
∑

t=1

I(ẑt > z), (2.4.12)

where ẑt = ξ̂−1/2(ŷt − ȳ), and z = z(β̂) is defined in (2.4.11).

2.4.2 Standard errors for SAOM with random out-degree

For computing the standard error of the estimates (β̂ , σ̂2), the quantities m̄(β̂ , σ̂2)
and V̂(β̂ , σ̂2) are approximated in the same way as in equation (2.4.3), but the
simulated statistics ĝt used to compute these quantities are simulated with pa-
rameters β̂ and σ̂2. However, the procedure for calculating Ĵ(β̂ , σ̂2) is slightly
more challenging than the one in the preceding section. Using the delta method
[70, Theorem 5.13], the asymptotic covariance of the method of moment esti-
mator (β̂ , σ̂2) is approximated by

Ĉ(β̂ , σ̂2) = Ĵ(β̂ , σ̂2)−1V̂(β̂ , σ̂2)Ĵ(β̂ , σ̂2)−⊤, (2.4.13)

see [60] and [70, Theorem 9.6]. The standard errors are the square root of the
diagonal elements of this matrix.

The (p+ 1)× (p+ 1) dimensional matrix J(β ,σ2) can be written as

J(β ,σ2) =
∂m(β ,σ2)
∂ (β⊤,σ2)

=
∑

x∈X

g (x)
� ∂

∂ (β⊤,σ2)
log f (x | β ,σ2)

�

=

∫

RN

∑

x∈X

g (x)
� ∂

∂ (β⊤,σ2)
log f (x , u | β ,σ2)

�

du,
(2.4.14)

35 2.4 Model evaluation

where u ∼ N (0, IN) is the random vector from which random parameters are
computed as b(σ2) = σu. The joint log-density can be written as

log f (x , u | β ,σ2) = log f (x | β , b(σ2)) + logφN (u), (2.4.15)

where the density of the multivariate standard Gaussian φN (u) does not depend
on the fixed parameters, and the density of the data depends on σ2 only through
the random function σ2 7→ b(σ2) = σu. Then, the row-vector l ∈ R1×(p+1) of
contributions to the score function is written using the chain rule in equation
(A.1.3) from Appendix A.1, as

∂

∂ (β⊤,σ2)
log f (x , u | β ,σ2)

=
�

∂

∂ (β⊤, b⊤)
log f (x | β , b)
�

�

∂

∂ (β⊤,σ2)

��

β

σ2

�

7→
�

β

b

���

=
�

lβ lb

�

�

Ip 0p

ON×p
1

2σ2 b

�

=
�

lβ ,
1

2σ2
lbb
�

=
�

lβ , lσ2

�

.

(2.4.16)

As [σ2 7→ b] ∈ [(0,∞)→ RN] is a random function, its derivative with respect
to σ2, which is 1

2σ2 b ∈ RN , computed using equation (A.2.4) from Appendix A.2,
is also a random variable, and so is lσ2 .

The matrix Ĵ(β ,σ2) that approximates J(β ,σ2) is computed using the simu-
lated statistics ĝt = (ŝ⊤t , ŵt) from the model with parameters β and σ2. In each
simulation, the vector of random parameter bt = σut is also simulated, and it is
then used to compute the second component of the row-vector of contributions
to the score function l̂t. The generalization of the second matrix of equation
(2.4.5) is then

Ĵ(β ,σ2) =
1
T

T
∑

t=1

�

(ŝt − s)l̂βt (ŝt − s)l̂σ2t

(ŵt −w)l̂βt (ŵt −w)l̂σ2t

�

=
1
T

T
∑

t=1

�

(ŝt − s)l̂βt
1

2σ2 (ŝt − s)l̂btbt

(ŵt −w)l̂βt
1

2σ2 (ŵt −w)l̂btbt

�

.

(2.4.17)

This matrix approximates J(β ,σ2) in equation (2.4.14), in which the integral
with respect to u ∈ Rn, and the sum with respect to x ∈ X , are approximated
“together" by simulating ut and x̂t | ut in each iteration.

36 2.4 Model evaluation

2.4.3 Generalizations

Different random effect. As long as there is only one random effect in the
model, all equations in Sections 2.4.1 and 2.4.2 are the same even when the
random effect is not the out-degree, using w(x) = 1

N

∑

i(ri(x)− r̄(x))2, the sam-
ple variance of the subgraph counts of the chosen random effect r .

Unconditional estimation. The generalization of the model evaluation proce-
dure to the more common case in which the rate is estimated unconditionally, is
also straightforward. In this case β , p and s , should be replaced in all equations
above by θ = (λ⊤,β⊤)⊤, p∗ = pλ + p, and s∗ = (s⊤λ , s⊤)⊤, respectively, where λ
is the pλ dimensional vector of rate parameters, and sλ(x) is the statistic used to
estimate λ.

Reparametrization. Instead of computing the standard errors for β and σ2, we
might be interested on computing them for a different parametrization, e.g., for
β and σ, where the second parameter is a standard deviation. The derivative
of σ 7→ b = σu with respect to σ is equal to u = b/σ. Therefore, Ĵ(β ,σ) can
be computed by replacing (b/2σ2) with u, and then σ2 with σ, in all equations
(2.4.14 - 2.4.17). Note that the matrix Ĵ(β ,σ) obtained by this “replacement
rule" is

Ĵ(β ,σ) = Ĵ(β ,σ2)H = Ĵ(β ,σ2)

�

Ip 0p

0⊤p 2σ

�

= Ĵ(β ,σ2)

�

∂

∂ (β⊤,σ)

�

�

β

σ

�

7→
�

β

σ2

�

�

�

,

(2.4.18)

as 2σ · (b/2σ2) = u. Moreover Ĉ(β̂ , σ̂) computed using equation (2.4.13) with
Ĵ(β̂ , σ̂), could have been derived directly with the delta method as Ĉ(β̂ , σ̂) =
H−1Ĉ(β̂ , σ̂2)H−⊤, because H−1 is the derivative of (β⊤,σ2)⊤ 7→ (β⊤,σ)⊤ with
respect to (β⊤,σ2). Therefore, the model evaluation procedure developed in
the previous sections is coherent with the statistical theory of reparametriza-
tions, which is important when the interest is on a particular interpretation of
the estimated parameter.

Multiple random effects. If there are more random effects, and they are in-
dependent, for example when Σ = diag(σ2

1,σ2
2), the model evaluation proce-

dure can be easily generalized for testing H0 : σ2
h = 0, or for computing the

37 2.4 Model evaluation

standard error of (β ,σ2
1,σ2

2). In the latter case, the matrix V̂(β ,Σ) is com-
puted as in equation (2.4.3), but with the simulated statistic ĝt computed with
g (x) = (s(x)⊤, diag(S(x))⊤)⊤ = (s(x)⊤, w1(x), w2(x))⊤. The matrix Ĵ(β ,Σ)
can also be computed with a similar procedure, where g (x) ∈ Rp+2 is simulated,
and the contribution to the score function is

l = (lβ , lΣ) = (lβ , lσ2
1
, lσ2

2
) =
�

lβ ,
1

2σ2
1

lb1
b1,

1
2σ2

2

lb2
b2

�

∈ R1×(p+2), (2.4.19)

where b1 and b2 are the vectors of random parameters for the two effects, so that
Ĵ(β ,Σ) can be computed with a formula similar to (2.4.17). For testing the null
hypothesis of no overdispersion in one random effect, for example H0 : σ2

2 = 0,
the same procedure of Section 2.4.1 is used, but with l = (lβ , lσ2

1
) ∈ R1×(p+1)

and g (x) = (s(x)⊤, w1(x), w2(x))⊤ ∈ Rp+2 used to approximate J(β ,σ2
1) ∈

R(p+2)×(p+1), which can be used to transform the sufficient statistics into a test
statistic with the orthogonalization procedure. If the random effects are still in-
dependent, but some (variance) parameters are shared between different effects,
it is still possible to extend easily the estimation and the model evaluation pro-
cedure to this case. The equations for J and V will depend on which parameters
are shared, so we do not discuss them in detail. The generalization of the model
evaluation procedure is however much more difficult in the case in which the
random effects are not independent. The reason is that when Σ is diagonal,
the maps Σ 7→ Σ1/2 and Σ1/2 7→ b needed to correlate the random parame-
ters, can be written simply as vector-to-vector functions (0,∞)q→ (0,∞)q and
(0,∞)q→ RqN , respectively. By contrast, if some random effects are correlated,
Σ 7→ Σ1/2 and Σ1/2 7→ b must be treated as a matrix-to-matrix, and a matrix-
to-vector functions, respectively, complicating significantly the model evaluation
procedure.

Composite hypotheses. Finally, composite hypotheses on β , Σ, or a combi-
nation of the two are discussed. Consider the hypothesis H0 : β2 = 0p2

for
β = (β⊤1 ,β⊤2)

⊤, when there are random effects in the model, e.g., in the SAOM
with random out-degree. The simulated quantities under the null hypothesis
are used to approximate the positive definite matrix V(β1,σ2) ∈ S+p+1, and the
Jacobian J(β1,σ2) ∈ R(p+1)×(p−p2+1). These quantities are used to compute

Γ = J2J−1
1 ∈ R

p2×(p−p2+1), Ξ = V22 − (ΓV12 + V⊤12Γ
⊤) + ΓV11Γ

⊤ ∈ S+p2
, (2.4.20)

38 2.5 Analysing social interactions in a tailor shop

where in order to keep the notation simple, the dependence of these quantities
on (β1,σ2), the parameter under H0, is implicit. Therefore Z = Ξ−1/2(Y − y) ∼
N (0p2

, Ip2
) under the null hypothesis, for Y = g2(X)−Γ g1(X), where x 7→ g2(x)

are the simulated statistics associated with the parameters that are 0 under the
null, and y is computed orthogonalizing the observed statistics. The test statistic
used in [56], with its associated p-value is

z2 = (y − ȳ)⊤Ξ̂−1(y − ȳ), α̃= 1−χ2
p2
(z2), (2.4.21)

where χ2
p2
(z2) is the cumulative distribution function of a Chi-squared distribu-

tion with p2 degrees of freedom, evaluated at z2, and ȳ is the average of the
simulated test statistics ŷt. The non-parametric version of α̃ that is based on the
empirical distribution of the simulated test statistics, rather than assuming that
their distribution is normal, is

α̂=
1
T

T
∑

t=1

I
�

(ŷt − ȳ)⊤Ξ̂−1(ŷt − ȳ)> z2
�

, (2.4.22)

where z2 is defined in (2.4.21). The same theory can be used for hypotheses as
H0 : σ2

h = 0, for h ∈ {q1+1, ..., q}, in which the last q2 = q−q1 random effects are
not significant, assumingΣ is diagonal, or for hypotheses H0 : βk = 0,σ2

h = 0, for
k ∈ {p1+1, ..., p} and h as before. Therefore the theory developed in this section,
generalizing [56], can be used to test most hypotheses in which a group of effects,
fixed or random, is not included in the model under the null hypothesis, as long
as the variance Σ of the random effects is diagonal.

2.5 Analysing social interactions in a tailor shop

In this section a dataset is analyzed, mainly with the purpose of illustrating the
proposed model, its estimation, and its evaluation procedure. The interpretation
of some estimated parameters is described in detail, to show how the inclusion of
the random out-degree effect can lead to different estimates of other parameters
of interest.

2.5.1 Kapferer’s tailor shop dataset

Between June 1965 and January 1966 Kapferer [31] carried out a study of a tai-
lor shop in Kabwe, Zambia, in a period when the workers were negotiating for

39 2.5 Analysing social interactions in a tailor shop

higher wages. There were 39 employees; networks between them were observed
at two times, seven months apart. The dataset used is available in the Ucinet
data repository http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/

UciData.htm. We study the “sociational” (friendship, socioemotional) network.
An important covariate is job status (low or high). We shall not consider the

specific job of the individuals in our analysis. Figure 2.1 shows the two network
snapshots with the out-degrees of the individuals. Each individual is in the same
position in the two plots. Status is indicated by color (light blue for high, orange
for low). Out-degrees in the first graph range from 0 to 12 with an average of
2.8, whereas in the second graph they range from 0 to 21 with an average of 3.8.

out−degree

01020

wave 1 out−degree

0 10 20

wave 2

Figure 2.1: Kapferer data set with out-degrees of the nodes.

The dataset was described first in Kapferer [31], and has been the subject
of a variety of analyses. The stability of groups in the network is modelled in
[15]. The dataset is analysed in [44] using a stochastic block model. In [51]
the network at time 1 is used to check how the estimate of the parameters in
an exponential random graph model is influenced by various patterns of missing
relations. In [14] the data set used to illustrate their implementation of Bayesian
ERGMs. We cannot compare the outcomes of our models with those of earlier
analyses, because the objectives and models that we found in the literature are
very dissimilar from our own.

2.5.2 Definition estimated models

The aim of the analysis is to discover what has been driving changes of ties in
the network. We are particularly interested in discovering to what extent tri-
adic effects, such as transitivity and out-degree activity, as well as work status

http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm

40 2.5 Analysing social interactions in a tailor shop

(low/high) might be confounded with heterogeneity in out-degree. In order to
answer these questions, we consider the following fixed effects,

• basic rate: rate of tie flips between the two waves;

• out-degree (density): number of ties starting from the focal actor i, si1(x) =
∑

j x i j;

• reciprocity: number of reciprocated ties, si2(x) =
∑

j x i j x ji;

• transitive triplets: ordered pairs of actors (jh) to both of whom i is tied,
while also j is tied to h, si3(x) =

∑

j,h x i j x ih xh j;

• out-degree activity: squared out-degree of the actor, si4(x) = (
∑

j x i j)2;

• status alter: sum of the covariate over all actors to whom i has a tie, calcu-
lated as si5(x) =

∑

j x i j v j, where v j is the binary covariate status, of actor
j;

• status ego: out-degree of actor i weighted by its status, si6(x) = vi

∑

j x i j;

• status similarity: sum of centered similarity scores between i and the other
actors j to whom he is tied, calculated as

si7(x) =
∑

j

x i j

�

simi j(v)− sim(v)
�

,

where, for a binary covariate, simi j(v) = 1− |vi − v j|, and sim(v) is their
mean.

We consider four models with different selections of fixed effects. They are called
standard, no-transitivity, no-status and full-transitivity, and summarized in Table
1. The four models are estimated with and without random out-degree, to com-
pare the estimates.

2.5.3 Estimation and interpretation of the results

The models without random out-degree are estimated first using the function
siena07 of the package RSiena. Then the estimates are used as starting points
for the models with random out-degree, using σ2

min = 10−4 as starting value for
σ2. Parameter update steps (2.3.2) and (2.3.4) were used, with in (2.3.2) the
replacement of β by θ = (λ,β), because the rate parameter is estimated uncon-
ditionally. To have a direct comparison between the algorithms, in all models

41 2.5 Analysing social interactions in a tailor shop

fixed effects standard no-transitivity no-status full-transitivity
basic rate X X X X
out-degree (density) X X X X
reciprocity X X X X
transitive triplets X X X
out-degree activity X
status alter X X X
status ego X X X
status similarity X X X

Table 2.1: Fixed effects in the four models.

the same learning rate ε is used, and in each sub-phase the learning rate is de-
creased in the same way. This employs the default values of siena07, i.e., in
the first sub-phase ε = 0.2 and after the end of a sub-phase the learning rate is
decreased by the factor 2. For the models with random out-degree, the learning
rate for σ2 is the same, i.e., ζ = ε, and updated in the same way at the end of
the sub-phase. For each of the four models without random effects, the precon-
ditioning matrix D used for updating θ is computed with the default procedure
of siena07, and used also for the equivalent model with random effect. The pre-
conditioning value d used in the updating step forσ2 is set so that the magnitude
of the updates of σ2 is comparable with the updates of θ .

Phase 2 consists of 2,100 iterations in total, divided in four sub-phases of
100, 100, 200 and 1,700 iterations. The number of iterations used to compute
the tail average used as starting point of the next sub-phase is 20, 40 and 80, for
the first three sub-phases, respectively, and the last 1,500 iterations are averaged
to compute the estimated parameter. In Phase 3, 25,000 iterations are used in
all models.

The full-transitivity model with random out-degree did not converge because
of near collinearity, although the average simulated statistics for all effects were
very near the observed ones. The near collinearity is caused by the presence
among the estimation statistics of the sum of out-degrees (for the fixed out-
degree parameter), the sum of squared outdegrees (out-degree activity effect)
and the variance of the out-degrees (random out-degree parameter). The lat-
ter is a deterministic, although not linear, function of the other two. This im-
plies that there are different combinations of βout-degree activity, βstatus ego, and σ2

that produce similar simulated statistics, so these three parameters cannot be
estimated together, making the full-transitivity model with random out-degree
“almost non-identifiable".

42 2.5 Analysing social interactions in a tailor shop

In the left plot of Figure 2.2, the chain of the variance parameter for the stan-
dard model with random out-degree is plotted. The dashed vertical lines are the
iterations where the learning rate is decreased, and the filled vertical line denotes
the end of the burn-in period, so all values on the right of this line are averaged
to compute the estimated variance, which is the black dot on the right of the
plot. The right plot shows the distribution of the variances of the out-degrees of
the networks for wave 2 as simulated in Phase 3, for all estimated models. Filled
and dashed lines are for the models with and without random out-degree, respec-
tively. The colours denote the models, they are black, red, green and blue for the
standard, no-transitivity, no-status and full-transitivity models, respectively. The
vertical grey line is the variance of the out-degrees in the observed network in
wave 2. The distributions for the models with random out-degree are all similar,
and their average is the sample variance of the observed network, whereas for
the models without random out-degree, only the full-transitivity model explains
the observed overdispersion.

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chain variance standard model, Phase 2

iteration

si
gm

a2

0 5 10 15 20 25 30 35

0.
00

0.
05

0.
10

0.
15

0.
20

Distribution variance, Phase 3

simulated variance

de
ns

ity

model
with

random
out−deg.

model
without
random
out−deg.

standard
no−transit.
no−status
full−transit.

Figure 2.2: Left: chain of the variance parameter for the standard model with ran-
dom out-degree. Right: distribution of the variance of the out-degrees computed
from the simulations in Phase 3.

Estimated parameters and standard errors are reported in Table 2. The mod-
els without random out-degree have, in all cases, an estimated rate higher than
the corresponding models with random out-degree. This means that for the mod-
els with random out-degree, fewer steps are required, on average, to simulate a
network with statistics that match the data.

43 2.5 Analysing social interactions in a tailor shop

Comparison of the parameter estimates for the fixed effects between the mod-
els with and without random out-degree shows that the absolute values for all
parameters, except transitive triplets, are higher in the models with random out-
degree. To explain this, note that it was argued for logistic regression models by
Mood [41, p. 68-69] that, since the error term is included implicitly in the non-
linear link function, extending a given model by extra uncorrelated explanations
will lead to approximately scaling the other parameters and their standard errors
with a factor greater than 1. The same holds for multinomial logistic models such
as (2.2.1). Therefore the main interpretation of the greater absolute values of the
parameters and standard errors in the models with random out-degree is the in-
crease in explanatory power of this model (reflected also by the lower estimated
rate parameters). The exception is the transitive triplets parameter, implying
that the random out-degree effect partially explains the triangles in the model.
Special mention should be made here of the status ego effect, because ego ef-
fects of covariates are the deterministic, i.e., explained, analogues of the random
out-degree effect. The increase in the standard error of status ego is more than
proportional with the other increases, but the effect stays significant.

Table 2 also gives the estimates σ̂2 and its positive root σ̂ of the variance and
the standard deviation of the random out-degree effect, respectively, with their
standard errors. The estimated variance parameters are smaller for the models
containing more effects, which suggests that omitting effects will lead to higher
estimated residual heterogeneity. The standard errors of σ̂ are computed with
the delta method from those of σ̂2. Considering the ratios of these parameters
to their standard errors highlights that these ratios should not be used in a con-
ventional t-test for testing the null hypothesis that σ2 = 0. The better strategy
is to use the score-type test, as demonstrated in the next section.

2.5.4 Model comparison

In this section, we compare different models using the theory developed in Sec-
tion 2.4. Figure 2.3 describes the nesting relations between the eight models,
where arrows point from models to models that are their extensions. If two
models are connected by a path of arrows, the null hypothesis that the smaller
model is the generative model can be tested. We formally compared five models,
indicated by red arrows with their empirical p-values. These are computed using
25,000 simulations from the estimated model under the null hypothesis.

1. Random out-degree in the standard model. We test the null hypothesis
that there is no random out-degree effect, H0 : σ2 = 0, versus the alternative

44 2.5 Analysing social interactions in a tailor shop

Without random out-degree standard no-transitivity no-status full-transitivity
effects / parameters est. (s.e.) est. (s.e.) est. (s.e.) est. (s.e.)
basic rate 21.39 (4.81) 19.05 (3.78) 16.68 (2.94) 22.94 (5.18)
out-degree (density) -2.66 (0.24) -2.52 (0.23) -2.08 (0.11) -2.97 (0.25)
reciprocity 3.26 (0.41) 3.37 (0.41) 2.23 (0.21) 3.34 (0.40)
transitive triplets 0.19 (0.05) / 0.21 (0.04) 0.11 (0.05)
out-degree activity / / / 0.04 (0.01)
status alter -1.15 (0.25) -0.98 (0.24) / -1.06 (0.24)
status ego 1.45 (0.28) 1.77 (0.29) / 1.24 (0.27)
status similarity 0.30 (0.13) 0.42 (0.13) / 0.40 (0.13)

With random out-degree standard no-transitivity no-status full-transitivity
effects / parameters est. (s.e.) est. (s.e.) est. (s.e.) est. (s.e.)
basic rate 17.30 (4.47) 15.78 (3.96) 10.86 (2.51)
out-degree (density) -2.98 (0.37) -3.03 (0.40) -2.76 (0.52)
reciprocity 3.64 (0.50) 3.87 (0.53) 3.16 (0.60)
transitive triplets 0.13 (0.07) / 0.16 (0.08)
out-degree activity / / /
status alter -1.17 (0.28) -1.06 (0.29) /
status ego 1.83 (0.49) 2.16 (0.54) /
status similarity 0.48 (0.18) 0.61 (0.20) /
variance random out-degree 0.52 (0.46) 0.92 (0.71) 1.92 (1.89)
std.dev. random out-degree 0.72 (0.32) 0.96 (0.37) 1.39 (0.68)

Table 2.2: Estimated parameters with standard errors in brackets for the models
with and without random out-degree. Full-transitivity model with random out-
degree is missing, as the algorithm has not converged.

H1 : σ2 > 0. The empirical p-value (2.4.1) is α̂ = 2 · 10−4. If the asymptotic
normal distribution of the test statistic is used, the p-value is α̃ < 4 · 10−5. Note
that in the right-hand plot of Figure 2.2, the observed value of the out-degree
variance aligns moderately well with the distribution of the simulated variances
of the out-degrees obtained from Phase 3 (the proportion of higher simulated
values is 0.09). However, this correspondence does not take into account that
parameters are estimated. This shows the higher power associated with the or-
thogonalization.

2. Random out-degree in the full-transitivity model. Similarly, we test the null
hypothesis of no random out-degree in the full-transitivity model. The p-values
computed with the empirical and asymptotic distribution are both α̂ = 0.31, so
there is no evidence against the null hypothesis in this model. This is expected
because when activity and overdispersion in the out-degree are both included,
the model becomes almost no-identifiable.

45 2.5 Analysing social interactions in a tailor shop

inclusion relations between models

no
transitivity

no
status

standard

full
transitivity

no
transitivity

ran. out−deg.

no
status

ran. out−deg.

standard
ran. out−deg.

full
transitivity

ran. out−deg.

α̂ = 1.84 ⋅ 10−3 α̂ = 4 ⋅ 10−4

α̂ = 0.3148

α̂ = 2 ⋅ 10−4

α̂ = 0.5370

Figure 2.3: Arrow Model 1 −→ Model 2 if the parameter space of Model 1 is a
subset of the one of Model 2. Red arrows were formally tested, with null hypothesis
H0 : Model 1 is true model; α̂ are the empirical p-values of the tests.

3. Relevance of out-degree activity effect for the model without random out-
degrees. We test the null hypothesis of the out-degree activity effect, H0 : βout-d. activity =
0, against the two-sided alternative βout-d. activity ̸= 0. The empirical p-value for
this test is α̂= 0.002, and α̃= 7.4 ·10−4 for the test that relies on the normal ap-
proximation. Therefore, if the random out-degree is not included in the model,
the out-degree activity effect should be included to explain the observed network
dynamics.

4. Irrelevance of out-degree activity effect for the model with random out-
degrees. Similarly, we test the null hypothesis H0 : βout-d. activity = 0 in the model
with random out-degrees. The p-values obtained without and with the assump-
tion of normality are α̂ = 0.54 and α̃ = 0.61, respectively. Therefore, if the
random out-degree is included in the model, the out-degree activity effect does
not need to be included to explain the observed data. This is coherent with test
(2).

5. Relevance of status for the model with random out-degrees. We would
like to see whether the heterogeneity in the out-degree is able to account for the

46 2.5 Analysing social interactions in a tailor shop

effect of status, testing the hypothesis

H0 : βstatus alter = βstatus ego = βstatus similarity = 0.

This is the only composite hypothesis tested. Mean, variance of the simulated test
statistics after orthogonalization, and the observed orthogonalized test statistics,
are respectively:

ȳ =

22.30
22.57
10.99

 , Ξ̂ =

75.02 92.80 −14.39
92.80 153.79 −23.87
−14.39 −23.87 48.38

 , y =

9.98
40.09
14.52

 .

The empirical p-value of the test is α̂= 2 ·10−4, while the p-value of the test that
uses the asymptotic normal distribution is α̃ < 4 · 10−5. So, clearly the random
out-degree is not able to capture fully the effect of status.

2.5.5 Out-degree activity and overdispersion in Tailor shop net-
work

The main purpose of the statistical analysis was the illustration of the theory
developed in the previous sections in an empirical dataset. The emphasis has
been on the dichotomy between modelling the observed variability of the out-
degree distribution including either the out-degree activity effect or the random
out-degree effect. These two differ in their interpretation as drivers for social
behaviour of the actors when forming and removing ties. The choice of effect
also changes the estimates and the standard deviations of the other parame-
ters in the evaluation function. The model containing both effects included is
overparametrized, and the estimation algorithm does not converge because of
identifiability issues. The two models that emerge as the best ones from the esti-
mating and testing procedures are not nested and therefore cannot be formally
compared by a hypothesis test.

The interpretation of a positive parameter for the out-degree activity effect is
that actors with a larger out-degree are more likely to form ties. The interpreta-
tion of the random out-degree, on the other hand, is unobserved heterogeneity
between actors in their tendency to create outgoing ties. The former model pro-
vides an explanation for the observed variability together with a homogeneity
assumption. In the absence of a formal information criterion, the choice will
have to be made on conceptual grounds.

47 2.6 Overview and discussion

2.6 Overview and discussion

In this paper we have generalized the stochastic actor-oriented model to include
random effects in the evaluation function. This generalization overcomes the
limitation that all actors in the study must have the same parameters, allow-
ing actors to react in their own idiosyncratic way to certain circumstances. The
generalization is important because random effects are commonly used in lon-
gitudinal studies, as the main method to parametrize the heterogeneity of the
actors in the study if no suitable covariates are available.

The distribution of the random parameters is parametrized by their variance,
which is shared by all actors, and it is estimated with the method of moments, as
are the other global parameters. This estimation method is less time-consuming
than likelihood-based methods. The generalizations of the evaluation function
presented in Section 2.2, and of the estimation algorithm, described in Sec-
tion 2.3, were relatively straightforward. The score-type test and the standard
error of estimation were derived in Section 2.4. These methods allow the com-
parison of nested models. Further work on information criteria for comparing
models would be a welcome addition. Perhaps it is possible to adapt the “ex-
plained variation” idea of [61] to the stochastic actor-oriented model with ran-
dom effects.

In Section 2.5 we fitted and compared various models, with and without ran-
dom out-degree, on Kapferer’s tailor shop data [31]. In some models, some
important effects were purposely left out, to test whether the random effect can
partially overcome the excluded information. We found that when important
information is left out, the estimated variance of the out-degree parameter is
higher, meaning that heterogeneity of actors is one way to fit the observed net-
work data. Two of the models considered explain the observed data significantly
better than the others. The first one includes the out-degree activity effect and
has no random effects. The second model includes the random out-degree effect,
and not the outdegree-activity effect. We cannot formally test which of the two
models explains the data better, as they are not nested. Therefore, the choice
between them must depend on substantive theory and the preferred interpreta-
tion.

This was an elaborate example of a model with random out-degree effect.
Other effects could also be postulated to have parameters randomly varying be-
tween actors. This would be interesting to explore. For future research, it will
be interesting to elaborate the generalization to models with multiple correlated
random effects, as mentioned in Section 2.4.3.

Stochastic actor-oriented models with random effects provide the flexibility to

48 2.6 Overview and discussion

choose which parameters should be global, thus common to all actors, and which
ones are random, so as to allow heterogeneity between actors. We have described
an efficient test for the presence of a random effect, extending the approach for
fixed effects. Therefore the researcher can evaluate different nested models, and
choose the ones that are theoretically and empirically most appealing.

Chapter 3

Simulated method of moments in mixed
effect models

3.1 Introduction

Algorithms for estimation and model evaluation that have been discussed in the
previous chapter, are studied here in a different set-up, that is regression with
random effects. The generalized version of the method of moments is also dis-
cussed. In estimation, the main focus has been the inclusion of updating schemes
commonly used in machine learning, for the preconditioning matrix in the iter-
ative algorithm used to estimate the parameters. In model evaluation, the focus
has been on discussing various generalizations of the orthogonalization proce-
dure, some of which are compared in a simulation study.

In recent years, the use of mixed-effect models [46, 38] has become increas-
ingly important in statistical analyses for their capacity to incorporate both fixed
and random effects, effectively addressing the variability within and between the
individuals (or groups) in the study. However, the complexity of these models can
make the inference challenging, in particular when the stochastic process that is
modelled is not too amenable to analytic simplifications. Simulation-based in-
ference [18], has emerged as a powerful tool to overcome such limitations. This
inference method is particularly useful when the stochastic process that is mod-
elled has distribution that determined by a parametrized algorithm that can be
used to forward simulate the model. Simulation-based inference blend well to-
gether with method of moments estimation, as statistics of the simulated process
can be used to infer the parameters by solving stochastically a moment equation.

In Section 3.2, regression with mixed effects are introduced first with the fo-
cus of deriving a set of statistics that can be used to estimate the parameter. Then,

49

50 3.2 Simulation based inference for mixed effect models

the simulated method of moments with its generalized version are discussed. Fi-
nally there is a discussion on how to approximate derivatives, that can be used
in moment-based estimation algorithms.

Section 3.3 deepens the discussion on stochastic iterative methods to estimate
the parameters by adjusting them until the simulated statistics match on average
the observed ones. The discussion is based on extending the stochastic gradient
descent method, commonly used in machine learning, with the aim of using
similar algorithms in our case. It is then discuss how to update the state of the
optimization to make it more stable, how the final estimator is computed, and
how the convergence of the optimization is evaluated.

In Section 3.4 it is shown how to approximate the quantities that are used to
evaluating the quality of the estimator, for example by computing its standard
error, or by testing hypothesis on the parameters. Various orthogonalization pro-
cedures that can improve the power of the test are discussed, also when the
parameters under the null are estimated with generalized method of moments.
These orthogonalization procedures are useful when the statistics used in the
estimation are correlated with the ones used to derive the test statistic.

In Section 3.5 the theory described is used in a Poisson regression model with
mixed effects. The main goal is to assess by simulation the quality of different
orthogonalization procedures.

3.2 Simulation based inference for mixed effect models

3.2.1 Regression with mixed effects

A mixed effect model [46, 38] is a statistical model in which some fixed param-
eters are shared across all experimental units, while others, called random or
individual parameters, can vary. The regression with mixed effects is a model of
this type, in which the response variable yi for the i-th observation, has a distribu-
tion that depends on a linear predictor, that is a linear combination of exogenous
information weighted by some of the fixed, and the individual parameters whose
distribution depends on other fixed parameters. The number of observations is
N and the number of individuals in the study is n< N . Formally,

Yi ∼ Dist(µi) ∈ Y, µi = link(ηi) ∈M, ηi = x⊤i β + z⊤i v(θ) ∈ R, (3.2.1)

where β ∈ B ⊆ Rp and θ ∈ T ∈ Rr are the fixed parameters, v(θ) ∈ Rqn is the
vector containing the random parameters of all individuals, x i ∈ Rp and zi ∈ Rqn

are exogenous information about observation i called covariates and design re-

51 3.2 Simulation based inference for mixed effect models

spectively, link is an invertible function and Dist is the parametric distribution of
the response variable that is completely specified by µi in some cases, otherwise
it depends on other parameters that must be estimated. The model above can be
written in matrix form as

Y ∼ Dist(µ(η)) ∈ YN , η= Xβ + Z v(θ) ∈ RN . (3.2.2)

The full definition of the model involves specifying the distribution of the
random parameters, we consider

v = (In ⊗ Γ (θ))u∼ Norm(0qn, In ⊗Σ(θ)) ∈ Rqn, (3.2.3)

where 0qn and In are the qn dimensional vector of zeros and the n dimensional
identity matrix respectively, ⊗ is the Kronecker product, Γ (θ) ∈ G ⊆ Rq×q is an
invertible matrix, θ 7→ Γ (θ) is a bijection, Σ(θ) = Γ (θ)Γ (θ)⊤ ∈ S+q is a q dimen-
sional positive definite matrix. The vectors v and u∼ Norm(0qn, Iqn) contain the
(correlated and uncorrelated, respectively) random parameters of all individuals
j ∈ {1, ..., n}. In particular the random parameters of individual j are in the po-
sitions from (j−1)q+1 to jq of v = (v1, ..., vn). The Gaussian distribution for the
random parameters whose variance is constructed using the Kronecker product,
implies that the distribution of v j is independent to the random parameters of
all other individuals. If observation i is about individual j, only v j contributes to
ηi as only the values in positions from (j − 1)q + 1 to jq of the design zi can be
different than 0.

Part of the statistical analysis consists in estimating the values of the fixed
parameters β and θ . The method of moment estimation that is introduced below
with its generalized version, uses a set of statistics, that are functions of the data
y containing information about the parameters, to estimate them. A statistic for
β that is commonly used in regression is

sβ(y) = (X
⊤X)−1X⊤ y ∈ Rp. (3.2.4)

A statistic for θ is computed in two steps, starting from

sv = (sv1, ..., svn) = (Z
⊤Z)−1Z⊤(y − Xsβ(y)) ∈ Rqn, (3.2.5)

52 3.2 Simulation based inference for mixed effect models

and finally

sθ (y) =Σ
−1(sΣ) ∈ T, sΣ =

1
n

n
∑

j=1

(sv j − s̄v)(sv j − s̄v)
⊤ ∈ S+q , s̄v =

1
n

n
∑

j=1

sv j ∈ Rq,

(3.2.6)
where Σ−1 : S+q → T is the inverse of θ 7→ Σ(θ). A simple example is the model
with independent random effects with standard deviations θ ∈ T = Rq

+, Γ (θ) =
diag(θ) and sθ (y) can contain either the diagonal elements of sΣ (variances), or
their square roots (standard deviations).

3.2.2 Simulated method of moments

The vector of fixed parameters is denoted by α = (β ,θ) ∈ A = B×T ⊆ Rd , with
dimension d = p + r. The method of moments estimator α̂ ∈ A is the value that
solves the d dimensional moment equation

Eα(s(Y)) = s(y). (3.2.7)

Then, α̂ is the value for which the expected value of the statistics, that depends
on α, is equal to the observed value of the statistic s(y) = (sβ(y), sθ (y)). It is
assumed here that the moment equation is well defined and that it has a unique
solution. This is the case when all components of the expected value are well
defined, when they are finite, and when αh 7→ Eαsh(Y) is a monotonic function,
for all h ∈ {1, ..., d}.

For most mixed effect models, the expected value of the statistics can not be
computed analytically, meaning that the function α 7→ Eα(s(Y)) is not available.
However, it is often the case that the simulated statistic s(Y (α)), computed from
the value simulated from α, is an unbiased estimate of Eα(s(Y)). This estimation
method is called simulated method of moments, as the moment equation is solved
stochastically by adjusting the parameter until the simulated statistics are equal
on average to the observed ones. The basic iterative method is the following:

• the current fixed parameter is α= (β ,θ),

• sample u∼ Norm(0qn, Iqn) and compute v = (In ⊗ Γ (θ))u,

• compute the linear predictor η(β , v), the mean function µ(η) and sample
Y ∼ Dist(µ),

53 3.2 Simulation based inference for mixed effect models

• update the fixed parameter as

α←− proj(α− εH(s(Y)− s(y)),A), (3.2.8)

where ε ∈ R+ is a positive learning rate , H ∈ Rd×d is an invertible precon-
ditioning matrix, and the projection to the parametric space is required to
force α ∈ A.

After an initial period, the iterative algorithm will reach stationarity when simu-
lated and observed statistics are equal on average. Various estimation algorithms
can be defined by modifying this basic iterations, the most common ones are ob-
tained by decreasing the learning rate ε over various iterations, or by updating
iteratively the preconditioning matrix H, so that over time it approaches a value
that is “optimal" under some assumptions on the model.

The simulated method of moments has been originally developed for estimat-
ing discrete choice models in [39].

3.2.3 Generalized method of moments

In the traditional or in the simulated method of moments, the number of statistics
and parameters of the model are equal. However, it is possible to use a moment
equation with more statistics than parameters.

Consider the statistic s : Y → Rd ′ , with d ′ > d = dim(A). The generalized
method of moments estimator is

α̂W = argmin
α∈A

cW (y,α), (3.2.9)

where y is the observed sample and the cost function

cW (y,α) = (Eα(s(Y))− s(y))⊤W (Eα(s(Y))− s(y)), (3.2.10)

is defined so that the d ′ dimensional moment equation is solved when α min-
imizes cW . If W ∈ S+d ′ , meaning a d ′ dimensional positive definite matrix, the
derivative of the cost function with respect to the fixed parameter is

∂

∂ α⊤
cW (y,α) = 2(Eα(s(Y))− s(y))⊤W J(α) ∈ R1×d , (3.2.11)

with J(α) = ∂ Eα(s(Y))/∂ α⊤ ∈ Rd ′×d .

54 3.2 Simulation based inference for mixed effect models

The quality of the estimator α̂W depends on W , as its asymptotic variance is

C(α∗) = (G⊤W G)−1G⊤W VW⊤G(G⊤W⊤G)−1 ∈ S+d , (3.2.12)

where α∗ is the real value of the parameter,

G = Eα∗(∂ (Eα(s(Y))− s(y))/∂ α⊤) ∈ Rd ′×d , (3.2.13)

and
V = Eα∗((Eα(s(Y))− s(y))(Eα(s(Y))− s(y))⊤) ∈ S+d ′ . (3.2.14)

The most efficient estimator is obtained with W ∝ V−1, in this case C(α∗) =
(G⊤V−1G)−1.

The method of moments and its generalized counterpart can be also distin-
guished by the fact that the former allows for the direct solution of the moment
equation, whereas the latter requires an optimization, such as the one in equa-
tion (3.2.9). We can define the optimization implicity by solving directly the d ′

dimensional equation Eα(s(Y)) = s(y) for α ∈ A ⊆ Rd , or equivalently

L(Eα(s(Y))− s(y)) = 0d , (3.2.15)

for a matrix L ∈ Rd×d ′ of rank d. If α∗ is the real value of the parameter, the
asymptotic variance of s(Y) is V defined in equation (3.2.14), then the asymp-
totic variance of the solution α̃L of equation (3.2.15) is

C(α∗) = (LG)−1 LV L⊤(LG)−⊤ ∈ S+d , (3.2.16)

[22], where G and V are defined in equations (3.2.13) and (3.2.14) respectively,
and (LG)−⊤ = ((LG)−1)⊤ = ((LG)⊤)−1. The most efficient α̃L is obtained when
L ∝ G⊤V−1, so that C(α∗) = (G⊤V−1G)−1, that is the same variance of α̂W for
W ∝ V−1. Note that in the “non generalized" method of moment, L and G are
both invertible matrices, so (LG)−1 = G−1 L−1, and C(α∗) = G−1V G−⊤ for all L.

The basic iteration (3.2.8) is modified as

α←− proj(α− εH L(s(Y)− s(y)),A), (3.2.17)

to compute α̃L by solving the moment equation (3.2.15) stochastically. The ad-
vantage of the implicit method is that the derivative (3.2.11) is not required to
compute the estimator.

55 3.2 Simulation based inference for mixed effect models

3.2.4 Approximation of derivatives in simulated inference

The estimation and the model evaluation procedure are sometimes improved by
using derivatives of the expected value of the statistics. For the linear regression
with mixed effects described above these derivatives can be computed, but for
more complex models this is not the case. In particular, for models in which the
probability density is not available, the expected value of the statistics is not an
analytic function of the parameters, so it can not be differentiated. One example
is when the stochastic process being modelled is largely unobserved, save for a
few timestamps.

Method of moment procedures rely on the ability to compute the expected
value Eα(s(Y)) of the statistic s : Y→ Rd ′ , as function of the parameters α ∈ A ⊆
Rd . If the function

α 7→ Eα(s(Y)) =

∫

Y
s(y)dP(y|α) ∈ Rd ′ (3.2.18)

is analytic, it can be differentiated with respect to α. Under some regularity
conditions [35, Theorem 1], if dP(y|α) = p(y|α)d y , then

J(α) =
∂

∂ α⊤
Eα(s(Y)) =

∂

∂ α⊤

∫

Y
s(y)p(y|α)d y =

∫

Y
s(y)
� ∂

∂ α⊤
p(y|α)
�

d y =

=

∫

Y
s(y)
� ∂

∂ α⊤
log p(y|α)
�

p(y|α)d y = Eα
�

s(Y)
∂

∂ α⊤
log p(Y |α)
�

∈ Rd ′×d .

(3.2.19)

The derivative of the log-density of the data is called score function. The like-
lihood ratio method [35, Section 2.4] for approximating the expected value of
the derivative is based on a stochastic approximation of the expected value in
equation (3.2.19). This technique is useful especially when p(y|α) is not an an-
alytic function when y is the observed sample, for example in the case in which
the generative process is not fully observed. When Y is simulated, however, the
density p(Y |α)may be calculated since the entire simulated process is accessible.

Monte Carlo integration, which is based on the law of large numbers, can
be used to approximate an integral when it cannot be solved analytically. The
integral in equation (3.2.18), for example, can be approximated by simulating
many samples Y1(α), ..., Ym(α) from dP(y|α), computing the value of s(Yk(α))
for all s, and then the arithmetic mean

∑

k s(Yk(α))/m is used as approximation

56 3.3 Simulation based estimation

of the integral. The expected value in equation (3.2.19) can be approximated by

Ĵ(α) =
1
m

m
∑

k=1

s(Yk(α))
� ∂

∂ α⊤
log p(Yk(α)|α)
�

, (3.2.20)

and both functions can be computed because the samples Yk(α) are simulated.
Depending on the parametrization of the model, it is possible that the samples

are not simulated directly from the fixed parameters of interest. In mixed effect
models for example, θ is first transformed to an invertible matrix Γ (θ), that is
used to generate the random parameters v from which the model is simulated.
Consider the function α 7→ ζ = f (α), where α is the parameter of interest and
ζ is used to simulate the process. If the function α 7→ ζ is deterministic and
analytic, equation (3.2.20) is rewritten using the chain rule as

Ĵ(α) =
�

1
m

m
∑

k=1

s(Yk(ζ))
� ∂

∂ ζ⊤
log p(Yk(ζ)|ζ)
�

�

∂ f (α)
∂ α⊤

, (3.2.21)

with ζ= f (α). On the other hand, if ζ is a random parameter sampled from α as
ζ= F(α), where F is a random function, fk(α) is sampled from F(α), ζk = fk(α),
and

Ĵ(α) =
1
m

m
∑

k=1

�

s(Yk(ζk))
� ∂

∂ ζ⊤k
log p(Yk(ζk)|ζk)

�∂ fk(α)
∂ α⊤

�

, (3.2.22)

because s(Yk(ζk))∂ log p(Yk(ζk)|ζk)/∂ ζ⊤k and ∂ fk(α)/∂ α⊤ are not independent.
Note that

∂

∂ α⊤
Eα(s(Y)) =

∂

∂ α⊤
(Eα(s(Y))− s(y)) =

∂

∂ α⊤
Eα(s(Y)− s(y)), (3.2.23)

because α 7→ s(y) and Y 7→ s(y) are constant functions, but usually the approxi-
mation of Ĵ(α) is more stable if in the three equations (3.2.20 - 3.2.22), s(Y) is
replaced by (s(Y)− s(y)), where Y is Yk(α), Yk(ζ) and Yk(ζk) in the three cases.

3.3 Simulation based estimation

The usage of derivatives of the function being optimized, as well as the number of
derivatives employed, can be used to roughly categorize optimization techniques.
In the simulated method of moments, a zeroth-order optimization method is used
when the moment equation is solved “directly", meaning that in the basic itera-

57 3.3 Simulation based estimation

tion (3.2.17), the matrices H and L are either not updated, or they are updated
by using only the variance of the simulated statistics. Whereas in a first-order
optimization method L is updated using the first derivative of the statistics.

3.3.1 Stochastic and simulated gradient descent

We are interested in developing a theory that is general enough to be used in
models in which the expected value of the statistics, and its derivative with
respect to the parameters, can not be computed. The optimization becomes
stochastic if the statistics are sampled. The stochastic optimization algorithm is
due to Robbins and Monro [50], in which the basic iteration (3.2.17) is used but
the learning rate is decreased in each iteration. If the learning rate in iteration k
is εk = O(1/k), then as k→∞, the current parameter αk converges to α̂, that is
the solution of the moment equation, for every positive definite preconditioning
matrix H. The algorithm of Polyak and Juditsky [47] uses a larger learning rate,
on the order of εk = O(1/kc), with c ∈ (1/2,1), but the current value of the pa-
rameter at iteration m is ᾱm =

∑m
k=1αk/m, that is guaranteed to converge to α̂,

for every positive definite H. For c ∈ (0,1/2], ᾱm is also guaranteed to converge
to the solution of the moment equation, but for a finite number of iterations,
the quality of the approximation of α̂ with ᾱm depends on the preconditioning
matrix H. In more modern approaches, mainly coming from machine learning,
εk = O(1), so that a much quicker convergence can be achieved, but the approx-
imation relies heavily on the updating scheme for H, and on assumptions about
the optimized functions [37].

If the derivative of the function that is to be optimized can be computed ex-
plicitly, the parameter can be estimated with a gradient descent iterative method

α←− proj(α− εH∇(y,α),A), (3.3.1)

where the gradient ∇(y,α) is the transpose of the derivative of the function to
be optimized with respect to α, evaluated at the current value of the parameter,
and the observed data, and the projector operator is required to keep α in its
parametric space. For the generalized method of moment estimator defined in
equation (3.2.9) the gradient is ∇(y,α) = ∂ cW (y,α)/∂ α, that is the transpose
of the value in equation (3.2.11).

The computation of∇(y,α) is often linear on the size of the sample y , in the
stochastic gradient descent the iteration (3.3.1) is replaced with

α←− proj
�

α−
nε
u

H∇(yU ,α),A
�

, (3.3.2)

58 3.3 Simulation based estimation

where the random vector ∇(yU ,α) is such that E(∇(yU ,α)) = u∇(y,α)/n, and
yU is an u dimensional random subsample of the n dimensional observed dataset
y . The advantage of this approach is that in large datasets the computation of
the gradient can be costly, so the optimization is made stochastic by computing
the gradient in a random subsample, in each iteration.

If the function α 7→ ∇(y,α) can not be computed explicitly, the optimization
can be made stochastic using simulation, replacing ∇(y,α) by their simulated
version ∇̂(Y (α),α), as long as E(∇̂(Y (α),α)) = ∇(y,α), where Y (α) is a simu-
lation of the process wiht parameter α. For the computation of α̂W in equation
(3.2.9), the simulated gradients

∇̂(Y (α),α) = 2
� ∂

∂ α⊤
log p(Y (α)|α)
�⊤

s(Y (α))⊤W (s(Y (α))− s(y)), (3.3.3)

and

∇̂(Y (α),α) = 2
� ∂

∂ α⊤
log p(Y (α)|α)
�⊤
(s(Y (α))− s(y))⊤W (s(Y (α))− s(y)),

(3.3.4)
have both expected value ∇(y,α), then α̂W can be computed with the simulated
gradient descent

α←− proj(α− εH∇̂(Y (α),α),A). (3.3.5)

The two stochastic approaches can be combined by using the gradients n∇̂(YU(α),α)/u,
in which Y (α) and y(α) in the equations above are replaced by YU(α) and yU(α)
respectively. The advantage is that we have to simulate the process only for a
subset of the data, but the unbiasedness of the simulated gradient relies on the
fact that the generative process of a smallest subsample is representative of the
one in the full sample. This is the case when it is assumed that the observed data
are independent.

3.3.2 Update state optimization

With large learning rates, e.g. εk = O(1) for all iterations k, the quality of the
approximation depends on the updating scheme for the preconditioning matrix
H. The goal is to “standardize" the variability of the components of the gradient,
so that the size of the learning rate has a comparable effect to all components.
Usually diagonal preconditioning matrices are used for computational reasons.
Some examples common in the literature are now described.

In the basic updating scheme, called AdaGrad [19], a matrix H̃ is updated in
each iteration as H̃ ←− H̃ +∇∇⊤, and then the preconditioning matrix is H =

59 3.3 Simulation based estimation

diag(H̃)−1/2. In RMSProp [69], H = diag(1/
p

hi), and the updates for hi are

hi ←− γhi + (1− γ)∇2
i , (3.3.6)

for all i, with forgetting factor γ ∈ (0,1). In Adam [32], the gradients in the
previous iterations are also used to update the preconditioning, the updates in
iteration k are

∇̄ ←− (γ1∇̄+ (1− γ1)∇)/(1− γk
1),

hi ←− (γ2hi + (1− γ2)∇2
i)/(1− γ

k
2), ∀i,

α ←− proj(α− εdiag(1/(
p

hi +δ))∇̄,A),
(3.3.7)

where δ ≈ 0, γ1,γ2 ∈ (0, 1).

All these methods for updating the preconditioning matrix H can be used in
all “types" of moment-based estimations discussed in Section 3.2. The differ-
ence between the estimation method is in how ∇ is computed. For computing
α̂W in equation (3.2.9) the simulated gradients (3.3.4) and (3.3.5) are required.
However the “simulated score function" ∂ / log p(Y (α)|α)/∂ α⊤ can vary widely,
making the algorithm unstable. Moreover the matrix W ∈ Rd ′×d ′ has to be set.
The advantage of solving directly equation (3.2.15), and so of computing α̃L, is
the score function is not used to update the parameter, so that the algorithm is
more stable. However L ∈ Rd×d ′ has still to be set, and its optimal values de-
pends on the matrices G ∈ Rd×d ′ and V ∈ S+d ′ defined in equations (3.2.13) and
(3.2.14). The approach that we follow is to use the matrix L that is “optimal at the
starting point" of the optimization. Therefore, the statistics s(Y1(α)), ..., s(Ym(α))
that are simulated at the starting point α, are used to approximate their variance
V̂ (α), and their Jacobian Ĵ(α)with the method in Section 3.2.4. Then the matrix
L = Ĵ(α)V̂ (α)−1 that is used in the whole optimization with iteration (3.2.17).

In Figure 3.1 are shown the chains of parameters during an estimation in the
same dataset, with fixed and variable preconditioning H. In the second case H
is updated with RMSprop (3.3.6), with γ = 0.9. It can be seen that when the
preconditioning H is not updated, the oscillations are different for the various
parameters. For example, in the left plot the blue chain of θ2 (standard deviation
of a random effect) has much smaller oscillations than the red chain of β2 (re-
gression parameter), whereas in the right plot all chains have oscillations with
more similar variance.

60 3.3 Simulation based estimation

0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

estimation fixed preconditioning

iteration

pa
ra

m
et

er

0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

estimation adaptive preconditioning

iteration
pa

ra
m

et
er

Figure 3.1: Chain paramerters during estimation with fixed (left) and variable
(right) preconditioning.

3.3.3 Computation of the estimator and evaluation of convergence

Depending on whether the learning rate is decreased between iterations, and if
so on how quickly it goes to 0, the estimator is computed differently. We consider
the case in which the learning rate is kept constant, therefore the current value
of α does not tend to the solution α̃L of the moment equation. However when
stationarity is reached, the current value oscillates around α̃L, so that the values
of α after stationarity is reached can be averaged to approximate α̃L. Formally, if
α1, ...,αm are the values that are used to simulate the process at iterations 1, ..., m
respectively, the final estimator is defined as

α̂=
1

m− b

m
∑

k=b+1

αk, (3.3.8)

where 0 ≤ b < m is a value that ends the “burn-in" period, in which it is not
assumed that the process has reached stationarity. Note that α̂ ∈ A as αk ∈ A for
all k, and A is a convex space.

There are two possible issues that determinates whether α̂ can be used instead
of the solution of the moment equation α̃L. First, the stationarity of the chain
(αk)k for k ∈ {b+1, ..., m} has to be assessed. This can be done in various ways,
as every method that can be used to test stationarity of a stochastic process can

61 3.4 Simulation based model evaluation

be used. A simple approach is to check for all statistics sh where h ∈ {1, ..., d ′},
for how many k ∈ {b + 1, ..., m}, the difference sh(Y (αk))− sh(y) is positive. If
αk oscillates around the solution of the moment equation, the sign of the dif-
ferences should have mean approximately 0 for all statistics. This approach is
more convenient than considering the differences αhk−αh(k−1), as the projection
to A can force some of them to be 0 or approximately 0, when the parameter
is at the boundary of A. A second related issue is to check the approximation
error α̂− α̃L. This is done by evaluating the average of the simulated differences
sh(Y (αk)) − sh(y) for k ∈ {b + 1, ..., m} that should be approximately 0 for all
h ∈ {1, ..., d ′}. Note that for assessing stationarity the average of the sign of the
simulated differences is used, whereas for assessing the approximation error the
average of the simulated differences is used.

In Figure 3.2, the estimated values of β1 and θ1 for 100 simulated datasets of
the model that will be discussed in Section 3.5, are plotted with the proportion
of times simulated and observed statistics are positive, and their associated pre-
conditioning at the end of the estimation. The vertical lines are the real values
for β1 and θ1. It can be seen that the counts of signs of differences between sim-
ulated and observed statistics, after the end of the burn-in period can be used to
evaluate the convergence of the optimization. Another important consideration
is that when the optimization does not converge, the preconditioning shrink.

3.4 Simulation based model evaluation

3.4.1 Monte-Carlo approximation of quantities for model evalua-
tion

Under assumptions [24], the asymptotic distribution of the generalized method
of moment estimator is

p
N(α̂(Y)−α∗)

d
−→ Norm(0, C(α∗)), (3.4.1)

as n→∞, where N is the size of the sample Y , that is generated from the real
value α∗, and C(α∗) is equal to (3.2.12) when α̂ = α̂W , or it is equal to (3.2.16)
when α̂= α̃L. The computation of C(α∗) requires the avaliability of the functions

α̃ 7→ G(α̃) = Eα(∂ (Eα(s(Y))− s(y))/∂ α⊤)|α=α̃,
α̃ 7→ V (α̃) = Eα((Eα(s(Y))− s(y))(Eα(s(Y))− s(y))⊤)|α=α̃,

(3.4.2)

62 3.4 Simulation based model evaluation

−5 0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

stationarity check beta1

estimated value

pr
op

or
tio

n
po

si
tiv

e
up

da
te

s

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

stationarity check theta1

estimated value

pr
op

or
tio

n
po

si
tiv

e
up

da
te

s

−5 0 5 10 15 20 25

0
1

2
3

4

preconditioning check beta1

estimated value

fin
al

 v
al

ue
 p

re
co

nd
iti

on
in

g

0 5 10 15

0
1

2
3

4
5

6

preconditioning check theta1

estimated value

fin
al

 v
al

ue
 p

re
co

nd
iti

on
in

g

Figure 3.2: Top row with estimated values in a simulation, plotted against the sign of
differences between simulated and observed statistics. Bottom row estimated values
are plotted against the final value of the preconditioning in the optimization.

63 3.4 Simulation based model evaluation

that are used in equations (3.2.13) and (3.2.14) respectively, when α̃= α∗. The
first problem is that α∗ is unknown, but Slutsky’s theorem implies that the asymp-
totic distribution of the generalized method of moment estomator is the same if
C(α∗) is replaced by C(α̂), that is computed by replacing α̃with α̂ in the functions
(3.4.2), so that the matrices G(α̂) and V (α̂) are used to compute C(α̂). However,
we are interested in cases in which the functions α 7→ G(α) and α 7→ V (α) are
not available, and so C(α̂) is approximated by Ĉ , that is obtained by replacing
G(α̂) and V (α̂) with their approximated values Ĝ and V̂ respectively.

The matrices Ĝ and V̂ are computed with Monte-Carlo integration. The gen-
erative process is simulated m times from the estimated parameter α̂. We con-
sider the general case in which there are random parameters in the model. There-
fore the k-th simulated value is Yk(ζk), where ζk is simulated from a random
function, usually degenerate in some of its components, parametrized by α̂, that
is ζk = fk(α̂). The Monte-Carlo approximation of V (α̂) is

V̂ =
1
m

m
∑

k=1

(s(Yk(ζk))− ŝ)(s(Yk(ζk))− ŝ)⊤, (3.4.3)

where the vector of average statistics

ŝ =
1
m

m
∑

k=1

s(Yk(ζk)), (3.4.4)

is used in the computation of the sample variance of the simulated statistics V̂ .
The matrix of expected derivatives is

Ĝ =
1
m

m
∑

k=1

�

�

s(Yk(ζk))− s(y)
�

� ∂

∂ ζ⊤k
log p(Yk(ζk)|ζk)

��∂ fk(α)
∂ α⊤

�

�

�

α=α̂

�

�

, (3.4.5)

so that Ĝ = Ĵ(α̂) that was defined in equation (3.2.22). Note that the first term
of the summands is s(Yk(ζk))−s(y) instead of s(Yk(ζk)) that was used in equation
(3.2.22), because the approximation is more stable. Therefore, the approximated
variance matrix for α̂W or α̃L are

ĈW = (Ĝ
⊤W Ĝ)−1Ĝ⊤W V̂W⊤Ĝ(Ĝ⊤W⊤Ĝ)−1,

ĈL = (LĜ)−1 LV̂ L⊤(LĜ)−⊤,
(3.4.6)

respectively.

64 3.4 Simulation based model evaluation

3.4.2 Score tests with Neyman’s orthogonalization procedure

The vector ŝ, with the matrices V̂ and Ĝ, can be used to test statistical hypothesis
on the parameter α. The d dimensional parametric space A is decomposed in
A = A1 ∪ A2, where A1 and A2 = A \ A1 have dimension d1 and d2 = d − d1

respectively. The null hypothesis is in general

H0 : α ∈ A1, (3.4.7)

but we consider a simpler case in which α is decomposed as α= (α1,α2), where
α1 is d1 dimensional, and

A1 = {α= (α1,α2) ∈ A : α2 = 0d2
}, (3.4.8)

so that the null hypothesis can be written as

H0 : α2 = 0d2
. (3.4.9)

The vector of statistics for α can be similarly decomposed as s = (s1, s2), its ex-
pected values, variance, and derivative with respect to α are decomposed accord-
ingly as

µ(α) =

�

µ1

µ2

�

, V (α) =

�

V11 V12

V⊤12 V22

�

, J(α) =

�

J11 J12

J21 J22

�

, (3.4.10)

respectively.
The Neyman’s orthogonalization procedure [43] is used to transform the statis-

tic s in a test statistic for (3.4.9) with high power. The orthogonalization proce-
dure when the estimate is computed with the method of moments is considered
first, the procedure with generalized method of moments is discussed in Sec-
tion 3.4.4. If the asymptotic mean and variance of s, are µ(α) and V (α) respec-
tively, when the real parameter is α, then

w(Y,α) = s2(Y,α)−Λ(α)s1(Y,α) ∈ Rd2 , (3.4.11)

where
Λ(α) = J21(α)J11(α)

−1 ∈ Rd2×d1 , (3.4.12)

so that w(Y,α) has expected value and variance

E(w(Y,α)) = µ2(α)−Λ(α)µ1(α),

Ξ(α) = V22(α)− (Λ(α)V12(α) + V12(α)
⊤Λ(α)⊤) +Λ(α)V11(α)Λ(α)

⊤,
(3.4.13)

65 3.4 Simulation based model evaluation

respectively.
We denote with α̂ the estimated parameter under the null hypothesis (3.4.9).

As α̂ solves the moment equation, when the null hypothesis is true E(w(Y, α̂)) =
0d2

and the test statistic

z2(Y) = (w(Y, α̂)−w(y, α̂))⊤Ξ(α̂)−1/2(w(Y, α̂)−w(y, α̂)) ∈ [0,∞), (3.4.14)

has asymptotic Chi-squared distribution, with d2 degrees of freedom. We are in-
terested in the general case in which α 7→ Eα(A(Y)) is not analytic. The simulated
values Yk(ζk), ζk = fk(α̂), for k ∈ {1, ..., s}, are then used to approximate V (α̂),
a(y, α̂), and J(α̂) with V̂ , â and Ĝ respectively, these quantities were computed
in equations (3.4.3 - 3.4.5). Then z2(Y) is approximated as

ẑ2 = (ŵ−w)⊤Ξ̂−1/2(ŵ−w) = ||ŵ−w||2
Ξ̂

, (3.4.15)

where ŵ= ŝ2−Λ̂ŝ1, w= s2(y)−Λ̂s1(y), Λ̂= Ĝ21Ĝ−1
11 , and Ξ̂ is computed replacing

Λ(α) and V (α) with Λ̂ and V̂ in equation (3.4.13).
The p-value of the test (3.4.9) based on the asymptotic distribution of z2(Y)

is approximated as
p̃ = 1−χ2

d2,ẑ2 ∈ (0,1], (3.4.16)

where the last term is the quantile of the Chi-squared distribution with d2 degrees
of freedom, evaluated at ẑ2. The simulated values Yk(ζk) can be used to compute
a p-value that does not relies in the asymptotic distribution of the statistics. For
each simulated value, compute the approximated statistic ŵk = ŵ(Yk(ζk), α̂), and
their mean w̄ =

∑m
k=1 ŵk/s, then the p-value of the test (3.4.9) is approximated

as

p̂ =
1
m

m
∑

k=1

I(||ŵk − w̄||2
Ξ̂
> ||w− w̄||2

Ξ̂
)

=
1
m

m
∑

k=1

I((ŵk − w̄)⊤Ξ̂−1(ŵk − w̄)> ẑ2) ∈ [0, 1],

(3.4.17)

where ẑ2 is the same value that was used in (3.4.16), and I is the indicator func-
tion such that I(True) = 1 and I(False) = 0. Therefore, the difference between
p̃ and p̂ is that the latter is based on the simulated empirical distribution of the
statistic w(Y, α̂), while for computing p̃, only the first two moments (approxi-
mated by simulation) of the distribution of w(Y, α̂) are used.

The idea of using orthogonalization to increase the power of score tests is an
adaptation of the work presented in [56], which is itself based on [4, 3].

66 3.4 Simulation based model evaluation

3.4.3 Different orthogonalizations procedures

In the previous section it was assumed that the vector of statistics s that is used
to derive the test statistic z2 has the same dimension d of the parametric space
A. For estimating the model under the null, s2 is not used as α2 = 0d2

under
H0. Then J11 is a d1 × d1 dimensional matrix that is invertible, so Λ(α) can be
computed as in equation (3.4.12). However it is not required to use all statistics
and all parameters (under the null) in the orthogonalization procedure.

The case in which all statistics are used in the orthogonalization, but not all
parameters under the null, is discussed first. Without loss of generality suppose
that only the first d◦1 ≤ d1 parameters under the null are used. The statistic
w(Y,α) is replaced by

w(Y,α)◦ = s2(Y,α)−Λ◦(α)s1(Y,α) ∈ Rd2 , (3.4.18)

where
Λ◦(α) = J◦21(J

◦
11
⊤J◦11)

−1J◦11
⊤ ∈ Rd2×d1 , (3.4.19)

and the matrices J11 ∈ Rd1×d1 and J21 ∈ Rd2×d1 are decomposed as J11 = (J◦11 J◦◦11)
and J21 = (J◦21 J◦◦21), respectively, with J◦11 ∈ R

d1×d◦1 and J◦21 ∈ R
d2×d◦1 . Therefore,

when computing Λ◦(α) instead of Λ(α), the left inverse of J◦11 is used instead of
the inverse of J11.

Now the case in which fewer statistics than parameters are used in the or-
thogonalization procedure, is considered. In this case the statistic w(Y,α) ∈ Rd2

is replaced by
w(Y,α)∗ = s2(Y,α)−Λ∗(α)s∗1(Y,α) ∈ Rd2 , (3.4.20)

where s∗1(Y,α) is d∗1 dimensional, for d∗1 ≤ d1, and Λ∗(α) ∈ Rd2×d∗1 . Assume with-
out loss of generality that only the first d∗1 statistics are used in the orthogonal-
ization, so that J11 is decomposed as J⊤11 = (J

∗
11
⊤ J∗∗11

⊤)⊤, that is, the first d∗1 rows
of J11 are selected. Then, Λ∗(α) is computed using the right inverse of J∗11, as

Λ∗(α) = J21J∗11
⊤(J∗11J∗11

⊤)−1 ∈ Rd2×d∗1 . (3.4.21)

Note that the whole J21 is used, as all parameters under the null are used in the
orthogonalization procedure.

The two orthogonalization methods just discussed can be combined by con-
sidering the decompositions

J11 =

�

J∗◦11 J∗◦◦11
J∗∗◦11 J∗∗◦◦11

�

, J22 =
�

J◦12 J◦◦12

�

, (3.4.22)

67 3.4 Simulation based model evaluation

where

w(Y,α)∗◦ = s2(Y,α)−Λ∗◦(α)s∗1(Y,α) ∈ Rd2 ,

Λ∗◦(α) = J◦21(J
∗◦
11)
± ∈ Rd2×d∗1 ,

(3.4.23)

where (J∗◦11)
± denotes the left or the right inverse of J∗◦11, depending on whether

d◦1 is lower than d◦2 , respectively. The statistic w(Y,α)∗◦ can be then used instead
of w(Y,α) to compute z2(Y,α), that is Chi-squared distributed with d2 degrees
of freedom under the null.

Orthogonalization is useful when the statistics that are used to estimate the
model and the ones that are used to test the null hypothesis are correlated. If
the correlation is not important, orthogonalization can reduce the power of the
test, because of the new variability introduced in w by the approximation of Λ
and by the simulated statistics s1, is not “related" with whether the null hypoth-
esis is true or false. Therefore, orthogonalizations procedure with less statistics
and parameters can increase the power of the test, whereas if all statistics and
parameters would be used, the power of the test would also be reduced.

3.4.4 Orthogonalization in generalized method of moments

When the model under the null is estimated with generalized method of mo-
ments, s1 contains more statistics than parameters. The d ′1 dimensional statistic
s′1 is used under the null to estimate the d1 dimensional parameter, with d ′1 > d1.
To derive a test statistic, the d ′ = d ′1+ d2 dimensional statistic s′ is simulated un-
der the estimated value, decomposed as s′ = (s′1, s2), and w′ is computed similarly
to w∗ in equation (3.4.20).

There is however a problem with the generalized method of moments esti-
mator α̃L when the alternative hypothesis is true. The estimator is the solution
of the moment equation between expected and observed value of a linear trans-
formation of the statistics in s′1, determined by the matrix L ∈ Rd1×d ′1 with full
rank d1 that is fixed at the beginning of the algorithm. Under the null, the esti-
mated model is the true one, so all statistics simulated from the estimated value
are equal on average to the observed ones. Under the alternative, only a lin-
ear transformation of the simulated sufficient statistics is equal on average to
the observed ones. In detail, α̂ is the generalized method of moment estimator
that solves LEαs

′
1(Y) = Ls′1(y), by solving the integral on the left hand side with

simulation. The expected values of the statistics at α̂ under the null and the

68 3.4 Simulation based model evaluation

alternatives are

H0 is true LEs′1(Y (α̂)) = Ls′1(y) Es′1(Y (α̂)) = s′1(y),
H0 is false LEs′1(Y (α̂)) = Ls′1(y) Es′1(Y (α̂)) ̸= s′1(y),

(3.4.24)

the inequality is due to the fact that the moment equation solves an equation of
the transformed (into a lower dimensional space) statistics. This is not a problem
under the null because y has been “sampled" from the true model.

The test statistic w is derived from a linear transformation of s2 and s′1, but
the information that is relevant for testing the hypothesis is in s2. However under
the alternative Λ′s′1 can become the dominant part of w despite it might contain
no information about the hypothesis. Therefore the statistic used is

w(Y, y,α)′ = s2(Y,α)−Λ′(α)(s′1(Y,α)− b1(y,α)) ∈ Rd2 , (3.4.25)

where the vector b1 of biases is

b1(y) = Es′1(Y,α)− s′1(y)≈
1
m

m
∑

k=1

s′1(Yk(α))− s′1(y) = b̂1 ∈ Rd ′1 . (3.4.26)

The observed test statistic, and the simulated one at iteration k are then com-
puted as

w′ = s2(y)− Λ̂′(s′1(y)− b̂1),

w′k = s2(Yk)− Λ̂′(s′1(Yk)− b̂1),
(3.4.27)

respectively, where
Λ̂′ = Ĵ ′21(Ĵ

′⊤
11 Ĵ ′11)

−1 Ĵ ′⊤11 ∈ R
d2×d ′1 . (3.4.28)

In the computation of Γ̂ ′, Ĵ ′12 and the left inverse of Ĵ ′11 are used because there
are more statistics than parameters.

If not all parameters or statistics are used in the orthogonalization, the meth-
ods developed in Section 3.4.3 can be combined with the one developed here
when the parameters are estimated using generalized method of moments. The
most general case is with the statistic

w(Y, y,α)′∗◦ = s2(Y,α)−Λ′∗◦(α)(s′∗1 (Y,α)− b1(y,α)) ∈ Rd2 ,

Λ′∗◦(α) = J ′◦21(J
′∗◦
11)

± ∈ Rd2×d ′∗1 ,
(3.4.29)

where the left or the right inverse of J ′∗◦11 is used depending on the dimensions.

69 3.4 Simulation based model evaluation

3.4.5 Score tests on models with random effects

For models with random effects such as the ones introduced in Section 3.2.1,
there are various hypotheses that are commonly investigated. We always con-
sider models in which under the null hypothesis the random effects are indepen-
dent, meaning that θ ∈ Rq and Γ (θ) = diag(θ).

The null hypotheses that are first considered here are the irrelevance of a
fixed effect, the irrelevance of a random effect (called also of no-overdispersion of
an effect), or the irrelevance of an effect, written as

H0 : βp = 0, H0 : θq = 0, H0 : βp = θq = 0, (3.4.30)

respectively, where we assume without loss of generality that the effect that is
tested is the last one (in position p or q). In the last case we assume that βp and
θq are the parameters of the same effect (one modelling its average, the other its
dispersion), thus for all observations i ∈ {1, ..., N}, the last non-zero element of
the design zi is equal to the last value of the covariate x i, that is zi[j(i)·q] = x ip,
where j(i) is the individual in observation i. The decompositions for computing
the statistic w defined in Sections 3.4.2, are

H0 : βp = 0 H0 : θq = 0 H0 : βp = θq = 0
s1 : (sβ1, ..., sβ[p−1], sθ) (sβ , sθ1, ..., sθ[q−1]) (sβ1, ..., sβ[p−1], sθ1, ..., sθ[q−1]),
s2 : sβp sθq (sβp, sθq),

(3.4.31)
for the three cases, respectively. Thus the last values of the statistics sβ and sθ
defined in Section 3.2.1 are assumed to contain information about whether the
hypotheses should be rejected. For the last hypothesis, the observed statistic w
and the simulated ones ŵk are used with their variance Ξ̂ ∈ S+2 to compute the
p-values in equations (3.4.16) or (3.4.16). The same method can be used for
computing the p-values in the other two cases, but as w is a scalar, the p-values
can also be computed as

p̃ = 1− 2Φ(|w− w̄|/Ξ̂1/2), p̂ =
∑

k I(|ŵk − w̄|> |w− w̄|),
p̃ = 1−Φ((w− w̄)/Ξ̂1/2), p̂ =

∑

k I(ŵk > w),
(3.4.32)

respectively, where Φ is the cumulative distribution function of the standard
Gaussian, and for the second hypothesis has been used the fact that the alter-
native H1 : θq > 0 is unilateral.

The second class of null hypotheses that are considered are of shared param-

70 3.4 Simulation based model evaluation

eters of a fixed effect, defined as

H0 : βp = βp−1. (3.4.33)

Note that the parametric space under the null has dimension d−1= (p−1)+q.
If the parameters under the first null hypothesis are estimated with generalized
method of moments, the statistics sβ[p−1] and sβp are both used to estimate the
parameters. In this case s′ = (s′1, s2) with s′1 = (sβ , sθ) ∈ Rd , and s2 is defined such
that it is large when the null should be rejected. A possibility is to use

s2 = (sβ[p−1] − sβp)
2, (3.4.34)

that is used together with s′1 to compute w′ as in Section 3.4.4, and the p-values
are computed as in the bottom row of (3.4.32), as the null is rejected when
the simulated statistic is larger. If the parameters under the null are estimated
with method of moments, the two statistics sβ[p−1] and sβp have to be com-
bined into one statistic such as sβ0 = sβ[p−1] + sβp, so that s = (s1, s2) with
s1 = (sβ1, ..., sβ[p−2], sθ , sβ0) and s2 as in equation (3.4.34). The hypothesis H0 :
θq = θq−1 of shared parameters of a random effect is tested in the same way.

The last null hypothesis that is considered is the one of independence of ran-
dom effects

H0 : Γ (θ) = diag(θ), (3.4.35)

with alternative in which at least two effects are correlated. Suppose for sim-
plicity that q = 2, and that the model is estimated with method of moments.
The statistic sv = (sv1, ..., svn) for v and their sample variance sΣ ∈ S+2 are com-
puted as in Section 3.2.1. The statistic for θ under the null is sθ = diag−1(sΣ) =
(sΣ11, sΣ22) ∈ R2

+, that is the vector of containing the diagonal elements of sΣ.
Then s = (s1, s2) contains s1 = (sβ , sθ) ∈ Rp+q that is used to estimate the param-
eters, and that the statistic s2 that it is assumed to contain information about the
null hypothesis is s2 = sΣ12 ∈ R, that is the out-diagonal element of sΣ. The null
hypothesis is rejected when the observed value for this statistic is very far from
0, in comparison to the simulated values, so a bilateral p-value is used.

71 3.5 Poisson model with random effects and softplus link

3.5 Poisson model with random effects and softplus link

3.5.1 Model

The model that is used in this section is

Yi ∼ Pois(µi) ∈ N,

µi = softplus(ηi) = log(1+ exp(ηi)) ∈ R+,

ηi = x⊤i β + z⊤i v ∈ R,

v = (In ⊗ Γ (θ))u∼ Norm(0, (In ⊗ Γ (θ))(In ⊗ Γ (θ))⊤) ∈ Rqn,

(3.5.1)

for i ∈ {1, ..., N} with fixed parameters

β ∈ B ⊆ Rp, Γ (θ) ∈G ⊆ Rq×q, θ ∈ T ⊆ Rr . (3.5.2)

The softplus link is used because it has better property than the canonical link
ηi 7→ exp(ηi) and the identity link ηi 7→max(ηi, 0). These three links are plotted
in black, red and green, respectively, in the left plot of Figure 3.3. The soft-
plus link in the Poisson regression have been studied extensively in [74]. The
advantage of the softplus with respect to the identity link is that the former is
differentiable in its domain, so the optimization is simplified. The advantage with
respect to the canonical link is that the softplus is more stable for large values,
the advantage is significant when the moment equation is solved stochastically,
as small variations of β and especially of θ are amplified significantly by the
exponential.

In the middle plot of Figure 3.3, the histogram of the dependent variable of
one simulated dataset from the model (3.5.1) is plotted. The simulated dataset
contain two covariates and two independent random effects, the values of the
parameter from which the dataset is sampled are β1 = 10 and β2 = −0.3 for the
two covariates, and the standard deviations of the random effects are θ1 = 2 and
θ2 = 1. In the right plot of Figure 3.3, the cumulative distribution function of
the response variable is plotted for different simulated datasets. The black curves
are for three simulations from the model with parameter (β ,θ) = (10,−0.3, 1,1)
whereas for the red and the green curves, all parameters are the same, except
for θ1 that is equal to 4 and 8, respectively.

To approximate the matrix of derivatives J(α), where α= (β ,θ), it is neces-

72 3.5 Poisson model with random effects and softplus link

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

links for Poisson regression

eta

m
u

dependent variable simulated dataset

counts

D
en

si
ty

5 10 15 20 25

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF of dependent variable

x

F
n(

x)

Figure 3.3: Left: softplus (black), exponential (red) and identity (green) link func-
tions. Center: histogram of dependent variable simulated from model (3.5.1).
Right: cumulative distribution functions of dependent variable simulated from dif-
ferent values of the parameter θ1, black, red and green for θ1 equal to 1, 4 and 8
respectively.

sary to compute the score function

∂

∂ (β⊤ θ⊤)
log f (y|β ,θ) =

�

∂ log f (y|µ)
∂ µ⊤

∂ µ(η)
∂ η⊤

∂ η(β , v)
∂ (β⊤ v⊤)

·

·
∂ [(β ,θ) 7→ (β , v)]

∂ (β⊤ θ⊤)

�

∈ RN×(p+r),

(3.5.3)

where the first three derivatives are

∂ log f (y|µ)
∂ µ⊤

= diag((yi −µi)/µi)i ∈ RN×N ,

∂ µ(η)
∂ η⊤

= diag(expit(ηi))i ∈ RN×N ,

∂ η(β , v)
∂ (β⊤ v⊤)

= (X Z) ∈ RN×(p+qn),

(3.5.4)

with expit(ηi) = exp(ηi)/(1+exp(ηi)). As θ 7→ v does not depend on β , the last

73 3.5 Poisson model with random effects and softplus link

derivative is

∂ [(β ,θ) 7→ (β , v)]
∂ (β⊤ θ⊤)

=

�

Ip Op×r

Oqn×p ∂ v/∂ θ⊤

�

∈ R(p+qn)×(p+r). (3.5.5)

We consider the simple case with independent random effects, in which r = q
and θ ∈ Rq

+ with
Γ (θ) = diag(θ) ∈ diag(Rq

+)∼= R
q
+. (3.5.6)

Then

∂ v
∂ θ⊤

=
∂ (In ⊗ Γ (θ))u

∂ θ⊤
=

diag(ui)1≤i≤n

. . .
diag(ui)((n−1)q+1)≤i≤qn

 ∈ Rqn×q. (3.5.7)

as vi = θ jui for i = (k− 1)q+ j, k ∈ {1, ..., n}, j ∈ {1, ..., q}.

If the number of fixed and random effects is p and q respectively, but the
parameter is (β0,θ0) ∈ Rp0 × Rq0

+ with p0 ≤ p and q0 ≤ q, the fixed parameter
(β ,θ) from which the model is simulated is computed with

[(β0,θ0) 7→ (β ,θ)] : Rp0 ×Rq0
+ → R

p ×Rq
+. (3.5.8)

whose derivative is

∂ [(β0,θ0) 7→ (β ,θ)]
∂ (β⊤0 θ

⊤
0)

=

�

∂ β/∂ β⊤0 ∂ β/∂ θ⊤0
∂ θ/∂ β⊤0 ∂ θ/∂ θ⊤0

�

∈ R(p+q)×(p0+q0). (3.5.9)

In all cases that we consider, ∂ β/∂ θ⊤0 = Op×q0
, ∂ θ/∂ β⊤0 = Oq×p0

, and

∂ β

∂ β⊤0
=

�

Ip if β = β0,

�

Ip0

e⊤p0

�

if β = (β0,β0p0
),

�

Ip0

0⊤p0

�

if β = (β0, 0)

�

∈ Rp×p0 ,

(3.5.10)
where ep0

= (0, ..., 0, 1) ∈ Rp0 . The three cases are the standard one, the one
in which the last two parameters βp and βp−1 are shared, and the one in which
the last parameter βp is 0, respectively. Analogously for computing ∂ θ/∂ θ⊤0 , the
equations above are the same with β and p replaced by θ and q respectively.
The last case is used when the model is estimated under the null hypothesis in
which the last component (of β , of θ , or of both) is 0. The second case is used
either when estimating the model under the hypothesis in which the last two
component are shared, or when the model is estimated with generalized method
of moment, so that the last two statistics for β (or for θ) are both used to estimate

74 3.5 Poisson model with random effects and softplus link

βp−1 (or θq−1).

3.5.2 Simulation study

In this section a simulation study is used to evaluate the estimation method and
different orthogonalization procedures for datasets generated from the model
(3.5.1) with independent random effects. The simulated datasets have n = 30
individuals and N = 500 observations. The number of covariates is p = 3 and
each individual has q = 2 random effects. The first covariate is the intercept,
the two other contain correlated Gaussian random values, and the two non-zero
values for the design are the same of the first two covariates. For the simulation,
100 datasets generated from the real model are used.

The hypothesis considered is

H0 : β3 = 0, (3.5.11)

the model is estimated with method of moments, with statistics as in Section 3.2.1.
The dataset are generated under the null hypothesis from the real parameter
α = (β ,θ) ∈ Rp0 ×R2

+ with p0 = 2, β = (10,−.3), and with standard deviations
for the random effects θ = (2, 1).

For each simulated dataset the starting point of the optimization is equal to
the real parameter under the null, plus some added noise. The invertible matrix
L ∈ Rp0×p0 is estimated at the starting point using the method is Section 3.3.2,
using 300 simulations at the starting point, the matrix L it is never updated in
the optimization. For method of moments it is not required to approximate L,
as every other invertible matrix would not change the solution of the moment
equation. However, it is advantageous to use this matrix for numerical stabil-
ity. To estimate the parameter, 1600 iterations consisting in a simulation from
the current value of the parameter, and an update depending on the difference
between simulated and observed statistics. The learning rate is kept constant
equal to ε = 6/N = 0.012, and the preconditioning is updated with RMSProp
as in (3.3.6) with γ = 0.9. The first 400 iterations are excluded as “burn-in",
so that 800 values of the parameter are averaged to compute the estimator. At
the estimated value, 1000 simulations are used to compute the matrices needed
for the model evaluation procedure and to test the hypothesis. Here the statistic
that is assumed to contained information about β3, and so that is used as test
statistic, is also simulated.

For computing the p-values of the test (3.5.11), three different orthogonal-
ization procedures are used. The first one is the “basic" case in which there is

75 3.6 Conclusion

no orthogonalization, meaning that the statistic associated with β3 is used “di-
rectly", so the statistics that are used to estimate the parameters under the null
are not used “orthogonalize" the test statistics. In the second case, all parameters
(under the null) and statistics are used in the orthogonalization, as described in
Section 3.4.2. Finally we consider the procedure in which only one statistics (but
with all parameters) is used in the procedure, so the test statistic is w∗ as defined
in Section 3.4.3. The only statistic that is used in the orthogonalization is the one
associated with β2, because the second and the third covariate are correlated, so
the second statistic is likely to be correlated with the test statistic.

We have considered two cases under the alternative, in the first one β3 = −1,
in the second one β3 = −2.5. Some of the simulated datasets have been excluded
because of convergence issues in the estimation. This has been done using the
method described in Section 3.3.3, where the sign of the differences between
simulated and observed statistics is used to check if the process has reached sta-
tionarity after the “burn-in" period In particular , under the null and under the
two alternatives 78, 78 and 76 datasets are kept, respectively. The cumulative
distribution functions of the p-values under the null, and under the two alter-
natives considered are plotted in Figure 3.4. The black curves are ones of the
p-values without orthogonalization, in the red curves all statistics are used to
orthogonalize the test statistic, and in the green curves only the second statistic
is used. The latter approach is (slightly) the best one, whereas the orthogonal-
ization using all statistics reduces the power of the test. The reason is that or-
thogonalization is useful only when the test statistic is correlated with the ones
that are used in estimation, and only the second one has a significant correlation
with the test statistic.

3.6 Conclusion

The purpose of this chapter was mainly to study algorithms similar to the ones
used in the SAOM with random effects, in different set-ups. The original idea
was to link the theory about stochastic gradient descent developed mostly in
machine learning, with the theory of moment- and simulation-based statistical
inference, by considering optimizations in which the stochasticity in the gradient
or in its approximation, is due to the simulation of the generative process, in each
iteration.

The approximations of the derivative of the expected statistics with respect to
the fixed parameters has been studied in detail. The approximation of derivatives
is based on the multivariate chain rule that is used to “break" the score function

76 3.6 Conclusion

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf pvalues real beta3 = 0

x

F
n(

x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf pvalues real beta3 = −1

x

F
n(

x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf pvalues real beta3 = −2.5

x

F
n(

x)

Figure 3.4: Cumulative distribution functions of p-values under the three orthogo-
nalization procedures: black, red, and green for orthogonalizations using none, all,
and only the second statistic, respectively.

into multiple components (functions that compose to the score), one for each
“step" of the simulation. In models with random effects, some of these compo-
nents are stochastic, as they depend on the sampling of the random parameters.

The theory developed can be used both with the “standard" and the general-
ized method of moments, focusing on the important differences between them
in the estimation and especially in the model evaluation phases. In the method
of moments the choice of the matrix L is relevant only for the stability of the al-
gorithm, whereas in the generalized method of moments L determinates also the
covariance of the estimator. Approximations of a good L are based on approxi-
mations of the derivative of the expected statistics with respect to the parameters,
that are also used to approximate the matrix Λ that is used to orthogonalize the
test statistic to increase its power when the statistic is correlated with the ones
used to estimate the parameters. In this context there is a major difference be-
tween the “usual" and the generalized method of moments, because in the latter
case it is not guaranteed that the statistics that are used in estimation are equal
on average (at the estimated parameter) to the observed ones. This issue must
be taken into account when orthogonalizing the test statistic, otherwise the or-
thogonalized statistic will be influenced too significantly by the statistics used in

77 3.6 Conclusion

estimation, even though they might contain none or few information about the
hypothesis that is tested.

Different orthogonalization procedures have been compared with a simula-
tion. We found that it is convenient to use only the estimating statistics that are
significantly correlated with the test ones, because the variability in the simula-
tion of the estimating statistics and in the approximation of the matrix Γ reduces
the power of the test when these statistics are not correlated with the test ones.

Chapter 4

Efficient implementation of sets and
multisets in R using hash tables

4.1 Introduction

Sets are the most basic and fundamental containers of objects in mathematics.
According to set theory (almost) all objects in mathematics are, or can be de-
scribed as, sets. Some objects have additional mathematical and computational
structure, such as multisets, lists, vectors, stacks, etc. Sets and multisets have
been less developed in programming languages than other objects, such as vec-
tors and lists. The reason is that the latter ones are used very frequently in
algorithms, so almost all programming languages have a built-in implementa-
tion of them. These implementations do not reflect the mathematical derivation
of these objects from set theory, as their structure allows the use of much more
computationally efficient implementations and algorithms. Sets and multisets
as basic containers are nevertheless very important, especially for discrete prob-
abilistic and statistical models. The aim of the paper is to provide an efficient
implementation for algorithms that use sets and multisets as containers. Our im-
plementation is based on the hash package [11]. It is efficient because the hash
table data structure allows search, insertion and deletion of one element in the
table in constant time.

The mathematical definition of sets and multisets is given in Section 4.2,
where our implementation and its semantic is also discussed. In Section 4.3,
relations and operations between sets and multisets are defined mathematically,
and their implementation is described. The performance of our implementation
is discussed in Section 4.4. In Section 4.5 an application of our implementation
of sets and multisets as states of a Markov chain is provided.

78

79 4.2 Sets and multisets

4.2 Sets and multisets

Sets, multisets and some other constructions/containers derived from them, are
introduced mathematically in Section 4.2.1. The emphasis is on how containers
differ on how much structure is “imposed" on them. In sets elements are either
in or out of them, in multisets it is also relevant how frequently an element is
contained, for sequences the order of the elements is also important. The R pack-
age hset is introduced in Section 4.2.2, where it is also discussed which objects
can be included as elements, and how they are stored in a data structure based
on the package hash. The semantic of hset objects is described in Section 4.2.3,
with some other functions that are used to control these objects, that depend on
the chosen semantic.

4.2.1 Mathematical definition

Sets are defined as collections of objects called elements, or members. Set theory
can be used as foundation of mathematics. The existence of the empty set ;= {}
is postulated, ; is the only element such that

{a,;}= {a}, ∀a, (4.2.1)

where equality between sets will be formally defined in Section 4.3.1. All ele-
ments of a set are considered to be sets themselves, and (almost) all objects in
mathematics are constructed as sets.

An important example is the set N of natural numbers that can be defined
recursively as

0= ;, 1= {0}= {;}, 2= {0, 1}= {;, {;}}, ... (4.2.2)

Another important example is the Cartesian product of two sets, that is the set of
ordered pairs with first element from X1 and second element from X2, defined as

X1 × X2 = {X1, {X2}}, (4.2.3)

which contains elements (a1, a2), for ; ≠ a1 ∈ X1 and ; ≠ a2 ∈ X2. Note that
;×X = X×;= {;} for all X , and that (a1, a2) ̸= (a2, a1) for a1 ̸= a2 (the Cartesian
product is not commutative).

Order and multiplicity of the elements of a set is not defined, that is

{a, b}= {b, a}= {a, a, b}, ∀a ̸= b. (4.2.4)

80 4.2 Sets and multisets

Multisets are defined as collections of elements with multiplicities, that are non-
negative numbers. We will always assume that the multiplicities of the elements
are finite. The order of the elements is not defined, but multisets of elements
with different multiplicities are different:

{a[m], b[n]} ≠ {a[n], b[m]}, ∀n ̸= m, ∀; ̸= a ̸= b ̸= ; (4.2.5)

If the multiplicity of an element is 0, then the element is not contained in the
multiset:

{a[m], b[0]}= {a[m]}, ∀a, b. (4.2.6)

A set can be considered equivalent to a multiset of the same elements, all
with multiplicity 1:

X = {a, b} ∼= {a[1], b[1]}= Y (X), ∀a, b, (4.2.7)

The injective function X 7→ Y (X) converts a set to the “equivalent" multiset, but
when applied to a multiset, it is the identity function: Y = Y (Y). The surjective
function Y 7→ X (Y) maps the multiset Y into its support, that is the set X (Y) of
its elements, if X is a set X = X (X). The size of a multiset (or of a set), is the
number of its elements, that is

size(Y) = |Y |= |X (Y)| ∈ N. (4.2.8)

The cardinality of a multiset Y = {ai[mi]}i is the sum of its multiplicities, that is

card(Y) = ||Y ||=
∑

imi ∈ [0,∞), (4.2.9)

while for a set X , size(X) = card(X).
Other constructions that will be used later on are based on the Cartesian

product, that is used to define powers of the set X as

X k = X × X × ...× X , (4.2.10)

for k ∈ N, where X is repeated k times in the right hand side, X 0 = ; and X 1 =
X . Powers of X are used themselves to define finite dimensional sequences (or
strings) of elements in X as

A= (a1, ..., al) ∈ X ∗ =
⊎

k≥0

X k, (4.2.11)

so a sequence of length l with elements in X is an element of X l , and the set of

81 4.2 Sets and multisets

sequences X ∗, that is the disjoint union of all powers, contains all sequences of
all finite possible lengths, including the empty sequence (). Sequences have even
more structure than multisets, as they are ordered, meaning that (a1, a2, ...) ̸=
(a2, a1, ...) for a1 ̸= a2.

Finite dimensional sequences are introduced because they are one of the most
used objects in programming, so most languages have efficient built-in imple-
mentations of sequences with finite length. However these implementations are
often inefficient when a sequence is modified locally by operations of inclusion
or removal of elements from the list.

In R finite dimensional sequences are implemented as objects of type vector,
with sub-types atomic and list [73, Chapter 3]. In the next sections, our R
implementation of sets and multisets is discussed in detail.

4.2.2 Computational implementation

In mathematics, elements of sets are usually considered sets themselves. Then a
formal definition of elements is redundant, once sets are defined. On the other
hand, when sets are viewed as computational objects, a definition of elements
is required because the elements are objects with, possibly various, data types
stored in memory.

Sets and multisets are implemented in the R package hset, as objects of S4
class "hset". These objects are containers of elements, that are either numbers,
or sets of numbers. A more formal definition of objects that are valid elements
will soon be given. An object of class "hset" contains two slots. The main one,
called @htable, is an hash table from the package hash [11]. The second slot,
called @info, is of class "environment", which contains a Boolean value that dis-
tinguish sets from multisets. The reason why the second slot is a “trivial" (with
one object) environment, rather than an object of class "logical", is because
environments and (logical) vectors have a different semantic, then it would be
difficult to reason about “sameness" of objects (sets or multisets). The construc-
tor for objects of class "hset" will be described at the end of this section, the
semantic of our implementation will be discussed in detail in the next section.

The set S of possible sets that can be stored is recursively defined as

X = {a1, a2, ...} ∈ S,

ai ∈ S⊎ N,
(4.2.12)

so the element ai can be either a set, or a value in N that is the set of numeric
vectors of length 1, without the values Inf, -Inf, NaN, NA, NA_integer_ and

82 4.2 Sets and multisets

NA_real_, that are excluded. The symbol ⊎ in S⊎N is used to denote the disjoint
union between the sets S and N. The inclusion relation ∈ between an element,
and a set or multiset, will be formally defined in Section 4.3.1.

The set M of possible multisets that can be stored is recursively defined as

Y = {a1[m1], a2[m2], ...} ∈ M,

ai ∈ S⊎ N,

mi ∈ N+,
(4.2.13)

where S and N are defined as above, and N+ ⊂ N is the subset of values of N that
are strictly positive. Note that in our current implementation multisets can not
be elements of a set or a multiset, and that recursion occurs in the definition of M
because it occurs in the definition of S. The numeric datatype includes integer
and double as subtypes, so the elements can be also of these two types. Vectors
of type numeric of length 0, together with the NULL object, are considered equiv-
alent to the empty set, so they are not included in an object of class "hset" (even
though formally an empty set is included in every set). Instead, numeric values
of length at least 2 and list values of every length are converted to elements of
S, that is to sets, before being included as elements.

The package sets [40] uses a different approach, the sets in this library, that
can be of classes set (sets), gset (generalized sets), cset (customizable sets), can
contain elements of every type. Two elements can be considered the same only
if they have the same class, so for example the sets {2,2L} and {2}, are not equal
(the former has two elements), as 2 and 2L have class "numeric" and "integer"

respectively. As a result, although our implementation is more limited because
we only take into account sets and multisets of numbers, it is still somewhat closer
to the mathematical definition in which 2L and 2 represent the same number.

The hash table implemented in hash is a data structure that contains key-
value pairs. The keys are different objects of type character, they are unique
labels of pointers to the values, that can be objects of every type except NULL.
The advantage of using an hash table to implement sets and multisets is that
various operations that are: adding and removing a key-value pair from the table,
checking to see if a key is present in the table, and returning the value associated
with a key; only require on average a constant number of elementary operations.

There is an injection k : S⊎ N→ C, where C is the set of character vectors of
length 1, that is used as set of keys to label uniquely each possible element of a
set or a multiset. For example, the element

ai = {-1,1,1L,{},2,11,{2,{3}}}, (4.2.14)

83 4.2 Sets and multisets

is mapped to
ki = k(ai) = "{-1,{},{2,{3}},1,11,2}", (4.2.15)

where the "sub-elements" 1 and 1L are both mapped to "1", and the components
of the character ki are in lexicographic order, which has the mathematical prop-
erties of a total order. Note that the order is important to guarantee that k is an
injection. For sets, all values of the hash table are equal to the empty character
"", that is v(ki) = "" for all i, whereas for multisets v(ki) ∈ N+.

Sets and multisets are created with the constructor hset with three arguments
that are members, multiplicities and generalized. The first two arguments
are NULL by default (empty set), the last one is FALSE by default. If the second
input is not NULL, generalized is set to TRUE if it was not the case. Then it is
checked that members and multiplicities are of the correct type, that they are
coherent with themselves, and then they are included in the hash table. The
function is.hset, with input x, returns TRUE when x is of class "hset", and
FALSE otherwise. The function as.hset, with input x, return x itself if it is of
class "hset", otherwise it applies the constructor hset, with members equal to x,
multiplicities and generalized as default, so that the function creates a set
with elements taken from x.

Size and cardinality defined in equations (4.2.8) and (4.2.9) are returned by
the functions size.support and cardinality. A vector containing the labels
of the elements is returned by the function members, while the vector of multi-
plicities of the elements are returned by the function multiplicities. The only
input of these four functions is an object of class "hset". The components of the
vectors obtained by the last two functions are coherent, so that the i-th value of
the vector is the multiplicity of the i-th element. If the function multiplicities

is used on a set, a vector with all values equal to 1 is returned.

4.2.3 Semantic of hset

In R, objects can be accessed and modified with reference, or with value semantic
(the two alternatives are described in Appendix A.3). In R objects of most classes
have value semantic, but environments and hash tables from the package hash

have reference semantics. An object of class "hset" contains a hash object in
the first slot, and an environment object in the second. When a set is copied
“directly", both slots of the copied object, refer to the same ones of the original
object. The functions clone.of.hset and refer.to.hset are used to copy an
hset with value and reference semantic, respectively.

The function is.generalized, with logical returned value, is used to dis-

84 4.2 Sets and multisets

tinguish sets and multisets. The map as.generalized transforms a set to a
multiset by converting the values of all elements of the hash table to 1L, while
as.not.generalized transforms a multisets to a set by converting all values to
"". These functions implement X 7→ Y (X) and Y 7→ X (Y) that were defined
mathematically in Section 4.2.1. The sets are modified locally, i.e., with ref-
erence semantic, so if a multiset is transformed to a set the information about
the multiplicities of the multiset that is passed as input is lost. The functions
clone.of.hset and refer.to.hset can also be used to convert sets to multi-
sets, and vice versa. They have as second argument the (empty, or logical) value
called generalized, that is NULL by default, but it can be used to convert a mul-
tiset to a set, or a set to a multiset, when it is copied. Applying refer.to.hset

with second argument equal to TRUE (respectively FALSE), is equivalent to apply-
ing the function as.generalized (respectively as.not.generalized). Whereas
the application of clone.of.hset with second argument equal to TRUE or FALSE,
creates a new hset with the same support as the original one, but with the mul-
tiplicities that are converted to 1L or "" in the two cases, and the hset that is
passed as input of clone.of.hset is not modified.

In the next section relations and operations between sets and multisets will be
described mathematically and computationally. In this section we describe how
the chosen semantic can affect the computation of an operation. Relations are
encoded as functions with Boolean codomain, so if two components that can be
elements, sets or multisets, are in relation, the function returns TRUE, otherwise
FALSE. As sets are not modified when checking whether two components are in
relation, the semantic is irrelevant. Conversely for operations between sets or
multisets, even though the result of the operation is not changed by the semantic
used, one operand will be modified when reference semantic is used, while a
new hset with the result of the operation is created. The operands do not change
when value semantic is used.

All operations are computed with the function hset.operation.numeric if
at least one of the operands is a multiset, otherwise hset.operation.logical

is used. These two functions have the same signature in which the output is an
object called new.hset of class "hset". The first input hset1 is the first operand,
... contains all other operands (for operations with multiple arity), the argu-
ments operation (function) and identity.is.universe (logical value) com-
pletely specify how the operands are combined. The last input semantic, that
can be equal to "refer" (default) or "value", specifies the semantic. The differ-
ence between the numeric and the logical operation is in how the multiplicities
are handled. In the latter case we define the multiplicities of a set by the bijection
that maps NULL to FALSE and "" to TRUE, where the Boolean outcomes are used

85 4.3 Sets algebra

to evaluate the operation. The evaluation is stored using the inverse function,
as setting an element to NULL in an hash object is equivalent to removing the
key-value pair from the hash table, or to not doing anything if the pair is not
present. If the numeric operation is used, the multiplicities that are used in the
operation are obtained by the surjective function of type NULL ⊎ "" ⊎ N+ → N+=,
s.t. NULL 7→ 0, "" 7→ 1, and m 7→ m for m ∈ N+. The non-negative values are then
used as operands, and the result is stored in the hash table with the bijection
N+=→ NULL⊎ N+, s.t. 0 7→ NULL, and m 7→ m for all m ∈ N+. Note that the output of
a numeric operation is always a multiset, so "" is never stored.

The function create.new.hset is used in hset.operation.numeric and
hset.operation.logical, to create the object new.hset that will store the re-
sult. When reference or value semantics are used, refer.to.hset or clone.of.hset
are used respectively, inside create.new.hset, with argument hset1. There-
fore, new.hset and hset1 will refer to the same object in memory with reference
semantic, so that when the result is computed, will be stored both in new.hset,
and in hset1. Whereas with value semantic, new.hset will be a reference to an
object in memory that is a clone of hset1, so the latter will not change when the
result is computed. The reference semantic is used by default for its computa-
tional advantages. In particular when the identity element of the operation is the
empty set, that is when identity.is.universe is FALSE, computing the result
does not require a complete scan through the elements of hset1.

The computational complexity of an operation between multisets Y1, Y2, ...,
Ya, where ; is the identity element of the operation, is O(|Y2|+ ...+ |Ya|) with ref-
erence semantic, and O(|Y1|+|Y2|+...+|Ya|)with value semantic. The advantage
is significant when |Y1| ≫max j ̸=1 |Yj|. Note that difference of O(|Y1|) operations
between the two semantics, is due to the necessity of copying the first operand.
However, if the first operand is a set, while some of the others are multisets, there
is no difference between the two semantics, because the result of the operation
is a multiset, so O(|Y1|) operations are required to convert the first operand to a
multiset, even when reference semantic is used.

4.3 Sets algebra

Relations and operations involving hset objects are described in Sections 4.3.1
and 4.3.2, respectively. Relations of different types are described by their signa-
ture, definition, and implementation as functions with Boolean codomain. Oper-
ations are also described in the same way, but the functions that compute them
return sets or multisets.

86 4.3 Sets algebra

4.3.1 Relations

Inclusion of elements. The inclusion relation between an element and a set is
defined mathematically as

∈: (N⊎ S)× S, a ∈ X ⇐⇒ X = {a, ...}, (4.3.1)

meaning that the element a ∈ (N ⊎ S) and the set X ∈ S are related by ∈ if and
only if a is an element of X . Note that ; ∈ X for all sets X , and that the symbol :
is used in the signature of the relation to avoid the notation ∈∈ (N⊎ S)× S. This
relation is extended trivially to multisets as

∈: (N⊎ S)× M, a ∈ Y ⇐⇒ Y = {a[n], ...}, n≥ 1, (4.3.2)

that is if the multiplicity of a ∈ (N⊎ S) in Y ∈ M is at least 1.

The straightforward generalization for multisets are relations between an el-
ement with a given multiplicity, and a multiset. Three relations of this type are
defined as

∈∼: ((N⊎ S)× N+)× M, a[m] ∈∼ Y ⇐⇒ Y = {a[n], ...}, m− n∼ 0, (4.3.3)

where ∼ can be ≤, < and =, for the relations of, inclusion ∈=∈≤, strict inclusion
∈< and exact inclusion ∈=, respectively. Intuitively, in the three cases, a[m] and
Y are related if a in Y has a multiplicity greater or equal, greater, and equal to
m respectively. Instead of defining relations between an element with a given
multiplicity and a multiset, we could have equivalently defined the family of
relations between elements and multisets parametrized by m ∈ N+:

∈m
∼: (N⊎ S)× M, a ∈m

∼ Y ⇐⇒ Y = {a[n], ...}, m− n∼ 0, (4.3.4)

so that, for all a ∈ N⊎ S, Y ∈ M, and m ∈ N+,

a[m] ∈∼ Y ⇐⇒ a ∈m
∼ Y. (4.3.5)

All relations defined above can be encoded as one function with signature

((N⊎ S)⊎ ((N⊎ S)× N+))× (S⊎ M)× {≤,<,=} → {TRUE,FALSE}, (4.3.6)

where the first argument is either an element, or a pair between an element and
a multiplicity, the second argument is either a set or a multiset, whereas the last
argument specifies the type of relation. The function returns TRUE if the first two

87 4.3 Sets algebra

arguments are in relation, of the type specified by the third argument. In the
package, a similar function, called inclusion.member, has signature

C× (S⊎ M)× N+ × {≤,<,=} → {TRUE,FALSE}. (4.3.7)

The last two arguments, called multiplicity and type.relation with default
values 1 and ≤ respectively, are ignored when the second argument is a set. The
first argument, called member must be a vector of length 1, that is converted
to a character C inside the function, if this value is not a valid element, as de-
fined above, the function returns FALSE for every possible choice of the last two
arguments. Then, inclusion.member returns TRUE if and only if the first two ar-
guments are in relation specified by the last two arguments. The binary operator
%in% uses inclusion.member where the last two arguments are set as default,
so that it evaluates the relations (4.3.1) or (4.3.2), depending on whether the
second argument is a set or a multiset respectively. If the first argument, i.e., the
left operand of %in%, is a vector of characters, the operand returns a vector of
Booleans with the result of the evaluated relation for each character.

Subsets and equalities. Now relations in which both objects are sets or multisets
are considered. The subset relation between sets X1 and X2 is

⊆: S× S, X1 ⊆ X2 ⇐⇒ (a ∈ X1 =⇒ a ∈ X2), (4.3.8)

and the strict subset relation is

⊂: S× S, X1 ⊂ X2 ⇐⇒ (X1 ⊆ X2 and ∃b ∈ X2 s.t. b /∈ X1). (4.3.9)

The equality relation between sets is defined as

=: S× S, X1 = X2 ⇐⇒ (X1 ⊆ X2 and X2 ⊆ X1). (4.3.10)

For finite dimensional sets, the last two relations can also be written as

X1 ≈ X2 ⇐⇒ X1 ⊆ X2 and |X1| ∼ |X2|, (4.3.11)

where for the strict inclusion, ≈ and ∼ are replaced by ⊂ and < respectively,
while for the equality relation ≈ and ∼ are both replaced by =.

The relations above will be generalized in the case in which at least one com-
ponent of the relation is a multiset. For Y = {ai[mi]} ∈ M, the multiplicities are
written as a function vY : X (Y)→ N+, such that vY (ai) = mi. The domain of this

88 4.3 Sets algebra

function, that is the support of Y , is extended to all well defined elements, as

vY : S⊎ N→ N+ ∪ {0}, s.t. vY (ai) =

¨

mi if ai ∈ X (Y)

0 otherwise
. (4.3.12)

Note that the extension of this function is coherent with equation (4.2.6). The
relations above are generalized as

Y1 ⊆ Y2 ⇐⇒ vY1
(a)≤ vY2

(a) ∀a ∈ S⊎ N,

Y1 ⊂ Y2 ⇐⇒ Y1 ⊆ Y2 and ∃a ∈ S⊎ N s.t. vY1
(a)< vY2

(a),

Y1 ⊑ Y2 ⇐⇒ Y1 ⊆ Y2 and ∄a ∈ S⊎ N s.t. 0 ̸= vY1
(a)< vY2

(a),

Y1 ⊏ Y2 ⇐⇒ Y1 ⊑ Y2 and ∃a ∈ S⊎ N s.t. 0= vY1
(a)< vY2

(a),

Y1 = Y2 ⇐⇒ Y1 ⊆ Y2 and Y2 ⊆ Y1 ⇐⇒ vY1
(a) = vY2

(a) ∀a ∈ S⊎ N,

(4.3.13)

The signature of these relation is ≈: S ⊎ M × S ⊎ M, where ≈ is one of the five
relations above. However, only the definition for multisets is given in (4.3.13),
but this is not a problem, as equation (4.2.7) implies that if at least one argument,
say the first one, is a set, the relation X1 ≈ Y2 is equivalent to Y (X1)≈ Y2.

For finite dimensional multisets, the relations can be written as

Y1 ⊆ Y2 ⇐⇒ vY1
(a)≤ vY2

(a) ∀a ∈ X (Y1),

Y1 ⊂ Y2 ⇐⇒ Y1 ⊆ Y2 and (∃a ∈ X (Y1) vY1
(a)< vY2

(a) or |Y1|< |Y2|),
Y1 ⊑ Y2 ⇐⇒ vY1

(a) = vY2
(a) ∀a ∈ X (Y1) and |Y1| ≤ |Y2|,

Y1 ⊏ Y2 ⇐⇒ vY1
(a) = vY2

(a) ∀a ∈ X (Y1) and |Y1|< |Y2|,
Y1 = Y2 ⇐⇒ vY1

(a) = vY2
(a) ∀a ∈ X (Y1) and |Y1|= |Y2|.

(4.3.14)

Other definitions are available, but these ones are the most efficient computa-
tionally, because it is not necessary to evaluates multiplicities in Y2 for elements
not in X (Y1). The function hset1.included.to.hset2 with signature

(S⊎ M)× (S⊎ M)× {TRUE,FALSE} × {TRUE,FALSE} → {TRUE,FALSE} (4.3.15)

where the four arguments are hset1, hset2, strictly and exactly, returns
TRUE if the first two arguments are in one of the relations defined above, except
for the equality, that is implemented with another function. If the first two argu-
ments are both sets, the fourth argument is ignored because in S×S the relations
⊆ and ⊑ are equivalent, and so are ⊂ and ⊏. The function iterates through the
members of hset1, computes the difference of multiplicities, if this difference

89 4.3 Sets algebra

is negative FALSE is returned immediately, otherwise the difference is accumu-
lated. For ⊑ and ⊏ the accumulated difference must be zero at the end of the
loop, and the two relations are distinguished by the condition on the supports.
For ⊂, either the accumulated difference is strictly positive, or the support of the
second set is larger. Whereas for ⊆, no other conditions are required after the
end of the loop. The evaluation of the equality relations is implemented in the
function hsets.are.equal, in which only the functions size.support, members
and multiplicities defined at the end of Section 4.2.1 are used to evaluate the
relation.

Some generic operators that call the function hset1.included.to.hset2

with different combinations of the last two inputs are defined. For ⊆, <= and
>= are used, where the latter is for the inverse relation ⊇, obtained by reflecting
the arguments. For ⊂, the generic operators are < and >, for ⊑ they are %=<=%

and %=>=%, and for ⊏, %=<% and %=>% are used. The equality operator == calls
the function hsets.are.equal and != returns its negation.

4.3.2 Operations

When discussing relations the semantic of the implementation was never men-
tioned, as the sets that were possibly be part of some relations were never mod-
ified, and returned by the functions used to check whether two objects are in
relation. An operation is a ternary relation between sets or multisets, that is writ-
ten as X1 ≈ X2 = X for a given ≈, however the interest here is computing X from
the operands X1 and X2. Moreover all operations will be defined for general arity,
that is for more than two operands. The universe set, denoted by U is a set such
that X ⊆ U , for all X ∈ S, that is the set containing all possible elements: a ∈ U
for all a ∈ S ⊎ N. The universe multiset U is the multiset such that Y ⊆ U , for
all Y ∈ M. Then, U contains all elements in S⊎ N, each with infinite multiplicity.
Note that the universe set and multiset are defined by the same symbol, as it will
be clear from the context which “universe" is considered.

The signature of all operations defined below is

≈: (S⊎ M)×
⊎

k≥0

(S⊎ M)k→ (S⊎ M), (4.3.16)

so that the operation is defined if there is at least one operand, the second ar-
gument is written as a disjoint union of all possible tuple of hsets, so that for a
given k, there are k+ 1 operands. However, only binary operations are defined,
as the extension to general arities is straightforward. The result of the operation

90 4.3 Sets algebra

is of class S if and only if all operands are of class S, otherwise the result is of
class M. In the latter case, if an operand X i is a set, it is replaced by Yi = Y (X i).

The intersection, union, sum, difference and symmetric difference between X1

and X2 are

X = X1 ∩ X2 ⇐⇒ (a ∈ X =⇒ a ∈ X1 and a ∈ X2),

X = X1 ∪ X2 ⇐⇒ (a ∈ X =⇒ a ∈ X1 or a ∈ X2),

X = X1 + X2 ⇐⇒ X = X1 ∪ X2,

X = X1 \ X2 ⇐⇒ (a ∈ X =⇒ a ∈ X1 and a /∈ X2),

X = X1△X2 ⇐⇒ X = (X1 \ X2)∪ (X2 \ X1),

(4.3.17)

respectively. The identity element for the intersection is X2 = U , while for all
other operations is X2 = ;. All operations, except for the difference, are commu-
tative and associative, X1 \ X2 \ X3 is defined to be equal to (X1 \ X2) \ X3. Note
that the sum has been defined to be the same as the union, but these operations
will be different for multisets. The multiset version of the operations above is

Y = Y1 ∩ Y2 ⇐⇒ ∀a, vY (a) =min(vY1
(a), vY2

(a)),

Y = Y1 ∪ Y2 ⇐⇒ ∀a, vY (a) =max(vY1
(a), vY2

(a)),

Y = Y1 + Y2 ⇐⇒ ∀a, vY (a) = vY1
(a) + vY2

(a),

Y = Y1 \ Y2 ⇐⇒ ∀a, vY (a) =max(vY1
(a)− vY2

(a), 0),

Y = Y1△Y2 ⇐⇒ ∀a, vY (a) = |vY1
(a)− vY2

(a)|.

(4.3.18)

As for the set version, the identity elements are Y2 = U and Y2 = ; for the in-
tersection, and for all other operations respectively. When generalizing \ and
△ to multisets, some properties that hold for sets are violated. For example, in
general (Y1 \ Y2)∩ Y2 ̸= ;, and Y1△Y2△Y3 ̸= Y2△Y1△Y3.

The functions hset.operation.numeric and hset.operation.logical have
signature

(S⊎ M)× (S⊎ M)∗ × ((N+ ⊎ 0)∗→ N+ ⊎ 0)× B× {"refer","value"} → M,

S× S∗ × (B∗→ B)× B× {"refer","value"} → S,
(4.3.19)

respectively, where Z∗ is computed as in equation (4.2.11), and B= {FALSE,TRUE}.
The first two arguments, called hset1 and ..., contain the operands. The third
argument, called operation, is a function that computes the updated multiplic-
ity, the choice of this function defines which of the operations above (intersection,

91 4.4 Performance

union, sum, difference, symmetric difference) is computed. The fourth argument
called identity.is.universe, with default FALSE, specifies whether iterating
through all elements of the first operand is needed. The last argument called
semantic, with default "refer", specifies whether the first operand is modified,
or whether its clone is modified. For the intersection, union, sum, difference,
and symmetric difference, with logical multiplicities, the functions that are used
in the third input are all, any, any, nimp (for “not implies") and niff (for “not
if and only if") respectively. Whereas, with numeric multiplicities, the functions
are min, max, sum, pdif (for “positive difference") and sdif (for “symmetric dif-
ference") respectively. The functions nimp, niff, pdif and sdif have been im-
plemented by us, while the others are primitive functions in R. In the intersection
the fourth argument is TRUE (U is the identity element of the operation), while
in all other operations, the fourth argument is FALSE (; is the identity element).

The functions intersection, union, setsum, difference, symmdiff with
signature

(S⊎ M)× (S⊎ M)∗ × {"refer","value"} → (S⊎ M), (4.3.20)

call hset.operation.numeric if at least one operand is a multiset, otherwise
hset.operation.logical is used, with third and fourth arguments set by the
operation. The infix operands for computing the binary intersection are %&%,
%&&% and %and%, for the union, the operands are %|%, %||% and %or%, for the
sum are %+% and %sum%, for the difference %-% and %!implies%, and for the
symmetric difference %--% and %xor%. In all these operands reference semantic
is used, for a binary operation with value semantic, all operands can be used, but
a ∼ is added before the last %, e.g., for the union with value semantic, %|∼% can
be used.

4.4 Performance

Here we assess the performance of our implementation, by comparing its two
semantics between themselves, and with the package sets [40].

4.4.1 Relations

Computing a relation results to a Boolean output indicating whether the two
components are related. Therefore the sets are not modified and the semantic
is irrelevant. The only comparison is then between our implementation based

92 4.4 Performance

0 50000 100000 150000

0.
0

0.
1

0.
2

0.
3

0.
4

complexity inclusion of element into set

size set

tim
e

op
er

at
io

n
(s

ec
)

hsets

sets

1 500 1000# elements:

Figure 4.1: Time complexity for evaluating the inclusion relation.

on an hash table, denoted here by hsets, and the implementation of the library
sets.

The comparison for the inclusion relation a ∈ X from equation (4.3.1) be-
tween the element a and the set X , is in Figure 4.1. The x axis is |X |, which is
the size of the set X , on the y axis the time of evaluating the relation ai %in% X,
where ai is a vector of elements, and X have classes hset and sets, for the black
and the red dots, respectively. The shape of the dots denotes for how many el-
ements, that is the size of ai, the relation is evaluated. In our implementation,
the complexity of the operation does not depend on the size of the set |X |, but it
depends linearly on the size of ai, that is the number of elements that we want
to check whether they are contained in the set. On the other hand, the com-
plexity of the implementation of sets, depends linearly on |X |, but it seems not
to depend on the size of ai, implying that the inclusion relations onto a set are
parallellized in sets.

In our implementation, the subset and the equality relations between sets,
written succinctly as X1 ≈ X2, with ≈ in {⊆,⊂,=}, have the same complexity
evaluated above, that is constant with respect to |X2|, and linear with respect to
|X1|, where X2 = X and X1 = {ai}i. The same complexity can be found if X1 and
X2 are replaced by multisets Y1 and Y2, for all cases of ≈. The reason is that,

93 4.4 Performance

when evaluated using the formulas in (4.3.14), the complexity of the relation
grows linearly with respect to |Y1| because of the component ∀a ∈ X (Y1), and
the complexity is constant with respect to |Y2| because |Y1| ≈ |Y2| is evaluated in
constant time, for various ≈.

4.4.2 Operations

The codomain of an operation is either a set or a multiset. In Figure 4.2 the com-
plexity of the defined set operations is plotted in the left column. The x and y
axes distinguish the size of the operands and the time for evaluating one opera-
tion in seconds. The shape of the points denotes the size of the second operands,
their colours distinguish the semantics of our implementation and the operations
computed with objects from the package sets. In Section 4.2.3, it has been ex-
plained that the reference semantic is helpful for some operations when the first
operand is large. In particular, the time complexity of the operation is constant
with respect to the size of the first operand, when ; is the identity element of the
operation, that is for the union, difference and symmetric difference. The com-
plexity cost of using the value semantic can be seen by the fact that the complexity
grows linearly with the size of both operands, as the (large) first one has to be
copied at the beginning of the operation. Whereas with the reference semantic
the complexity of these operation is linear only with respect to the size of the
second operand, while being constant with respect to the size of the first one. In
the library sets, the complexity of the operations grows linearly with respect to
the size of the first operand, but it seems not to depend on the size of the second
one. We think that it actually depends on the size of the largest operands. For
the interaction however our implementation is much more inefficient that sets,
regardless of the semantic, although all implementations have a linear complex-
ity with respect to the size of the first operand. The sum of two sets is defined
to be equivalent to the union, so the complexity of the implementations is not
computed.

In the right column of Figure 4.2 the same comparison has been done for
operations between multisets. As in the previous case, the intersection is much
more efficient in the sets package, whereas for all other operations, our im-
plementation with reference semantic does not depend on the size of the first
operand, while with value semantic it does, as the first operand is copied.

94 4.4 Performance

0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

1.
5

intersection

size first operand

0 2000 4000 6000 8000 10000

0
1

2
3

4

intersection

size first operand

tim
e

op
er

at
io

n

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

union

size first operand

0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

union

size first operand

tim
e

op
er

at
io

n

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

difference

size first operand

0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

difference

size first operand

tim
e

op
er

at
io

n

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

symmdiff

size first operand

0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

symmdiff

size first operand

tim
e

op
er

at
io

n

xaxes:

yaxes:

size 1st operand

time operation (sec)

hsets refer

hsets value

sets

300200100size 2nd
operand

0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

sum

tim
e

op
er

at
io

n

Figure 4.2: Time complexity of set (left) and multiset (right) operations for different
implementations, and sizes of the operands.

95 4.5 MCMC with state space of undirected graphs

4.5 MCMC with state space of undirected graphs

In this section we describe an application of the hset package to Markov processes
with set- or multiset-valued (discrete) state space. The example considered here
is a stochastic process with set-valued state space, and multiset-valued sufficient
statistic for the distribution of the process. The stochastic process is defined over
the n(n−1)/2 dimensional state space of n dimensional undirected simple graphs.
Each graph is represented uniquely by the edge set, which contains all information
(ties) about the graph. The state of the process is augmented with the degree
distribution of the graph, that is a multiset and contains all relevant information
about the distribution of the stochastic process.

The network process evolves by tie flips in which (typically few) non-edges
become edges and vice versa. The tie flips are often local, e.g., when only one tie
can be flipped at given time, in general at each time point only a number of ties
that is small, in comparison with the size of the network, can be flipped. If few
edges of the graph are flipped, the sufficient statistic does not have to be recom-
puted from the edge set, as only the degrees of the vertices adjacent to the flipped
edges must be updated. Therefore the reference semantic in our implementation
that is derived from the hash table data structure, has the computational advan-
tage of being able to modify the state locally (in memory), without having to
copy the state when its size changes.

We consider here the Beta Model [28, 7, 48], where vertex i has its own pa-
rameter βi, and the tie i j between vertices i and j is in the graph with probability
pi j = eβi+β j/(1+ eβi+β j). The model is equivalent to a sample of n(n− 1)/2 inde-
pendent Bernoulli random variables X i j with probabilities pi j. The distribution
of the network can be written as

P(X = x |β) =
∏

1≤i< j≤n

pi j = exp
�

n
∑

i=1

di(x)βi −ψ(β)
�

, (4.5.1)

where di(x) is the degree of vertex i, and ψ(β) =
∑

i< j log(1+ eβi+β j) is the log-
partition function. Thus the degree vector d = (d1, ..., dn) is a sufficient statistic
for the model.

We consider a Markov chain in which at each time point some (typically few,
in comparison with n) tie flips are proposed, and accepted with probability

Q(x̃ |x ,β) =min
�

exp
�∑

i∈I
(d̃i − di)βi

�

, 1
�

, (4.5.2)

where I ⊆ {1, ..., n} and i ∈ I if exist vertex j such that the tie i j is included in

96 4.5 MCMC with state space of undirected graphs

the proposed tie flips (thus i ∈ I ⇐⇒ j ∈ I), di = di(x) and d̃i = di(x̃) are
the degrees of vertex i before and after the tie flips, respectively. If the proposed
tie flip contains only the tie i j, then I = {i, j} and |I | = 2, in general more
than one tie can be flipped, but the algorithm is useful computationally when
|I | ≪ n. Note that this process is a Markov chain with Metropolis updates, as
we use a symmetric proposal distribution for the tie flips (uniform distribution
over n(n−1)/2). Therefore, the stationary distribution of the Markov chain with
acceptance probability Q(x̃ |x ,β) in equation (4.5.2) is P(X = x |β) in equation
(4.5.1).

Three Markov chains (X t)t , (X t
−)t and (X t

+)t are considered, with same tran-
sition probability parametrized by β , but with different starting points. The
chains (X t)t , (X t

−)t and (X t
+)t have stationary, sparse and dense starting point,

respectively. Therefore X0, X0
− and X0

+ have degrees similar, lower and higher,
respectively, than the expected degrees computed from the stationary distribu-
tion of the Markov chain. The real parameter is generated as β ∼ Norm(−1n, In).
At each iteration, a single tie flip is proposed, sampling h∼ Unif(1, ..., n(n−1)/2),
and the tie i j is computed from h.

With our implementation, the state of the chain with stationary starting point
is (X t , Zt), that is composed by two objects of class "hset", X t is the network
encoded as set of edges, and Zt is the degree distribution of the network encoded
as a multiset. In each iteration the hset of flips F is sampled, in our case |F |= 1
as only one tie is sampled. Then the set IF of vertices that are part of at least
one proposed tie flip is computed, and so are the proposed degrees d̃i for i ∈ IF .
If the flip is accepted, the state is updated as

X t+1←− X t △ F,

Zt+1←− (Zt − {di[mi] : i ∈ IF}) + {d̃i[m̃i] : i ∈ IF},
(4.5.3)

where m̃i and mi are the multiplicities of proposed d̃i and current di degrees
respectively, for i ∈ IF . The update uses the operations △ : S × S → S, + :
M× M→ M and − : M× M→ M, that have been defined in Section 4.3.2. In Section
4.4.2 it has been shown that for these three operations (that all have the empty
set / multiset as the identity second operand), the complexity is not affected by
the sizes of X t and Zt , but it depends linearly on the sizes of F and IF . The same
algorithm is used with (X t

+, Zt
+) and (X t

−, Zt
−), in which the starting point is

out of equilibrium .

97 4.5 MCMC with state space of undirected graphs

The updates in equation (4.5.3) are coded with reference semantic as

state$edge.set %xor% hset(flips$id)

state$degree.frequencies %-% hset(names(table.old.degrees),

as.integer(table.old.degrees))

state$degree.frequencies %+% hset(names(table.new.degrees),

as.integer(table.new.degrees))

(4.5.4)

where state$edge.set and state$degree.frequencies are hset objects con-
taining the current network and degree distribution, flips$id contains the ties
that are flipped, table.old.degrees and table.new.degrees contain the old
and new degrees for the vertices in IF . Note that the constructor hset is used
to create the set F , and the multisets containing the degree frequencies to be
subtracted and added.

In Figure 4.3 the processes derived from (X t)t , (X t
−)t and (X t

+)t are plotted
in red, green and blue respectively. In the left, the moving average of the accep-
tance ratio is plotted. In each iteration the proposed transition is either accepted,
or it is not. This binary outcome is replaced in the plot by the average of 150
binary values around it, giving an indication on how probable are transitions of
state in and out of equilibrium. The stationary and the sparse chain have a simi-
lar behaviour with transition probability approximately equal to 0.35 throughout
their whole history. The dense chain starts with a larger transition probability,
that is reduced toward the equilibrium value as the process approaches the sta-
tionary distribution. In the right plot the size of the state, that is the number of
ties in the network is plotted in the three cases, showing how the distribution of
|X t
−| and |X t

+| approach the one of |X t | as t →∞.

In Figure 4.4 are plotted, for all chains, the empirical cumulative distribution
functions of the degree distribution of states at equally spaced iterations. For the
stationary process (X t , Zt) these curves, that are plotted in red, are {ecdf(Zt)} for
t ∈ {1,1001, 2001, ..., 10001}. For the processes with sparse and dense starting
points, the ECDFs are plotted in blue and green respectively. The width of the
ECDFs is larger when t is as such, showing how the degree distributions of the
networks X t

− and X t
+ approach the degree distribution of X t as t →∞.

Markov chains of the type discussed in this application are used to estimate
the parameters of models for which the function that normalizes the stationary
distribution of the process is not analytic. For example in Exponential Random
Graph Models [52] computing the normalization constant requires summing over

98 4.5 MCMC with state space of undirected graphs

0 2000 4000 6000 8000 10000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

acceptance ratio (moving average)

iteration

pr
ob

ab
ili

ty
 a

cc
ep

te
d

tr
an

si
tio

n

0 2000 4000 6000 8000 10000

0
50

0
10

00
15

00
20

00
25

00

size network

iteration

nu
m

be
r

ed
ge

s

Figure 4.3: Left: acceptance ratio (moving average with 150 filtered observations)
of the Metropolis-Hastings algorithm. Right: number of ties of the network (state)
at different iterations. Colours distinguish the different starting points: red for
stationary, green for sparse, blue for dense.

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF degree frequencies at different iterations

k

pr
ob

ab
ili

ty
 d

eg
re

e
<

=
 k

Figure 4.4: Empirical cumulative distribution function of the degree frequencies, at
iterations 1 (lowest line width), 1001, 2001, ..., 10001 (largest line width), for the
three starting points (stationary - red, sparse - green, dense - blue).

99 4.6 Conclusion

the set of all possible graphs of a given dimension, making the computation infea-
sible also for small networks. Frequentist and Bayesian estimation algorithms for
ERGMs [67, 13] are based on the Markov Chain Monte Carlo Maximum Liklihood
Estimation method (MCMCMLE), developed in [20] and [21], where gradients
of the likelihood are approximated using a Markov chain that does not require
the computation of the normalization constant.

A graph is usually represented by its adjacency matrix, with Boolean elements
denoting whether two vertices are connected. Observed large networks are usu-
ally sparse, meaning that the number of edges grows linearly with respect to the
number of vertices. If the adjacency matrix is stored as a dense matrix, the space
required is O(n2), where n is the size of the network, but individual elements can
be updated in constant time (O(1) elementary operations). Whereas if a sparse
matrix is used, the space required for storing a sparse network is O(n), but flip-
ping a tie might cost O(n) elementary operations, as the sparse matrix might
have to be re-constructed. The hash table used in hset can be helpful in these
cases, as the space required to store the set is O(n), but individual elements are
updated with O(1) operations.

4.6 Conclusion

The hset implementation of set operations is motivated by the efficacy of hash
data structure when used with reference semantic, allowing significant computa-
tional advantages in algorithms in which a set or a multiset is used as container,
and it is updated few components at the time. The implementation is currently
restricted to sets or multisets with elements that are numbers (or sets of num-
bers), so that mathematical relations between integers and reals are respected,
e.g., that 1L and 1.0 both represents the number 1. This approach differs from
the library sets where the classes of two objects determinate whether they can
be the same, and reference semantic is not used.

Basic parametrized relations and operations between sets and multisets are
implemented, for most of them (all but the intersection) reference semantic can
speed up algorithms significantly. In R, reference semantic is used for environment
and hash data objects, whereas almost all other objects use value semantic. Ob-
jects with reference semantic are usually modified by functions with side effects.
In [73] it is suggested to avoid the use of a function for both its side effects and its
returned value. We partially follow this suggestion, as for the operations defined
in Section 4.3.2 computed with reference semantic, the result of the operation
is both returned, and the first operand is transformed to it. Therefore all terms

100 4.6 Conclusion

X1%|%X2, X1 <- X1%|%X2, and X1 <- X1%| ∼ %X2 evaluate to the same objects
in memory. The first term is the most common approach to compute operations
with reference semantic, where an operator is viewed as accumulator causing
the first operand to be modified to the result of the operation with the second
operand. However we suggest using the second approach, that is more coherent
with the syntax used with value semantics, and so it is more similar to how code
is usually written in R. Note that the suggestion of avoiding functions with both
side effects and returned value is only partially followed, because there are no
side effects that modify objects that are not returned.

Our implementation can be useful for simulating Markov chains with count-
able state space, as in simulation and estimation of temporal network models.
Recent approaches to statistics and probability theory such as [30], emphasise
the importance of the multiset mathematical structure of discrete probability dis-
tributions, especially when determining the properties of algorithms used to sam-
ple, estimate or learn probability distributions. These approaches on probability
have been heavily influenced by theories of computation, so they will probably
be influential on how algorithms in computational statistics and other disciplines
will be developed and implemented.

Chapter 5

Conclusion

The inclusion of random effects in the stochastic actor oriented model, that is
the main contribution of this thesis, is an important generalization of the SAOM
because it allows various options for modelling accurately the heterogenity be-
tween the individuals in a social network. The model specifies the evolution for
a stochastic process that can be simulated, and it is assumed to mimic the social
dynamics between people. The focus of the thesis has been therefore on statis-
tical inference based on simulation, where the parameters of the model control
the algorithm that is used for simulating the process. The method for estimation
and model evaluation that is used in our generalization of the SAOM has been
also studied in a regression set-up. An implementation of sets and multisets is
then discussed. This last topic is not related with the SAOM, although it that can
be useful when simulating dynamic networks, that are fundamentally discrete
objects.

In simulated statistical inference, estimation is done by adjusting the param-
eters until the process mimic in some sense the observed data, model evalua-
tion is by simulating from the estimated values to check how well the models
behave. Estimation and model evaluation in the SAOM have been developed,
implemented and checked for models with independent random effects. How-
ever we have checked the algorithm without modifying the package RSiena, so
the implementation is not efficient. Modifications on RSiena to allow simula-
tions with random effects at approximately the same cost of the one without, are
planned so that researchers can use models with random effects much more eas-
ily. The analysis on the tailor shop dataset showed how different assumptions for
the generative process suggest different interpretations for the social dynamics
that is modelled.

The simulated method of moments that is used in the SAOM with random

101

102

effects has been studied in regression, mainly to evaluate possible extensions of
the algorithm, for example when the parameters are estimated with generalized
(simulated) method of moments. Following the literature on stochastic gradient
descent, we have studied an adaptive method to update the preconditioning to
make the optimization more stable. Moreover models evaluation procedures
based on orthogonalization to increase the power of score tests have been studied
extensively also in the case in which the parameters under the null are estimated
with generalized method of moments.

The R implemenation of sets and multisets based on the hash table data struc-
ture is useful when simulating processes that are at least in part fundamentally
discrete. This implementation leverages the fact that elements in an hash table
can be accessed, included or removed in constant time. The implemntation is
advantageous for all set (and multiset) operations except for the intersection,
when the first operand is large, as to evaluate the operation is not required to
access all elements of the first operand. An example that has been discussed,
is the representation with a set and a multiset for an evolving undirected graph
with a set of sufficient statistics for its distribution.

Appendix A

Mathematical and computational
background

A.1 Multivariable chain rule

Consider the functions f : Rn → Rm, g : Rm → Rk, and their composite h =
(g ◦ f) : Rn → Rk. Let Da(h) be the total derivative of the function h : Rn → Rk

evaluated at a ∈ Rn, i.e.,

Da(h) = lim
||δ||→0

||h(a+δ)− h(a)||
||δ||

. (A.1.1)

The multivariable chain rule [53, Chapter 9] is the formula that relates the total
derivative of h= g ◦ f with the total derivatives of f and g, which is

Da(h) = Df (a)(g) ◦ Da(f). (A.1.2)

The total derivative is a linear transformation, so the quantities in the last equa-
tion can be represented by Jacobian matrices, with the composition operation
replaced by the matrix product, so that the last equation can be rewritten as

Jh(a) = Jg(f (a)) · Jf (a), (A.1.3)

where the three matrices are (k×n), (k×m) and (m×n) dimensional, respectively.
Note that the last equation is the generalization of the “usual" chain rule h′(a) =
g ′(f (a)) f ′(a), which is obtained when n= m= k = 1.

103

104 A.2 Derivative of a Gaussian r.v. with respect to its parameters

A.2 Derivative of a Gaussian r.v. with respect to its
parameters

Let X be a Gaussian random variable with mean µ and variance σ2. Then

U =
X −µ
σ
∼N (0,1), (A.2.1)

and X can be written as X = σU +µ∼N (µ,σ2). The standard deviation σ is a
constant and the distribution of U does not depend on µ, then

∂ X
∂ µ
=
∂ (σU +µ)

∂ µ
= σ

∂ U
∂ µ
+
∂ µ

∂ µ
∼ σδ0 + 1∼ δ0 + 1∼ δ1, (A.2.2)

where δy is the degenerate random variable such that y is sampled with proba-
bility 1. Similarly the distribution of U does not depend on σ, then

∂ X
∂ σ
=
∂ (σU +µ)
∂ σ

=
∂ σ

∂ σ
U +

∂ µ

∂ σ
= U ∼N (0, 1), (A.2.3)

and

∂ X
∂ σ2

=
∂ ((σ2)1/2U +µ)

∂ σ2
=

1
2
(σ2)−1/2U + 0=

1
2σ

U ∼N
�

0,
1

4σ2

�

. (A.2.4)

A.3 Semantics in R language

In R, objects are generally modified with value semantic, meaning that whenever
the object is accessed, a new copy of the object is first created, this new copy
is then modified, and eventually stored with the name of the previous variable.
More precisely, a new copy is not always created, because modifying the object
locally has computational advantages, this behaviour is called copy-on-modified
and it is explained in [73, Chapter 2], however when reasoning about the code,
it can be assumed that the code behaves as if an object is copied every time it
is accessed. The other approach is to use a reference semantic, where the name
of the object refers to a pointer to a memory address, so that the modification is
always local. However, operations in the two semantics behave differently. For
example, in the code

a = 2; b = a; b = b + 1; (A.3.1)

105 A.3 Semantics in R language

a is initialized to 2, then b is defined to be equal to a, and b is incremented.
With value semantic, after the three operations, a and b are equal to 2 and 3

respectively, whereas with reference semantic, they are both equal to 3. The
reason is that, with value semantic, in the second operation, the value that is
referred by a is copied and stored elsewhere, this copy is referred by b, when b is
modified, only the value to which b points to is modified, so a has not changed.
On the other hand, if the code above would have been with reference semantic,
the second operation would have copied the pointer labelled by a, and this new
copied pointer is labelled by b, then a and b would have pointed to the same
address in memory, so if b is modified, also a is.

Objects of class "numeric" (as for most types and classes in R), are accessed
and updated with value semantic. Then after the operations above are evaluated,
a and b are equal to 2 and 3 respectively. Whereas objects of class "hash" [11],
are accessed and updated with reference semantic, therefore in the code

a = hash::hash(key="k1", values=2);

b = a;

b[["k1"]] = b[["k1"]] + 1;

(A.3.2)

a and b refers to the same hash table, so after the last command, a[["k1"]] is
also equal to 3. An hash table can be copied with the following method

a = hash::hash(key="k1", values=2);

b = hash::hash(hash::keys(a), hash::values(a));

b[["k1"]] = b[["k1"]] + 1;

(A.3.3)

so that in the second line a new hash table, labelled by b is created, this hash
table is a copy of a, as the keys and values are copied from it, but the modification
of b in the last row modified, does not change a.

Bibliography

[1] Viviana Amati, Felix Schönenberger, and Tom A B Snijders. Estimation of
stochastic actor-oriented models for the evolution of networks by gener-
alized method of moments. Journal de la Société Française de Statistique,
156:140–165, 2015.

[2] Viviana Amati, Felix Schönenberger, and Tom A B Snijders. Contempo-
raneous statistics for estimation in stochastic actor-oriented co-evolution
models. Psychometrika, 84:1068–1096, 2019.

[3] IV Basawa. Neyman-le cam tests based on estimating functions. In Pro-
ceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer,
volume 2, pages 811–825. Wadsworth Belmont, Calif, USA, 1985.

[4] IV Basawa. Generalized score tests for composite hypotheses. Estimating
functions, pages 121–131, 1991.

[5] Douglas Bates, Martin Maechler, Ben Bolker, and Steve Walker. Fitting lin-
ear mixed-effects models using lme4. Journal of Statistical Software, 67(1):
1–48, 2015. doi: 10.18637/jss.v067.i01.

[6] Johannes Berkhof and Tom A B Snijders. Variance component testing in
multilevel models. Journal of Educational and Behavioral Statistics, 26(2):
133–152, 2001.

[7] Joseph Blitzstein and Persi Diaconis. A sequential importance sampling
algorithm for generating random graphs with prescribed degrees. Internet
mathematics, 6(4):489–522, 2011.

[8] Per Block, Johan Koskinen, James Hollway, Christian Steglich, and
Christoph Stadtfeld. Change we can believe in: Comparing longitudinal
network models on consistency, interpretability and predictive power. So-
cial Networks, 52:180–191, 2018.

106

107 Bibliography

[9] Per Block, Christoph Stadtfeld, and Tom A B Snijders. Forms of dependence:
Comparing saoms and ergms from basic principles. Sociological Methods &
Research, 48(1):202–239, 2019.

[10] Stephen P Borgatti, Ajay Mehra, Daniel J Brass, and Giuseppe Labianca.
Network analysis in the social sciences. science, 323(5916):892–895, 2009.

[11] Christopher Brown. hash: Full Feature Implementation of Hash/Associated
Arrays/Dictionaries, 2019. URL https://CRAN.R-project.org/package=

hash. R package version 2.2.6.1.

[12] Carter T Butts. 4. a relational event framework for social action. Sociological
Methodology, 38(1):155–200, 2008.

[13] Alberto Caimo and Nial Friel. Bayesian inference for exponential random
graph models. Social networks, 33(1):41–55, 2011.

[14] Alberto Caimo, Nial Friel, et al. Bergm: Bayesian exponential random
graphs in R. Journal of Statistical Software, 61(i02), 2014.

[15] Kathleen M Carley. Group stability: A socio-cognitive approach. Advances
in Group Processes, 7(1):44, 1990.

[16] Giacomo Ceoldo and Ernst C Wit. Efficient implementation of sets and
multisets in r using hash tables. arXiv preprint arXiv:2304.09809, 2023.

[17] Giacomo Ceoldo, Tom AB Snijders, and Ernst C Wit. Stochastic actor ori-
ented model with random effects. arXiv preprint arXiv:2304.07312, 2023.

[18] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of
simulation-based inference. Proceedings of the National Academy of Sciences,
117(48):30055–30062, 2020.

[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. In Journal of Machine
Learning Research, volume 12, pages 2121–2159, 2011.

[20] Charles J Geyer. Markov chain monte carlo maximum likelihood. Interface
Foundation of North America, 1991.

[21] Charles J Geyer and Elizabeth A Thompson. Constrained monte carlo maxi-
mum likelihood for dependent data. Journal of the Royal Statistical Society:
Series B (Methodological), 54(3):657–683, 1992.

https://CRAN.R-project.org/package=hash
https://CRAN.R-project.org/package=hash

108 Bibliography

[22] Andrew R. Hall. Generalized Method of Moments. Oxford University Press,
Oxford, 2005.

[23] Steve Hanneke, Wenjie Fu, and Eric P Xing. Discrete temporal models of
social networks. Electronic Journal of Statistics, 4:585–605, 2010.

[24] Lars Peter Hansen. Large sample properties of generalized method of mo-
ments estimators. Econometrica: Journal of the Econometric Society, pages
1029–1054, 1982.

[25] Nicholas J Higham. Matrix nearness problems and applications. In M J C
Gover and S Barnett, editors, Applications of Matrix Theory, pages 1–27.
Oxford University Press, Oxford, 1989.

[26] Paul W Holland and Samuel Leinhardt. A dynamic model for social net-
works. Journal of Mathematical Sociology, 5(1):5–20, 1977.

[27] Paul W Holland and Samuel Leinhardt. A method for detecting structure
in sociometric data. Social Networks, pages 411–432, 1977.

[28] Paul W Holland and Samuel Leinhardt. An exponential family of proba-
bility distributions for directed graphs. Journal of the american Statistical
association, 76(373):33–50, 1981.

[29] Petter Holme and Jari Saramäki. Temporal networks. Physics reports, 519
(3):97–125, 2012.

[30] Bart Jacobs. Structured probabilistic reasoning. Forthcoming
book, 2019. URL http://www.cs.ru.nl/B.Jacobs/PAPERS/

ProbabilisticReasoning.pdf.

[31] Bruce Kapferer. Strategy and transaction in an African factory: African work-
ers and Indian management in a Zambian town. Manchester University
Press, 1972.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[33] Johan H. Koskinen and Tom A. B. Snijders. Bayesian inference for dynamic
social network data. Journal of Statistical Planning and Inference, 13:3930–
3938, 2007.

http://www.cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf
http://www.cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf

109 Bibliography

[34] Pavel N Krivitsky and Mark S Handcock. A separable model for dynamic net-
works. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 76(1):29–46, 2014.

[35] Pierre L’Ecuyer. An overview of derivative estimation. In Proceedings of the
1991 Winter Simulation Conference. Institute of Electrical and Electronics
Engineers (IEEE), 1991.

[36] Alessandro Lomi, Tom AB Snijders, Christian EG Steglich, and Vanina Jas-
mine Torló. Why are some more peer than others? evidence from a lon-
gitudinal study of social networks and individual academic performance.
Social science research, 40(6):1506–1520, 2011.

[37] Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradi-
ent descent as approximate bayesian inference. Journal of Machine Learning
Research, 18(50):1–35, 2017.

[38] Charles E McCulloch and Shayle R Searle. Generalized, linear, and mixed
models. John Wiley & Sons, 2004.

[39] Daniel McFadden. A method of simulated moments for estimation of dis-
crete response models without numerical integration. Econometrica: Jour-
nal of the Econometric Society, pages 995–1026, 1989.

[40] David Meyer and Kurt Hornik. Generalized and customizable sets in R.
Journal of Statistical Software, 31(2):1–27, 2009. doi: 10.18637/jss.v031.
i02.

[41] Carina Mood. Logistic regression: Why we cannot do what we think we
can do, and what we can do about it. European Sociological Review, 26:
67–82, 2010.

[42] Mark Newman. Networks. Oxford university press, 2018.

[43] Jerzy Neyman. Optimal asymptotic tests of composite hypotheses. In Ulf
Grenander, editor, Probability and Statistics, pages 213–234. Wiley, 1959.

[44] Krzysztof Nowicki and Tom A B Snijders. Estimation and prediction for
stochastic blockstructures. Journal of the American Statistical Association,
96(455):1077–1087, 2001.

110 Bibliography

[45] Patrick O Perry and Patrick J Wolfe. Point process modelling for directed
interaction networks. Journal of the Royal Statistical Society: SERIES B:
Statistical Methodology, pages 821–849, 2013.

[46] José C Pinheiro and Douglas M Bates. Linear mixed-effects models: basic
concepts and examples. Mixed-effects models in S and S-Plus, pages 3–56,
2000.

[47] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approx-
imation by averaging. SIAM journal on control and optimization, 30(4):
838–855, 1992.

[48] Alessandro Rinaldo, Sonja Petrović, and Stephen E. Fienberg. Maximum
lilkelihood estimation in the β-model. The Annals of Statistics, 41(3):1085
– 1110, 2013. doi: 10.1214/12-AOS1078. URL https://doi.org/10.

1214/12-AOS1078.

[49] Ruth M Ripley, Tom A B Snijders, Zsófia Boda, András Vörös, and Paulina
Preciado. Manual for rsiena. University of Oxford, Department of Statistics,
Nuffield College, 2023.

[50] Herbert Robbins and Sutton Monro. A stochastic approximation method.
The Annals of Mathematical Statistics, 22:400–407, 1951.

[51] Garry Robins, Philippa Pattison, and Jodie Woolcock. Missing data in net-
works: exponential random graph (p*) models for networks with non-
respondents. Social Networks, 26(3):257–283, 2004.

[52] Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. An introduc-
tion to exponential random graph (p*) models for social networks. Social
networks, 29(2):173–191, 2007.

[53] Walter Rudin. Principles of Mathematical Analysis, volume 3. McGraw-Hill
New York, 1964.

[54] David R Schaefer, Steven A Haas, and Nicholas J Bishop. A dynamic model
of us adolescents’ smoking and friendship networks. American journal of
public health, 102(6):e12–e18, 2012.

[55] Michael Schweinberger. Statistical methods for studying the evolution of
networks and behavior. PhD thesis, Rijksuniversiteit Groningen, 2007.

https://doi.org/10.1214/12-AOS1078
https://doi.org/10.1214/12-AOS1078

111 Bibliography

[56] Michael Schweinberger. Statistical modelling of network panel data: Good-
ness of fit. British Journal of Mathematical and Statistical Psychology, 65(2):
263–281, 2012.

[57] Michael Schweinberger. Statistical inference for continuous-time markov
processes with block structure based on discrete-time network data. Statis-
tica Neerlandica, 74(3):342–362, 2020.

[58] Michael Schweinberger and Tom A B Snijders. Markov models for digraph
panel data: Monte Carlo-based derivative estimation. Computational Statis-
tics & Data Analysis, 51:4465–4483, 2007.

[59] Tom A B Snijders. Stochastic actor-oriented models for network change.
Journal of Mathematical Sociology, 21(1-2):149–172, 1996.

[60] Tom A B Snijders. The statistical evaluation of social network dynamics.
Sociological Methodology, 31:361–395, 2001.

[61] Tom A. B. Snijders. Explained variation in dynamic network models. Math-
ématiques, Informatique et Sciences Humaines / Mathematics and Social Sci-
ences, 168(4), 2004.

[62] Tom A B Snijders. Stochastic actor-oriented models for network dynamics.
Annual Review of Statistics and Its Application, 4:343–363, 2017.

[63] Tom A B Snijders. Siena algorithms. Technical report, University of
Groningen, University of Oxford,
http://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf,
2023.

[64] Tom A. B. Snijders, Christian E. G. Steglich, and Michael Schweinberger.
Modeling the co-evolution of networks and behavior. In Kees van Montfort,
Han Oud, and Albert Satorra, editors, Longitudinal models in the behavioral
and related sciences, pages 41–71. Mahwah, NJ: Lawrence Erlbaum, 2007.

[65] Tom A B Snijders, Johan Koskinen, and Michael Schweinberger. Maximum
likelihood estimation for social network dynamics. The Annals of Applied
Statistics, 4(2):567, 2010.

[66] Tom AB Snijders, Gerhard G Van de Bunt, and Christian EG Steglich. In-
troduction to stochastic actor-based models for network dynamics. Social
networks, 32(1):44–60, 2010.

http://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf

112 Bibliography

[67] Tom AB Snijders et al. Markov chain monte carlo estimation of exponential
random graph models. Journal of Social Structure, 3(2):1–40, 2002.

[68] Stephanie Thiemichen, Nial Friel, Alberto Caimo, and Göran Kauermann.
Bayesian exponential random graph models with nodal random effects. So-
cial Networks, 46:11–28, 2016.

[69] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude, 2012.

[70] Larry Wasserman. All of statistics: a concise course in statistical inference.
Springer, New York, 2004.

[71] Stanley Wasserman. Analyzing social networks as stochastic processes.
Journal of the American Statistical Association, 75(370):280–294, 1980.

[72] Stanley Wasserman and Katherine Faust. Social network analysis: Methods
and applications. Cambridge University Press, New York and Cambridge,
1994.

[73] Hadley Wickham. Advanced r. CRC press, 2019. URL https://adv-r.

hadley.nz/.

[74] Paul FV Wiemann, Thomas Kneib, and Julien Hambuckers. Using the soft-
plus function to construct alternative link functions in generalized linear
models and beyond. arXiv preprint arXiv:2111.14207, 2021.

https://adv-r.hadley.nz/
https://adv-r.hadley.nz/

	Contents
	Introduction
	Background material
	Stochastic actor oriented model
	Mixed effect models
	Sets, multisets, and hash tables in the R language

	Contributions
	Technical summary
	Random effects in the stochastic actor oriented model
	Generalizing methods to regression with mixed effects
	Implementing sets and multisets in R

	Stochastic actor oriented model with random effects
	Introduction
	Stochastic actor oriented model with random effects
	Estimation method
	Simulated method of moments with random effects
	Summary estimation algorithm and implementation of the simulating function
	Restricted models for the variance parameter

	Model evaluation
	Score-type test for overdispersion
	Standard errors for SAOM with random out-degree
	Generalizations

	Analysing social interactions in a tailor shop
	Kapferer's tailor shop dataset
	Definition estimated models
	Estimation and interpretation of the results
	Model comparison
	Out-degree activity and overdispersion in Tailor shop network

	Overview and discussion

	Simulated method of moments in mixed effect models
	Introduction
	Simulation based inference for mixed effect models
	Regression with mixed effects
	Simulated method of moments
	Generalized method of moments
	Approximation of derivatives in simulated inference

	Simulation based estimation
	Stochastic and simulated gradient descent
	Update state optimization
	Computation of the estimator and evaluation of convergence

	Simulation based model evaluation
	Monte-Carlo approximation of quantities for model evaluation
	Score tests with Neyman's orthogonalization procedure
	Different orthogonalizations procedures
	Orthogonalization in generalized method of moments
	Score tests on models with random effects

	Poisson model with random effects and softplus link
	Model
	Simulation study

	Conclusion

	Efficient implementation of sets and multisets in R using hash tables
	Introduction
	Sets and multisets
	Mathematical definition
	Computational implementation
	Semantic of hset

	Sets algebra
	Relations
	Operations

	Performance
	Relations
	Operations

	MCMC with state space of undirected graphs
	Conclusion

	Conclusion
	Mathematical and computational background
	Multivariable chain rule
	Derivative of a Gaussian r.v. with respect to its parameters
	Semantics in R language

	Bibliography

