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Abstract

One of the key problems in astrophysical research is to investigate the physi-
cal properties of astronomical objects by deciphering the information encoded
in the radiation we receive from them. This requires modeling the spectral and
polarization properties of the radiation they emit by numerically solving the so-
called radiative transfer (RT) problem in given models of the object under con-
sideration. In this thesis, we consider the problem of modeling the intensity
and polarization profiles of strong lines of the solar spectrum, which encode
information about two particular layers of the solar atmosphere: the chromo-
sphere and the chromosphere-corona transition region. This requires solving the
RT problem for polarized radiation under non-local thermodynamic equilibrium
conditions and taking into account partial frequency redistribution (PRD) effects
in the scattering processes. This is a notoriously challenging problem from a
computational point of view and is generally solved by introducing simplifying
approximations, both on the considered atmospheric models (e.g., isothermal,
optically thin, cylindrically symmetric) and in the description of scattering pro-
cesses (e.g., angle-average assumption).

The thesis is carried out within the framework of a larger project that aims at
developing a code for solving the RT problem for polarized radiation, taking PRD
effects into account, in state-of-the-art 3D models of the solar atmosphere. A key
step to achieve this goal is to develop an efficient and reliable numerical method
for the calculation of the emission vector of the RT equation, taking into account
PRD effects in their most general formulation. This was the first main goal of the
work. Subsequently, we applied the developed methods to quantitatively assess
the suitability of an approximation that is commonly applied in the numerical
solution of the RT problem with PRD effects.

The core of the problem consists in integrating complex functions which
highly depend on several parameters. We studied the basic functional compo-
nents and analyzed a series of quadrature methods. Once the most convenient
approaches have been identified we implemented them in highly optimized al-
gorithms that take into account both the property of the integrand and the ar-
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chitecture of computer systems.
The developed algorithms have been extensively tested and successfully im-

plemented in both 1D and 3D RT codes. Using the 1D code, we modeled, for the
first time, the intensity and polarization of various spectral lines in semi-empirical
models of the solar atmosphere, accounting for angle-dependent PRD effects.
These calculations, which also included magnetic fields of arbitrary strength and
direction, as well as bulk velocities, unveiled a series of artifacts induced by the
angle-averaged approximation, thus highlighting the importance of considering
PRD effects in the most general formulation. One of the most remarkable results
was found when modeling the polarizations signals produced by the forward
scattering Hanle effect. The algorithm proved to be fully suitable also for the 3D
code, which is presently run on an HPC system (CSCS).
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Chapter 1

Introduction

In this chapter, we present the scientific context of this PhD dissertation and
introduce the specific problem we aim to solve, highlighting its relevance and
complexity from a computational point of view. After a brief review of the state
of the art, we describe the first main goals of the thesis.

1.1 Scientific context

Most of the available information about astrophysical objects, including the Sun,
is encoded in the electromagnetic radiation that we receive from them. This
information can be deciphered by comparing the spectral and polarization prop-
erties of the observed radiation with the results of theoretical calculations, based
on the numerical solution of the so-called radiative transfer (RT) problem. The
RT problem consists of modeling how the properties of a beam of electromag-
netic radiation are modified as it propagates in a medium (for example, a stel-
lar atmosphere) and interacts with the atoms, molecules, and other particles
present therein, through absorption, emission, and scattering processes (e.g., Mi-
halas, 1978).

In the solar physics community, there is presently great interest in investigat-
ing two thin layers of the solar atmosphere: the chromosphere and the transition
region between the chromosphere and the corona. These regions are at the core
of some enduring problems, such as understanding the physical mechanisms that
drive the heating of the solar corona, the acceleration of the solar wind, and the
triggering of eruptive phenomena (e.g., flares and coronal mass ejections). It is
clear that the magnetic field plays a key role in all of these phenomena, but our
knowledge of its intensity and topology is still very limited. The magnetic fields

1



2 1.1 Scientific context

Figure 1.1. Intensity spectrum (upper panel) and Second Solar Spectrum (lower
panel) across an interval including the Ca I 4227 Å line, measured at the north
pole of the Sun, close to the limb, in a condition of quiet Sun with the ZIMPOL
polarimeter (Ramelli et al., 2010). The Second Solar Spectrum is represented in
terms of the fractional linear polarization Q/I , taking the reference direction for
positive Q parallel to the limb. Credits: Gandorfer (2002).

present in the solar atmosphere can be investigated by exploiting the fingerprints
they leave in the polarization of spectral line radiation through various physical
mechanisms, such as the Zeeman effect, the Hanle effect, and magneto-optical ef-
fects (e.g., Stenflo, 1994; Landi Degl’Innocenti and Landolfi, 2004). Particularly
promising for diagnosing the weak magnetic fields present in the chromosphere
and transition region is the Hanle effect (Hanle, 1924). This is the modification,
induced by the magnetic field, of the linear polarization produced by the scatter-
ing of anisotropic radiation (scattering polarization) (e.g., Stenflo, 1994; Trujillo
Bueno, 2001; Landi Degl’Innocenti and Landolfi, 2004).

The clearest manifestation of scattering polarization is the so-called Second
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Figure 1.2. Same as 1.1 but in a spectral interval including the Sr II 4078 Å line.
Credits: Gandorfer (2002).

Solar Spectrum (e.g. Gandorfer, 2000, 2002, 2005), namely the linearly polar-
ized spectrum of the solar radiation coming from quiet regions close to the edge
of the solar disk (limb). Examples of the intensity spectrum and of the Second
Solar Spectrum are given in Figures 1.1 to 1.3.

In the visible range, the intensity spectrum shows a plethora of absorption
profiles (i.e., regions of reduced intensity) induced by the atoms and molecules
composing the solar atmosphere. These profiles can have different shapes, some
are broad and deep (strong lines), and others narrower and with smaller depres-
sions (weak lines). In mass, the solar atmosphere is about 73% hydrogen, 25%
helium, and 2% other elements. The most frequent absorption profiles are those
induced by iron (Fe), which occur across the entire spectrum (e.g. Moore et al.,
1966).

Most of the spectral lines appearing in the intensity spectrum do not produce
significant linear polarization signals in the Second Solar Spectrum. However, a
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Figure 1.3. Same as 1.1 but in a spectral interval including the Sr I 4607 Å line.
Credits: Gandorfer (2002).

number of them show appreciable scattering polarization signals that today can
be detected with instruments like ZIMPOL (Ramelli et al., 2010). The largest
signals of the Second Solar Spectrum usually appear in resonance lines (Bel-
luzzi and Landi Degl’Innocenti, 2009), that is spectral lines produced by atomic
transitions where the lower level corresponds to the ground state (i.e., the state
with lowest energy) or to metastable states (i.e., states that are not connected to
lower energy ones via permitted radiative transitions). Examples of three reso-
nance lines showing strong scattering polarization signals are the Ca I 4227 Å,
Sr II 4078 Å, and Sr I 4607 Å lines. Measured intensity and Q/I profiles of these
lines are shown in Figures 1.1 to 1.3.

The information about the chromosphere and transition region is encoded in
strong resonance lines, like H I Ly-α at 1215 Å, Mg II h and k at 2800 Å, Ca II H
and K at 3950 Å, or the Ca I line at 4227 Å. Modeling the intensity and polariza-
tion profiles of such lines is difficult because it requires solving the RT problem
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for polarized radiation under non-local thermodynamic equilibrium (non-LTE)
conditions and taking into account partial frequency redistribution (PRD) effects
(i.e., frequency correlations between the incoming and the outgoing photons in
the scattering process). PRD effects are essential for modeling the large scatter-
ing polarization profiles that are observed in some of the lines mentioned above,
and, in particular, the broad lobes that are found in their wings (e.g., Holzreuter
et al., 2005; Belluzzi and Trujillo Bueno, 2012; Alsina Ballester et al., 2017).
Such wing signals would be completely lost if one assumes the limit of complete
frequency redistribution (CRD), in which no frequency correlation between the
incoming and the outgoing photons in the scattering process is accounted for.

The main difficulty in developing diagnostic methods based on the Hanle
effect is that the amplitude of scattering polarization strongly depends on the
anisotropy of the radiation field illuminating the atoms, which, however, is not
known a priori. There are two main strategies to overcome this difficulty. The
first one is to consider different spectral lines that encode information on the
same atmospheric region but have different sensitivities to the Hanle effect (dif-
ferential Hanle effect, see Stenflo et al., 1998). This technique is successfully ap-
plied at the photospheric level, exploiting the scattering polarization signals of
molecular lines (e.g., Berdyugina et al., 2002; Berdyugina and Fluri, 2004; Tru-
jillo Bueno et al., 2004; Kleint et al., 2010) The alternative strategy is to model
the observed scattering polarization signals in realistic 3D models of the solar
atmosphere, in which the anisotropy of the radiation field can be reliably esti-
mated. Thanks to the availability of magneto-hydrodynamic (MHD) simulations
of the solar atmosphere that reach the chromosphere and corona (e.g., Carlsson
et al., 2016), and thanks to the computational power of modern supercomputers,
this strategy is today feasible (e.g., Trujillo Bueno et al. (2018)).

This thesis work aims at developing a series of numerical tools needed to
solve the RT problem for polarized radiation in state-of-the-art 3D models
of the solar atmosphere, taking scattering polarization and PRD effects into
account.

1.2 State of the art

Numerous applications (RT codes), some of which are publicly available, have
been developed to solve the RT problem, under different assumptions and con-
sidering different geometries. A very popular one is the RH code (Uitenbroek,
2001). This application allows solving the RT problem for multilevel atomic
systems under non-LTE conditions, in 1D, 2D, and 3D models of the solar atmo-
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sphere, both in the limit of CRD and taking PRD effects into account. RH takes
into account the polarization produced by the Zeeman effect, but it neglects scat-
tering polarization. To date, the only code that allows solving the non-LTE RT
problem, taking scattering polarization into account, in 3D models of the solar
atmosphere, is PORTA (Štěpán and Trujillo Bueno, 2013). PORTA allows con-
sidering multilevel atomic systems, but only within the limit of CRD. On the
High-Performance Computing (HPC) side, PORTA implements an innovative al-
gorithm for domain decomposition, the “snake algorithm”, which allows massive
parallel computation.

The numerical solution of the non-LTE RT problem taking scattering polariza-
tion and PRD effects into account is known to be particularly challenging from the
computational point of view, also in the 1D case. For this reason, in most of the
available applications, the PRD effects are included by assuming the so-called
angle-averaged (AA) simplifying approximation (e.g., Mihalas, 1978; Rees and
Saliba, 1982; Bommier, 1997b; Anusha and Nagendra, 2011; Alsina Ballester
et al., 2017). By smearing out geometrical dependencies in the description of
the scattering processes, this approximation can, however, introduce significant,
and difficult-to-predict, inaccuracies, especially in the modeling of scattering po-
larization (e.g., Faurobert, 1987a, 1988a; Sampoorna et al., 2011a, 2017; Janett
et al., 2021a), clearly compromising the effort of solving the RT problem in real-
istic 3D models of the solar atmosphere.

During the last decades, significant efforts have been devoted to the develop-
ment of numerical methods tailored for modeling scattering polarization taking
PRD effects into account, in their most general, angle-dependent (AD) formu-
lation (see, for instance, the review by Nagendra, 2019). Worth mention is the
approach based on the decomposition of the four Stokes parameters (i.e., the
main physical quantities used to describe polarized radiation, see Sect. 1.4.1)
into nine irreducible spherical components characterized by cylindrical symme-
try, and on the Fourier expansion of the PRD redistribution matrix (i.e., the tool
used to describe PRD phenomena, see Sect. 1.4.2) with respect to the azimuth
(see Frisch, 2007, 2009, 2010). Exploiting this method, Anusha and Nagendra
(2011) pioneered the problem of modeling scattering polarization with AD-PRD
effects in multi-D media. By performing applications in academic models, these
authors showed that this method allows obtaining accurate results retaining a
number of terms of the Fourier expansion appreciably lower than the number of
azimuths that one would need to consider in a standard approach. That work was
carried out considering an approximated expression of the redistribution matrix,
namely approximation II of Bommier (1997b), which is valid under the so-called
weak-field approximation and is based on a decomposition of the frequency do-
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main leading to a decoupling of frequency redistribution and polarization (e.g.,
Frisch, 2009). We recall that the weak-field approximation is valid when the
magnetic splitting due to the Zeeman effect is much smaller than the Doppler
width. In this case, the magnetic splittings can be neglected in the line profiles,
with a considerable simplification of the problem, but the polarization signals
produced by the Zeeman effect are necessarily neglected. To the authors’ knowl-
edge, the work of Anusha and Nagendra (2011) has not been generalized yet to
handle the most general expression of the redistribution matrix, and it has not
been extended to more realistic atmospheric models.

In this thesis, we aim to work with the most general expression of the redis-
tribution matrix, which allows us to include magnetic fields of arbitrary strength
and to account for the polarization signals produced by the Zeeman effect, and
not to follow the aforementioned approach. However, the methods that will be
developed in this thesis might also be useful for the implementation of the strat-
egy discussed above.

Numerical approaches that could be suited for an efficient approximation of
the redistribution matrix are those based on low-rank methods (e.g. Markovsky,
2012). In a recent work, Paganini et al. (2021) proposed a fast approximation
of the AA redistribution matrix by means of Chebyshev polynomials using the
chebfun3 software (Hashemi and Trefethen, 2017). Unfortunately, the gener-
alization of this approach to approximate the redistribution matrix in its general,
angle-dependent form presents remarkable difficulties and, to the knowledge of
the author, has not been attempted so far.

Before the beginning of this project, the non-LTE RT problem for polarized
radiation, taking AD PRD effects into account, had always been solved in simpli-
fied atmospheric models (e.g., isothermal 1D slabs). The only exception is the
work of del Pino Alemán et al. (2016), who modeled the scattering polarization
signals of the Mg II h and k lines by solving the aforementioned problem in a 1D
semi-empirical atmospheric model, but still assuming cylindrical symmetry in or-
der to lower the computational cost. As it will be discussed in the next sections,
the first main objective of this thesis work is to develop an efficient method for
calculating the so-called emissivity (in the polarized case) taking AD PRD effects
into account. To the best of our knowledge, no details of the quadrature methods
applied in previous works to calculate this quantity have been explicitly reported
in the literature.
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1.3 Scope of the work

This thesis is part of a larger project that aims at developing a code to solve the
non-LTE RT problem, taking into account scattering polarization and PRD effects,
in a 3D geometry. This new RT code will be a very useful tool for studying the
magnetism of the outer solar atmosphere, as it would allow us to model the mag-
netic sensitivity of strong resonance lines through the combined action of Hanle,
Zeeman, and magneto-optical effects in realistic models of the solar atmosphere.
A key step to achieve this goal is to have available a fast and accurate algorithm
for the computation of the emission coefficient of the RT equation, taking PRD ef-
fects into account, without considering any simplifying approximation (see Sect.
1.4). Devising, developing, and optimizing such an algorithm by implementing
HPC methods for performing the various steps of this calculation is the first main
goal of this Ph.D. thesis work.

In parallel, we will cooperate with the other members of the group to the
development of a new solution strategy for the non-LTE RT problem with PRD in
both 1D and 3D atmospheric models, considering spatially dependent physical
parameters. This solution strategy is briefly described in Sect. 1.8. For more
details, we refer the reader to Janett et al. (2021b); Benedusi et al. (2021, 2022);
Benedusi et al. (2023).

1.4 Mathematical formulation

1.4.1 The radiative transfer equation for polarized radiation

The polarization of a beam is completely described by the four Stokes parame-
ters: I , Q, U , and V , where I ∈ R+ is the intensity, Q, U ∈ R quantify the linear
polarization, and V ∈ R the circular polarization (e.g. Landi Degl’Innocenti and
Landolfi, 2004). To simplify the notation, it is common to introduce a vector I
whose components are the four Stokes parameters I= [I ,Q, U , V ]T (Stokes vec-
tor). The Stokes parameters and therefore the Stokes vector are in general a
function of the spatial point r ∈ R3, the frequency ν ∈ R+ and the direction Ω of
the considered beam, i.e. I (r,Ω,ν).

We consider a right-handed Cartesian reference system with z-axis directed
along the vertical (see Fig. 1.4). The direction Ω is specified by a unit vector
expressed in spherical coordinates (i.e., Ω = [θ ,χ]T , where θ ∈ [0,π] is the
inclination with respect to the local vertical and χ ∈ [0,2π) is the azimuth).
Unless otherwise specified, we will consider radiation emerging from the atmo-
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z
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y

Figure 1.4. Right-handed Cartesian reference system considered in the problem.
The z-axis is directed along the local vertical. Any vector is specified through its
polar angles θ (inclination) and χ (azimuth).

sphere along a line of sight (LOS) lying in the x − z plane, and we will take the
reference direction for positive Stokes Q parallel to the y-axis.

When a beam of radiation propagates through a medium, it interacts with
the molecules and atoms through various processes (e.g. absorption, scattering,
etc.), and its properties are modified. These modifications are fully described by
the RT equation:

∇ΩI (r, Ω, ν) = −K (r, Ω, ν) · I (r, Ω, ν) + ϵ (r, Ω, ν) , (1.1)

where ∇Ω is the directional derivative along the considered direction Ω. The
quantity ϵ ∈ R4 is the emission vector, which describes the contribution to the
Stokes parameters of the considered beam due to the radiation emitted by the
plasma at point r. The propagation matrix K ∈ R4×4

K =









ηI ηQ ηU ηV

ηQ ηI ρV −ρU

ηU −ρV ηI ρQ

ηV ρU −ρQ ηI









(1.2)

depends on the spatial point r, the direction Ω, and the frequency ν. Its diagonal
elements (generally called opacity and indicated with ηI) describe the absorption
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of radiation, the off-diagonal ones describe the phenomena of dichroism (ηQ, ηU ,
and ηV ), and anomalous dispersion (ρQ, ρU , and ρV ) (e.g., Landi Degl’Innocenti
and Landolfi, 2004; Landi Degl’Innocenti, 2007).

We observe that the emission vector and the propagation matrix depend on
the excitation state of the atoms. Under non-LTE conditions, this has to be cal-
culated by solving the statistical equilibrium equations, which describe the in-
teraction of the atoms with the radiation field (radiative processes), other par-
ticles present in the plasma (collisional processes), and the possible presence of
external magnetic and/or electric fields. In the general non-LTE case, the radia-
tive transfer equation must be satisfied in all directions and frequencies, and the
whole radiative transfer problem consists in finding a self-consistent solution for
the radiation field and the atomic system at all spatial points.

1.4.2 The emission vector

The emission vector ϵ appearing in Equation (1.1), whose components are the
emission coefficients in the four Stokes parameters, is given by the sum of various
terms that describe the contributions from different physical processes. Since the
calculation of the emissivity is local, for notational simplicity hereafter we do not
explicitly indicate the dependence on the spatial coordinate r, i.e.,

ϵ : R×R2 −→ R4

ϵ (ν,Ω) = ϵ ℓ,sc (ν,Ω) + ϵ ℓ,th (ν, Ω)+

ϵc,sc (ν,Ω) + ϵc,th (ν,Ω) .
(1.3)

The first two terms represent the scattering (label sc) and thermal (label th)
contributions from line (label ℓ) processes (i.e., transitions between bound states
of the considered atomic system). The last two terms represent the analogous
contributions from continuum (label c) processes (e.g., scattering on electrons
and on atoms and ions, radiative recombination, etc.).

Hereafter, we will focus the attention on the term that describes the contribu-
tion from scattering processes by the considered atomic system (line scattering
contribution), which is the most demanding one to compute. Describing the PRD
effects by means of the redistribution matrix formalism (e.g., Bommier, 1997a,b),
this term is given by:

ϵ ℓ,sc : R×R2 −→ R4

ϵ ℓ,sc (ν,Ω) = kL

∫

R+

dν′
∮

dΩ′

4π
R
�

ν′,Ω′,ν,Ω
�

I
�

ν′,Ω′
�

,
(1.4)
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where I is the Stokes vector of the radiation field that illuminates the atom, kL is
the frequency integrated absorption coefficient, and R is the redistribution matrix,
which describes the joint probability that in a scattering process, an atom ab-
sorbs radiation (incoming radiation) with direction Ω′, frequency ν′, and a given
polarization state, and re-emits radiation (outgoing radiation) with direction Ω,
frequency ν, and a new polarization state.

In this work, we consider an atomic system composed of two levels (two-
level atom), and we assume that the lower level is unpolarized and infinitely
sharp (this is generally a good assumption when the lower level is the ground
state). More details on this atomic model are provided in Sect. A.1. Under these
assumptions, it can be shown that the redistribution matrix is given by the linear
combination of two terms (Bommier, 1997a,b) that, following the notation of
Hummer (1962), are generally indicated with RII and RIII:

R : R×R2 ×R×R2 −→ R4×4

R
�

ν′,Ω′,ν,Ω
�

= RII
�

ν′,Ω′,ν,Ω
�

+ RIII
�

ν′,Ω′,ν,Ω
�

.
(1.5)

The RII matrix describes scattering processes that are coherent in frequency
(complete correlation between ν′ and ν) in the reference system of the atom
(i.e., a reference system in which the atom is at rest). The incoming and outgoing
frequencies are fully correlated if the atom, while excited during the scattering
process, is not perturbed by elastic collisions with neutral particles (i.e. atoms
and molecules constituting the solar atmosphere).

The RIII matrix describes instead scattering processes that are completely inco-
herent in frequency (no correlation between ν′ and ν) in the same reference
system. This happens if the atom, while excited, is affected by elastic collisions
with neutral particles that completely relax the coherence between the incoming
and outgoing frequencies.

The relative weight between RII and RIII (given by a suitable branching ratio)
depends on the rate of elastic collisions. In the limit of no elastic collision, RIII

vanishes, while when elastic collisions are very efficient, RIII dominates over RII.
A convenient way to approximately quantify this relative weight is through the
coherence fraction:

α=
ΓR + ΓI

ΓR + ΓI + ΓE
, (1.6)

where the quantities ΓR, ΓI , and ΓE are the broadening constants due to spon-
taneous emission, inelastic de-exciting collisions, and elastic collisions, respec-
tively (for more details, see Alsina Ballester et al., 2017, and Equation (1.14)).
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A value of α close to 1 means that the contribution of RIII is negligible compared
to that of RII. The RIII matrix is usually dominant in the lower part of the solar
atmosphere (photosphere), where the number density of perturbers is higher.
Its contribution is therefore relevant in the formation of photospheric lines (e.g.
the Sr I 4607 Å line). On the other hand, the contribution of RII dominates in
medium-upper regions of the solar atmosphere (chromosphere)1, and therefore
it characterizes the formation of chromospheric lines (e.g. the Ca I 4227 Å and
Sr II 4078 Å lines, see Chapter 7 for detailed results for these lines and a com-
prehensive discussion).

The problem is formulated in the observer’s reference system, in which the
atom is moving with a given velocity. In this reference frame, it is necessary to
take into account the Doppler effect due to the atomic motions, which induces
further frequency redistribution phenomena. The atomic velocity has in general
a thermal and a bulk component. Focusing on the thermal component, this is
generally well described by an isotropic Maxwellian distribution, depending on
the temperature and the atomic mass. Accounting for these thermal velocities
leads to a convolution of the expressions of the redistribution matrix in the atomic
reference frame with the Maxwellian distribution model, which induces the ap-
pearance of the Faddeeva function (see also Eq. (1.16)). A complete analytical
derivation of the redistribution matrices in the observer’s frame is presented in
Sect. A.2.2. The treatment of bulk velocities is instead discussed in Sect. 1.5.

For the analysis and numerical treatment of the redistribution matrices, it is
generally convenient to express the equations in terms of the reduced frequencies
of the outgoing and incoming radiation, u and u′, respectively, defined as:

u=
ν0 − ν
∆νD

, u′ =
ν0 − ν′

∆νD

, (1.7)

where ν0 = (Eu − Eℓ)/h (with Eu and Eℓ the energies of the upper and lower lev-
els, respectively, and h the Planck constant) is the line center frequency, and∆νD

is the Doppler width (e.g. Mihalas, 1978). This is defined as (see Alsina Ballester
et al., 2017):

∆νD =
ν0

c

√

√2KB T
Ma

+ v2
t , (1.8)

where Ma is the atomic mass, vt the micro-turbulent velocity2, Kb the Boltzmann
constant, and c the speed of light in vacuum. The use of reduced frequencies,

1NASA: Layers of the Sun
2The microturbulent velocity vt is a free parameter introduced in 1D atmospheric models to

compensate the absence of convective phenomena in these models (e.g. Mucciarelli, 2011).

https://www.nasa.gov/mission_pages/iris/multimedia/layerzoo.html
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where the origin corresponds to the central line frequency ν0, makes some rele-
vant properties of the redistribution matrices invariant with respect to the ther-
mal parameters (depending on the spatial point) of the atmospheric model.

Remark. To move the resulting emission vectors from the reduced frequency space to
the frequency space, it is necessary to multiply this result by 1

∆νD
(see also Eq. (1.4)),

i.e.

ϵ ℓ,sc (ν,Ω) =
1
∆νD

ϵ ℓ,sc (u,Ω) .

The calculation of RII and its contribution to the emission vector by Eq. (1.4)
generally takes the vast majority of the time-to-solution of the entire RT problem
(Benedusi et al., 2023). The first aim of this thesis was to develop and opti-
mise suitable methods to perform such calculations. For the case of RIII, it is
instead possible to introduce some approximations, such as the assumption of
complete frequency redistribution in the observer’s frame (e.g., Alsina Ballester
et al., 2017), which greatly simplify its evaluation. A quantitative analysis of
the suitability of this assumption was the second main goal of this thesis. This
investigation is reported in Chapter 6 (see also Riva et al. (2023)).

1.4.3 Redistribution matrix in the
formalism of the irreducible spherical tensors

In this work, we use the redistribution matrices derived by Bommier (1997a,b).
In the formalism of irreducible spherical tensors for polarimetry (see Chap. 5 of
Landi Degl’Innocenti and Landolfi, 2004), the RII and RIII redistribution matrices
in the observer’s frame can be written as:

RX : R×R2 ×R×R2 −→ R4×4

RX
�

Ω′, u′, Ω, u
�

=
2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

R
X,KK ′

Q

�

u′,Ω′, u,Ω
�

PKK ′

Q

�

Ω′,Ω
�

,
(1.9)

where x = II, III and Kmin =min(K , K ′). The indices K , K ′, and Q are related to
the rank of the polarization tensors and give rise to a set of 19 different values.

The quantity PKK ′
Q ∈ C

4×4 is the scattering phase matrix (see Chap. 5 Landi
Degl’Innocenti and Landolfi, 2004). Its calculation can be easily managed, as
one notices that it does not depend on u′ and u, but only on the directions of the
incoming Ω′ and outgoing Ω radiation and on the orientation of the magnetic
field. In the case of a deterministic magnetic field, its explicit expression is given
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by (see Alsina Ballester et al., 2017, see also Appendix A.2):

PKK ′

Q : R2 ×R2 −→ C4×4

PKK ′

Q

�

Ω′,Ω
�

=
K
∑

Q′=−K

K ′
∑

Q′′=−K ′
(−1)Q

′
�

TK ′

Q′′(Ω)
� �

TK
−Q′(Ω

′)
�T

D
K ′

QQ′′D
K
QQ′ ,

(1.10)

where the quantities DK
QQ′ ∈ C are the elements of the rotation matrix (see Sect.

2.6 of Landi Degl’Innocenti and Landolfi, 2004) that depend on the local direc-
tion of the magnetic field, and TK

−Q′ ∈ C
4 are irreducible geometrical tensors for

polarimetry (see Chap. 5, Table 5.6 of Landi Degl’Innocenti and Landolfi, 2004).

The quantities

R
X,KK ′

Q : R×R2 ×R×R2 −→ C

are commonly referred to as redistribution functions. From the computational
standpoint, the evaluation of these quantities is one of the most demanding steps
of the whole problem.

Assuming that no bulk velocities are present (the inclusion of bulk veloci-
ties is discussed in Sect. 1.5), the angular dependence of the R

X,KK ′

Q functions is
fully contained in the scattering angle Θ ∈ [0,π], that is, the angle between the
directions of the incoming Ω′ and the outgoing Ω radiation beams:

Θ =
�

�arccos
�

Ω′ ·Ω
��

� . (1.11)

1.4.4 The RII redistribution matrix

The expression of the RII redistribution matrix in the observer’s frame is given by

RII : R×R2 ×R×R2 −→ R4×4

RII
�

u′,Ω′, u,Ω
�

=
2
∑

K=0

2
∑

K ′=0

Kmin
∑

Q=−Kmin

R
II,KK ′

Q

�

u′, u, Θ
�

Ω′, Ω
��

PKK ′

Q

�

Ω′,Ω
�

.
(1.12)
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The analytical expression of the R
II,KK ′

Q function is:

R
II,KK ′

Q : R×R× (0,π) −→ C

R
II,KK ′

Q

�

u′, u,Θ
�

= αQ

∑

{MuM ′uMℓM
′
ℓ}
CKK ′QMuM ′uMℓM

′
ℓ

×
1

π sin (Θ)
exp



−

�

u− u′ + uMℓM
′
ℓ

2 sin (Θ/2)

�2




×
1
2

�

W

�

a
cos (Θ/2)

,
u+ u′ + uM ′uMℓ + uM ′uM ′

ℓ

2cos (Θ/2)

�

+

W

�

a
cos (Θ/2)

,
u+ u′ + uMuMℓ + uMuM ′

ℓ

2cos (Θ/2)

�

�

,

(1.13)

where the notation f (·) indicates a complex conjugate function. It should be
noted that the function R

II,KK ′

Q is not defined for Θ = 0 and Θ = π. In these cases,

R
II,KK ′

Q assumes different analytical expressions, which are discussed at the end
of this section. The quantity αQ is the branching ratio of RII, given by:

αQ =
ΓR

ΓR + ΓI + ΓE + 2πiνL guQ
, (1.14)

The quantities ΓR, ΓI , and ΓE are the broadening constants due to spontaneous
emission, inelastic de-exciting collisions, and elastic collisions, respectively (for
more details, see Alsina Ballester et al., 2017). The last (imaginary) term at
the denominator of αQ in Eq. (1.14) is the Hanle term, where νL is the Larmor
frequency and gu is the Landé factor of the upper level (for more details, see
Alsina Ballester et al., 2017). All these quantities depend only on the spatial
point.

The quantities Mu, M ′u, Mℓ, and M ′
ℓ

are the so-called magnetic quantum num-
bers, which characterize the magnetic sub-levels of a given atomic energy level.
An energy level with angular momentum quantum number J (which can only
take integer or half-integer values) is actually composed of (2J + 1) magnetic
sub-levels characterized by the quantum number M = −J ,−J + 1, ..., J . The
quantity CKK ′QMuM ′uMℓM

′
ℓ

Bommier (1997a) is a real number that depends on the
tensorial indices (K , K ′ and Q), the angular momentum quantum numbers of
the upper and lower level (Jℓ and Ju, respectively), and the magnetic quantum
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numbers (Mu, M ′u, Mℓ, M ′
ℓ
). Its explicit expression is:

CKK ′QMuM ′uMℓM
′
ℓ
=

1
∑

pp′p′′p′′′=−1

3 (2Ju + 1)
p

2K + 1
p

2K ′ + 1 (−1)2Ju−Mℓ−M ′
ℓ

×
�

Ju Jℓ 1
Mu −Mℓ −p

��

Ju Jℓ 1
M ′u −Mℓ −p′

�

×
�

Ju Jℓ 1
Mu −M ′

ℓ
−p′′

��

Ju Jℓ 1
M ′u −M ′

ℓ
−p′′′

�

×
�

1 1 K
−p p′ Q

��

1 1 K ′

−p′′ p′′′ Q

�

, (1.15)

where the operator:
�

j1 j2 j3
m1 m2 m3

�

stands for the Wigner 3j symbol (e.g. Landi Degl’Innocenti and Landolfi, 2004,
chap. 2). It should be noted that CKK ′QMuM ′uMℓM

′
ℓ

depends only on the atomic
system under consideration and not on the spatial point, frequency, and direction
of the radiation. Therefore, this quantity can be easily pre-calculated and stored
in a table.

Recalling that the Wigner 3j symbols vanish if the sum of the elements of
the second row is different from zero, it can be seen that the indices p, p′, p′′,
and p′′′, which can take values -1, 0, and +1, guarantee that the selection rule
for the magnetic quantum numbers |Mu −Mℓ| ≤ 1 is satisfied. In the numerical
algorithm, this selection rule can be taken into account in the loops over the
magnetic quantum numbers (see Algorithm 1). If this is done, then the sum over
p, p′, p′′, and p′′′ becomes redundant, and the values of these indices can be fixed
a priori: p = Mu − Mℓ, p′ = M ′u − Mℓ, p′′ = Mu − M ′

ℓ
, and p′′′ = M ′u − M ′

ℓ
. Using

Algorithm 1 it can be seen that, for example, in the case of Mg II k 2795 Å and
Sr II 4078 Å lines originating from transition Ju = 3/2↔ Jℓ = 1/2 there are 26
combinations of magnetic quantum numbers, while in the case of Ca I 4227 Å
and Sr I 4607 Å lines with Ju = 1↔ Jℓ = 0 the number of combinations is 9.
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Algorithm 1: Algorithm for the selection of the sets of magnetic quan-
tum numbers contributing to RII, given Ju and Jℓ.

1 Function MII(Ju, Jℓ):
2 for Mu = −Ju . . . Ju do
3 for Mℓ = −Jℓ . . . Jℓ do
4 if |Mu −Mℓ|> 1 then
5 Continue

6 for M ′u = −Ju . . . Ju do
7 if

�

�M ′u −Mℓ
�

�> 1 then
8 Continue

9 for M ′
ℓ
= −Jℓ . . . Jℓ do

10 if
�

�M ′
ℓ
−Mu

�

�> 1 then
11 Continue

12 if
�

�M ′
ℓ
−M ′u

�

�> 1 then
13 Continue

14 Yield Mu, M ′u, Mℓ, M ′
ℓ

Finally the function:

W : C −→ C

W (z) = e−z2
erfc (−iz)

W (x + i y) = V (y, x) + i L (y, x)

(1.16)

is the Faddeeva function (a.k.a. complex error function, or Kramp’s function)
(e.g., Faddeeva and Terent’ev, 1961; Poppe and Wijers, 1990; Landi Degl’In-
nocenti and Landolfi, 2004), where erfc (·) is the complementary error function.
The real part of W (·) is the Voigt profile V (·, ·), which is defined as the convolu-
tion between a Gaussian g (·) and a Lorentzian distribution L(y) (·), i.e.

V (y, x) =
�

g ∗L(y)
�

(x)

=
y
π

∫

R
e−t2 1

(x − t)2 + y2
dt

(1.17)

and the imaginary part is the associated dispersion profile L (·, ·)which is defined
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as a convolution between a Gaussian and the profile F(y) (·), i.e.,

L(y, x) =
�

g ∗F(y)
�

(x)

=
1
π

∫

R
e−t2 x − t

(x − t)2 + y2
dt,

(1.18)

where:
g (x) = e−x2

L(y) (x) =
y

π (x2 + y2)

F(y) (x) =
x

π (x2 + y2)
.

(1.19)

Hereafter, the Faddeeva function will be represented with the following notation:

W (y, x) =W (y + i x) . (1.20)

The quantity a appearing in the first argument of the Faddeeva function in Eq. (1.13)
is the damping parameter (e.g., Mihalas, 1978), which only depends on the spa-
tial point. The terms uMℓM

′
ℓ
, uM ′uMℓ , uM ′uM ′

ℓ
, uMuMℓ and uMuM ′

ℓ
, which appear in the

second argument of the Faddeeva function, are shifts in reduced frequency due to
the possible presence of a magnetic field. They depend on the magnetic quantum
numbers and the intensity of the magnetic field B, i.e.

uMuMℓ =
νL (guMu − gℓMℓ)

∆νD

, (1.21)

where gu and gℓ are the Landé factors of the upper and lower levels, respectively
(Alsina Ballester et al., 2017), and the Larmor frequency is given by:

νL =
e ||B||

4πmec
, (1.22)

where e is the elementary charge, me is the electron mass, and c is the speed of
light in vacuum.

Limit cases of RII,KK ′

Q

As can be seen in the definition, the function R
II,KK ′

Q of (1.13)) is defined for
scattering angles Θ in the open interval (0,π). Below we provide the analytical
forms that it assumes in the limit cases of Θ = 0 (forward scattering) and Θ = π
(backward scattering).
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In chapter 7, where a series of numerical applications will be reported, one of
the most noticeable results concerns the so-called forward scattering Hanle effect
(see Trujillo Bueno, 2001) in strong chromospheric lines, such as Ca I 4227 Å and
Sr II 4078 Å. In the modeling of this effect, the role of the limit cases and their
correct numerical treatment is fundamental.

Limit case of RII,KK ′

Q for Θ = π

In the case of Θ = π the R
III,KK ′

Q function (1.13) assumes the following analytical
form:

R
II,KK ′

Q

�

u′, u,Θ = π
�

=
ΓR

ΓR + ΓI + ΓE + 2πiνL guQ

∑

{MuM ′uMℓM
′
ℓ}
CKK ′QMuM ′uMℓM

′
ℓ

×
1

2
p
π

exp
�

−y2
�

×
1
2

�

Φ
�

a, u+ uM ′uM ′
ℓ
− y

�

+Φ
�

a, u+ uMuM ′
ℓ
− y

��

(1.23)
where the quantity y is:

y =
u− u′ + uMℓM

′
ℓ

2
,

and the Φ (·, ·) function is defined as:

Φ : R2 −→ C

Φ(a, x) =
a

π(x2 + a2)
+

i x
π(x2 + a2)

,

where the real part of Φ is the Lorentzian distribution and the imaginary part is
the associated dispersion function.

As it will be discussed in the next chapter, the numerical integration over u′

(see Eq. (1.4)) in this limit case is far from trivial due to the properties of the
integrand (see Sect. 2.4).
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Limit case of RII,KK ′

Q for Θ = 0

In the case of Θ = 0 the function R
II,KK ′

Q converges to the analytical form defined
as follows:

R
II,KK ′

Q

�

u′, u,Θ = 0
�

=
ΓR

ΓR + ΓI + ΓE + 2πiνL guQ
∑

{MuM ′uMℓM
′
ℓ}
CKK ′QMuM ′uMℓM

′
ℓ

1
2
p
π

�

W
�

a, u′ + uM ′uMℓ

�

+W
�

a, u′ + uMuMℓ

�

�

δ
�

u′ − u− uMℓM
′
ℓ

�

,
(1.24)

where δ (·) is the Dirac delta function. The analytical form of Equation (1.24)
allows the integral (1.4) to u′ to be solved analytically by applying the sifting
property of the Dirac delta function. Considering that the function in (1.24) does
not depend on the scattering angle (Θ), in order to solve the scattering integral
in Eq. (1.4), it is possible to write integral over u′ of the innermost component
of the above equation as follows:

A=

∫

R
du′

�

W
�

a, u′ + uM ′uMℓ

�

+W
�

a, u′ + uMuMℓ

�

�

δ
�

u′ − u− uMℓM
′
ℓ

�

I
�

u′,Ω′
�

.

By using the sifting property of the Dirac delta function, it can easily be solved
analytically, i.e.

A=
�

W
�

a, u+ uMℓM
′
ℓ
+ uM ′uMℓ

�

+W
�

a, u+ uMℓM
′
ℓ
+ uMuMℓ

��

I
�

u+ uMℓM
′
ℓ
,Ω′
�

.
(1.25)

We can thus conclude that for this limit case the solution of the integral over the
incoming reduced frequencies u′ assumes an analytical form, and consequently,
its numerical calculation is simple and fast, since to solve it only two evaluations
of the Faddeeva function and an interpolation of the incident radiation field are
needed (see also Equation (1.4)). For this reason, we will not further discuss this
case in this document.



21 1.4 Mathematical formulation

1.4.5 The RIII redistribution matrix

The expression of the RIII redistribution matrix in the observer’s frame is given by

RIII : R×R2 ×R×R2 −→ R4×4

RIII
�

u′,Ω′, u,Ω
�

=
2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

R
III,KK ′

Q

�

u′,Ω′, u,Ω
�

PKK ′

Q

�

Ω′,Ω
�

,
(1.26)

The analytical expression of the R
III,KK ′

Q function is

R
III,KK ′

Q : R×R2 ×R×R2 −→ C

R
III,KK ′

Q

�

u′,Ω′, u,Ω
�

=
2Ju
∑

K ′′=|Q|

�

βK ′′

Q −αQ

�

×
∑

Mu,M ′u

∑

Mℓ

∑

q,q′
BK ′′K ′QMuM ′uMℓqq′

∑

M ′′u ,M ′′′u

∑

M ′
ℓ

∑

q′′,q′′′
BK ′′KQM ′′u M ′′′u M ′

ℓ
q′′q′′′

×
1
4

�

I(MuMℓ),(M ′′u M ′
ℓ
)

�

u′, u,Θ
�

Ω,Ω′
��

+ I(MuMℓ),(M ′′′u M ′
ℓ
)

�

u′, u,Θ
�

Ω,Ω′
��

+ I(M ′uMℓ),(M ′′u M ′
ℓ
)

�

u′, u,Θ
�

Ω,Ω′
��

+ I(M ′uMℓ),(M ′′′u M ′
ℓ
)

�

u′, u,Θ
�

Ω,Ω′
��

�

,

(1.27)

where Θ is the scattering angle (1.11). The quantity (βK
Q −αQ) is the branching

ratio for RIII. The quantity αQ has already been defined in Eq. (1.14), while βK
Q is

defined as

βK
Q (r) =

ΓR
ΓR + ΓI(r) + D(K)(r) + 2πiνL(r)guQ

.

where D(K) are the depolarizing rates due to elastic collisions (for more de-
tails, see Chapter 7 of Landi Degl’Innocenti and Landolfi (2004). The quantity
BKK ′QMuM ′uMℓqq′ ∈ R appearing is given by

BKK ′QMuM ′uMℓqq′ = (−1)1+Ju−Mu+q′
Æ

3(2Ju + 1)(2K + 1)(2K ′ + 1)

×
�

Ju Jℓ 1
−Mu Mℓ −q

��

Ju Jℓ 1
−M ′u Mℓ −q′

�

×
�

Ju Ju K
M ′u −Mu −Q

��

1 1 K ′

q −q′ −Q

�

. (1.28)

The indices q and q′ can take the values -1, 0, and +1 and, recalling that a
Wigner 3j symbol is zero if the sum of the arguments of the lower row is not
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zero, they guarantee that the selection rule for the magnetic quantum numbers
|Mu − Mℓ| ≤ 1 is satisfied. In the numerical algorithm, this selection rule can
be taken into account in the loops over the magnetic quantum numbers (see
Algorithm 2). If this is done, the sum over q and q′ (as well as over q′′ and q′′′)
becomes redundant, and these indices can be fixed a priori: q = Mℓ − Mu and
q′ = Mℓ −M ′u.

Algorithm 2: Algorithm for the calculation of the magnetic quantum
numbers for the RIII given Ju and Jℓ.

1 Function MIII(Ju, Jℓ):
2 for Mu = −Ju . . . Ju do
3 for Mℓ = −Jℓ . . . Jℓ do
4 if |Mu −Mℓ|> 1 then
5 Continue

6 for M ′u = −Ju . . . Ju do
7 if

�

�M ′u −Mℓ
�

�> 1 then
8 Continue

9 Yield Mu, M ′u, Mℓ

The quantity
I(MuMℓ),(M ′uM ′

ℓ
) : R×R× [0,π] −→ C (1.29)

is given by

• If Ω′ ̸= Ω,−Ω, (Θ ∈ (0,π)):

I(MuMℓ),(M ′uM ′
ℓ
)(u
′, u,Θ) =

1
π2 sinΘ

∫

dy exp
�

−y2
�

×W
�

a
sinΘ

,
u+ uMuMℓ + y cosΘ

sinΘ

�

×ϕ
�

a, u′ + uM ′uM ′
ℓ
+ y

�

. (1.30)

• If Ω′ = Ω (backward scattering, Θ = π):

I(MuMℓ),(M ′uM ′
ℓ
)(u
′, u,Θ) =

1
π5/2

∫

dy exp
�

−y2
�

×ϕ
�

a, u+ uMuMℓ + y
�

×ϕ
�

a, u′ + uM ′uM ′
ℓ
+ y

�

. (1.31)
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• If Ω′ = −Ω (forward scattering, Θ = 0):

I(MuMℓ),(M ′uM ′
ℓ
)(u
′, u,Θ) =

1
π5/2

∫

dy exp
�

−y2
�

×ϕ
�

a, u+ uMuMℓ − y
�

×ϕ
�

a, u′ + uM ′uM ′
ℓ
+ y

�

. (1.32)

where Θ is the scattering angle (Eq. (1.11)), where ϕ(y, x) = 1
y−ix , and (uMuMℓ)

are the magnetic shift (see Eq. (1.21)). In the notation of Eq. (1.27), a bar over
the first subscript indicates that the second term of the integrand is a complex
conjugate and, similarly, a bar over the second subscript indicates that the third
term is a complex conjugate.

We must emphasize that the integral over y , which appears in the definitions
of I(MuMℓ),(M ′uM ′

ℓ
), introduces a fourth dimension of the scattering integral (see also

(1.4)), which makes its numerical computation very challenging. Indeed, the
time complexity to compute ϵ ℓ by including RIII in its angle-dependent formula-
tion is O

�

NΩ
2Nν

3
�

.

1.4.6 The RIII redistribution matrix under the CRD assumption.

The exact (angle-depend) expression of the RIII redistribution matrix presented
in the previous section is very challenging to be treated numerically (see also
Chapter 6). For this reason, in numerical applications, the RIII matrix is usually
considered by applying the simplifying assumption of complete frequency redistri-
bution (CRD) in the observer fram.

This implies that the joint probability of absorbing radiation with a given fre-
quency ν′ and remitting radiation with frequency ν is given by the product of
two independent profiles. This simplification allows numerous algebraic manip-
ulations, leading to fast computational algorithms (see Chapter 6. for a detailed
discussion).

The function R
III,KK ′

Q in the complete frequency redistribution (CRD) formula-
tion is given by (see also Eq. (49) of (Bommier, 1997b))

Using the formalism of irreducible spherical tensors for polarimetry, the RIII−CRD

matrix under the assumption of CRD in the observer’s frame, hereafter indicated
as RIII−CRD, can be writen as

RIII−CRD
�

u′,Ω′, u,Ω
�

=
2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

R
III−CRD,KK ′

Q

�

u′, u
�

PKK ′

Q

�

Ω′,Ω
�

. (1.33)
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The function R
III−CRD,KK ′

Q is given by (see Eq. (49) of Bommier, 1997b)

R
III−CRD,KK ′

Q

�

u′, u
�

=
2Ju
∑

K ′′=|Q|

�

βK ′′

Q −αQ

�

ΦK ′′K ′

Q (u) ΦK ′′K
Q

�

u′
�

, (1.34)

where the quantities Φ are the so-called generalized profiles (see Eq. (A.42) for
their definition).

The computational complexity of the exact expression of RIII, and the suitabil-
ity of the RIII−CRD approximation are analyzed in detail in Chapter 6.

1.4.7 The limit of CRD

The limit of CRD consists in assuming that in a scattering process there is no cor-
relation between the frequencies of the incoming and scattered radiation (e.g.
Mihalas, 1978; Landi Degl’Innocenti and Landolfi, 2004). This is generally a
good approximation in dense plasmas, where collisions completely relax any co-
herence in the scattering processes. Indeed, the limit of CRD is usually suitable
to model the intensity and polarization of photospheric lines (e.g., the Sr I line at
4607 Å, see Chapter 7), while it is not adequate for strong resonance lines form-
ing in the chromosphere, for which coherent scattering and PRD effects are dom-
inant.3 Under the assumption of CRD, the RT problems becomes much lighter
from a computational point of view, and fast algorithms (analogous to the one
used to compute RIII−CRD) can be applied (see Chapter 6 for further discussions).

We consider the line emissivity in the limit of CRD as derived within the
framework of the theory of polarization of Landi Degl’Innocenti and Landolfi
(2004). Although that theory is not based on the redistribution matrix formal-
ism, in order to better highlight the differences with the PRD case, hereafter we
write their CRD line emissivity in terms of a scattering integral (1.4), introducing
a suitable redistribution matrix, RCRD. From the expressions of Chapt. 10 of Landi
Degl’Innocenti and Landolfi (2004), we have

RCRD
�

u′,Ω′, u,Ω
�

=
2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

R
CRD,KK ′

Q

�

u′,Ω′, u,Ω
�

PKK ′

Q

�

Ω′,Ω
�

, (1.35)

3It should be observed that there are also chromospheric lines, such as Ca II 8542 Å or He I

10830 Å, which are not particularly strong in the solar spectrum, and can be correctly modeled
under the assumption of CRD.
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The redistribution function R
CRD,KK ′

Q is given by

R
CRD,KK ′

Q : R×R2 ×R×R2 −→ C

R
CRD,KK ′

Q

�

u′, u
�

= βK
Q Φ

KK ′

Q (u)w(K)JuJℓ
(−1)Qφ

�

u′
�

,
(1.36)

where βK ′′
Q is defined in Eq. (A.4) and ΦKK ′

Q are the generalized profiles (A.42).

The quantity w(K)JuJℓ
is given by

w(K)JuJℓ
= (−1)Q(−1)1+Jℓ+Ju

Æ

3(2Ju + 1)

�

1 1 K
Ju ju Jℓ

�

where the operator
�

j1 j2 j3
j4 j5 j6

�

is the Wigner’s 6J symbol (Landi Degl’Innocenti and Landolfi, 2004, Chap. 2).
Finally the profile φ is:

φ
�

u′,Ω′
�

=
1

p
π∆νD

V
�

a, u′
�

1.4.8 Normalization

In numerical applications, it is important that the values of the redistribution ma-
trix computed to evaluate the scattering integral are suitably normalized so that
there are no spurious sources or sinks of photons (e.g., Adams et al., 1971). This
normalization can be performed through Kirchhoff’s law, which states that at
thermodynamic equilibrium the ratio between the emission and absorption coef-
ficients must be equal to the Planck function (in the Wien limit when stimulated
emission is neglected, as in this work).

Generalizing Kirchhoff’s law to the polarized case (the polarization being due
to the Zeeman effect produced by a magnetic field), we must have

ϵ̂ℓ,sc
i (ν,Ω) = (1− ε)WT (ν)ηi(ν) , (1.37)

where WT is the Planck function in the Wien limit, ϵ̂ℓ,sc
i is the line scattering

contribution to the emissivity, calculated at the thermodynamic equilibrium (i.e.,
assuming an isotropic and unpolarized incident radiation field equal to WT ), and
ε= ΓI/(ΓR+ ΓI) is the branching ratio between scattering and thermal processes.
Recalling Eq. (1.4), we have:

ϵ̂ℓ,sc
i (ν,Ω) = kL

∫

dν′
∮

dΩ′

4π

3
∑

j=0

R(ν′,Ω′,ν,Ω)i j δi0 WT (ν
′) . (1.38)
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To normalize the redistribution matrix we thus divide it by the factor

Ci(ν,Ω) =
ϵ̂ℓ,sc

i (ν,Ω)
(1− ε)WT (ν)ηi(ν)

, (1.39)

where ϵ̂ℓ,sc
i is calculated with the proposed numerical algorithm. In general, the

main source of inaccuracy is due to the finite frequency interval considered for
the quadrature over ν′ in Eq. (1.4).

1.5 Impact of bulk velocity

In the previous sections, we considered the expression of the emission coeffi-
cient without considering a relevant variable of the problem, the bulk velocity vb,
which describes the flow of the atmospheric plasma. The bulk velocity affects
the expression of the emission coefficients in the observer’s reference frame by
Doppler shifting the frequencies of the incoming and outgoing radiation fields in
the redistribution matrix as follows:

ϵ (u,Ω) = kL

∫

du′
∮

dΩ′

4π

�

R
�

u′ + u′
ζ
, Ω′, u+ uζ, Ω

��

I
�

u′, Ω′
�

, (1.40)

where the frequency shifts u′
ζ

and uζ which depend on vb and Ω′ and on Ω,
respectively, are given by:

uζ = wT (vb ·Ω)

= wT





vb





 cos (ζ)
(1.41)

and where
uζ = wT

�

vb ·Ω′
�

= wT





vb





 cos
�

ζ′
� (1.42)

where wT =
�Ç

2Kb T
Ma
+ v2

t

�−1
and ζ and ζ′ are the angles between the direction of

the bulk velocity vb and the direction of the outgoing Ω and incoming Ω′ beams,
respectively.

The angle-dependent terms u′
ζ

and uζ prevent the use of the fast algorithms
described in section 4.1. This problem can be overcome by considering the
comoving reference frame, i.e. the reference frame in which the bulk velocity
of the plasma is zero. In the comoving reference frame, the expression of the
emission coefficients is

ϵcom (u,Ω) = kL

∫

du′
∮

dΩ′

4π

�

R
�

u′, Ω′, u, Ω
��

I
�

u′ + u′
ζ
, Ω′

�

, (1.43)
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where I is expressed in the observer’s frame. In this way, the redistribution ma-
trix does not depend on the Doppler shifts induced by the bulk velocity. The
transformation of the emission coefficients from the comoving reference frame
to the observer reference frame is given by

ϵ (u,Ω) = ϵcom

�

u− uζ,Ω
�

. (1.44)

This calculation strategy requires shifting the incident radiation field in Eq. (1.43),
and then shifting the resulting emission coefficients through Eq. (1.44). In a nu-
merical application, these two steps can be performed by using an interpolation
(e.g., a cubic spline). As it will be shown in Sect. 4.1, the computational cost
of these interpolations is more than compensated by the fast algorithms that can
be implemented when the redistribution matrix does not depend on the Doppler
shifts.

1.6 Start of the project

At the beginning of the project, we had available a prototype code for calculating
the quantities R

II,KK ′

Q of Eq. (1.13). This code was based on square gird for the
frequencies that is a grid with the same nodes on ν′ and ν. The approach based
on a square frequency grid immediately revealed to be completely unsuitable be-
cause the typical grid of the problem for the frequencies of the emitted radiation
(i.e., a grid that suitably samples the considered spectral line) does not allow a
proper sampling of the u subdomains in which the function (1.13) is relevant. As
a second attempt, we implemented a quadrature method inspired to the one that
was successfully used to evaluate the same integral, but considering the redistri-
bution matrix RII under the so-called angle-averaged (AA) approximation. Also
in this case, the results were not satisfactory, as can be seen in Fig. 1.5, where
the profiles obtained with that method (lower panels) are compared to those cal-
culated with the most recent version of the code (upper panels). The inaccuracy
of the initial method was mainly because it did not properly consider the strong
dependence of the function (1.13) on the scattering angle Θ (see Sect. 2.3), with
the case Θ = π being particularly critical (see Sect. 2.4). It should also be noted
that the computation of these profiles (at a single spatial point and for a sin-
gle direction) initially required several minutes, while the most recent algorithm
(see Sect. 6) needs less than a second. Due to the lack of scientific literature
discussing methods for calculating the redistribution matrix (1.12) and integrals
(1.4), without considering the AA approximation, we decided to develop a new
original strategy.



28 1.7 Numerical solution of the RT equation

Figure 1.5. Examples of the profiles of the emission coefficient ϵI (left panels)
and of the ratio ϵQ/ϵI (right panels), calculated with the most recent version
of the algorithm (upper panels) and with the prototype code, implementing a
quadrature strategy similar to the one used when considering the AA approxi-
mation (lower panels).

1.7 Numerical solution of the RT equation

To reliably test the algorithm that we have developed during this thesis to cal-
culate the contribution of RII to the emission coefficients (see Chapter 4), we
developed a set of routines to evaluate the other contributions to the emissiv-
ity (see Sect. 1.4.2) and (see Sect. 1.4.2) and the elements of the propagation
matrix (see Sect. 1.4.1).

Subsequently, we implemented a method to solve the RT equation (1.1) along
a given direction Ω (this procedure is generally referred to as formal solution).
For this purpose, we considered formal solvers belonging to the Diagonal Element
Lambda Operators (DELO) family (e.g., Rees et al., 1989; Janett et al., 2017).
These commonly used solvers are exponential methods for the numerical solution
of ordinary differential equations, which rely on the conversion of the spatial
scale to the optical depth scale (e.g., Janett et al., 2017).

The optical depth τ is a frequency-dependent metric defined by the following
differential equation:

dτ (s,Ω,ν) = −ηI(r,Ω,ν)ds , (1.45)

where ηI is the opacity of the medium (i.e. the diagonal element of the propa-
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gation matrix, see Eq. (1.2)), and s the spatial coordinate along the considered
propagation direction Ω. It can be seen that the optical depth is defined in the
opposite direction than the propagation of the beam, which reflects the point of
view of the observer.

The total cumulative optical depth ∆τ from an observer at coordinate r0 to
a point r1 following the direction of the beam Ω is given by the solution of the
above differential equation, i.e:

∆τ(r0, r1, ν) = −
∫ 1

0

ηI(r0 + t (r1 − r0), Ω,ν)dt , (1.46)

where t is the integration variable. For more details on the optical depth see also
Landi Degl’Innocenti (2007); Janett and Paganini (2018).

By applying the optical depth scale, the radiative transfer equation (1.1) takes
the form:

�

d
dτν
− 1

�

I (τν) = −K (τν) I (τν) + ε̃ (τν) , (1.47)

where 1 ∈ R4×4 is the identity matrix, ε̃ = ϵ/ηI is the modified emission vector,
and K= K/ηI−1 is the modified propagation matrix (e.g., Landi Degl’Innocenti,
2007; Janett et al., 2017).

In the first experiments, we considered the Ca I 4227 Å line, and we used the
one-dimensional (1D) semi-empirical solar atmospheric model C of Fontenla
et al. (1993, herafter FAL-C). In 1D models, the physical quantities are assumed
to be horizontally invariant, and the atmosphere is discretized only in altitude.
We solved the RT equation applying the DELO linear formal solver (e.g., Janett
et al., 2017), using as incoming radiation field the one calculated with RH (Uiten-
broek, 2001), accounting for PRD effects under the angle-averaged (AA) simpli-
fying approximation.
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Figure 1.6. Intensity (left panel) and Q/I (right panel) profiles of the Ca I line at
4227 Å, calculated in model C of Fontenla et al. (1993), for a line of sight with
µ= cosθ = 0.1, with θ the angle between the local vertical and the direction of
the considered radiation. No magnetic fields or bulk velocities are considered.
The profiles calculated after one formal solution accounting for AD PRD effects
(black line) are compared to those calculated under the AA approximation (green
line). The plot reported here is the result of the first successful application of the
algorithm for calculating the emissivity including PRD effects in the most general
angle-dependent formulation.

The results of these first applications were very interesting, as they high-
lighted significant differences between PRD calculations carried out under the
AA approximation and in the general angle-dependent (AD) case. This can be
clearly seen in Fig. 1.6, which shows the intensity and Q/I profiles of the Ca I line
at 4227 Å, obtained after performing a formal solution along a given direction
in the atmospheric model mentioned above. The figure shows that the central
peak of the Q/I profile obtained under the AA approximation has a throat in
the core, which is not found in the observations. However, the peak obtained
when the AD-PRD effects are taken into account is sharper and higher and is
much better in agreement with the observed profiles. This result highlights the
importance of including AD PRD effects in calculations (also in 1D) and moti-
vated an in-depth investigation on this spectral line, which has been published
in Janett et al. (2021a). A result from that investigation is reported in Fig. 1.7.
More results highlighting the differences between AA and AD PRD calculations
in different spectral lines are presented in Chapter 7.
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Figure 1.7. Stokes parameters of the Ca I line at 4227 A, calculated in the 1D
semi-empirical model C of Fontenla et al. (1993), for an emergent direction with
µ = cos(θ ) = 0.033 (left column), and µ = 0.966 (right column). The plotted
profiles are obtained in the absence of magnetic fields (green curves) and in
the presence of magnetic fields with θB = π/2 and χB = π/4 of 25 G (blue
curves) and 50 G (red curves). The RT equation is solved by applying the DELO-
linear formal solver, while the whole RT problem is solved via Krylov iterations
(Benedusi et al., 2022). A spherical grid with 96 directions and a frequency grid
with 99 nodes have been considered. Taking into account that the atmospheric
model has 70 discrete altitudes, the total number of d.o.f. is 2661120.
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1.8 Solution strategy for the non-LTE RT problem

The algorithm for the computation of the emissivity accounting for angle-dependent
PRD effects has then been implemented in both 1D and 3D codes for the solution
of the full non-LTE RT problem for polarized radiation. In this section, we briefly
describe the solution strategy that has been developed by our group during the
last few years and that is implemented in such codes (see also Benedusi et al.
(2022); Benedusi et al. (2023)).

The following subsection are extracted from the paper:
Assessment of the CRD approximation for the observer’s frame RIII redistribu-
tion matrix Riva et al. (2023)

1.8.1 Linearization

The RT problem consists in finding a self-consistent solution for the RT equation
(1.1) and the equation for the scattering contribution to the emissivity (1.4).
This problem is in general non-linear because of the factor kL appearing both
in the elements of the propagation matrix and in the emission coefficients. This
factor is proportional to the population of the lower level, which in turn depends
non-linearly on the incident radiation field through the statistical equilibrium
equations.

We linearize the problem with respect to I, by fixing a-priori the population
of the lower level, and thus kL. In such a scenario, whose suitability is discussed
in Benedusi et al. (2021), the propagation matrix is independent of I and the
emission coefficients depend on it linearly through the scattering integral (1.4).

The population of the lower level can be taken either from the atmospheric
model (if provided) or from independent RT calculations. Since the population
of ground (or metastable) levels is expected to be marginally impacted by the
polarization of the radiation field, the latter calculations can be carried out with
available RT codes that solve the non-linear non-LTE RT problem possibly ne-
glecting polarization and magnetic fields. It must be observed that such codes
generally allow considering multi-level atomic models, and thus provide accu-
rate estimates of the lower level population. Once the population of the lower
level has been pre-computed, we keep it fixed and we solve the linear non-LTE
RT problem inlcuding polarization and magnetic fields.



33 1.8 Solution strategy for the non-LTE RT problem

1.8.2 Numerical method for the RT problem

Following Janett et al. (2021b); Benedusi et al. (2021, 2022), we first present
an algebraic formulation of the considered linearized RT problem for polarized
radiation. Starting from this formulation, we then apply a parallel solution strat-
egy, based on Krylov iterative methods with physics-based preconditioning. This
strategy allows us to routinely solve the RT problem for polarized radiation in
semiempirical models of the solar atmosphere, considering the exact expression
of both RII and RIII redistribution matrices. The same approach, coupled with a
new domain decomposition technique, has recently been generalized to the 3D
case Benedusi et al. (2023).

As previously pointed out (see Sect. 1.4.1), the radiation field and the other
quantities entering the RT problem are in general functions of three continuous
variables: the spatial point r, the propagation direction Ω, and the frequency ν.
These variables are discretized by introducing a spatial grid P = {rk}

Np

k=1, which is
provided by the considered solar atmosphere model, an angular grid S = {Ωi}

NΩ
i=1,

where the angular nodes are those of the spherical quadrature chosen to evalu-
ate the angular integral of eq. (1.4) (see Section 3.4), and the frequency grid
U =

�

ν j

	Nν
j=1

chosen to sample the spectral line of interest. Since the emission
coefficient is calculated locally, hereafter we will consider a single point of the
spatial grid. At any spatial point rk the radiation field (i.e. the four Stokes pa-
rameters) is stored in a three-dimensional grid G, given by the Cartesian product
between the frequency grid U and the spherical grid S, that is, G = U × S. The
emission vector must also be calculated at the nodes of the grid G =

�

Ωi,ν j

	NΩ,Nν
i, j=1

.
As discussed previously, the emission vector will be calculated in terms of reduced
frequencies ui instead of frequencies νi (see Eq. (1.7) and Sect. 4.1).

Normally we discretize the inclination through two Gauss-Legendre grids
with Nθ/2 points each, one for µ = cos(θ ) ∈ (−1, 0), and one for µ ∈ (0,1)
(see also Sec. 3.4). For the azimuth, we chose a grid of Nχ equidistant points.
The angular quadrature is then the spherical Cartesian-product (e.g. Davis and
Rabinowitz, 2007) of the Gauss-Legendre rule for the inclination and the trape-
zoidal rule for the azimuth. This approach is commonly used in RT applications
and allows the implementation of fast algorithms.

In a 1D (plane-parallel) setting, the spatial coordinate r = (x , y, z) can be
replaced by the vertical coordinate z ∈ [zmin, zmax], and the RT equation (1.1)
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can be rewritten as

cos (θ )
d
dz

Ii(z,θ ,χ,ν) = −
4
∑

j=1

Ki j(z,θ ,χ,ν)I j(z,θ ,χ,ν) (1.48)

+ ϵi(z,θ ,χ,ν) .

The spatial grid {zk}
Ns
k=1 is provided by the considered atmospheric model. More-

over, we assume that the radiation entering the atmosphere from the lower
boundary is isotropic, unpolarized, and equal to the Planck function and that no
radiation is entering from the upper boundary. Equation (1.48) is thus equipped
with the following boundary conditions:

I (zmin,θ ,χ,ν) = [BP (ν, T (zmin)) , 0, 0, 0]T θ ∈ [0,π/2), ∀χ, ∀ν ,

I (zmax,θ ,χ,ν) = 0 θ ∈ (π/2,π], ∀χ, ∀ν ,

where BP is the Planck function at the effective temperature T at zmin. Given the
knowledge of elements of the propagation matrix and the emission coefficients
at all height points {zk}

Ns
k=1, for a given direction (θl ,χm) and frequency νn, the

RT equation (1.1) can be numerically solved along that direction and at that
frequency by applying a suitable integrator. In this work, we use the L-stable
DELO-linear method combined with a linear conversion to optical depth (e.g.
Janett et al., 2017). An analysis of the stability properties of this method can be
found in Janett and Paganini (2018).

Being N = 4NsNθNχNν the total number of unknowns, we introduce the col-
location vectors I ∈ RN and ε ∈ RN , which contain the numerical approximations
at all nodes for the Stokes parameters and the emission vector, respectively. Given
ε, the solution of all discretized RT equations (1.48) can be written as

I = Λε+ t , (1.49)

where Λ : RN → RN is the transfer operator, which encodes the formal solver and
the propagation matrix, and t ∈ RN is a vector encoding the boundary conditions.
Similarly, given I, the discrete computation of the emission coefficients can be
written as

ε= εsc + εth = ΣI+ εth , (1.50)

where εsc and εth encode the scattering and thermal contributions (including
both line and continuum processes), respectively, as described in Sect. 1.4.2.
The scattering operator Σ : RN → RN encodes the numerical evaluation of the
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scattering integral (1.4) and thus depends on the chosen numerical quadratures.
In general, the operator Σ is given by the sum of different components, namely,

Σ= ΣII +ΣIII +Σc (1.51)

where ΣII and ΣIII encode the contributions of RII and RIII, respectively, and Σc

the contribution of the continuum. The vector εth ∈ RN encodes the thermal
emissivity.

Under the assumption that kL is known a priori (see Section 1.8.1), the op-
erators Λ and Σ are linear with respect to I. Combining (1.49) and (1.50), the
whole discrete RT problem can be formulated as a linear system of size N with
unknown I, that is,

(Id −ΛΣ)I = Λεth + t , (1.52)

where Id ∈ RN×N is the identity matrix. The right hand-side vector Λεth + t can
be computed a priori by solving (1.48) with thermal contributions only (i.e., by
performing a single formal solution with εsc = 0). The action of the matrices Λ,
Σ, and Id−ΛΣ can be encoded in a matrix-free form (see Benedusi et al., 2022).

We solve the linear system (1.52) by applying a matrix-free, preconditioned
GMRES method. Preconditioning is performed by describing scattering processes
in the limit of CRD (see Sect. 1.4.7). This corresponds to substituting the oper-
ator ΣII + ΣIII with a new operator ΣCRD that is much cheaper to evaluate. The
explicit expression of ΣCRD for the atomic model considered can be extracted from
Sect. 1.4.7. The reader is referred to Benedusi et al. (2022) for more details on
this solution strategy.
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Figure 1.8. Convergence rate of different methods for solving a linearized non-
LTE RT problem for polarized radiation. The plot reports the residual ||ri||/||b|| as
a function of the iteration step. The reference problem is formulated considering
a 1D atmospheric model extracted from a 3D MHD simulation, including height-
dependent magnetic and bulk velocity fields, with 118 discrete heights (the same
model is used for a series of applications shown in Sect. 6.5). We model the
Sr I 4607 Å line considering 129 frequency nodes. An angular grid with 96
discrete directions is used. The blue line refers to the preconditioned Krylov
method mentioned in this section.



Chapter 2

Analytical study of the RII

redistribution matrix

2.1 Introduction to the numerical integration of the
RII contribution to the emission coefficient

The first main goal of this Ph.D. work is to develop reliable and efficient numer-
ical methods to evaluate RII and calculate the quantity:

ϵ ℓ,I I (u,Ω) = kL

∫

R
du′

∮

dΩ′

4π
RII
�

Ω′, u′, Ω, u
�

I
�

u′,Ω′
�

. (2.1)

The numerical integration of Eq. (2.1) is a task that involves various difficulties.
The first main problem is that the computation of the function R

II,KK ′

Q (1.13) (and
consequently the redistribution matrix (1.12)) requires complex algorithms so
that this single task can saturate the time-to-solution (> 90%) of an application
for solving the whole RT problem (e.g. Benedusi et al., 2022). The second is the
control of the numerical stability of the quadrature routine, which can be ensured
only if all the parameters of the integrands are properly taken into account.

More in detail the four main challenges related to the numerical integration
of the emission coefficient can be summarized as follows:

1. The computation of the Faddeeva function needs complex and slowly con-
verging numerical procedures (e.g. Oeftiger et al., 2016).

2. The subdomain of R3 where the function R
II,KK ′

Q (1.13) is relevant is non-
uniform and is strongly influenced by its parameters and arguments.

37



38 2.2 Computational time complexity

3. The limit case of Θ = π is critical in the sense that a failure of its numerical
integration can lead to a failure of the entire computation of the emission
coefficient. Moreover, it is difficult to define an accurate quadrature rule
for this case.

4. A very large number of evaluations of the redistribution matrix RII are re-
quired to solve the whole RT problem (see also Chapter 5).

2.2 Computational time complexity

We consider an atomic model for which there are NM combinations of the mag-
netic quantum numbers (i.e. NM elements in the sum over Mu, M ′u, Mℓ and M ′

ℓ

appearing in Eq. (1.13), generated through Algorithm 1) and NT combinations
of the tensorial indices (i.e. NT elements in the sum over K , K ′, and Q appear-
ing in Eq. (1.12)). Indicating with Nν and NΩ the number of frequencies and
directions used to discretize the incoming radiation field in one spatial point
(see Section 1.8.2), the time complexity (e.g. Sipser, 1996) for calculating the
emission vector at all outgoing directions and frequencies in one spatial point is
O
�

NΩ
2 Nν

2 NM NT

�

.

As noted previously, the numerical evaluation of the Faddeeva function is par-
ticularly demanding (Oeftiger et al., 2016). Normally, its computation is done
using convergent series or iterative algorithms, where the convergence rate is
generally slow and varies greatly depending on the algorithm and the argument
(e.g. Wells, 1999; Mohankumar and Sen, 2019). For our application, we chose
the method of Johnson (2012), where a hybrid approach (based on different
algorithms) is used, ensuring good performance and accuracy. The time com-
plexity of the evaluation of the Faddeeva function alone in the calculation of the
emission coefficient ϵ ℓ,I I , at one spatial point and at all frequencies and diffused
directions, is of the order of O

�

NΩ
2 Nν

2 NM

�

.

From the above considerations, we can conclude that one of the main ob-
jectives in the development of an algorithm for the computation of the emis-
sion coefficient ϵ ℓ,I I (2.1) is the minimization of the evaluations of the Faddeeva
function. Second, but not least, it is necessary to have an algorithm capable of
controlling the risk of error by switching between different quadrature strate-
gies according to the parameters of the functions, especially in the limit case of
Θ = π.
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2.3 The two main components of RII,KK ′

Q

We first observe that the behavior of the integrands in eq. (2.1) is strongly driven
by the redistribution matrix (1.12) and only slightly by the incoming radiation
field, which is usually well-conditioned and "smooth enough". For this reason, in
order to develop a reliable quadrature method over u′, we first isolated and an-
alyzed the two main functional components of the redistribution function R

II,KK ′

Q
(see Eq. (1.13)), which in the absence of magnetic fields and bulk velocities are
defined as

h(u,Θ,a) : R −→ R>0

h(u,Θ,a) (t) = exp

�

−
�

u− t
2sin (Θ/2)

�2
�

V
�

a
cos (Θ/2)

,
u+ t

2cos (Θ/2)

� (2.2)

g(u,Θ,a) : R −→ R

g(u,Θ,a) (t) = exp

�

−
�

u− t
2 sin (Θ/2)

�2
�

L
�

a
cos (Θ/2)

,
u+ t

2cos (Θ/2)

�

,
(2.3)

where V (·, ·) and L (·, ·) are the Voigt and associated dispersion profiles of the
Faddeeva function, respectively (see Eq. (1.17)). For the three parameters in the
subscript we have

u ∈ R, Θ ∈ (0,π), a ∈ R>0. (2.4)

For simplicity, we will use the notation hβ (·) and gβ (·), where the subscript β
denotes the set of these three parameters, i.e.

β = (a,Θ, u) (2.5)

The following points summarize the most important properties of hβ (·) and gβ (·)
that can be used to design a quadrature strategy:

• The functions are infinitely many times continuously differentiable, i.e. hβ ,
gβ ∈ C∞. Their derivatives never vanish.

• They asymptotically tend to zero at infinity:

lim
t→±∞

hβ (t) = 0, lim
t→±∞

gβ(t) = 0 (2.6)

• As a consequence of the two previous properties, they are bounded.

• The codomain of hβ (·) is R>0, while the codomain of gβ (·) is R.
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• The function gβ (·) has exactly one real root at t = −u ∈ R, its global
maximum and minimum are close to −u.

• No analytical expression for the stationary points is known.

• The global maximum of hβ (·) is close to t∼ u.

Asymptotic behavior of hβ (·) for large values of u

For large values of the parameter u, the function hβ (·) assumes an asymptotic
behavior where the argument of the maximum of hβ (·) asymptotically converges
to u. Therefore, we can conclude that the limit of the argument of the maximum
of hβ (·) subtracted by u tends to zero:

lim
u→±∞

�

argmax
t∈R

�

h(u,Θ,a) (t)
�

(u)− u
�

= 0 (2.7)

When we study how hβ (·) behaves when the parameter |u| > 6, we usually find
that hβ (·) is a function similar to a Gaussian (but not perfectly symmetric) with
a global maximum in a neighborhood of u.

Asymptotic behavior of gβ (·) for large values of u

When the parameter u is large and positive, the function gβ (·) is similar to a
Gaussian (but not perfectly symmetric) with an argument of the maximum that
asymptotically converges to u. Thus, we can conclude that the argument of the
maximum of gβ (·) subtracted by u asymptotically tends to 0 at positive infinity,
i.e.:

lim
u→+∞

�

argmax
t∈R

�

g(u,Θ,a) (t)
�

(u)− u
�

= 0 (2.8)

Whereas for large negative values of u we observe a function similar to a neg-
ative Gaussian (but not perfectly symmetric), where gβ (·) < 0 has a minimum
argument that asymptotically converges to u at negative infinity. Thus, we can
conclude that the argument of the minimum of gβ (·) subtracted by u tends to 0
at negative infinity, i.e.:

lim
u→−∞

�

arg min
t∈R

�

g(u,Θ,a) (t)
�

(u)− u
�

= 0 (2.9)
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Qualitative analysis of the behavior of hβ (·) and gβ (·)

Figure 2.1. Three examples of hβ (·) for four different values u ∈ {0, 0.7, 2, 3}
and at three different values for Θ ∈ {0.05, π/2, 3}.

In figures 2.1 and 2.2 we can see that the behavior of the two functions is strongly
influenced by the values of the parameters Θ and u, while the parameter a has
less influence. In general, we see that if the parameter u is large, they behave
similarly to a Gaussian with an absolute maximum or minimum close to u, re-
gardless of the value of Θ. When the parameter u is smaller than about 8, the
behavior of the two functions is strongly influenced by Θ, and we can distinguish
three main regimes:

• If Θ is close to π we observe sharp peaks induced by the Voigt profile or
the associated dispersion function that tend to be close to t∼ −u.

• If Θ is close to 0 we observe a sharp peak close to t ∼ u induced by the
Gaussian.

• For intermediate values, sufficiently far from 0 and π the two functions
show smooth profiles.
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Figure 2.2. Same as Fig. 2.1 but for the gβ (·) function.

Quadrature methods (for the integration over u′) based on the distinction be-
tween different regimes of the integrands with respect to the subdomains of
u have already been proposed for the angle-averaged case (e.g. Gouttebroze,
1986).

Observing that the two functions converge to zero at infinity (see (2.6)), from
their definition we can conclude that both show an exponential decay. Therefore,
we can say that there are bounded intervals [b, c] and [d, e] within which the
functions hβ and gβ , respectively, are relevant. Consequently, the integrals over
R of hβ (·) and gβ (·) can be approximated with bounded integrals with a minor
error, i.e.:

Ĩh (u,Θ, a) =

∫ c

b

hβ (t)dt≈
∫

R
hβ (t)dt

Ĩg (u,Θ, a) =

∫ e

d

gβ(t)dt≈
∫

R
gβ(t)dt.

(2.10)

Then, it is possible to define a quadrature rule on a bounded integration interval
such that the integration error induced by this simplification is small.
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2.4 Limit case Θ = π

As we have already mentioned, in the case of Θ = π the functions hβ (·) and
gβ (·) converge to two different analytical forms:

hπ
β

: R −→ R

hπ
β
(t) = exp

�

−
�u− t

2

�2� a
π (t2 + a2)

(2.11)

gπ
β

: R −→ R

gπ
β
(t) = exp

�

−
�u− t

2

�2� t
π (t2 + a2)

(2.12)

From Fig. (2.3) we can see that in this particular case, the two functions show
profiles with sharp and smooth features with different relative amplitudes. This
behavior makes them difficult to be integrated numerically, and the use of an
adaptive or dedicated method is therefore recommended.

u= 0 u= 3.35

hπ
β
(·)
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Figure 2.3. Examples of typical profiles of hπ
β
(·) and gπ

β
(·). The local maxima

and minima are marked in red and yellow, respectively. The scale parameter of
the sharp peaks is a. In the case of hπ

β
(·), the full width at half maximum, of the

sharp peak, is approximately 2a.
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2.5 Definition of the functions in the presence of a
magnetic field

In this section we analyze how the functions hβ (·) and gβ (·) generalize in the
presence of a magnetic field. The influence of the magnetic field on the redis-
tribution matrix can be described by two scalars, S1 and S2, which depend on
the intensity of the magnetic field and the magnetic quantum numbers. Includ-
ing these two additional parameters, the functions hβ(·) and gβ(·) generalize to
h̃(u,Θ,a,S1,S2)(·) and g̃(u,Θ,a,S1,S2)(·), which correspond to the previously defined func-
tions with the parameter u shifted by the quantity S1 and the argumentω shifted
by S2:

h̃(u,Θ,a,S1,S2) : R −→ R

h̃(u,Θ,a,S1,S2) (t) = h(u+S1,Θ,a)(t+ S2)

g̃(u,Θ,a,S1,S2) : R −→ R
g̃(u,Θ,a,S1,S2) (t) = g(u+S1,Θ,a)(t+ S2)

(2.13)

where

S1 =
Sx + Sy

2

S2 =
Sx − Sy

2
,

(2.14)

and Sx is the total magnetic shift appearing in the argument of the Faddeeva
function (i.e. uM ′uMℓ + uM ′uM ′

ℓ
or uMuMℓ + uMuM ′

ℓ
) in the definition of R

II,KK ′

Q (see
Equation (1.13) on page 15), while Sy is the magnetic shift appearing in the
argument of the exponential (i.e. uMℓM

′
ℓ
).

Then, all the properties of hβ (·) and gβ (·) discussed in the previous section
also hold in the presence of magnetic fields. The relations in Eq. (2.13) are also
valid for the limit case where Θ = π, given by Eqs. (2.11) and (2.12).
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Figure 2.4. Comparison between the case with a magnetic field (solid line) and
the case in the absence of a magnetic field (dotted line). For the case with a
magnetic field, we consider an illustrative example with u = 1.5, S1 = 1.5 and
S2 = −1, which allows observing the shift of the two functions.

2.6 Quadrature of hβ (·) and gβ (·)

In Equation (2.10) we showed that unbounded integrals over R of the functions
hβ (·) and gβ (·) can be approximated by bounded integrals with a small error,
but we did not provide a practical method for determining optimal integration
intervals. In Section 2.3 we studied the properties of the functions hβ (·) and
gβ (·). Furthermore, in Section 3.3 we will show that the Gaussian quadrature
rules are accurate methods for the numerical integration of these two functions.
Thus, we have all the mathematical tools necessary to define efficient numerical
procedures for performing the quadrature of the functions hβ (·) and gβ (·).

2.6.1 Introduction

In this section, we present a method for constructing a sequence of integration
intervals to perform the quadrature of the functions hβ (·) and gβ (·) over the
incoming reduced frequencies, based on the prior knowledge acquired in Sec-
tion 2.3.

To implement an efficient quadrature method on t (i.e., the incoming re-
duced frequencies), it is necessary to define optimal quadrature intervals by tak-
ing into account the behavior of the integrands as a function of the parameters
in β = (a,Θ, u). After analyzing the hβ (·) and gβ (·) functions, we found that
it is possible to define such a procedure in cases where Θ is not too close to π.
However, in cases where Θ = π, it is necessary to use a special procedure or
an adaptive algorithm based on the Gauss-Kronrod quadrature rules (see also
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Appendix B.3).
In our strategy, the main integration interval [a, b] is divided into M adjacent

subintervals [ai, bi]
M
i=1 that are tailored to the local behavior of the integrands.

Therefore, in the case of hβ (·), the main integral can be written as:

∫ b

a

hβ (t)dt=
M
∑

i=1

∫ bi

ai

hβ (t)dt. (2.15)

A similar equation can be written for gβ (·).

A common approach used to define the integration intervals of redistribu-
tion functions, which has been proposed in the past, is the use of the concept of
"regimes" (e.g., Gouttebroze, 1986). In this approach, the domain of the outgo-
ing reduced frequencies (i.e., the parameter u in β , see eq. (2.4)) is divided into
subdomains (i.e., regimes), where each regime is a priori associated with a spe-
cific quadrature approach. However, methods based on the concept of regimes
have the disadvantage of being inflexible as they rigidly define the boundaries
between subdomains.

Regimes
The following regimes, in which the redistribution functions show different
behaviors, are typically defined in the literature:

• Core the subdomain where 0≤ |u|≲ 2.

• Near wings the subdomain where 2≲ |u|≲ 8.

• Far wings the subdomain where |u|≳ 8.

In this section, we propose a new approach to overcome the limitations of
regime-based approaches. This method returns a set of adjacent quadrature in-
tervals as a function of the parameters in β (eq. 2.5), each of which is associated
with a difficulty factor: {[ai, bi], Di}

M
i=1. The difficulty factor, Di, is a positive

scalar that is used to determine the difficulty of the quadrature, which leads to
the order of the Gaussian quadrature.
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Introduction to the integration of the Gaussian function and of the normal
distribution

The generic analytical solution of the integral of the Gaussian function is as fol-
lows:

∫ ∞

−∞
a e−(

x−b
c )

2

dx = a |c|
p
π (2.16)

In the case of the normal distribution N
�

x;µ,σ2
�

, we observe that the value of
the bounded integral

I (k) =

∫ µ+kσ

µ−kσ

N
�

x;µ,σ2
�

dx (2.17)

depends only on the width factor k and is independent of the values of µ and σ.
Its value is given by:

I (k) = erf
�

k
p

2

�

, (2.18)

where erf (·) is the error function.

Then, given a normal distribution, we can calculate the integral value indepen-
dently of the values of σ and µ. Or, conversely, we can calculate the interval of
the integral given its result.

The following table shows some results of the integral (2.17):

k I (k)
1 0.682689492137086
2 0.954499736103642
3 0.997300203936740
4 0.999936657516334
5 0.999999426696856
6 0.999999998026825
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The normalized Voigt profile

The normalized Voigt profile, denoted by V(σ,γ) (x), is a convolution of a nor-
mal distribution N

�

x; 0,σ2
�

with a Lorentzian distribution L(γ) (x) with a scale
parameter γ:

V(σ,γ) (x) =
�

N
�

0,σ2
�

∗L(γ)
�

(x)

=

∫

R
N
�

t; 0,σ2
�

L(γ) (x − t)dt.
(2.19)

The normalized Voigt profile can be expressed in terms of the real part of the
Faddeeva function (see also Equation (1.16) on page 17):

V(σ,γ) (x) =
Re
�

W
�

x+iγ
σ
p

2

��

σ
p

2π
. (2.20)

The use of the normalized Voigt profile is convenient in many applications due
to its dependence on the known parameter σ.

2.6.2 Quadrature intervals

First, we recall that the functions hβ (·) and gβ (·) (see eqs. (2.2), and (2.3)) are
the product of two components: a Gaussian and a Voigt profile for hβ (·), and a
Gaussian and an associated dispersion profile for gβ (·). The behavior of these
functions is controlled by the parameters β = (u,Θ, a) (as shown in Sect. 2.3).

In the case where a magnetic field is present, the function h̃(β ,Sx ,Sy ) (·) (as
described in Section 2.5 on page 44) is the product of two components:

h̃(β ,Sx ,Sy ) : R3 −→ R>0

h̃(β ,Sx ,Sy ) (t) = exp

�

−
� u− t+ Sy

2 sin (Θ/2)

�2�

︸ ︷︷ ︸

Gβ (t)

V
�

a
cos (Θ/2)

,
u+ t+ Sx

2cos (Θ/2)

�

︸ ︷︷ ︸

Vβ (t)

. (2.21)

We now define the integrals over R of the two factors of the previous equation
as follows:

IG
R =

∫

R
Gβ (x) d x ,

IV
R =

∫

R
Vβ (x) d x .

(2.22)

In this section, quantities associated with the Gaussian component are denoted
by the superscript G, while those related with the Voigt profile are denoted by
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the superscript V . Since the purpose is to define the integration intervals, it is
not necessary to study the function g̃(β ,Sx ,Sy ) (·) (as shown in Equation (2.3) on

page 39), since the resulting intervals, derived from the properties of h̃(β ,Sx ,Sy ) (·),
are practically valid in both cases.

In the following paragraphs, we first examine the error introduced by the
use of bounded integration intervals in the approximation of IG

R and IV
R . Then

we present a procedure that, given the intervals where Gβ (·) and Vβ (·) are rele-
vant, produces a sequence of intervals and difficulty factors that can be used to
construct a reliable quadrature rule.

Interval of the Gaussian Gβ (·)

To define the bounded integration interval for Gβ (·) given in the equation (2.21),
we must determine its standard deviation σG and its mean value µG. Which are
equal to

σG =
p

2sin (Θ/2)

µG = u+ Sy .
(2.23)

Then we can define the interval for kG > 0 as

itrvG =
�

µG − kGσG, µG + kGσG

�

. (2.24)

The relative approximation error of the integral Gβ (·) over the interval itrvG can
be calculated analytically (see also equation (2.22)):

�

�

�

�

�

∫

itrvG
Gβ (x)dx − IG

R

IG
R

�

�

�

�

�

= 1− erf
�

kGp
2

�

. (2.25)

Thus, the integration interval for the Gaussian Gβ (·) can be easily defined by
specifying a priori an approximation error. It should be noted that for large
values of u the behavior of h̃(β ,Sx ,Sy ) (·) is dominated by Gβ (·) (see section 2.3),
so in these specific cases it is sufficient to use itrvG as the unique integration
interval.

Interval of the Voigt profile Vβ (·)

By definition the Voigt profile (see also eq. (1.16)) is a convolution between
a Gaussian function with a standard deviation of σV and a mean value of µV ,
whose values can be easily derived from the definition of h̃(β ,Sx ,Sy ) (·), i.e.:

σV =
p

2cos (Θ/2)

µV = − (u+ Sx) ,
(2.26)
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and a Lorentzian distribution with a scale parameter of γV , that is:

γV =
a

cos (Θ/2)
. (2.27)

Since a convolution between an arbitrary function f (·) and a Dirac delta function
is equal to f (·), it is easy to conclude that if γV = 0, the Voigt profile is equivalent
to a Gaussian (because in the case of γV = 0, the Lorentzian converges to a Dirac
delta function). Therefore, if 0 < γV ≪ σV , the Voigt profile Vβ (t) is close to a
Gaussian with standard deviation: σV =

p
2 cos (Θ/2).

In solar atmospheric models the values of a are typically less than 1× 10−2

hence in most cases where Θ is not close to the limit case of Θ = π, we can
assume that Vβ (·) is generally similar to a Gaussian. This allows us to state that
the sub-domain where Vβ is relevant is well approximated by the interval based
on σV and µV , i.e.,

itrvV =
�

µV − kVσV , µV + kVσV

�

. (2.28)

On the other hand, as Θ approaches π, the behavior of the integrand approaches
that of the limit case for Θ = π (see also Section 2.4). Therefore, the method
described above is not applicable and another strategy must be used.

The relative error of the bounded integral of the Voigt profile over itrvV is
defined as

errorV =

�

�

�

�

�

∫

itrvV
Vβ (x) d x − IV

R

IV
R

�

�

�

�

�

. (2.29)

Note that if γV = 0, Vβ (·) is equivalent to a Gaussian, and errorV = 1− erf
�

kVp
2

�

.
Therefore, the error of the bounded integral grows as a function of γV , and we
can state that:

1− erf
�

kVp
2

�

≤ errorV ≤ 1− erf
�

kVp
2

�

+∆ (γV ) , (2.30)

where ∆ (·) grows monotonically with γV and ∆ (0) = 0. For this motivation, it
is necessary to increase the integration interval and the difficulty factor D pro-
portionally with γV .

2.6.3 Note on the limit case for Θ = π

The analytical form of the limit cases hπ
β
(·) and gπ

β
(·) defined in equations (2.11),

and (2.12) does not involve the Faddeeva function, and it is easy to see that their



51 2.6 Quadrature of hβ (·) and gβ (·)

derivatives are:

d
dt

hπ
β
(t) = e−

1
4 (u−t)

2

�

a3(u− t)− at
�

−ut+ t2 + 4
��

2π (a2 + t2)2

d
dt

gπ
β
(t) = e−

1
4 (u−t)

2

�

a2
�

ut− t2 + 2
�

− t2
�

−ut+ t2 + 2
��

2π (a2 + t2)2
.

Whit some algebra it is possible to show that their zeros can be expressed through
polynomials. Despite the apparent complexity of the resulting expressions (which
we do not report here), it is possible to compute exactly the stationary points of
both expressions only by evaluating some polynomials and then we can define
reliable integration intervals and quadrature grids. Given the intervals, the main
problem in the quadrature of this limit case is the fact that the resulting grid has a
large number of nodes whose density is highly variable. In fact, the construction
of this quadrature grid requires a dedicated procedure.

2.6.4 Description of the procedure

In this section, we define the general procedure (defined in the Algorithm 4)
used to generate reliable quadrature intervals given parameters u, a, and Θ.
This procedure is a set of empirical rules designed to construct a sequence of
integration intervals by comparing the relative widths and mean values of the
Gaussian and Voigt profiles defined in the equation (2.21).

The width of the integration interval for the Gaussian Gβ (·) is given by equa-
tion (2.24). In the algorithm 4 it is controlled by the variable kG (line 1). For
the Voigt profile, we can assume that in the range of values of a that normally
appear in atmospheric models and for values of Θ < 3.1, the relation γV ≪ σV

holds in most cases, or more generally, the value of γV is not critical (see also
Section 2.6.2). The criticality of γV in the algorithm 4 can be checked through
the ratio r = γV

σV
(line 3). Thus, if r is small, we can assume that σV (see Eq.

(2.26)) is a good approximation of the width of V (·) and we can use the interval
in Equation (2.28), otherwise an alternative procedure must be used. The width
of the integration interval induced by V (·) is controlled by the variable kV (see
line 2 in the algorithm 4).

The rules of the algorithm are based on the relative positions of the optimal
integration intervals for the Gaussian function (line 7) and the Voigt profile (line
8). It should be noted that the Gaussian function decays faster than the Voigt
profile. Therefore, if the two intervals do not overlap, the contribution of the
Voigt profile is numerically canceled out by the decay of the Gaussian. On the
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other hand, the decay of the Voigt profile, and especially the associated dispersion
profile, is slower and insufficient to numerically cancel out the contribution of
the Gaussian (note that these two phenomena occur in the far wings). This fact
explains the asymptotic behavior discussed in Section 2.3 on page 40.

Descriptions of the rules

First rule (line 12): when the Gaussian interval is a subset of the Voigt
profile interval i.e.

itrvG ⊂ itrvV ,

we use the Gaussian interval as the only integration interval. This usually
occurs in the near wings and in the core when Θ ≲ 1.5. This rule is justified
by the fact that the decay of the Gaussian is fast enough to cancel the
contribution of the Voigt profile.

Second rule (line 15): if the two intervals do not overlap i.e.

itrvG ∩ itrvV = ; ,

we use only the Gaussian interval as the unique integration interval. This
usually occurs in the far wings. As described above, if the two intervals do
not overlap, the decay of Gβ (·) numerically cancels the contribution of the
Voigt profile. Therefore, we can only use the Gaussian interval Gβ (·).

Third rule (line 18): if the interval of the Voigt profile is a subset of the
Gaussian interval i.e.

itrvV ⊂ itrvG ,

we set the left and right limits as those of the Gaussian because the decay
of the Voigt profile is slow and does not cancel out the contribution of the
Gaussian. Therefore, in these cases, it is necessary to divide the integra-
tion interval into three subintervals with different difficulty factors. This is
because the central subinterval, which is dominated by the Voigt profile,
requires a higher order of quadrature, while the left and right intervals,
which show a monotonic decay and are dominated by the Gaussian, re-
quire a lower order of quadrature. This typically occurs in the core and
near the wings, where Θ ≳ 1.5. Note that this rule distinguishes between
cases where the mean of the Gaussian is inside in the interval of the Voigt
profile

µG ∈ itrvV
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and cases where it is not. This last condition allows us to reduce the number
of quadrature nodes without a loss of accuracy.

Fourth rule (line 28): in addition, we consider cases where the two inter-
vals partially overlap.

(itrvG ∩ itrvV ̸= ;) ∧ (itrvG ∩ itrvV ̸= {itrvG | itrvV})

For these cases, we create a sub-interval corresponding to itrvV , and an-
other one from the left (right) boundary of itrvV to the left (right) limit of
itrvG.

In our experiments, the factor of difficulty D is the ratio between the width of
the various sub-intervals and the σ associated with the functions corresponding
to that subintervals.

Algorithm 3: Compute the difficulties of the intervals.

1 Function ComputeDifficulties(Intervals[:], σ[:]):
Output: D = []

2 for i = 1 : Size (σ[:]) do
3 D[i] = |Intervals[i+1]−Intervals[i]|

σ[i]

4 return D
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Algorithm 4: A priori definition of the integrations intervals
Input: {σG ,µG ,σV ,µV ,γV }

1 kG ≥ 5
2 kV ≥ 5

3 r := γV
σV

4 if r is too large then
5 Consider to use an adaptive quadrature.
6 return

7 itrvG :=
�

µG − kGσG , µG + kGσG
�

8 itrvV :=
�

µV − kVσV , µV + kVσV
�

9 δ = 1/2
10 Ble f t := δ (itrvG[1] + itrvV [1])
11 Bri ght := δ (itrvG[2] + itrvV [2])

12 if itrvG ⊂ itrvV then

13 Intervals := itrvG

14 D := ComputeDifficulties(Intervals,
�

σG
�

)

15 else if itrvG ∩ itrvV == ; then

16 Intervals := itrvG

17 D := ComputeDifficulties(Intervals,
�

σG
�

)

18 else if itrvV ⊂ itrvG then

19 if µG ∈ itrvV then

20 Intervals :=
�

Ble f t , itrvV [1], itrvV [2], Bri ght
�

21 D := ComputeDifficulties(Intervals,
�

σG , σV , σG
�

)

22 else
23 if µG > µV then
24 Intervals :=

�

Ble f t , itrvV [1], itrvV [2], itrvG[2]
�

25 else
26 Intervals :=

�

itrvG[1], itrvV [1], itrvV [2], Bri ght
�

27 D := ComputeDifficulties(Intervals,
�

σG , σV , σG
�

)

28 else if itrvG ∩ itrvV ̸= ; then
29 if µG > µV then
30 Intervals :=

�

itrvV [1], itrvV [2], itrvG[2]
�

31 D := ComputeDifficulties(Intervals,
�

σV , σG
�

)

32 else
33 Intervals :=

�

itrvG[1], itrvV [1], itrvV [2]
�

34 D := ComputeDifficulties(Intervals,
�

σG , σV
�

)

Output: {Intervals, D}
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Finally, given a list of intervals and a list of "difficulty" D returned by the algo-
rithm 4, the integrals of h̃(β ,Sx ,Sy ) (·) and g̃(β ,Sx ,Sy ) (·) can be calculated using the
algorithm 5.

Algorithm 5: Computation of the Integral
Input: Intervals[:], D[:], f (·)
Output: I = 0

1 for i = 1 : Size (D[:]) do
2 N∝ D[i]

3
�

x j , w j

	N
j=1 :=

MakeGaussianQuadrature(N , Intervals[i], Intervals[i + 1])
4 I := I +

∑N
j=1 w j f

�

x j

�

5 return I

In the algorithm 5, the number of nodes N in a given interval i ((line 2)) is
obtained by multiplying D[i] by a scalar (in practice between 5 . . . 8).

2.6.5 Fine tuning

• We recommend increasing the proportionality factor for N in the algorithm
5 at line 2 in the core and near wings.

• In the far wings, the functions have a shape very similar to a Gaussian.
Thus, high accuracy can be achieved with a number of quadrature nodes
N = 40 . . . 60.

• In a practical application, we recommend always returning an array of flags
indicating whether the sub-intervals are induced by the Gaussian (only) or
by the Voigt profile. This helps to optimize the order of quadrature and the
building of the grid.

• The quadrature of the associated dispersion profile is usually more difficult
than that of the Voigt profile. Therefore, it is recommended to adjust the
order of the quadrature accordingly.

2.6.6 Direct approximation of the integral in the very far wings

In Section 2.3, we observed that for large values of the parameter u, h̃(β ,Sx ,Sy ) (·)
and g̃(β ,Sx ,Sy ) (·) exhibit a shape close to a Gaussian. We can exploit this property

to approximate the integrals of h̃(β ,Sx ,Sy ) (·) and g̃(β ,Sx ,Sy ) (·) in the very far wings.
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If we use the analytical result of the integral of the Gaussian (2.16), the value
of the integration of Gβ (·) (see Eq. (2.21)) is:

∫

R
exp

�

−
� u− t+ Sy

2 sin (Θ/2)

�2�

dt= 2
p
π sin (Θ/2). (2.31)

In the cases of a large value of u (e.g. |u| ≳ 40) in the interval where Gβ (·)
is relevant (2.24), the values of Vβ (·) and Lβ (·) are quasi constants. Then, the
integral of h̃(β ,Sx ,Sy ) (·) can be approximated by replacing Vβ (·) with its value at
µG (i.e. Vβ (µG) (2.23)):

∫

R
h̃(β ,Sx ,Sy ) (t)dt≈

�∫

R
Gβ (t)dt

�

Vβ (µG) = 2
p
π sin (Θ/2) · Vβ (µG) . (2.32)

Similarly for the case g̃(β ,Sx ,Sy ) (·) we have:

∫

R
h̃(β ,Sx ,Sy ) (t)dt≈

�∫

R
Gβ (t)dt

�

Lβ (µG) = 2
p
π sin (Θ/2) · Lβ (µG) . (2.33)

The limit of very far wings could reasonably be set at around |u| ≈ 40, but smaller
or larger values can also be used depending on the required accuracy. We must
emphasize that if this limit is too small, using this strategy could produce results
with significant errors. Observing that in the far wings, the density of nodes in
the frequency grid U (see Section 1.8.2) is usually very low, this approximation
is not expected to have a significant impact in reducing the total computational
time.

2.7 Notes and remarks on the quadrature of RII

By studying the analytical properties of the functions h̃(β ,Sx ,Sy ) (·) and g̃(β ,Sx ,Sy ) (·),
we have acquired the prior knowledge necessary to define a specialized quadra-
ture rule, namely, to define a priori a sequence of integration intervals that ex-
ploit the behavior of the integrand. We observed that the abscissa of the zero
of g̃(β ,Sx ,Sy ) (·) and the approximate abscissas of the local maxima of h̃(β ,Sx ,Sy ) (·)
are known (see section. 2.3). We also noted that the behavior of the integrand
of h̃(β ,Sx ,Sy ) (·) is the result of the cross-influence of a Gaussian function, whose
standard deviation and mean are known, and a Voigt profile, whose mean and
approximate width are known. Thanks to this information, we have developed
a method capable of generating a dedicated quadrature rule for any triple of the
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parameters a, u, and Θ. The result of this procedure is a sequence of adjacent
integration intervals of two different types: those where the integrand is domi-
nated by the Gaussian (where quadrature is easier) and those dominated by the
Voigt profile (where quadrature is more difficult). We then verified that the same
rule also provides accurate results for the numerical integration of g̃(β ,Sx ,Sy ) (·).
In Fig. 2.5, the red intervals are those where the Voigt profile dominates the
integrand, while the green intervals are those where the Gaussian dominates.

To check the validity of our method, we evaluated an estimated relative local
quadrature error using the Gauss-Kronrod rule (see Section 3.3.2). Dividing the
whole integration interval into N subintervals, we define the relative error for
each j = 1 . . . N as

[ε̃rel] j = log10

�

[ε̃] j

maxi=1...N ([ε̃]i)

�

, (2.34)

with

[ε̃] j =
[ε̃GK] j

Ĩ
,

where [ε̃GK] j is the quadrature error in the sub-interval j calculated with the
Gauss-Kronrod rule and Ĩ is an approximation of the integral over the whole
interval.

In the tests shown in Fig. 2.5, we only report examples with Θ = 3 (i.e. close
to the limit case Θ = π), because in these cases the functions show behaviors
that may be difficult to handle. The approximated integral Ĩ is calculated over
the whole interval plotted in Fig. 2.5. By observing the estimated relative error
(red curve), we see that the integration intervals correctly catch the behavior
of the integrands (the finest sub-intervals, namely those in red, associated with
the Voigt profile are used where the error is maximal). Using this method as a
basis, we were able to develop a procedure capable of constructing quadrature
grids for the RII function that proved reliable even when we applied strong mag-
netic and bulk velocity fields. In practical applications, the effective number of
quadrature nodes needed to approximate these integrals can vary from ∼ 30 to
∼ 250, depending on the values of the parameters in β and the tuning of the main
numerical application. The total number of nodes needed to achieve a given ac-
curacy generally grows with the strength of the magnetic field. In the limit case
of Θ = π the required number of quadrature nodes can grow significantly, up to
∼ 2500 in the case of a moderate magnetic field (e.g. ||B||> 50G).

The accuracy of the whole procedure has been tested by comparing the emis-
sion vector (see Eq. (2.1)) obtained with the method described here with that
obtained with a Gauss-Kronrod adaptive method (see also App. B.3), which pro-
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Figure 2.5. Examples of a priori calculations of some integration intervals. The
intervals highlighted in red are those in which the integrand is dominated by
the Voigt (or associated dispersion) profile, while those in green are the ones in
which the integrand is dominated by the Gaussian. The red curve is the esti-
mated relative error (see Eq. (2.34)). In the lower right plot, we observe that
the largest error appears where g̃(β ,Sx ,Sy ) (·) shows a small oscillation. Note that
the maximum absolute error observed in these specific tests is less than 10−6.

vides very accurate results but it is too slow to be used in practical applications
(other tests based on the Kirchhoff law can be found in Chapter 4).



Chapter 3

Analysis of quadrature methods

Defining an efficient and accurate method to perform the quadrature of the func-
tions hβ (·) and gβ (·) by minimizing the number of function evaluations is one
of the main tasks necessary to develop an efficient numerical integration of the
emission coefficients. Moreover, for the limit case Θ = π, it is necessary to pro-
vide a stable and robust quadrature method, which may differ from the general
one. In this section, we describe three different methods that are suitable candi-
dates for performing the quadrature of these functions.

3.1 A priori adapted quadratures

In this method, we use the prior knowledge of the integrand to divide the main
integration interval into a sequence of subintervals, assigning a quadrature order
to each according to the predicted behavior of the integrand. This method has the
advantage of being simple once the adapted mesh (i.e., the rule for defining the
subintervals and assigning the quadrature order) is set. In fact, the numerical
integration then consists simply of a weighted sum. However, the method is
reliable only if the prior knowledge of the integrand is robust enough (i.e., we
know the positions of the stationary points and the regions of the domain where
the higher-order derivatives are close to zero). We must also point out that in
some cases having robust prior knowledge of the integrand is not a sufficient
condition for constructing an efficient and reliable adapted mesh. For example,
for the limit cases hπ

β
(·) and gπ

β
(·) we have a good prior knowledge of the two

functions, but defining a quadrature mesh and subintervals a priori turns out to
be difficult because of the presence of sharp peaks that make it difficult to decide
the width and positions of the intervals and the order of the quadrature.
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3.2 Adaptive quadratures

An adaptive quadrature is a dynamic algorithm capable of automatically adjust-
ing the sequence of subintervals and, eventually, the order of the quadrature to
detect the behavior of the integrand. The advantage of adaptive quadratures is
that they do not require a priori knowledge of the integrand. The disadvantage
is that they do not allow the implementation of highly effective optimizations
(see also Appendix C.1).

3.3 Choice of quadrature methods

3.3.1 Gaussian quadratures

We have chosen Gaussian quadrature (e.g. Deuflhard and Hohmann, 2003; Davis
and Rabinowitz, 2007) to be used in algorithms for intensive computation be-
cause they offer a high order of accuracy. Indeed a Gaussian quadrature with
N nodes is exact for all polynomials P ∈ P2N−1 (where with PD we mean the
set of all polynomials with degree ≤ D). The quadrature algorithm consists of
a weighted sum, and therefore it is easy to implement and optimize (see also
Appendix B).

3.3.2 Gauss-Kronrod adaptive quadrature

The Gauss-Kronrod method (Kronrod, 1965) is a nested quadrature rule based
on an extension of a Gaussian rule of N +1 nodes to generate a new quadrature
rule that is exact for all polynomials P ∈ P3N+1 (Notaris, 1993). When combined
with a reliable error estimator (e.g., the sharper error estimator (Laurie, 1983;
Gonnet, 2012) or the QUADPACK error (Piessens et al., 2012)), it allows the
development of adaptive quadrature algorithms that are able to estimate the
value of an integral with machine precision (i.e., the relative error is in the order
of the machine epsilon) with a small number of function evaluations compared
to other adaptive methods (see Appendix B.3 for more details).

We first used a Gauss-Kronrod adaptive method to generate reference results
of the emission vector and to study the exact behavior of the RII function. We
then used the Gauss-Kronrod adaptive quadrature as one of the main strate-
gies to integrate the redistribution matrix RIII in its exact form (see Chapter 6
on page 137).
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3.3.3 Kronrod-Patterson extensions

The Gauss-Kronrod rule (Kronrod, 1965) allows the extension of a Gaussian
quadrature with only one set of nested nodes. Patterson overcame this limitation
by introducing a numerically stable procedure for iterating Kronrod extensions
to a tower of nested rules (e.g. Patterson, 1968; Bourquin, 5 04) by progressively
increasing the order of the quadrature (see also B.4).

We developed an order-adaptive algorithm using the Kronrod-Patterson ex-
tensions. Compared to a classical approach based on Gauss-Kronrod, the per-
formance of this algorithm in terms of efficiency is significantly more dependent
on the properties of the integrand. However, we observed that it shows good
efficiency in the case of RII, which makes it interesting for our problem.

3.4 Spherical quadrature

We define the surface integral of a function f : R3 −→ R over a sphere S with
radius r as:

I =

∫

S

f (x) dS. (3.1)

The integral I is generally parameterized in the spherical coordinate system x=
(r,θ ,χ), where any point in the three-dimensional space is uniquely defined by
the inclination θ ∈ [0,π] (or colatitude) with respect to the vertical axis, the
azimuth χ ∈ [0, 2π], i.e., the angle between the projection of x on the equatorial
plane and a reference horizontal axis, and the distance from the origin r ∈ R+
(or radial distance).

If the radius of the sphere is unity, the integral I is equivalent to an angular
integral over the solid angle subtending all of the space:

I =

∮

f (Ω)dΩ , (3.2)

where Ω = (θ ,χ)T, and dΩ is the infinitesimal solid angle (dΩ = dS/r2). The
latter is the integral that we need to solve the physical problem under consider-
ation.

In the scientific literature, numerous methods for performing spherical quadra-
ture have been proposed (e.g. Beentjes, 2015), also with a focus on the spe-
cific problem of polarized RT (e.g. Štěpán et al., 2020; Jaume Bestard et al.,
2021b). In general, a spherical quadrature rule consists of a set of nodes (a.k.a.
a spherical grid), which we express as a set of angular coordinates, and weights
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3.5 Prerequisites of a spherical quadrature for the computation of the

emissivity with PRD

S = {θi,χi, wi}
M
i=1, such that the integral over a sphere is approximated with a

weighted sum, i.e:

∫

S

f (r, θ , χ) dS ≈ r2
M
∑

i=1

wi f (r, θi, χi) , (3.3)

The order of accuracy of a spherical quadrature rule is usually expressed in terms
of spherical harmonics (SH), so we can say that a rule is exact for all SH Y m

ℓ
∈ YD,

where YD means the set of all spherical harmonics up to degree D, and Y m
ℓ

is an
SH of degree ℓ and order m.

3.5 Prerequisites of a spherical quadrature for the
computation of the emissivity with PRD

In designing a spherical quadrature for calculating the emission coefficients, it is
also necessary to consider some constraints imposed by the nature of the prob-
lem. First, nodes on the equator (i.e., with an inclination θ = π/2) should
be avoided. In fact, in 1D applications (or more generally with vertical peri-
odic boundary conditions), horizontal beams cannot be treated numerically with
standard techniques because they never encounter the boundaries of the spatial
domain. The second requirement is related to the optimization of the algorithm:
the number NΘ of distinct scattering angles between unique pairs of nodes must
be significantly lower than the total number of unique pairs of nodes in the spher-
ical grid (i.e.: NΘ ≪ (NΩ2 − NΩ + 2)/2). If this second property holds, we can
implement an optimization strategy that significantly reduces the time required
to compute the emission coefficients.

Finally, considering that the integration of the emission coefficients requires a
large time-to-solution, it is necessary to use a quadrature rule capable of ensuring
sufficient accuracy with a small number of nodes. For the numerical integration
of ϵ ℓ,I I given by Eq. (2.1), we should use spherical grids with no more than 150
nodes to achieve an acceptable time-to-solution.

3.6 Sphere mapping

During the study of spherical quadratures, we developed a method that maps
a quadrature rule defined on a polygon to its spherical equivalent by using the
integral over parametric surfaces (to our knowledge, such a method has never
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been used before in the context of RT). In particular, we consider the case of
mapping a quadrature rule from a reference triangle to an arbitrary spherical
triangle.

Let us define a mapping function from a triangle in a reference system of
Cartesian coordinates (u, v) to a planar triangle in R3 with vertices A,B and C:

Φ : R2 −→ R3

Φ (u, v) = A+ u (B−A) + v (C−A) .
(3.4)

If we assume that the three vertices lie on a sphere, then the mapping function
from the reference triangle to the spherical triangle TS with vertices A,B and C
is given by the projection of Φ (·) on the sphere, i.e:

Ψ : R2 −→ R3

Ψ (u, v) = r
Φ (u, v)




Φ (u, v)






.
(3.5)

Given a generic quadrature rule T = {ui, vi, wi}
N
i=1 on a reference triangle in the

coordinate system (u, v), such that ui ∈ [0,1] and vi ∈ [0, 1−ui] for all i = 1 . . . N ,
the integral over the reference triangle TR is approximated with a weighted sum,
i.e.:

∫

TR

f (u) dTR ≈
N
∑

i=1

wi f (ui, vi) . (3.6)

By applying the integration over parametric surfaces and the change of variable,
it is possible to prove that the integral over a spherical triangle TS can be approx-
imated by mapping the quadrature over the reference triangle TR with:

∫

TS

f (x) dTS ≈
N
∑

i=1

f (Ψ (ui, vi))wi







∂Ψ(ui ,vi)
∂ u × ∂Ψ(ui ,vi)

∂ v





 , (3.7)

where the operator × denotes the cross product.
This method has the advantage of being a generic procedure that can be

used with any spherical polygon and tessellation. On the other hand, it does not
guarantee the same order of accuracy as the Cartesian product rule or Lebedev’s
rule, because the mapping function (3.5) is not linear. The results of some tests
of the spherical mapping quadrature method, considering different polygons,
are shown in Fig. 3.1. As the figure illustrates, when the number of nodes is in
the order of 102, the accuracy of the method is still rather low, which makes it
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unsuitable for the problem under investigation Other, possibly more accurate,
methods can be derived from isogeometric analysis (e.g., Zou et al., 2022, and
references therein) .

Figure 3.1. Tests of sphere mapping quadratures. The test functions f∗ are the
ones proposed by Beentjes (2015). The quadrature rules have been built by
mapping 2D Gaussian quadratures on the spherical polygons, which in these tests
correspond to the projection of the faces of four Platonic polyhedra. The relative
error is calculated with respect to the analytical solutions. We can observe that
more than 1000 nodes are generally needed to achieve a relative error below
10−5.

3.7 Comparison of spherical quadratures

Among the spherical quadrature methods described in the scientific literature
(e.g. Lebedev’s rule, Cartesian product rule, spherical design, etc. (e.g Beentjes,
2015)) we choose the Cartesian product rule and the Lebedev’s rule because they
are the only ones that fit the prerequisites described in Sec. 3.5.
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In numerical radiative transfer, one of the most common methods to perform
angular quadrature is the Cartesian product rule, since it has a high order of
accuracy and easily allows one to avoid nodes on the equator. To exactly integrate
all spherical harmonics Y m

ℓ
∈ Yp it is necessary to have a Cartesian product rule

with (p+1)/2 nodes in azimuth and (p+1) nodes in inclination, corresponding
to (p+ 1)2/2 nodes in total (Beentjes, 2015; McLaren, 1963).

Lebedev’s rule has the advantages of ensuring better accuracy (a rule of p
nodes integrates exactly all spherical harmonics Y m

ℓ
∈ Yp (Lebedev, 1975)), and

of having the nodes uniformly distributed on the spherical surface, but with the
disadvantage of having nodes on the equator. On the other hand, the sphere
mapping method allows one to set the coordinates of the nodes quasi-freely, but
with the problem of low accuracy.

Considering that any spherical quadrature Q is rotational invariant, so that
for any rotation operator R and any function f the relation Q[ f ]≈Q[ f ◦R] holds,
the problem of having nodes on the equator in Lebedev’s rule can be solved by
rotating the spherical grid S. A possible criterion for choosing the rotation is to
maximize the minimum distance of the closest node to the equatorial plane. If
we define the rotation operator as the composition of the rotation around the
Cartesian axes, i.e. Rα,β ,γ = Rαx ◦ Rβy ◦ Rγz with Euler angles α, β , and γ, the
maximization problem consists in finding a triple of these angles that maximizes
the minimal distance, i.e.:

max
α,β ,γ

n

min
i

�

deq

�

Rα,β ,γxi

�

| ∀xi ∈ S
	

o

, (3.8)

where deq (·) is the distance from the equatorial plane and xi is a node from the
spherical grid S. Since this problem is non-linear, we used the genetics algorithms
toolbox from MATLAB to solve it.

In conclusion, among the angular quadrature rules that we have analyzed,
the most suitable ones for the considered problem are the standard approach
based on the Cartesian product rule, or a rotated Lebedev’s rule.
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Figure 3.2. Comparison of Lebedev’s rule with 146 nodes with respect to a
Cartesian product rule with 144 nodes.



Chapter 4

Numerical calculation of the
emission coefficient

4.1 Description of the algorithm

In this section, we present an algorithm to perform a reliable and efficient quadra-
ture of the emission coefficients of Eq. (2.1), which we computed on the nodes
of the global grid G =

�

Ωi,ν j

	NΩ,Nν
i, j=1

introduced in Sect. 1.8.2. We designed the
algorithm with the primary goal of minimizing the number of evaluations of the
Faddeeva function. We achieved this goal by exploiting the properties of the
spherical grid and the magnetic shifts. Recalling that the behavior of the inte-
grands is dominated by the redistribution matrix (Eq. (1.5)), when performing
the integration over the reduced frequencies of the incoming radiation, we can
use the properties of the functions hβ (·) and gβ (·) to define the intervals of in-
tegration.

If we use a spherical grid where the number of scattering angles is small (see
Section. 3.5), it turns out to be convenient to pre-calculate and store the values of
R

II,KK ′

Q in a data set and use them in a second phase when performing the effective
quadrature of the emission coefficients. It should be noted that the use of the
repetitions of the scattering angles allows to reduce the time complexity for the
Faddeeva function to O

�

NΩ
d Nν

2 NM

�

where 1< d ≪ 2 and for an ideal spherical
grid d = 1. We emphasize that this strategy can be applied if the dependence of
the redistribution function from the directions is only encoded in the scattering
angle. If bulk velocities are present we must therefore calculate the emissivity in
the comoving frame, as discussed in Sect. 1.5, taking into account the Doppler
shifts in the incoming radiation and in the resulting emissivity as described by
Eqs. (1.43) and (1.44).
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To define the procedure, we must first calculate the set T , of size NΘ, of
all unique scattering angles Θ (Eq. (1.11)) associated with the chosen spherical
grid S, i.e. T = {Θi}

NΘ
i=1. As previously explained, it is convenient to choose a

spherical grid such that NΘ is significantly less than the total number of unique
angular node pairs, i.e., (NΩ2 − NΩ + 2)/2, where NΩ is the number of angular
nodes. Observing that, at a given spatial point, the quantity a belonging to the
set of parameters β = (u,Θ, a) is constant, we introduce the grid B given by
the Cartesian product between the frequency grid U and the set of scattering
angles T , i.e. B = U × T . We then store the precalculated values of RII,KK ′

Q in an
associative data set with keys Θ, u ∈ B. Each entry of this data set consists of a
sequence of triples, where the first two elements are the nodes and weights of
the quadrature rule chosen to evaluate the integral over the frequencies of the
incoming radiation, and the third are the precalculated values of RII,KK ′

Q , i.e,

Gβ =
n

u′βi , wβi ,
�

R
II,KK ′

Q

�β

i

oNβ

i=1
,

where the superscript indicates the dependence on the parameters in β , and Nβ
is the number of nodes for a quadrature rule given an outgoing frequency u and
a scattering angle Θ. We compute the nodes and weights in Gβ using the prior
knowledge of the functions hβ (·) and gβ (·) (see Section 2.3).

Using the data structures described above and a spherical quadrature rule

S =
¦

Ω′j, wS
j

©NΩ

j=1
, the numerical calculation of the emission coefficients can be

summarized in the following equation.

ϵ ℓ,I I : R×R2 −→ R4

ϵ ℓ,I I (u,Ω) =
kL

4π

NΩ
∑

j=1

wS
j

Nβ
∑

i=1

wβi

�

2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

�

R
II,KK ′

Q

�β

i
PKK ′

Q

�

Ω′j,Ω
�

�

I
�

u′βi , Ω′j
�

,

(4.1)
where the direction and reduced frequency of the emitted radiation are elements
of the discrete general grid, i.e. u, Ω ∈ G (see also Section 1.8.2), and the
quadrature rules in the inner summation use the precalculated values from Gβ

for each pair of Θ, u ∈ B.
If Θ = 0, the integral over u′ can be solved analytically and a simplified pro-

cedure can be used. For the limit case Θ = π, constructing a fixed grid presents
a number of difficulties, so we developed an ad hoc procedure. Alternatively, we
can use Gauss-Kronrod adaptive quadrature, which is capable of evaluating this
integral with machine precision (see also Section 1.4.4 on page 18).

For Θ ∈ (0,π), the use of the Gauss-Kronrod adaptive quadrature is not justi-
fied because it is generally possible to achieve the desired accuracy by using the
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prior knowledge of the functions to define a quadrature mesh based on a Gaus-
sian rule where the total number of nodes is close to the nodes generated by the
Gauss-Kronrod adaptive method (Section. 2.7).

In our tests, we also observed that, given a sequence of integration subin-
tervals defined by the method introduced in Sect. 2.7, a suitable method to
build an a priori grid is order adaptivity based on Kronrod-Patterson extensions
(Sect. 3.3.3). However, this strategy has not been further analyzed in this work.

The use of precalculated values for RII,KK ′

Q and for the scattering phase matrix
PKK ′

Q is more convenient than calculating them on the fly, because the function
evaluations require more CPU time with respect to the data set access.

The method introduced above can be generalized in the algorithm 6, in which
the calculation of the emissivity on all scattering directions and frequencies at
one spatial point is performed. The strategy introduced in Algorithm 6 has the
advantage of being efficient and fast. On the other hand, generating a database
of all Gβ at all scattering angles requires in most cases more than 1 Gb of memory
(in float64). This situation could be problematic, especially when solving the
RT problem in 3D atmospheric models. Therefore, we developed an alternative
version in which the main loop is based on the scattering angles (Θ) and the Gβ

are constructed on the fly so that all pairs of directions that share the same Θ
are updated in the innermost loops. This second strategy significantly reduces
the amount of required memory and is successfully used in the 3D RT-solver
(Benedusi et al., 2023).
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Algorithm 6: Calculation of the emission coefficients ϵ ℓ,I I

Input: The incoming radiative filed: I
1 Given the angular grid find all the distinct scattering angles: T = {Θi}

NΘ
i=1

2 Build the database Gβ by using T .
3 for m= 1, . . . , NΩ do
4 Pick Ωm from the angular grid.
5 ϵ ℓ,I I (un,Ωm) = 0 ∀un ∈ U
6 for j = 1, . . . , NΩ do
7 Pick Ω′j from the angular grid.

8 Find the scattering angle Θ given the directions Ω′j and Ωm.

9 From the database select the grid Gβ associated with the scattering
angle Θ with size Nβ .

10 for n= 1, . . . Nν do
11 By using un ∈ U select form Gβ the

12 quadrature weights
¦

wβi
©Nβ

i=1

13 and the values
n
�

R
II,KK ′

Q

�β

i

oNβ

i=1
.

14

ϵ ℓ,I I (un,Ωm) =ϵ
ℓ,I I (un,Ωm)+

kL

wS
j

4π
Nβ
∑

i=1

wβi

 

2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

�

R
II,KK ′

Q

�β

i
PKK ′

Q

�

Ω′j ,Ωm,b
�

!

I
�

u′βi , Ω′j
�

,

15 end
16 end
17 end
18 Free the database for Gβ .

Output: ϵ ℓ,I I
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The correctness and accuracy of the method have been verified by consider-
ing the limit of thermodynamic equilibrium (i.e., by assuming that the incident
radiation field is unpolarized, isotropic, and given by the Planck function) and
verifying that Kirchhoff’s law (in the presence of a magnetic field producing Zee-
man polarization signals) is satisfied (see Fig. 4.1).

Figure 4.1. Four upper panels: comparison between the profiles of the emission
coefficients calculated with the developed algorithm, assuming an unpolarized,
isotropic, and spectrally-flat incident radiation field (orange profiles), and the
reference solution (blue profiles), provided by the Kirchhoff’s law. Four lower
panels: corresponding relative errors as a function of the reduced frequency of
the emitted radiation. The calculations have been performed considering the
Ca I line at 4227 Å, at a height of 2168 km in a 1D semi-empirical model of the
solar atmosphere, in the presence of a magnetic field of 220 G, with inclination
θB = 0.9 rad, and azimuth χB = 1 rad. An emission direction with µ = 0.033 is
considered.
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4.2 Computation of RII,KK ′

Q

4.2.1 Introduction

In the previous sections, we introduced a general strategy for the computation
of the emission coefficients ϵ ℓ,I I without discussing the details of the algorithm
necessary to calculate the values of the most relevant and critical component,
namely the redistribution function R

II,KK ′

Q defined in Equation (1.12) on page 14.
In Section 2.3, we studied the behavior of the two main functional compo-

nents of RII,KK ′

Q (i.e., the functions hβ (·) and gβ (·)) in order to construct reliable
quadrature grids using the prior knowledge of the properties of the aforemen-
tioned functions. Once the quadrature grids are constructed, the last necessary
step is to efficiently compute the quantities RII,KK ′

Q .

In this section, we present a method to compute the quantitiesRII,KK ′

Q given the
strength of the magnetic field ||B||, and parameters in β , namely: the damping
factor a, the scattering angle Θ, and the outgoing reduced frequency u.

4.2.2 The frequency grid

The frequency grid (which we indicate with the notation FGrid
(U ,Θ,r)) is a data struc-

ture used to store the incoming reduced frequency nodes needed to perform the
quadratures for all outgoing frequencies from the discretization of the problem
in the set U (see also Section 1.8.2 on page 33), for one scattering angle Θ, and
one spatial point r. In practice, it consists of an unstructured mesh in which
each outgoing frequency is associated with a quadrature grid over the incoming
frequencies (generated with the method described in Sect. 2.6). To access each
element of a frequency grid, it is necessary to use a lookup table because the
quadrature grids are of different sizes and their values are not aligned.

The position and density of the nodes of a frequency grid depend on the
scattering angle, the damping factor (for reasons explained in Section 2.3 on
page 39), and the strength of the magnetic field through to the magnetic shifts
induced by the Zeeman effects (this last dependence is especially critical in the
limit where the scattering angle is equal or close to π, see also Sect. 1.4.4). Fi-
nally, it also depends on the Doppler width (∆νD), since it controls the domain
of u (outgoing reduced frequencies) in which the redistribution function (i.e.
R

II,KK ′

Q ) is calculated (we recall that in numerical methods only reduced frequen-
cies are used, see also Sect. 1.4.4). In applications, we associate each frequency
grid with a quadrature weight grid (represented by the notation WGrid

(U ,Θ,r)), which
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is a data structure of the same size as the FGrid
(U ,Θ,r) used to store all the quadrature

weights. The frequency and quadrature weight grids are used to construct the
Gβ data sets introduced in Section 4.1.

In the following algorithms, we will use the notation:

X i, j = f
�

ui, u′j
�

∀ui, u′j ∈ FGrid
(U ,Θ,r)

to specify that a function is calculated on all nodes of the frequency grid and the
resulting value X i, j is an unstructured matrix that fits the size of FGrid

(U ,Θ,r).

4.2.3 The Faddeeva function

The most time-consuming part of the numerical computation of the redistribution
function R

II,KK ′

Q is the Faddeeva function W (·, ·) defined in Equation (1.16). In
the definition of the redistribution matrix, the Faddeeva function depends on
numerous arguments, which are: the parameters (Θ, u, a), the incoming reduced
frequencies u′, and finally the magnetic shifts uM ′uMℓ , uM ′uMℓ′ and uMuMℓ , uMuM ′

ℓ
,

which are calculated with Equation (1.21), which in turn depend on the magnetic
quantum numbers from Algorithm 1. We point out that the magnetic shift is
proportional to the strength of the magnetic field.

When defining R
II,KK ′

Q in Equation (1.12), the Faddeeva function appears as
follows:

W

�

a
cos (Θ/2)

,
u+ u′ + uM ′uMℓ + uM ′uM ′

ℓ

2cos (Θ/2)

�

,

W

�

a
cos (Θ/2)

,
u+ u′ + uMuMℓ + uMuM ′

ℓ

2cos (Θ/2)

�

.

(4.2)

Assuming that the values of Θ, a, u and u′ are known, the last remaining de-
pendencies are the magnetic quantum numbers Mu, M ′u, Mℓ, M ′

ℓ
(generated by

Algorithm 1 on page 17) and the complex conjugate operator of the Faddeeva
function. Thus, we can generalize the calculation of the Faddeeva functions ap-
pearing in R

II,KK ′

Q with the following modified function:

W
:
(Θ,a,u) : R×

Z
2
×
Z
2
×
Z
2
× Boolean −→ C

W
:
(Θ,a,u)

�

u′, M1, M2, M3, c
�

= C

�

c, W

�

a
cos (Θ/2)

,
u+ u′ + uM1M2

+ uM1M3

2cos (Θ/2)

��

,

(4.3)



74 4.2 Computation of RII,KK ′

Q

where we recall that the magnetic quantum number are elements of Z2 being
integers and half-integers. The function C returns the complex conjugate of z if
c is true, i.e.

C : Boolean×C −→ C

C (c, z) =

¨

z if c = true
z if c = false.

(4.4)

The calculation of the Faddeeva function for a given input is performed with
Algorithm 7. We also define a modified function to calculate the exponential:

E
:
(Θ,u)

�

u′, Mℓ, M ′
ℓ

�

= exp



−

�

u− u′ + uMℓM
′
ℓ

2sin (Θ/2)

�2


 , (4.5)

which, since it is not critical from the computational stand-point, is computed at
each iteration.

Thanks to these definitions, we can describe an efficient algorithm for calcu-
lating the quantities RII,KK ′

Q , which automatically minimizes the number of eval-
uations of the Faddeeva function.

Algorithm 7: Method to manage the dictionary of the Faddeeva func-
tiona values

1 Function QueryMQNDict(
¦

W
:©

, FGrid
(U ,Θ,r), M1, M2, M3, C ∈ Boolean):

2 if [M1, M2, M3, C] ∈ Keys
�¦

W
:©�

then

3 W := get
�¦

W
:©

, [M1, M2, M3, C]
�

4 else if [M1, M2, M3,¬C] ∈ Keys
�¦

W
:©�

then

5 W := get
�¦

W
:©

, [M1, M2, M3,¬C]
�

6 else
7 W :=W

:
(Θ,a,u) (u′, M1, M2, M3, C) ∀u, u′ ∈ FGrid

(U ,Θ,r)

8 insert
�¦

W
:©

, W, [M1, M2, M3, C]
�

9 return W

4.2.4 Algorithm

The main goal of the algorithm for calculating R
II,KK ′

Q (see Algorithm 8 below) is

to build a dictionary that stores the values of RII,KK ′

Q as a function of each triplet of
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the tensorial indices, i.e. K , K ′ and Q, which, in combination with the frequency
grid, are used to build the set Gβ introduced at the beginning of this chapter.

Algorithm 8: Calculation of the quantities RII,KK ′

Q

Input: Θ, a, U , ||B||,
an atomic model with Ju, Jℓ
the local status of the atmosphere.

1 Build the frequencies grid FGrid
(U ,Θ,r) for the parameters Θ, a and ||B||

for each u ∈ U .
2 Init a dictionary

¦

R
II,KK ′

Q

©

with key [K , K ′, Q].

3 Init a dictionary
¦

W
:©

with key [M1, M2, M3,Boolean]
4 α̃Q is the branching ratio function for RII of the given atomic model.
5 CKK ′QMuM ′uMℓM

′
ℓ

is a function that returns the value of the quantity in
Equation (1.15) on page 16.

6 foreach K , K ′, Q ∈ T do

7 R
II,KK ′

Q := get_ref
�¦

R
II,KK ′

Q

©

, [K , K ′, Q]
�

8 foreach Mu, M ′u, Mℓ, M ′
ℓ
∈MI I (Ju, Jℓ) do

9 Wa := QueryMQNDict(
¦

W
:©

, FGrid
(U ,Θ,r), M ′u, Mℓ, M ′

ℓ
,true)

10 Wb := QueryMQNDict(
¦

W
:©

, FGrid
(U ,Θ,r), Mu, Mℓ, M ′

ℓ
,false)

11 E := E
:
(Θ,a,u)

�

u′, Mℓ, M ′
ℓ

�

∀u, u′ ∈ FGrid
(U ,Θ,r)

12 R
II,KK ′

Q := R
II,KK ′

Q +αQ CKK ′QMuM ′uMℓM
′
ℓ

1
π sinΘ E × (Wa +Wb)

Output:
¦

R
II,KK ′

Q

©

In Algorithm 8, MII (Ju, Jℓ) refers to the set of magnetic quantum numbers as
a function of the respective lower and upper angular momenta, generated with
Algorithm 1 on page 17, the notation f (·) denotes a complex conjugate function,
T is the set of tensorial indices, get_ref returns a reference to an element in the
dictionary (i.e., an associative table). The variables W∗, E and R

II,KK ′

Q are unstruc-
tured matrices storing all values of the respective functions at all coordinates of
the given frequency grid FGrid

(U ,Θ,r). Finally, the key for accessing an element in a
dictionary is a tuple enclosed in square brackets.

The algorithm is based on the fact that the access time required to get an ele-
ment from a dictionary is constant and significantly less than the direct calcula-
tion of the Faddeeva function on all elements of the FGrid

(U ,Θ,r). Note that dictionaries
are usually implemented as hash table, where by definition the access time com-
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plexity is uniform: O (1), or as a binary tree, where the access time complexity
is logarithmic: O

�

log2 N
�

, where N is the number of elements in the dictionary.
In atomic models with a transition Jℓ = 0↔ Ju = 1, namely the models for

the Ca I 4227 Å and Sr I 4607 Å lines, the function W
:
(Θ,a,u) (·) is calculated 3

times for all elements of the frequency grid, with a total number of combinations
of magnetic quantum numbers NM = 9. On the other hand, in the case of Jℓ =
1/2↔ Ju = 3/2, which is the transition of the Sr II 4078 Å, and Mg II k 2795 Å
lines, W

:
(Θ,a,u) (·) is calculated 8 times for all elements of FGrid

(U ,Θ,r), with NM = 26.
In this way Algorithm 8 automatically minimizes the number of evaluations of
the Faddeeva function.

To manage the CKK ′QMuM ′uMℓM
′
ℓ

quantities, it is convenient to store them in a
table since they only depend on the atomic model (i.e., they do not depend on
the frequencies, scattering angles, and spatial points), and there is no need to
recompute them at each iteration (see Sect. 1.8.2).

4.2.5 Conclusive remarks

The calculation of ϵ ℓ,I I is based on three main components:

1. The construction of the frequency grids.

2. The calculation of the quantities RII,KK ′

Q .

3. The building of the RII matrices, and the general quadrature performed
with Algorithm 6.

If the above components are implemented correctly, the task that takes the
majority of the time-to-solution is the calculation of RII given the values of RII,KK ′

Q .
This is because the calculation of ϵ ℓ,I I requires the construction of a very large
number of RII matrices, generating a large amount of data. For this reason, we
dedicate Chapter 5 to a detailed discussion of the optimization strategies used
to efficiently implement the last part of the algorithm, where optimizations are
made taking into account the hardware architecture of the used computer sys-
tem. In the table 4.1 we can see that, thanks to the methodology introduced
here, the time needed to compute the Faddeeva function is no longer the bottle-
neck of the application. Finally, we observed that our approach provides very
accurate results, and the re-normalization of RII described in Sect. 1.4.8 is not
strictly necessary.
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Line NM % time-to-solution

Ca I 4227 Å 9 3.9%
Sr I 4607 Å 9 3.9%
Sr II 4078 Å 26 8.4%
Mg II k 2795 Å 26 8.4%

Table 4.1. Percentage of the total time-to-solution for the RII contribution to
the emission vector (i.e. ϵ ℓ,I I) spent in computing the Faddeeva function on
all emitted directions and frequencies, for the spectral lines considered in this
work. We recall that the total number of evaluations of the Faddeeva function is a
function of NM (i.e. the number of combinations of magnetic quantum numbers,
see also Algorithm 1, and Sec. 2.2). Reported values were measured withLinux
perf.

4.3 Computation of RIII

In this section, we present the method used to calculate the contribution to the
emissivity of the RIII matrix (in its angle-dependent formulation, see also Sec-
tion 1.4.5 on page 21). This task is particularly difficult because of the appear-
ance of a fourth dimension in the scattering integral. In fact, the fourth dimen-
sion significantly increases the number of evaluations of the Faddeeva function,
a phenomenon commonly known as the "curse of dimensionality". Furthermore,
the integrand appearing in the Eq. (1.30) exhibits a complex behavior that is
difficult to handle, and makes the computation of RIII more difficult than that of
RII.

The generic structure of the algorithm for performing the numerical integra-
tion of the contribution of RIII to the emission coefficient (i.e. ϵ ℓ,I I I) is identical
to the one used for the ϵ ℓ,I I described in the Algorithm 6. For the computation
of the R

III,KK ′

Q quantities (see Eq. (1.27)) we have adopted a strategy similar to

the one used for RII,KK ′

Q , i.e. we exploit the repetitions of the magnetic quantum
numbers to minimize the number of evaluations of the Faddeeva function. Fi-
nally, an adaptive quadrature based on the Gauss-Kronrod scheme (see Appendix
B.3) is used to evaluate the integral over the fourth dimension (i.e. the variable y
in Eq. (1.30)). We used a Gauss-Kronrod adaptive quadrature because the con-
struction of frequency grids in the fourth dimension could be time-consuming
and memory-consuming without having any advantage in terms of computa-
tional time. In fact, the fraction of the solution time required to compute the
Faddeeva function is significantly larger than the time required to control the

https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/
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adaptive quadrature.
A detailed comparison of the results obtained using RIII and its approximated

expression RIII−CRD (see Sect. 1.4.6), for a series of spectral lines of scientific inter-
est, is presented in Chapter 6. The results of this investigation are also collected
in Riva et al. (2023).

4.3.1 Algorithm

Following the method introduced in 4.2.3 and using the function C (·) (see Eq.
(4.4)), the functions I (see Equations (1.30) to (1.32) on pages 22–23) can be
rewritten as:

I
:
(Θ,a,u) : R×

Z
2
×
Z
2
× Boolean×

Z
2
×
Z
2
× Boolean −→ C

I
:
(Θ,a,u)

�

u′, Mu, Mℓ, c, M ′u, M ′
ℓ
, c′
�

=
1

π2 sinΘ

∫

R
dy exp

�

−y2
�

C
�

c, W
�

a
sinΘ

,
u+ uMuMℓ + y cosΘ

sinΘ

��

C
�

c′, ϕ
�

a, u′ + uM ′uM ′
ℓ
+ y

��

,

(4.6)

where the complex conjugates are given by the Boolean variables c and c′. The
notation above makes it possible to use as a key of a dictionary a tuple of 6
elements consisting of the magnetic quantum numbers (i.e. Mu, Mℓ, M ′u, M ′

ℓ
) and

the variables c, and c′.
The core component of Algorithm 10, which is used to compute the quan-

tities R
III,KK ′

Q (see Eq. (1.27)), is the function Q defined in Algorithm 9, which
returns the values of the functions I given the aforementioned key consisting of
the tuple of six elements encoding the magnetic quantum numbers and the con-
jugation flags. The Q function simply searches in the dictionary to check if the
quantities I or their conjugates are already stored. If not, it performs the numeri-
cal quadrature using an adaptive quadrature based on the Gauss-Kronrod scheme
(see also the appendices B.3, and C.1), and inserts the resulting quantities into
the dictionary.

The main body of the algorithm is in the pseudo-code 10, where we perform
the sum of the quantities I multiplied by the branching ratio and the quantities B,
resulting in the values of RIII,KK ′

Q . It is straightforward to observe that this method
automatically minimizes the number of evaluations of the integral over y in the
Equation (4.6), namely the fourth dimension of the problem (and consequently
it minimizes the number of evaluations of the Faddeeva function).
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Algorithm 9: Query and manage the dictionary {I}.
1 Function Q({I} , FGrid

(U ,Θ,r),
�

M1, M2, c, M3, M4, c′
�

):

2 key :=
�

M1, M2, c, M3, M4, c′
�

3 conj_key :=
�

M1, M2, ¬c, M3, M4, ¬c′
�

4 if key ∈ Keys ({I}) then
5 I(M1, M2),(M3, M4) := get ({I} , key)

6 else if conj_key ∈ Keys ({I}) then
7 I(M1, M2),(M3, M4) := get ({I} , conj_key)

8 else
9 I(M1, M2),(M3, M4) :=

Gauss_Kronrod
�

I
:
(Θ,a,u)

�

u′, M1, M2, c, M3, M4, c′
�

�

∀ u, u′ ∈ FGrid
(U ,Θ,r)

10 insert
�

{I} , key, I(M1, M2),(M3, M4)
�

11 return I(M1, M2),(M3, M4)
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Algorithm 10: Calculation of RIII,KK ′

Q in its angle-dependent formulation.

Input: Θ, a, U , ||B||,
an atomic model with Ju, Jℓ
the local status of the atmosphere.

1 Build the frequencies grid FGrid
(U ,Θ,r) for the parameters Θ, a and ||B||

for each u ∈ U .
2 Init a dictionary

¦

R
III,KK ′

Q

©

with key
�

K , K ′, Q
�

.

3 Init a dictionary {I} with key
�

Mu, Mℓ, c, M ′u, M ′
ℓ
, c′
�

4 α̃Q is the branching ratio function for RII of the given atomic model.

5 βK ′′
Q is the branching ratio function for RIII of the given atomic model.

6 foreach K , K ′, Q ∈ T do

7 I(Mu,Mℓ),(M ′′u ,M ′
ℓ
) := Zeros

�

FGrid
(U ,Θ,r)

�

.

8 I(Mu,Mℓ),(M ′′′u ,M ′
ℓ
) := Zeros

�

FGrid
(U ,Θ,r)

�

.

9 I(M ′u,Mℓ),(M ′′u ,M ′
ℓ
) := Zeros

�

FGrid
(U ,Θ,r)

�

.

10 I(M ′u,Mℓ),(M ′′′u ,M ′
ℓ
) := Zeros

�

FGrid
(U ,Θ,r)

�

.

11 for K ′′ = |Q| . . . 2 Ju do
12 foreach Mu, M ′u, Mℓ ∈MIII (Ju, Jℓ) do
13 BK ′′K ′QMuM ′uMℓqq′ := Set by using Equation (A.8)

14 foreach M ′′u , M ′′′u , M ′
ℓ
∈MIII (Ju, Jℓ) do

15 BK ′′KQM ′′u M ′′′u M ′
ℓ
q′′q′′′ := Set by using Equation (A.8)

16 a :=
�

βK ′′
Q − α̃Q

�

BK ′′K ′QMuM ′uMℓqq′BK ′′KQM ′′u M ′′′u M ′
ℓ
q′′q′′′

17 I(Mu,Mℓ),(M ′′u ,M ′
ℓ
) += a Q({I},

�

Mu, Mℓ,false, M ′′u , M ′
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22 if Θ ∈ {0,π} then
23 m := π−5/2
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4.4 Parallelization

In this chapter, we observed that the calculation of emission coefficients consists
of two main phases, i.e. the calculation of the quantities RII,KK ′

Q , followed by the
quadrature of the emission coefficients. In the first phase (see Section 4.2), we
build the data set Gβ , where the calculation of each entry, which depends on u
and Θ, is independent of the other entries. Thus, in each process of a parallel
application, we calculate all values of RII,KK ′

Q for all u and u′ associated with a
single scattering angle independently. In the second phase, where the emission
coefficient is calculated (see algorithm 6), we observe that the calculation of each
outgoing frequency and Stokes parameter is an independent quadrature, and
therefore, also in this case, we subdivide and parallelize the procedure using
a pool of independent processes. To implement these methods, in both cases,
we used the producer-consumer model, where a fixed number of processes (or
consumers) receive jobs through a synchronized queue filled by a producer. We
developed these methods using the standard C++ thread library.

In “productive” applications, for the considered case of the Ca I 4227 Å line
(in the FAL-C model), the average time to compute the emission vector in one
direction and all frequencies, taking into account all contributions to the emis-
sion coefficient (considering RIII−CRD), is ∼ 0.03 sec on a 20-core Xeon CPU (USI
cluster).

In the case of RIII (see section 4.3), since it is impossible to compute the quan-
tities R

III,KK ′

Q in their angle-dependent form on the fly (as we do with R
II,KK ′

Q ),
they are precomputed and stored out-of-core (practically in the scratch drive).
To compute these quantities, we again used a producer-consumer model built in
MPI1 and distributed across many nodes and processes of a supercomputer. This
approach allows the workload within the processes to be self-balancing so that
no process goes into a wait state. Avoiding waiting states is necessary since the
computation time on each node of the mesh is highly variable. Since the two
algorithms have the same structure and the only real difference is in the calcula-
tion of the quantities RII,KK ′

Q and R
III,KK ′

Q , in the second phase (where the emission
vector is calculated) we applied the same strategies as for RII.

1MPI Forum: https://www.mpi-forum.org/

https://www.mpi-forum.org/
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Chapter 5

High-performance programming
strategies

The calculation of the emission vector ϵ ℓ,I I is a challenging task due to the diffi-
culties described in the previous chapters, resulting from the complexity of the
involved RII redistribution matrix. In Chapter 4 we introduced an algorithm for
the efficient calculation of ϵ ℓ,I I , which takes advantage of the repetition of the
scattering angles (resulting from the geometry of some angular grids) and the
property of the functions.

However, simply implementing the above strategies is not enough to achieve
optimal performance. In fact, to take full advantage of modern CPUs, it is essen-
tial to design the data structures and algorithms taking into account the design
and hardware characteristics of superscalar CPUs or GPUs.

5.1 Introduction to the computation of the RII ma-
trices

The computation of RII matrices, followed by the quadrature of the emission vec-
tor, is the most time-consuming task due to the large number of matrices to pro-
cess. Practically, it requires about the 80% of the time-to-solution (TTS) in the
Ca I 4227 Å line (note that the Faddeeva function computation needs less than
the 5% of the TTS, see also Tab. 4.1, Eq. (1.16), and Sect. 2.2).

To give an idea of the size of the problem, we consider the typical mesh for
the Ca I 4227 Å line in the atmospheric model C from Fontenla et al. (1993)
(a.k.a. FAL-C, see also Chap. 7). In the discretization of this problem, the number
of discrete frequencies in the grid U is 99, the size NΩ of the angular grid S is

83
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96 (see also Section 1.8.2), and the average size of the quadrature grid over
the incoming frequencies ν′ for one outgoing frequency is in average Nβ ≈ 150
nodes. Therefore, to compute the emission vectors for all outgoing directions
and frequencies at a spatial point ri, it is necessary to compute

Nβ × Nν × N 2
Ω
≈ 136× 106

RII matrices. If we perform the calculation in float64 format (see remark 5.1),
it is theoretically necessary to use about 16 GB of DRAM to store all these matri-
ces.

We should also note that to solve the RT problem in a 3D atmospheric model,
it is essential to compute the emission vectors for many spatial points on each
computing node (at least one per CPU core) of a supercomputer. Considering
that the latest HPC systems1 typically have 64 cores per node and a maximum
of 512 GB of DRAM, it is easy to conclude that it is impossible to store all the
necessary RII matrices in DRAM and reuse them in each iteration. We must also
point out that in practical 3D applications, due to the large memory requirements
needed to store the radiation field and the data to solve the linear system, it is
difficult to additionally store the sets of all RII,KK ′

Q as a function of the scattering
angles (see also the methods introduced in Chapter 4, Sec. 1.8.2, and Benedusi
et al. (2023)). For these reasons, it is necessary to implement a highly efficient
method that does not require a large amount of memory (in particular, it is im-
perative to compute the RII matrices, and the emission vectors ϵ ℓ,I I , as fast as
possible by minimizing the amount of used memory and its transfer).

To achieve this goal, we designed optimal data structures that allowed us to
develop applications that use the CPU with an efficiency close to the theoretical
maximum (it should also be noted that high-performance applications can reduce
energy consumption despite the high peak power absorption of the CPU (e.g.
Padoin et al., 2012)). The main necessary step to achieve this goal is to design
data structures that respect the spatial locality of the data. Namely, the data
accessed via the indices of the innermost loops must be contiguous in memory. If
this requirement is met, it is possible to implement a highly efficient algorithm.

Remark. Due to the very large ratios (≫ 106) between the maximum and minimum
values (of variables and parameters) that occur in both emission vector calculations
and atmospheric models, it is preferable to use the float64 format to ensure
numerical stability.

1The TOP500 project

https://www.top500.org


85 5.1 Introduction to the computation of the RII matrices

Structure of this chapter

Part I: Computer systems architectures

• Section 5.2 briefly introduces the architectural concepts of modern super-
scalar CPUs.

• Section 5.3 introduces the problem of the memory management in com-
puter systems, pointing out that this is the most critical aspect to be con-
sidered in algorithms development.

• Section 5.4 introduces the GPUs.

• Section 5.5 briefly introduces the Tensor processors.

Part II: Performance analysis and data structures

• Section 5.6 proposes the roofline model as a performance analysis method
and demonstrates its high reliability with some examples.

• Sections 5.7, 5.8, and 5.9 introduce data structures and the manipula-
tions necessary to implement a simple and fast procedure for the computa-
tion of the RII matrices. Finally, we apply the roofline model as a method to
decide the most appropriate computer system architecture to execute this
procedure.

Part III: Practical applications and bechmarks

• Section 5.10 introduces the three main programming strategies, based
on SIMD, that allow the development of a nearly-optimal routine.

• Section 5.11 presents the results of some benchmarks where, by apply-
ing the roofline model, we demonstrate the near-optimality of the method
introduced in this Chapter.

• Section 5.12 proposes two alternatives strategy for the computation of the
emission vector.

• Section 5.13 provides the conclusions.
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5.2 CPU architecture and concept used in
high-performance programming

The goal of this section is to introduce the basic concepts and terminology used
in high-performance programming in a way that allows a complete and reliable
analysis of the code used to compute the RII matrices, and thus to present a
general methodology that has been used in the other parts of this project or can
be applied to other numerical applications. Although in this section we refer to
the x86-64 architecture (Intel Xeon and Core or AMD’s Epyc and Ryzen CPUs),
all the concepts discussed here can be applied to other architectures (such as
ARM, Apple M, and IBM Power).

5.2.1 Superscalar CPUs

A superscalar CPU is a microprocessor architecture that can hold and execute
multiple operations (per core) simultaneously. This result is achieved by several
mechanisms that we will describe in this section.

In CPUs and GPUs, the Program Counter (hereafter PC) is a register that stores
the address of the instruction to be dispatched, and when the current instruction
is fetched, the value of PC is incremented by 1 (i.e., it stores the address of the
next instruction).

In a CPU (and similarly in GPUs), the execution flow of a program is con-
trolled by instruction pipelining, where each stage of one instruction is processed
simultaneously with the next stage of the previews instructions (the main stages
of a CPU pipeline are Instruction Fetch, Instruction Decode, Execution, Memory
Access, Register Write Back).

In superscalar CPUs, the execution unit (a.k.a. core) consists of N ports that
can simultaneously hold up to N instructions in execution. Note that the cores
in a CPU are independent of each other and are used for parallelism between
threads or processes (symmetric multiprocessing), although ports are interde-
pendent and are used to parallelize the execution flow of a program (one thread
or one process) by applying the instruction level parallelism (e.g. Hennessy and
Patterson, 2019).

Figure 5.1 shows a scheme of the Intel Golden Cove CPU microarchitecture,
where the structure of the pipeline is visible and each port P0 . . . P11 controls a
set of arithmetic logic units (ALU) and a set of address generation units (AGU).
For example, port 0 (P0) controls the set of integer (INT) ALUs and the set of
VEC (SIMD) units. Ideally, in the case of the Golden Cove microarchitecture, in
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the best-case scenario, up to 11 simultaneous operations can be kept running.

2-8

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.3.1 Golden Cove Microarchitecture Overview
The basic pipeline functionality of the Golden Cove microarchitecture is depicted in Figure 2-1.

Figure 2-1. Processor Core Pipeline Functionality of the Golden Cove Microarchitecture
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Figure 5.1. Basic schematic representation of the Intel Golden Cove microarchi-
tecture. Observe that ports 0, 1, and 5 have SIMD capabilities, and port 5 has
AMX extensions (see also Sect. 5.5). Source: Intel® 64 and IA-32 Architectures
Optimization Reference Manual Figure 2-1.

One of the most remarkable ideas introduced in superscalar CPUs is the so-
called "speculative execution", i.e. the ability to execute the most likely branch of
the program (e.g. branch prediction) before the results of the current operations
necessary to decide the effective branch are ready.

In high-performance programming, we are particularly interested in cache
prefetching, which is the ability of CPUs to speculatively move data from the
main memory (DRAM, which typically has a relatively slow access time) to the
CPU’s cache before it is used (or referenced). The simplest way to successfully use
cache prefetching is to respect the locality of the data so that the CPU can easily
copy into the cache the data that will be used. Note that cache prefetching is
speculative, so there is no guarantee that the copied data will be used effectively.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf


88
5.2 CPU architecture and concept used in

high-performance programming

The successful cache pre-fetching rate is measured by the mean of the Prefetching
accuracy2, i.e:

Prefetching accuracy=
Used prefetches

Missed prefetches+Used prefetches
, (5.1)

where "Used prefetches" is the number of prefetches actually used by the pro-
gram, and "Missed prefetches" is the number of failed prefetches. We must note
that the prefetching accuracy strongly depends on the execution flow of the pro-
gram and the design of the data sets.

As explained at the beginning of this section, a superscalar CPU can per-
form multiple operations simultaneously. Therefore, the execution flow of the
program must be designed so that the CPU workload is always close to the theo-
retical maximum. Throughput and latency are used to measure CPU workload.

Throughput refers to the number of results returned per unit of time, while
latency refers to the units of time required to perform a single operation. It is
easy to see that throughput and latency in superscalar CPUs are not directly re-
lated. This is because superscalar CPUs have many ports that can hold more than
one operation in execution simultaneously, starting subsequent instructions on a
free port while other ports are executing previously started instructions, so that
the operations required to read and move results from registers to their destina-
tions in the main memory (or vice versa) can be performed simultaneously with
mathematical and logical operations (see also Figure 5.2).

Another important concept is the resource pressure, which is the ratio between
the number of operations being performed and the number of operations that
could be performed simultaneously. Low or zero pressure means that the CPU is
working at maximum efficiency.

Metrics like resource pressure, throughput, and latency are used by static
analysis tools (such as llvm-mca3) to measure (or predict) the efficiency of a pro-
gram. For example, an average resource pressure greater than one can indicate
a poorly optimized execution flow or too much time spent in a waiting state.

To optimize execution flow and consequently improve performance, modern
CPUs use out-of-order execution (Hennessy and Patterson, 2019), which is the
ability to reorder the sequence of program instructions so that the time spent in
the waiting state is minimized. For example, in algorithm 11, operation 1 (OP
1) has a latency of 4 and writes its result to register R3; it is easy to see that if

2The Prefetching accuracy and other metrics related to the execution flow of a program can
be measured through a profiler, e.g. Linux Perf (https://perf.wiki.kernel.org/
index.php/Main_Page, see also Bakhvalov et al. (2020))

3llvm-mca - LLVM Machine Code Analyzer

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://llvm.org/docs/CommandGuide/llvm-mca.html
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Figure 5.2. Schematic representation of the execution flow (aka timeline) of a
superscalar CPU with a throughput of 2 (it can start two operations per unit of
time), 8 ports (it can hold 8 simultaneous operations in execution), and a latency
of 4 (the result of each operation is returned after 4 units of time). Because of
the latency, we can only use the results of the first or second operation by the
9th or subsequent operations. If the result of operation 1 (or 2) is used before
operation 9th, the execution flow is suboptimal (hence the effective throughput
is less than 2). On real CPUs, the actual latency varies depending on the opera-
tion and execution flow. For this reason, when implementing high-performance
code, it is important to fragment the computation into its basic steps so that the
compiler can apply the most appropriate optimizations and the CPUs maximizes
the throughput.

the CPU respects the in-order execution, it must wait for OP 1 to finish in order
to execute OP 2, since it depends on the result of OP 1 (which is written to R3),
although Operation 3, which is independent of the previews, could be executed
at the same time as OP 1. In a superscalar CPU, the most convenient execution
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order is the second, where the execution order of OP 2 and 3 is swapped, and
sent to two different ports. CPUs with out-of-order capability can detect depen-
dencies between microoperations and automatically reorder the execution flow
in a way that maximizes throughput, this is typically done by using Tomasulo’s
algorithm (Hennessy and Patterson, 2019, Chap. 3). In addition, compiler opti-
mizers can detect dependencies between instructions and automatically reorder
the execution flow to improve throughput (in some cases, this operation should
also be done by the programmer).

Algorithm 11: Out of order execution flow
In-order execution flow:
1. ADD(R1, R2)→ R3 ▷ Latency = 4
2. MUL(R3, R4)→ R4 ▷ Wait until the result in R3 is ready
3. MUL(R6, R4)→ R5 ▷ It is independent from the previews ops

Out-of-order execution flow:
1. ADD(R1, R2)→ R3 ▷ Latency = 4
3. MUL(R6, R4)→ R5 ▷ It can be executed simultameously with op1
2. MUL(R3, R4)→ R4 ▷ If last the waiting time reduces

5.2.2 SIMD operations (AVX)

One of the most powerful features available in modern CPUs for developing nu-
merical applications are SIMD arithmetic operations (Single Instruction Multiple
Data) or vector operations (AVX on x86 CPUs). The main advantages of SIMD
operations over GPUs are that they do not require the huge amount of data trans-
fer that is normally required on GPUs, and the second remarkable property is that
they can take advantage of all the advanced features of CPUs mentioned above.
These advantages make the use of SIMD operations on CPUs particularly suit-
able for memory-bound, unstructured, or highly fragmented applications. AVX
extensions are successfully used in many numerical applications, such as Intel
MKL, video editing (e.g., the x265 encoder), image processing, and so on.

On x86 CPUs, the use of AVX operations is generally exploited by using the
immintrin.h4 library.

With the AVX2 extensions in float64, it is possible to perform SIMD oper-
ations on vectorized registers of 4 elements (and 8 for the float32 format), so
we could expect an ideal speed-up of 4 (see also Figure 5.3), while on AVX512,
the size of the vectorized registers is 8 (in float64).

4See also Intel® Intrinsics Guide

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
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Figure 5.3. Schematic representation of the AVX2 and AVX512 registers (labeled
ymm and zmm, respectively). Most recent CPUs with AVX512 extensions have
32 vector registers, while those with AVX2 have 16. With AVX2, the length of
a register is 256 bits so that SIMD operations can be performed on vectors of 4
elements in float64 or 8 elements in float32. With AVX512, the length of
a register is 512 bits, which doubles the size for SIMD operations.

AVX instructions include elementary arithmetic operators, comparisons, re-
ductions (greatly extended in AVX512), type conversion, shuffling, and only in
AVX512: convolution accelerator, and masks. A class of operations that are very
useful for operations on complex numbers, available in AVX (and thus useful
for calculating RII matrices), are the fused multiplication and addition (FMA), i.e.
FMA (a,b,c) = ±a∗b±c (some CPU models feature 4 FMA units, so the CPU can
hold up to 4 FMA operations in execution simultaneously)5.

A method to estimate the maximal peak performance (in FLOPS) of a CPU is
given in the following equation (Bakhvalov et al., 2020):

Peak_FLOPS= #Cores×
#Bits(SIMD vector)
#Bits(Float Word)

× 2×Clock , (5.2)

where 2 is the number of FLOP of an FMA operation. It should be noted that the
5Hardware support for FMA operators is also provided on NVidia GPUs.
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above equation is incomplete as it does not take into account the latency and the
configuration of the CPU ports; for this reason, in this work, we preferred to use
the performance specifications published by the manufacturer, which in practice
have proved to be more reliable.

5.3 Memory Hierarchy and Bandwidth

Perhaps the most critical feature of modern computer systems is memory man-
agement (cache, HBM, DRAM, and hard drive). The impact of memory and es-
pecially the memory bandwidth (i.e. the data transfer rate between the memory
to/from the CPU) is of high relevance in the majority of numerical algorithms,
including the computation of the emission vector. This arises from the fact that
since about 2001, the computational capacity of CPUs and GPUs grows faster
than the memory bandwidth (e.g. Solihin, 2015; Clapp et al., 2015). The result
of this evolution is that the memory bandwidth (or equivalently, latency or access
time) is, in the majority of cases, the most important technical specification to be
considered in the design of algorithms and computer systems (see also Sect. 5.6).
This is because the computational capacity of CPUs or GPUs to process data is far
superior to the capacity of the memory channels to transfer the required data.
In superscalar CPUs and GPUs, memory access time is typically inversely pro-
portional to physical distance and capacity. For example, hard drives with large
capacity that are physically far from the CPU will have a low transfer rate. On
the opposite, the L1 cache, which has a small capacity and is physically close to
the CPU, shows a very high transfer rate.

In computer systems, the memory is, typically, organized in a hierarchy of
three layers of cache, normally embedded in the CPU packaging, the external
main memory DRAM and the hard drive. The cache is used to store the portions
of data or programs that are most likely to be used (this is generally done through
the prefetch and the speculative execution). The access times for the three levels
of cache and DRAM are reported in Table 5.1.

The read/write activity to the main memory (DRAM) is typically made through
different parallel memory channels, whose number can vary from 2 in consumer
CPUs up to 12 in server or HPC CPUs. The addressing of memory pages is nor-
mally interleaved to the channels so that the words with addresses N , N+mWL . . .
for m < #Channels are physically stored in different memory slots and can be
transferred to the CPU in parallel (in modern CPUs, the word length WL is of
64 bits). This highlights the importance of designing the data management and
algorithms where the locality of the data is respected (see also the roofline model
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Memory component Latency [cycles] time [ns]

L1 Cache 4 1
L2 Cache 10 - 25 5 - 10
L3 Cache 40 20
DRAM >200 100

Table 5.1. Typical latency of memory components in modern computer systems,
source (Ch. 4 Bakhvalov et al., 2020). Comparison of latencies and times empha-
sizes the importance of developing programs that allow efficient data prefetch-
ing.

in Sect. 5.6, and Sect. 5.7).

HBM and the Fugaku supercomputer

The most recent CPU models equipped with High Bandwidth Memory (HBM)
technology can achieve up to 1000 GBytes/sec of bandwidth. One of the most
interesting consequences of the use of HBM is the Fugaku supercomputer (see:
www.top500.org), where HBM is the main technology that allows this CPU-only
machine to outperform supercomputers equipped with GPUs. The CPU model
used in the Fugaku is the Fujitsu A64FX which is based on the ARM architecture
and has 48 cores. This CPU, equipped with 512-bit SIMD units, shows a peak
performance of 2.7 TFLOPS6 in float64, which is comparable to that of In-
tel Xeon CPUs with a similar number of cores and AVX512. Therefore, the only
technology that allows the Fugaku supercomputer to outperform GPU-based su-
percomputers is the very high memory bandwidth of 1000 GBytes/sec (i.e. HBM)
provided by the CPUs used in this machine.

HBM has also recently been introduced in the Intel Xeon Max CPU series.
Finally, HBM is used as the internal memory of GPUs (e.g. the NVidia A100),
and in many applications the main advantage of GPUs is given primarily by the
internal bandwidth, which is usually very high (see Sect. 5.6, and Tab. 5.3).

6Fujitsu Presents Post-K CPU Specifications

https://www.top500.org/system/179807/
https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html
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5.4 GPU - Graphic Processor Unit

5.4.1 Introduction

The main idea of GPU (Graphic Processor Unit, or SIMT Single Instruction Multi-
ple Threads) is based on the fact that numerous numerical applications consist of
relatively simple functions applied to each node of large and structured datasets.
GPUs were originally developed for gaming applications and video acceleration
support, in which the vast majority of numerical operations consist of texture
manipulation (e.g., image anti-aliasing, projection, etc. . . . ) and geometric op-
erations in homogeneous coordinate systems on very large meshes (that is, linear
operations on 4× 4 matrices). Only later they were used in scientific computing
and other numerical applications.

5.4.2 GPU in scientific computing

In scientific computing, applications with similar characteristics include time-
dependent finite differences or Monte Carlo integration methods. All these ap-
plications have in common that the execution flow of the program is identical
(and non-divergent) at each node of a structured data set. Therefore, these op-
erations can be performed simultaneously on parallel and synchronized ALUs
(a.k.a. CUDA Core, Vector Lane, Thread Processor, Stream Processors) sharing
the same program counter (PC). This means that the same operation of the same
program is performed on each ALU of the GPU (i.e. the ALUs are controlled by
the same PC) by operating on different data. Obviously, in this class of applica-
tions, the access to the data should be relative to the node, so that the indices of
the vectors containing the data can be calculated by simple arithmetic operations
and do not need to be extracted by maps, lookup tables, or search algorithms.

It is easy to conclude that the main architectural idea of GPUs is to have a large
number of ALUs sharing the same Program Counter and other logic components
so that the same program is executed in a synchronized manner on a set of ALUs
by operating on different data.

With GPUs, the main goal is to organize the workload of a program into a
grid of threads, where each thread is associated with an absolute grid coordinate
that is used to retrieve data. Threads are thus grouped into blocks (WARPs on
NVidia GPUs) and executed in parallel. Due to these characteristics, a GPU can
achieve very high throughput when operating under optimal conditions.
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Difference between SIMD (on CPU), and SIMT (on GPU):

• In SIMD, variables are declared as vectors and the program must
explicitly call vectorized operations.

• In SIMT, variables are declared as scalars, and the GPU logic auto-
matically spawns operations on scalars into vectorized operations.

5.4.3 Architecture of NVidia GPUs

A GPU is designed to spawn a scalar program (kernel) into a very large number
of threads executed in parallel on a large set of vectorized processors. The main
processing unit at the center of the mechanisms allowing this massive and au-
tomatic vectorization is the Streaming Multiprocessor (hereafter SM, Figure 5.4).
An Nvidia GPU is a grid of SMs that is designed to perform this vectorization
efficiently.

An SM consists of 2 or 4 GPU-SIMD units of 32 float32 or 16 float647

elements. Each element of a GPU-SIMD unit is called Thread Processor (hereafter
TP, a.k.a. Stream Processors, or CUDA core). It is important to note that all TPs
in an SM share the same Program Counter (PC), Shared Memory, and L1 cache.
We must observe that in Hennessy and Patterson (2019) the SM is called Mul-
tithreaded SIMD Processor highlighting the numerous similarities of an SM with
a SIMD unit. In addition, the TPs in a GPU-SIMD unit also appear to share the
same Register File (although NVidia has not yet disclosed any technical descrip-
tions of how the Register File is designed and managed by the SM, it is quite
obvious that TPs simply operate on one index of vectorized registers). On most
recent GPUs, the GPU-SIMD units are alternatively an equal number of Tensor
Core. In general, an SM can be said to be a set of GPU-SIMD units that operate
on vectorized registers of 16 or 32 elements, or a TPU that operates on 4×4 tiles
(see also 5.5).

Finally, a GPU consists of a set of SMs that share the same L2 cache (Figure
5.5), internal memory, and PCI port (Newer GPUs, such as the NVidia A100, have
two independent L2 cache blocks). Since the L1 and L2 caches are shared, the

7Hardware support for the float64 format is limited to GPU models dedicated to high-
performance computing or data centers. Consumer GPU models (e.g. NVidia GTX series) only
provide hardware support for single precision (float32) floating-point numbers.
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total amount of cache memory per TP is usually small8 and access to the cache
is concurrent. GPU memory is accessed through a series of parallel memory
channels, the number of which varies from 4 in consumer GPUs to 12 in HPC
GPUs (NVidia A100 has 12 memory channels).

On GPUs, the hardware is optimized to handle the massive concurrency gen-
erated by threads on L1 and L2 cache and internal memory and to control the
workload of different SMs by assigning the correct set of threads to each. GPUs
do not have out-of-order or speculative execution (like superscalar CPUs). There-
fore, these types of optimizations are left to the compiler (at the cost of a signif-
icant loss in execution efficiency).
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Figure 5.4. Schematic representation of a Streaming Multiprocessor of an NVidia
GPU

8In the NVidia A100 there are in total 40 Mb of L2 cache and 3456 float64 TP. Which
results in ∼ 11 Kb of L2 cache per TP. While in the Intel Golden Cove Microarchitecture, there
are 2+1 ports with AVX512 (SIMD) capabilities for a total of 16 vectorized operations per core,
considering 2Mb of L2 cache per core this results in ∼ 125 Kb of L2 cache per float64 vector
element. Moreover, on CPUs, the L2 cache is not shared between cores.



97 5.4 GPU - Graphic Processor Unit

On an NVidia GPU, threads are executed in WARPS. A WARP consists of a set
of at most 32 threads. All threads in a WARP are controlled by the same PC, i.e.
their execution is synchronized, or in other words, all threads in a WARP execute
the same instruction at the same time, but on different data. The resources of
each WARP are limited by the sizes of the register file, shared memory, and the L1
cache. If WARPs require more resources than are physically provided by the SM,
the GPU scheduler, to satisfy the requirements reduces the number of WARPs that
can be executed simultaneously on an SM. This operation greatly reduces GPU
parallelism and typically occurs when a complex program is executed (it should
be noted that in some cases reducing the number of threads per SM can improve
the efficiency and consequently the throughput of a GPU (e.g. Lashgar et al.,
2012)). In the case of a divergent execution flow within a WARP, the scheduler
of the SM executes one branch at a time so that all threads with a different
execution flow enter a wait state (the classic example is the if-else statement).
Finally, the execution of a WARP does not terminate until all threads belonging
to it have finished.
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Figure 5.5. Schematic representation of an NVidia GPU. TPC stands for Texture
Processor Cluster, and GPC stands for Graphics Processing Cluster.

On NVIDIA GPUs, threads are grouped into Threading Blocks (hereafter TB),
each of which is a set of at most 1024 threads. Finally, threads belonging to a
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TB are packed into different WARPs. The GPU scheduler organizes the execution
flow so that all WARPs owned by a given TB are executed on the same SM, al-
lowing threads in the same TB to share the same Shared Memory (see also figure
5.6). It is important to note that WARPs running on different SMs do not share
the same PC.

This architecture allows the scheduler to load and execute a WARP in an SM
while other WARPs are running on other SMs. Consequently, the execution of
different WARPs, owned by different TBs, is independent of each other, which
means that execution times can be different and execution flows between differ-
ent WARPs running on different SMs can diverge.

The shared memory is a low-latency memory that can be directly referenced
by applications in the CUDA source code and used as a local and fast memory
within a TB, and SMs access to it through a multichannel bus (Ding and Williams,
2019).

A CUDA kernel (i.e., thread) is executed by specifying the number of thread-
ing blocks and the number of threads per block (recall that the number of threads
per WARP is fixed [32] or decided by the scheduler). The exact coordinate of a
thread in the grid can be retrieved through some built-in variables assigned by
the scheduler, i.e:

threadIdx.x: is the id of the current thread (inside a block).
blockIdx.x: is the id of the current threading block.
blockDim.x: is the number of threads in a block.
gridDim.x: is the number of blocks in a grid.

Where the absolute index of a thread in the grid is given by:
int tid = threadIdx.x + blockIdx.x * blockDim.x;

The primary limitation of a GPU is its access to the main memory (DRAM) through
the PCI, which is typically slow and limits the classes of algorithms that can be
efficiently implemented on a GPU (see also Section 5.6).
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Figure 5.6. Schematic representation of the execution flow of an NVidia GPU
with L SMs. Each threading block has N WARPs (WP) which are executed on
the same SM by sharing the shared memory (Sh.M.), L1 cache, and the register
file (R.F.).

5.5 TPU - Tensor Processor Unit

Probably the most interesting (upcoming) evolution in microprocessor function-
ality in recent years is the introduction of the so-called TPU (Tensor Processor
Unit) or MMU (Matrix Multiplication Unit). Manufacturers are gradually intro-
ducing TPUs in their CPUs, and GPUs architectures, e.g. Apple’s M-Architecture
(Neural Engine) and Google’s mobile (and cluster) CPUs (both based on ARM
architecture), NVidia has introduced the Tensor Core in its latest GPU models,
Intel has introduced the AMX extensions (Advanced Matrix Extensions) in the 4th

generation Xeon CPUs, and finally AMD the CDNA architecture. We must also
note that these tensors (AI) accelerators are frequently implemented in FPGA or
ASIC processors and are also growing the idea of analog computers9.

In practice, TPUs consist of CPUs equipped with matrix registers (two-dimen-
sional registers or tiles) and the hardware capability to directly perform the ma-
trix Multiply-Accumulate operation (i.e., C = AB + C where A, B, C ∈ RN×N and
N ∈ {4,8, 16}) between tiles with machine instructions, and possibly other op-
erations on matrices.

Although TPUs are currently used almost exclusively in deep learning ap-
plications, in practice they can be used in other numerical applications as well.
This makes them very attractive for the development of new scientific computing

9The Femtojoule Promise of Analog AI

https://spectrum.ieee.org/analog-ai
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applications.
The main advantage of CPUs equipped with TPUs is that they can outperform

GPUs in applications that traditionally perform better on GPUs (allowing for sig-
nificant source code simplification). On the GPU side, the use of Tensor Core
features allows a peak performance that is far superior to the approach based on
the SIMT paradigm on the same GPU model. The disadvantage of TPUs is that
they are currently limited to the float16 and float32 formats. But prob-
ably the biggest disadvantage is that the technical specifications released by the
vendors are currently minimal or null (for example, Apple has not yet released
any technical specifications for its Neural Engine extensions) and the software
support is still incomplete.
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5.6 Roofline model

The roofline model (a.k.a. roofline analysis), first introduced in Williams et al.
(2009), is a very effective visual analytical tool for comparing the measured
throughput (a.k.a. performance) of an algorithm with its theoretical maximum
performance on a given computer system. The main advantage of the roofline
model is that it makes it possible to perform the performance analysis of an algo-
rithm starting from the technical specifications of the computer system, namely
the CPU and DRAM models, and the time and space complexity of the algo-
rithm itself. This makes it easy to determine the execution efficiency of a pro-
gram, it allows us to decide a priori which computer system (architecture) is
the most appropriate to execute an algorithm, and it also allows us to easily un-
derstand which types of optimization strategies are best suited to improve the
performance.

5.6.1 Operational intensity

The effective performance of an algorithm (or program) is highly dependent on
the amount of input data required to achieve the result and on the size of the re-
sult itself (output) combined with the number of arithmetic and logic operations
necessary to complete it.

For this motivation, we must distinguish between programs that have a high
data transfer rate and those that have a low data transfer rate. Typical examples
of programs that require a high data transfer rate are operations on matrices or
vectors, such as transposition and multiplication of matrices, the dot product,
etc. On the other hand, programs that require a low transfer rate are iterative
algorithms, such as Monte Carlo methods or Taylor expansions. In practice, it is
necessary to measure how many arithmetic operations are necessary to complete
the algorithm given a data set with a specific size. This can be done using the
idea of operational intensity (a.k.a. arithmetic intensity).

The operational intensity is defined as the ratio between the total number
of FLOP (floating point operations) and the size of the input and output data
sets (measured in bytes) necessary to complete the algorithm. Given a program
PN where the sizes of the input and output data sets and the total numbers of
operations are a function of N the operational intensity, IOP (·), is defined as:

IOP (PN ) =
F (PN )
B (PN )

�

FLOP
Byte

�

, (5.3)

where F (PN ) are the FLOPs performed by the program for an input data set of
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size N , and B (PN ) is the total size in bytes of the input and output data sets
(e.g. Williams et al., 2009; Ofenbeck et al., 2014; Hennessy and Patterson, 2019;
Bakhvalov et al., 2020). More generally, it can be said that the operational in-
tensity is asymptotically proportional to the ratio between the time complexity,
and space complexity (see also Sipser, 1996, chapters 7 and 8).

A program is said to be compute-bound if its operational intensity is large,
while it is said to be memory-bound if its operational intensity is small. The
boundary between these two classes of applications and their properties depends
on the computer system and will be discussed in the following sections.

Examples of operational intensity

Operational intensity of the dot product

A dot product of two real-valued vectors of size N requires N multiplications and
N − 1 additions. Therefore, the total number of arithmetic operations is 2N − 1.
The total amount of input and output data is 2N + 1, consisting of the sizes of
the two input vectors and the result, which when multiplied by the size in bytes
of a floating point number (e.g. 8 bytes for a float64 number) gives the total
amount of bytes transferred. Thus, the operational intensity of the dot product
is:

IOP (DotN ) =
2N − 1

sizeof (float) (2N + 1)
. (5.4)

It is straightforward to show that for large N the operational intensity of the dot
product converges asymptotically to sizeof (float)−1. Therefore, it is, in any
case, a memory-bound operation.

Operational intensity of dense square matrix multiplication

A dense matrix multiplication consists of N 2 dot products. Then the total num-
ber of operations is N 2(2N − 1). The total amount of data transferred is 3N 2.
Therefore, the resulting operational intensity is:

IOP (MatMultN ) =
2N 3 − N 2

sizeof (float) 3N 2
, (5.5)

where we can observe that it grows linearly with N . Thus, the multiplication
of dense matrices is not necessarily a memory-bound operation, since for suffi-
ciently large N it is a compute-bound operation.
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Note about matrix multiplication: It is important to note that the operational
intensity in equation (5.5) is ideal. This is because the amount of memory trans-
ferred is highly dependent on the effective implementation of the algorithm. For
example, the "school book algorithm" consisting of N 2 dot products has an ef-
fective operational intensity much closer to that of the dot product than to the
ideal one given in equation (5.5), and it is for this reason that the development
of algorithms for dense matrix multiplication is difficult (see also Goto and Geijn,
2008).

Operational intensity of dense matrix transposition

Matrix transposition is a limit case of a mathematical operation with an opera-
tional intensity that is equal to zero, since no floating-point operations are per-
formed. For this reason, the development of efficient matrix transposition al-
gorithms is challenging in any case, since it is an operation in which only data
transfer is performed and it is impossible to respect the locality of the data. Thus,
in numerical applications, the matrix transposition must be limited to the strict
minimum necessary.

5.6.2 Roofline function

The roofline RLINE (·) is a function that expresses the fact that the maximum
throughput, measured in floating-point operations per second (FLOPS), of a pro-
gram with a characteristic operational intensity is limited by both the bandwidth
(the transfer rate between the CPU and DRAM, measured in bytes/second) and
the theoretical peak performance of the CPU (measured in FLOPS), which is de-
fined as follows:

RLINE (IOP (PN )) =min {FLOPSMAX , MBWMAX × IOP (PN )} , (5.6)

where FLOPSMAX is the (theoretical) peak floating point operations per second
of the given CPU, MBWMAX is the maximal memory bandwidth in bytes per
second between the CPU and DRAM, and IOP (PN ) is the operational intensity
(Williams et al., 2009).

In a roofline plot, the ridge point is where FLOPSMAX =MBWMAX × IOP (PN ),
which corresponds to the intersection between the horizontal line expressing
the maximum CPU performance (i.e., y = FLOPSMAX) and the linear function
y =MBWMAX × IOP (PN ) expressing the maximum performance constrained by
the bandwidth.
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A program is said to be memory-bound if its operational intensity is less than
the abscissa of the ridge point; otherwise, it is said to be compute-bound. Or, in
other words, if IOP (PN ) is to the right of the ridge point, its execution flow could
not enter in a waiting state, while if IOP (PN ) is to the left of the ridge point, the
execution flow of the program is constrained by the memory transfer rate, and
it is necessary to take into account the memory bandwidth and, to prevent CPU
waiting time, the memory management is the primary aspect to be considered.

5.6.3 Example of rooflines on CPU

This section aims to provide an illustrative example of roofline analysis applied
to three real computer systems: a Lenovo ThinkPad laptop, a "fat" node from the
USI-HPC cluster10 (a small HPC cluster), and a Cray XC40 compute node from
the Piz Daint supercomputer11 at the Swiss National Supercomputing Center
(CSCS). The main specifications of these three computer systems are listed in
Table 5.2. The maximum memory bandwidth (BW) was measured using the
STREAM benchmark12, while the peak performances are those reported by the
manufacturer (i.e., Intel13).

Name CPU model #CPU Peak GFLOPS BW [Gbytes/sec]

Lenovo ThinkPad i7-9750H 1 249.6 25
fat USI-HPC E5-2650 v3 2 2 × 368 70.5
Cray XC40 E5-2695 v4 2 2 × 604.8 97.6

Table 5.2. Specifications of the considered computer configurations.

10USI HPC Cluster
11Piz Daint - supercomputer
12STREAM: Sustainable Memory Bandwidth in High Performance Computers
13Compliance Metrics for Intel® Microprocessors

https://intranet.ics.usi.ch/HPC
https://www.cscs.ch/computers/piz-daint/
https://www.cs.virginia.edu/stream/
https://www.intel.com/content/www/us/en/support/articles/000005755/processors.html
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Figure 5.7. Example roofline for three CPU configurations. A Lenovo ThinkPad
laptop equipped with a Core i7-9750H (red), a "fat" compute node from the USI
HPC cluster (blue), and a Cray XC40 compute node from the CSCS Piz Daint
supercomputer (green). The dashed green vertical lines show two examples of
possible results of a roofline analysis on a Cray XC40. The arrow indicates the
ideal direction of optimization (note: the roofline plots are typically reported in
logarithmic scales).

In figure 5.7 are the plots of the rooflines of the considered computer systems.
Where the vertical dotted lines are the abscissae of the ridge points (in the plot
are the angles) of the three different computer systems.

The left vertical dashed line shows the performance range of a hypotheti-
cal program with an operational intensity of IOP (PN ) = 6.6 on the Cray XC40.
The lower left marked point shows the measure of a suboptimal implementation,
with an efficiency of only 31% with respect to the theoretical peak performance
for an operational intensity of 6.6, that is 640 GFLOPS (i.e., the marked point
on the green roofline). A first possible optimization strategy is to improve the
performance of the algorithm only by optimizing the quality of the code (e.g.
by applying SIMD operations) so that the efficiency of the program increases to
78%. A second possible approach, which is not always applicable, is to modify
the algorithm in order to increase the operational intensity, namely, improving
or redesigning memory management. The dashed vertical line on the right is
the range of performance for a program with an operational intensity of 9.6,
where we immediately observe that its theoretical peak performance has grown
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proportionally as a function of the operational intensity itself. The arrow rep-
resents an ideal optimization strategy in which an improvement of the memory
management strategy and SIMD operations are applied.

Finally, if the program is compute-bound, i.e. its operational intensity is on
the right of the ridge points (dotted line), its maximum performance is limited
only by the peak performance of the CPU, so that, ideally, the only necessary
optimization is improving the execution flow (e.g. applying SIMD operations).

Remark. The maximal and ideal theoretical speedup of a memory-bound program
is given by the ratio of the bandwidths of the analyzed computer systems.

5.6.4 Roofline model on GPU

On GPUs the performance is constrained by three variables: a) the peak perfor-
mance of the GPU, b) the bandwidth of the internal memory (GPU memory),
and c) the bandwidth of the PCI, which is the data transfer channel between the
DRAM (host) and the GPU memory (device). The importance of PCI bandwidth
in GPUs is that all input and output data must flow through it and that it greatly
affects the overall efficiency of a program. Consequently, for GPUs, it is neces-
sary to define a lower roofline for programs completely dependent on input and
output data and an upper roofline for programs with no input and output (this
second class of programs is clearly unrealistic).

Based on this motivation, the effective roofline of a GPU program is bounded
between the lower and upper rooflines according to the ratio of the amount of
input and output data (that must be transferred through the PCI port) to the
amount of data generated by the program in GPU memory. Or, more generally,
GPUs are suitable for programs with high operational intensity or for programs
where the data transfer through the PCI is low. In Ding and Williams (2019) the
roofline model on has been extended to an instruction-centric approach that is
more appropriate for integer-only algorithms on GPUs.

Example: rooflines of the NVidia A100 GPU

In this example, we analyze the NVidia A100 GPU installed in the USI HPC cluster
by applying the roofline model.

First, we need the technical specifications necessary to define the roofline
function of the analyzed GPU, which are 1) peak performance (measured in
FLOPS), 2) GPU memory bandwidth, and 3) input and output (PCI) bandwidth
(measured in [Gbytes/sec]). It is important to note that the input and output
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bandwidths of a PCI port can be different, so it is necessary to measure this
quantity in both cases. In Table 5.3 we report the results for the NVidia A100.

NVidia A100

Peak Performance (in float64) 9700 [GFLOPS]
Nr. of Streaming Multiprocessor 128
GPU Memory Bandwidth 1365 [Gbytes/sec]
GPU Memory Channels 12
PCI Bandwidth IN 8.5* [Gbytes/sec]
PCI Bandwidth OUT 5* [Gbytes/sec]

Table 5.3. Technical specifications of an NVidia A100 GPU installed in the GPU
nodes of the USI HPC cluster. Peak performance, number of memory channels,
and streaming multiprocessor are taken from the NVidia A100 white paper14.
Bandwidths were measured using benchmarks. Note(*): The low measured PCI
bandwidth of the NVidia A100, which is 32 Gbytes/sec from the tech specs, is
because the GPU nodes in the USI cluster have PCI 2.0 with a nominal bandwidth
of 8 Gbytes/sec.

Second, given the technical specifications, we made the roofline plot (Figure
5.8), where we plotted the upper and lower bounds of the GPU and, for com-
parison, the roofline of a Cray XC40 compute node. The first thing that becomes
clear from the plot in Figure 5.8 is the confirmation that the GPU is convenient for
compute-bound applications (i.e., applications where it is possible to minimize
memory transfers over the PCI port). The second is that the GPU is never advan-
tageous for memory-bound programs. For example, computing the dot product
is always faster on CPUs because the time spent on moving the arrays is too large
to justify the use of the GPU (see also the example 5.6.1) (it should be noted that
by using the CUDA stream, it is possible to perform the data transfer at the same
time as a kernel is running, but this does not increase the operational intensity
of a program).

We must also note that in the case of the dot product (or more in general of
memory-bound applications), the GPU is more advantageous when the vectors
are generated directly in the GPU memory (namely, it is not necessary to use
the PCI channel). However, we must point out that this speed-up is mainly a
consequence of the very high bandwidth of the internal GPU memory and not
of the parallel processing capacity (i.e. the number of Stream Multiprocessors,
see also remark 5.6.3, and Sect. 5.3). For dense matrix multiplications, where

14NVIDIA A100 Tensor Core GPU Architecture.

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
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Figure 5.8. Lower and upper bound rooflines, for the float64 format, of
the NVidia A100 GPU (installed in the USI HPC GPU nodes), orange and red
lines, respectively, compared to a CPU-only compute node (Cray XC40), green
line. Vertical dashed lines represent different operational intensities of differ-
ent algorithms, from left to right a) Dot product with IOP (DotN) = 1/8, RII

matrices with IOP (RII) ≈ 2.6, dense matrix multiplication for N = 1000 with
IOP (MatMult103) = 83.3, and dense matrix multiplication for N = 2× 104 with
IOP (MatMult2×104) = 1666.6. The blue vertical line expresses the operational
intensity above which the use of the NVidia A100 GPU is, in any case, more
advantageous with respect to the Cray XC 40 (i.e. IOP (PN )> 142.3), which cor-
responds to a dense matrix multiplication with size N = 1716 (see also example
5.6.1). Finally, the area highlighted in yellow is the region where GPU programs
should ideally operate.

the operational intensity increases linearly with N , GPUs are convenient for suf-
ficiently large matrices. In the cases discussed here, the GPU (NVidia A100) be-
comes suitable for operational intensities greater than 142, corresponding to a
float64 dense matrix multiplications where N > 1716 (if compared to a Cray
XC40 compute node). It should be emphasized that implementing efficient ma-
trix multiplication is usually difficult (e.g. Goto and Geijn, 2008) and maximum
performance on both the CPU and GPU can only be achieved if the algorithm is
able to adapt (or is optimized) to the technical specification of the CPU or GPU
models.

From the roofline analysis of the NVidia A100, we can confirm that GPUs
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are generally suitable for compute-bound algorithms that operate on medium to
large datasets.

For example, error backpropagation in deep neural networks (DNN) is well
suited to GPUs because of the large number of iterations required to train a DNN,
and, the operational intensity grow with the size of the batches from the training
sets, which makes it a compute-bound procedure. Similar considerations can be
made for Monte Carlo methods, which typically work very well on GPUs.

5.6.5 Application of roofline model on matrix multiplication

So far, we discussed the roofline model only from a theoretical point of view,
taking into account the technical specifications of the computer system under
consideration and some sample programs and their operational intensity. In this
section, however, we compare the predictions made using the roofline model
with the performance measured by a benchmark based on multiplication over
dense matrices.

The benchmark consists of two applications: dense matrix multiplications
performed using a) Intel MKL BLAS15 on the CPU and b) NVidia cuBLAS16 on
the GPU.

With this benchmark, we can measure the impact of the memory bandwidth
of the PCI port on the GPU performance, and we can validate the prediction
made in Figure 5.8, according to which the GPU becomes more advantageous
when the operational intensity crosses a certain threshold (which is 142 in the
example considered).

The main goal of the benchmark is to perform matrix multiplication between
two dense float64 matrices stored in DRAM and write the result into a third
matrix, also stored in DRAM. The tests were performed on square matrices of
sizes: N = 5 . . . 20000. The respective operational intensities were calculated
with Equation (5.5). To avoid clock instabilities, we measured the time for 100
repetitions of the matrix multiplication of the given sizes. As computer systems,
we used an NVidia A100 (see Table 5.3) installed in the GPU nodes of the USI HPC
cluster and a Cray XC40 (see Table 5.2) compute node from the CSCS Pitz Daint
supercomputer. The results of this benchmark are shown in Figure 5.9, where it
is confirmed that the CPU is more suitable for operations with low operational
intensity, while GPUs become more suitable for high operational intensities. Fur-
thermore, this benchmark shows that the theoretical prediction according to

15Developer Reference for Intel® oneAPI Math Kernel Library - C
16cuBLAS, the CUDA Basic Linear Algebra Subroutine library.

https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines.html
https://docs.nvidia.com/cuda/cublas/index.html
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which the NVidia A100 is, in any case, more advantageous for IOP (PN ) > 142
is correct (see also Figure 5.8).
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Figure 5.9. Roofline models for Cray XC 40 and NVidia A100 (dashed green and
orange lines) compared to the performance measured for dense matrix multipli-
cation (solid green and orange lines, see also Example 5.6.1). Vertical gray lines
are some matrices sizes for the corresponding operational intensities.

5.6.6 Conclusions

The examples given in this section demonstrate the simplicity and effectiveness
of the roofline model, which provides an immediate understanding of how a
computer system responds to a program and which optimization strategies are
most appropriate to be applied. In fact, it makes it possible to define a priori
the theoretical peak performance of an algorithm and decide which computer
architectures are best suited to execute it. We must also emphasize that with
the roofline model, the decision of the computer system architecture is primarily
made starting from the property and an analysis of the algorithm, and not from
the generic specifications of CPUs or GPUs models.

Finally, although in this section we only discussed the cases of CPUs and GPUs,
roofline analysis can easily be applied to HPC systems by considering the data
transfer made by the node-to-node communication performed through MPI and
the bandwidth of this channel.
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5.7 Data-structures

The design of optimal data structures is probably the most important task nec-
essary to develop algorithms that can properly exploit the features of CPUs or
GPUs to maximize the throughput of the program (especially if the algorithm is
memory-bound). All of the data structures we introduce in this section are de-
signed so that all algorithms can respect the locality of the data and thus easily
exploit SIMD operations.

In this section, we will first introduce the main concepts necessary to define
the data structures and then present the two generic algorithms that can be used
to efficiently compute the RII matrices.

5.7.1 Definitions

We define the set T of all triples of combinations of tensorial indices for polarime-
try T =

�

Kk, K ′k,Qk

	19

k=1
where

K ∈ 0 . . . 2

K ′ ∈ 0 . . . 2

Q ∈
�

−min
�

K , K ′
�

. . . min
�

K , K ′
��

,

(5.7)

enumerated with the index k ∈ 1 . . . 19 (which is constant for all two-level atomic
models (see Sect. 1.4.3, and Bommier, 1997a)).

Definition 1. In a computer program, the major index "n" of an N-dimensional ar-
ray A∈ R×i=1...N Di is the index such that the values A... , l, n and A... , l, n+1 are adjacent
in memory (e.g. Knuth, 1968). In this chapter, the major index is always indicated
as the last in the subscript (row-major formalism).

The minor index "w" is the index such that the distance in memory between the
elements Aw, l,... and Aw+1, l,... is maximal. Here, the minor index is always indicated
as the first element of the subscript.

Definition 2. With flatten we mean the operation of collapsing into 1 dimension
2 or more dimensions of an N-dimensional array. For example, if in a 3D matrix
A ∈ RD1×D2×D3 we flatten dimensions 2 and 3, we express it as a 2D matrix Ã ∈
RD1×(D2 D3). It is straightforward to note that if the matrix A is row-major, then after
flattening the last two dimensions, Ã is also row-major.

Definition 3. A structured matrix is an N-dimensional matrix in which the size
of each row is constant in all dimensions. Thus, to access the elements of the array,



112 5.7 Data-structures

it is sufficient to know the size of each dimension. An unstructured matrix is an
N-dimensional matrix where the size of the rows is not constant in at least one
dimension. Therefore, it is necessary to use a lookup table to access the elements.

All multidimensional arrays described in this chapter are physically stored in
1D arrays. In the case of structured arrays, the actual index is calculated from
the size of each dimension, given the set of N indices. In the case of unstructured
arrays, a lookup table is used. To take full advantage of SIMD operations, the
real and imaginary parts of complex values are stored in two separate arrays.

5.7.2 Data-structure for the quantities R
II,KK ′

Q

The redistribution function R
II,KK ′

Q depends on the scattering angle Θ, the outgo-
ing and incoming reduced frequencies u and u′, respectively, and the tensorial
indices for polarimetry {KK ′Q} given in equation (5.7), and it is calculated at
the coordinates appearing on a frequency grid FGrid

(U ,Θ,r) (see also Section 4.2.4 on

page 74). Therefore, the values of RII,KK ′

Q are stored in a three-dimensional un-
structured matrix with the indices d and p referring to the incoming and outgoing
frequencies, respectively, and the major index k referring to the tensorial indices
for polarimetry (we must note that the adjacency in memory is with respect to
the index k).

Accordingly, we define the complex matrix
�

R
II,KK ′

Q

�Θ

d,p,k
(where the super-

script indicates the dependence on the scattering angle). Since this matrix is
unstructured, a lookup table must be used to convert the indices d and p into
the offsets needed to access the cells in which the desired values are actually
stored.

5.7.3 Data-structure for the phase scattering matrices PKK ′
Q

The phase scattering matrix PKK ′
Q ∈ C

4×4 is a function of the incoming and out-
going directions and the tensorial indices for polarimetry (index k), and each
element of it couples the outgoing and incoming Stokes parameters, which are
denoted by the indices i and j, respectively (i.e. i, j ∈ 1 . . . 4). As a result, these
matrices are stored in a 3D structured row-major complex matrix with indices
k, i, j, where j is the major index (so, in this case, the adjacency in memory with
respect to the incoming Stokes parameter j).

Considering that the quantities PKK ′
Q have to be computed for all pairs Ω′

and Ω of the angular grid S (see also Section 1.8.2 on page 33), it could be
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convenient to store these values in a 5-dimensional matrix, where the two minor
indices refer to the directions from the angular grid (for the sake of simplicity,
we omit to specify the indices of the directions in this discussion). Therefore,

we define a 3D complex structured matrix
�

PKK ′
Q

�Ω′,Ω

k,i, j
∈ C19×4×4 with a constant

dimension (where the superscript indicates the dependence on the incoming and
outgoing directions).

5.7.4 Data structure and calculation for RII matrices.

The values of RII depend on the outgoing and incoming directions, frequencies,
and Stokes parameters (as in the case of PKK ′

Q , see 5.7.3). Therefore, each ele-
ment of the matrix can be calculated with:

[RII]Ω
′,Ω

d,p,i, j = Re

�

19
∑

k=1

�

R
II,KK ′

Q

�Θ

d,p,k

�

�

PKK ′

Q

�Ω′,Ω
�T

j,i,k

�

∀ i, j = 1 . . . 4, (5.8)

where the most convenient method to store RII is to define a real unstructured
matrix with indices d, p, i, and j such that the index referring to the incom-
ing Stokes parameter (i.e., j) is the major one. Recall that, by definition, the
imaginary part vanishes in the resulting matrix, so we can ignore it (see also
Eq. (1.12)).

From equation (5.8) it is easy to observe that all the elements i, j of RII are
dot products between the values indexed by k from R

II,KK ′

Q and PKK ′
Q , so that the

whole operation can be reduced to a linear operation on matrices and vectors. It
is important to note that the operation in the equation (5.8) is not convenient,
since, in order to respect the locality of the data, it is necessary to perform a
matrix transposition (see also 5.6.1).

The transposition of PKK ′
Q can be avoided by reducing the operation in (5.8)

to a matrix multiplication. If we flatten the indices referring to the frequencies d
and p in the index ṽ and the indices referring to the Stokes parameters i and j in
the index s̃, all matrices appearing in the equation (5.8) become 2-dimensional
structured matrices, i.e,

�

RII
:�Ω′,Ω

∈ RNII×16

�

R
II,KK ′

Q

:�Θ

∈ CNII×19

�

PKK ′

Q

:�Ω′,Ω

∈ C19×16,

(5.9)
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where NII =
∑Nν

d=1 Nβ is the total number of RII matrices generated for a given
pair of directions Ω′ and Ω, with Nβ = |G

β

d | is the number of quadrature nodes
required to perform the numerical integration on the incoming frequencies, at
one outgoing frequency and directions, given the scattering angle (see also Sec-
tion 4.1 on page 67).

Thus, by using the definitions 5.9, the operation in the equation (5.8) can be
transformed into a complex matrix multiplication, i.e,

�

RII
:�Ω′,Ω

= Re

�

�

R
II,KK ′

Q

:�Θ

·
�

PKK ′

Q

:�Ω′,Ω�

, (5.10)

where its real part is calculated with:

�

RII
:�Ω′,Ω

=Re

�

�

R
II,KK ′

Q

:�Θ�

·Re

�

�

PKK ′

Q

:�Ω′,Ω�

− Im

�

�

R
II,KK ′

Q

:�Θ�

· Im

�

�

PKK ′

Q

:�Ω′,Ω�

.

(5.11)

The possibility to reduce the calculation of RII matrices to a matrix multiplication
allows us to use highly optimized libraries (e.g. Intel MKL BLAS17) to build them.

Since the ordering of the data in the array used to store the resulting struc-

tured matrix
�

RII
:�Ω′,Ω

is equivalent to that of the unstructured one, [RII]Ω
′,Ω, it is

not necessary to reorganize the elements of the resulting array after performing
the complex matrix multiplication in the equation (5.9). In fact, to access the
elements of [RII], we can use the indices d, p, i, j and the corresponding lookup
table. In other words, this method allows us to compute the resulting elements
of an unstructured data set by applying a dense matrix multiplication operator
on rectangular and structured matrices.

The main disadvantage of reducing the equation (5.9) is that the use of com-
plex matrix multiplication in BLAS (i.e. zgemm) (e.g. Blackford et al., 2002)
does not allow us to exclude the imaginary part of the result, which by defini-
tion vanishes in the resulting RII matrices. The second problem is that zgemm
assumes that real and imaginary parts are stored in interleaved matrices (i.e.,
real and imaginary parts are adjacent in memory), whereas we use distinct ma-
trices (which is generally the most efficient strategy for performing operations
on complex numbers). These two problems can be solved by using the BLAS
interface for real-only arrays. Thus, the reduction in equation (5.9) can be done

17Developer Reference for Intel® oneAPI Math Kernel Library - C

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-1/blas-and-sparse-blas-routines.html
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by performing two multiplications and one subtraction between real matrices (as
in (5.11)) (with the disadvantage that two separate calls of a BLAS routine (i.e.
dgemm) are required).

5.8 Operational intensity for computing a batch of
RII matrices

The operational intensity (see also eq. (5.3)) for building a batch with size NII

of RII matrices is:

IOP

�

RII

NII

�

=
NII(4× 16× 19)

sizeof (float64) [16× 19× 2+ NII (19× 2+ 16)]
, (5.12)

where the numerator is the number of arithmetic operations required to compute
one RII matrix multiplied by the batch size (that is, NII). The denominator is the
total amount of data transferred in bytes (considering the float64 format)
needed to construct all matrices in the batch, where the first term is the size of a

matrix
�

PKK ′
Q

:�Ω′,Ω

and the second is the size of the input values

�

R
II,KK ′

Q

:�Θ

plus the

size of the output matrix, multiplied by NII. It must be noted that the operational
intensity of RII

NII
for large NII asymptotically converges to:

lim
NII→∞

IOP

�

RII

NII

�

=
76
26
≈ 2.8. (5.13)

Consequently, the computation of RII matrices in thefloat64 format is a memory-
bound operation on most of the currently available computer systems (see also
Section 5.6.3). And as a consequence, the memory bandwidth and the design of
data structures are the primary aspects to be considered in the development of
numerical methods.

This result shows also that the computation of emission vectors is primar-
ily a massive set of small, unstructured, memory-bound problems that require a
sequence of complex algorithms and data structures. For these reasons, we con-
cluded that the use of CPUs combined with SIMD operations is the first choice for
solving these problems (see also Section 5.6). Moreover, a highly optimized im-
plementation on CPUs is a reference point for possible implementation on GPUs.
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5.9 Direct calculation of the emission vector

Once the RII matrices are ready, the subsequent step is the calculation of the
emission vector at all diffused frequencies νd and Stokes parameters i ∈ 1 . . . 4,
and one outgoing direction Ω, i.e.:

�

ϵ ℓ,I I
�Ω

d,i
=

NΩ
∑

m=1

[w]Sm

 

Nβ
∑

p=1

[w]Θd,p

4
∑

j=1

[RII]Ω
′,Ω

d,p,i, j [I]
Ω′

d,p, j

!

∀ νd ∈ U , i = 1 . . . 4,

(5.14)
where S is the angular quadrature grid with weights [w]S. The emission vector
can be stored in a structured real matrix where the number of rows is equal to
the size of the frequency grid Nν (see also Section 1.8.2 on page 33), that is:

�

ϵ ℓ,I I
�Ω
∈ RNν×4. (5.15)

The quadrature weights [w]Θ are stored in an unstructured real matrix, where
each row contains the weights necessary to perform the quadrature on the in-
coming frequencies, its size is equal to the size of the frequency grid FGrid

(U ,Θ,r), so
that the lookup table necessary to access its elements is the one associated with
the frequency grid. Finally, the incoming radiation field [I]Ω

′
is stored in a 3D

unstructured real matrix, where the major row stores the values of I in the four
Stokes parameters. Since in the main problem the values of I are stored with
respect to the main frequency grid U , in order to perform the calculation as de-
scribed in equation 5.14, it is necessary to interpolate the incoming field for all
nodes in all frequency grids FGrid

(U ,Θ,r) of the problem.
It is straightforward to observe that the innermost summation in the equa-

tion (5.14) is a matrix-vector multiplication between the RII matrices and the
incoming radiation field. It is worth noting that the structure of the calculation
of the equation (5.14) respects the locality of the data with respect to the data
structures we defined in the preview sections. Unlike what we saw with RII, in
this case, it is impossible to calculate the results in batches by applying linear
operators.



117 5.10 Explicit use of the SIMD operators in the computation of RII

5.10 Explicit use of the SIMD operators in the com-
putation of RII

If we use the flattened redefinition of matrices from equation (5.9), the compu-
tation of a RII matrix can be reduced to a weighted sum of 1D arrays, i.e.

�

RII
:�Ω′,Ω

ṽ, 1:16
=

19
∑

k=1

Re

�

�

R
II,KK ′

Q

:�Θ

ṽ, k

�

PKK ′

Q

:�Ω′,Ω

k, 1:16

�

, (5.16)

where the notation 1 : 16 denotes a subvector that starts at index 1 and ends at
16 (also known as slice operator).

The sum in Equation (5.16) can be performed using the SIMD operations
available in modern CPUs (e.g., AVX on the x86 architecture, see Section 5.2.2).

Since the vectorized registers of SIMD operations in the x86 architecture have
a size of 4 in the case of AVX2, or 8 in the case of AVX512, and the elements of
the RII matrices are adjacent in memory, it is possible to execute the expression
inside the parentheses in 4 or 2 steps, respectively.

The programming strategies that can be applied to exploit AVX operations on the
x86 architecture are

• Intrinsic vectorization (macro assembler): The implementation is done by
providing all necessary SIMD instructions and optimization strategies in
the source code (using a macro assembler).

• Compiler vectorization: The code is written so that the compiler optimizer
can easily recognize and vectorize the operations.

• Use of C/C++ vector extensions: The use of SIMD instructions is exploited
by using a C/C++ dialect. This is a hybrid approach between the two
previous strategies.
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5.10.1 Introduction to the effective implementation

The main implementation for building a RII matrix following the method in Equa-
tion (5.16) is in the C/C++ code in the Listing 5.1.

1 void compute_one_RII(double* R_II,
2 const double* R_KKpQ_real,
3 const double* R_KKpQ_imag,
4 const double* P_KKpQ_real,
5 const double* P_KKpQ_imag,
6 const int mu_tilde) {
7

8 // offsets used to access the data in the arrays
9 const int offset_RII = 16;

10 const int offset_RK = 19;
11 const int offset_PK = 16;
12

13 for(int k = 0; k < 19; ++k){
14 for(int ij = 0; ij < 16; ++ij){
15

16 // ij is the index of the element in the slice
17 // of the R_II matrix.
18

19 R_II[mu_tilde * offset_RII + ij] +=
20 R_KKpQ_real[mu_tilde * offset_RK + k] *
21 P_KKpQ_real[k * offset_PK + ij] -
22 R_KKpQ_imag[mu_tilde * offset_RK + k] *
23 P_KKpQ_imag[k * offset_PK + ij];
24 }
25 }
26 }

Listing 5.1. Simple C code for the calculation of one RII matrix given the values
of PKK ′

Q and R
II,KK ′

Q .

In order to make a preliminary analysis of the code, we must consider that the
size of a quadrature grid at u′ (which depends on Θ, u, a and other physical
parameters) can vary from ∼ 130 to ∼ 2500. As a consequence, the batch size
(NII) varies from ∼ 13000 to ∼ 25000 in the case of a frequency grid with Nν ≈
100 elements (which is the size typically used for the Ca I 4227). In general, the
largest batches occur in the line core when Θ = π (the limit case described in
Section 2.4 on page 43), while the smallest appear when Θ is close to 0.

In practical implementations, there are two possibilities: 1) use batches as
described in Section 5.7.4, where, given a pair of directions, all RII matrices are
calculated in a single large batch by including all outgoing frequencies contained
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in a frequency grid (i.e., U , see also Section 1.8.2). 2) iterating on the outgoing
frequencies in U following the structure of Algorithm 6 on page 70.

Consequently, the operational intensity for the computation of a batch varies
from IOP

�

RII
130

�

= 2.5 up to IOP

�

RII
25000

�

= 2.8 with an average value of 2.6. As a
result, the computation of RII matrices in practical applications shows an opera-
tional intensity that is sufficiently close to its asymptotic value in the majority of
cases.

Using large bathes has the advantage that all the RII matrices are calculated
with a unique call of a highly optimized routine. While the advantage of using
small batches is that the CPU can hold all RII values in the L2 cache so that they
can be accessed quickly in the next stage of the algorithm.

Description of the code: In the Listing 5.1 we can observe that the arrays
R_KKpQ_real, R_KKpQ_imag, P_KKpQ_real and P_KKpQ_imag are
arguments of the procedure and their contents are transferred to the CPU cache
and registers during the calculation by putting the execution flow of the program
into a waiting state. Data transfer is generally the most time-consuming activity
in memory-bound applications, and many strategies have been proposed to re-
duce this time. One of the most notable results is that of Goto and Geijn (2008),
which suggests preemptively moving data into small blocks of memory (aka soft-
ware prefetching) to ensure that it can be stored in the CPU’s L2 cache before

computation begins. This operation is possible for the
�

PKK ′
Q

:�

matrix, which has

a constant size and can be easily copied into the L2 cache by the prefetching
mechanism implemented in superscalar CPUs.

We should also recall that modern CPUs, thanks to cache prefetching, can
(speculatively) transfer data and executables from slow memory (DRAM) to the
CPU cache before the program uses them (e.g. Solihin, 2015). Data locality is a
strategy that increases prefetch accuracy (see Equation (5.1)) because the CPU
normally prefetches successive adjacent memory cells (of the arrays currently in
use).

The second issue is the calculation of 1D indices by relative offsets, which are
used to convert matrix indices into the pointers needed to access the memory
cells used to store data. The calculation of these relative indices can be neglected
from a computational point of view since most of these indices are implicit and
there is no need to calculate them (for reasons, related to the vectorization, that
will be clarified in the following sections).
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5.10.2 Intrinsic vectorization

The first and more direct approach to vectorize the calculation of Equation (5.16)
is the use of intrinsic functions. Namely, the implementation of methods that
directly use the AVX operations of the x86 architecture (note: since during the
development of this project we had access only to CPUs based on the Haswell
microarchitecture and equipped with AVX2, in this and the following examples
we will refer only to this architecture).

Intrinsic vectorization is based on the immintrin.h library18, which pro-
vides data types and functions for vector operations using AVX instructions and
registers (the library is available for GCC, Clang, Intel, and Microsoft compilers).

The advantage of using intrinsics is that code optimization is entirely at the
developer’s discretion, rather than relying solely on the compiler’s automatic op-
timizer. This makes it possible to write optimal code even in situations where
the compiler is unable to optimize the program. The main disadvantage of this
approach is that the code is not portable to CPU architectures other than the tar-
get CPU model. In addition, the behavior of intrinsics may change on different
compilers.

Intrinsic operations can be divided into five classes of operations: a) load and
store, b) arithmetic, c) compare, d) convert, and e) shuffle.

In AVX2, vector variables of four float64 elements are of type
_m256d.

Intrinsic functions use the following naming convention:
_mm<vsize>_<intrin_op>_<suffix>

where <vsize> is the size of the vector register in bits (all func-
tions in AVX2 are prefixed with _mm256), <intrin_op> is the
name of the operation, in in/out operations the last letter u means
unaligned memory. The first letter in <suffix> denotes the data
model (p stands for packed or vector operation), and the second let-
ter or numbers denote the data type (e.g., d and s mean float64
and float32, respectively).

In the AVX512, the float64 type is _m512d and the functions are
prefixed with _mm512.

For further details on the naming convention, see the Intel documen-
tation19.

18Intel Intrinsics Guide
19Intrinsic: Naming and Usage Syntax

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-9/naming-and-usage-syntax.html
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The two major classes of intrinsic operations are:

• The load and store functions are used to set the register values by copy-
ing the main memory to them, setting constant values, and copying the
contents of registers to memory. The functions _mm256_load_pd and
_mm256_loadu_pd for aligned and unaligned memory, respectively,
and are used to load a vector of four float64 values from the DRAM.

The functions to set constants values are_mm256_set_pd, _mm256_set1_pd,
and _mm256_setzero_pd.

Finally, the _mm256_store_pd or _mm256_storeu_pd functions
are used to move the register values to the main memory.

• The main Arithmetic operations are_mm256_add_pd, _mm256_sub_pd,
_mm256_mul_pd and _mm256_div_pd.

The most interesting arithmetic operations are FMA (Fused Multiplying
Addition), which performs operations in the form r = ±a ∗ b ± c. In the
specific problem of calculating the RII matrices, FMAs are used to per-
form and speed up complex multiplications. In our case, where we cal-
culate only the real part of the complex numbers, we use the function
_mm256_fmsub_pd, which operates r = a ∗ b − c,
and then we will also discuss the use of the function_mm256_fnmadd_pd,
which operates r = −a ∗ b+ c (Note that immintrin.h provides a rich
collection of FMA operations that can be used in a wide variety of scenar-
ios).

The code that exploits the AVX2 functions is based on the idea of associating a
vector register to each row of the matrix RII and updating them iteratively.

Considering that each element (i, j) of the matrix RII is a weighted sum of
the corresponding elements in the matrices PKK ′

Q and the quantities R
II,KK ′

Q with
respect to the tensorial indices for polarimetry (index k), we start by storing the
real and imaginary parts of the latter quantities in two vector registers (see lines
17 and 38 of the listing 5.2). In the case of PKK ′

Q we copy the rows of the matrix

into the registers, while in the case of RII,KK ′

Q we broadcast the values into the
corresponding registers.

The RII matrix is updated by the macro: __compute_RII_row (line 16 of
the 5.2 listing), which updates one row of the matrix using intrinsic operations.

We force the compiler to avoid unrolling the loop over k in order to produce
a more compact and efficient assembly. In other words, the CPU does not have
to spend time transferring the part of the (unrolled) program to be executed
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from the main memory to the L1 cache (in the experiments we performed, the
unrolled code was effectively slower).

The disadvantage of this code is that, in general, compilers do not optimize
intrinsics.

1 #include <immintrin.h>
2

3 void kernel_R_II_up_avx2(double *R_II_re,
4 const double *P_re,
5 const double *P_im,
6 const unsigned int P_off_k,
7 const double *rii_re,
8 const double *rii_im) {
9

10 __m256d R_II_re_1 = _mm256_setzero_pd();
11 __m256d R_II_re_2 = _mm256_setzero_pd();
12 __m256d R_II_re_3 = _mm256_setzero_pd();
13 __m256d R_II_re_4 = _mm256_setzero_pd();
14

15 #define __compute_RII_row(R_II_re_row, P_indx)\
16 {\
17 const __m256d P_re_k =\
18 _mm256_loadu_pd(&P_re[off_k + P_indx]);\
19 const __m256d P_im_k =\
20 _mm256_loadu_pd(&P_im[off_k + P_indx]);\
21 \
22 R_II_re_row =\
23 _mm256_fmadd_pd(rii_im_k, P_im_k, R_II_re_row);\
24 R_II_re_row =\
25 _mm256_fnmadd_pd(rii_re_k, P_re_k, R_II_re_row);\
26 }
27

28 #pragma unroll(0)
29 for (unsigned int k = 0; k < 19; ++k) {
30 const unsigned int off_k = P_off_k * k;
31

32 const __m256d rii_re_k =
33 _mm256_broadcast_sd(&rii_re[k]);
34 const __m256d rii_im_k =
35 _mm256_broadcast_sd(&rii_im[k]);
36

37 __compute_RII_row(R_II_re_1, 0);
38 __compute_RII_row(R_II_re_2, 4);
39 __compute_RII_row(R_II_re_3, 8);
40 __compute_RII_row(R_II_re_4, 12);
41 }
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42

43 _mm256_store_pd(&R_II_re[0], R_II_re_1);
44 _mm256_store_pd(&R_II_re[4], R_II_re_2);
45 _mm256_store_pd(&R_II_re[8], R_II_re_3);
46 _mm256_store_pd(&R_II_re[12], R_II_re_4);
47 }

Listing 5.2. Simple C code for the calculation of one RII by using the
intrinsic (despite it is assumed that the memory is unaligned, for improving the
performances it is recommendable to use "aligned memory" and modify the code
accordingly).

5.10.3 Compiler vectorization

This optimization strategy is based on the ability of the most advanced compilers
to identify the underlying structure of the algorithms in the source code and au-
tomatically apply highly effective optimizations (GCC20 and Intel21 compilers are
currently the most advanced). Typically, compiler optimizers can detect elemen-
tary operations between arrays, simple numerical conditions, and reductions. In
addition, they can detect multiplications between complex numbers, so that the
FMA instructions are automatically applied.

Compilers can also automatically vectorize loops, so that vectorial math op-
erations, such as the dot product, are automatically recognized and replaced by
an optimal assembly taking advantage of SIMD operations and applying the re-
duction algorithm.

To benefit from the vectorization capabilities of compilers, it is usually nec-
essary to write a standard C program22 in which we divide the algorithms into
small chunks and access the elements stored in arrays using only the index of
the innermost for-loop statement, allowing the optimizer to easily retrieve the
main structure of the algorithm and automatically apply the most appropriate
vectorization (we should observe that the most recent compilers can recognize
the structure of algorithms even in poorly written code).

In the listing 5.3 we show the C code for the computation of a RII, developed
in a way to take advantage of the compiler’s vectorization capabilities.

20GCC, the GNU Compiler Collection
21Intel compiler
22Support for vectorization is also provided for Fortran and C++. In the examples given in this

section, we use C because the applications associated with this project are developed in C++ and
the performance-critical methods are implemented in C.

https://gcc.gnu.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
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1 void kernel_R_II_up_cv(double *R_II_re,
2 const double *P_re,
3 const double *P_im,
4 const unsigned int P_off_k,
5 const double *rii_re,
6 const double *rii_im){
7 #pragma GCC unroll(0)
8 for (unsigned int k = 0; k < 19; ++k) {
9 const double rii_re_k = rii_re[k];

10 const double rii_im_k = rii_im[k];
11

12 const unsigned int off_k = P_off_k * k;
13 const double *P_re_k = &P_re[off_k];
14 const double *P_im_k = &P_im[off_k];
15 #pragma GCC unroll(0)
16 for (unsigned int ij = 0; ij < 16; ij++) {
17 const double P_re_i = P_re_k[ij];
18 const double P_im_i = P_im_k[ij];
19 R_II_re[ij] += rii_re_k * P_re_i -
20 rii_im_k * P_im_i;
21 }
22 }
23 }

Listing 5.3. Calculation of one RII exploiting the compiler vectorization.

In the implementation, we first assign two variables to store the real and imagi-
nary parts of the quantities RII,KK ′

Q (i.e. rii_re_k, and rii_im_k), that the
compiler automatically broadcast in two vector registers of four constants val-
ues (i.e., ymm1 and ymm2). Second, we define two pointers to the real and
imaginary parts of the current PKK ′

Q matrix.
As explained earlier, using relative pointers allows one to use only the in-

dex ij to access the elements of the matrix, so that the compiler optimizer can
recognize the structure of the algorithm and vectorize the innermost loop.

Given these assumptions, the compiler can generate an assembly that exe-
cutes the innermost loop in four steps, i.e., the resulting assembly code updates
one row of the RII matrix on each iteration. In addition, the compiler uses the
following strategy to update the current row:

R_II_re[i:i+3]= (R_II_re[i:i+3]+ rii_re_k ∗ P_re_k)− rii_im_k ∗ P_im_k,

where i ∈ {0, 4,8, 12}. In the resulting assembly the above calculation is carried
out using two FMA operations:
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1) tmp= R_II_re[i:i+3]+ rii_re_k ∗ P_re_i _mm256_fmadd_pd
2) R_II_re[i:i+3]= tmp− rii_im_k ∗ P_im_i _mm256_fnmadd_pd,

so that the resulting assembly code is compact and efficient. In the Listing 5.4 we
report only the part of the assembly code related to the innermost loop generated
by the compiler (GCC 12.1, x86 Haswell microarchitecture).

1 .L3:
2 vmovupd ymm0, YMMWORD PTR [r12+rax]
3 vfmadd213pd ymm0, ymm1, YMMWORD PTR [rdi+rax]
4 vfnmadd231pd ymm0, ymm2, YMMWORD PTR [rdx+rax]
5 vmovupd YMMWORD PTR [rdi+rax], ymm0
6 add rax, 32
7 cmp rax, 128
8 jne .L3

Listing 5.4. GCC 12.1 - x86 Haswell generated assembly code of the innermost
loop in the source code 5.3

The disadvantage of the generated assembly is that the temporary values of the
RII rows are not stored in vector registers, but directly in main memory, so the-
oretically the intermediate result must be moved to DRAM after each iteration,
putting the CPU into a wait state. It is important to remember that during the ex-
ecution of the program, the RII temporary values, although they refer to a DRAM
address, are not stored there, but in the worst case, they are stored in the L2 (or
L3) cache and moved to DRAM when the computation is finished (thanks to the
speculative execution strategies of the CPU).

5.10.4 Use of C/C++ vector extension

Modern compilers support non-standard C/C++ vector extensions (dialects) that
introduce vectorized operators and data types into the language. Using vector
extensions allows writing programs that implicitly use vector registers without
the need of using special libraries (e.g. the Intel Intrinsic); therefore, the ap-
plication is portable on different CPU architectures. The main disadvantage of
using the C/C++ vector extension is that it is a poorly documented and compiler-
dependent feature23(we must note that GCC, Intel and Clang (LLVM) correctly
compile the source code in 5.5). Furthermore, the functionalities supported by
vector extensions are very limited when compared with intrinsic operations.

The source code in 5.5 is the function used to compute one RII matrix using

23GCC Vector Extensions

https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
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the GCC vector extensions (C/C++).

1 #include <cstddef>
2 void kernel_R_II_up_vec(double *R_II_re,
3 double *R_II_im,
4 const double *const P_re,
5 const double *const P_im,
6 const int P_off_id,
7 const double *const rii_re,
8 const double *const rii_im){
9 #define _VL_ 4

10 typedef double vec
11 __attribute__((vector_size(_VL_ * sizeof(double)),
12 aligned(sizeof(double))));
13

14 const vec *const P_re_v = (const vec *)P_re;
15 const vec *const P_im_v = (const vec *)P_im;
16 vec row0_re = {0.0, 0.0, 0.0, 0.0},
17 row1_re = {0.0, 0.0, 0.0, 0.0},
18 row2_re = {0.0, 0.0, 0.0, 0.0},
19 row3_re = {0.0, 0.0, 0.0, 0.0};
20

21 for (ptrdiff_t k = 0; k < 19; ++k) {
22 const ptrdiff_t base = 4 * k;
23 const double rii_re_v = rii_re[k];
24 const double rii_im_v = rii_im[k];
25

26 row0_re += P_re_v[0 + base] * rii_re_v -
27 P_im_v[0 + base] * rii_im_v;
28 row1_re += P_re_v[1 + base] * rii_re_v -
29 P_im_v[1 + base] * rii_im_v;
30 row2_re += P_re_v[2 + base] * rii_re_v -
31 P_im_v[2 + base] * rii_im_v;
32 row3_re += P_re_v[3 + base] * rii_re_v -
33 P_im_v[3 + base] * rii_im_v;
34 }
35

36 vec *R_II_re_v = (vec *)R_II_re;
37

38 R_II_re_v[0] = row0_re;
39 R_II_re_v[1] = row1_re;
40 R_II_re_v[2] = row2_re;
41 R_II_re_v[3] = row3_re;
42 }

Listing 5.5. Calculation of one RII exploiting the C vector extensions.
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The strategy used in the above code is equivalent to the one used in the func-
tion based on Intrinsics 5.2, Namely, we used a vector of four elements for each
row of the RII matrix (variables row0_re, ...), which the compiler automatically
converts to vector registers and updates on each iteration over k.

The key feature of the code 5.5 is the type vec, which is a vector of double
with a fixed size of four, declared by the keyword __attribute__. Variables
P_re_v and P_im_v are arrays of vec, so that each element of P_re_v or
P_im_v refers to a vector (vec) of four elements.

It should be noted that the resulting assembly (compiled with GCC 12.1) is not
optimal. In fact, the updating of each row of RII (row0_re, . . . ) is carried out
in 3 steps:

1) tmp= P_im_v[i+ base] ∗ rii_im_v __mm256_mul_pd
2) tmp= P_re_v[i+ base] ∗ rii_re_v− tmp __mm256_fmsub_pd
3) rowi_re= rowi_re+ tmp __mm256_add_pd,

where i ∈ {0, 1,2, 3}, while if we compile the code with Clang, the compiler will
use the optimal strategy, i.e., the update is performed in two steps.

1 vmulpd ymm2, ymm1, YMMWORD PTR -96[rcx].
2 vfmsub231pd ymm2, ymm0, YMMWORD PTR -96[rdx].
3 vaddpd ymm5, ymm5, ymm2

Listing 5.6. GCC 12.1 - x86 Haswell assembly code for updating one row in the
listing 5.5

The advantage of using vector extensions is that each row of RII is stored in a
vector register and copied to the target array after the loop has finished, without
putting the CPU into an unnecessary wait state or referring to a DRAM address.
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5.10.5 Static analysis

Currently, there are many static analysis tools; most of the time, these applica-
tions are specialized in detecting errors in program semantics, inefficient code,
and the main components of the algorithm. For example, compiler optimizers
use structural static analysis to identify the structure of the algorithm in order to
automatically apply the most appropriate optimization strategy (see also Section
5.10.3). In this section, we will focus on a static analysis tool dedicated to ana-
lyzing the performance of both source code and assembly. This second class of
static analysis tools simulates the execution of a program on a given CPU (i.e.,
microarchitecture), and as a result, generates a near-realistic execution flow.

In this work, we usellvm-mca. From the official manual page24: “llvm-mca
is a performance analysis tool that uses information available in LLVM (e.g. schedul-
ing models) to statically measure the performance of machine code on a given
CPU.” In other words, given the assembly, llvm-mca produces a rich output
with many details about the efficiency of the program. Probably one of the most
useful is the ability to generate the timeline of the execution flow (see also figure
5.2), which is reported in the listing 5.7.

In the timeline 5.7 it can be seen that the first iteration takes 26 cycles to
complete and that the execution of the second one starts before all the oper-
ations of the first iteration have been completed, ending at cycle 36, i.e. the
second and subsequent iterations take 10 clock cycles because the CPU is capa-
ble of executing two iterations of the same loop in parallel by distributing the
flow of instructions on different ports (thanks to the instruction level parallelism
mechanisms). This behavior shows that the program is highly optimized and able
to use CPU resources correctly. In the timeline, Index is the number of clock
cycles, D means the instruction is dispatched, e the instruction is in execution,
and E the execution is complete. While R means that the execution is retired,
i.e. the result of the instruction is moved to user space by the retirement unit
(i.e. it is ready to be used). The retirement unit checks if the speculative and
out-of-order executions were successful and, if so, releases the result. Finally, "="
and "-" are waiting states.

24llvm-mca - LLVM Machine Code Analyzer

https://llvm.org/docs/CommandGuide/llvm-mca.html
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1 Timeline view:
2 0123456789
3 Index 0123456789 012345
4

5 [0,0] DeER . . . . . mov 1st cycle
6 [0,1] DeeeeeeeER. . . . vbroadcastsd ...
7 [0,2] DeeeeeeeER. . . . vbroadcastsd ...
8 [0,3] DeE------R. . . . add r8, ...
9 [0,4] .DeeeeeeeeeeeeER . . vfmadd231pd ...

10 [0,5] .DeE-----------R . . add r9, ...
11 [0,6] . D====eeeeeeeeeeeeER . vfnmadd231pd ...
12 [0,7] . DeE---------------R . lea ecx ...
13 [0,8] . DeeeeeeeeeeeeE---R . vfmadd231pd ...
14 [0,9] . D=====eeeeeeeeeeeeER . vfnmadd231pd ...
15 [0,10] . DeE---------------R . lea ecx ...
16 [0,11] . D=eeeeeeeeeeeeE---R . vfmadd231pd ...
17 [0,12] . D=====eeeeeeeeeeeeER. vfnmadd231pd ...
18 [0,13] . DeE----------------R. lea ecx ...
19 [0,14] . DeE----------------R. add eax ...
20 [0,15] . .DeeeeeeeeeeeeE----R. vfmadd231pd ...
21 [0,16] . .D=====eeeeeeeeeeeeER vfnmadd231pd ...
22 [0,17] . . DeE---------------R cmp r11 ...
23 [0,18] . . D=eE--------------R jne .L2 ...
24 [1,0] . . DeE---------------R mov 2nd cycle
25 [1,1] . . DeeeeeeeE---------R vbroadcastsd ...
26 [1,2] . . DeeeeeeeE--------R vbroadcastsd ...
27 [1,3] . . DeE--------------R add r8, ...
28 [1,4] . . D===eeeeeeeeeeeeER vfmadd231pd ...
29 [1,5] . . DeE-------------R add r9, ...

Listing 5.7. Timelime of the first and the beginning of the second iterations of
the innermost loop in Listing 5.2 generated with llvm-mca. Compiler: GCC
12.2 - x86 Haswell microarchitecture

5.11 Benchmarks and results

The purpose of this section is to use a benchmark to evaluate the effectiveness
of the various strategies to calculate the RII matrices introduced and discussed in
this chapter. The benchmark consists of 7 different tests.

The first two benchmarks are designed to test the strategy based on matrix
multiplication to build the RII matrices (see Section 5.7.4). These tests take ad-
vantage of the BLAS routines, especially the use of the cblas_*gemm func-
tions. In the first test, we used the cblas_zgemm to compute the multiplica-
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tion between complex matrices. Thus, the calculation of equation (5.9) is carried
out in its real and imaginary parts25. In the second test, we used two calls of
the routine cblas_dgemm26 to separately calculate the two terms of equation
(5.11) and to perform the subtraction (note that: cblas_dgemm calculates
C = αAB + β C).

The second series of benchmarks is based on the dedicated functions we in-
troduced in the preview sections: 1) Intrinsic 5.10.2, 2) Compiler vectorization
5.10.3 and 3) Vector extension 5.10.4. In the case of the vector extension, with
the objective of using all available vector registers of the CPU (16 in the Haswell
microarchitecture), we considered three variants of the function. The first is the
one reported in Section 5.10.4, while in the other two we modified the original
function to compute the 2 and 4 RII matrices at each call.

These tests were performed on the "fat" nodes of the USI HPC cluster and
the Cray XC40 compute nodes of the Pitz Daint supercomputer at CSCS (see
Table 5.2). For benchmarks based on BLAS routines, only the Intel MKL imple-
mentation was used, since the actual performance of other implementations is
insufficient (and therefore not necessary to be reported).

The main function of the benchmark repeats 10000 times the computation
of a batch of RII matrices of size NII = 20000 (the total size of the benchmark
is close to the size of a real-world problem). To reproduce the realistic scenario
where all CPUs of a compute node are used, we ran as many MPI processes as
the number of physical processors (i.e., 36 on Cray XC40 and 20 on USI HPC).
The processes are synchronized (via MPI barriers) so that all test functions are
executed simultaneously. This benchmark setup reproduces the computational
scenario we have implemented to solve the 3D radiative transfer problem (Bene-
dusi et al., 2023), where there is one MPI process on each processor, each of
which computes the emission vectors of a spatial point.

In tables 5.4 and 5.5 (where we report the results of the benchmarks), it can
be seen that the dedicated implementations of the function achieved an efficiency
of more than 90%, significantly better than that obtained using the Intel MKL im-
plementation of BLAS. Since the application is memory bound, the bandwidth of
the CPUs plays a key role in defining peak performance. As a result, the increase
in FLOPS on the Cary XC40 compared to the USI HPC is not proportional to the
number of processors, but to the bandwidth (which is greater on the Cary XC40,
see remark: 5.6.3); this fact, based on a theoretical prediction, confirms that the

25Note that cblas_zgemm assumes that the real and imaginary parts of a number are con-
tiguous in memory. Therefore, given the design of the data structure we have developed, the
method of this test is not usable in the effective calculation of the RII matrices.

26See: CBLAS gemm documentation for Intel MKL

https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines/blas-routines/blas-level-3-routines/cblas-gemm.html
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Test [Cray XC40] Mean GFLOPS 95% CI Efficiency [%]

zgemm MKL 175.05 ± 0.12 62.96
dgemm MKL 177.47 ± 0.09 63.83
cv 253.89 ± 0.30 91.31
vec 258.83 ± 0.09 93.09
vec_j2 259.21 ± 0.09 93.23
vec_j4 258.84 ± 0.11 93.09
avx2 258.60 ± 0.09 93.01

Table 5.4. Benchmark results on Cray XC40 nodes from the Daint supercom-
puter at the Swiss National Supercomputing Center. The sample size is 100.
The zgemm and dgemm tests are those based on MKL BLAS. The test cv is
the one based on compiler vectorization (see 5.10.3). The tests vec, vec_j2
and vec_j4 rely on vector extension (see 5.10.4) with 1, 2 and 4 RII matrices
computed at each step, respectively. Finally, avx2 are the results based on the
intrinsic implementation (see 5.10.2). The second column of the table shows the
average performance of the compute node expressed in GFLOPS, followed by the
95% confidence interval. Finally, the last column shows the efficiency, which is
the percentage ratio between the achieved performance and the roofline of the
considered compute node as a function of the operational intensity of the pro-
gram, i.e. IOP

�

RII

2×104

�

= 2.8 (see Eq. (5.13) and Sect. 5.6).

Test [USI HPC] Mean GFLOPS 95% CI Efficiency [%]

zgemm MKL 156.36 ± 0.15 62.18
dgemm MKL 165.66 ± 0.65 65.88
cv 166.40 ± 0.40 66.17
vec 240.63 ± 0.84 95.69
vec_j2 241.55 ± 0.60 96.06
vec_j4 235.68 ± 0.57 93.72
avx2 237.74 ± 0.67 94.54

Table 5.5. Same as table 5.4 but reports results achieved on fat-nodes of the
USI HPC with a sample size of 80.

application is optimal.
We also find that methods based on intrinsic and vector extensions are gen-

erally more efficient than those based on compiler vectorization. In particular, in
the table 5.5, the cvmethod shows a loss of efficiency, which could be attributed
to a software problem with the compiler or to a memory problem.
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From the results reported in this section, we can conclude that the main pro-
cedure used to compute the RII matrices makes optimal use of CPU resources.

5.12 Alternatives strategies

In this final section, we present two alternative strategies (not yet implemented
at the time of this writing) that arise from the analysis presented in this chapter
and that improve the operational intensity and, as a result, effective performance
of the main approach.

5.12.1 Direct calculation of the emission vector

In Equation (5.14) we show the complete structure necessary to compute the
emission vector directly (i.e., without explicitly performing matrix multiplica-
tion). In terms of computational cost, this approach could be interesting because
it allows us to avoid storing the values of the RII matrices in an external array,
so that the matrices are built and consumed directly in the registers of the CPU
(without the need to reference and move the data to a memory page in DRAM).
However, the main disadvantage of this approach is that it allows the calculation
to be performed on one output frequency at a time (consequently, the batch size
is limited to an average of Nβ ≈ 150).

The operational intensity (see Sect. 5.6.1) of Equation (5.14), considering
the float64 format, is

IOP

�

RII

Nβ

�

=
Nβ (4× 16× 19+ 16+ 12+ 4+ 4)

sizeof (float64)
�

2× 16× 19+ Nβ (19× 2+ 4+ 1) + 4
� , (5.17)

where the numerator is the number of FLOPS required to construct a RII matrix,
compute the dot product between that matrix and the incoming radiation field,
and finally perform the weighted sum required to compute the quadrature of
the emissivity. In the denominator, there is the amount of data transferred as a
function of the sizes of the input matrices, the interpolated Stokes parameters,
the quadrature weights, and the resulting Stokes vector. Therefore, without the
need to store the RII matrices in DRAM, the total amount of data transferred is
less than that considered in Section 5.10.1. For an average value of Nβ ≈ 150, the
resulting operational intensity of the equation (5.14) is IOP

�

RII
150

�

= 3.3. There-
fore, in the typical realistic case, we can expect a performance improvement of
∼ 17% compared to the methods introduced in section 5.10. With the limitation
that the batch size Nβ is a constraint imposed by the problem parameters, and



133 5.12 Alternatives strategies

on average it is small. As a consequence, due to the higher fragmentation of the
execution flow, a global loss of efficiency is possible.

The listing 5.8 shows the optimized C/C++ code (based on the compiler vec-
torization 5.10.3) needed to compute the contribution to the emission vectors
for an incoming and outgoing pair of directions (i.e. Ω′, Ω) at an outgoing fre-

quency, given the quantities

�

R
II,KK ′

Q

:�Θ

and
�

PKK ′
Q

:�Ω′,Ω

, namely, it computes only

the expression in brackets of the equation (5.14).
The output array EpsV has a size of 4 and must be added to the final value

of
�

ϵ ℓ,I I
�

, hence the iteration over the diffused frequencies and directions must
be performed with external loops (see also Algorithm 6 on page 70). As a result,
the function in Listing 5.8 must be called NΩ

2 × Nν (which is 921600 times if
we consider the typical problem of the Ca I 4227 Å line) when calculating all
emission vectors at one spatial point.

1 void kernel_R_II_up_cv_quad(double *EpsV,
2 const double *P_re,
3 const double *P_im,
4 const unsigned int P_off_k,
5 const double *rii_re,
6 const double *rii_im,
7 const double *ww,
8 const double *I,
9 unsigned int size_up) {

10 EpsV[0] = 0.0;
11 EpsV[1] = 0.0;
12 EpsV[2] = 0.0;
13 EpsV[3] = 0.0;
14

15 #pragma GCC unroll(1)
16 for (unsigned int up_i = 0; up_i < size_up; up_i++) {
17 double R_II_re[] = {0.0, 0.0, 0.0, 0.0,
18 0.0, 0.0, 0.0, 0.0,
19 0.0, 0.0, 0.0, 0.0,
20 0.0, 0.0, 0.0, 0.0};
21

22 const double wl[] = {ww[up_i], ww[up_i],
23 ww[up_i], ww[up_i]};
24

25 double EpsVl[] = {0.0, 0.0,
26 0.0, 0.0};
27

28 #pragma GCC unroll(1)
29 for (unsigned int k = 0; k < 19; ++k) {
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30 const double rii_re_k = rii_re[k];
31 const double rii_im_k = rii_im[k];
32

33 const unsigned int off_k = P_off_k * k;
34 const double *P_re_k = &P_re[off_k];
35 const double *P_im_k = &P_im[off_k];
36

37 #pragma GCC unroll(1)
38 for (unsigned int ij = 0; ij < 16; ij++) {
39 const double P_re_i = P_re_k[ij];
40 const double P_im_i = P_im_k[ij];
41 R_II_re[ij] += rii_re_k * P_re_i - rii_im_k * P_im_i;
42 }
43 }
44

45 const double w = ww[up_i];
46 const double *I_rel = &I[up_i * 4];
47

48 const double *R_II_re_4 = &R_II_re[4];
49 const double *R_II_re_8 = &R_II_re[8];
50 const double *R_II_re_12 = &R_II_re[12];
51

52 #pragma GCC unroll(1)
53 for (unsigned int i = 0; i < 4; i++) {
54 EpsVl[0] += (R_II_re[i] * I_rel[i]);
55 EpsVl[1] += (R_II_re_4[i] * I_rel[i]);
56 EpsVl[2] += (R_II_re_8[i] * I_rel[i]);
57 EpsVl[3] += (R_II_re_12[i] * I_rel[i]);
58 }
59

60 #pragma GCC unroll(1)
61 for (unsigned int i = 0; i < 4; i++) {
62 EpsV[i] += wl[i] * EpsVl[i];
63 }
64 }
65 }

Listing 5.8. C/C++ code for the calculation of the emission vectors given the
values of PKK ′

Q , R
II,KK ′

Q , the quadrature weights ww and an array storing the
interpolated values of the incoming radiative field (i.e., I).

5.12.2 Computation in batches of pair of directions

In Chapter 4 we introduced a method that exploits the repetitions of the scatter-
ing angles appearing in some angular grid (i.e. Cartesian product, and Lebedev’s
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rules) to minimize the number of calculations.
This alternative method, which also exploits the repetitions of the scattering

angles, is based on the fact that each flattened matrix

�

R
II,KK ′

Q

:�Θ

is associated

with all the phase scattering matrices
�

PKK ′
Q

:�Ω′,Ω

where the pair of directions

Ω′, Ω generate the given scattering angle Θ (see also Eq. (5.9)).

If we concatenate all these matrices in a unique matrix

�

PKK ′

Q

:�Batch

∈ C19×(16 B) ,

where B is the batch size (i.e. the number of pairs of direction associated with
a given scattering angle), and a Batch is the set of all pairs of discrete directions
such that

Θ =
�

�arccos
�

Ωn ·Ω′m
��

� where : Ωn,Ω′m ∈ S .

This allows computing all the RII matrices associated with the given scattering
angle with unique matrix multiplication:

�

RII
:�Batch

= Re

�

�

R
II,KK ′

Q

:�Θ

·
�

PKK ′

Q

:�Batch�

,

where
�

RII
:�Batch

∈ RNII×16 B.

It is straightforward to conclude that the operational intensity (derived from
Eq. (5.12)) of the above matrix multiplication is:

IOP

�

RII

NII ,Batch

�

=
NII(B × 4× 16× 19)

sizeof (float64) [B × 16× 19× 2+ NII (19× 2+ B × 16)]
,

whose limit is a function of B, i.e.

lim
NII→∞

IOP

�

RII

NII ,Batch

�

=
76 B

19+ 8 B

which, in turn, converge to an asymptotic upper bound operational intensity of
9.5 for B →∞. This approach could theoretically be about 3 times faster (on
the same computer system, and by performing the same operations) than the
main approach described above. And on some CPUs or GPUs, models could be
compute-bound.
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5.13 Conclusions

In this chapter, thanks to the roofline model and the study of superscalar CPUs
(and GPUs), we made a comprehensive analysis of the most time-consuming
function of the entire computational method for calculating the emission vectors
(namely the calculation of the RII matrices given the values of RII,KK ′

Q ).
Thanks to the analysis of the algorithm and the available computer systems,

we concluded that the first choice (and perhaps the most convenient) is to im-
plement the algorithm on CPU since it is a memory-bound procedure and frag-
mented into a very large number of unstructured and small sub-problems.

The implemented strategies were validated through dedicated benchmarks,
where we demonstrated a quasi-optimal efficiency.

Moreover, the methodology proposed in this Chapter (based on the roofline
model) allowed us to propose two alternative strategies which can be used to
further improve the performances.



Chapter 6

Quantitative analysis of the CRD
approximation for the RIII

This chapter is based on the paper:
Assessment of the CRD approximation for the observer’s frame
RIII redistribution matrix Riva et al. (2023).

Abstract

Context: Approximated forms of the RII and RIII redistribution matrices are fre-
quently applied to simplify the numerical solution of the radiative transfer prob-
lem for polarized radiation, taking partial frequency redistribution (PRD) effects
into account. A widely used approximation for RIII is to consider its expression un-
der the assumption of complete frequency redistribution (CRD) in the observer’s
frame (RIII−CRD). The adequacy of this approximation for modeling the intensity
profiles has been firmly established. By contrast, its suitability for modeling scat-
tering polarization signals has only been analyzed in a few studies, considering
simplified settings.

Aims: In this work, we aim at quantitatively assessing the impact and the range
of validity of the RIII−CRD approximation in the modeling of scattering polarization.

Methods: We first present an analytic comparison between RIII and RIII−CRD. We
then compare the results of radiative transfer calculations, out of local thermo-
dynamic equilibrium, performed with RIII and RIII−CRD in realistic one-dimensional
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atmospheric models. We focus on the chromospheric Ca I line at 4227 Å and on
the photospheric Sr I line at 4607 Å.

Results: The RIII−CRD approximation provides accurate results for the Ca I 4227 Å
line. Only when velocities are included, some appreciable discrepancies can be
found, especially for lines of sight close to the disk center. The approximation
performs well also for the Sr I 4607 Å line, especially in the absence of magnetic
fields or when a micro-turbulent field is included. However, some appreciable
errors appear when deterministic magnetic fields or bulk velocities are consid-
ered.

Conclusions: Our results show that the RIII−CRD approximation is suitable for
modeling the scattering polarization signals of strong chromospheric lines, both
in the core and wings. The approximation is suitable for photospheric lines as
well, guaranteeing accurate results, especially in the presence of micro-structured
magnetic fields.

6.1 Introduction

Significant scattering polarization signals are observed in several strong reso-
nance lines of the solar spectrum, such as H I Ly-α (Kano et al., 2017), Mg II k
(Rachmeler et al., 2022), Ca II K, Ca I 4227 Å, and Na I D2 (e.g., Stenflo et al.,
1980; Stenflo and Keller, 1997; Gandorfer, 2000, 2002). These signals, which
are characterized by broad profiles with large amplitudes in the line wings, en-
code a variety of information on the thermodynamic and magnetic properties
of the upper layers of the solar atmosphere (e.g., Trujillo Bueno, 2014; Trujillo
Bueno et al., 2017). A correct modeling of these profiles requires solving the
radiative transfer (RT) problem for polarized radiation in non-local thermody-
namic equilibrium (non-LTE) conditions, taking partial frequency redistribution
(PRD) effects (i.e., correlations between the frequencies of incoming and outgo-
ing photons in scattering processes) into account (e.g., Faurobert-Scholl, 1992;
Stenflo, 1994; Holzreuter et al., 2005; Belluzzi and Trujillo Bueno, 2012).

A powerful formalism to describe PRD phenomena is that of the redistribu-
tion function (e.g., Hummer, 1962; Mihalas, 1978), which is generalized to the
redistribution matrix in the polarized case (e.g., Domke and Hubeny, 1988; Sten-
flo, 1994; Bommier, 1997a,b). For resonance lines, the redistribution matrix is
given by the sum of two terms, commonly labeled as RII and RIII according to
the notation introduced by Hummer (1962). The RII matrix describes scattering
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processes that are coherent in frequency in the atomic reference frame, while
RIII describes scattering processes that are totally incoherent in the same frame
(e.g., Bommier, 1997a,b).1 The linear combination of RII and RIII allows taking
frequency redistribution effects due to elastic collisions with neutral perturbers
into account (e.g., Bommier, 1997b). In the observer’s frame, the Doppler shifts
due to the thermal motions of the atoms are responsible for further frequency
redistribution effects. The Doppler effect actually induces a complex coupling
between the frequencies and propagation directions of the incident and scattered
radiation, which makes the evaluation of both RII and RIII, as well as the solution
of the whole non-LTE RT problem, notoriously challenging from the computa-
tional standpoint. For this reason, approximate expressions of the redistribution
matrices in the observer’s frame, in which such coupling is loosened, have been
proposed and extensively used. In this context, a common choice is to use the
angle-averaged (AA) expression of RII, hereafter RII−AA (e.g., Mihalas, 1978; Rees
and Saliba, 1982; Bommier, 1997b; Leenaarts et al., 2012), and the expression
of RIII obtained under the assumption that the scattering processes described by
this matrix are totally incoherent also in the observer’s frame, hereafter RIII−CRD

(e.g., Mihalas, 1978; Bommier, 1997b; Alsina Ballester et al., 2017). The latter
is also referred to as the assumption of complete frequency redistribution (CRD)
in the observer’s frame.

The impact and the range of validity of the RII−AA approximation in the mod-
eling of scattering polarization has been discussed by several authors (e.g., Fau-
robert, 1987b, 1988b; Nagendra et al., 2002; Nagendra and Sampoorna, 2011;
Sampoorna et al., 2011b; Anusha and Nagendra, 2012; Sampoorna and Nagen-
dra, 2015; Sampoorna et al., 2017; Nagendra et al., 2020; del Pino Alemán et al.,
2020; Janett et al., 2021a). These studies showed that the use of RII−AA can in-
troduce significant (and hardly predictable) inaccuracies in the modeling of the
line-core signals, while it seems to be suited for modeling the wing lobes and
their magnetic sensitivity through the magneto-optical (MO) effects. By con-
trast, little effort has been directed to determine the suitability of the RIII−CRD

assumption when modeling scattering polarization. Although this approxima-
tion has no true physical justification, it proved to be suitable for modeling the
intensity profiles of spectral lines (e.g., Chapter 13 of Mihalas, 1978, and ref-
erences therein). However, Bommier (1997b) pointed out that it may lead to
appreciable errors when polarization phenomena are taken into account. In that
work, the author considered a 90◦ scattering process of an unpolarized beam of

1In this work, the terms coherent and totally incoherent are used in the sense that the frequen-
cies of the incident and scattered radiation are fully correlated and completely uncorrelated,
respectively.
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radiation in the presence of a weak magnetic field, and compared the polariza-
tion of the scattered radiation calculated considering the exact expression of RIII

and the RIII−CRD approximation, finding appreciable differences between the two
cases.2 The exact expression of RIII has been used in the non-LTE RT calculations
with isothermal one-dimensional (1D) atmospheric models by Sampoorna et al.
(2011b) and Supriya et al. (2012) for the non-magnetic case, Nagendra et al.
(2002) and Supriya et al. (2013) in the weak field Hanle regime and, more re-
cently, Sampoorna et al. (2017) in the more general Hanle-Zeeman regime. In
this last paper, the authors analyzed the suitability of the RIII−CRD approximation
for modeling scattering polarization, considering an ideal spectral line. They first
concluded that the use of RIII−CRD introduces some inaccuracies, especially in the
line wings, when considering optically-thin self-emitting slabs in the presence of
weak magnetic fields (i.e., fields for which the ratio ΓB between the magnetic
splitting of the Zeeman sublevels and the natural width of the upper level of
the considered transition is in the order of unity). Moreover, these discrepancies
are much smaller when stronger magnetic fields (ΓB ≈ 100) are considered (see
Fig. 1 and Sect. 4 in Sampoorna et al., 2017). However, when considering an
atmospheric model with a greater optical depth, they found that the use of RIII−CRD

does not seem to produce any noticeable effect on the emergent Stokes profiles
already for weak fields (see Fig. 2 in Sampoorna et al., 2017). To the best of the
authors’ knowledge, the aforementioned works are the only ones reporting PRD
calculations of scattering polarization performed using the exact expression of
RIII.

Taking advantage of a new solution strategy for the non-LTE RT problem
for polarized radiation, tailored for including PRD effects (see Benedusi et al.,
2022), we provide a quantitative analysis of the suitability of the RIII−CRD approxi-
mation, considering more general and realistic settings than in previous studies.
In particular, we show the results of non-LTE RT calculations of the scattering po-
larization signals of two different spectral lines (i.e., Ca I 4227 Å and Sr I 4607 Å)
in 1D models of the solar atmosphere, both semi-empirical and extracted from
3D magneto-hydrodynamic (MHD) simulations, and accounting for the impact
of realistic magnetic and bulk velocity fields.

Comparisons between RIII and RIII−CRD. Section 6.3 provides some general con-
siderations on the role of RIII in the RT modeling of scattering polarization, and
on the expected impact of RIII−CRD. Sections 6.4 and 6.5 report comparisons of
non-LTE RT calculations of scattering polarization signals in realistic 1D settings,

2It must be observed that the author applied the CRD approximation after introducing in RIII

other simplifications suited for the weak-field regime (see Sect. 4 of Bommier, 1997b).
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performed with RIII and RIII−CRD. Finally, Section 6.6 provides remarks and conclu-
sions.

6.2 Comparison of RIII and RIII−CRD

In this section, we first present an analytical comparison between the general
angle-dependent expression of the RIII matrix (hereafter denoted as RIII) and its
RIII−CRD approximation. We then review the reasons why the RIII−CRD approximation
allows for a significant simplification of the problem from a computational point
of view, and also provide a presentation of the challenges faced when considering
RIII, focusing on algorithmic aspects.

6.2.1 Analytic considerations

In the formalism of the irreducible spherical tensors for polarimetry (see Chap-
ter 5 of LL04), the RIII redistribution matrix in the observer’s reference frame
(A.35) is given by the product between the scattering phase matrix PKK ′

Q ∈ C
4×4

(A.18), which only depends on r, Ω, and Ω′, and the redistribution function
R

III,KK ′

Q ∈ C (A.36), which also depends on ν and ν′. This factorization also holds
for the RIII−CRD matrix, leaving unchanged the PKK ′

Q matrix, while replacing the re-

distribution function R
III,KK ′

Q with the approximation R
III−CRD,KK ′

Q given by (A.41). A

fundamental difference between R
III,KK ′

Q and R
III−CRD,KK ′

Q is that the former depends
on the scattering angle Θ = arccos (Ω ·Ω′) (i.e., the angle between the directions
Ω and Ω′), while the latter does not.

To analyze the dependence onΘ, we start considering the simpler expressions
that R

III,KK ′

Q and R
III−CRD,KK ′

Q assume in the absence of magnetic fields (B = 0).
In this case, the magnetic shifts uMuMℓ (see Eq. (A.26)) are zero, and the sums
over the magnetic quantum numbers M appearing in (A.36) and (A.42) can be
performed analytically. If we additionally assume that there are no bulk velocities
(vb = 0) or, without loss of generality, we evaluate the redistribution matrix
in the comoving frame (see Sect. 1.8.2), the Doppler shifts ub (see Eq. (A.26))
also vanish, and the dependence on the propagation directions Ω and Ω′ is only
through the scattering angle Θ. Expressing the functions in terms of the reduced
frequencies u and u′ (see Eq. (A.25)), in the limit of B = 0 and vb = 0, one finds:

R
III,KK ′

Q (r,Ω,Ω′, u, u′) −−−−−→
B=0,vb=0

δKK ′ R̃
III,K(r,Θ, u, u′) ,

with
R̃III,K(r,Θ, u, u′) =

�

βK(r)−α(r)
�

W K(Jℓ, Ju) Ĩ(r,Θ, u, u′) . (6.1)
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The quantities βK and α are given by (A.4) and (A.5), respectively, in the limit
of no magnetic fields, while W K is defined as (see Eq. (10.17) of LL04)

W K (Jℓ, Ju) = 3 (2Ju + 1)

�

1 1 K
Ju Ju Jℓ

�2

,

where Jℓ and Ju are the total angular momenta of the lower and upper level,
respectively, and the operator in curly brackets is the Wigner’s 6- j symbol. The
quantity Ĩ takes different analytical forms depending on the value of Θ:

• if Θ ∈ (0,π) (i.e., if Ω′ ̸= Ω,−Ω)

Ĩ(r,Θ, u, u′) =
1

π2 sin(Θ)

∫

dy exp
�

−y2
�

(6.2)

×H
�

a(r)
sin(Θ)

,
u+ y cos(Θ)

sin(Θ)

�

φ
�

a(r), u′ + y
�

,

• if Θ = 0 (i.e., forward scattering Ω′ = Ω)

Ĩ(r,Θ = 0, u, u′) =
1
π5/2

∫

dy exp
�

−y2
�

×φ (a(r), u+ y)φ
�

a(r), u′ + y
�

, (6.3)

• if Θ = π (i.e., backward scattering Ω′ = −Ω)

Ĩ(r,Θ = π, u, u′) =
1
π5/2

∫

dy exp
�

−y2
�

×φ (a(r), u− y)φ
�

a(r), u′ + y
�

. (6.4)

In the previous equations, H is the Voigt profile (i.e., the real part of the Faddeeva
function, see Chapter 5 of LL04) and φ the Lorentzian profile (i.e., the real part
of the function ϕ defined in Eq. (A.34)). Similarly, it can be shown that

R
III−CRD,KK ′

Q (r,Ω,Ω′, u, u′) −−−−−→
B=0,vb=0

δKK ′ R̃
III−CRD,K(r, u, u′) ,

with

R̃III−CRD,K(r, u, u′) =
�

βK(r)−α(r)
�

W K(Jℓ, Ju)

×
1
π

H(a(r), u)H(a(r), u′) .
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Recalling that the Voigt profile is, by definition, a convolution between a Gaussian
and a Lorentzian distribution (e.g., Chapter 5 of LL04), from Eq. (6.2), it can
be easily seen that for Θ = π/2

Ĩ(r,Θ=π/2, u, u′) =
1
π2

H (a(r), u)

∫

dy exp
�

−y2
�

φ
�

a(r), u′ + y
�

=
1
π

H (a(r), u)H
�

a(r), u′
�

.

This shows that the approximate R̃III−CRD,K function corresponds to the exact R̃III,K

for Θ = π/2, namely,

R̃III−CRD,K(r, u, u′) = R̃III,K(r,Θ = π/2, u, u′) . (6.5)

For scattering angles Θ ̸= π/2, the functions R̃III,K and R̃III−CRD,K are generally
different, and this difference increases as Θ approaches the two limiting cases of
forward and backward scattering (i.e., Θ = 0 and Θ = π, respectively). This can
be clearly seen in Fig. 6.1, where R̃III,0 is plotted as a function of u′ for different
values of u and Θ. In particular, we compare the profiles for Θ = 0 and π, to that
for Θ = π/2, which, as shown above, corresponds to R̃III−CRD,0. For any value of u,
the function R̃III−CRD,0 shows a relatively broad profile (full width at half maximum
of about 2), centered at u′ = 0. The amplitude of the peak is maximum at u= 0
(left panel) and quickly decreases by various orders of magnitude already at
u≈ 3 (middle panel). The behavior of the function R̃III,0 is much more complex.
For u = 0 (left panel) and Θ = 0 or π, the profile is centered at u′ = 0 and it
is much sharper and with a larger amplitude than that of R̃III−CRD,0. For u ≈ 3
(middle panel) and Θ = 0 (resp. Θ = π), the function is characterized by a broad
profile, similar in amplitude and width to that of Θ = π/2 (which is equivalent
to R̃III−CRD,0, see Eq. (6.5)), but with its maximum slightly shifted to positive (resp.
negative) values of u′. Additionally, it shows a secondary sharp peak centered at
u′ = u (resp. u′ = −u). For u≈ 9 (right panel), in the case of Θ = 0 (resp. Θ = π),
the secondary peak becomes negligible, while the main one is very similar to that
of R̃III−CRD,0. Noting that the dependence on K is limited to the factors βK and W K

(see Eq. (6.1)), it is possible to state that R̃III−CRD,K and R̃III,K are de facto equivalent
in the wings, independently of the value of Θ. By contrast, they differ in the core
and near wings, where the magnitude of the discrepancies strongly depends on
Θ. In the presence of a magnetic field, the redistribution function R

III,KK ′

Q (A.36)
is given by a linear combination of the functions I(MuMℓ),(M ′uM ′

ℓ
) (A.37) – (A.39).

These functions are fully analogous to Ĩ (6.2) – (6.4), the only difference being
that the second and third functions in the integrand (i.e., the profiles depending
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Figure 6.1. Comparison of R̃III,0 as a function of u′ for three different scattering
angles Θ (see legends), for u = 0 (left panel), u = 3.4 (middle panel), and u =
8.9 (right panel). The function is calculated considering a transition between
levels with total angular momenta Jℓ = 0 and Ju = 1, and a damping parameter
a = 0.01. The factor (β0 − α) is calculated setting α = 0 and using the value
of β0 corresponding to the Ca I 4227 Å line at a height of 300 km in the FAL-C
atmospheric model.

on the scattered and incident radiation, respectively) are shifted by uMuMℓ and
uM ′uM ′

ℓ
, respectively. It can be shown that also in the presence of magnetic fields

(but still neglecting bulk velocities), the following relation holds:

R
III−CRD,KK ′

Q (r, u, u′) = R
III,KK ′

Q (r,Θ = π/2, u, u′) .

When Θ ̸= π/2, RIII,KK ′

Q (as function of u′) differs in general from R
III−CRD,KK ′

Q .
As in the unmagnetized case, the difference is marginal for large values of u
(i.e., u > 6) independently of the magnetic field strength, while it can be very
significant in the core and near wings, especially when Θ is close to 0 or π. When
approaching these limit cases, the curves for RIII,KK ′

Q can show very sharp peaks
and the contribution of the various Zeeman components, split in frequency by the
magnetic field, can eventually be resolved. As an illustrative example, Fig. 6.2
shows the component RIII,22

−2 plotted as a function of u′, for u = 0.76, B = 30 G,
and different values of Θ. We note that this component has a non-zero imaginary
part since Q ̸= 0. As for the unmagnetized case, the curve for Θ = π/2,
which corresponds to the CRD approximation, shows a broad profile centered at
u′ = 0. As Θ departs from π/2 , the corresponding profiles show increasingly
large differences from the previous one. In particular, for Θ approaching 0 (resp.
π), the position of the maximum moves from u′ = 0 towards u′ = u (resp.
u′ = −u) , while the width of the profile becomes sharper and the amplitude
larger, in both the real and imaginary parts. As the profiles become sharper, the
Zeeman components become visible, producing small lobes of opposite signs with
respect to the central peak in the real part (left panels) and small substructures
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in the central peak in the imaginary part (right panels).
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Figure 6.2. Real (left column) and imaginary (right column) parts of RIII,KK ′

Q as
a function of u′, for different scattering angles (see legend). We consider the
component with K = K ′ = 2 and Q = −2. The function is evaluated at u= 0.76,
including a magnetic field of 30 G. The other parameters are the same as in Fig.
6.1.

In summary, the RIII−CRD approximation should be suitable in the far wings
of the spectral lines (see right panel of Fig. 6.1), while it can introduce some
inaccuracies in the core and near wings, mainly due to scattering processes with
Θ close to 0 or π, for which RIII−CRD and RIII differ significantly.

6.2.2 Computational considerations on RIII−CRD

The RIII−CRD approximation is based on the assumption that scattering processes
are totally incoherent also in the observer’s frame, which in turn implies that in a
scattering event, absorption and re-emission can be treated as completely inde-
pendent processes. Consistently with this picture, Eq. (A.41) shows that in RIII−CRD

the joint probability of absorbing radiation with frequency ν′ and re-emitting ra-
diation with frequency ν is simply given by the product of two generalized pro-
files ΦKK ′

Q (A.42). Following the approach discussed in Sect. 1.8.2, we evaluate
the emission vector in the comoving frame, where no bulk velocities are present.
In this case, the generalized profiles do not depend on the propagation directions
Ω and Ω′, and from Eqs. (A.35), (A.41), and (A.18), one finds that the emission
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coefficients corresponding to RIII−CRD are given by

ϵIII−CRD

i (r,Ω,ν) = kL(r)

×
∫

R+

dν′
∮

dΩ′

4π

4
∑

j=1

RIII−CRD

i j (r,Ω,Ω′,ν,ν′) I j(r,Ω′,ν′)

=
kL(r)
∆ν2

D(r)

2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

2Ju
∑

K ′′=|Q|

�

βK ′′

Q (r)−αQ(r)
�

×
K
∑

Q′=−K

K ′
∑

Q′′=−K ′
(−1)Q

′
TK ′

Q′′,i(Ω)D
K ′

QQ′′(r)D
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∫
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Q

�
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�

JK
−Q′

�

r,ν′
�

, (6.6)

where i = 1, ..., 4, Kmin =min (K , K ′), and ∆νD, TK
Q,i, and DK

QQ′ are the Doppler
width (in frequency units), the polarization tensor, and the rotation matrices,
respectively (see Appendix A.2 for more details). Finally, JK

Q is the radiation field
tensor, defined as (see Eq. (5.157) of LL04)

JK
Q (r,ν) =

∮

dΩ
4π

4
∑

j=1

TK
Q, j (r,Ω) I j (r,Ω,ν) .

Equation (6.6) shows that the dependencies on the frequency and propagation
direction of the incoming and outgoing radiation are completely decoupled. This
allows the implementation of simple and fast computational algorithms: once
the values of JK

Q are obtained from the formal solution of the RT equation, it is

possible to independently compute the values of ΦK ′K
Q for the frequencies of the

incoming and outgoing radiation and combine them only during the final calcu-
lation of the emission coefficient. Using the big-O notation, the time complexity
(e.g., Sipser, 1996) of the algorithm scales as O

�

N d
ν

�

, where d ∈ (1,2) grows
monotonically with Nν. For the typical size of the frequency grids needed to syn-
thesize one (or a few) spectral lines (i.e., Nν ≈ 100), d can be considered close
to 1. This kind of time complexity is justified because the calculation of the gen-
eralized profile is slow (complex algorithms are required), while the subsequent
combination of them is fast as it only implies products of complex numbers.

In numerical applications considering the RIII−CRD approximation, it is com-
mon practice to perform the integration over the frequencies of the incoming
radiation in (6.6) using the frequency grid from the problem discretization (see
Sect. 1.8.2) without further refinements, and applying the trapezoidal rule. This
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methodology has the advantages of a decreased time-to-solution (TTS) and im-
plementation simplicity. On the other hand, it should be pointed out that the
accuracy of the results can be improved by using denser and more specific grids
for the frequencies of the incoming radiation without any major loss of overall
performance. This is because, even if a finer frequency grid is used in (6.6), in a
PRD setting the TTS for evaluating the total emissivity remains mainly dominated
by the contribution of the angle-dependent RII redistribution matrix.

6.2.3 Computational considerations on RIII

The evaluation of ϵIII considering the exact expression of RIII (see equations in
Appendix A.2.2) is computationally challenging for the following main reasons:
a) it involves a 4-dimensional integration, leading to a very large number of
evaluations of the integrands in Eqs. (A.37) – (A.39). This issue is otherwise
known as the curse of dimensionality; b) the integration variables (ν′, Ω′, and y)
cannot be algebraically decoupled; c) already for simple atomic transitions, the
total number of combinations of magnetic quantum numbers coupled with the
tensorial polarimetric indices is high, which adds another layer of complexity to
the 4 dimensions of the overall problem; d) the integrands include the Faddeeva
function (Faddeeva and Terent’ev, 1961) whose evaluation requires a large TTS
(e.g., Oeftiger et al., 2016); e) the integrands show a very complex behavior with
respect to the various integration variables and parameters, thus requiring the
use of very fine, unstructured, and case-dependent grids.

Our overall approach for calculating ϵIII is to first evaluate the integral over
y , followed by that over the frequencies ν′, and finally, the one over the propaga-
tion direction Ω′. The analytic expressions of I (A.37) – (A.39) show that in the
absence of bulk velocities (or if the redistribution matrix is evaluated in the co-
moving frame) the coupling between the propagation directions of the incoming
and outgoing radiation occurs through the scattering angle Θ. The integrand in
I shows a complex behavior with respect to the integration variable y , especially
when the scattering angle approaches 0 and π. In these cases, the integrand
becomes close to a Lorentz distribution or its square. These functions are not
easy to numerically integrate due to the presence of sharp peaks and extended
wings. Indeed, the convergence rate for the numerical quadrature of the Lorentz
distribution (and its square) is generally slow. Furthermore, the computation of
a single I (see (A.37)) can require up to thousands of evaluations of the Fad-
deeva function (accounting for more than 70% of the TTS). In order to perform
the quadratures over y , we applied an adaptive quadrature method based on
the Gauss-Kronrod approach (e.g., Kronrod, 1965; Piessens et al., 2012). The
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advantage of this method is that it is capable to infer automatically the behavior
of the integrand by achieving very high accuracy with a relatively low number of
function evaluations.

In general, the time complexity for the computation of ϵIII is O
�

N 2
Ω

N 3
ν

�

. The
cubic contribution given by the number of frequency grid points is due to the
fourth dimension induced by y . It must be noted that the number of grid points
needed to adequately perform the quadrature of the integral over y is generally
larger than Nν.

For the angular integral in (1.4), it is convenient to apply a quadrature rule
characterized by a regular angular grid, because in this case, the effective number
of different scattering angles is significantly lower than the total pairs of direc-
tions. The results reported in the next sections were obtained with the quadra-
ture method described in Sect. 1.8.2, with 12 Gauss-Legendre inclinations and
8 equally spaced azimuths. In this case, the total number of scattering angles is
limited to 200. In our algorithm, the quantities I are pre-computed for the whole
set of different scattering angles corresponding to the chosen angular grid, thus
avoiding repeating the calculation of I, which is rather expensive, for different
pairs of directions having the same scattering angle.

The quantity I depends on two pairs of magnetic quantum numbers, (Mu, Mℓ)
and (M ′u, M ′

ℓ
), where the labels u and ℓ indicate the upper and lower level, re-

spectively. Equation (A.36) shows that the expression of RIII actually includes four
quantities I, which differ for the values of the magnetic quantum numbers and
are coupled inside six nested loops over such quantum numbers. It can be eas-
ily realized that in such loops several tuples of magnetic sublevels are repeated,
which suggests the opportunity to increase the efficiency of the algorithm by
pre-computing the quantities I for all possible combinations of magnetic quan-
tum numbers, thus avoiding to re-calculate the same quantity I various times.
The pre-computation of I as described above leads to a drastic reduction of the
total number of calculations needed to compute ϵIII, which otherwise would be
very significant due to the extra dimension in the integration. The pre-computed
values of I are stored out-of-core (e.g. on disk) because they require a large
footprint, and are accessed during the calculation of ϵIII through a system of
look-up tables. It must be observed that the quantity I and, consequently, the
grids used for performing the numerical integration, also depends on the spa-
tial point through the damping parameter a, the magnetic field and the Doppler
width ∆νD. Our strategy thus calls for relatively large data storage capabilities
that, however, remain manageable in the case of 1D applications.
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6.3 Impact of RIII on spectral lines formation

The RIII redistribution matrix describes scattering processes during which the
atom undergoes elastic collisions with neutral perturbers (mainly hydrogen and
helium atoms in the solar atmosphere) that completely relax any correlation be-
tween the frequencies of the incident and scattered radiation, thus making the
scattering totally incoherent. Informally speaking, due to such collisions, the
atom does not keep any memory of the frequency of the incident photon. On
the contrary, the RII redistribution matrix describes scattering processes in which
the atom is not subject to any elastic collisions, so that the frequencies of the
incident and scattered radiation remain fully correlated (coherent scattering). A
quantitative estimate of the relative weight of RIII with respect to RII is provided
by the branching ratio for RII (see (A.15)) in the absence of magnetic fields (a.k.a.
coherence fraction):

α̃(r) =
Auℓ + Cuℓ(r)

Auℓ + Cuℓ(r) +Qel(r)
,

where Auℓ is the Einstein coefficient for spontaneous emission, Cuℓ is the rate
of inelastic de-exciting collisions, and Qel is the rate of elastic collisions with
neutral perturbers. A value of α̃ close to unity (corresponding to a very low
rate of elastic collisions compared to the rates for spontaneous emission and
collisional de-excitation) means that RII dominates over RIII, while a value of α̃
close to zero (corresponding to a very high value of Qel compared to Auℓ and Cuℓ)
means instead that RIII dominates with respect to RII.

The impact of RIII is thus expected to be marginal in the core of strong spectral
lines (i.e., lines showing broad intensity profiles with extended wings). Indeed,
their line-core radiation generally originates from the upper layers of the solar
atmosphere, where the number density of neutral perturbers (and thus the rate
of elastic collisions) is relatively low. The relative weight of RIII can, however,
become significant in the wings of such lines, as they usually form much lower
in the atmosphere. On the other hand, it must be observed that the profiles en-
tering the definition of RIII are all centered around the line-center frequency, and
therefore the net contribution of this redistribution matrix to the emissivity in
the line wings is generally marginal with respect to that of RII. This can be seen
as an analytical proof of the well-known fact that scattering processes are mainly
coherent in the line wings (e.g., Mihalas, 1978). Consistently with this picture,
Alsina Ballester et al. (2022) showed that in the wings of strong resonance lines,
the contribution of RIII needs to be taken into account in order not to overestimate
the weight of RII, but its net contribution to scattering polarization is fully negli-
gible. These considerations suggest that the exact analytical form of RIII should
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not be crucial for modeling the core and far wings of strong lines, and that the
RIII−CRD approximation should therefore be suitable in these spectral ranges. The
most critical regime is that of the near wings, where strong resonance lines may
show very significant scattering polarization signals. There, RIII may bring a non-
negligible contribution, and it is harder to estimate a-priori the suitability of the
RIII−CRD approximation.

The relative weight of RIII is also non-negligible in the case of spectral lines
forming in the deeper layers of the solar atmosphere (photosphere), where the
number density of colliders is significant. On the other hand, these lines are
generally weak in the intensity spectrum, showing narrow absorption profiles
with a Doppler core and no wings. Since Doppler redistribution is generally very
efficient in the line-core, the limit of CRD (i.e., to assume that all scattering pro-
cesses are totally incoherent) has always been considered a good approximation
for modeling both the intensity (e.g., Mihalas, 1978) and scattering polarization
profiles of these lines (e.g., LL04).

In order to quantitatively verify these considerations, and assess the suit-
ability of the RIII−CRD approximation for modeling scattering polarization, we will
model the intensity and polarization of two different spectral lines, namely a
strong spectral line with extended wings forming in the upper layers of the so-
lar atmosphere, and a weaker line forming deeper in the atmosphere. Excellent
examples for these two typologies of spectral lines are, respectively, the Ca I line
at 4227 Å and the Sr I line at 4607 Å. Both lines result from a resonant transition
between the ground level of the considered atomic species, which in both cases
has total angular momentum Jℓ = 0, and an excited level with Ju = 1. Both
of them show conspicuous scattering polarization signals, which can be suitably
modeled considering a two-level atom with an unpolarized and infinitely-sharp
lower level. Figure 6.3 shows the variation of the coherence fraction α̃ with
height in the 1D semi-empirical model C of Fontenla et al. (1993, hereafter FAL-
C) for the two considered spectral lines. In the same figure, we also plot the
height at which the optical depth τ, in the frequency intervals of the considered
spectral lines, is unity. It can be shown (e.g. Mihalas, 1978) that this height pro-
vides an approximate estimate of the atmospheric region from which the emer-
gent radiation originates (formation height). We recall that the optical depth at
the frequency ν along direction Ω is defined as

τ(s,Ω,ν) =

∫ s

0

η1(x ,Ω,ν)dx , (6.7)

where s is the spatial coordinate along direction Ω (measured with respect to
an arbitrary initial point), and η1 is the absorption coefficient for the intensity
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4607.0

4607.5

4608.0

λ
[Å
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Figure 6.3. Height variation of α̃ (blue line) for Sr I 4607 (top panel) and Ca I

4227 (bottom panel) in the FAL-C model. The red and dashed red isolines show
the height where the optical depth as a function of wavelength is unity (i.e. τ=
1) for µ= 0.034 and µ= 0.966, respectively.

(see also Janett et al., 2017). For calculating the formation height, the direction
Ω must point inwards in the atmosphere, and the initial point s = 0 is taken at
the upper boundary. Since the absorption coefficient is largest at the line center
and decreases moving to the wings, it can be immediately seen that the forma-
tion height is highest in the line core and decreases moving to the wings. From
Eq. (6.7) it is also clear that, for a given frequency, the formation height is higher
for a line of sight (LOS) close to the edge of the solar disk (limb) than for one
at the disk center. Clearly, the formation height is higher for strong lines which
have a large absorption coefficient (e.g., because the number density of atoms
in the lower level of the transition is particularly large in the solar atmosphere)
than for weak ones.
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6.3.1 Ca I 4227 Å line

In the intensity spectrum, the Ca I 4227 Å line shows a very broad and deep
absorption profile (e.g. Gandorfer, 2002) with an equivalent width of 1426 mÅ
(Moore et al., 1966), i.e. one of the strongest spectral lines in the visible part of
the solar spectrum. When observed in quiet regions close to the limb, this line
shows a large scattering polarization signal with a sharp peak in the line core and
broad lobes in the wings (e.g. Gandorfer, 2002). This signal, with its peculiar
triplet-peak structure, has been extensively observed and modeled in the past
(e.g., Stenflo et al., 1980; Faurobert-Scholl, 1992; Bianda et al., 2003; Anusha
et al., 2011; Supriya et al., 2014; Carlin and Bianda, 2017; Alsina Ballester et al.,
2018; Janett et al., 2021a; Capozzi et al., 2020; Jaume Bestard et al., 2021a, and
references therein). In particular, it was clearly established that its broad wing
lobes are produced by coherent scattering processes with PRD effects. We recall
that the line-core peak is sensitive to the presence of magnetic fields via the
Hanle effect. The Hanle critical field (i.e., the magnetic field strength for which
the sensitivity to the Hanle effect is maximum) is Bc ≈ 25 G. The wing lobes
are sensitive to longitudinal magnetic fields of similar strength via the magneto-
optical (MO) effects (Alsina Ballester et al., 2018).

The lower panel of Fig. 6.3 shows that in the FAL-C atmospheric model, the
core of the Ca I 4227 Å line forms above 800 km (low chromosphere). At these
heights, the number density of neutral perturbers is very low, the coherence frac-
tion is thus very close to unity, and RII dominates with respect to RIII. On the other
hand, as we move from the core to the wings, the formation height quickly de-
creases to photospheric levels. At these heights, the coherence fraction is much
lower than one and the weight of RIII is significant. On the other hand, for the
reasons discussed above, its net impact in the line wings is expected to be rel-
atively low. The most critical region is that of the near wings, where the Ca I

4227 Å line shows strong scattering polarization signals, and the net contribu-
tion from RIII can be non-negligible. The suitability of the RIII−CRD approximation
in this spectral region can only be assessed numerically, and it will be analyzed
in Sect. 6.4.

6.3.2 Sr I 4607 Å line

The Sr I 4607 Å line is a rather weak absorption line in the intensity spectrum,
with an equivalent width of 36 mÅ only (see Moore et al., 1966). Nonetheless,
this line shows a prominent scattering polarization signal at the solar limb, char-
acterized by a sharp profile (e.g. Gandorfer, 2000). This signal has been also
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extensively observed and modeled in the past, especially in order to investigate,
via the Hanle effect, the small-scale, unresolved magnetic fields that permeate
the quiet solar photosphere (e.g., Stenflo and Keller, 1997; Trujillo Bueno et al.,
2004; del Pino Alemán et al., 2018; del Pino Alemán and Trujillo Bueno, 2021;
Dhara et al., 2019; Zeuner et al., 2020, 2022). The Hanle critical field for this line
is Bc ≈ 23 G. The limit of CRD has always been considered suited for modeling
both the intensity and scattering polarization profiles of this line.

The upper panel of Fig. 6.3 shows that in the FAL-C atmospheric model, the
core of this line forms in the photosphere, below 500 km. The curve for the
coherence fraction shows that the weight of RIII is, as expected, significant at
these heights. In the next section, we will explore the suitability of the RIII−CRD

approximation in the modeling of the scattering polarization signal of this line
through full PRD RT calculations in the presence of both deterministic and non-
deterministic (e.g. Stenflo, 1982, 1994; Landi Degl’Innocenti and Landolfi, 2004)
magnetic fields. For the latter, we will consider unimodal micro-structured isotropic
(MSI) magnetic fields, namely magnetic fields with a given strength and an
orientation that changes on scales below the mean free path of photons, uni-
formly distributed over all directions. The expressions of RT quantities in the
presence of MSI magnetic fields are exposed in Appendix A.5 (see also Sect. 4 of
Alsina Ballester et al., 2017).

6.4 Numerical results: FAL-C atmospheric model

In this section and in the next one, we present the numerical results3 of non-
LTE RT calculations of the scattering polarization profiles of the Ca I 4227 Å and
Sr I 4607 Å lines, performed with the numerical solution strategy described in
Sect. 1.8.2. All calculations are performed using the general (angle-dependent)
expression of the RII redistribution matrix, while considering both the exact form
of the RIII matrix and its RIII−CRD approximation. The lower level population, which
we keep fixed in the problem (see Sect. 1.8.1), is pre-computed with the RH code
(Uitenbroek, 2001), which solves the nonlinear unpolarized non-LTE RT prob-
lem. For the Ca I 4227 Å line, we run RH using a model for calcium composed
of 25 levels, including 5 levels of Ca II and the ground level of Ca III. For the Sr I

4607 Å line, we considered a model composed of 34 levels, including the ground

3All calculations involving RIII (in its angle-dependent formulation) were performed on the
Piz Daint supercomputer of the Swiss National Supercomputing Center (CSCS) on Cray XC40
nodes (https://www.cscs.ch/computers/piz-daint). An XC40 compute node is equipped with
two Intel® Xeon® E5-2695 v4 microprocessors at 2.10GHz (2x18 cores, 64/128 GB RAM).

https://www.cscs.ch/computers/piz-daint
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level of Sr II. These preliminary computations also provided the rates for elastic
and inelastic collisions, as well as the continuum quantities.

For a quantitative comparison between the emergent Stokes profiles obtained
using RIII and RIII−CRD, we plot the error defined by

Error (a, b) =

�

�a (maxa)−1 − b (maxa)−1
�

�

1+ |a (maxa)−1|
, (6.8)

where a and b represent the values of a given Stokes parameter of the emergent
radiation, for a given direction and all considered wavelengths, obtained con-
sidering RIII and RIII−CRD, respectively. The maximum is calculated with respect to
wavelength, over the considered interval. The error definition in Eq. (6.8) does
not correspond to the standard relative error and it was introduced to prevent
amplifying the discrepancies where a and b are close to zero and consequently
to the numerical noise. Where the signals a and b are relevant, this definition
provides a value that is smaller, by a factor of two in the worst case (i.e., where
a takes its maximum value), than the usual relative error. This definition is thus
justified as it provides the correct order of magnitude of the error where the
signal is relevant while damping it when the signal becomes negligible.

In this section, we show calculations performed in the FAL-C atmospheric
model (70 height nodes), in the presence of constant (i.e., height-independent)
deterministic magnetic fields (i.e., magnetic fields having a well-defined strength
and orientation at each spatial point), in the absence of bulk velocity fields. The
LOS towards the observer is taken on the x−z plane of the considered reference
system (see Fig. 1.4) and is specified by µ = cosθ , with θ the inclination with
respect to the vertical. Typically, we present the emergent Stokes profiles for two
specific directions: µ= 0.034, which represents radiation coming from the solar
limb (nearly horizontal LOS), and µ= 0.996, which represents radiation coming
from near the center of the solar disk (nearly vertical LOS).

6.4.1 Ca I 4227 Å line

We first consider the modeling of the Stokes profiles of the Ca I 4227 Å line,
which is discretized with Nν = 99 unevenly spaced nodes. The characteristics of
this spectral line are adequately reproduced by our calculations. The triple-peak
structure in Q/I is evident in the non-magnetized model shown in Figure 6.4,
while the magnetized case shown in Figure 6.6 displays a clear depolarization of
the core as a result of the Hanle effect and a mild depolarization of the lobes due
to the magneto-optical effects.
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Figure 6.4. Emergent Stokes I (top panels) and Q/I (bottom panels) profiles
of the Ca I 4227 Å line at µ = 0.034 (left panels) and µ = 0.966 (right panels)
calculated in the FAL-C atmospheric model in the absence of magnetic fields.
Calculations take into account PRD effects considering the exact expression of RIII

(blue lines) and the RIII−CRD approximation (green marked lines ). The reference
direction for positive Q is taken parallel to the limb. The red dotted lines report
the error between RIII and RIII−CRD calculations, given by Eq. (6.8).

Figure 6.4 shows the Stokes I and Q/I profiles for a non-magnetic scenario,
where we observe no significant difference between RIII and RIII−CRD calculations,
with an error that is always smaller than 7.5× 10−3. In the absence of magnetic
fields, the U/I and V/I profiles vanish and are consequently not shown.

Figure 6.5 shows the contributions from RII, RIII, and RIII−CRD to |ϵI | and |ϵQ| for
the non-magnetized case as a function of height. For the sake of completeness,
the figure also shows the contributions from continuum and line thermal emissiv-
ities to Stokes I and from continuum to Stokes Q (see blue lines). In this figure,
we consider µ = 0.17 and λ = 4227.1 Å, which corresponds to the wavelength
at the maximum of the red Q/I lobe in Figure 6.4 (left bottom panel). The top
panel of Fig. 6.5 shows that the contributions to ϵI from RIII and RIII−CRD practically
coincide at all heights, and that at the height where the optical depth is unity,
they are very similar to that from RII. By contrast, in the bottom panel, we see
that the contribution to ϵQ of RII dominates over that of RIII at all heights, and
it can be thus considered the only relevant contributor to the formation of the
Q/I wing lobe. In this case, the contribution from RIII−CRD is different from that
of RIII, but it remains negligible with respect to that of RII. This explains why
the computations of Fig. 6.4 do not show any appreciable differences between
RIII and RIII−CRD in the line wings.

Finally, Figure 6.6 displays all the Stokes profiles in the presence of a height-
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Figure 6.5. Various contributions (see legend) to the emission coefficients for
the Stokes parameters I (top panel) and Q (bottom panel) as a function of height
in the FAL-C model, in the absence of magnetic fields. The emission coefficients
are evaluated at the wavelength λ = 4227.1 Å, corresponding to the maximum
of the Q/I lobe in the red wing of the line, for a LOS with µ = 0.17 . The
shaded area in the panels highlights the atmospheric region where the optical
depth at this wavelength and LOS is greater than 1. ϵX (where X = I or Q) is
the total emissivity, ϵII

X , ϵIII
X , and ϵIII−CRD

X are the contributions from RII, RIII, and
RIII−CRD , respectively, while ϵℓ,thX and ϵc

X are the contributions from the line thermal
emissivity and continuum, respectively.

independent, horizontal magnetic field with B = 20 G. An overall good agree-
ment between RIII and RIII−CRD settings is observed in all profiles. We note that the
error is generally larger in the core and near wings of the Q/I , U/I , and V/I
profiles. This conclusion remains valid for magnetic fields ranging from 10 G to
200 G. Indeed, these results show no significant differences and are therefore
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not reported.
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Figure 6.6. Emergent Stokes I (first row), Q/I (second row), U/I (third row),
and V/I (fourth row) profiles for the Ca I 4227 Å line at µ= 0.034 (left column)
and µ = 0.966 (right column) calculated in the FAL-C atmospheric model in
the presence of a horizontal (θB = π/2, χB = 0) magnetic field with B = 20 G.
Calculations take into account PRD effects considering the exact expression of RIII

(blue lines) and the RIII−CRD approximation (green marked lines). The reference
direction for positive Q is taken parallel to the limb. The red dotted lines report
the error between RIII and RIII−CRD calculations, given by Eq. (6.8).

6.4.2 Sr I 4607 Å line

We now consider the modeling of the Sr I 4607 Å line, which is discretized with
Nν = 130 unevenly spaced nodes. Our non-LTE RT calculations adequately repro-
duce this weak line, showing a small absorption profile in the intensity spectrum
without wings, and a prominent and sharp Q/I scattering polarization peak (see
Fig. 6.7) .
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Figure 6.7. Same as Fig. 6.4, but for the Sr I 4607 Å line.
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Figure 6.8. Same as Fig. 6.6, but for the Sr I 4607 Å line.

In the I and Q/I profiles shown in Figure 6.7 for a non-magnetic scenario,
we only note minor differences between RIII and RIII−CRD calculations. By contrast,
we note some relevant discrepancies between RIII and RIII−CRD cases when a de-
terministic magnetic field is considered. Figures 6.8, 6.9, and 6.10 display the
Q/I , U/I , and V/I profiles in the presence of a height-independent, horizontal
magnetic field with B = 20 G, B = 50 G, and B = 100 G, respectively. We omit to
report the intensity I profiles, because they are essentially identical to those ex-
posed in Figure 6.7 for the non-magnetized case. We first note that, in all cases,
there are no observable discrepancies between RIII and RIII−CRD calculations in the
U/I and V/I profiles. By contrast, some relevant differences appear in the Q/I
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Figure 6.9. Same as Fig. 6.8, but for B = 50 G.
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Å
]

−2

0

2

V
/I

[%
]

4607.20 4607.30 4607.40 4607.50
λ
[
Å
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Figure 6.10. Same as Fig. 6.8, but for B = 100 G.

profiles, such as the one shown in the top-left panel of Figure 6.9. Moreover,
RIII−CRD calculations generally present larger Q/I line-core signals at µ = 0.966
with respect to RIII ones. For completeness, Figure 6.11 displays the Q/I profile
where we observed the maximal error, corresponding to the B = 20 G case at
µ= 0.83.
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It is worth observing that for µ = 0.966 and a magnetic field with B = 20 G
(i.e., a forward scattering Hanle effect geometry), the Ca I 4227 Å line shows a
positive Q/I peak (see Fig.6.6), while the Sr I 4607 Å line a negative one (see
Fig. 6.8). Bearing in mind that both spectral lines originate from a Jℓ = 0 →
Ju = 1 transition and have similar Hanle critical fields, we may suggest that this
inversion is due to their different formation heights and properties. An in-depth
analysis of this result goes beyond the scope of this paper and will be the object
of a future investigation.

As anticipated, the Sr I 4607 Å line has been extensively exploited to inves-
tigate the small-scale unresolved magnetic fields that fill the quiet solar photo-
sphere. For this reason, we have also analyzed the case of unimodal MSI mag-
netic fields. We recall that in the presence of such magnetic fields the signatures
of Zeeman and magneto-optical effects vanish due to cancellation effects, and the
only impact of the magnetic field is the depolarization of Q/I due to the Hanle
effect, which depends on the field strength. Figure 6.12 shows the I and Q/I
profiles for a height-independent MSI magnetic field with B = 20 G. No signifi-
cant differences between RIII and RIII−CRD calculations are visible, and the error is
always smaller than 5×10−3. This result suggests that the RIII−CRD approximation
provides accurate results when the problem is characterized by cylindrical sym-
metry, while it can introduce appreciable discrepancies when the direction of a
non-vertical, deterministic magnetic field breaks this symmetry.

6.5 Numerical results: 1D atmospheric model from
3D MHD simulation

In Sect. 6.4, we limited our calculations to the semi-empirical FAL-C atmospheric
model, possibly including spatially uniform magnetic fields, in the absence of
bulk velocities. In this section, we compare the impact of RIII and RIII−CRD in PRD
calculations in a 1D atmospheric model extracted from a 3D MHD simulation,
which includes height-dependent magnetic and bulk velocity fields. As we have
seen in previous sections, the magnetic field impacts the polarization profiles
through the Hanle, magneto-optical, and Zeeman effects. On the other hand,
bulk velocities generally introduce Doppler shifts as well as amplitude enhance-
ments and asymmetries in the polarization profiles (e.g., Carlin et al., 2012,
2013; Jaume Bestard et al., 2021a). The joint impact of height-dependent mag-
netic fields and bulk velocities, together with the inherent thermodynamic struc-
ture of the atmospheric model, results in complex emergent Stokes profiles, in
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Figure 6.11. Same as Fig. 6.8, but for µ= 0.83. In this Q/I profile, we observed
the maximal error between RIII and RIII−CRD calculations.
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Figure 6.12. Same as Fig. 6.7, but in the presence of a uniform micro-structured
isotropic magnetic field with B = 20 G

which it is generally difficult to distinguish the contribution of each factor.
In this work, we adopted a 1D atmospheric model extracted from the 3D

magnetohydrodynamic (MHD) simulation of Carlsson et al. (2016), performed
with the Bifrost code (Gudiksen et al., 2011). In practice, we took a vertical
column of such 3D simulation, clipped in the height interval between -100 and
1400 km, which includes the region where the considered spectral lines form,
discretized with Nz = 79 nodes. The corresponding vertical resolution ranges
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between 19 km and 100 km. Figure 6.13 shows the variation of the magnetic
field, temperature, and vertical component of the bulk velocity as a function of
height in the considered model (hereafter, Bifrost model), which shows relatively
quiet conditions. Since the 1D module of the RH code (used to calculate the
lower-level population) can only handle vertical bulk velocities, in this study we
only considered the vertical component of the model’s velocity, although our code
can in principle take into account velocities of arbitrary direction. As additional
information, Fig. 6.14 shows the variation of the coherence fraction α̃with height
in the Bifrost model for the two considered spectral lines, as well as the height
at which the optical depth τ, in the frequency intervals of the two spectral lines,
is unity (see Sect. 6.3).
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Figure 6.13. Physical quantities of the considered 1D atmospheric model ex-
tracted from the 3D MHD Bifrost simulation en024048_hion (snapshot 385, col-
umn 120 × 120). Upper panel: strength (blue solid line), inclination (gray
dashed line), and azimuth (light-blue dashed-dotted line) of the magnetic field
as a function of height. Lower panel: vertical component of bulk velocity (green
solid line) and temperature (red solid line) as a function of height. We adopt the
convention that the velocity is positive if pointing outwards in the atmosphere
and negative if pointing inwards. For clarity, the horizontal green dotted line
indicates zero velocity.

6.5.1 Ca I 4227 Å line

We first consider the modeling of the Ca I 4227 Å line, which is now discretized
with Nν = 141 unevenly spaced nodes. Figure 6.15 displays all the Stokes pro-
files, showing an overall good agreement between RIII and RIII−CRD calculations
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Figure 6.14. Same as Fig. 6.3 but for the Bifrost atmospheric model.

for a LOS with µ = 0.034. By contrast, for a LOS with µ = 0.996, we observe
some appreciable discrepancies in the Q/I and U/I profiles, with an error up to
3×10−1. We recall that these linear scattering polarization signals, obtained for
a LOS close to the disk center, are due to the forward-scattering Hanle effect (e.g.
Trujillo Bueno, 2001). Interestingly, such discrepancies disappear in the absence
of bulk velocities (profiles not reported here). This suggests that the differences
between RIII and RIII−CRD calculations are amplified in the presence of bulk veloci-
ties, and they are larger for a LOS close to the vertical, because in this case the
Doppler shifts are more pronounced. We finally note that the error affects the
amplitudes of the main peaks of the profiles but not their shape.

6.5.2 Sr I 4607 Å line

We now consider the modeling of the Sr I 4607 Å line, which is discretized with
Nν = 141 unevenly spaced nodes. First, we note that in this Bifrost model, this
line shows an emission profile in intensity for a LOS of µ = 0.034. We verified
that this is due to the thermodynamic structure of this atmospheric model, and it
can be explained from the behavior of the source function at the formation height
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Figure 6.15. Emergent Stokes profiles for the Ca I 4227 Å line calculated in
the Bifrost model (see Section 6.5) , which includes height-dependent magnetic
and (vertical) bulk velocity fields. The vertical gray lines show the central line
wavelength.

of the line for this limb LOS (see Fig. 6.14). Figure 6.16 shows that appreciable
discrepancies between RIII and RIII−CRD calculations are found in all Stokes profiles
for µ = 0.034, and in Q/I and U/I for µ = 0.966. The maximal error is found
in the U/I profile at µ = 0.966, where however the polarization signal is very
weak and thus of limited practical interest. The discrepancies between RIII and
RIII−CRD computations become slightly larger in the Bifrost model, where also a bulk
velocity field is included. On the other hand, observing that the most significant
errors appear in very weak polarization signals, we can conclude that for practical
applications the RIII−CRD approximation can be safely used to obtain reliable results.
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Figure 6.16. Same as Fig. 6.15 but for the Sr I 4607 Å line.
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6.6 Conclusions

In this work, we assessed the suitability and range of validity of a widely used
approximation for RIII, that is its expression under the assumption of CRD in
the observer’s frame, labelled with RIII−CRD. To this aim, we solved the full non-
LTE RT problem for polarized radiation in 1D models of the solar atmosphere,
considering both the exact expression of RIII and its RIII−CRD approximation. With
respect to the previous work of Sampoorna et al. (2017), we considered semi-
empirical models, as well as 1D models extracted from 3D MHD simulations,
which provide a reliable approximation of the solar atmosphere. The analysis
was focused on the chromospheric Ca I line at 4227 Å and the photospheric Sr I

line at 4607 Å, accounting for the impact of magnetic fields (both deterministic
and micro-structured) and bulk velocities.

We first compared the analytical forms of RIII and RIII−CRD, showing that they
correspond when the scattering angleΘ is equal toπ/2, while their difference in-
creases as Θ approaches 0 (forward scattering) or π (backward scattering). The
numerical results for the Ca I 4227 Å line showed that the RIII−CRD approximation
is suited to model the scattering polarization signals of strong chromospheric
lines. This is not surprising, considering that in these lines the contribution of
RII dominates with respect to that of RIII, both in the core (which forms high in
the atmosphere) and in the far wings (where scattering is basically coherent).
On the other hand, we verified that the RIII−CRD approximation is also adequate in
the near wings, where the contribution of RIII cannot be neglected a-priori. The
numerical results for the Sr I 4607 Å line showed that the RIII−CRD approximation
provides reliable results also in photospheric lines, for which the contribution
of RIII is significant. Observing that the scattering polarization signal of the Sr I

4607 Å line is extensively used to investigate the small-scale magnetic fields that
fill the quiet solar photosphere, we verified that the RIII−CRD approximation is also
suitable in the presence of micro-turbulent magnetic fields. On the other hand,
some appreciable discrepancies (i.e., relative errors larger than 0.01 according to
the error definition (6.8)) are found when deterministic magnetic fields or bulk
velocities are included, and the polarization signals are below 0.4 %. However,
the qualitative agreement between the two settings remains in general satisfac-
tory; differences in the overall shapes and signs are exceptions and appear when
the signals are very weak. These discrepancies may suggest that the limit of
CRD (i.e., to fully neglect PRD effects), which is generally adopted to model
the intensity and polarization of these weak lines, can possibly introduce some
appreciable inaccuracies with respect to a PRD treatment. A quantitative com-
parison between PRD and CRD calculations for this line is ongoing, and it will
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be presented in a separate publication.
In conclusion, we can state that in optically-thick media, the use of the lightweight

RIII−CRD approximation guarantees reliable results in the modeling of scattering po-
larization in strong and weak resonance lines, thus confirming and generalizing
the results of Sampoorna et al. (2017). This assesses the results of previous stud-
ies performed under this approximation and facilitates the development of 3D
non-LTE RT simulations modeling the intensity and polarization of solar spectral
lines, considering PRD effects (see Benedusi et al., 2023).
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Chapter 7

Applications to different
spectral lines

In this chapter, we present a series of non-LTE RT calculations carried out with the
solution strategy and computational methods previously described. We model
the intensity and polarization of three different spectral lines, namely Ca I 4227 Å,
Sr II 4078 Å, and Sr I 4607 Å. All these lines show large scattering polarization
signals, which can be suitably modeled considering a two-level atom. In the
first sections, we show some spectropolarimetric measurements of these lines,
performed in regions of the solar disk characterized by different levels of mag-
netic activity, both close to the edge of the solar disk (limb) and at the solar
disk center. This will introduce the reader to the signals that we aim to model
and to their magnetic sensitivity. All the observations are carried out at IRSOL
with the ZIMPOL polarimeter. Subsequently, we present our theoretical profiles,
and we compare the results obtained in the limit of complete frequency redistri-
bution (CRD), and including PRD effects, both under the angle-averaged (AA)
approximation and in the general angle-dependent (AD) case. Finally, we high-
light the significant differences that are found between AA and AD calculations in
the forward-scattering Hanle effect geometry. This is an example of the relevant
physical results that the new computational methods developed in this thesis
can provide. A paper collecting the results shown in this chapter is presently in
preparation.

7.1 Considered spectral lines

We model the intensity and polarization of three spectral lines: the chromo-
spheric Ca I 4227 Å and Sr II 4078 Å, and the photospheric Sr I 4607 Å. All these

169



170 7.2 Geometrical parameters of observations

resonance lines show large scattering polarization signals, which can be suit-
ably modeled considering a two-level atom with unpolarized and infinitely-sharp
lower level. The Ca I 4227 Å and Sr I 4607 Å lines originate from a Jℓ = 0↔
Ju = 1 transition, while the Sr II 4078 Å originates from a Jℓ = 1/2↔ Ju = 3/2
transition (see Table A.1). In the intensity spectrum, the Ca I 4227 Å line shows
a very broad and deep absorption profile with extended wings (in this sense it
is considered a strong line; a useful quantity for characterizing the intensity pro-
files is presented in Sect. 7.4.2). On the contrary, the Sr I 4607 Å is a weak line
showing a little absorption profile without wings. The Sr II 4078 Å is somehow
intermediate, showing some wings, but not as extended as those of Ca I 4227 Å.

The Hanle critical field Bc (i.e., the magnetic field at which the sensitivity
of a spectral line to the Hanle effect is highest) is the field strength at which
the splitting of the magnetic sublevels of the upper level is of the same order of
magnitude as its natural width. Form Eq. (10.29) of Landi Degl’Innocenti and
Landolfi (2004), we have

Bc =
Auℓ

8.79 · 106 gu
, (7.1)

where Bc is expressed in gauss, Auℓ is the Einstein coefficient for spontaneous
emission (in s−1), and gu is the Landé factor of the upper level. The Hanle critical
field and other physical parameters of the considered spectral lines are provided
in Table 7.1.

Line Transition Formation region Auℓ [s−1] gu Bc [G]
Jℓ Ju

Sr I 4607 Å 0 1 photosphere 2.01 · 108 1 22.9
Sr II 4078 Å 1

2
3
2 chromosphere 1.41 · 108 4/3 12

Ca I 4227 Å 0 1 chromosphere 2.18 · 108 1 24.8

Table 7.1. Physical parameters of the considered lines.

7.2 Geometrical parameters of observations

Scattering polarization signals are typically observed near the edge of the solar
disk (limb), where their amplitude is maximum. A fundamental parameter to
interpret these observations is the distance between the observed region and the
limb. This can be specified either through the heliocentric angle θ (i.e., the angle
between the solar radius through the observed point and the direction towards
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the Earth) or through the angle α (generally expressed in arcsec) that subtends
the projected distance h between the observed point and the limb (see Fig. 7.1).
The angles α and θ are related by

tanα=
R (1− sinθ )

D
(7.2)

where R≈ 696340 km is the solar radius and D ≈ 150×106 km is the Sun-Earth
distance. It can be noticed that the heliocentric angle θ coincides with the angle
between the local vertical through the observed point and the line of sight (LOS)
towards the observer. The latter is generally specified by µ = cosθ . Radiation
coming from the solar disk center has µ= 1, while radiation coming from regions
close to the limb have µ ≈ 0. In this study, we report numerical results for
three LOS (corresponding to three inclinations from the angular grid used to
discretize the problem, see Sect. 1.8.2), namely µ = 0.169 (corresponding to
a limb observation), µ = 0.619, and µ = 0.966 (observation close to the disk
center).

D

ϑ

z

R

h

R-h

α

Limb

Center

observed point

Figure 7.1. Schematic illustration of the heliocentric angle θ and of the limb
distance α used to specify the position of the observed point on the solar disk. D
is the Sun-Earth distance, R is the solar radius, and h is the distance between the
observed point and the limb, projected on the plane of the sky.

7.3 Observational results

In this section, we report a series of observations carried out at the Istituto
Ricerche Solari Aldo e Cele Daccò (IRSOL) in Locarno (Switzerland), using the
Zurich Imaging Polarimeter1 (ZIMPOL; Ramelli et al., 2010). The main pur-
pose is to present some real spectropolarimetric measurements of the considered
spectral lines and to highlight the magnetic sensitivity of the polarization signals
through the physical mechanisms discussed in the previous chapters.

1IRSOL Instrumentation

https://www.irsol.usi.ch/research/instrumentation/?noredirect=en_US
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7.3.1 Observational targets

We show measurements carried out in solar regions with very low magnetic ac-
tivity (quiet Sun), and with weak or moderate activity. We do not report obser-
vations of regions with strong magnetic fields (e.g., sunspots) because these are
out of the scope of this work.

Quiet Sun regions close to the limb are generally found near the north or
south poles. The polarization measurements performed in these regions are
dominated by scattering polarization, while no linear or circular polarization
signals produced by the Zeeman effect are appreciable. It must be stressed that
small-scale unresolved magnetic fields (a.k.a. micro-turbulent fields), to which
the Zeeman effect is insensitive, can be present in these regions and induce a
decrease of the scattering polarization signals via the Hanle effect. Taking the
reference direction for positive Stokes Q parallel to the limb, the polarization
measurements performed in these regions only show Q/I signals, while U/I and
V/I are generally zero (i.e., at the noise level)2.

By weakly magnetized regions, we mean here locations on the solar disk
where large-scale deterministic fields, with strengths in the Hanle effect regime
(i.e., up to approximately 5× Bc), are present. When these regions are observed
at the limb, the linear polarization is still dominated by scattering polarization
signals, modified by the joint action of the Hanle and magneto-optical (MO) ef-
fects. We recall that the Hanle effect operates in the line core and generally
causes a depolarization of Q/I and (in the case of deterministic magnetic fields)
the appearance of a U/I signal. MO effects, due to deterministic magnetic fields
with a non-zero longitudinal component, operate in the line wings and, similar
to the Hanle effect, usually cause a decrease of Q/I and the appearance of U/I
signals. The V/I signals produced by the Zeeman effect can be observed in these
regions.

Scattering polarization signals are generally quite weak (below 1%). To mea-
sure these signals, it is first necessary to apply suitable instruments and obser-
vational techniques that allow for reducing systematic errors, e.g., the noise in-
troduced by variations of the Earth’s atmosphere (seeing) during the measure-
ments, or by the telescope optics and electronics. When such systematic errors
are sufficiently reduced and the measurement error is dominated by the photon

2Theoretical calculations (e.g., Jaume Bestard et al. (2021a)) point out that non-zero U/I
scattering polarization signals, due to the horizontal inhomogeneities of the solar atmosphere
and horizontal gradients of the plasma bulk velocity, could in principle be present in these quiet
regions, but very high spatial and temporal resolutions (much higher than those achievable at
IRSOL) would be needed to detect them.
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(shot) noise, the signal-to-noise ratio is proportional to
p

N , with N the number
of collected photons. Under such optimal conditions, also the most sensitive po-
larimeters like ZIMPOL generally need exposure times of the order of minutes
to achieve sufficient signal-to-noise ratios of 10 or better, as in the observations
reported below.

7.3.2 Observed Stokes profiles

Figure 7.2 shows two spectropolarimetric measurements of the Ca I 4227 Å line
performed close to the limb, one in the quiet Sun (blue line) and one in a weakly
magnetized region (green line). The Q/I profile measured in the quiet Sun shows
the triplet-peak structure characteristic of strong resonance lines, with a sharp
peak in the core and very broad lobes in the wings. We recall that the wing lobes
are produced by coherent scattering processes with PRD effects (they cannot be
reproduced in a CRD modeling). We note that several other spectral lines fall in
the wings of Ca I 4227 Å. These blended lines are responsible for the depolariza-
tion features observed in the wings of the Q/I profile. The U/I and V/I profiles
of this observation are not reported (practically set to zero) as they do not show
any appreciable signals above the noise level. The Q/I profile measured in the
weakly magnetized region clearly shows the impact of the Hanle effect, which
almost completely depolarizes the line-center peak. The lower Q/I signals ob-
served in the wing lobes are mainly due to the larger limb distance (i.e. larger
value of µ) of this observation, although some depolarization produced by MO
effects may also be present. The U/I signal shows a peak in the core due to the
Hanle effect and some signals in the wings due to MO effects. Finally, some weak
V/I signals are also present.

Very similar considerations can be done concerning the spectropolarimetric
observations of the Sr II line at 4078 Å carried out at the limb (see Fig. 7.3). In
quiet regions (blue line), the Q/I profile shows a triplet-peak structure similar
to that of the Ca I 4227 Å line, but with less extended wing lobes. In the weakly
magnetized region (green line), the impact of the Hanle effect can be clearly
appreciated, both in Q/I and U/I . The Q/I wing peaks of the two observations
have very similar amplitudes. This can indicate that very similar limb distances
were considered in the two observations and that MO effects do not have an
appreciable impact in this case.

Figure 7.4 shows two limb observations for the photospheric Sr I 4607 Å line.
This is a weaker line in the intensity spectrum, and its Q/I profile shows a single
sharp peak in the line-core. As for the previous lines, the blue and green profiles
are obtained in a quiet region, and in a weakly magnetized one, respectively. The
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different value of Q/I in the continuum is a clear indication of the different limb
distances of the two observations. The lower amplitude of the Q/I peak observed
in the more magnetized region is partly due to the different limb distance and
partly to the Hanle effect, whose operation is testified by the clear U/I peak.
Remarkably, this was the first observation ever performed showing a clear U/I
Hanle signal in this line (Zeuner et al., 2022).

Forward Scattering Hanle Effect

The line scattering polarization signals are generally stronger at the limb and de-
crease as the LOS approaches the disk center. For radiation fields having cylindri-
cal symmetry, it can be shown that the amplitude scales by a factor of (1−µ2) (e.g.
Landi Degl’Innocenti and Landolfi, 2004). However, a deterministic, non-vertical
magnetic field breaks this symmetry and can induce significant polarization peaks
at the line core frequencies through the Hanle effect. This phenomenon, com-
monly referred to as the Forward Scattering Hanle Effect (hereafter FSHE), was
predicted theoretically by Trujillo Bueno (2001). Figures 7.5 and 7.6 report ob-
servations of the Ca I 4227 Å and Sr II 4078 Å lines, respectively, carried out in
a magnetized region close to the solar disk center (the two measurements were
performed one after the other pointing the telescope to the same region). The
strong Q/I and U/I signals detected in the Ca I 4227 line can be attributed to
the FSHE. Signals of similar amplitudes, also ascribable to the FSHE, are appre-
ciable in the Sr II 4078 Å as well, although they are much noisier due to the
reduced transparency of the optics at the lower wavelength of this line. Both ob-
servations show clear V/I signals, indicating moderate magnetic activity in the
observed region.
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Figure 7.2. Stokes I , Q/I , U/I , and V/I (top to bottom) profiles measured
close to the limb across a wavelength interval containing the Ca I 4227 Å line.
The reference direction for positive Stokes Q is parallel to the closest limb. The
blue profiles were measured in a quiet region at µ = 0.1 (data from Gandorfer
(2002)). The green profiles were measured in 2012 in a weakly magnetized
region at 0.1≤ µ≤ 0.2 (courtesy of Dr. Michele Bianda).
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Figure 7.3. Stokes I , Q/I , U/I , and V/I (top to bottom) profiles measured
close to the limb across a wavelength interval containing the Sr II 4078 Å line.
The reference direction for positive Stokes Q is parallel to the closest limb. The
blue profiles were measured in a quiet region at µ = 0.1 (data from Gandorfer
(2002)). The green profiles were measured in 2012 in a weakly magnetized
region at 0.1 ≤ µ ≤ 0.2 (courtesy of Dr. Michele Bianda). The red lines in U/I
and V/I are the signals obtained after a noise reduction, performed by applying
a Gaussian low-pass filter in the Fourier space.
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Figure 7.4. Stokes I , Q/I , U/I , and V/I (top to bottom) profiles measured
close to the limb across a wavelength interval containing the Sr I 4607 Å line.
The reference direction for positive Stokes Q is parallel to the closest limb. The
blue profiles were measured in a quiet region at µ = 0.1 (data from Gandorfer
(2002)). The green profiles were measured on August 11, 2021, in a weakly
magnetized region at 0.3 ≤ µ ≤ 0.4 (data from Zeuner et al. (2022)). The red
line in Q/I is the signal obtained after a noise reduction, performed by applying
a Gaussian low-pass filter in the Fourier space.
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Figure 7.5. Stokes I , Q/I , U/I , and V/I (top to bottom) profiles across a wave-
length interval containing the Ca I 4227 Å line, measured on Februray 14, 2023,
in a moderately magnetized region close to the solar disk center (courtesy of Dr.
Franziska Zeuner). The reference direction for positive Stokes Q is parallel to
the closest limb.
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0.00

0.25

V
/I

[%
]

Figure 7.6. Stokes I , Q/I , U/I , and V/I (top to bottom) profiles across a wave-
length interval containing the Sr II 4078 Å line, measured on Februray 14, 2023,
in a moderately magnetized region close to the solar disk center (courtesy of Dr.
Franziska Zeuner). The reference direction for positive Stokes Q is parallel to the
closest limb. The red lines in Q/I and U/I are the signals obtained after a noise
reduction, performed applying a Gaussian low-pass filter in the Fourier space.
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7.4 Theoretical results

In this section, we present the results of non-LTE RT calculations of the intensity
and polarization profiles of the aforementioned spectral lines. In particular, we
make a quantitative comparison between PRD results obtained considering the
exact angle-dependent (AD) expression of RI I and its angle-average (AA) approx-
imation (see Eq. A.40), and CRD calculations. In the PRD case, the approxima-
tion of CRD in the observer’s frame for the RI I I redistribution matrix (RI I I−CRD) is
always considered. The suitability of this approximation, especially for chromo-
spheric lines, was analyzed in the previous chapter 6. The CRD calculations are
performed applying the theory of Landi Degl’Innocenti and Landolfi (2004), in-
troducing the corresponding redistribution matrix (RCRD). Hereafter, these cases
will be denoted with the following compact notation: AD (RI I + RI I I−CRD), AA
(RI I−AA + RI I I−CRD, and CRD (RCRD). The RT calculations are performed in 1D
atmospheric models, both semi-empirical and extracted from a 3D MHD simula-
tion. The problem is solved as in Benedusi et al. (2022) through preconditioned
Krylov subspaces iterations (see also Sect. 1.8.2).

7.4.1 Atmospheric models

We consider the following 1D atmospheric models:
a) The semi-empirical model C of Fontenla et al. (1993) (hereafter FAL-C), in
the presence of a spatially-constant deterministic magnetic field with direction
(θB = π/4, χB = π/4) and with a strength corresponding to the Hanle critical
field of the considered spectral line (see Table 7.1). In this work we also consider
the presence of unimodal microstructured isotropic magnetic fields (hereafter
MSI) (e.g. Alsina Ballester et al., 2017), that is, a magnetic field that has a spe-
cific strength while its orientation varies on scales below the mean free path of
photons and is assumed to be uniformly distributed in all directions. The use
of MSI magnetic fields is of diagnostic interest for photospheric lines (e.g. the
Sr I 4607 Å line), since there is evidence that the solar photosphere is perme-
ated by such small-scale non-deterministic fields (e.g. Trujillo Bueno et al., 2004;
Manso Sainz et al., 2004). In these tests, we do not include a bulk velocity field.
b) a 1D atmospheric model extracted from the 3D magnetohydrodynamic (MHD)
simulation of Carlsson et al. (2016), performed with the Bifrost code of Gudiksen
et al. (2011) (hereafter, Bifrost model). Specifically, we chose a vertical column
of such a 3D simulation, clipped in the height interval where the considered
spectral lines form, i.e. in the range between -100 and 2200 km, discretized with
Nr = 118 spatial nodes. The corresponding vertical resolution varies between
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Figure 7.7. Temper-
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nent of the bulk velocity
(upper panel, green line),
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blue line) as a function of
height in the Bifrost atmo-
spheric model.

19 km and 100 km. This atmospheric model includes height-dependent (non-
uniform) magnetic and bulk velocity fields, whose values are given in Fig. 7.7.

7.4.2 Optical depth and line formation

Depending on the frequency (e.g., in the continuum or in a spectral line) and
LOS, the radiation emergent from the solar atmosphere encodes information on
different atmospheric layers. A fairly good approximation of this so-called forma-
tion region of the radiation is the height where the optical depthτ (see Section 1.7
on page 28), calculated inwards from the top of the solar atmosphere, at the con-
sidered frequency and propagation direction is unity. This can be qualitatively
interpreted by observing that the height where τ ≈ 1 is where the considered
beam has its “last” interactions with the atmospheric plasma. Above this height,
where τ≪ 1, the atmosphere is essentially transparent to the considered radi-
ation, while below, where τ ≫ 1, the radiation still strongly interacts with the
plasma and has a high probability of being modified before emerging. Recalling
the definition of the optical depth (see Section 1.7 on page 28), it is clear that
the formation height is higher in the core of the spectral lines (where the absorp-
tion coefficient is larger) and decreases moving to the wings and continuum.
Moreover, observing that the distance traveled by a radiation beam between two
height points is larger for inclined LOS, it is clear that, for a given frequency, the
formation height is higher for a LOS near the limb than at the solar disk center.
For instance, in the FAL-C model, the continuum at around 5000 Å at the solar
disk center originates at around 0 km, while at the limb it forms between 150
and 200 km.

In Figure 7.9 we compare the formation heights, as a function of wavelength,
across the three resonant lines considered in this work for the two models, i.e.
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Ca I 4227 Å Sr II 4078 Å Sr I 4607 Å
µ FAL-C Bifrost FAL-C Bifrost FAL-C Bifrost

0.169 0.952 1.409 0.411 0.574 0.059 0.077
0.699 1.090 1.639 0.390 0.534 0.063 0.081
0.966 1.046 1.580 0.346 0.419 0.060 0.079

Table 7.2. Equivalent width Wλ (in Å) of the synthetic intensity profiles of the
considered spectral lines, calculated for different LOS in the FAL-C and Bifrost
models. For Ic, we used the intensity value at the first wavelength point of the
grid, which falls in the continuum. The integral was estimated using the trape-
zoidal rule on the nodes of the frequency grid of the problem U (see Sect. 1.8.2
for more details on the discretization of the problem).

FAL-C (left column) and Bifrost (right column). It can be noticed that the forma-
tion heights of all the considered spectral lines (from the core till the continuum)
are slightly higher in the Bifrost model than in FAL-C. This seems to be due to
the larger values of the lower-level population in the Bifrost model (see lower
panel of Fig. 7.9). Moreover, the curves of the heights where τ= 1 as a function
of wavelength are slightly wider in the Bifrost model than in FAL-C, especially
for the Ca I 4227 Å and Sr II 4078 Å lines. Interestingly, both the intensity and
polarization profiles obtained from the Bifrost model are generally broader than
those obtained from FAL-C (see also sections 7.4.4, 7.4.5, and 7.4.6). This can
be better quantified by means of the equivalent width:

Wλ =

∫

line

Ic − I (λ)
Ic

dλ. (7.3)

As it can be seen from Table 7.2, the value of Wλ is sensibly larger for the theo-
retical profiles calculated in the Bifrost model.

These differences in the equivalent width do not seem to be due to the dif-
ferent temperature structures (and thus the Doppler width) of the two models.
Indeed, the temperature of FAL-C and Bifrost is very similar between approxi-
mately 100 and 400 km, while between 400 and 1100 km (where the cores of
the Ca I 4227 Å and Sr II 4078 Å lines form), the Bifrost model is appreciably
cooler than FAL-C (see the lower panel of Fig. 7.8). Such differences might in-
stead be due, at least in part, to the larger values of the damping parameter at
the formation height of the wings in the Bifrost model (see the lower panel of
Fig. 7.8).

In Table 7.2 we report the estimated equivalent width (Eq. (7.3)) derived
from the results of the calculations, where we observe that Wλ is usually larger
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Figure 7.8. Temperature and Damping parameter (upper panel) and the popu-
lation of the lower level Nℓ (lower panel) as a function of the height in the two
atmospheric models under consideration: Bifrost (red lines), and FAL-C (blue
lines). The vertical lines are where τ = 1 at central line frequency in the two
atmospheric models.

in the Bifrost model. These differences can also be appreciated by carefully ob-
serving the plots, where the profiles (both in intensity and polarization) obtained
with the Bifrost model are broader when compared with the results obtained with
the FAL-C model (see also sections 7.4.4, 7.4.6, and 7.4.5).
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Figure 7.9. Height variation of α′(r) (red line) for Sr I 4607 Å (top panels),
Ca I 4227 Å (middle panels), and the Sr II 4078 Å (bottom panels) in the FAL-
C model (left column) and the Bifrost model (right column). The cyan, green,
and blue isolines show the wavelength and height below which the optical depth
becomes greater than 1.0 at directions µ = 0.966, µ = 0.619, and µ = 0.199,
respectively (in the absence of a bulk velocity field).

7.4.3 Objectives and method

This study aims at assessing the reliability of the polarization profiles obtained
under the AA and CRD approximations, using the results of AD calculations as
reference solutions.

The first aspect that we want to investigate is the suitability of the AA approx-
imation for modeling the scattering polarization wing lobes observed in strong
chromospheric lines. These wing signals are receiving increasing attention be-
cause it was recently discovered that they are sensitive to the magnetic field via
MO effects (Alsina Ballester et al., 2016; Capozzi et al., 2020). We recall that
these polarization signals are produced by scattering processes that are coherent
in the atomic frame (i.e., scattering processes described by RII), and cannot be re-
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produced considering the limit of CRD. The analysis will be carried out focusing
on the Ca I 4227 Å and Sr II 4078 Å lines.

The second aspect that we want to analyze is the suitability of the CRD ap-
proximation for modeling the line-core scattering polarization signals of both
strong chromospheric lines and weak photospheric ones. The core of strong chro-
mospheric lines generally forms quite high in the atmosphere, where RII dom-
inates. However, since Doppler redistribution is very efficient in this spectral
region, it has been often argued that the CRD approximation may represent a
fairly good approximation for modeling the line-core signals of these lines, both
at the limb and near the disk center, for an FSHE geometry. On the other hand,
the suitability of this approximation has not been supported so far by detailed
comparisons between CRD and AD calculations in realistic atmospheric models.
This is one of the goals of this work, using the Ca I 4227 Å and Sr II 4078 Å lines
as test benches. A recent work (Janett et al., 2019) has already shown that the
AA approximation can introduce significant inaccuracies in the modeling of the
line-core scattering polarization signals of chromospheric lines. In the case of
weak photospheric lines, such as Sr I 4607 Å, the CRD assumption has always
been considered a very good approximation, considering that these lines form
deep in the photosphere, where the contribution of RIII is not negligible with re-
spect to that of RII, and that their intensity and polarization profiles do not show
wings outside the Doppler-core region. A quantitative comparison between CRD
and AD calculations for this line, which has never been reported in the literature,
is presented in Sect. 7.4.6.

The RT problem is solved using the method based on Krylov subspace itera-
tions introduced in Benedusi et al. (2022). The AA approximation is only applied
and analyzed in static scenarios because it is not suited to correctly handle the
presence of a bulk velocity.

7.4.4 Results for Ca I 4227 Å

The Ca I 4227 Å is a strong chromospheric resonance line. When observed close
to the limb, it shows a strong scattering polarization signal with large wing lobes
produced by PRD effects. Clear polarization signals in the line core have also
been observed in magnetically active regions close to the solar disk center and
have been interpreted in terms of the FSHE (Bianda et al., 2011). The relatively
large amplitude of these signals, the relevant amount of information that they
encode, and the fact that they can be suitably modeled considering a simple
two-level atom explain the great interest raised by this line, both for diagnostic
purposes and for testing new theoretical and numerical approaches.



186 7.4 Theoretical results

In Fig. 7.10 we show the intensity and Q/I profiles (first and second row,
respectively) calculated in the FAL-C atmospheric model, in the absence of mag-
netic fields, for three inclinations of the LOS: µ = 0.169, µ = 0.619, and µ =
0.966 (from left to right column). The first important result of these calculations
is that the CRD assumption leads to an appreciable underestimate of the ampli-
tude of the central Q/I peak for all the considered LOS. As expected, the Q/I
wing lobes are completely lost under this approximation. The AA approxima-
tion provides very accurate results for the Q/I wing lobes but not for the central
peak, which differs from the reference AD solution in both amplitude and shape,
as already shown in Janett et al. (2021a).

In Fig. 7.11 we show the Q/I , U/I , and V/I profiles (first, second, and third
rows, respectively) calculated including a deterministic and spatially constant
magnetic field. These calculations confirm that the wing lobes (both in Q/I and
U/I) are correctly modeled using the AA assumption even in the presence of a
magnetic field. We can also see that both the AA and CRD models fail in modeling
the line-core peaks, and that the inaccuracies become particularly relevant for
LOS close to the disk center (µ = 0.966), where the FSHE produces relatively
strong signals. Finally, both the CRD and AA approximation provide accurate
results for the V/I profiles.

Figure 7.12 shows a comparison between the results obtained with and with-
out a magnetic field using the AD model. The left and central columns clearly
show the depolarization produced by the Hanle effect in the core of the Q/I
profile, while in the right column, it is possible to observe the significant sig-
nal produced by the FSHE for a nearly vertical LOS (see also Sect. 7.3). Note
also that the results in intensity are identical since they are not affected by the
magnetic field.

In Fig. 7.13 we show the I and Q/I profiles obtained including a MSI mag-
netic field. We recall that, due to cancellation effects, in the presence of such a
magnetic field, the Zeeman and MO effects do not produce any signature in the
polarization profiles, while the Hanle effect only produces a depolarization in
Q/I . Moreover, since an MSI magnetic field preserves the cylindrical symmetry,
the FSHE does not appear in this case. This explains why the U/I and V/I signals
are zero, the Q/I wing lobes have the same amplitude as in the unmagnetized
case while the central peak is depolarized, and the signals disappear as the LOS
approaches µ= 1. Also, in this case, the AA and CRD approximations introduce
some inaccuracies in the modeling of the central Q/I peak.

Fig. 7.14 shows the results obtained with the Bifrost atmospheric model, in
the absence of bulk velocity, but including a height-dependent magnetic field.
The impact of the latter, through the joint action of the Hanle, MO, and Zeeman
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effects is qualitatively similar that that observed in the FAL-C model, in the pres-
ence of a height-independent magnetic field. Figure 7.15 is obtained including
also the vertical component of the model’s bulk velocity. As expected, velocity
gradients induce significant enhancements in addition to distortions, and shifts
in the scattering polarization Q/I and U/I profiles, especially in the core. The
wing lobes are instead very similar in the two cases.
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Figure 7.10. Intensity (upper row) and Q/I (lower row) profiles of the Ca I

4227 Å line calculated in the FAL-C model for three different LOS: µ = 0.169
(left column), µ = 0.619 (central column) and µ = 0.966 (right column). Each
plot compares AD, AA, and CRD results (see legend). No magnetic fields and
bulk velocities are present. The LOS lies in the x − z plane of the considered
reference system; the reference direction for positive Stokes Q is parallel to the
y-axis.
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Å
]

−1

0

1

Figure 7.11. Same as Fig. 7.10, but including a height-independent magnetic
field of 25 G, with direction θB = π/4, and χB = π/4.
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Figure 7.12. Comparison of I (upper row) and Q/I (lower row) profiles for the
Ca I 4227 Å line calculated in the FAL-C model in the most general AD case, in
the absence of magnetic fields (dotted orange curves) and considering the same
magnetic field as in Fig. 7.11 (red curves). All the other parameters are the same
as in the previous figures.
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Figure 7.13. Same as Fig. 7.10 but in the presence of a MSI magnetic field of
25 G.
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Figure 7.14. Same as Fig. 7.10 but for the Bifrost model, including the model’s
magnetic field, but neglecting bulk velocities.
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Å
]

−0.5

0

0.5

V
/I

[%
]

4226.00 4226.50 4227.00 4227.50
λ
[
Å
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Figure 7.15. Same as Fig. 7.14 but including bulk velocities.
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7.4.5 Results for Sr II 4078 Å

The Sr II 4078 Å is a chromospheric line originating from a Jℓ = 1/2↔ Ju = 3/2
transition. When observed at the limb, it shows a strong scattering polarization
signal with a triplet peak structure similar to that of the Ca I 4227 Å line, but
with less extended wing lobes.

Fig. 7.16 shows that our PRD calculations correctly reproduce the triplet peak
structure of the Q/I profile, and it highlights that (similarly to the Ca I 4227 Å
line) the AA and the CRD models introduce some inaccuracies in the line core
peak. These inaccuracies become even more pronounced when a deterministic,
inclined magnetic field is included (see Fig. 7.17), especially as the LOS is close
to µ= 1 and the FSHE induces a clear polarization signal. As in the Ca I 4227 Å
line, the AA approximation provides accurate results for the wing lobes, both in
the absence and in the presence of magnetic fields.

Figure 7.18 highlights the impact of the magnetic field, mainly through the
Hanle effect, on the scattering polarization profiles. At the limb, it produces a
depolarization of the line-core peak, while close to the disk center it produces
a clear signal through the FSHE. No clear signatures of MO effects in the wing
lobes are appreciable. These results are qualitatively similar to those obtained
for the Ca I 4227 Å line.

From the results obtained from the Bifrost model with and without bulk ve-
locities (see figures 7.19, and 7.18) we can infer the same conclusions as in the
case of the Ca I 4227 Å line.
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Figure 7.16. Intensity (upper row) and Q/I (lower row) profiles of the
Sr II 4078 Å line calculated in the FAL-C model for three different LOS: µ= 0.169
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plot compares AD, AA, and CRD results (see legend). No magnetic fields and
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reference system; the reference direction for positive Stokes Q is parallel to the
y-axis.
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Figure 7.17. Same as Fig. 7.16 but including a magnetic field of 12 G with direc-
tion θB = π/4, and χB = π/4.
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Figure 7.18. Comparison of I (upper row) and Q/I (lower row) profiles for the
Sr II 4078 Å line calculated in the FAL-C model in the most general AD case, in
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Figure 7.19. Same as Fig. 7.16 but for the Bifrost model, including the model’s
magnetic field, but neglecting bulk velocities.



197 7.4 Theoretical results

2

4

6

I
[ er

g
cm
−

2
s−

1
H

z−
1

sr
−

1]

×10−6 µ = 0.169

||vb|| : H.Dep.
||B|| = H.Dep.

CRD

AD

0.5

1.0

×10−5 µ = 0.619

0

1

×10−5 µ = 0.966

0

0.25

0.5

Q
/I

[%
]

−0.25

0

0.25

−0.25

0

0.25

0

0.5

1

U
/I

[%
]

0

0.25

0.5

−0.2

0

0.2

4077.50 4078.00
λ
[
Å
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Figure 7.20. Same as Fig. 7.19 but including bulk velocities.
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7.4.6 Results for Sr I 4607 Å

The Sr I 4607 Å line is a weak line that forms in the photosphere where the
collisional rates are relatively high and the contribution of RIII is dominant (see
Fig. 7.9). In this case, it can be expected that the CRD model is a good ap-
proximation. For the sake of completeness, we also report the results obtained
with the AA model. As for the previous spectral lines, we present calculations
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Figure 7.21. Intensity (upper row) and Q/I (lower row) profiles of the
Sr I 4607 Å line calculated in the FAL-C model for three different LOS under
consideration in the absence of a magnetic field. The other parameters are the
same as in Fig. 7.10.

performed in the FAL-C model, both in the unmagnetized case (see Fig. 7.21)
and including height-independent deterministic (see Fig. 7.22) and MSI (see
Fig.7.23) magnetic fields of 23 G, and in the Bifrost model, both neglecting (see
Fig.7.24) and including (see Fig. 7.25) the vertical component of the model’s
bulk velocity field. From these results, it can be observed that, in general, the
CRD and AA models provide reliable results. Observing that in the absence of
a magnetic field, the RCRD and RIII−CRD are analytically equivalent, the small differ-
ences observed in Fig. 7.21 can be attributed to the contribution of RII, which is
small but not totally negligible in the case of Sr I 4607 Å. Significant differences
appear only for relatively weak polarization signals.

Since the Sr I 4607 Å line has been widely applied to investigate the small-
scale magnetic fields that permeate the photosphere (Trujillo Bueno et al., 2004),
it is an important result to confirm that the CRD model provides accurate results
in the presence of an MSI magnetic field (see Fig. 7.23).
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Figure 7.22. Same as in Fig. 7.21 but with a magnetic filed of 23 G and a direction
of θB = π/4, and χB = π/4.
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Å
]

0

2

Q
/I

[%
]

4605.90 4606.00 4606.10
λ
[
Å
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Figure 7.23. Same as Fig. 7.21 but in the presence of a MSI magnetic filed (solid
lines). For comparison, we added the PRD case in the absence of a magnetic field
(red dotted line).



201 7.4 Theoretical results

2.5

5.0

7.5

I
[ er

g
cm
−

2
s−

1
H

z−
1

sr
−

1]

×10−6 µ = 0.169

||B|| = H.Dep.

AA

CRD

AD 0.5

1.0

1.5

×10−5 µ = 0.619

1

2

×10−5 µ = 0.966

0

1

Q
/I

[%
]

0

0.2

0.4

−0.02

0

0

1

U
/I

[%
]

0

0.2

0.4

0

0.1

4607.20 4607.30 4607.40
λ
[
Å
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Figure 7.24. Same as Fig. 7.21 but for the Bifrost model, including the model’s
magnetic field, but neglecting bulk velocities.
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Figure 7.25. Same as Fig. 7.24 but includes the bulk velocities.
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Remarkable exceptions in the Sr I 4607

Here we report some exceptions to the results shown above, that is a series of
synthetic emergent profiles of the Sr I 4607 Å line where we found large relative
discrepancies, both in shape and magnitude, between the reference AD case and
the AA and CRD models. We point out that such exceptions only appear in case
of rather weak Q/I and U/I polarization signals (i.e., < 0.3%), and only when
a deterministic magnetic field is included in the calculation.

Since the Sr I 4607 Å line forms in the photosphere, the observed scattering
polarization signal can usually be well reproduced under the assumption of CRD
and it is mainly used to investigate the small-scale unresolved magnetic fields
(e.g., MSI) present in this layer. However, the exceptions shown below are of
scientific interest. Indeed, (Zeuner et al., 2022) have recently detected, for the
first time in this line, the signatures of a deterministic magnetic field, and the
ZIMPOL polarimeter (Ramelli et al., 2010) can measure very weak polarization
signals, with amplitudes of the same order of magnitude as those of the synthetic
profiles shown in this section.
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Å
]

−0.4

−0.2

0

U
/I

[%
]

4607.20 4607.30 4607.40
λ
[
Å
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Figure 7.26. Emergent Q/I (upper panel) and U/I (lower panel) profiles for the
Sr I 4607 Å line resulting from the FAL-C atmospheric model with a uniform
magnetic field of 50 G with direction θB = π/4 and χB = π/4, for three different
directions of the LOS. The polar angles of the LOS are indicated in the titles
of each column. The inclinations are the same as in the previous figures of this
chapter, the azimuth is χ = π. Each panel compares the AD, AA, and CRD profiles
(see legend).
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Figure 7.26 shows the results obtained considering a magnetic field of 50 G
with θB = π/4 and χB = π/4, for three different LOS, all having azimuth χ = π.
In this Figure, it is possible to observe clear discrepancies in U/I that increase as
the LOS gets closer to the center of the solar disk (i.e. the inclination θ gets closer
to 0). We can also see that the relative discrepancy increases as the absolute
amplitude of the polarization signal decreases.
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Figure 7.27. Same as Fig. 7.26 but for LOSs with azimuth χ = 3/2π.

The profiles of Fig. 7.27 have been obtained for the same setting as in Fig.
7.26, but considering LOSs with azimuth χ = 3π/2. In this case, we first observe
a small discrepancy in Q/I for the near-limb LOS in the results obtained with the
AA model (left column, blue line). This can be attributed to the inability of
this model to correctly synthesize the line core, as pointed out in Janett et al.
(2021a). It can be noticed that moving from the limb to the disk center, the Q/I
signal changes its sign. The largest discrepancy is found for the intermediate
LOS of θ = 0.903, where the AD profile shows a weak positive peak at the line
center, while the CRD and AA profiles show a strong depolarization, reaching
negative values in the AA case. The U/I signals are the signature of the Hanle
rotation produced by the deterministic magnetic field. The U/I signal calculated
at the limb is qualitatively similar to the one detected by Zeuner et al. (2022)
with ZIMPOL (see also Fig. 7.4).

The profiles of Fig. 7.28 have been calculated with the same setting as for
Fig. 7.27, but for a magnetic field of 23 G and considering LOSs with azimuth
χ = 5π/4. In this case, a remarkable discrepancy is found in Q/I for a LOS close
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Figure 7.28. Same as Fig. 7.27 but for a magnetic field strength of 23 G (corre-
sponding to the Hanle critical field for this line, see Tab. 7.1), and a LOS with
azimuth χ = 5π/4. The dashed red lines are calculated by applying the exact
angle-dependent expression of the RIII redistribution matrix (see also Chap. 6 and
Riva et al. (2023)).

to the disk center (right column). This weak signal is produced by the FSHE (see
also Sect. 7.5). The reference AD calculation (red solid profile) shows a sharp
peak at the line center and two negative local minima in the near wings. The AA
and CRD calculations (blue and green lines, respectively) show instead a lower
central peak and no local minima. Only for this figure, we also report the profiles
obtained considering the exact angle-dependent expression of RIII (red dashed
line), in which the signal produced by the FSHE is even more pronounced (see
Chapter 6 and Riva et al. (2023)).

7.5 Focus on the Forward Scattering Hanle Effect

The results reported in the previous sections showed that quite large discrepan-
cies between the reference AD case and the AA and CRD models are often found
in the Q/I and U/I signals produced by the FSHE for LOS close to the disk center.
This section aims at investigating this scenario in more detail.

As explained in Sect. 7.3.2, the presence of a deterministic non-vertical mag-
netic field breaks the axial symmetry of the radiation field and can induce appre-
ciable scattering polarization signals also at the solar disk center, via the FSHE
mechanism (Trujillo Bueno, 2001). Observational studies have highlighted this
phenomenon in different lines, such as He I 10830 and Ca I 4227 Å (Trujillo
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Bueno et al., 2002; Bianda et al., 2011), especially in regions where moderate
deterministic magnetic fields are present. The observation reported in Fig. 7.5
shows an example of a clear signal produced by the FSHE in the Ca I 4227 Å line.
The weak signal observed in the Sr II 4078 Å line reported in Fig. 7.6 can also be
attributed to the FSHE.

The calculations reported in the previous sections included signals produced
by the FSHE in the presence of a non-vertical deterministic magnetic field. These
can be seen, for example, in Fig.7.11 for the Ca I 4227 Å line and in Fig. 7.17
for the Sr II 4078 Å line, for a LOS with µ = 0.966. In the Ca I 4227 Å line, the
FSHE produces a clear peak in the line core, in both Q/I and U/I , flanked by two
secondary weaker peaks of opposite signs in the near wings. In general, when an
inclined deterministic magnetic field is present, the amplitude of the scattering
polarization signal at the line center first decreases as the observed point moves
away from the solar limb (i.e., in the interval 0≤ µ⪅ 0.5) and then it grows
again, due to the FSHE, as the LOS approaches the center of the solar disk (i.e.,
µ → 1). The efficiency of the FSHE is maximal for horizontal magnetic fields,
while it disappears as the magnetic field direction approaches the vertical (i.e.,
parallel to the z-axis).

To analyze the suitability of the AA and CRD approximations to model the
FSHE, we performed a series of calculations for the Ca I 4227 Å line in the FAL-
C model, considering the case of a horizontal magnetic field with a strength of
20 G, an inclination of θB = π/2, and an azimuth χB ranging from 0 to 2π with a
step size of π/4. With these results, we made the polarization diagram for a LOS
of µ= 0.966 shown in Figure 7.29, where we compare the amplitudes of the Q/I
and U/I signals at the central line frequency of the AD results (red curve in the
right panel) with the results obtained with the simplified AA model (blue curves
in the left and right panels) and with the results obtained with the CRD model
(green curve in the left panel). From the polarization diagram, it is evident that
both the AA and CRD models significantly underestimate the amplitude of the
polarization signals at the central line frequency. This behavior is confirmed in
the polarization diagram 7.30, which was derived by applying a non-horizontal
magnetic field with a strength of 25 G, an inclination of θB = π/4, and a varying
azimuth as in the previous test.

The second numerical analysis is presented in Figure 7.31, where we show
the variation of the amplitudes of Q/I and U/I at the central line frequency as a
function of the inclination, µ, of the LOS (i.e., the center-to-limb variation, CLV),
a) for a horizontal magnetic field of 20 G with θB = π/2 andχB = 0 (left column),
and b) for a magnetic field of 25 G (corresponding to the Hanle critical field, see
Tab. 7.1) with a direction of θB = π/4 and χB = π/4 (right column). The left
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(θB = π/2) magnetic field of 20 G. The points of each curve correspond to
different magnetic field azimuths χB ∈ (0,2π). The points corresponding to
χB = nπ/4 (for n = 0, . . . , 7) are marked with small circles. Left panel: compar-
ison between CRD and PRD-AA calculations. Right panel: comparison between
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column of the figure 7.31 shows that, for this particular magnetic configuration,
the amplitude of Q/I decreases up to an inclination of µ≈ 0.4 and then increases
as µ→ 1 as a consequence of the FSHE. This increase is much more pronounced
in the AD calculations. In the right column of the figure 7.31 it can be seen that
the FSHE induces a change of sign in both Q/I and U/I when µ gets close to
1. In this case, significant differences between the various models appear both
in the signal amplitude and in the value of µ at which the signal changes its
sign. Furthermore, Figure 7.32 shows the CLV for Q/I , and U/I at the central
line frequency in the Sr II 4078 Å line for a magnetic field of 12 G (Hanle critical
field, see Table 7.1) with direction θB = π/4 and χB = π/4.

A comparison of the Q/I and U/I profiles of the Ca I 4227 Å line calculated
at µ = 0.169 and µ = 0.996 for the magnetic fields considered in the left and
right panels of Fig. 7.31 is provided in Fig. 7.33 and 7.34, respectively.

In conclusion, these results show that the AA and CRD approximations can in-
troduce significant inaccuracies in the modeling of the FSHE, especially in strong
chromospheric lines. The differences can be in the amplitude, shape, and sign
of the polarization profiles, and are highly dependent on the exact orientation
of the magnetic field. In some cases, differences in amplitude of more than one
order of magnitude are found (see Fig. 7.33). In the case of photospheric lines,
appreciable differences are also found between calculations performed with the
exact angle-dependent expression of RIII, and calculations carried out with RIII−CRD

(see Chap. 6).
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7.6 Conclusion

In this chapter, we presented computational results for the intensity and polariza-
tion signals of the Ca I 4227 Å, Sr II 4078 Å, and Sr I 4607 Å lines, obtained in the
most general AD case, and under the AA and CRD approximations. The calcula-
tions were carried out in 1D models of the solar atmosphere both semi-empirical
and extracted from realistic 3D MHD simulations. The latter also included real-
istic height-dependent values of the magnetic and bulk velocity fields. Although
a quantitative comparison with the observations was beyond the scope of this
work, this analysis showed that our reference AD numerical results are phys-
ically reliable, since they reproduce many observed features and show a very
good qualitative agreement with the measured profiles.

One of the main goals was to assess the suitability of the AA and CRD approx-
imation, having the possibility to contrast them with accurate AD calculations.
A very interesting result is that the AA model can correctly reproduce the wing
lobes in the Ca I 4227 Å and Sr II 4078 Å lines, although it can introduce in-
accuracies in the line core. As expected, the CRD assumption completely fails
in reproducing the wing lobes of chromospheric lines. In the line core, it shows
minor errors at the limb, but it fails in modeling the FSHE at the center of the
solar disk.

The most remarkable finding of this chapter is the very large error that can
be introduced by the AA and CRD approximations when modeling the FSHE in
strong chromospheric lines, such as Ca I 4227 Å and Sr II 4078 Å lines. For
particular geometries, the AA and CRD approximations can introduce significant
errors also in the photospheric Sr II 4078 Å line, especially when a deterministic
magnetic field is included in the calculations.

In conclusion, our results highlight that the AA and CRD approximations must
be used with caution when modeling scattering polarization in chromospheric
lines, and that AD calculations are needed in order to accurately model these
signals and their magnetic sensitivity, and obtain physically reliable results. The
much higher computational cost of AD modeling clearly poses a further chal-
lenge for the solution of the inverse problem for scattering polarization in chro-
mospheric lines.
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7.A Results for Mg II k 2795 Å

In this appendix, we present a series of calculations for the Mg II k 2795 Å line,
which results from a transition Jℓ =

1
2↔ Ju =

3
2 . It must be noted that a correct

modeling of the scattering polarization signal of this line requires considering
a two-term atomic model (i.e., an atomic model that includes also the nearby
Mg II h line at 2800 Å and that accounts for quantum interference between the
upper levels of the two lines). The results shown in this chapter, obtained with
a two-level atomic model, are in any case correct for the line-core region (e.g.
Belluzzi and Trujillo Bueno, 2012).

Since the Mg II k 2795 Å line is a very broad chromospheric line, we present
the whole profile (over a spectral range of about 80 Å) in Figure 7.35, while the
details of the core of the line are shown in Figure 7.36. The calculations were
performed in the FAL-C atmospheric model with a height-independent magnetic
field of 22 G (corresponding to the Hanle critical field for this line, see Eq. (7.1)),
with a direction of θB = π/4 and χB = π/4, and a frequency grid of 221 nodes.
Falling in the near-ultraviolet, this line can only be observed from space. The
scattering polarization signal of this line was recently measured by two sound-
ing rocket experiments: CLASP2 (2019) and CLASP2.1 (2021). The Q/I profile
observed by CLASP2 is reported in Rachmeler et al. (2022).



213 7.A Results for Mg II k 2795 Å

0.0

0.5

1.0

I
[ er

g
cm
−

2
s−

1
H

z−
1

sr
−

1]

×10−6 µ = 0.169

||B|| = 22G

AA

CRD

AD
0

2

×10−6 µ = 0.619

0

2

4

×10−6 µ = 0.966

0

2

Q
/I

[%
]

−0.5

0

0.5

−0.05

0

0.05

−1

0

1

U
/I

[%
]

−0.5

0

−0.05

−0.025

0

2760.00 2780.00 2800.00 2820.00
λ
[
Å
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Figure 7.36. Same as Fig. 7.35, but for a narrower spectral interval, showing the
details of the line-core.
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Conclusions

The main objective of this thesis work was to develop an efficient and accurate
algorithm for calculating the emission vector of the RT equation, for a two-level
atomic model, taking into account AD-PRD effects. The algorithm was needed
as a key component for the development of the first code capable of solving the
non-LTE RT problem for polarized radiation in realistic 3D models of the solar
atmosphere, accounting for PRD effects. Such a code will allow modeling the po-
larization of strong resonance lines, which encode precious information on the
elusive magnetic fields of the solar chromosphere, with unprecedented accuracy.
The considered RT problem is extremely challenging from the computational
standpoint, and, at the beginning of the project, it could only be solved under
simplifying approximations, either on the atmospheric model (e.g., isothermal,
optically thin, cylindrically symmetric) or on the description of scattering pro-
cesses (e.g., the AA approximation, or the weak-field assumption).

The problem was formulated within the framework of the PRD theory of Bom-
mier (1997a,b), using the redistribution matrix formalism. The first goal was to
develop a fast computational method for calculating the contribution of the RII

redistribution matrix to the emission vector, considering arbitrary magnetic and
bulk velocity fields. This is the most time-consuming component of the whole
solution strategy. The first part of the work was dedicated to the analysis of the
basic functional components of the RII redistribution function and the identifica-
tion of fast quadrature methods suited to the problem. The developed methods
exploit the a priori knowledge of the properties of such functions and the regu-
larities of the angular grid. Second, we studied CPU and GPU architectures and
the roofline model to perform a robust algorithm analysis that allowed us to de-
velop a near-optimal application. As a test bench, we used the chromospheric
Ca I 4227 Å line.
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Based on the experience gained with RII, we also developed a method to com-
pute the contribution of RIII in its exact form (which is notoriously challenging).
This allowed us to analyze, in realistic atmospheric models, the reliability of sim-
ulations carried out considering the assumption of CRD in the observer’s frame
for RIII. The results confirmed the suitability of this approximation, especially in
chromospheric lines (Riva et al., 2023).

The above-mentioned methods have been successfully integrated into novel
codes that solve the full non-LTE RT problem for polarized radiation in both 1D
and 3D atmospheric models. These codes implement new preconditioned Krylov
solvers (Benedusi et al., 2022; Benedusi et al., 2023), which converge in a few
iterations.

The 1D code allowed us to compare, for the first time, PRD-AD calculations
of scattering polarization performed in semi-empirical models of the solar atmo-
sphere, to PRD-AA and CRD calculations. The results highlighted a series of arti-
facts produced by the AA approximation, which had not been noticed in the past
(Janett et al., 2021a). Particularly relevant are the differences found between AA
and AD models in polarization signals induced by the Forward-Scattering Hanle
Effect (FSHE).

These investigations clearly showed the importance of considering PRD ef-
fects in their general AD formulation in order to get reliable results that can be
compared to the observations. The synthetic signals obtained in the Ca I 4227 Å,
Sr II 4078 Å, and Sr I 4607 Å lines showed a very good qualitative agreement
with observations carried out with ZIMPOL at IRSOL. In the case of Sr II 4078 Å
our calculations for the FSHE predicted observable signals, which have motivated
new dedicated observations.

The algorithm revealed to be sufficiently fast, accurate, and lightweight (in
terms of memory requirements) to be successfully implemented in the 3D code.
This code is presently tested in HPC applications. The first results were positive,
showing, for instance, the appearance of U/I signals due to the breaking of the
axial symmetry of the problem induced by horizontal fluctuations of the tem-
perature, and the expected signatures of the Hanle and Zeeman effects in the
presence of a magnetic field (see Benedusi et al., 2023).

The thesis work can thus be considered fully successful. The developed meth-
ods have been fundamental for the progress of the whole project and for the
activity of other members of the group, who were focusing on other aspects of
the problem. Indeed, in addition to the investigation presented in Riva et al.
(2023), the results of this project have been fundamental for the works pub-
lished in Janett et al. (2021a), Benedusi et al. (2022), Benedusi et al. (2023),
and Guerreiro et al. (2023) (submitted).
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Due to time reasons, some of the approaches that have been identified could
not be investigated in depth (e.g., Lebedev’s angular quadrature, and RII cal-
culations in large batches). These strategies would definitely deserve further
investigation in the future. The approach developed in this thesis for calculat-
ing the emissivity in a two-level atom will also be a perfect starting point for a
generalization to the more complex case of two-term atomic models.
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Appendix A

Analytical expressions of the RT
coefficients

This appendix is taken from the paper:
Assessment of the CRD approximation for the observer’s frame
RIII redistribution matrix (Riva et al., 2023).

A.1 Atomic model and data

In this work, we consider an atomic system composed of two levels (two-level
atom). Each level is characterized by the energy E, the quantum number for the
total angular momentum J (positive integer or semi-integer values only), and
the Landé factor g. Hereafter, the physical quantities referring to the upper and
lower levels will be labeled with subscripts u and ℓ, respectively. Each level is
composed of 2J + 1 magnetic sublevels characterized by the magnetic quantum
number M (M = −J ,−J + 1, ..., J). The magnetic sublevels are degenerate in
the absence of magnetic fields, while they split in energy when a magnetic field
B is present (Zeeman effect). Their energies are given by E(M) = EJ + hνL g M ,
where EJ is the energy of the considered J -level, h is the Planck constant, and
νL = e ||B|| (4πmec)

−1 (with e the elementary charge, me the electron mass,
and c the speed of light) is the Larmor frequency1. The line-center frequency
is ν0 = (Eu − Eℓ)/h. The frequency of the Zeeman component corresponding to
the transition between the upper magnetic sublevel Mu and the lower magnetic

1In the cgs system, the Larmor frequency is numerically approximated by νL = 1.3996×106 B,
with B expressed in G and νL in s−1.
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sublevel Mℓ is

νMuMℓ =
E(Mu)− E(Mℓ)

h
= ν0 + νL(guMu − gℓMℓ) . (A.1)

The energies, angular momenta, Landé factors, and Einstein coefficients for
spontaneous emission Auℓ for the two-level atomic models considered in this work
to synthesize the intensity and polarization of the Ca I 4227 Å, Sr II 4078 Å, and
Sr I 4607 Å lines are summarized in Table A.1. The Landé factors of levels with
Jℓ = 0 are formally taken to be zero.

Line Air WL [Å] Eu [cm−1] Ju gu Eℓ [cm−1] Jℓ gℓ Auℓ [s−1]

Ca I 4226.73 23652.304 1 1 0 0 0 2.18× 108

Sr I 4607.33 21698.452 1 1 0 0 0 2.01× 108

Sr II 4077.71 24516.650 3/2 4/3 0 1/2 2 1.41 ×108

Mg II k 2795.53 35760.880 3/2 4/3 0 1/2 2 2.60 ×108

Table A.1. Spectral lines and corresponding atomic data.

A.2 The redistribution matrix

All the results presented in this work are obtained considering the redistribution
matrix for a two-level atom with unpolarized and infinitely-sharp lower level, in
the presence of magnetic fields, as derived by Bommier (1997b). This redistri-
bution matrix is given by the sum of two terms, commonly referred to as RII and
RIII (e.g., Hummer, 1962). In this appendix, we provide their analytic expres-
sions, written with a slightly different notation than the one used in the original
paper or in subsequent works in which the same redistribution matrices were
reported and applied (e.g., Alsina Ballester et al., 2017). We first present their
expressions in the atomic reference frame, taking the quantization axis along
the magnetic field (Sect. A.2.1). We briefly comment on the branching ratios
(Sect. A.2.1 and we derive their expressions in a new reference system with the
quantization axis along the vertical (Sect. A.2.1). Subsequently, we transform
them in the observer’s reference frame, including bulk velocities (Sect. A.2.2).
Finally, we provide their expressions under a series of simplifying approxima-
tions, including the one for RIII analyzed in this work (Sect. A.2.3).
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A.2.1 Expression in the atomic reference frame

In the atomic reference frame, taking the quantization axis parallel to the mag-
netic field (magnetic reference system), the RII and RIII redistribution matrices are
respectively given by Eqs. (51) and (49) in Bommier (1997b). We refer to these
redistribution matrices with the symbol R̂X (with X=II,III) to distinguish them from
those expressed taking the quantization axis along a different direction. After
some variable and index renaming,2 we rewrite them in the following equivalent
form

R̂X

i j(r,Ω,Ω′,ξ,ξ′) =
2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

R
X,KK ′

Q (r,ξ,ξ′) (−1)Q T̂K ′

Q,i(r,Ω) T̂K
−Q, j(r,Ω′) ,

(A.2)
where r is the spatial point, Ω the propagation direction, and ξ the radiation
frequency in the atomic reference frame. The convention that primed and un-
primed quantities refer to the incident and scattered radiation, respectively, is
used. The indices i and j can take values 1, 2, 3, and 4, while Kmin =min(K , K ′).
The quantity T̂K

Q,i (with K = 0, ..., 2 and Q = −K , ..., K) is the geometrical ten-
sor defined in Sect. 5.11 of LL04, evaluated in the magnetic reference system.
Given that the direction of the magnetic field may vary with the spatial point,
this tensor depends in general on r.

The function R
III,KK ′

Q is given by (see Eq. (49) of Bommier, 1997b)

R
III,KK ′

Q (r,ξ,ξ′) =
2Ju
∑

K ′′=|Q|

�

βK ′′

Q (r)−αQ(r)
�

ΦK ′′K ′

Q (r,ξ) ΦK ′′K
Q

�

r,ξ′
�

, (A.3)

where

βK
Q (r) =

ΓR
ΓR + ΓI(r) + D(K)(r) + 2πiνL(r)guQ

, (A.4)

and

αQ(r) =
ΓR

ΓR + ΓI(r) + ΓE(r) + 2πiνL(r)guQ
. (A.5)

The quantities ΓR, ΓI , and ΓE are the line broadening constants due to radiative
decays, inelastic collisions, and elastic collisions, respectively:

ΓR = Auℓ , ΓI = Cuℓ , ΓE =Qel , (A.6)
2Variable and index renaming for Eqs. (49) and (51) in Bommier (1997b):

Ω1→ Ω′ , ν1→ ξ′ , ν→ ξ , K → K ′′ , K ′→ K , K ′′→ K ′ ,

J ′→ Ju , J → Jℓ , M → Mu , N → Mℓ , M ′→ M ′u , N ′′→ M ′ℓ .
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where Cuℓ is the rate of inelastic collisions inducing transitions from the upper
to the lower level and Qel is the rate of elastic collisions with neutral perturbers
(mainly hydrogen and helium atoms). The quantity D(K) is the depolarizing rate
due to elastic collisions. In the absence of experimental data or detailed the-
oretical calculations for the rates D(K), the approximate relation D(2) = 0.5Qel

is generally used. Under the assumption that the interaction between the atom
and the perturber is described by a single tensor operator of rank K ′ , the rates
with K ̸= 2 can be obtained from D(2) as discussed in Sect. 7.13 of LL04 (see
equation after (7.108) and Eq. (7.109), which relates D(1) and D(2) for the case
of K ′ = 2) . The generalized profile ΦKK ′

Q is given by Eq. (10.40) of LL04 and can
be equivalently written as

ΦKK ′

Q (r,ξ) =
Ju
∑

Mu,M ′u=−Ju

Jℓ
∑

Mℓ=−Jℓ

1
∑

q,q′=−1

BKK ′QMuM ′uMℓqq′
1
2

�

ΦMuMℓ(r,ξ) +ΦM ′uMℓ(r,ξ)
�

,

(A.7)
where K = 0, ..., 2Ju, K ′ = 0,1, 2 , and Q = −Kmin, ..., Kmin with Kmin =min(K , K ′).
The notation f (·) refers to the complex conjugate function. The quantityBKK ′QMuM ′uMℓqq′

is given by

BKK ′QMuM ′uMℓqq′ = (−1)1+Ju−Mu+q′
Æ

3(2Ju + 1)(2K + 1)(2K ′ + 1)

×
�

Ju Jℓ 1
−Mu Mℓ −q

��

Ju Jℓ 1
−M ′u Mℓ −q′

�

×
�

Ju Ju K
M ′u −Mu −Q

��

1 1 K ′

q −q′ −Q

�

, (A.8)

where the quantities in parentheses are the so-called 3 j symbols (e.g., Sect. 2.2
of LL04). It must be observed that the 3 j symbols are non-zero only if the sum
of the arguments of the lower raw is zero. Because of this, the values of q and
q′ are uniquely determined once Mu, M ′u, and Mℓ are assigned. Thus, the sums
over these indices in Eq. (A.7) are in practice redundant. The complex profile
ΦMuMℓ is defined as

ΦMuMℓ(r,ξ) =
1
π

1
Γ (r)− i(νMuMℓ(r)− ξ)

, (A.9)

with Γ = (ΓR + ΓI + ΓE)/4π .



225 A.2 The redistribution matrix

The function R
II,KK ′

Q is given by (see Eq. (51) of Bommier 1997b)

R
II,KK ′

Q (r,ξ,ξ′) = αQ(r)
Ju
∑

Mu,M ′u=−Ju

Jℓ
∑

Mℓ,M
′
ℓ
=−Jℓ

1
∑

p,p′,p′′,p′′′=−1

CKK ′QMuM ′uMℓM
′
ℓ
pp′p′′p′′′

×δ(ξ− ξ′ − νMℓM
′
ℓ
(r))

1
2

�

ΦM ′uMℓ(r,ξ′) +ΦMuMℓ(r,ξ′)
�

, (A.10)

where αQ is given by Eq. (A.5), δ(·) is the Dirac delta, and ΦMuMℓ is the complex
profile defined in Eq. (A.9). The quantity νMℓM

′
ℓ

is given by

νMℓM
′
ℓ
(r) = νL(r)(gℓMℓ − gℓM

′
ℓ
) , (A.11)

and CKK ′QMuM ′uMℓM
′
ℓ
pp′p′′p′′′ is defined as (see Eq. (12) of Bommier, 1997b)

CKK ′QMuM ′uMℓM
′
ℓ

pp′p′′p′′′ = 3 (2Ju + 1)
p

2K + 1
p

2K ′ + 1 (−1)2Ju−Mℓ−M ′
ℓ

×
�

Ju Jℓ 1
Mu −Mℓ −p

��

Ju Jℓ 1
M ′u −Mℓ −p′

�

×
�

Ju Jℓ 1
Mu −M ′

ℓ
−p′′

��

Ju Jℓ 1
M ′u −M ′

ℓ
−p′′′

�

×
�

1 1 K
−p p′ Q

��

1 1 K ′

−p′′ p′′′ Q

�

. (A.12)

As for q and q′ in Eq. (A.7), the sums over p, p′, p′′, and p′′′ in Eq. (A.10) are in
practice redundant.

Branching ratios

The quantities (βK
Q − αQ) and αQ appearing in Eqs. (A.3) and (A.10), respec-

tively, are the branching ratios between RII and RIII. These terms also contain the
branching ratio for the scattering contribution to the total emissivity, 1− ε, with

ε(r) =
ΓI(r)

ΓR + ΓI(r)
(A.13)

the photon destruction probability. Factorizing this term (i.e., writingαQ = (1− ε) α̃Q

and βK
Q = (1− ε) β̃

K
Q ), the net branching ratios for RII and RIII are therefore

α̃Q(r) =
ΓR + ΓI(r)

ΓR + ΓI(r) + ΓE(r) + 2πiνL(r)guQ
, (A.14)

β̃K
Q (r)− α̃Q(r) =

ΓR + ΓI(r)
ΓR + ΓI(r) + D(K)(r) + 2πiνL(r)guQ

−

ΓR + ΓI(r)
ΓR + ΓI(r) + ΓE(r) + 2πiνL(r)guQ

. (A.15)
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It can be observed that the branching ratios for the multipolar component K =
Q = 0 coincides with those for the unpolarized case. If there are no elastic
collisions (ΓE = D(K) = 0), the branching ratio for RIII vanishes and that for RII goes
to unity (limit of coherent scattering in the atomic frame). If elastic collisions are
very efficient (ΓE ≫ ΓR, ΓI), the branching ratio for RII becomes negligible with
respect to that for RIII. However, in this case also D(K) takes very large values and
atomic polarization also becomes negligible.

Rotation of the quantization axis

The expressions of RII and RIII provided above can be transformed into a new ref-
erence system with the quantization axis directed along any arbitrary direction
by rotating the tensors T̂K

Q,i in Eq. (A.2). In this work, the problem is formulated
considering a Cartesian reference system with the z-axis (quantization axis) di-
rected along the vertical (vertical reference system) and the x-axis directed so
that the LOS towards the observer lies in the x − z plane see Fig. 1.4). The
relation between the geometrical tensors in the magnetic reference system (T̂K

Q,i)
and in the vertical reference system (TK

Q,i) is

T̂K
Q,i(r,Ω) =

K
∑

Q′=−K

TK
Q′,i(Ω)D

K

QQ′(RB(r)) , (A.16)

where DK
QQ′ is the rotation matrix (e.g., Sect. 2.6 of LL04), and RB is the ro-

tation that brings the magnetic reference system onto the vertical one. A bar
over a quantity indicates the complex conjugate. It must be noticed that the
tensor TK

Q,i defined in the vertical reference system only depends on the prop-
agation direction of the incident (or scattered) radiation, and does not depend
on the spatial point r. The rotation RB is specified by the Euler angles RB(r) =
(0,−θB(r),−χB(r)), where θB and χB are the inclination and azimuth, respec-
tively, of the magnetic field in the vertical reference system. In the vertical refer-
ence system, the redistribution matrices are thus given by

RX

i j(r,Ω,Ω′,ξ,ξ′) =
2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

R
X,KK ′

Q (r,ξ,ξ′)PKK ′

Q,i j(r,Ω,Ω′) , (A.17)

with

PKK ′

Q,i j(r,Ω,Ω′) =
K
∑

Q′=−K

K ′
∑

Q′′=−K ′
(−1)Q

′
TK ′

Q′′,i(Ω)T
K
−Q′, j(Ω

′)D
K ′

QQ′′(r)D
K
QQ′(r) . (A.18)
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For notational simplicity, we have only included the spatial point dependency of
the rotation matrices, leaving implicit that the rotation RB is always considered.
Furthermore, we have used the relation

D
K

QQ′(R) = (−1)Q−Q′DK
−Q−Q′(R) .

A.2.2 Expression in the observer’s reference frame

We now present the expressions of RII and RIII in the observer’s frame, where it is
assumed that the atom is moving with velocity v. Considering the Doppler effect,
the frequencies measured in the atomic frame, ξ′ and ξ, and those measured in
the observer’s frame, ν′ and ν, are related by:

ξ′ = ν′ −
ν0

c
v ·Ω′ , (A.19)

ξ= ν−
ν0

c
v ·Ω , (A.20)

where c is the speed of light. The velocity v is generally given by the sum of two
terms, namely,

v(r) = vth(r) + vb(r) , (A.21)

where vth is the thermal component and vb is the bulk component. The thermal
component is generally well described by a Maxwellian distribution

P(vth(r)) =
�

m
2πkB T (r)

�3/2

exp

�

−
mvth(r)2

2kB T (r)

�

, (A.22)

where kB is the Boltzmann constant, T the temperature, and m the mass of the
considered atom or ion. Let ŘX,KK ′

Q be the frequency-dependent part of the redis-
tribution matrix (see Eq. (A.10) for RII and Eq. (A.3) for RIII), expressed in terms
of the frequencies ν and ν′ through Eqs. (A.20) and (A.19), for an atom moving
with velocity v. The expression of RX,KK ′

Q in the observer’s frame is obtained by

locally averaging Ř
X,KK ′

Q over the distribution of thermal velocities:

R
X,KK ′

Q (r,Ω,Ω′,ν,ν′) =

∫

d3vth(r)P(vth(r)) Ř
X,KK ′

Q (r,Ω,Ω′,ν,ν′) . (A.23)

This average is performed following the same approach as in the unpolarized
case (e.g., Hummer, 1962; Mihalas, 1978). We provide the final expressions,
which are better formulated by defining the Doppler width

∆νD(r) =
ν0

c

√

√2kB T (r)
m

, (A.24)



228 A.2 The redistribution matrix

the damping constant a(r) = Γ (r)/∆νD(r), and the reduced frequency

u(r,ν) =
(ν0 − ν)
∆νD(r)

. (A.25)

Moreover, we introduce the reduced magnetic and bulk velocity shifts, respec-
tively defined as

uMuMℓ(r) =
νL(r)(guMu − gℓMℓ)

∆νD(r)
, and ub(r,Ω) =

ν0

c
vb(r) ·Ω
∆νD(r)

. (A.26)

In order to make the notation lighter, in the following equations, we will also use
the variable

ũMuMℓ(r,Ω,ν) = u(r,ν) + uMuMℓ(r) + ub(r,Ω) . (A.27)

RII redistribution matrix

The RII redistribution matrix in the observer’s frame, taking the quantization axis
along the vertical, is given by

RII

i j(r,Ω,Ω′,ν,ν′) =
2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

R
II,KK ′

Q (r,Ω,Ω′,ν,ν′)PKK ′

Q,i j(r,Ω,Ω′) , (A.28)

where PKK ′
Q,i j is given by Eq. (A.18) and R

II,KK ′

Q takes different analytic expressions
depending on relative orientation of Ω and Ω′.3

• If Ω′ ̸= Ω,−Ω:

R
II,KK ′

Q (r,Ω,Ω′,ν,ν′) =
1

∆νD(r)2
αQ(r)

∑

Mu,M ′u

∑

Mℓ,M
′
ℓ

∑

p,p′,p′′,p′′′
CKK ′QMuM ′uMℓM

′
ℓ

pp′p′′p′′′

×
1

2π sinΘ
exp



−

�

ũMuM ′
ℓ
(r,Ω,ν)− ũMuMℓ(r,Ω′,ν′)

2 sin(Θ/2)

�2




×
�

W

�

a(r)
cos(Θ/2)

,
ũM ′uM ′

ℓ
(r,Ω,ν) + ũM ′uMℓ(r,Ω′,ν′)

2 cos(Θ/2)

�

+W

�

a(r)
cos(Θ/2)

,
ũMuM ′

ℓ
(r,Ω,ν) + ũMuMℓ(r,Ω′,ν′)

2 cos(Θ/2)

�

�

,

(A.29)

3For notational simplicity, the ranges of the various sums are not explicitly indicated.
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where Θ is the angle between the directions Ω and Ω′ (scattering angle)

cosΘ = Ω ·Ω′ = cosθ cosθ ′ + sinθ sinθ ′ cos (χ −χ ′) . (A.30)

In the previous equation, θ and χ are respectively the inclination and az-
imuth of the directionΩ, and θ ′ and χ ′ are the same angles for the direction
Ω′. The Faddeeva function W (y, x) is defined as (e.g., Sect. 5.4 of LL04):

W (y, x) = H(y, x) + iL(y, x) = e−z2
erfc(−iz) , (A.31)

where H and L are the Voigt and associated dispersion profiles, respectively,
erfc is the complementary error function, and z = x + iy .

• If Ω′ = Ω (forward scattering):

R
II,KK ′

Q (r,Ω,Ω,ν,ν′) =
1

∆νD(r)2
αQ(r)

×
∑

Mu,M ′u

∑

Mℓ,M
′
ℓ

∑

p,p′,p′′,p′′′
CKK ′QMuM ′uMℓM

′
ℓ

pp′p′′p′′′

×
1

2π1/2

�

W (a(r), ũM ′uMℓ(r,Ω,ν′)) +W (a(r), ũMuMℓ(r,Ω,ν′))
�

×δ
�

ũMuMℓ(r,Ω,ν′)− ũMuM ′
ℓ
(r,Ω,ν)

�

. (A.32)

• If Ω′ = −Ω (backward scattering):

R
II,KK ′

Q (r,Ω,−Ω,ν,ν′) =
1

∆νD(r)2
αQ(r)

×
∑

Mu,M ′u

∑

Mℓ,M
′
ℓ

∑

p,p′,p′′,p′′′
CKK ′QMuM ′uMℓM

′
ℓ

pp′p′′p′′′

×
1

4π3/2
exp



−

�

ũMuM ′
ℓ
(r,Ω,ν)− ũMuMℓ(r,−Ω,ν′)

2

�2




×
�

ϕ

�

a(r),
ũM ′uM ′

ℓ
(r,Ω,ν) + ũM ′uMℓ(r,−Ω,ν′)

2

�

+ϕ

�

a(r),
ũMuM ′

ℓ
(r,Ω,ν) + ũMuMℓ(r,−Ω,ν′)

2

�

�

, (A.33)

where ϕ(y, x) is defined as

ϕ(y, x) =
1

y − ix
. (A.34)



230 A.2 The redistribution matrix

RIII redistribution matrix

The RIII redistribution matrix in the observer’s frame, taking the quantization axis
along the vertical, is given by

RIII

i j(r,Ω,Ω′,ν,ν′) =
2
∑

K ,K ′=0

Kmin
∑

Q=−Kmin

R
III,KK ′

Q (r,Ω,Ω′,ν,ν′)PKK ′

Q,i j(r,Ω,Ω′) , (A.35)

where PKK ′
Q,i j is given by Eq. (A.18) and R

III,KK ′

Q by the following expression

R
III,KK ′

Q (r,Ω,Ω′,ν,ν′) =
1

∆ν2
D(r)

2Ju
∑

K ′′=|Q|

�

βK ′′

Q (r)−αQ(r)
�

×
∑

Mu,M ′u

∑

Mℓ

∑

q,q′
BK ′′K ′QMuM ′uMℓqq′

∑

M ′′u ,M ′′′u

∑

M ′
ℓ

∑

q′′,q′′′
BK ′′KQM ′′u M ′′′u M ′

ℓ
q′′q′′′

×
1
4

�

I(MuMℓ),(M ′′u M ′
ℓ
)(r,Ω,Ω′,ν,ν′) + I(MuMℓ),(M ′′′u M ′

ℓ
)(r,Ω,Ω′,ν,ν′)

+ I(M ′uMℓ),(M ′′u M ′
ℓ
)(r,Ω,Ω′,ν,ν′) + I(M ′uMℓ),(M ′′′u M ′

ℓ
)(r,Ω,Ω′,ν,ν′)

�

.

(A.36)

The quantity I(MuMℓ),(M ′uM ′
ℓ
) is given by the integral of the product of three func-

tions: an exponential function, which only depends on the integration variable
y; a function depending on y , the frequency and direction of the scattered ra-
diation, and the first pair of magnetic quantum numbers in the subscript; and a
function depending on y , the frequency and direction of the incident radiation,
and the second pair of magnetic quantum numbers in the subscript. A bar over a
pair of magnetic quantum numbers means that the complex conjugate of the cor-
responding function has to be considered. The explicit expression of I(MuMℓ),(M ′uM ′

ℓ
)

is provided below.

• If Ω′ ̸= Ω,−Ω:

I(MuMℓ),(M ′uM ′
ℓ
)(r,Ω,Ω′,ν,ν′) =

1
π2 sinΘ

×
∫

dy exp
�

−y2
�

W

�

a(r)
sinΘ

,
ũMuMℓ(r,Ω,ν) + y cosΘ

sinΘ

�

ϕ
�

a(r), ũM ′uM ′
ℓ
(r,Ω′ν′) + y

�

. (A.37)
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• If Ω′ = Ω (forward scattering):

I(MuMℓ),(M ′uM ′
ℓ
)(r,Ω,Ω,ν,ν′) =

1
π5/2

×
∫

dy exp
�

−y2
�

ϕ
�

a(r), ũMuMℓ(r,Ω,ν) + y
�

ϕ
�

a(r), ũM ′uM ′
ℓ
(r,Ω,ν′) + y

�

. (A.38)

• If Ω′ = −Ω (backward scattering):

I(MuMℓ),(M ′uM ′
ℓ
)(r,Ω,−Ω,ν,ν′) =

1
π5/2

×
∫

dy exp
�

−y2
�

ϕ
�

a(r), ũMuMℓ(r,Ω,ν)− y
�

ϕ
�

a(r), ũM ′uM ′
ℓ
(r,−Ω,ν′) + y

�

. (A.39)

The function ϕ(y, x) is that defined in Eq. (A.34).

A.2.3 Approximate expressions

The expressions of the redistribution matrices in the observer’s frame derived in
the previous section show the complex coupling between frequencies and an-
gles introduced by the Doppler effect. This coupling makes the evaluation of
the scattering integral ((1.4)) extremely demanding from a computational point
of view. To reduce the computational cost of the problem, approximate expres-
sions in which the frequency and angular dependencies are partially or totally
decoupled are often used.

In the absence of bulk velocities, or when working in a reference frame in
which the bulk velocity is zero (comoving frame), the arguments of the exponen-
tial and of the Faddeeva functions do not depend on Ω and Ω′, and the angular
dependence of the R

II,KK ′

Q function (A.29) is reduced to the scattering angle Θ. In
this case, a commonly used approximation is the so-called angle-averaged (AA)
one, which consists in averaging this function with respect to Θ (e.g., Rees and
Saliba, 1982):

R
II−AA,KK ′

Q (r,ν,ν′) =
1
2

∫ π

0

dΘ sinΘR
II,KK ′

Q (r,Θ,ν,ν′) . (A.40)
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The function R
II,KK ′

Q in the r.h.s. of Eq. (A.40) is given by Eq. (A.29), assuming no
bulk velocities. The ensuing RII−AA

i j redistribution matrix in the observer’s frame is
characterized by a complete decoupling of the frequencies and angles. Thus, the
computational cost of the problem is significantly lowered.

The AA approximation can in principle be applied also to R
III,KK ′

Q (e.g., Bom-
mier, 1997b). However, an even stronger assumption is often considered for
this function, namely that there is no correlation between the frequencies of the
incident and scattered radiation in the observer’s frame (e.g., Mihalas, 1978).
Under this approximation, often referred to as the limit of complete frequency
redistribution (CRD) in the observer’s frame, we have:

R
III−CRD,KK ′

Q (r,Ω,Ω′,ν,ν′) =
1

∆ν2
D(r)

2Ju
∑

K ′′=|Q|

�

βK ′′

Q (r)−αQ(r)
�

×ΦK ′′K ′

Q (r,Ω,ν)ΦK ′′K
Q (r,Ω′,ν′) ,

(A.41)

where ΦKK ′
Q is the generalized profile (see Eq. (A.7)), defined in the observer’s

frame. This is obtained by convolving the profiles ΦMuMℓ of Eq. (A.9) with a
Gaussian function in order to account for the thermal and microturbulent velocity
distribution, thus obtaining a Faddeeva function:

ΦKK ′

Q (r,Ω,ν) =
∑

Mu,M ′u

∑

Mℓ

∑

q,q′
BKK ′QMuM ′uMℓqq′

×
1

2
p
π

�

W (a(r), ũMuMℓ(r,Ω,ν)) +W (a(r), ũM ′uMℓ(r,Ω,ν))
�

.

(A.42)

In the absence of bulk velocities or when working in the comoving frame, the
RIII−CRD redistribution matrix is characterized by a complete decoupling between
angles and frequencies, and between the frequencies of the incident and scat-
tered radiation.

A.3 Line contribution to the propagation matrix and
thermal emissivity

Neglecting stimulated emission (which is generally an excellent assumption in
the solar atmosphere), the elements of the propagation matrix for a two-level
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atom with an unpolarized lower level, in the observer’s reference frame, are given
by (see App. 13 of LL04)

ηℓi (r,Ω,ν) = kL(r)
2
∑

K=0

Φ0K
0 (r,Ω,ν)

K
∑

Q=−K

TK
Q,i(Ω)D

K

0Q(r) , (i = 1,2, 3,4) ,

(A.43)

ρℓi (r,Ω,ν) = kL(r)
2
∑

K=0

Ψ0K
0 (r,Ω,ν)

K
∑

Q=−K

TK
Q,i(Ω)D

K

0Q(r) , (i = 2, 3,4) , (A.44)

where TK
Q,i is the geometrical tensor evaluated in the vertical reference system

and DK
QQ′ are the rotation matrices (see App. A.2.1). The quantities Φ0K

0 are par-
ticular components of the generalized profile of Eq. (A.42), while Ψ0K

0 are par-
ticular components of the generalized dispersion profile, defined as (see App. 13
of LL04)

iΨKK ′

Q (r,Ω,ν) =
∑

Mu,M ′u

∑

Mℓ

∑

q,q′
BKK ′QMuM ′uMℓqq′

×
1

2
p
π

�

W (a(r), ũMuMℓ(r,Ω,ν))−W (a(r), ũM ′uMℓ(r,Ω,ν))
�

.

(A.45)

The explicit expression of the frequency-integrated line absorption coefficient
kL is

kL(r) =
hν0

4π
Bℓu Nℓ(r) =

c2

8πν2
0

2Ju + 1
2Jℓ + 1

AuℓNℓ(r) , (A.46)

where Auℓ and Bℓu are the Einstein coefficients for spontaneous emission and
absorption, respectively, and Nℓ is the population of the lower level (see also
Table A.1).

Under the assumption of isotropic inelastic collisions, the line thermal con-
tribution to the emissivity is given by (e.g., Alsina Ballester et al., 2017):

ϵℓ,thi (r,Ω,ν) = ε (r) W (ν, T (r)) ηℓi (r,Ω,ν) , (i = 1,2, 3,4) , (A.47)

where W is the Planck function in the Wien limit (consistently with the as-
sumption of neglecting stimulated emission), and ε is the photon destruction
probability defined in Eq. (A.13).

A.4 Continuum contributions

In the visible range of the solar spectrum, continuum processes only contribute
to the emission coefficient (with a thermal and a scattering term) and to the
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absorption coefficient for intensity. Labeling continuum contributions with the
apex ‘c’, we have:

ϵc
i (r,Ω,ν) = ϵc,th

I (r,ν)δi0 + ϵ
c,sc
i (r,Ω,ν) (i = 1,2, 3,4) (A.48)

ηc
i (r,Ω,ν) = kc (r,ν)δi0 (i = 1,2, 3,4) (A.49)

ρc
i (r,Ω,ν) = 0 (i = 2,3, 4) (A.50)

where ϵc,th
I is the continuum thermal emissivity and kc the continuum total opac-

ity. Under the assumption that continuum scattering processes are coherent
in the observer’s frame, the scattering contribution to the continuum emission
coefficient is given by

ϵc,sc
i (r,Ω,ν) = σ (r,ν)

2
∑

K=0

K
∑

Q=−K

(−1)Q TK
Q,i (Ω) JK

−Q (r,ν) , (A.51)

where σ is the continuum absorption coefficient for scattering and JK
Q is the ra-

diation field tensor (see Sect. 5.11 of LL04), given by

JK
Q (r,ν) =

∮

dΩ
4π

4
∑

j=1

TK
Q, j (Ω) I j (r,Ω,ν) . (A.52)

Line and continuum contributions to the emissivity and propagation matrix sim-
ply add together.

A.5 Micro-structured isotropic magnetic field

In this section, we provide the expressions of the various RT coefficients in the
presence of an unimodal micro-structured magnetic field, namely a magnetic
field with a given intensity and an orientation that changes over scales below the
photons’ mean-free path. In particular, we consider a magnetic field whose ori-
entation is isotropically distributed over all possible directions. To describe this
scenario, the RT coefficients must be averaged over this distribution of magnetic
field orientations:

η̃ℓi (r,Ω,ν) = 〈ηℓi (r,Ω,ν)〉=
1

4π

∫ 2π

0

dχB

∫ π

0

dθB sinθB η
ℓ
i (r,Ω,ν) , (A.53)

ρ̃ℓi (r,Ω,ν) = 〈ρℓi (r,Ω,ν)〉=
1

4π

∫ 2π

0

dχB

∫ π

0

dθB sinθB ρ
ℓ
i (r,Ω,ν) , (A.54)

ϵ̃ℓi (r,Ω,ν) = 〈ϵℓi (r,Ω,ν)〉=
1

4π

∫ 2π

0

dχB

∫ π

0

dθB sinθB ϵ
ℓ
i (r,Ω,ν) , (A.55)
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Recalling the expressions of the RT coefficients in the presence of a deterministic
magnetic field, and observing that all the dependence on the orientation of the
magnetic field is contained in the rotation matrices, it can be easily verified that
the calculation of the averages above reduces to the evaluation of the following
integrals (see Eqs. (47a) and (47b) of Alsina Ballester et al., 2017)

1
4π

∫ 2π

0

dχB

∫ π

0

dθB sinθB D
K

0Q(r) = δK0δQ0 , (A.56)

1
4π

∫ 2π

0

dχB

∫ π

0

dθB sinθB D
K ′

QQ′′(r)D
K
QQ′(r) = δKK ′ δQ′Q′′

1
2K + 1

. (A.57)

Considering the integrals above, it can be immediately seen that the only non-
zero element of the propagation matrix is:

η̃ℓ1 (r,Ω,ν) = kL (r) Φ
00
0 (r,Ω,ν) . (A.58)

Similarly, the only non-zero element of the thermal term of the emissivity is:

ϵ̃ℓ,th1 (r,Ω,ν) = ε (r) WT (r,ν) η̃ℓ1 (r,Ω,ν) , (A.59)

Finally, the scattering term of the emissivity is still given by Eq. (1.4), considering
the redistribution matrices

R̃X

i j(r,Ω,Ω′,ν,ν′) =
2
∑

K=0

K
∑

Q=−K

R
X,KK
Q (r,Ω,Ω′,ν,ν′) P̃K

i j(r,Ω,Ω′) , (A.60)

where R
II,KK
Q and R

III,KK
Q have the expressions provided in Sects. A.2.2 and A.2.2,

respectively, and

P̃K
i j

�

r,Ω,Ω′
�

=
1

2K + 1

K
∑

Q′=−K

(−1)Q
′
TK

Q′,i (Ω) T
K
−Q′, j

�

Ω′
�

. (A.61)
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A.6 Table of constants

Symbol Name Value - gcs Value - SI

c Speed of light 29979245800 cm/s 299792458 m/s
KB Boltzmann constant 1.3807× 10−16cm2 g s−2K−1 1.380649× 10−23 JK−1

h Planck’s constant 6.6261× 10−27 cm2 g s−1 6.6261× 10−34 m2kg/s
e Elementary charge 4.8032× 10−10 cm3/2 g1/2s−1 1.6021765× 10−19 C
me Electron mass 9.10938291× 10−31 g 9.10938291× 10−31 kg
m Unit atomic mass 1.6605402× 10−24 g 1.6605402× 10−27 kg
M⊙ Solar mass 1.989× 1033 g 1.989× 1030 kg
d⊕⊙ Earth-Sun distance 1.49597870× 1013 cm 1.49597870× 1011 m
R⊙ Solar radius 6.955× 1010 cm 6.955× 108 m

Table A.2. Table of the constants.
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Gaussian Quadratures

Gaussian quadratures are a family of numerical integration methods that are, in
practice, the most efficient and accurate quadrature rules known. They guaran-
tee an accuracy of the order of 2N − 1 (i.e., the quadrature rule is exact for all
polynomials P ∈ P2N−1), which is the maximum known accuracy with respect to
the number of nodes. The original formulation of Gaussian quadratures based
on orthogonal polynomials was developed by Carl Gustav Jacobi (1804-1851).

The other relevant property of Gaussian quadratures is that all quadrature
weights are positive and bounded under small maxima (for a sufficiently large
number of nodes, the weights are less than one). Then, in general, Gaussian
quadratures are numerically stable, and in practice they have been shown to
work well with any kind of integrand (including non-continuous and non-smooth
functions).

Gaussian quadratures were extended by Kronrod (1965) and Patterson (1968),
who derived methods for computing nested rules. These were later used to de-
velop highly accurate and efficient adaptive quadrature algorithms.

For the motivation described above, we believe it is important to understand
how Gaussian quadratures are built and why they ensure an order of accuracy of
2N − 1, so in this section we present a detailed description of all the necessary
steps and proofs.

In the Newton-Cotes rule (e.g. Deuflhard and Hohmann, 2003), given a set of
N known and distinct nodes {x i}

N
i=1, the problem of building a quadrature rule is

to find N unknown weights {wi}
N
i=1 while achieving an order of accuracy of N−1.

The main idea behind Gaussian quadrature is to define a method where both
nodes and weights are not given; then we can define a system with 2N unknowns
(the nodes and weights) by obtaining a quadrature rule with an order of accuracy
of 2N − 1. Defining a nonlinear system of 2N equations to find the nodes and

237
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weights is generally possible, but this kind of method is not convenient to use.
Therefore, the most appropriate method for constructing Gaussian quadratures
is based on orthogonal polynomials.

B.1 Orthogonal polynomials

Two real polynomials PD (x) and PK (x) with degrees D and K , where all roots
are distinct and lie in an interval [a, b], are called orthogonal if for a given inner
product 〈·, ·〉 we have:

〈PD, PK〉= aδN ,M =

¨

0 if D ̸= K

{a ∈ R | a ̸= 0} if D = K ,
(B.1)

where δD,K is the Kronecker delta and a is a non-null constant.
The inner product between two polynomials is defined as a weighted integral

on the interval [a, b]:

〈PD, PK〉=
∫ b

a

w (x) PD (x) PK (x) d x , (B.2)

where w (·) is a given nonnegative weight function in the interval [a, b]. The
function w (·) must have the following three properties:

1. It must be a non negative function w (x)≥ 0 on the interval [a, b].

2. All the moments µ j =
∫ b

a
x jw (x) d x ≥ 0 for j = 0, 1, 2, . . . are bounded and

non negative.

3. For any non negative polynomial P (x)≥ 0 on x ∈ [a, b]:
∫ b

a
P (x)w (x) d x = 0 ⇐⇒ P (x)≡ 0.

The above properties are met if w (·) is positive and continuous on the interval
[a, b] (e.g. Stoer and Bulirsch, 2013; Deuflhard and Hohmann, 2003).

A set of orthogonal polynomials B = {Pi}
M
i=0 forms a linear basis on the in-

terval [a, b], if all polynomials QK (·) with a degree K ≤ M can be described as a
linear combination of polynomials Pi (·) ∈B, i.e.,

QK (x) =
M
∑

i=0

ci Pi (x) , (B.3)
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where ci ∈ R are the constants that uniquely define QK (x) with respect to the
given linear basis of polynomials.

Given the L2 norm




PK (x)




 =
p

〈PK (x) , PK (x)〉 induced by the inner prod-

uct, we can derive an orthonormal basis
�

P e
i

	M

i=0
where each polynomial is de-

fined by normalizing the original orthogonal basis, i.e.,

P e
i =

Pi




Pi







∀i = 0,1, . . . , D, (B.4)

so that



P e
K , P e

K

�

= 1.
Without describing the detailed procedure (which can be found in numerous

text books (e.g. Stoer and Bulirsch, 2013; Deuflhard and Hohmann, 2003)), if
we start with the polynomials L0 (x) = 1 and L1 (x) = x by using a recursive
procedure based on the Gram-Schmidt process, we can derive the set of Legendre
polynomials that are orthogonal on the interval [−1,1] under the weight function
w (x) = 1. Then, the inner product induced by the Legendre polynomials is:

〈LD (x) , LK (x)〉L =
∫ 1

−1

LD (x) LK (x) d x . (B.5)

The Legendre polynomials of degree K are defined with the following equation:

LK (x) =
1

2K K!
d

d x

�

x2 − 1
�K

, (B.6)

where it is straightforward to observe that all the roots of LK (·) lie in the interval
[−1,1].

Other common orthogonal polynomials are the Chebyshev polynomials of the
first and second kind in the interval [−1, 1], the Jacobi polynomials in [−1,1], the
Laguerre polynomials in [0,+∞), the Hermite polynomials in (−∞,+∞), and
so on. The table B.1 lists some linear basis of polynomials with the corresponding
weighting functions.
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Orthogonal polynomials Weight function Interval

Legendre w (x) = 1 [−1, 1]
Jacobi w (x) = (1− x)α (1+ x)β [−1, 1]

Chebyshev 1st kind w (x) =
�

1− x2
�−1/2

[−1, 1]
Laguerre w (x) = e−x [0,+∞)
Hermite w (x) = e−x2

(−∞,+∞)

Table B.1. Orthogonal polynomials

B.2 Building a Gaussian quadrature

Let us assume that we want to build a Gaussian quadrature rule with N distinct
nodes and weights {t i, wi}

N
i=1 such that it is exact for all polynomials up to degree

2N − 1. For our purposes, we need a basis of N + 1 orthogonal polynomials up
to degree N , i.e.: B= {Pi}

N
i=0 on the interval [a, b].

We know that the polynomial with the higher degree PN (·) form the basis B
has N distinct roots t i lying in the interval [a, b]:

a < t1 < t2 < · · ·< tN < b. (B.7)

Theorem 1. The polynomial with the highest degree PN (·) from the linear basis B
is orthogonal with respect to all arbitrary polynomials QD (·) with degree D < N:

〈QD, PN 〉= 0 ∀ {QD ∈ PD|D < N} (B.8)

Proof. From Equation (B.3) on page 238, we know that any polynomial QD (·)
can be described as a linear combination of orthogonal polynomials from a linear
basis. If we assume that the degree of QD (·) is D = N − 1, the inner product
between QN−1 (·) and PN (·) is:

〈QN−1, PN 〉=

®

N−1
∑

i=0

ci Pi, PN

¸

=
N−1
∑

i=0

ci 〈Pi, PN 〉

= 0,

(B.9)

where the result of the proof is simply achieved by applying the linearity of the
inner product and the main definition of orthogonal polynomials.
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To prove that it is possible to build a quadrature rule that is exact for all
polynomials up to a degree 2N − 1 using orthogonal polynomials, we need to
define an arbitrary polynomial Z2N−1 (·) with a degree 2N − 1.

If we apply the division by polynomials between Z2N−1 (·) and PN (·) we re-
trieve a quotient QN−1 (·) and a reminder R<N (·), i.e.:

Z2N−1 (x)
PN (x)

=QN−1 (x) Reminder: R<N (x) , (B.10)

where the reminder R<N (·) is a polynomial with a degree less than N .
Then Z2N−1 (·) can be written with respect to the quotient and the reminder,

i.e.:
Z2N−1 (x) =QN−1 (x) PN (x) + R<N (x) . (B.11)

The relation in Equation (B.11) must be considered bidirectional, since, given a
polynomial with degree 2N −1 we can uniquely derive a QN−1 (·) and R<N (·) or,
vice versa, given QN−1 (·) and R<N (·) we can uniquely derive a polynomial with
degree 2N − 1.

If we multiply both sides of Equation (B.11) by the weight function w (·) and
perform the integration on [a, b], we have:

∫ b

a

w (x) Z2N−1 (x) d x =

∫ b

a

w (x)QN−1 (x) PN (x) d x +

∫ b

a

w (x)R<N (x) d x

= 〈QN−1, PN 〉+
∫ b

a

w (x)R<N (x) d x ,

(B.12)
where we can observe that the first integral on the right-hand side corresponds
to the definition of the inner product between two polynomials (equation B.2).

From Theorem 1 we know that PN (·) is orthogonal with all polynomials with
a degree less than N , then, the inner product in Equation (B.12) is equivalent to
0, that is,

〈QN−1, PN 〉= 0. (B.13)

If we combine the results of Equations (B.12) and (B.13) we can conclude that:

∫ b

a

w (x) Z2N−1 (x) d x =

∫ b

a

w (x)R<N (x) d x , (B.14)

so that the weighted integral of Z2N−1 (·) is equivalent to the weighted integral
of the reminder R<N (·).
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If we consider the Newton-Cotes rule (Deuflhard and Hohmann, 2003, sec.
9.2), given a set of distinct and arbitrary nodes {x i}

N
i=1 we can write the weighted

integral of R<N (x) in Equation (B.14) as a summation of the Lagrange basis ℓi (·):

∫ b

a

w (x)R<N (x) d x =
N
∑

i=1

R<N (x i)

∫ b

a

w (x)ℓi (x) d x
︸ ︷︷ ︸

wi

(B.15)

The relation in Equation (B.15) is true for all polynomials up to degree N − 1.
The next step is to select a set of constrained nodes {t i}

N
i=1 such that the

relation in Equation B.14 is true if expressed in the form of a summation. If
this set of nodes exists, we can define a quadrature rule that is exact for all
polynomials up to degree 2N − 1, that is,:

N
∑

i=1

Z2N−1 (t i)

∫ b

a

w (x)ℓi (x) d x
︸ ︷︷ ︸

wi

=
N
∑

i=1

R<N (t i)

∫ b

a

w (x)ℓi (x) d x
︸ ︷︷ ︸

wi

.
(B.16)

The relation in the above Equation (B.16) is true, if and only if, the inner product
between QN−1 (·) and PN (·) expressed in the form of a summation is equal to zero,
then the relation in (B.13) holds, if:

〈QN−1, PN 〉=
N
∑

i=1

w (x i)QN−1 (x i) PN (x i) = 0. (B.17)

The only set of nodes that ensures that the relation in Equation (B.17) is true are
the roots of PN (·) (the polynomial with the highest degree in the linear basis B).

Therefore, a Gaussian quadrature rule consists of a set of nodes and weights:
G= {t i, wi}

N
i=1 where t i are the roots of PN (·).

Once the nodes are determined, we need to calculate the weights of the
quadrature rule. As we have already anticipated in Equations ((B.15)) and ((B.16))
this can be done by using a procedure similar to the one used in the Newton-Cotes
rule (see Deuflhard and Hohmann (2003)) where the weights are calculated by
integrating the Lagrange basis ℓi (·) and the weight function w (·) in the integra-
tion interval [a, b], that is:

wi =

∫ b

a

w (x)ℓi (x) d x =

∫ b

a

w (x)
N
∏

j=1
j ̸=i

x − t j

t i − t j
d x . (B.18)
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The weights wi can also be calculated with the generic form (e.g. Deuflhard and
Hohmann, 2003):

wi =
ai

ai−1

〈Pi−1, Pi−1〉
�

d
d t Pi (t i)

�

Pi−1 (t i)
, (B.19)

where ai and ai−1 are, respectively, the leading coefficients of the basis polyno-
mials Pi (·) and Pi−1 (·).

Theorem 2. All the weighs wi of a Gaussian quadrature are non-null positive reals:
{wi ∈ R>0}.

Proof. We need to consider the set of all non-negative polynomials of degree
2N − 2 that have the following form:

T m
2N−2 (x) =

N
∏

j=1
j ̸=m

�

x − t j

�2
, (B.20)

where t i are the roots of PN ∈B, so that tm is the only node where the value of
T m

2N−2 (·) does not vanish, therefore: T m
2N−2 (tm)> 0, and T m

2N−2 (t i) = 0 for i ̸= m.
The value of the integral of T m

2N−2 (·) is clearly larger than zero, and by using the
fact that a Gaussian quadrature is exact for all polynomials with a degree up to
2N − 1, hence, for all polynomials of this family we have:

0<

∫ b

a

T m
2N−2 (x) d x =

N
∑

i=1

wi T m
2N−2 (t i) = wm T m

2N−2 (tm) , (B.21)

then, the value of the weight wm is larger than zero, i.e.:

0< wm =

∫ b

a
T m

2N−2 (x) d x

T m
2N−2 (tm)

. (B.22)

Since any Gaussian quadrature is exact on all polynomials having the form T m
2N−2 (·),

and because their degree is less than 2N − 1, all the weights wi of any Gaussian
quadrature must be necessary greater than zero.

B.3 Gauss-Kronrod Rule

The Gauss-Kronrod rule (e.g. Kronrod, 1965; Patterson, 1968; Laurie, 1997)
is widely used in many mathematical applications due to its very good perfor-
mance when used in adaptive algorithms. For example, Matlab’s integral
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function and Mathematica’s NIntegrate use the Gauss-Kronrod rule as the
default numerical integration rule, and in the open source project QUADPACK
(Piessens et al., 2012) the generic adaptive quadrature is based on a 21-node
Gauss-Kronrod rule. In the review Gonnet (2012) adaptive methods based on
the Gauss-Kronrod rule have proven to perform on average better than other
quadrature methods.

The Gauss-Kronrod rule belongs to the class of nested rules.

Introduction to nested quadrature rules

By nested rules we mean the class of all quadrature rules where an original set of
N nodes T = {t i}

N
i=1 ∈ [a, b] is extended with a set of new nodes R =

�

r j

	M

j=1
∈

[a, b] such that:

r j ̸= t i ∀ j = 1 . . . M , i = 1 . . . N . (B.23)

We only consider cases where for each adjacent pair of nodes t i.t i+1 ∈ T there is
at most one nested node r j ∈ R, i.e.

∀i, ∃ j | t i < r j < t i+1 < r j+1. (B.24)

In such a way that a new set of integration nodes E is given by the union of the
original set of nodes T and the set of new nodes R:

E = T ∪ R, (B.25)

then, we can say that the set of nodes T is nested with respect to E.

Nested rules are often associated with adaptive methods based on the trapezoidal
rule. The most efficient method based on a nested rule applied to the trapezoidal
rule is the Romberg adaptive algorithm (e.g. Deuflhard and Hohmann, 2003).

More in general, nested rules allow to refine the trapezoidal rule by calculating
the values of the function only at new nodes.

Given a set of N nodes from a Gaussian quadrature rule (which we denote
with the superscript G)

�

xG
i

	N

i=1
∈ [−1,1], (B.26)

a Gauss-Kronrod rule extends the original set of nodes to a set of 2N + 1 nodes
(denoted by the superscript K) so that the Gauss nodes are nested with respect
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to the Kronrod nodes:
¦

xK
j

©2N+1

j=1
∈ [−1,1]

xK
2i = xG

i ∀ i = 1 . . . N .
(B.27)

Thus, a Gauss-Kronrod consists of a set of 2N+1 nodes and weightsK=
¦

xK
j , wK

j

©2N+1

j=1
such that the equation:

∫ 1

−1

Pdn
(x) d x =

2N+1
∑

j=1

wK
j Pdn

�

xK
j

�

, (B.28)

where: dn =

¨

3N + 1 if N is even

3N + 2 if N is odd,
so that, Equation (B.28) is exact for all

polynomials P ∈ Pdn
(Notaris, 1993).

If we consider the main integration interval [−1,1] the upper bound of the
error for a Gauss-Kronrod rule is:

�

�EK
N ( f )

�

�<
(N !)2

2N−3 (2N)!(2N + 2)!
max
−1≤t≤1

�

� f (dn+1) (t)
�

� (B.29)

where f (·) is a smooth function with dn + 1 continuous derivatives (Notaris,
1993).

The Gauss-Kronrod rule is typically used in the development of highly effi-
cient and accurate adaptive integration algorithms.

B.4 Kronrod-Patterson Extensions

With the Gauss-Kronrod rule, we can only extend a Gaussian quadrature only
with one set of N +1 nested nodes. This limitation was broken by Patterson who
proposed a numerically stable procedure to iterate the Kronrod extension, in a
way to obtain a tower of nested nodes (e.g. Patterson, 1968; Bourquin, 5 04) by
progressively increasing the order of the quadrature.

The Kronrod-Patterson extensions consist of a tower of nested quadrature
rules, such that each rule extends the previous one by adding N + 1 nodes, i.e.
{x i}

N
i=1 ⊂ {x i}

2N+1
i=1 .

Then we have a tower of quadrature rules
�

P j

	M

j=0
, so that P0 is a midpoint

rule on an interval [−1, 1] with degree 1, its extension P1 is a Gaussian quadra-
ture rule on 3 nodes with degree 5, and finally for j ≥ 2 we have the tower



246 B.4 Kronrod-Patterson Extensions

of Kronrod-Patterson quadrature rules with N = 2 j+1 − 1 nodes and degree
d = 2 j+1 + N − 1, considering that we always have an odd number of nodes,
the effective degree is d = 2 j+1 + N .

Then a Kronrod-Patterson rule P j = {x i, wi}
N=2 j+1−1
i=1 is a quadrature that is

exact for all polynomials P ∈ P2 j+1+N for all j ≥ 2.
The use of a Gauss-Legendre rule as a starting point is justified by the fact

that the extensions based on Legendre polynomials ensure positive weights.
Recently, Bourquin (5 04) proposed an algorithm to compute the tower of

nested nodes up to an arbitrary quadrature degree. Unfortunately, the compu-
tation of the Patterson extensions is computationally hard, since the time com-
plexity grows exponentially with the number of levels, and it requires the use
of variable precision floating point numbers. These two points limit the develop-
ment of effective algorithms based on the Pattersons extensions.
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Adaptive quadrature

C.1 Introduction to the adaptive numerical integra-
tion

The problem of numerical integration consists in approximating the value of an
integral I =

∫ b

a
f (x) d x in a way that the error of the approximated result Ĩ is

smaller than a given tolerance δ, i.e. compute the approximation Ĩ of I such that

�

�I − Ĩ
�

�< δ |I | . (C.1)

With an approach based on a fixed-node quadrature rule (e.g., the Gauss-Legendre
rule), the prior knowledge of the integrand f (·) is usually used to construct a se-
quence of Gaussian quadrature rules that exploit the behavior of f (·), usually by
exploiting the additivity of the integral by generating a sequence of sub-interval
where their shape and order are adjusted according to the predicted behavior of
the integrand. This approach only works if the prior knowledge is robust enough
to predict the behavior of the integrand with good reliability. On the other hand,
we must consider that there are numerous circumstances in which we do not
have sufficient prior knowledge of the integrand, or, despite the availability of
prior knowledge, it may be difficult to construct an appropriate quadrature rule.

The purpose of an adaptive quadrature algorithm is to define a procedure that
is capable of automatically adjusting the sequence of subintervals and eventually
the order of the quadrature rules with an iterative algorithm that is capable of
detecting the behavior of the integrand f (x). In such a way that the desired
accuracy is achieved by minimizing the number of evaluations of the integrand.

In an adaptive quadrature, we usually give an interval of integration [a, b]i

247
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and make an approximation Ĩ1
i of the integral on that interval:

Ĩ i
1 ≈

∫ b

a

f (x) d x , (C.2)

where the subscript indicates the index of a sub-interval and the superscript in-
dicates the level of refinement.

Since the value Ĩ i
1 is an approximation of the integral, its error with respect

to the true value of the integral I is unknown. For this motivation, it is necessary
to have a function that is capable of approximating the integration error in the
interval [a, b]i, i.e.

ε̃ i = error
�

[a, b]i, f (·)
�

. (C.3)

The approximation of the quadrature error is an active field of research, see e.g.
Gonnet (2012).

In an adaptive algorithm, if the error is greater than a given tolerance δ, we
refine the main interval [a, b]i, which is divided into two adjacent subintervals
[a, m]i+1 and [m, b]i+1, where m can be the midpoint. Finally, we compute two
approximate integrals:

Ĩ i+1
1 ≈

∫ m

a

f (x) d x Ĩ i+1
2 ≈

∫ b

m

f (x) d x , (C.4)

where we assume that the numerical integration resulting from the subdivision
of the integration interval is a better approximation of I with respect to Ĩ i

1, i.e:

�

�I −
�

Ĩ i+1
1 + Ĩ i+1

2

��

�≤
�

�I − Ĩ i
1

�

� . (C.5)

In a very general way, an adaptive quadrature algorithm can be described as
a recursive function that interactively refines the approximate solution of the
integral by progressively dividing the integration intervals only in regions where
the estimated error ε̃ is greater than the given tolerance δ. Hence, an adaptive
quadrature can be summarized in the following recursive function:

adQuad
�

[a, b]i
�

:=

¨

Ĩ i
1 if ε̃ i < δ

adQuad
�

[a, m]i+1
�

+ adQuad
�

[m, b]i+1
�

otherwise,
(C.6)

where Ĩ i
1 is the approximation of the integral on the interval [a, b]i, δ is the given

tolerance, and [a, m]i+1 and [m, b]i+1 are the intervals on the next refinement
level i + 1.
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The algorithm described in Equation C.6 is based on a depth-first purely re-
cursive approach. In this method, the integral is solved from left to right by
progressively refining the interval on the left, and only when the acceptance
condition is met, it moves to the next adjacent interval.

Then, in the algorithm C.6, the intermediate values of the approximated value
of the integral during the computation are always an approximation of the inte-
gral over an interval [a, m j], i.e.

Ĩ j ≈
∫ m j

a

f (x) d x ,

so that the recursion (i.e. depth-first) method sequentially solves the integral in
the intervals: [a, m1], [a, m2], . . . , [a, b].

Another possible approach is to use the breadth-first strategy, where we pro-
gressively compute the corrections of Ĩ level by level. Then, the subintervals in
the next level of refinement (i+1) will only be calculated when all integrals over
the intervals in the current level i have been completed, i.e.

Ĩ i ≈
∫ bi

ai

f (x) d x ,

where we must assume that the approximation at the deepest level: Ĩ i+1 is more
accurate than Ĩ i. With this method, we continue until all sub-intervals of a level
have achieved the desired tolerance δ.
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Introduction to depth-first and breadth-first

The depth-first search is a generic algorithm that, starting from the root node of
a tree data structure, always recursively explores the first child node, along a
branch, until a leaf is reached, before backtracking.

The breadth-first search is a generic algorithm that, starting from the root node of
a tree data structure, it first explores all neighboring nodes at the current depth.
And only after all nodes of the current depth have been explored, it move to the
next level.

In algorithm theory, the depth-first search is usually associated with the stack
data structure, while the breadth-first search is associated with the queue data
structure.

By stack we mean a data structure with two operators: push (·) and pop (·), where
push (·) inserts an element into the stack, while pop (·) returns and removes the
last inserted element.

While by queue we mean a data structure with the two operators push (·) and
pop (·), but in this case pop (·) returns and removes the first inserted element.

[a, b]1

[a, m1]2

[a, m2]3

[a, m4]4 [m4, m2]4

[m2, m1]3

[m2, m5]4 [m5, m1]4

[m1, b]2

[m1, m3]3

. . . . . .

[m3, b]3

Figure C.1. The refinement levels of an integration interval can be interpreted
as a binary tree. An adaptive algorithm searches all leaves where the local errors
are less than a given tolerance.

In an iterative adaptive quadrature algorithm, if we put the intervals of the
next level i+1 into a stack, we reproduce the recursive (or depth-first) behavior
described in Equation C.6, while if we use the queue, we have an algorithm based
on the breadth-first strategy.

The adaptive quadrature based on the depth-first strategy using a stack is
described in Algorithm 12, where we observe that the result of the quadrature
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Ĩ is a cumulative sum obtained from the approximations on the intervals at the
deepest levels of refinement.

Algorithm 12: Generic depth-first adaptive quadrature algorithm based
on a stack

Input: f (·), [a, b], δ
Data: stack

1 Ĩ := 0
2 stack.push([a, b])
3 while stack is not empty do
4 [al , bl] := stack.pop()
5 if error

�

[al , bl], f (·)
�

≥ δ then

6 ml := al+bl

2
7 stack.push([al , ml])
8 stack.push([ml , bl])

9 else

10 Ĩ l ≈
∫ bl

al f (x) d x
11 Ĩ := Ĩ + Ĩ l

12 return Ĩ

While in Algorithm 13 is possible to observe that the method based on the
breadth-first strategy progressively corrects an initial raw computation of Ĩ until
it achieves the desired accuracy on all subintervals.

The asymptotic time complexity of an adaptive quadrature algorithm is O
�

2ℓ
�

,
where ℓ is the maximum number of refinement levels; in other words, the num-
ber of function evaluations required in the worst case grows exponentially with
the number of refinement levels. For this reason, it is crucial to use an accurate
method for approximating the integral and the error. Note that the reliability of
the error estimator (e.g. Deuflhard and Hohmann, 2003; Gonnet, 2012) strongly
influences the efficiency of an adaptive quadrature algorithm, then, it is the most
critical component.
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Algorithm 13: Generic breadth-first adaptive quadrature based on a
queue

Input: f (·), [a, b], δ
Data: queue

1 Ĩ ≈
∫ bl

al f (x) d x
2 queue.push([a, b])

3 while queue is not empty do
4 [al , bl] := queue.pop()

5 ml := al+bl

2

6 if error
�

[al , bl], f (·)
�

≥ δ then

7 Ĩ l ≈
∫ bl

al f (x) d x

8 Ĩ l
1 ≈

∫ ml

al f (x) d x

9 Ĩ l
2 ≈

∫ bl

ml f (x) d x
10 Ĩ := Ĩ − Ĩ l + Ĩ l

1 + Ĩ l
2

11 queue.push([al , ml])
12 queue.push([ml , bl])

13 return Ĩ

C.2 error estimate in the Gauss-Kronrod rule

Since in a quadrature method the analytical solution of the integral is unknown,
the exact quadrature error ε is also unknown. Therefore, it is necessary to define
a function (hereafter: error estimator) that can compute a reliable approximation
of the error ε̃. An error estimator should be efficient in such a way that its
procedure does not significantly affect the number of function evaluations of the
integrand f (·), ideally, the error estimation should be computed by using only
the function evaluations performed for the quadrature computation. Considering
the exact quadrature error ε and an estimated error ε̃, we can state that

(1− c1)ε ≤ ε̃ ≤ (1+ c2)ε, (C.7)

where c1, c2 ≥ 0 and c1 ≤ 1 are unknown constants that define the "lower bound"
and "upper bound" of the estimated error. If c1, c2 = 0, the estimated error ε̃ is
equal to the exact error (ε). An error estimator can be considered reliable if c1

and c2 are small.
In the scientific literature, the criteria that an error estimator should have

are widely discussed, for example, in finite element analysis Grätsch and Bathe
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(2005), and numerical quadrature methods (Laurie, 1985) numerous criteria
have been proposed, i.e.

• For a quadrature interval with a width larger than 0, if the estimate of the
error is 0 the exact error must also be 0.

• The error estimate must be asymptotically correct; i.e., for quadrature
subintervals tending to zero, the estimate of the error must tend to zero
with the same rate as the exact error.

• The error estimator must return results that are guaranteed to be within
a lower bound and an upper bound. Or, similarly, the exact error must be
bounded as a function of the estimated error.

• It must be robust, meaning that it returns a sufficiently reliable estimate
even in the case of non-smooth or non-continuous functions. In the case
of error estimators used in quadrature, it is also important to evaluate the
ability to detect very sharp peaks, singularities (e.g., divisions by zero), or
other perturbations in the function (e.g., local oscillations).

• An error estimation should be used in an adaptive algorithm as a tool to
decide whether to continue refining the quadrature interval or accept the
current result.

Therefore, an ideal quadrature error estimator is a function that should be
defined as follows:

error ([a, b], f (·)) =
�

0 if QN[a, b]− I[a, b] = 0
ε̃ s.t. (1− c1)ε ≤ ε̃ ≤ (1+ c2)ε

(C.8)

where QN[a, b] is the result of the quadrature operation, I[a, b] is the real value
of the integral (which by definition is unknown). While c1 and c2 are the values
that define the upper and lower bound of the quadrature error.

Considering that it is impossible for an ar error estimator to satisfy all the
aforementioned criteria, both in the scientific literature and in software appli-
cations, numerous strategies have been proposed (e.g. Gonnet, 2012). In the
following sections, we will present three methods that are suitable to be used in
an adaptive quadrature based on the Gauss-Kronrod rule.
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C.2.1 Preliminary notes and used notation

As we saw in Appendix B.3 on page 243, a Gauss-Kronrod quadrature rule con-
sists of two nested quadrature rules on a set of 2N +1 nodes x j: a Gaussian rule

(defined only on even nodes) G=
�

x i, wG
i

	2N

i=2,4,...
, and the Kronrod rule (defined

on all nodes) K=
¦

x j, wK
j

©2N+1

j=1
, where the Gaussian quadrature has an order of

accuracy of 2N − 1 (see Appendix B on page 237) and for Kronrod the order of
accuracy is 3N + 1 or 3N + 2 (see Appendix B.3 on page 243). The N nodes of
the Gaussian rule are indexed with the even i, while the Kronrod rule is based
on all 2N + 1 nodes.

Then, given a Gauss-Kronrod rule, we have two estimates of the integral
I[a, b], one performed on the N nodes of the nested Gaussian rule G, i.e:

GN[a, b] =
2N
∑

i=2,4,...

wG
i f (x i) , (C.9)

and the second one performed with the 2N +1 nodes of the Kronrod rule K, i.e.

K2N+1[a, b] =
2N+1
∑

j=1

wK
j f
�

x j

�

, (C.10)

where, if in the interval of integration f ∈ C3N+2 (the integrand is smooth enough),
we can assume that K2N+1[a, b] is a better approximation of I with respect to
GN[a, b], i.e.:

|I[a, b]− K2N+1[a, b]|< |I[a, b]− GN[a, b]| .

Then algorithms based on the Gauss-Kronrod rule will then use K2N+1[a, b] as
the better approximation of I[a, b].

C.2.2 Absolute difference and local-to-global errors estima-
tors for a Gauss-Kronrod quadrature

In a Gauss-Kronrod quadrature rule we have two results, one calculated with the
Gaussian rule GN[a, b] and the second one is calculated with the Kronrod rule
K2N+1[a, b] (B.27), where we assume that the quadrature calculated with the
Kronrod rule is more accurate than the one calculated with the Gaussian rule.
Therefore, the most direct approach is to use the absolute difference between the
Gaussian and Kronrod quadratures as the error estimate:

εk = |K2N+1[a, b]− GN[a, b]| . (C.11)
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Despite its simplicity, this error estimator has proven to be very stable and pro-
vides good accuracy in adaptive quadrature algorithms. In (Gonnet, 2012) this
estimator has proven to be superior to other and more sophisticated methods
(Gonnet (2012) claims in his conclusion that this estimator is the best). This
estimator is also used in Matlab’s integral and quadgk functions. Accord-
ing to our tests (see C.3.1), we can confirm that this error estimator, when used
in an adaptive algorithm based on the Gauss-Kronrod rule, guarantees a good
accuracy of the results.

The absolute difference estimator can be easily used to calculate a local error
relative to a global raw estimate of the integral:

εkg =

�

�

�

�

K2N+1[a j, b j]− GN[a j, b j]
QRaw[a, b]

�

�

�

�

, (C.12)

In a practical numerical application, it is necessary to redefine the global error
estimator in such a way as to handle cases where the result of the integral is zero.
To solve this problem, we propose to use the following modified equation:

εkg =

�

�

�

�

K2N+1[a j, b j]− GN[a j, b j]
1+ |QRaw[a, b]|

�

�

�

�

, (C.13)

where the absolute value of the raw estimate of the global quadrature is summed
by 1. This method, in practice, solves the problem of division by zero without
affecting the quality of error estimation.

Reliability of the absolute difference error

If we consider the property of being able to return a zero-error estimate when the
exact error is zero, we can observe that this property is only partially satisfied,
since it requires that both the Gaussian and Kronrod quadratures must be exact.

If we assume that the result returned by the quadrature algorithm is the one
computed with the Kronrod rule K2N+1[a j, b j] (which has an order of accuracy
of 3N + 1), it is possible that the result computed with the associated Gaussian
nested rule GN[a j, b j] (which has an order of accuracy of 2N − 1) is not ex-
act. Then, for this estimator, there may be situations where the error estimates
are non-zero for exact results. On the other hand, if GN[a j, b j] is exact, then
K2N+1[a j, b j] is exact, but if K2N+1[a j, b j] is exact, then GN[a j, b j] is not neces-
sarily exact. This situation could appear if the integrand is a polynomial PD with
a degree 2N − 1< D ≤ 3N + 1.

For the error estimators based on the absolute difference, it is impossible
to define an interval within which the real quadrature error lies. Then we can
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conclude that the error estimators are only partially reliable, in the sense that
there are situations where the reliability conditions described in Appendix C.2
on page 252 are not fully satisfied.

C.2.3 Sharper error estimator

This error estimator was originally introduced in (Laurie, 1983). In the review
of (Gonnet, 2012) it has been shown to perform well. Although Laurie’s paper
(Laurie, 1983) presents this error estimator as a generic method that can be used
with different quadrature rules (Laurie suggests applications based on Gaussian
and trapezoidal rules), the sharper error estimator fits very well with the Gauss-
Kronrod rule. For this reason, this section discusses the sharper error estimator
as an application for the Gauss-Kronrod rule.

To compute this error estimator, we divide the original integration interval
[a, b] into two adjacent intervals, [a1, b1] and [a2, b2], such that:

I =
∫ b

a
f (x) d x =

∫ b1

a1 f (x) d x +
∫ b2

a2 f (x) d x .

In the main interval [a, b], the quadrature performed with the Gauss-Kronrod
rule is denoted with K1 = K2N+1[a, b], while the quadrature performed with the
Gaussian rule is G1 = GN[a, b]. Where it is possible to assume that K1 is more
accurate than G1, since the order of accuracy of K1 is greater than that of G1.

In the sub-interval [a1, b1] we have the Gauss-Kronrod quadrature K2
1 =

K1
2N+1[a

1, b1] and the Gaussian quadrature G2
1 = G1

N[a
1, b1]. Similarly, over the

interval [a2, b2] we have K2
2 = K2

2N+1[a
2, b2] and G2

2 = G2
N[a

2, b2].
Finally, we define two quadratures on the interval [a, b] as the sums of the

Gauss-Kronrod quadratures on the two subintervals K2 = K2
1 + K2

2 and the other
as the sum of the Gauss quadratures G2 = G2

1 + G2
2 over the two subintervals.

Therefore, the sharper error estimator ε̃sh is defined as follows:

ε̃sh =
(K2 − G2) (K2 − K1)
(G2 − G1)− (K2 − K1)

, (C.14)

Where
�

�ε̃sh

�

� is a reliable estimate, since the real value of the integral I is bounded
within a certain interval as a function of the error.

Theorem 3. If K1, K2, G1 and G2 are numbers such that the conditions in Equa-
tion (C.15) hold:

(i) 0≤
I − K2

I − K1
≤

I − G2

I − G1
≤ 1

(ii) |K2 − K1|< |G2 − G1| .

(C.15)
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The real value of the integral lies in the interval bounded by K2 and K2+ε̃sh (Laurie,
1983):

I =

∫ b

a

f (x) d x ∈ [K2, K2 + ε̃sh], (C.16)

or equivalently we can write:
ε̃sh

(I − K2)
≥ 1. (C.17)

Proof. We follow the procedure introduced in (Laurie, 1983) where he proved
that equation (C.17) is true if the conditions of equation (C.15) hold.

Let us define the variables k1 = I − K1, k2 = I − K2, g1 = I − G1 and g2 =
I −G2. By substituting the new variables into the definition of ε̃sh (C.14), and by
substituting it into the equation (C.17), with some algebraic manipulation, we
can obtain:

ε̃sh

(I − K2)
− 1=

�

g2

g1
−

k2

k1

��

k1

k2

��

g1

g1 − g2 − k1 + k2

�

≥ 0. (C.18)

If we assume that K2 is a more accurate approximation than K1 and equivalently
G2 is more accurate than G1 we can say that g1− g2− (k1 − k2) has the same sign
as g1− g2 which, in turn, has the same sign as g1, then, the last term is positive.
The second term is positive because we assume that k1 and k2 have the same
sign of the integral. And the first term it true because of the Condition (i) in the
Equation (C.15).

Then, Theorem 3 is true.

In the case of a smooth integrand, and considering that K2 has a higher degree
than K1,

�

�ε̃sh

�

� is usually less than |K2 − G2|, because it is typical that |K2 − K1| ≪
|G2 − G1|.

In a numerical integration algorithm, condition (ii) can be easily verified,
while condition (i), because it involves the analytical value of the integral I , is
impossible to be verified. The heuristic proposed by Laurie to check the condition
(i) is to replace I by K2+ε̃sh. Thus, in the case of a Gauss-Kronrod rule where the
degrees of the two quadratures are different, the conditions (i) and (ii) become:

(i∗) 0≤
K2 − G2

K2 − G1
≤ 1

(ii∗) |K2 − K1|< |G2 − G1|

(C.19)
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The new condition (i∗) can be easily and intuitively interpreted with the fact that
if the integrand is smooth enough, G2 is a better approximation of G1, then the
ratio is less or equal to 1.

In a practical implementation of the sharper error estimator in an adaptive
quadrature, it is necessary to establish a policy to be adopted if at least one of
the two conditions in equation (C.19) fails.

In general, we have observed that if the integrand is smooth enough, the rules
in equation (C.19) can fail only if the estimated error ε̃sh is large and others adap-
tive refinements are required in any case. Then, in cases of smooth enough inte-
grands, the better policy is "do nothing", because the problem usually disappears
with the adaptive and progressive refinement of the subintervals.

This is because, if the integrand is smooth enough, the Kronrod rule will in
any case give a more accurate estimate of the integral than that obtained with
the Gaussian rule, thus ensuring convergence. Consequently, the failure of one
of the two conditions will only occur if the estimation of the integral is coarse
and done on a very large integration interval (or, in other words, it will fail in
situations where the sampling of the integrand is not dense enough to perceive
the shape and smoothness of the integrand).

In more general cases where the integrand may be non-smooth or non-continuous,
a good policy we have adopted in the case of failure of the conditions (C.19) is to
replace the sharper error estimator with the QUADPACK error estimator (C.21),
which has been shown to work well even with non-smooth or non-continuous
integrands.

Reliability of the Sharper error estimator

From Equation C.16 we can conclude that the sharper error estimate bounds the
real value of the integral I , then consequently the exact error of quadrature is
bounded.

Theorem 4. If the real quadrature error is zero, then the estimated error ε̃sh is also
zero.

Proof. (wlog) we can assume that the two results obtained with the Kronrod
rule K2 and K1 are based on an odd N , then they are exact for all polynomials
P ∈ P3N+2. Consequently, if K1 is exact, then K2 is exact (since the exactness
depends only on N and not on the intervals). We must also note that if K1 and
K2 are exact, the integrand is a polynomial. Then the difference between K1

and K2 in the numerator of the formulation of the sharper error estimator (see
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Equation C.14) is zero, so the estimated error is zero. This proves that the initial
assumption is true.

Theorems 3 and 4 ensure that the sharper error estimator is accurate, bounded,
and asymptotically correct, then it has a high degree of reliability, at least for
smooth enough integrands.

C.2.4 QUADPACK error estimator

This error estimator is the one used in the generic adaptive quadrature algorithm
available in the QUADPACK library (Piessens et al., 2012) (which is based on a
21-node Gauss-Kronrod rule).

This method was developed empirically, and no theorem explains a real math-
ematical motivation of its effectiveness (Gonnet, 2012; Piessens et al., 2012).
Nevertheless, this estimator has been shown to work well with all kinds of func-
tions. Thus, it was successfully adopted in the QUADPACK library as a default
method.

The QUADPACK estimator is defined by the equations (C.20) and (C.21),
where the integral Ĩk is estimated using the values of the integrand at the Kronrod
nodes, and consequently Ĩk is solved using the Kronrod extensions weights.

Ĩk =

∫ b

a

�

�

�

�

f (x)−
K2N+1[a, b]

b− a

�

�

�

�

d x (C.20)

ε̃qp = Ĩk min

 

1,

�

200
|GN[a, b]− K2N+1[a, b]|

Ĩk

�
3
2

!

(C.21)

A qualitative mathematical interpretation of this estimator has been proposed in
Krommer and Überhuber who gave these explanations (Gonnet, 2012; Krommer
and Ueberhuber, 1998):

"a measure for the smoothness of f (·) on [a, b]"

"If this ratio is small, the difference between the two quadrature for-
mulas is small compared to the variation of f (·) on [a, b]; i.e., the
discretization of f (·) in the quadrature formulas GN[a, b] and K2N+1

is fine with respect to its variation. In this case, K2N+1 can indeed be
expected to yield a better approximation for I than GN ."

In the test that we have done C.3.1 this estimator has proved his effectiveness
with all functions we used in the tests.
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Reliability of the QUADPACK error estimator

The QUADPACK error estimator is reliable in the sense that if the real quadrature
error is zero: εabs = 0, then the estimated error is also zero: ε̃qp = 0. This can
be easily proved by assuming that the result of the Kronrod quadrature is exact:
I = K2N+1[a, b].

Without loss of generality, in this proof we can remove the absolute value
from the definition of Ĩk, then we have

Ĩk =

∫ b

a

f (x)−
I

b− a
d x , (C.22)

by using the linearity of the integral, we can prove the theorem with some simple
steps:

Ĩk =

∫ b

a

f (x) d x −
∫ b

a

I
b− a

d x

Ĩk = I −
∫ b

a

I
b− a

d x

Ĩk = I − I
�

b
b− a

−
a

b− a

�

= 0,

(C.23)

then the QUADPACK error estimator returns zero if the value of the quadrature
is exact.

Because of the nature of this error estimator, it is impossible to define an
upper and lower bound for the real value of the integral.

C.3 Gauss-Kronrod adaptive quadrature algorithm

The algorithm we developed uses the error estimates described in sections C.2.3
and C.2.4, combined with a branch-cutting strategy based on a local-to-global
error estimate Algorithm 13

In the algorithm, we start with a raw estimate of I =
∫ b

a
f (x) d x (as in Al-

gorithm 13) and the order of the next interval to be processed is decided by a
priority queue (heap), namely the sub-interval where the estimated error is max-
imal has the maximal priority and is processed before the others. This strategy
allows us to quickly correct the initial estimation. The local-to-global error (at
line 21) allows stopping the iterative refinement if the absolute error of a given
sub-interval is not globally significant.
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Algorithm 14: Gauss-Kronorod adaptive algorithm
Input: f (·)
Input: epsilon := 1 · 10−17, tolerance := 1 · 10−17

Output: I

1 struct {

2

[al , bl] : Local integration interval
I l : Local quadrature
εl : Quadrature error on the local interval.
priori t y : A positive number proportional to the error εl

3 } Quadrature Task;

4 Q := Priority Queue of Quadrature Tasks.

5 Function AddTaskToQueue([c, d], ε, I l):
6 if ε > tolerance then
7 task := MakeQuadratureTask( [c, d], I l , ε)
8 PushWithPriority( Q, task)

9 I , ε0 := PerformGKQuadrature( f (·) , a, b)
10 AddTaskToQueue([a, b], ε0, I)

11 while Size(Q) > 0 do
12 task := PopMaxPriority(Q)

13 I l
old := task.I l

14 al , bl := task.[al , bl]

15 ml := al+bl

2

16 I l
1, ε1 := PerformGKQuadrature( f (·) , al , ml)

17 I l
2, ε2 := PerformGKQuadrature( f (·) , ml , bl)

18 I l
new := I l

1 + I l
2

19 I := I − I l
old + I l

new

20 dq :=
�

�I l
old − I l

new

�

�

21 if
dq

1+dq+|I |
< epsilon then

22 Continue

23 AddTaskToQueue([al , ml], ε1, I l
1)

24 AddTaskToQueue([ml , bl], ε2, I l
2)

25 return I
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The main algorithm is controlled by the priority queue Q (line 4), which stores
the set of quadrature tasks, and it only stops when Q is empty.

To avoid over-refinement, adaptive algorithms usually implement a mecha-
nism to limit the maximum depth of the iterative process. This mechanism is
useful in the case of non-smooth integrands. In the algorithm presented here,
we do not include this mechanism since practical tests showed that it was never
necessary, since the error estimators presented here can control the algorithm
with very good reliability.

C.3.1 Test procedure

In the test procedure, we used the adaptive quadrature described in the algorithm
14 with the corresponding error estimators. For making a comparison with other
other implementations, we chosen as reference the generic adaptive quadrature
from the library QUADPACK (Piessens et al., 2012) and the built-in adaptive
Romberg quadrature from the library scipy1.

All algorithms are configured so that there are no restrictions on the depth
of recursion. In particular, for QUADPACK and Romberg we set a very large
number of maximum recursion calls.

In order to force all algorithms to return a result that is as accurate as possi-
ble, the tolerances (absolute or relative) are set to 10−17 (the algorithms use the
tolerance to stop the iteration process if the estimate of the error is less than this
value). Note that different algorithms and error estimators may interpret and
use these tolerances differently.

In the results Table C.1 the algorithms are referred as follow:

• Adaptive GK SH err: The Gauss-Kronrod adaptive algorithm 14 with the
sharper error estimator C.2.3.

• Adaptive GK ABS err: The GK adaptive algorithm 14 with the absolute
difference error estimator C.2.2.

• Adaptive QP err: The GK adaptive algorithm 14 with the QUADPACK error
estimator C.2.4.

• QUADPACK: Generic adaptive quadrature from QUADPACK. In this case
we use the builtin interface integrate.quad form the scipy python
library.

1scipy Romberg

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html
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• Romberg: Adaptive Romberg quadrature. We have used the builtin func-
tion integrate.romberg from the scipy library.

In Table C.1 in columns are reported the following quantities:

• f-evaluations: The total number of functions evaluations.

• relative error vs. reference: The relative errors with respect to the refer-
ence results.

• estimated error: The estimated errors returned by the algorithms. It
should be noted that these errors are calculated according to the internal
heuristics of each algorithm and their meaning is different.

Note that the Romberg algorithm from scipy does not return an estimate of
the error. Therefore, the corresponding fields in the table are left blank.

C.3.2 Generic test functions

The following generic functions were used to test the adaptive quadratures. We
report the corresponding integrals and the reference results.

f1 (x) = sin
� α

α2 + x2

�

− cos5
�

5x2
�

+
1
2

I1 =

∫ 10

−1
f1 (x) d x = 5.60924040893097482908620304551 if α=

1
20

f2 (x) = exp
�

sin
� α

α2 + x2

��

+ exp
�

cos5
�

5x2
��

−
1
2

I2 =

∫ 10

−1
f2 (x) d x = 19.1551668184984902038645405965 if α=

1
30

f3 (x) =
α

π (α2 + x2)

I3.1 =

∫ 10

−10
f3 (x) d x =

2arctan(200)
π

if α=
1
20

I3.2 =

∫ 10

−10
f3 (x) d x =

2arctan(100000)
π

if α=
1

10000

f4 (x) = exp (arcsin(sin(x)))− 1

I4 =

∫ 10

−10
f4 (x) d x = 8.83053205098638891791863051669
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f5 (x) =

¨

1 if |x |< α
0 otherwise

I5 =

∫ 10

−10
f5 (x) d x = 1 if α=

1
2

f6 (x) = exp (sin(x) + cos(20x))

I6 =

∫ 2π

0
f6 (x) d x = 10.0714610282788579336150923446

f7 (x) = hπβ (x)

I7 =

∫ u+12
p

2

u−12
p

2
hπβ (x) d x = 1.224608972859188016357734341 if u= 0.7

Properties of the functions and observatons:

• f1, f2, f3, f6, f7 ∈ C∞,
f4 ∈ C0,
f5 (·) is the rectangular pulse function that is not continuous.

• f7 (·) is the limit case of the R
II,KK ′

Q for Θ = π.

• f3 (·) is the Lorenzian distribution.

• f6 (·) is a periodic function with a period of 2π.
Moreover f6 (0) = f6 (π) = f6 (2π) = e

• The reference results for f1 (·) , f2 (·) , f4 (·), f6 (·), and f7 (·) have been cal-
culated with the function NIntegrate from Mathematica 2 by using
the variable precision floating point format, in these specific cases we have
used 200 digits of precision.

• For the functions f3 (·) and f5 (·) the reference results are analytical.

C.3.3 Results

In Table C.1 we report the results related to the functions described in the preview
Section C.3.2. The full descriptions of rows and columns can be found in Section:
C.3.1.

2reference.wolfram.com/language/ref/NIntegrate.html

https://reference.wolfram.com/language/ref/NIntegrate.html
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Test Algorithm f-evaluations relative error vs. ref estimated error

I1

Adaptive GK SH err 10647 7.92 · 10−16 3.37 · 10−17

Adaptive GK ABS err 33495 6.33 · 10−16 1.22 · 10−11

Adaptive GK QP err 16905 1.74 · 10−15 3.20 · 10−13

QUADPACK 14805 1.27 · 10−15 8.79 · 10−14

Romberg 32769 5.67 · 10−14 n.a.

I2

Adaptive GK SH err 24507 2.41 · 10−15 8.50 · 10−17

Adaptive GK ABS err 35763 2.60 · 10−15 3.82 · 10−12

Adaptive GK QP err 32319 2.04 · 10−15 6.36 · 10−14

QUADPACK 28413 5.56 · 10−16 2.43 · 10−13

Romberg 65537 9.50 · 10−12 n.a.

I3.1

Adaptive GK SH err 781 5.57 · 10−16 4.90 · 10−16

Adaptive GK ABS err 1485 5.57 · 10−16 6.66 · 10−13

Adaptive GK QP err 1485 5.57 · 10−16 9.97 · 10−15

QUADPACK 1155 0 1.09 · 10−14

Romberg 16385 8.33 · 10−13 n.a.

I3.2

Adaptive GK SH err 1573 0 1.37 · 10−16

Adaptive GK ABS err 2365 2.22 · 10−16 2.53 · 10−12

Adaptive GK QP err 2365 2.22 · 10−16 5.31 · 10−13

QUADPACK 1911 2.22 · 10−16 2.83 · 10−13

Romberg 8388609 7.43 · 10−13 n.a.

I4

Adaptive GK SH err 9889 2.01 · 10−16 3.37 · 10−15

Adaptive GK ABS err 6325 4.02 · 10−16 3.32 · 10−14

Adaptive GK QP err 4895 4.02 · 10−16 8.67 · 10−14

QUADPACK 6279 2.01 · 10−16 2.57 · 10−13

Romberg 65537 4.33 · 10−10 n.a.

I5

Adaptive GK SH err 2961 4.44 · 10−16 1.75 · 10−17

Adaptive GK ABS err 1505 1.11 · 10−16 3.54 · 10−16

Adaptive GK QP err 1505 1.11 · 10−16 9.32 · 10−16

QUADPACK 6237 0 1.19 · 10−14

Romberg 536870913 3.68 · 10−8 n.a.

I6

Adaptive GK SH err 2667 1.06 · 10−15 1.02 · 10−18

Adaptive GK ABS err 6363 1.41 · 10−15 4.74 · 10−14

Adaptive GK QP err 2919 5.29 · 10−16 1.25 · 10−15

QUADPACK 3087 1.76 · 10−16 1.14 · 10−13

Romberg 3 (see Obs.: 1) 0.70 n.a.

I6,u=0.7

Adaptive GK SH err 1331 5.44 · 10−16 1.83 · 10−18

Adaptive GK ABS err 3883 3.63 · 10−16 1.00 · 10−12

Adaptive GK QP err 2409 0 1.00 · 10−12

QUADPACK 1701 3.26 · 10−15 1.33 · 10−14

Romberg 524289 1.97 · 10−11 n.a.

Table C.1. Results of the tests on the functions in C.3.2
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Observations

1. The Romberg algorithm has failed the quadrature This is due to the fact
that the value of f6 (·) at the mid-point is equal to the values on the bound-
aries of the integration interval C.3.2. This specific implementation of the
Romberg quadrature is therefore unable to handle this particular case.

2. The quadrature algorithm, when based on the QUADPACK error estimator,
appears to perform better on functions that are not continuous or smooth.

3. The quadrature algorithm, when based on the sharper error estimator, ap-
pears to work better with smooth functions.

C.3.4 General conclusions regarding the tests

From table C.1 we can conclude that, regardless of the used error estimator, adap-
tive quadratures based on the Gauss-Kronrod scheme generally perform very well
(in comparison to the Romberg algorithm). Regarding the comparison between
the error estimators, we can observe that the sharper error tends to work better
on smooth integrands, while the QUADPACK error appears to be more effective
on non-smooth integrands.

From these tests we can conclude that the choice of Gauss-Kronrod adaptive
quadrature is ideal for performing the computation of RIII,KK ′

Q quantities (4.3) or
for generating reference results.
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