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1 | INTRODUCTION

Abstract

The COVID-19 pandemic presented the world to a novel class of problems highlight-
ing distinctive features that rendered standard academic research and participatory pro-
cesses less effective in properly informing public health interventions in a timely way.
The urgency and rapidity of the emergency required tight integration of novel and high-
quality simulation modeling with public health policy implementation. By introducing
flexibility and agility into standard participatory processes, we aligned the modeling
effort with the imposed reality of the emergency to rapidly develop a regional system
dynamics (SD) model integrating diverse streams of data that could reliably inform
both health system restructuring and public health policy. Using Lombardy data, our SD
model was able to generate early projections for the diffusion of the pandemic in neigh-
bor Ticino. Later, it projected the timing and size of peak patient demand. Our work also
supported the need for reorganization of the healthcare system and volume flexibility
strategies increasing hospital capacity (e.g., intensive care unit [ICU] and ward beds,
medical and nursing staff, and oxygen supply) in Ticino. Counterfactual analyses quan-
tify the impact of the decisions supported by our interventions. Our research contributes
to our understanding of volume flexibility strategies used by healthcare organizations
during emergencies, highlighting the critical role played by available response time in
the deployment of strategies that either prioritize critical services or leverage available
resources. It also contributes to the literature on participatory systems modeling by
describing a flexible and agile participatory process that was successfully deployed in
a rapidly evolving high-stakes emergency.
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severe cases meant that policy officials could not rely solely
on qualitative analysis to guide public policy. Furthermore,

1.1 | A novel class of problems

Covid19 presented the world to a novel class of problems
highlighting distinctive features that rendered more standard
academic research and traditional implementation pathways
less effective. Characterized by a rapidly evolving situation
with high stakes impacting a significant number of lives,
attempts to address such problems required very rapid
response times. In addition, the presence of strong reinforc-
ing loops driving the exponential growth in the number of
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involvement of multiple stakeholders, availability of different
streams of data requiring vetting and integration, and diverse
policy levers with unclear and uncertain effectiveness exac-
erbated intrinsic challenges. These problems require tight
integration of novel and high-quality simulation modeling
with policy implementation. However, due to their novelty,
rapidity, and high impact, no existing off-the-shelf models
were available to properly and promptly quantify the likely
magnitude of outcomes. This research seeks to inform key
aspects of decision-making during emergencies, to ensure
practitioners (e.g., policymakers and health officials) and
academics (e.g., operations manager researchers) can better
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respond and prepare to future emergencies. It focuses on
the rapid response of our research team to support public
healthcare decisions during the first wave of the COVID-19
pandemic in Canton Ticino, south of Switzerland.

1.2 | The emerging problem in Ticino
(Feb-Mar 2020)

In mid-February 2020, health authorities in Ticino watched
with alarm the rapid spread of the COVID-19 disease in Lom-
bardy, the first region in Europe to have been severely affected
by COVID-19. The dramatic evolution of the COVID-19 pan-
demic in Lombardy, with rapidly growing number of con-
firmed cases and severe patients completely overwhelmed
Lombardy’s hospital capacity. A taskforce in Lombardy
quickly identified the need to adjust regional hospital capac-
ity to care for the expected high inflow of patients infected
with SARS-CoV-2 virus (Grasselli et al., 2020a). Given that a
large fraction of COVID-19 patients develop respiratory fail-
ure, requiring mechanical ventilation, it further recognized
the urgent need of increasing ICU bed capacity in Lom-
bardy (Grasselli et al., 2020b). Due to its geographic prox-
imity (only 100 km south) and intense socioeconomic rela-
tionship with Lombardy, Ticino experiences a daily inflow
of over 60,000 Italian workers. Fearing that they soon could
experience a similar fate, health officials in Canton Ticino
also established a taskforce of key stakeholders (e.g., with
representation from the government, police, army, ambulance
services, public and private hospitals, and family doctors) to
design an emergency plan to meet possible needs of COVID-
19 patients.

1.3 | Key challenges and concerns

The COVID-19 taskforce immediately implemented basic
emergency actions to support their response, including
(i) declaring a state of emergency, (ii) mandating coordinated
collaboration between public and private hospitals, (iii) cen-
tralizing the supply of essential drugs through the cantonal
pharmacy, and (iv) early engagement of the armed forces.
Collaborating with the cantonal health authorities and the
taskforce, the Ente Ospedaliero Cantonale (EOC), responsi-
ble for managing and operating the public hospital network,
identified several challenges requiring urgent attention to pre-
pare for the likely spread of the COVID-19 disease in Ticino.
First and foremost, the explicit concern was the ability of
the hospital system in Canton Ticino to meet the surge in
COVID-19 patient demand. Second, the dispersed nature of
the cantonal hospital network—composed of four public hos-
pitals (all equipped with an intensive care unit [ICU] and four
private clinics [only one with an ICU])—posed challenges
with respect to the coordination and allocation of medical and
nursing staff, and oxygen and personal protective equipment
(PPE) supplies. Finally, due to the need of mechanical venti-
lation, the EOC also recognized the urgent need to increase
ICU beds with full ventilation capacity as well as the need

to ensure the availability of oxygen supply. In parallel, the
cantonal health authorities were concerned about the need
to implement a lockdown and other social distancing poli-
cies. Confronted with these concerns, health authorities were
uncertain about which hospital capacity and social distanc-
ing policies to put in place. They also feared that those poli-
cies could be insufficient to address the surge in COVID-19
patient demand and curb the spread of the disease. Moreover,
given the devastating effect observed in Lombardy, they knew
they could not rely solely on qualitative analysis and simple
heuristics to guide regional public health policy. Table 1 sum-
marizes the stakeholders involved and their main concerns
and decisions.

1.4 | Key stakeholders, decisions, and model
prediction tasks

Our research team worked closely with the EOC and the can-
tonal health authorities to inform decisions requiring imme-
diate answers. With the EOC, we emphasized informing
decisions associated with (i) the need to consolidate hospital
capacity and the need to increase ward and fully ventilated
ICU bed capacity and (ii) hospital operations strategy, esti-
mating the need for additional ward and fully ventilated ICU
bed capacity, the associated need for medical and nursing
staff, as well as oxygen. We used established insights from
healthcare operations management to investigate the sound-
ness of the dedicated COVID-19 hospital decision. From our
projections of patient demand, we estimated the requirements
for ICU and ward bed capacity, medical and nursing staff,
and oxygen, and evaluated whether the proposed capacity
changes would suffice to meet the surge in patient demand.
With the cantonal health authorities and the COVID-19
taskforce, we focused on the need to inform the decision to
introduce social distancing measures, developing a system
dynamics (SD) model to project the contagion trajectory with
and without social distancing measures in place.

As the COVID-19 pandemic progressed and fatigue of
medical and nursing staff increased, health authorities prior-
itized estimating the timing and size of the peak in patient
demand. Insufficient capacity (e.g., ICU and ward bed capac-
ity, medical and nursing staff, and oxygen requirements)
to meet patient demand at the peak could translate into
limited hospital admissions, inability to treat the sick, and
unnecessary deaths. At that time, our modeling shifted to
the ability of the hospital system to meet the surge in patient
demand. To inform that decision, we projected growth in
patient demand and estimated the timing and size of peak
patient demand in the first wave of the pandemic. Our model
was able to predict within 1 week the timing and size for the
peak patient demand in Ticino. After months of lockdown,
falling numbers of cases and hospitalizations, and facing
increased pressure to reopen the economy, health authorities
wondered they could attempt to return to normal by lifting
social distancing measures. At the same time, they worried
about a possible resurgence. To inform that decision, we
projected the contagion trajectory with and without removal
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TABLE 1 Key stakeholders, concerns, and decisions associated with Ticino’s COVID-19 pandemic
Stakeholders Main concerns Key decisions
Cantonal Health * Ensure ability to meet surge in COVID-19 * Establish a coordinating crisis unit
Authorities patient demand ¢ Coordinate liaison with federal health authorities
e Set policies to contain spread of the virus * Setup daily monitoring dashboard of stocks and flows
* Coordination with Federal authorities and * Projection of patient demand
communication with public * Establish social distancing measures
COVID-19 * Ensure ability to meet surge in COVID-19 * Advise government policies
Taskforce patient demand * Provide expert advice on key strategic decisions

* Set policies to contain spread of the virus

* Ensure ability to meet surge COVID-19
patient demand

Ente Ospedaliero
Cantonale
(EOC)

* Projection of patient demand

* Establish social distancing measures

* Establish hospital requirements (ICU & ward bed capacity,
medical and nursing staff, and oxygen supply)

e Set up a daily monitoring dashboard of own stocks and flows

* Projection of patient demand

* Plan hospital setup and reconfiguration

e Establish hospital requirements (ICU & ward bed capacity,
medical and nursing staff, and oxygen supply)

Note: Main concerns and key decisions in italics were explored by our research team.

TABLE 2  Concerns, decisions, need, and model prediction tasks associated with the COVID-19 pandemic in Ticino

Concerns Decisions Needs Model prediction tasks

* Prepare for spread of disease in ¢ Plan hospital setup and * Need to consolidate hospital * Estimate projections of patient demand
Ticino reconfiguration capacity * Estimate feasibility of operations for single

dedicated facility vs. dispersed hospital
network

* Ensure ability to meet surge in ¢ Establish hospital requirements ¢ Need to increase ward and fully ¢ Estimate projections of patient demand

COVID-19 patient demand (ICU & ward bed capacity,
medical and nursing staff, and

oxygen supply)

ventilated ICU bed capacity * Estimate requirements for ICU and Ward

bed capacity

* Estimate requirements for Medical and
Nursing staff

* Estimate requirements for oxygen

¢ Set policies to contain/manage ¢ Establish social distancing * Need to implement social ¢ Projected contagion trajectory with and
spread of the virus measures distancing measures without social distancing measures
* Ensure ability to meet surge in ¢ Projection of patient demand * Need to understand if hospital ¢ Estimate projections of patient demand
COVID-19 patient demand capacity can sustain surge in during exponential growth
demand ¢ Estimate timing and size of peak patient
demand (in the first wave)
* Set policies to contain/manage ¢ Establish social distancing * Need to remove social distancing * Projected contagion trajectory with and
spread of the virus measures measures without removal of ongoing social

distancing measures

Note: Nonshaded cells relate to concerns, decisions, need, and model predictions tasks early on; shaded cells relate to exponential growth phase.

of ongoing social distancing measures. We predicted that
a second wave of infections was likely to occur if social
distancing policies were lifted. Table 2 provides an overview
of main concerns, decisions, inherent needs, and the model
prediction tasks used to inform those COVID-19 decisions.

1.5 | Contributions and broader insights

This research contributes to two streams of literature: volume
flexibility in healthcare operations and participatory systems
modeling. From a healthcare operations perspective, the
research contributes to the literature on volume flexibility

strategies during emergencies, exploring the effective options
available to healthcare providers when (i) demand uncertainty
is high, (ii) required level of flexibility is high, and (iii) time
to respond is scarce. According to Jack and Raturi (2002),
when health organizations face high levels of uncertainty and
require high volume flexibility, they should adopt mitigating
strategies. Typically, those strategies would include restruc-
turing, risk pooling, outsourcing, and developing strategic
alliances. However, the limited time available to respond dur-
ing emergencies prevents the successful implementation of
typical mitigating strategies. Instead, the short response time
to achieve high volume flexibility to meet high demand uncer-
tainty during emergencies forces healthcare organizations
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to deploy strategies that either prioritize critical services or
leverage internal resources. For instance, a draconian govern-
ment mandate to stop all nonessential surgeries was imple-
mented as demand management strategy. While demand
management is typically deployed as a shielding strategy to
achieve low level of flexibility, it worked as a mitigating strat-
egy yielding high volume flexibility during an emergency.

In addition, a combination of different workforce flex-
ibility strategies (e.g., creation of nurse pools, increasing
shift length, and internal sourcing of medical and nursing
staff) was used as a mitigating strategy to accommodate the
high uncertainty in demand. In contrast, the literature pre-
scribes that individual workforce flexibility strategies can be
deployed as a containing strategy to meet low demand uncer-
tainty, when the demand for healthcare services exceeds orga-
nizational capacity. This research contributes to Jack and
Powers’ (2004) call for future research and further under-
standing on “linkages associated with the combination of
strategies, and their impact on organizational performance”
as well as “specific tactics chosen by management in each
quadrant of the volume flexible strategies framework.”

From a participatory system modeling perspective, the
research contributes to the literature by describing a flexi-
ble and agile participatory SD modeling process that was
successfully deployed in a rapidly evolving high-stakes
emergency. While participatory systems modeling processes
have a well-documented track record of public policy impact
(Andersen et al., 2017; Rouwette et al., 2011; Scott et al.,
2016), the urgency and rapidity of the emergency, requiring
tight integration of novel and high-quality simulation mod-
eling with policy implementation, render traditional partici-
patory approaches inadequate to inform public health policy
decisions properly and promptly. By introducing flexibility
and agility into traditional participatory systems modeling
processes, we aligned the modeling effort with the imposed
reality of the emergency to rapidly develop a regional SD
model integrating diverse streams of data that could reliably
inform both health system restructuring and public health
policy.

This research also contributes to a long tradition of SD
simulation modeling applied to health, healthcare policy, and
epidemiological modeling (e.g., Hirsch & Homer, 2017), and
more recently to COVID-19 modeling estimating the dis-
ease diffusion and informing health policy decisions (Ghaf-
farzadegan & Rahmandad, 2020; Rahmandad et al., 2021a,
2021b; Struben, 2020). It combines dynamic modeling and
empirical analysis to inform policies in the domain of health-
care operations management (Dai & Tayur, 2019; Denton,
2013; Jha et al., 2016; Keskinocak & Savva, 2020; McLaugh-
lin & Hays, 2008). The SD model captures the complex struc-
ture of the epidemiological and socioeconomic system (e.g.,
stocks and flows, feedback loops, nonlinearities, and delays)
(Forrester, 1961; Meadows, 1989; Sterman, 1994). By com-
bining SD modeling with data analytics to inform decision
making, we were able to effectively inform the reconfigura-
tion of the public hospital system in Canton Ticino, Switzer-

land, dramatically improving service efficiency and patient
care.

The rest of the article is organized as follows. In Sec-
tion 2, we provide a brief history and structure of the project,
describe general aspects of the participatory modeling pro-
cess adopted, detail the structure of the SD simulation model,
and present the set of structural and behavioral validity tests
used to build confidence in our model. In Section 3, we
describe modeling outcomes, including (i) early projections
(based on data from Lombardy) and (ii) projections for the
timing and size of peak patient demand. Section 4 discusses
changes to healthcare practice, including requirements for
public hospital operations and deployed strategies to reach a
high level of volume flexibility and meet the high demand
uncertainty. In Section 5, we provide further analyses and
counterfactual simulations. We conclude with a discussion
of process findings, broader lessons from the research, and
implications for the management of future emergencies.

2 | METHODS

This section offers a brief background of the project,
describes general aspects of the participatory modeling pro-
cess, and provides an overview of the model structure.

2.1 | Project background

The global impact of COVID-19 galvanized our team to work
collaboratively in support of public health efforts against the
pandemic. Our collaboration was rapidly and fortuitously
forged in the early days of March after exchanges with the
research development office at the Universita della Svizzera
italiana (USI), Lugano, where we are faculty members. All
of us are experts in our fields: epidemiology, health eco-
nomics, healthcare management, and mathematical model-
ing. In addition to an amazing combination of expertise, our
team had substantial discretion policy implementation at the
EOC, as well as sizable regional influence. One of us is the
Chief Medical Officer (CMO) of the EOC. One of us is an
economist specialized in public health policy, member of
the board of directors of EOC, and member of the COVID-
19 taskforce. One of us is actively involved in applied epi-
demiological and public mental health research. One of us is
actively involved with public policy modeling and advisory.
Together the team possessed complementary skills, research-
oriented fact-driven perspectives, responsibility for decision
making, experience in epidemiology and policy advisory, and
pragmatism. As we discussed the possibilities of our collab-
oration, the need to build a simple SD model to complement
ongoing efforts at the EOC to forecast the regional impact
of the pandemic became clear. With little time to spare, the
forecasting effort emphasized developing a model with just
a sufficient level of aggregation to inform ongoing needs.
The small size of our group allowed frequent interactions
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Organization and roles of our research team and different support groups

Group Roles

Considerations

Research team (four people)
the project

Advisory group (three people)

Modeling group (three people)

research team

Consultation group (six people)
different fields of relevance

Small group of expert researchers involved in

Small group of colleagues and public health
experts, part of the Ticino taskforce

SD modeling expert collaborating and
consulting with colleagues, advisory and

Ad hoc and informal “group” of experts in

Subject matter experts in healthcare management,
epidemiology, operations management, system dynamics
modeling, and public health policy

Members of this group provided broader context of pandemic
diffusion, and contributed with policy expertise and
conditions for policy implementation

Group of colleagues modeling COVID-19 in other countries,
sharing specific insights, research articles, and feedback on
modeling approach

Shared state-of-the-art knowledge, relevant modeling
knowledge, up-to-date information about research insights
from other parts of the world.

throughout the week. In the first 5 weeks of the pandemic,
we met (via Microsoft Teams) regularly (twice a week) to
share updated data, model developments and insights, and
discuss challenges and policy requirements. Any new gov-
ernment dispositions, research discoveries, complications, or
modeling insights would lead to an ad hoc request for a
meeting.

Our team members also consulted and exchanged ideas
frequently with different support groups invested in the suc-
cess of the project. Two of the team members had frequent
meetings with an advisory group composed of public health
experts that were part of the COVID-19 taskforce. Through
those contacts, our research team engaged in ‘““collaborative
sessions” to discuss our findings, policy recommendations,
and implications, with cantonal health authorities and other
key stakeholders.! The expert modeler met regularly with
a support group of colleagues also modeling COVID-19 in
other countries (e.g., the United Kingdom and the United
States), sharing specific insights, research articles, and feed-
back on the modeling approach. Finally, all our members met
informally, but regularly with experts to share the state-of-
the-art knowledge, up-to-date information on new COVID-
19 research insights. This ongoing exchange informed and
enhanced our overall understanding of different aspects of the
problem. Table 3 summarizes the organization and roles of
our research team and different support groups.

Because our team was small and included key stakehold-
ers and expert modelers, our frequent interactions facilitated
building mutual trust and respect. From this solid founda-
tion, we could openly discuss specific modeling results, their
implications for policy decisions, and possible ways to imple-
ment them. While our collaboration benefitted from serendip-
ity, it was also informed by participatory systems modeling.

2.2 | Participatory modeling process

Computational models (e.g., SD, discrete event simulation,
and agent based) can support decision-makers by (i) synthe-
sizing extant knowledge in a systematic and structured way
(Addison et al., 2013) and (ii) allowing them to explore the

long-term impact of policy decisions (Sterman, 2006). While
nowadays it is more common for decision-makers to resort
to such models to help them develop, implement, and assess
public policy (Freebairn et al., 2022; Gilbert et al., 2018;
Mabry et al.,, 2010; Sterman, 2006), their use is still not
widespread. Among the barriers to broader use of computa-
tional models, Addison et al. (2013) mention that the models
(i) can be prohibitively expensive or too time consuming, (ii)
do not properly capture the decision makers’ knowledge, (iii)
lack the proper data, or (iv) are too complicated to be under-
stood; and that decision makers’ acceptance of model out-
puts can be compromised due to inadequate communication
by the modeler during the model building process. Within SD
modeling the barriers above can be addressed with the use of
participatory systems modeling (e.g., participatory modeling,
group model building, and participatory simulation) (Free-
bairn et al., 2022).

Participatory systems modeling is frequently used to sup-
port decision-making in dynamic complex settings involv-
ing multiple stakeholders (Freebairn et al., 2018; Kopainsky
et al., 2017; Osgood, 2017; Rouwette et al., 2016; Ven-
nix, 1999). While participatory systems modeling can use
different methods and tools, they typically share common
attributes, such as (i) active engagement of decision-makers
in model development and (ii) coproduction of knowledge
and collaborative learning (Kopainsky et al., 2017; Rieder
et al., 2021). As a result, models resulting from participatory
processes tend to be more robust and credible to decision-
makers, who engage with modelers to include realistic con-
cepts and assumptions (Freebairn et al., 2022), and more use-
ful and fit for purpose, since they do a better job capturing
the available policy landscape (Gilbert et al., 2018). While
the benefits of participatory systems modeling are well doc-
umented (Andersen et al., 2017; Rouwette et al., 2011; Scott
et al., 2016), adoption suffers due to the need of an expert SD
modeler and facilitator (Andersen et al., 1997) and the intense
time requirement from stakeholders (Stave et al., 2019).

As the COVID-19 pandemic took Ticino by surprise,
decision-makers had to make high-stakes policy decisions
that would affect hundreds of thousands of lives. As two
of the members of our research team were among those
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decision-makers, our focus was on ensuring that the impact
from our intervention led to successful decisions, placing
more emphasis on the positive impact than on the protocol of
the research design. That is, we adopted an action research
orientation (Schein, 1987). In SD, group model building
(Vennix, 1996) has traditionally adopted an action research
orientation, focusing first on the success of the interven-
tion. Anand and Gray (2017) discuss how the action research
in operations management (OM) can contribute to strategy
and organization literature, and Srai et al. (2021) provide
an example applying action research to agricultural supply
chains in India.

To ensure our ability to deliver results, our research team
adapted the traditional participatory modeling process to
mitigate the intense time requirements and the need for a
facilitator. To reduce the prohibitive time requirements dur-
ing an emergency, we kept the compositions of the advisory,
modeling, and consultation groups to the absolute minimum.
Instead of forming large comprehensive groups spanning all
constituencies, we took the opposite approach and formed
small groups that could deliver on their specified roles.
Because all our meetings were small and informal, we did
not find it necessary or appropriate to appoint a formal facil-
itator. Ad hoc interactions between members of the research
team and the advisory, modeling, and consultation groups
were distributed across members, who later reported back to
our frequent research meetings. That flexible format allowed
us to quickly learn and assess knowledge and expertise from
different groups. It also avoided long delays until all mem-
bers of different groups could find common slots of available
time. Focusing on flexibility and access, our process design
avoided “typical” participatory workshops with all stake-
holders. Instead, we engaged in focused and middle sized
“collaborative sessions” involving only critical stakeholders.
Unlike typical participatory systems modeling workshops
where all stakeholders are involved in coproducing all
aspects of knowledge, our “collaborative sessions” had much
more focused goals. For instance, the “collaborative sessions”
focused on (i) eliciting participants’ extensive expertise that
could be incorporated into model development, (ii) identi-
fying and prioritizing gaps in the model, (iii) incorporating
regionally relevant conditions and policy opportunities,
and (iv) discussing ethical issues relevant for public policy
implementation. We specifically left out of the “collaborative
sessions” the development of a joint problem framing and
the appropriate level of aggregation, because we felt the
need to progress rapidly and help address ongoing needs
during the emergency. We relied on the input and expertise
of members of our diverse research team to ensure that we
developed a model with an appropriate level of aggregation
that properly addressed the problem with an adequate under-
standing of the policy domain. Still, our process enabled us
to achieve a broad agreement on the problem definition and
overall public health policy. It ensured active engagement
of decision-makers in the model development and led to
better understanding and alignment among the stakeholders
involved.

Beyond action research, Oliva (2019) suggests leveraging
interventions (that improve a problem situation), using them
as a mechanism to develop or test existing theories. By adapt-
ing the participatory systems process to the imposed reality
of the emergency, we managed to mitigate typical barriers to
adoption of participatory processes, leveraging our interven-
tion, and further developing the theory supporting participa-
tory processes.

2.3 | Model structure

Figure | captures the basic components of our SD model. It
borrows from the traditional SEIR epidemiological model,
with stocks capturing the Susceptible, Exposed (asymp-
tomatic), Infected (symptomatic), and Recovered popula-
tions, and flows capturing the advancement of the disease.
Reinforcing loops (R1 & R2) capture the contagion effect
(from exposed and infected individuals) driving the spread
of the disease. Balancing loop (B1) captures the depletion
of the susceptible population. At the early stages of the dis-
ease, when the susceptible population is still large, the impact
of BI1 is quite limited. As the stock of susceptible people
decreases, the strength of loop B1 increases effectively limit-
ing the spread of the disease.

A more effective loop to counter the spread of the dis-
ease early on is balancing loop (B2), capturing the impact
that social distancing has on limiting the number of con-
tacts leading to new effective infections. As the total number
of confirmed cases and deaths rose, the Cantonal authorities
introduced very strict social distancing regulations (activating
B2). One of the initial concerns in Ticino was to understand
whether the available capacity of the system would be suf-
ficient to meet the need. Projecting the pattern of diffusion
from the COVID-19 pandemic data from Italy, the task force
projected the likely impact in Ticino, helping them inform the
decision to set up a dedicated COVID-19 hospital and rapidly
and significantly increase ICU bed capacity. These decisions
are captured in balancing loop (B3) hospital capacity adjust-
ment. Naturally, as the infected developed the symptoms, they
were admitted to the hospital and consumed part of the avail-
able capacity, closing the reinforcing loop (R3).

Our SD model expands on the traditional SEIR epi-
demiological model, adapting it as the understanding of
the disease improved. It captures major stocks of individ-
uals advancing through the system and the broader aspects
of testing and social distancing policies resulting with the
spread of COVID-19. The final SD model distinguishes
between Exposed Pre-symptomatic Infectious (E), Asymp-
tomatic Infectious (A), and Symptomatic Infectious (I). The
SD model also explicitly captures testing, which is required
to identify positive COVID-19 individuals. Early in the pan-
demic, when the number of tests were limited, mainly high
risk or severely symptomatic individuals tested for COVID-
19. Of those, only individuals that were both COVID-19 posi-
tive and severely symptomatic could be hospitalized. Infected
individuals testing positive but without severe symptoms
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were sent back home. Infected symptomatic individuals,
whose conditions never become severe, eventually recover
on their own. Infected asymptomatic individuals also recover
spontaneously. Infected individuals (e.g., symptomatic, and
asymptomatic) who are never hospitalized continue to have
contact with susceptible and continue to contribute to the
spread of the virus. As the pandemic evolved and more tests
became available, testing became more ubiquitous across all
cohorts. Model formulations reflect such conditions.

Given the availability of data regarding ward (W) and ICU
(U) hospitalizations, our model could explicitly capture hos-
pitalizations into those components. Typically, individuals
admitted to the hospital would first enter the ward. However,
some critical patients would be admitted directly into ICU.
Patients in the ward with severe symptoms either recover,
eventually being discharged, or deteriorate and turn critical.
Critically ill individuals would either get admitted to ICU (if
space were available), or would remain hospitalized in the
ward, eventually recovering or potentially dying. After hospi-
talizations, patients can either be discharged, after recovering,
or die. Those outflows from the hospital system are, respec-
tively, captured in the stock of Cumulative Recovered (R) and
Cumulative Deaths (D). Importantly, deaths also occur out-
of-hospital, most commonly in nursing homes to the elderly.

Figure 2 presents a high-level view of the expanded SD
model, summarized by the acronym Susceptible, Exposed
Pre-symptomatic, Infected Symptomatic, Asymptomatic,
Hospitalized Ward, Hospitalized ICU, Recovered, Deaths
(SEI(CAWU)RD) (full model documentation is available in the
Supporting Information). Several articles estimating COVID-
19 diffusion rates adopt expanded versions of the SEIR
model accounting for population stocks that include asymp-
tomatic (Arcede et al., 2020; Chen et al., 2020; Rahman-
dad et al., 2021a), quarantined (Lu et al., 2021), isolated
(Nadim et al., 2021), detected/active cases (Rahmandad et al.,
2021a; Warne et al., 2020), hospitalized (Betcheva et al.,
2020; Favero, 2020; Rahmandad et al., 2021a). We found
only one other article that accounts for ward and ICU hos-

Infected

Projected Required

!V Hospital Capacity

Stock and flow structure of the SEIR model with social distancing and hospital feedback processes [Color figure can be viewed at

pitalizations (Betcheva et al., 202()).2 Our model also con-
tributes to the Operations and Healthcare Management lit-
erature by offering an expanded SEIR model that explicitly
tracks patients in hospital’s acute ward (W) and ICU.

Finally, we include an endogenous formulation for the
implementation of social distancing and lockdown poli-
cies deployed to reduce the diffusion of the disease. Infec-
tion rate is given by the product of infective contacts and
a fraction. The fraction is determined by a logistic func-
tion (F,), with values ranging from 1 to a minimum value
(0 < Fpin < F; < 1). When no social distancing policies
are in place, the logistic function multiplying contacts equals
one, leaving contacts unaffected. The logistic function cap-
tures the effect of dread on social distancing. Dread associ-
ated with the disease increases with cumulative pandemic-
related deaths. As dread increases, the value of the logistic
function decreases toward its minimum. Dread changes over
time with an asymmetric time constant: It increases quickly
with cumulative deaths and decreases slowly with time. The
formulation for the logistic function (Equation (1)) follows
closely Kapmeier and Gongalves (2018) and Betcheva et al.
(2020):

ey

(sD—i)
Ft=BL+(BU_BL)[1 < ],

1+ (D=

where B; is the minimum effect and B, is the maximum
effect of social distancing ( = 1); i is the inflection point; s
is the slope; D is the dread of the disease, and By, i, s, and
time constants influencing dread are determined through full
model calibration.

24 | Structural and behavioral validity

To build confidence in our model, we subjected it to a series
of structural and behavioral validity tests, following a pro-
cess suggested by Barlas (1996) and Sterman (2000). All
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tests (structural and behavioral) were performed incremen-
tally. Starting with a simple SEIR model and iterating with
a subset of stakeholders, we verified the structural relation-
ships captured in our formulations. As a deeper understand-
ing of the disease became available, we adjusted the model to
account for such insights. For instance, as knowledge about
the role of asymptomatic individuals became available (Bai
et al., 2020; Hu et al., 2020) or information about the infec-
tivity of presymptomatic (Qian et al., 2020) became available,
we quickly incorporated them into our model. The first ver-
sion of the model considered only the epidemiological dif-
fusion. A revised version included hospital structure and its
internal dynamics. A later version incorporated testing to the
model structure.

With respect to behavioral tests, we used model calibration
to test the ability of the model to replicate observed behavior,
comparing the simulated behavior of the model against avail-
able time series data from real counterparts (Forrester, 1979;
Homer, 2012). Model calibration drives a real-time series
input data through model structure and compares the simu-
lated output behavior with the associated time series data for
the output. Both partial and full model calibration requires
time series data on several variables. The COVID-19 task-
force maintained a database of the stock of available ward
and ICU beds, and bed occupancy and the flow of new daily
admissions, discharges, and deaths, including out-of-hospital
deaths. Additional data from patient flow within the hospi-
tal system were available from the EOC electronic medical

Schematic of the expanded system dynamics SEIIAWU)RD model capturing social distancing, testing, and hospital feedback processes

record system and were used to source additional information
and patients’ disposition. EOC made the data available to our
team, allowing us to analyze the dynamics of the COVID-19
epidemic in Ticino as well as its future developments. To cal-
ibrate the model to the available data, we set up an optimiza-
tion problem that minimizes the sum of squared differences
between a set of model variables (y,) and their associated time
series data (d,) over the simulated horizon (Oliva, 201 3).3

3 | MODEL RESULTS

As the number of COVID-19 cases, hospitalizations, and
deaths increased during the surge phase, our team worked
with the EOC to present model outcomes that could inform
their critical decisions. In this section, we present the key
results of our modeling effort. In particular, the section
focuses on (i) early projections of pandemic diffusion (based
on Lombardy data) and (ii) projections of the timing and size
of peak patient demand.

3.1 | Early projections of pandemic diffusion
The first COVID-19 cases were detected in Lombardy on
February 21, 2020. Nine days later, on March 1, the first
confirmed case and hospitalization took place in Ticino. By
then, Lombardy faced a calamity with its hospital system
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overwhelmed by the number of severe COVID-19 patients.
Without much data available early on, our team used Lom-
bardy data (e.g., confirmed cases, hospital admissions, ward
and ICU hospitalizations, discharged, and deaths) to forecast
the pandemic progression in Ticino. Starting with a prelimi-
nary SD model (Figure 2), we constantly updated the model
to track the likely progression of the pandemic in Ticino.
The progression of confirmed cases, hospitalizations, and
deaths in Ticino and Lombardy suggested a 1-week delay
between the two outbreaks. That window of opportunity
allowed Ticino just enough time to learn from its neighbor’s
experience and anticipate the likely impact of the COVID-19
pandemic.

Early simulations with Lombardy data (Figure 3) showed a
rapid increase in the number of confirmed cases, hospitaliza-
tions, and deaths. In the first 3 weeks of the outbreak, Lom-

bardy faced almost 6000 hospitalizations, with a 23% daily
growth rate and a doubling time of 3 days.

To generate 1-week-ahead range forecasts for the pan-
demic in Lombardy, we allowed simultaneous changes in
multiple key parameters (e.g., incubation time, illness dura-
tion, fraction progressing to asymptomatic, hospitalization
time, ICU time). Then, we simulated the model 20,000 times
with independent randomly selected parameter values from
uniform distributions within specified ranges, to generate
multivariate Monte Carlo sensitivity projections.* To adjust
the range forecasts to Ticino, we used a 3.5% ratio (1/28.5),
since Lombardy’s population (e.g., 10.1 million people) is
28.5 times higher than that of Canton Ticino. The projections
for Lombardy for patients hospitalized in the ward (from
8000 to 12,000) and hospitalized in ICU (from 1500 to 3000),
implied possible ranges for Ticino from 280 to 420 hospital
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TABLE 4  Projected patient demand in Ticino during the surge phase
(based on Lombardy data)
Ticino
Lombardy (projected)
Patients hospitalized in ward 8000-12,000 280-420
Patients hospitalized in ICU 1500-3000 52-105

Note: It is assumed that the fraction of hospitalizations from confirmed cases remains
stable at 70%, a fraction of ward hospitalizations from total remains stable at 85% (in
the first three weeks). Ticino peak estimates extrapolate the likely impact using a 3.5%
population ratio.

beds including anywhere from 52 to 105 ICU beds (see
Table 4).° Informed by the delay between the two outbreaks
and extrapolating the data from Lombardy, we were able
to quickly extrapolate (and anticipate) the hospital capacity
and personnel needs, emphasized the high-end projections to
avoid possible bottlenecks.

3.2 | Projections of the timing and size
of peak patient demand

In the weeks following the changes in hospital operations,
there was continued concern about the ability of the hospi-
tal system in Canton Ticino to meet peak COVID-19 patient
demand. As the pandemic spread and fatigue among medical
and nursing staff increased, the timing and size of the peak
began to matter. We used the SD model to generate frequent
forecasts to predict the likely timing and size for the peak
patient demand. Figure 4 shows the comparison of the data
and simulated model for Ticino data.

Sensitivity analysis allowed us to create range forecasts for
the progression of the disease in Ticino. While it was not pos-
sible to predict exactly the timing or the size of the peak, the
range forecasts gave us an understanding of what was likely
to come within the next week.® In addition, as the days passed
the cone of uncertainty decreased providing more accuracy
in the forecasts for the coming days. Our range forecasts
provided confidence that the capacity changes implemented
were sufficient for the hospital system in Ticino to meet peak
COVID-19 patient demand.

4 | CHANGES TO PRACTICE

In this section, we present the impact on hospital practice
and design resulting from our analysis. First, we describe the
hospital network and resources available before the onset of
the COVID-19 pandemic in Ticino (pre-March 2020). During
this prepandemic phase, we characterize the baseline hospi-
tal capacity of the system. Next, during the surge in patient
demand, Ticino experienced a large increase in the number of
COVID-19 cases, hospitalizations, and deaths, with mount-
ing pressure to increase baseline hospital capacity. During
this surge phase, we characterized the required changes and
managed hospital practices and network design to address

pandemic challenges that were informed by our analysis. In
particular, the section focuses on (i) the need to consolidate
hospital network and (ii) the need to increase hospital capac-
ity to sustain demand surge, including fully ventilated ICU
bed capacity, medical and nursing staff capacity, and oxygen

supply.

4.1 | Prepandemic baseline hospital capacity
Prepandemic, the cantonal hospital network composed of
four public hospitals (all equipped with ICUs and a private
clinic with an ICU, had a total of 52 ICU beds (45 and 7,
respectively) of which 45 had full ventilation capacity. If each
of the four public hospitals operated their ICUs, maintain-
ing an 8-h shift for medical staff, each facility would require
three senior consultant doctors to ensure 24/7 service care.
That is, 12 senior consultant doctors would be required if doc-
tors would work only in a single hospital. At the same time,
prepandemic the EOC ICU medical staff included only two
senior consultant doctors’ and because COVID-19 affected
Italy and nearby Cantons, it was not possible to source other
senior doctors from nearby locations. Moreover, there was a
limited number of appropriately skilled (i.e., anesthetists with
at least one term of ICU experience) registrars and residents
that could be added to EOC. There were also insufficient
numbers of specialist nursing (SN) staff capable of manag-
ing ventilators, oxygen pumps, and monitors, required to treat
COVID-19 patients developing respiratory failure. While reg-
istered nursing (RN) staff were more available, they were not
skilled to work in ICU, and could not be promptly trained
since that would require 2 years.

Furthermore, due to PPE precautions—requiring resi-
dents and nurses to dress-up/-down and disinfect between
patients—typical prepandemic resident-to-patient ratio (1:12)
and nursing-to-patient ratio (1:6) would need to be reduced.
The EOC realized that on a COVID-19 ward it was only pos-
sible to assign 10 patients per resident (i.e., a 1:10 resident-to-
patient ratio) and four patients per nurse (i.e., a 1:4 nursing-
to-patient ratio). This decision implied a significant increase
in required resident (~20%) and nursing (~30%) staff
capacity.

Finally, to support patients developing respiratory failure it
was critical to ensure the availability of oxygen for mechan-
ical ventilation. Prepandemic, we established average daily
oxygen requirements of about 250 kg/day (i.e., 219 L of com-
pressed oxygen/day, or 187,000 L of high flow oxygen/day).
On March 8, 1 week into the pandemic, with 7 acute wards
and 15 in ICU patients, the daily oxygen requirements had
almost tripled to 578 L of compressed oxygen/day (almost
500,000 L of high flow oxygen/day).

4.2 | Need to consolidate hospital capacity

As the number of COVID-19 cases, hospitalizations, and
deaths increased during the surge phase, public health
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authorities focused on the need to consolidate and better
manage hospital capacity. Considering only the senior con-
sultant doctor requirements, it was clear that the EOC would
not have sufficient capacity to run four independent ICUs.
Consolidating ICU services in a single hospital would allow
the EOC the ability to better share scarce medical and nursing
staff resources across different patients, achieving significant
economies of scale. For instance, operation of a single ICU
would require only three senior consultant doctors (instead of
the 12 for 4 independent ICUs) to ensure 24/7 service care.
Changing the medical staff shift to 12 h (instead of the 8-h
shift prepandemic) would reduce further the requirements
to only two senior consultant doctors. Based on simple
back-of-the-envelope calculations, the EOC designated its
hospital in Locarno as a COVID-19 dedicated facility on
March 11, 2020.%

The EOC decision to setup a dedicated COVID-19 facility
followed a focus as emphasis perspective (McDermott &
Stock, 2011), emphasizing two “focus dimensions” (Dab-
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Simulations estimating COVID-19 progression in Ticino (Feb 09—Mar 27, 2020) [Color figure can be viewed at wileyonlinelibrary.com]

hilkar & Svarts, 2019), such as Knowledge areas (i.e.,
referring to physicians’ training, skills, or experience) and
Medical conditions (i.e., referring to the disease or injury
causing a patient to seek healthcare), in its effort to treat
COVID-19 patients. The consolidation decision addressed
the critical needs of public authorities, exemplifying a health-
care strategy that improved allocation of available medical
and nursing staff, improving operational performance (Hyer
et al.,, 2009; McDermott & Stock, 2011) and patient care
(Goldstein et al., 2002).

4.3 | Need to manage hospital capacity

4.3.1 | ICU and ward bed requirements

Volume flexibility in healthcare operations refers to the abil-
ity of an organization to adapt its volume of service flexi-
bly to meet patient demand (Jack & Powers, 2004; Koste &

85U8017 SUOLILLIOD @A 18810 3(eoldde ayy Aq peusenob ae ssjoie YO ‘@sn Jo el 1oy ArIqiT8UIIUO 3|1 UO (SUORIPUCD-pUe-SLLLIBY /WO AB | 1M ARIq U1 [UO//SdNL) SUORIPUOD PUe SWiB | 8L 88S *[2202/TT/0E] Uo Afeiqiaulluo A8|im ‘ouebn Ip eLelseAlun eseloljqlg Aq OTZET SWod/TTTT 0T/I0P/W0 A8 iM AIq Ul |Uo//Sdny WOy papeojumod ‘0 ‘9565.E6T



GONCALVES ET AL.

12
—I— Production and Operations Management

Malhotra, 1999). The projected surge in demand required the
EOC to respond strategically to use any and every available
resource. Within 4 weeks, the EOC managed to create 55 new
ICU beds at the COVID-19 dedicated hospital, including 22
intermediate care beds for tracheotomy patients after weaning
from mechanical ventilation, while maintaining 18 ICU beds
for non—COVID-19 patients. In parallel, the private clinic also
increased its ICU bed capacity. While these increases were
gradually introduced over 4 weeks, they allowed Ticino to
increase ICU bed capacity by over 150%, ensuring that it
could meet the sharp expected increase in patient demand. In
addition to increasing the bed capacity of its acute ward and
ICU, the EOC implemented several other measures, build-
ing on internal resources around workforce flexibility, reallo-
cation of available capacity, and effective schedule manage-
ment, to achieve further volume ﬂexibility.9

4.3.2 | Medical and nursing staff requirements
The surge in patient demand and the increased ICU bed
capacity had implications for medical and nursing staff that
required the allocation of staff with the necessary skills in
a coordinated way. While the decision to set up a dedicated
COVID-19 facility allowed the EOC to operate its ICU with-
out an increase in the number of senior consultant doctors,
it still had a limited and insufficient number of medical and
nursing staff. Volume flexibility in medical staff was achieved
through the implementation of four policies:

(i) Stopping all nonessential elective surgeries and proce-

dures.
In the second half of March 2020, the government issued
a measure ordering hospitals in Ticino to put on hold
all nonessential elective surgical activities. This allowed
the EOC to free up not only operating rooms (ORs), but
also medical and nursing staff with appropriate knowl-
edge (i.e., conduct tracheotomies, operate the ventila-
tors, change flows/pressure, regulate the pumps, and
read the monitors) to be redeployed to COVID-19 units.
While highly unusual, this strategy can be classified as a
demand management strategy.

(ii) Increasing shift length from 8 to 12 h.
The major impact of the 50% increase in shift length was
to reduce patient handovers in half, allowing a single
handover instead of two per day. This change also sim-
plified the handover process reducing the time required
and associated errors, while improving patient care. The
change increased workforce flexibility.

(iii) Sourcing medical and nursing staff from other depart-
ments.
An additional workforce flexibility strategy leading to
additional volume flexibility was achieved by sourcing
adequately qualified junior medical staff, that is, anes-
thetists with at least one term of ICU experience, and
physicians from internal medicine and operating the-
ater. Implementation of such volume flexibility policies

allowed the EOC to increase its ICU medical staff during
COVID-19 to 45 FTE (a 40% increase from the original
level), with most of the adjustment (96%) taking place
among registrars (38%, 14.8 FTE) and residents (58%,
24.5 FTE). The 40% increase of ICU medical staff had
to be coordinated with an equivalent (+44%) increase
in nursing staff. Due to insufficient numbers of SN staff,
the EOC also had to source nurses from different depart-
ments, reallocating the SNs with appropriate skills from
anesthesia departments and the operating theater.
(iv) Creating nursing pools.

As a final workforce flexibility strategy, the EOC sup-
plemented the scarce stock of SN staff with RN staff, by
establishing a nurse buddy system that paired one regis-
tered nurse (one RN) with two specialist ones (two SNs).
While RNs were not skilled to work in an ICU, which
would require two additional years of training, and were
not able to treat a patient on their own, they could assist
the SNs in standard patient care. In the EOC’s “buddy
system,” nurses could tackle different tasks and together
they could satisfy the surge in patient demand. RNs
would perform usual nursing work (e.g., treat patients,
wash and turn them, inject medication) and could also
support SNs work (e.g., managing ventilators, pumps,
and monitors).

4.3.3 | Oxygen requirements

Baseline assessment for daily oxygen consumption require-
ments prepandemic and early surge established that patients
with hypoxemic respiratory failure could use up to 20 L/min
of oxygen, and patients in the ward with nasal prongs could
consume up to 6 L/min of oxygen. Our early projections,
emphasizing the high end to avoid possible bottlenecks,
suggested up to 420 acute ward patients and up to 105 ICU
patients. From those values, it was straightforward (see
Table 5 for details) to extrapolate the oxygen needs of about
6.7 million liters of high flow oxygen/day (or about 7800 L
of compressed oxygen/day, or 8900 kg of oxygen/day)
at the peak. To ensure continuity of operations the EOC
considered the reserve oxygen tank capacity at each of its
public hospitals. It established a requirement of 72-h service
autonomy of oxygen during the forecasted surge in patient
demand, which translated into a consumption of 26,700 kg of
oxygen/day.

None of its hospitals had such capacity. A location (in
Faido) being considered for the dedicated facility had its oxy-
gen capacity set up in bottles, which would provide at most
a 16-h service autonomy (about 5900 kg of oxygen/day) dur-
ing the forecasted surge in patient demand. Given the limited
oxygen capacity at Faido, that facility was discarded. More-
over, because oxygen is manufactured outside Canton Ticino,
the EOC focused on establishing strategic alliances with oxy-
gen suppliers early on, setting up service-level agreements
(SLAs) that ensured the delivery of higher quantities (e.g.,
filling up a tank of 20,000 kg of compressed oxygen) with
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TABLE 5 Projected assessment for daily oxygen consumption requirements at the peak of demand
Minute oxygen Daily oxygen
Projected consumption/patient consumption/patient Daily oxygen Compressed oxygen
patients (L/min/patient) (L/day/patient) consumption (L/day) consumption (L/day)
Ward 420 6 8640 3,628,800
ICU 105 20 28,800 3,024,000
Total 6,652,800 7800
High 3. Containing 4. Mitigating High 3. Containing 4. Mitigating
¢ Workforce flexibility ¢ Strategic Alliances *  Workforce flexibility * Strategic Alliances
i * Information technology ¢ Restructuring & 0 Sourcing from other 0 Oxygen supply
2 * Efficiency measures * Risk Pooling & outsourcing 3 departments
B E 0 Increase in shift length
‘5 i 0 Buddy system
s kS
® _ . &
%n 2. Absorbing 1. Shielding 5 2 Absorbin 1. Shieldin
= * Time buffers ¢ Demand Management
. ¢ Demand Management
* Slack capacity buffers * Managed care controls .
.. . Q Stop non-essential
* Pricingand rationing .
surgeries
Low Low
Low Demand Uncertainty High Low Demand Uncertainty High
FIGURE 5 Volume flexibility strategy framework in normal FIGURE 6  Summary of volume flexibility strategies adopted by the

healthcare operations (adapted from Jack & Powers, 2004)

higher frequency (e.g., every other day), instead of once per
week prepandemic. '’

434 | Summary volume flexibility strategies
Jack and Powers (2004) provide a framework to explore dif-
ferent volume flexibility strategies (see Figure 5) considering
the level of demand uncertainty faced by the health organiza-
tion (x-axis) and the range of flexibility provided by a given
strategy (y-axis). When demand uncertainty is high and an
organization’s ability to implement flexibility is low, it adopts
a Shielding Strategy to try to mitigate the negative effects of
demand uncertainty. When demand uncertainty and desired
flexibility are low, it can adopt an Absorbing Strategy using
its internal buffers to mitigate uncertainty. In contrast, when
demand uncertainty is low but desired flexibility is high,
the organization can adopt a Containing Strategy leveraging
its internal resources. Finally, when demand uncertainty and
desired flexibility are high, it can adopt a Mitigating Strategy
leveraging internal and external resources to handle the high
uncertainty.

During the pandemic surge, health organizations faced
high levels of uncertainty and required high volume flexibil-
ity from their strategies. According to Jack and Raturi (2002),
when health organizations face high levels of uncertainty and
require high volume flexibility, they should adopt a mitigating
strategy, including specific strategies such as restructuring,

EOC during the pandemic surge

risk pooling, outsourcing, and developing strategic alliances.
However, during emergencies there is limited time avail-
able to deploy such strategies. The need to respond quickly
means that only strategies that can be deployed quickly can
be considered. It also means that implementable strategies (i)
leverage already available internal resources or already exist-
ing collaborations or (ii) prioritize critical services. As an
example of the former, the strategic alliance that the EOC
implemented for oxygen delivery (e.g., noncritical support
services) was the only mitigating strategy adopted that was
prescribed in the literature. Such alliance was only possible
because it built upon an already existing collaboration (see
Figure 6). As an example of the latter, the draconian gov-
ernment mandate to stop all nonessential surgeries, prioritiz-
ing all resources to critical COVID-19 services, can be inter-
preted as a demand management strategy. While traditional
demand management strategies (e.g., health promotion pro-
grams, forecasting systems) implemented by healthcare orga-
nizations yield low volume flexibility and are deployed as a
shielding strategy, the one mandated by the government (e.g.,
stop all nonessential surgeries) yielded high volume flexibil-
ity and worked as a mitigating strategy (see Figure 6).
Interestingly, the EOC also implemented a combination
of workforce flexibility strategies that yielded high volume
flexibility (Bates, 2013; Bloom, 1997; Fagefors et al., 2020;
Lebanik & Britt, 2015). Deployment of those strategies was
only possible because it leveraged already available inter-
nal resources. The workforce flexibility strategies included
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increasing shift length of medical and nursing staff from
8 to 12 h, sourcing medical and nursing staff from differ-
ent departments, and creating nursing staff pools, through a
nurse buddy system. The literature typically prescribes work-
force flexibility strategies as a containing strategy when faced
with low levels of demand uncertainty. Jack and Powers
(2004) recognize that when the demand for healthcare ser-
vices exceeds organizational capacity, a containing strategy
can be used to ensure additional operational flexibility. Dur-
ing the pandemic surge, however, the combination of work-
force flexibility strategies was used as a mitigating strategy to
address the high uncertainty in demand (see Figure 6).

In summary, the EOC hospital operations strategy ranged
from consolidation of services through the establishment of a
dedicated COVID-19 facility, and a suite of mitigating (e.g.,
strategic alliances, demand management, and workforce flex-
ibility) strategies that could address the high demand uncer-
tainty and yield the high-volume flexibility required. These
coordinated strategies translated into increased operational
capability (Goldstein, 2003) and improved overall perfor-
mance (Goldstein & lossifova, 2012). Finally, the fact that
a physician, with vast international experienced, was at the
helm of the EOC, ensured that their service operations strat-
egy benefitted from pragmatic policies that were more likely
to perform well in practice (Goldstein & Ward, 2004).

S | COUNTERFACTUAL ANALYSES

In this section, we present three counterfactual analyses con-
sidering the impact of options different than those supported
by the SD model. First, we analyze the impact of a 1-week
delay in the consolidation and expansion of hospital capacity.
Second, we consider on March 16 the impact of not imple-
menting social distancing policies at Canton Ticino. Finally,
we consider the impact of removal of social distancing mea-
sures on May 31.'!

5.1 | One-week postponement of hospital
capacity expansion

The 1-week delay between the Lombardy and Ticino out-
breaks provided a window of opportunity that allowed Ticino
and the EOC not only to generate early projections of
likely cases, hospitalizations, and deaths in Ticino, but also
informed the urgent need to expand bed capacity. We esti-
mate that such intervention anticipated in at least 1 week the
decision to initiate the increase in ICU and ward bed capac-
ity. In the counterfactual analysis, we estimate the impact of
a 1-week delay in the actual ICU and ward bed capacity tra-
jectory. Figure 7 shows the counterfactual analysis display-
ing the impact of delaying the process of increasing ICU and
ward bed capacity in Ticino. Because we have the actual bed
capacity data and patients hospitalized (i.e., the actual num-
ber of beds required) in both the ICU and ward, we can easily
assess the impact of 1-week delay in the growth in bed capac-

ity. Figure 7 also shows bed shortages and occupancy per-
centages in the ICU and the ward. Shortages are computed by
subtracting the data on patients hospitalized (actual demand)
from the 1-week delayed bed capacity. Occupancy percent-
ages are computed as the ratio between occupied and total
available beds.

The counterfactual analysis shows that in both the ICU and
the ward a 1-week delay would shift the mode of operation
dramatically. With one week delay in initiating the capacity
expansion, both the ward and ICU departments would have
faced shortages. In the ward, the shortages would have started
on March 16, affecting 13 patients, and would have lasted for
6 days. In its maximum, the hospital system would be short
37 ward beds (i.e., 33% of the projected available capacity
on March 19). In the ICU, the shortages would have taken
place already in the first week of March, lasting for almost
3 weeks. In its maximum, the hospital system would be short
15 ICU beds (i.e., 60% of the projected available capacity on
March 17). Considering occupancy percentages, ICU would
have to turn down patients throughout the first 3 weeks of
the pandemic, until March 23; the ward would do the same
from March 15 to 21. In the ward, the high occupancy rates
would be somewhat contained to 6 days, reaching “only” a
maximum of 133%. In contrast, in ICU high occupancy rates
would last for 18 days (three times longer) and reach at its
peak an occupancy of 275%. Our results shed light on the
value and impact of our early intervention in collaboration
with the EOC.

5.2 | Delayed implementation of social
distancing measures (March 16)

On March 16, 2020, Canton Ticino introduced strict regula-
tions to enforce social distancing, with a complete lockdown
of all nonessential services, including schools, attendance
to church services, pubs, and restaurants. At the time that
such policies were introduced, health officials were uncertain
about the effectiveness of social distancing policies in curbing
the spread of the disease, especially since reports alerted them
about the role of presymptomatic and asymptomatic individu-
als contributing to the diffusion of the pandemic. Because our
model captured such stocks explicitly, we hoped to be able to
estimate their likely contribution to the diffusion of the pan-
demic and later compare their results with specific serological
surveys.

Figure 8 shows the simulated behavior of the model from
February 09, 2020, to April 01, 2020, for daily values of con-
firmed cases and hospital admissions. The figure also shows
the actual data on confirmed cases and hospital admissions,
and the simulated behavior of two polar social distancing
policies (e.g., one with full lockdown and another without
any distancing measures). For each simulated policy, the SD
model uses only data available until March 16 to calibrate its
behavior. (Later data are included as a baseline behavior for
comparison purposes only.) Social distancing policies limit
the number of contacts. The lockdown simulation (with social
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FIGURE 7 Counterfactual analysis displaying the impact of delay in adding ICU and ward bed capacity in Ticino (Feb 09—-Mar 30, 2020) [Color figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Counterfactual simulations estimating the impact of social distancing policies in Ticino (Feb 09-April 01, 2020) [Color figure can be
viewed at wileyonlinelibrary.com]

distancing policies in place) shows that confirmed cases and much lower values than the simulation without social distanc-
hospital admissions follow more closely the actual data. Still, ing policies in place. In fact, they project values for confirmed
the lockdown simulation overshoots “future” data (beyond cases and hospital admissions by April 1 that are half of those
March 16). That is, with the limited amount of data available simulated without any distancing. Distancing policies yield

in the first 2 weeks, the endogenous social distancing formu- slower diffusion with significantly smaller numbers of cases,
lation does not manage to fully account for the actual effec- hospital admissions, and deaths.
tiveness of the social distancing policies. Despite the over- The counterfactual simulations of the SD model with and

shoot beyond March 16, the lockdown simulation projects without social distancing policies shed light on the likely
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FIGURE 9 Counterfactual simulations estimating the impact of relaxing social distancing policies in Ticino (Feb 09-July 01, 2020) [Color figure can
be viewed at wileyonlinelibrary.com]

impact of the lockdown policies. Our results reiterated pub- systems models to inform public health policies during
lic health officials’ expectations on the critical importance of =~ emergencies.

imposing strict social distancing policies, also providing a

reference for the likely impact if no social distancing policies

were put in place. 6.1 | Process lessons

Due to the rapid growth of severe COVID-19 cases, a mul-
5.3 | Early removal of social distancing titude of affected stakeholders, various streams of data, no
measures (May 31) existing off-the-shelf quantitative model, and a diverse set

of policy levers, our research team had to quickly develop
Figure 9 compares simulated behavior with time series data a regional model capturing the different stakeholders’ per-
for Ticino (from February 09, 2020, to July 01, 2020) for spectives, reliably quantifying the progression of the pan-
daily values of confirmed cases and hospital admissions. demic vis-a-vis the data, and capable of identifying and test-
Inspection shows that the simulation has a good fit for the ing different policies, before selecting the high-leverage ones.
data across both variables. Figure 9 also shows the projected As is common in participatory systems modeling processes,

behavior of the model for different levels of “effectiveness” which have a well-documented track record of public policy
of social distancing policies. Such effectiveness levels, imple- impact (Andersen et al., 2017; Rouwette et al., 2011; Scott
mented from May 31, capture different levels of compli- et al., 2016), the novel and high-quality SD model had to
ance with ongoing lockdown policies. When “effectiveness” be tightly integrated with policy implementation. However,

equals 1 (100%), there is widespread compliance with full traditional participatory processes were ill aligned with the
lockdown policies; when “effectiveness” equals 0 (0%), there urgency imposed by the emergency. To timely support public
is absolutely no compliance with social distance policies, and health authorities, it was critical to introduce more agility in
people operate as if they were in normal conditions. The our participatory systems modeling process. By adapting the
figure also shows the behavior of the model for values of participatory systems process to the imposed reality of the

effectiveness in between. emergency, we managed to mitigate typical barriers to adop-
The counterfactual simulations performed with the SD tion of participatory processes.

model confirm that a second wave of infections was likely To design the key attributes of the agile participatory sys-

to occur if social distancing policies were lifted to all individ- tems process, we considered specific contextual challenges

uals (even at the end of May 31). The information shared with imposed by the emergency, identified the specific modeling
health policy officials helped maintain a policy of caution and needs, and the key process characteristics required to sup-
a range of social distancing policies in place. port public health policy decisions (see Table 6). For instance,

our research team was composed of experts with knowledge

in the areas that were specific to the challenges imposed by
6 | KEY PROCESS LESSONS the emergency. The research team met frequently. We struc-

tured small informal advisory, consultation, and modeling
Below, we reflect on aspects of our research effort that groups. Members of the research team held independent and
were well-aligned with the challenging conditions imposed ad hoc meetings with those groups. Lessons learned in those
by the COVID-19 emergency. We also distill key pro- interactions were shared frequently with the research team.
cess lessons regarding the development of collaborative We replaced workshops with “collaborative sessions.” Such
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TABLE 6

Challenges, impact from mistakes, identified needs, and key process characteristics for participatory systems modeling during emergencies

Contextual challenge Impact from mistakes

Identified need Key process characteristic

* Rapidly evolving high-stakes
situation

¢ Significant number of lives lost

* Involvement of multiple ¢ Defense of self-serving goals and
stakeholders with diverse goals and myopic perspectives
perspectives

e Lack of existing off-the-shelf * Inability to estimate and assess
models likely impact
¢ Dominant high gain reinforcing * Public policy replying on

loops driving exponential growth in
severe cases

qualitative analysis can be off by
orders of magnitude

e Availability of different streams of ¢ Making decisions on bad,
data inaccurate, outdated data

*  Multitude of diverse policy levers * Wrong policy levers can be
with unclear and uncertain ineffective (at best) or exacerbate
effectiveness intrinsic challenges (at worst)

* Need for rapid response times * Frequent iteration; constant model

progress; and frequent updates

* Need to develop balanced * Develop joint group goal and
societal goal and perspective perspective
* Need for rapid model * Focus on rapid development with

development small group (1-2) of expert modelers

* Need for reliable quantitative ~ * Input from experts; state critical

analysis assumptions; discuss formulation
choices; discuss impact of alternative
formulations
* Need to reconcile, vet, and * Verify sources, conduct tests,
aggregate streams of data implement partial calibrations, update
frequently
* Need to identify and select * Discuss best ways to implement

high-leverage policy levers different policies; test and quantify
policy behaviors; discuss “how to” of

implementation

sessions had focused goals and a limited number of critical
stakeholders, avoiding the need for a facilitator.

While our agile participatory process was more suitable
for the reality imposed by the emergency, the changes also
carry downsides. For instance, small “collaborative sessions,”
with few stakeholders, focusing on specific goals, are not as
inclusive or open. Frequent iterations, rapid model develop-
ment, emphasis on constant progress hampered model trans-
parency and a shared understanding. Many stakeholders were
not involved, and their concerns were not included in the
modeling process. And, due to the sense of urgency, there
was no time to develop a thorough stakeholder engagement
plan. Given the emergency and the need to engage criti-
cal stakeholders in a participatory process, we deemed these
shortcomings acceptable. However, such shortcomings and
their benefits must be considered carefully before an actual
engagement. Still, we believe that agile participatory pro-
cesses can inform key aspects of decision-making during
emergencies, ensuring that researchers are better prepared to
support practitioners’ (e.g., policymakers and health officials)
needs during future emergencies.

6.2 | Discussion

COVID-19 presented the world to a novel class of rapidly
evolving high-stakes problems, requiring very rapid response
to develop novel, high-quality, data-intensive dynamic simu-
lation models tightly integrated with policy implementation.
In such rapidly evolving contexts, traditional time-intensive
participatory systems modeling processes are less effective,
despite their range of other benefits. This research describes
the rapid development and application of an agile participa-
tory SD modeling process to help reorganize the public health

system and inform public health policies during the COVID-
19 pandemic in Ticino, Switzerland. The agile participatory
process has some advantages over the traditional participa-
tory process with respect to (i) the speed of putting together a
research team (and other support groups), (ii) the pragmatism
associated with determining the level of model aggregation,
(iii) the engagement and collaboration with decision-makers,
and (iv) its ability to deliver rapid and informative public pol-
icy analysis. The process characteristics of agile participatory
modeling can support public health policy decisions during
emergencies.

Our work informed and supported the need for the reor-
ganization of the healthcare system in Ticino. Early on, the
SD model was used with data from Lombardy to project the
likely needs of ICU and ventilated bed capacity (as well as
medical and nursing staff capacity) in Canton Ticino. Com-
parative analysis of the outbreaks in the two different regions
allowed an educated guess regarding the needs in Ticino. As
the COVID-19 pandemic progressed, the SD model could
predict the timing and size for the peak patient demand in
Ticino and inform whether the additional ICU and ventilated
bed capacity (as well as medical and nursing staff capacity)
would suffice to meet the peak patient demand. The SD model
was able to inform the decisions on required bed capacity, and
that the added capacity was sufficient to cater for the surge in
patients.

Counterfactual analyses consider the impact of (i) a 1-week
delay in the consolidation and expansion of hospital capac-
ity, (ii) not implementing social distancing policies on March
16, and (iii) removing social distancing measures on May 31.
Most dramatically, counterfactual analysis of the consolida-
tion and expansion of hospital capacity shows that a single-
week delay would lead to bed shortages both at the ICU and
the ward, such shortages would last for almost 3 weeks in
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ICU and would represent 60% of the available capacity at
the time. Estimated ICU occupancy rates would rise sharply
reaching a peak occupancy of 275%. Counterfactual analy-
sis of the removal of social distancing measures on May 31,
at the end of the first wave of the pandemic, confirmed that
the second wave of infections were likely to occur if social
distancing policies were lifted to all individuals.

Using established insights from healthcare operations man-
agement, we were able to inform the EOC decision to des-
ignate one of its hospitals as a COVID-19 focused facility.
The decision exemplifies a hospital focused on the treatment
of COVID-19 patients (i.e., medical conditions) and respi-
ratory and pulmonary training (i.e., knowledge areas). The
estimated surge in demand provided a clear signal for the
need to increase hospital capacity (i.e., volume flexibility).
The EOC’s early efforts emphasized, first and foremost, a
sufficient increase of ICU bed capacity. At the peak of the
pandemic, the proportion of hospitalized patients admitted to
ICU was 19.1%. ICU bed occupancy reached 80% and gen-
eral ward bed occupancy reached 62%. In Ticino, the avail-
ability of critical care beds for COVID-19 patients did not
create a bottleneck for the access of patients to ICU.

From a healthcare operations perspective, our research
contributes to the literature on volume flexibility strategies
during emergencies, exploring the effective options avail-
able to healthcare providers when (i) demand uncertainty is
high, (ii) required level of flexibility is high, and (iii) time
to respond is scarce. Previously, Jack and Raturi (2002) pre-
scribe that when faced with high levels of uncertainty and
requiring high volume flexibility, health organizations should
adopt a mitigating strategy. However, during emergencies,
when the required response time is short, health organiza-
tions cannot deploy those strategies. Our research suggests
that health organizations deploy strategies that either (i) lever-
age already available internal resources or already existing
collaborations or (ii) prioritize critical services. A combina-
tion of different workforce flexibility strategies (e.g., creation
of nurse pools, increasing shift length, and internal sourc-
ing of medical and nursing staff) captures EOC’s choice to
leverage available resources. As the EOC recognized the need
for high volume flexibility, they drew on internal resources
available in the Cantonal hospital system—reallocating med-
ical and nursing staff across different units, increasing the
length of doctors and nurse shifts, and creating nursing staff
pools. Principles of healthcare operations informed the need
for coordinated actions across groups of staff (e.g., medi-
cal and nursing staff) as well as within groups of staff (e.g.,
SNs and RN, and residents, registrars, consultant doctors).
The adoption of nursing pools proved particularly useful in
a resource-constrained setting with limited time or ability to
train the additional resources required. An important aspect
of the successful COVID-19 response in Ticino was the coor-
dination of measures addressing different possible issues or
areas (e.g., ward and ICU beds, ventilation, oxygen, medical
and nursing staff, hospital focus). The comprehensiveness of
the measures ensured that no single item became a bottleneck
that could cripple the response. The combination of health-

care management policies implemented in Ticino provide an
exemplar of a successful healthcare management response to
an emergency.

6.3 | Post hoc insights and reflections

To collect additional lessons learned and insights related to
the implemented work, we held a roundtable conversation
with the EOC’s CMO, representing the public hospital sys-
tem, and the member of the EOC board of directors and mem-
ber of the Ticino COVID19 taskforce.'?

From a public hospital system perspective, the EOC real-
ized its lack of preparedness to deal with pandemics. In the
first weeks, it took a long time to populate the model with
validated data. The necessary data were simply not avail-
able. Data had to be collected manually. Data quality was
low, containing several inconsistencies. Such problems high-
lighted the need for the EOC to improve its data collection
system to ensure reliability, availability, and quality. During
the project, the EOC continuously improved its IT system to
enable automatic extraction of the required data. Today, the
EOC has a data dashboard that it uses on a regular basis,
providing a much-improved understanding of EOC’s over-
all operations and effectiveness. Lack of adequate data was
also an insight from the cantonal and federal public health
perspective. While the federation collected data on a regu-
lar basis on sick people, they realized that since pandemics
infect healthy people, it is critical to frequently collect data
(e.g., social determinants, nutrition, biomarkers) on a repre-
sentative sample (~100,000) of the entire population to better
understand the progression of pandemics. Because no such
data (and no serological survey data) were available during
the first wave, there were no data on the number of presymp-
tomatic, asymptomatic, and infected to better estimate the
disease progression.

The public health system’s CMO reflected that our work
transformed the EOC’s mindset toward resource effective-
ness. Due to the constraints imposed by the pandemic, the
EOC had to learn how to better use the overall resources
available (e.g., medical and nursing staff, ICU and ward beds,
ORs). After the first wave of COVID-19, there were about
1000 postponed elective interventions on stand-by that the
EOC needed to schedule and execute promptly. Due to the
learning from improved planning, the EOC changed its OR
allocation scheme, basing it on need instead of by specialty,
which allowed it to quickly process all pending interventions.
The resource effectiveness mindset also led management to
stress test a previous capacity expenditure decision. Before
the start of the COVID-19 pandemic, the EOC’s board of
directors had approved an investment of CHF 250 Million
to expand EOC’s ICU capacity. Due to the changes imple-
mented during the pandemic and improved OR scheduling,
the EOC deemed the capacity expansion unnecessary.

In our conversation, we also investigated what the public
hospital system and health officials could do differently
to better prepare for future pandemics. The Cantonal and
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Federal authorities have explored two regulatory changes
that would lead to improved flexibility and faster services:
intervention authorizations and financial responsibility for
COVID tests. Regarding the former, authorizations for dif-
ferent medical interventions are currently given to specific
hospital sites (e.g., to a location), not to doctors, whose skills
and training enable such interventions. The regulation for
intervention authorization is based on an outdated concept
that did not foresee doctors’ moving across hospitals. During
the crisis, this regulation was temporarily suspended to
authorize the COVID-19 dedicated hospital to execute the
required medical interventions. A change to this regula-
tion is currently under discussion in Ticino. Regarding the
latter, lack of clarity regarding financial responsibility for
COVID-19 tests resulted in limited test capacity and focused
testing of severely symptomatic. Because Switzerland has
a federalist health system, Cantons are the main actors
planning and providing public health services. These ser-
vices are complemented by those offered by multiple health
insurance companies. In the first months of the pandemic, it
was unclear whether the financial burden would be borne by
Cantonal authorities, insurance companies, or the Federation.
Influenced by a policy paper, written by members of the
Ticino COVID-19 taskforce, the Federation took over finan-
cial responsibility for COVID-19 tests. Such change ensured
broader availability of tests and a better understanding of the
progression of the disease. Finally, at the EOC, a possible
change under consideration deals with training of nursing
staff. The public health system struggled with enhancing
nursing ICU capacity during the pandemic. Due to a siloed
training approach, nurses train only in a specific area and
tend to remain there. The public health system realized
the need to change the training system, making it more
integrated and allowing nurses to learn different specializa-
tions through rotation across departments. This approach
would make the job more interesting for nurses, while also
ensuring that the system would have a sufficiently large (and
occupied) well-trained staff to provide flexibility in future
emergencies.

6.4 | Future research

Naturally, there are ample opportunities for further research
both on agile participatory systems modeling processes and
on volume flexibility strategies during emergencies. In terms
of the former, our design was driven by an urgent need to
address a pressing challenge, not by meticulous consideration
of the best possible choices. Hence, we conjecture that there
would be further opportunities to improve on the proposed
design. Regarding ‘“collaboration sessions,” future research
could focus on specific designs for these sessions, includ-
ing ideal number of sessions, frequency, critical composi-
tion, content, focus, objectives, and communication protocol.
Regarding the adequate composition of advisory, consulta-
tion, research, and modeling groups, future research could
consider specific criteria for the inclusion (or exclusion) of
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different stakeholders in each of the groups. Future research
could also consider: What would be an ideal communication
protocol across groups? Should the frequency of meetings be
dictated by the speed that the problem evolves?

There were also unique factors contributing to the forma-
tion of our research team and the success of our interven-
tion. The sense of urgency and the high-stakes situation cre-
ated a favorable environment to form a new collaboration
that was both pragmatic and results oriented. The research
team included a policymaker, a decision-maker, an SD mod-
eler, and a topic expert, which gave us significant discretion
regarding policy implementation in the public hospital sys-
tem and the ability to influence Cantonal policy decisions.
At the same time, our team was embedded in a much larger
and influential network (i.e., through our informal meetings
with our advisory, consultation, and modeling groups), which
provided us with state-of-the-art knowledge and up-to-date
information on the new COVID-19 research insights glob-
ally. Given the uniqueness of the context and our team, future
research efforts could consider specific ways in which the
lack of diversity (e.g., policymaker, decision-maker, SD mod-
eler, topic expert) in the composition could impose limita-
tions on the ability of the team to achieve success.

Our research on volume flexibility strategies during emer-
gencies suggests that the need to respond quickly, limits the
meaningful strategies that can be deployed to those that (i)
leverage already available internal resources or already exist-
ing collaborations or (ii) prioritize critical services. Future
research could explore other general conditions (and provide
examples) that would allow other strategies to be deployed.
Future research could also consider other types of deviations
from traditional strategies deployed during normal times
that take place during emergencies. In addition, our research
highlighted that to address the high level of uncertainty
and achieve high volume flexibility, healthcare organiza-
tions were tweaking their strategies to meet their needs.
For instance, independent workforce flexibility strategies
typically deployed as a shielding strategy were instead imple-
mented in combination as a mitigating strategy to yield high
flexibility. Future research could explore further examples
of similar strategic deviations due to contextual conditions.
Finally, it would be interesting to develop future research
and further understanding of what, Jack and Powers’ (2004)
call, “linkages associated with the combination of strate-
gies” and “specific tactics” deployed by managers during
emergencies.

In summary, our dynamic modeling research clarified
existing interconnections, established hierarchies and inter-
dependencies, identified, and informed policies, and quanti-
fied their long-term impact. Our research on volume flexibil-
ity strategies during emergencies showed new insights when
compared to the deployment of such strategies in normal
times. Our agile participatory systems modeling seemed to
address typical shortcomings of traditional participatory pro-
cesses. We believe that the contributions described in this
research can not only be applied to improve healthcare opera-
tions in future emergencies but also motivate further research.
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ENDNOTES

'Key participants in these “collaborative sessions” were, among others,
public officials working for the Department for Health and Society (Dipar-
timento della sanita e della socialita—DSS), a department responsible
for cantonal health policy. “Collaborative sessions” typically involved no
more than 10 people and were relatively short lasting typically about
90 min. The relative success of these sessions led later on to a DSS ini-
tiative to fund and setup a separate project to track the second wave of the
epidemic and formally support public health policy decisions.

2 A research effort in which our mathematical modeler expert is also a coau-
thor.

3 Supporting Information Appendix Al provides further details on the cali-
bration process described in Section 2.2.

4The use of uniform distribution for parameter ranges leads to wider confi-
dence intervals for the sensitivity analysis. Our rationale for using ad hoc
parameter ranges and a high variance distribution is to capture qualitative
insights about parameter ranges that could potentially move beyond values
reflected in historical data.

3 Supporting Information Appendix A2 provides further details on the fore-
casting process in Section 3.1.

6 Supporting Information Appendix A3 provides further details on the cali-
bration and sensitivity analysis described in Section 3.2.

"1n total, the EOC had about 32 full time equivalent (FTE) staff, organized
in a structured hierarchy with senior consultants (two FTE), junior consul-
tants (3.4 FTE), registrars (9.8 FTE), and residents (17 FTE).

8 Supporting Information Appendix A4 provides further details on the hos-
pital infrastructure available prepandemic and the changes implemented in
response to the expected surge in patient demand.

9 Supporting Information Appendix A5 provides further details on the allo-
cation of ICU beds to the COVID-19 dedicated facility in Locarno.

101 addition to oxygen capacity, it was important to ensure a robust oxygen
delivery system (i.e., that oxygen from the tanks would arrive at patients’
beds). Because high oxygen flows can cause a dramatic drop in temper-
ature around the pipes, there was a heightened risk of failure during the
surge in demand. To avoid failures and increase system reliability, hospi-
tal operations increased insulation of pipe systems, reviewed the battery
systems and implemented a backup in case of failure.

' Supporting Information Appendix 6 presents a counterfactual for an early
forecast (on March 7) of required hospital capacity in Ticino, anticipating
the timing of the forecast in one week.

12Both of them are members of our research team.
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