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Abstract

The Java Vector API is a new module introduced in Java 16,
allowing developers to concisely express vector computa-
tions. The API promises both high performance, achieved
via the runtime compilation of vector operations to hard-
ware vector instructions, and portability. To the best of our
knowledge, there is no study evaluating the performance of
the new Java Vector APL

To bridge this gap, we propose JVBench, to the best of our
knowledge, the first open-source benchmark suite for the
Java Vector API. JVBench extensively exercises the features
introduced by the Java Vector API, resulting in high API
coverage. We use JVBench to evaluate the performance and
portability of the Java Vector API on multiple architectures
supporting different vector instruction sets. We compare
the performance of the Java Vector API on our benchmarks
w.r.t. other semantically equivalent implementations, includ-
ing scalar (non-auto-vectorized) Java code as well as Java
code auto-vectorized by the Just in Time (JIT) compiler. Fi-
nally, we report patterns and anti-patterns on the use of the
Java Vector API significantly affecting application perfor-
marnce.
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1 Introduction

Modern processors provide Single Instruction Multiple Data
(SIMD) capabilities via vector instructions that exploit dedi-
cated hardware. Vector instructions are particularly effective
to access contiguous memory and perform the same oper-
ation on different elements. For this reason, transforming
scalar loops to vectorized loops, i.e., loops that exploit vector
instructions, is crucial to obtain significant speedups. We
refer to the process of transforming scalar code to vectorized
code as vectorization.

Vectorization is usually performed by the compiler, which
recognizes suitable code using scalar instructions and au-
tomatically transforms it into code using vector instruc-
tions. We say that compilers auto-vectorize scalar code. Al-
though auto-vectorization is an automatic technique, devel-
opers have to write scalar code following predetermined
patterns (e.g., using counted loops [23]). Otherwise, auto-
vectorization may fail in optimizing scalar code. To mitigate
this issue, languages often offer high-level APIs or intrinsics
that map to vector instructions and allow developers to ex-
ploit this type of parallelism explicitly. We call this strategy
explicit vectorization.

In this paper, we focus on managed language runtime sys-
tems and, in particular, on the Java Virtual Machine (JVM). To
express explicit vector operations using an object-oriented
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API, Java offers the Java Vector API [12, 32], which was in-
troduced in the Panama [3] project and is accessible starting
from JDK 16. Using the Java Vector API, developers benefit
from greater performance without renouncing the advan-
tages of Java as a high-level programming language. Thanks
to the runtime compilation of Java bytecode to optimized ma-
chine code, the same explicitly vectorized code implemented
using the Java Vector API can be executed on several architec-
tures (possibly supporting different hardware capabilities),
increasing code maintainability and portability.

Contributions. Our work aims at analyzing the perfor-
mance of the new Java Vector API; to the best of our knowl-
edge, such an analysis has not been conducted before. To this
end, evaluating the performance of the API with a bench-
mark suite that significantly exercises vectorization is crucial.
Since we are not aware of any realistic application or bench-
mark that uses the Java Vector API, we design and develop
JVBench, the first open-source benchmark suite extensively
exercising the Java Vector API (Sec. 3). JVBench consists
of several realistic and diversified benchmarks, specifically
designed for evaluating vectorization and exercising most
of the features of the Java Vector API, resulting in high
API coverage. Our benchmarks are inspired from well es-
tablished workloads to evaluate performance of vectorized
code [8, 9, 42], which we recasted to the Java Vector APIL

We use JVBench to evaluate the performance (in terms of
execution time) of the Java Vector API w.r.t. other seman-
tically equivalent implementations, including scalar (non-
auto-vectorized) Java code and Java code auto-vectorized
by the Just in Time (JIT) compiler (Sec. 4). Moreover, we
evaluate the performance of the Java Vector API on different
architectures, reporting cases where the lack of hardware
capabilities leads to performance degradation w.r.t. the cor-
responding scalar implementation.

Thanks to our suite, we also identify several patterns and
anti-patterns on the use of the Java Vector API significantly
affecting application performance (Sec. 5). Our work offers
concrete suggestions to implement high-performance vector-
ized application code, pinpointing performance issues and
improvements that can be implemented in future JDKs.

We complement the paper by presenting background in-
formation (Sec. 2), a discussion on related work (Sec. 6), and
our concluding remarks (Sec. 7).

2 Background

The Java Vector API [12, 32] allows expressing vector compu-
tations using classes and methods that abstract hardware vec-
tor registers and instructions. The abstract class Vector<g>
represents the abstraction of the Java Vector API over vec-
tors of element type E. In particular, the API provides ab-
stract subclasses of Vector<e> that map to primitive element
types, i.e., ByteVector, ShortVector, IntVector, LongVector,
FloatVector, and DoubleVector. In addition to the element
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1 static void scalarAdd(int[] a, int[] b, int[] c¢) {
2 for (int i = @; i < a.length; i++) {

3 c[i]l = alil + b[il;

4 3

5 3

Figure 1. Method scalarAdd.

type, concrete subclasses of Vector<E> have associated a
shape represented by class VectorShape. The shape deter-
mines the bit size of the vector and hence the hardware
vector register that will map to that vector. The combina-
tion of element type and shape (represented by the interface
VectorSpecies) determines the vector length, i.e., the number
of elements the vector contains, computed as the bit size of
the vector divided by the bit size of the element. For example,
an instance of IntVector with a VectorShape of length 512
bits has a vector length of 16 elements (since integers in Java
occupy 32 bits).

Operations on vectors are represented using instance meth-
ods defined in class Vector<e> and in its subclasses. Vector
operations can be divided into lane-wise operations if they
apply a scalar operator (e.g., addition) to each element of
one or more vectors in parallel, or cross-lane operations if
they process the whole vector (e.g., reductions that produce a
scalar from a single vector). Operations on Vector<g> can be
conditionally applied on a subset of elements using a mask
parameter of type VectorMask<E>, which contains a boolean
value for each element. Instances of class VectorMask<E> are
mapped to predicate registers, i.e., hardware registers used
to mask off certain lanes of the vector. instructions.

Internally, the JVM and the JIT compiler implement the
Java Vector API leveraging intrinsic functions, i.e., the Java
Vector API has a default Java implementation that is later
replaced by more efficient machine code. At runtime, the
JIT compiler emits machine code that uses vector registers,
vector instructions, and predicate registers, as expressed by
the application code. The default implementation is executed
before JIT compilation occurs, as well as in the case where the
underlying platform does not support some of the requested
vector features. This design allows executing applications
exercising the Java Vector API even on platforms that do not
support some vector operations.

Figure 1 shows an example scalarAdd Java method that
uses a scalar loop (lines 2-4) to add up the numbers of arrays
a and b (provided as parameters at line 1) and store the sums
in array c (line 3), also provided as a parameter. We assume
that arrays a, b, and ¢ have the same length.

Using the Java Vector API, the scalar loop in method
scalarAdd can be re-implemented as shown in Figure 2. First,
we declare a static final field that stores the optimal Vector
Species (line 2) that will be later used in the vectorized loop.
The IntVector.SPECIES_MAX field stores a species of element
type Integer and shape of maximum length supported on
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Table 1. Classes and methods of the Java Vector API exercised by each benchmark.

Benchmark axpy blackscholes canneal jacobi2d lavaMD particlefilter pathfinder somier streamcluster swaptions

Vector DoubleVector v v v v v

T FloatVector v v M

ype IntVector v v v

VectorMask v v v v
Vector Creation v v v v v v v v v v
Vector Manipulation v

API Unary v v v v M

Method Binary v v v v v v v v v v

ethods Comparisons v v v

thinscendenltal and v v v v v
Trigonometric
Reductions v v v v

static final VectorSpecies<Integer> SPP =

1

2 IntVector.SPECIES_MAX;

3

4 static void vectorAdd(int[] a, int[] b, int[] c) {
5 int i = 0;

6 int limit = SPP.loopBound(a.length);

7

8 for (; i < limit; i += SPP.length()) {

9 IntVector vA = IntVector.fromArray(SPP, a, i);
10 IntVector vB = IntVector.fromArray(SPP, b, i);
11 VA.add(vB).intoArray(c, 1i);

12 }

13

14 for (; i < a.length; i++) {

15 c[i] = ali] + b[il;

16 }

17 }

Figure 2. Explicitly vectorized version of method scalarAdd
(Figure 1), using the Java Vector APL

the executing platform. Then, we define a vectorAdd method
that has the same arguments and return type of method
scalarAdd (line 4). Method vectorAdd first declares an i and
a limit variable of type int used to iterate over the ar-
rays (lines 5 and 6, respectively). To initialize variable 1imit,
we use the VectorSpecies.loopBound(int length) instance
method that, given a length value, returns the largest mul-
tiple of the vector length that is less than or equal to that
length value. This 1imit value is used to implement the vec-
torized loop at lines 8—12, which loops from o to limit with
step SPP.length(), i.e., the vector length specified by SPP,
henceforth referred to as VLENGTH for simplicity.

In the body of the vectorized loop, we declare variables
vA and vB to store two vectors containing VLENGTH elements
starting from index i of arrays a and b, respectively. These ele-
ments are loaded using the IntVector.fromArray(. .) method
calls at lines 9 and 10. Vectors vA and vB are then used to
add up the elements and store the result in array ¢ using the
lane-wise IntVector.add(..) and IntVector.intoArray(..)
instance methods (line 11), respectively. We note that the
upper bound limit of the vectorized loop ensures that no
out-of-bound exception is thrown when accessing arrays.
However, to process potential tail elements, i.e., elements

whose index is greater than or equal to 1imit but less than the
array length, we implement the scalar loop at lines 14-16.

3 Benchmark Suite

In this section, we present JVBench, our benchmark suite
that extensively exercises the Java Vector APIL JVBench is
open-source and is available at https://github.com/usi-dag/
JVBench.

JVBench consists of ten benchmarks specifically designed
for evaluating vectorization. In particular, we port ten C/C++
benchmarks to Java; these workloads [35] were proposed by
Ramirez et al. [36] to benchmark vector microarchitectures.
They are well-established in the literature and are in turn
taken from existing benchmark suites, such as Rodinia [9],
PolyBench [42], and ParVec [8] (a vectorized version of PAR-
SEC [5, 43]). JVBench allows us to evaluate the performance
of the Java Vector API on diversified benchmarks, i.e., on
applications from different domains with different data-level
parallelism patterns that exercise most of the vector instruc-
tions. For a detailed description of each benchmark and more
information regarding the diversification of the benchmarks,
we refer to the article by Ramirez et al. [36].

For each benchmark, we implement two different Java ver-
sions. The first version uses only Java scalar code, while the
second version employs the Java Vector API to exploit vector
instructions. This allows us to evaluate the speedups avail-
able to auto-vectorization and obtained by the Java Vector
API, respectively, w.r.t. an equivalent scalar implementation.

Table 1 shows the features of the Java Vector API (re-
ported on the y-axis) exercised by the vector implementa-
tion of each benchmark of our suite (reported on the x-axis).
We divide features into three groups: Vector Type, Vector-
Mask, and API Methods. Vector Type contains the subclasses
of Vector<E>, VectorMask represents any masked operation,
and API Methods contains a classification of the vector op-
erations as reported by related work [13]. The table does
not report subclasses of Vector<E> as well as categories of
vector operations that are exercised by no benchmark. We
do not exercise any shape-changing operations because as
stated by the official JEP [32], shape-changing operations
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can negatively impact portability and performance. Finally,
we do not report the vector length since our implementation
always uses vectors of the maximum vector length, i.e., we
use the maximum vector length based on the underlying
architecture to maximize the potential runtime speedup.
The table shows that five benchmarks exercise DoubleVector,
three benchmarks exercise FloatVector, and three bench-
marks exercise IntVector. Each benchmark makes use of a
single vector type with the exception of blackscholes that
uses both FloatVector and IntVector. Four benchmarks (out
of ten) exercise the class VectorMask<E> (and hence predicate
registers) to perform masked operations, such as masked
memory accesses, masked lane-wise operations, or masked
cross-lane operations. As expected, all benchmarks use opera-
tions to create vectors. However, only blackscholes uses oper-
ations to manipulate vectors (in particular, Vector.blend(..)
and VectorMask.cast(. .)). Five benchmarks execute unary
operations (such as Vector. abs() and VectorMask.not()), while
all benchmarks perform binary operations (such as Vector.
add(..), Vector.mul(..), VectorMask.and(..), etc.). Three
and five benchmarks exercise comparisons (such as Vector.
eq(..)) and transcendental and trigonometric operations
(such as Vector.sqrt()), respectively. Finally, four bench-
marks perform reductions (e.g., by summing up all the ele-
ments of a vector). Considering the benchmarks altogether,
JVBench covers most of the features of the Java Vector API.

4 FEvaluation

Here, we present our evaluation settings (Sec. 4.1) and eval-
uate the performance of the Java Vector API (Sec. 4.2).

4.1 Evaluation Settings

We run all experiments on three machines Mayx;,,, Mavx,,
and Mayx. Mavx;,, is equipped with an 18-core Intel i9-10980XE
(3.00 GHz) with 256 GB of RAM; Mayx, is equipped with an
16-core Intel 19-10885H (2.40 GHz) with 32 GB of RAM; Mayx
is equipped with two NUMA nodes, each with an 8-core In-
tel Xeon E5-2680 (2.7 GHz) and 64 GB of RAM. Frequency
scaling, turbo boost, and hyperthreading are disabled, CPU
governor is set to “performance”. All the three machines run
Linux Ubuntu (kernel v. 5.4.0-58-generic).

Mavyxs,,, supports most of the recent vector instructions de-
fined in the Streaming SIMD Extensions (SSE) and Advanced
Vector Extensions (AVX), while Mayx, and Mayx do not. Mayx
supports only the Intel-defined CPU flags sse, sse2, ssse3,
sse4_1, sse4_2, and avx, while Mayx, supports also the flags
avx2, and fma. In addition to the flags of Mavx,, Mavx;,, sup-
ports also the flags avx512f, avx512dq, avx512cd, avx512bw,
avx512v, and avx512_vnni. This allows evaluating the perfor-
mance of the Java Vector API in the best case scenario, i.e.,
in the case where the JIT compiler can compile all vector op-
erations to the corresponding vector instructions (machine
MQyyx,,,), and in two suboptimal scenarios (machines Myyx,
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Figure 3. Evaluation of the Java Vector APL

and Myyx), i.e., in a case where some vector operations are
executed using the default Java implementation of the Java
Vector APIL. The maximum vector size supported by Mayx.,,,
Mavx,, and Mayx is 512, 256, and 128 bits, respectively. We
note that the Java Vector APl aims at offering reliable runtime
compilation and performance only on the x64 and AArch64
architectures [32]. Hence, our evaluation settings ensure
reasonable hardware-platform coverage w.r.t. the hardware
platforms supported by the APL
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We perform our experiments on OpenJDK 19, i.e., the latest
release at the time of writing. The JDK uses the HotSpot C2

compiler, which implements Superword Level Parallelism [24].

In C2, the superword optimization is applied only to unrolled
loops, and unrolling is performed only for counted loops [23].
We plan to conduct our experiments on other JVM imple-
mentations (such as OpenJ9 [10] and GraalVM [2]) as part
of our future work since, at the time of writing, the devel-
opment of the API-related compiler optimizations on these
implementations is ongoing [1, 11].

4.2 Evaluation Results

We execute four different versions of each benchmark of our
suite: scalar, auto-vectorized, vector-api, and fully-vectorized.
The scalar version uses the Java scalar implementation of
the benchmark, disabling the compiler auto-vectorization;
this version serves as a baseline to evaluate the speedups
achieved by the other three versions. The auto-vectorized
version uses the Java scalar implementation of the bench-
marks without disabling the compiler auto-vectorization; it
is useful to assess the speedups automatically enabled by the
compiler. The vector-api version uses the Java Vector API
implementation of the benchmarks, disabling the compiler
auto-vectorization; it allows assessing the speedups enabled
by the Java Vector API. Finally, the fully-vectorized version
uses the Java Vector API implementation and the compiler
auto-vectorization simultaneously. This version enables the
analysis of possible interferences of the Java Vector API and
the compiler auto-vectorization. We note that it is not our
goal to compare the performance speedups enabled by the
Java Vector API with the performance speedups presented
in the original article by Ramirez et al. [36].

Figure 3 reports the speedup factor computed as Tyqq14r/
Tyersion, Where Tyerion refers to the execution time of either
auto-vectorized, vector-api, or fully-vectorized, and T.q,, refers
to the execution time of scalar. Each plot refers to a different
machine. In particular, the plots 3a, 3b, and 3c report the
speedup factors on Mayx,,,,» Mavx,, and Mayx, respectively.
The benchmarks are reported on the x-axis of the plot, while
the speedup factor is reported on the logarithmic y-axis.
Above each bar, we report the exact value of the speedup as
the mean of 10 measurements. The black error bars represent
the 95% confidence intervals (CI) of the measurements.

We analyze now the three versions of the benchmarks.
By analyzing the auto-vectorized version, we notice that
axpy is the only benchmark the compiler is able to auto-
vectorize effectively, and hence it is the only benchmark that
yields a speedup similar to the other versions. The speedups
of the auto-vectorized version are 1.24X, 1.07X, and 1.04x
on Mvx,,» Mavx,, and Mayx, respectively. The reason is
that axpy is much simpler than the other benchmarks of
the suite—auto-vectorization is not inhibited by potentially
aliasing references or dependencies between loop iterations.

CC ’23, February 25-26, 2023, Montréal, QC, Canada

These results confirm the need for an API to explicitly ex-
press vector computations, such as the Java Vector APL

Next, we consider the vector-api version on Mayx;,, and
Mayx, . Our results show that most of the benchmarks highly
benefit from explicit vectorization, with overall slightly bet-
ter results on Myyx,,, than on Mayx,. This is expected, since
the maximum vector size on Mayx,, is 512 bits while the max-
imum vector size on Myyx, is 256 bits. Explicit vectorization
on blackscholes and lavaMD yields impressive speedups of
9.55x and 11.99X on Mayx;,, and 8.04X, and 10.32X on Mayx,,
respectively. The reason is that blackscholes and lavaMD per-
form many vector computations.

Among the evaluated benchmarks, axpy, canneal, jacobi2d,
and swaptions benefit the least from explicit vectorization,
with a maximum speedup of 1.62x (swaptions on Mayxs,,)-
Despite the moderate 2.77x speedup on Mayx,,,, particle-
filter introduces a slowdown of 0.81X on Mayy,. In particular,
particlefilter is the only benchmark that encounters a slow-
down w.r.t. its corresponding scalar version when using the
Java Vector API on Muyx, and Mayx;,,. We are investigating
the causes of this slowdown. Speedups obtained by using
the vector-api version range from 1.19X (jacobi2d) to 11.99x
(lavaMD) and from 0.81x (particlefilter) to 10.32X (lavaMD)
on Mayx,,, and Mayx,, respectively. The average speedup
factor! is 2.98x on Muvx;,,, and 2.39X on Mayy, .

The vector-api version on Mayy yields significantly smaller
speedups than the ones on Mayx;,, and Myx,. This is because
Mayx only supports a maximum vector size of 128 bits, and
because Mayx does not support many hardware vector in-
structions. For instance, Mayx does not support predicate
registers and hence cannot efficiently execute masked oper-
ations. This is reflected by the poor performance of bench-
marks canneal (0.78X), particlefilter (0.01X), and swaptions
(0.17x%). In these benchmarks, the Java Vector API falls back to
a Java implementation that allocates the vector instances and
executes Java methods encoding vector operations as scalar
loops. Since the execution of blackscholes is not dominated
by masked operations, blackscholes still yields a speedup of
3.28%. Speedups obtained by using the vector-api version on
Mayx range from 0.01X (particlefilter) to 3.28% (blackscholes),
0.77X on average.

In terms of speedups, we notice that the fully-vectorized
and vector-api versions are comparable (except particlefilter
on Myyx, due to the reasons explained in the previous para-
graph). This indicates that the compiler auto-vectorization
does not interfere with the Java Vector APIL

To summarize, on modern architectures, the Java Vector
API provides significant performance benefits w.r.t. auto-
vectorization, which is ineffective in optimizing almost every
benchmark in our suite. On architectures that do not support

! Average speedup factors across multiple benchmarks are computed using
the geometric mean.
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1 static final VectorSpecies<Integer> SPP =

2 IntVector.SPECIES_MAX;

3

4 static void vectorAdd(int[] a, int[] b, int[] c) {
5 for (int i = @; i < a.length; i += SPP.length()) {
6 VectorMask<Integer> mask =

7 SPP.indexInRange(i, a.length);

8 IntVector vA =

9 IntVector.fromArray(SPP, a, i, mask);

10 IntVector vB =

11 IntVector.fromArray(SPP, b, i, mask);

12 VvA.add(vB).intoArray(c, i, m);

13 3

14 3}

Figure 4. Method vectorAdd of Figure 2 using the
indexInRange APL

modern vector instructions and predicate registers, the per-
formance benefits are less evident, confirming the graceful
performance-degradation goal of the API for most of the eval-
uated benchmarks. The graceful performance-degradation
goal is not achieved for three of the evaluated benchmarks,
indicating the need for benchmarking when implementing
performance-critical code on old hardware.

5 Patterns and Anti-Patterns

In this section, we present patterns and anti-patterns ex-
ploiting the Java Vector AP, i.e., performant API usages and
semantically equivalent less performant API usages, respec-
tively. In particular, we present patterns and anti-patterns
that we found in our benchmarks. Since the benchmarks are
representative of real-world applications using vectorization,
the reported patterns and antipatterns have practical rele-
vance for all users. First, we present our evaluation settings
(Sec. 5.1). Then, we present the performance implications
of using the indexInRange API (Sec. 5.2) and transcendental
and trigonometric lane-wise operations (Sec. 5.3). Finally, we
discuss the xor and fma operations (Sec. 5.4 and 5.5).

5.1 Evaluation Settings

We run our experiments to evaluate patterns and anti-patterns
using the same evaluation settings described in Sec. 4.1.
However, we evaluate each pattern/anti-pattern separately
only on the benchmarks of our suite that can exercise that
pattern/anti-pattern. For example, we evaluate the pow op-
eration (Sec. 5.3) only on four benchmarks of our suite, i.e.,
all the benchmarks of our suite that need to compute the
power of a number. In this section, each figure reports the
speedup factor of each pattern and anti-pattern using the
same formula presented in Sec. 4.2, i.e., Tycalar/ Tpattern, Where
Tpattern refers to the execution time of the implementation
that uses a certain pattern and Ty, refers to the execution
time of the scalar version. We note that the Java Vector API
implementation of our benchmarks (employed in Sec. 4.2)
uses the patterns that we have found, leading to the best
performance.
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5.2 indexInRange API

Figure 2 shows an example vectorAdd method that uses the
upper bound provided by the VectorSpecies.loopBound(..)
method (line 6) to loop over the array and vectorize the
addition (lines 8-12). The main drawback of this approach
is that the tail elements exceeding the upper bound must be
processed by a scalar loop (lines 14-16). The programmer is
burdened to implement both a vectorized loop and a scalar
loop that are semantically equivalent, duplicating code and
hence, increasing maintenance costs and complexity.

To simplify the Java source code, removing the scalar loop,
the Java Vector API offers a VectorSpecies.indexInRange(
offset, limit) instance method returning a mask of the
given species where only the lanes at index N are set, such
that N + offset € [0..limit — 1]. Figure 4 shows the vectorAdd
method of Figure 2 implemented using indexInRange. While
the scalar loop (Figure 2, lines 14-16) has been completely
removed, the remaining for statement loops until i reaches
the length of the array a.length (line 5). For each iteration,
the indexInRange method is invoked providing i as offset and
a.length as limit (line 7) and returns the mask to be used to
load from (lines 8—11) and write into arrays (line 12) with-
out throwing out-of-bounds exceptions—the mask prevents
access to the arrays beyond their length.

On platforms supporting predicate registers (such as Mayx;,,
and Mayy,), the developers of the Java Vector API (according
to the JEP [32]) would prefer users to implement code using
indexInRange, which should lead to performance compara-
ble to loopBound. On platforms that do not support predi-
cate registers (such as Muyy), the indexInRange API would
achieve only suboptimal performance. Following these state-
ments, we are interested in 1) testing whether 1oopBound and
indexInRange performance is indeed comparable or one is
slightly faster than the other, and 2) whether the indexInRange
API leads to acceptable performance on platforms that do
not support predicate registers.

Figures 5 shows the performance of the two APIs on all
the benchmarks of our suite. In particular, experimental re-
sults show that loopBound is faster than indexInRange both
on platforms that support and on platforms that do not sup-
port predicate registers (except swaptions on Mayxs,,). On
platforms that support predicate registers, loopBound yields
a speedup that ranges from 0.83% (particlefilter on Mayx,)
to 11.96x (lavaMD on Mayx,,,), 2.67X on average, while
indexInRange yields a speedup that ranges from 0.11x (ja-
cobi2d on Mayx,) to 9.13X (lavaMD on Myyx;,,), 1.33X on av-
erage. On these platforms, indexInRange achieves speedups
on most of the evaluated benchmarks. For benchmarks axpy,
jacobi2d, pathfinder, and somier, indexInRange introduces a
slowdown w.r.t. the corresponding scalar version. The rea-
son is that a masked vector operation (e.g., a vector memory
access and a vector computation) is typically slower than
the corresponding unmasked operation.
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Figure 5. Evaluation of the loopBound and indexInRange APIs.

On platforms that do not support predicate registers, loop-
Bound is significantly faster than indexInRange, with speedups
ranging from 0.01x (particlefilter) to 3.25x (blackscholes)
and from 0.01x (particlefilter) to 2.78x (blackscholes) for

loopBound and indexInRange, respectively. The average speedup

is 0.76X for loopBound and 0.14X for indexInRange. On these
platforms, indexInRange introduces a slowdown w.r.t. the
corresponding scalar version on most of the benchmarks.

In contrast to the suggestion of the developers of the Java
Vector API [32], experimental results suggest the usage of the
loopBound method over the indexInRange method to achieve
better performance. Users may consider using the loopBound
method to implement portable code that does not lead to
performance degradation on architectures that do not sup-
port predicate registers, despite increasing code size and
complexity. For instance, we recommend the usage of the
loopBound method for the development of third-party Java
libraries where the executing architecture is not defined a
priori, old, or subject to change. Finally, experimental results
highlights the need for compiler optimizations to improve
the performance of the indexInRange APL

5.3 Transcendental and Trigonometric Lane-Wise
Operations

On x64, to support transcendental and trigonometric lane-
wise operations on floating point vectors (e.g., sin, tan, log,
pow, and more), the Java Vector API leverages the Intel Short
Vector Math Library (SVML) [14, 15]. In particular, based on
the VectorSpecies, the JIT compiler replaces transcendental
and trigonometric lane-wise operations of the Java Vector
API with calls to SVML functions.

We analyze whether the compiler properly optimizes code
that leverages these operations. In particular, we evaluate
two versions of four benchmarks of our suite that com-
pute the square of floating point numbers stored in a vec-
tor vec. Version pow uses the expression vec.pow(2) while
version mul uses the semantically equivalent expression
vec.mul(vec). We expect that, thanks to compiler optimiza-
tions, versions pow and mul result in similar performance.

Figure 6 shows that mul is faster than pow on all the eval-
uated benchmarks and machines. Moreover, pow yields a
slowdown on all the evaluated benchmarks (except blacksc-
holes on Myx,,, and Mayx,) w.r.t. the corresponding scalar
version. The reason is that mul does not need to perform any
function call to the SVML library (in contrast to pow) and
the mul operation is compiled directly to a single vector in-
struction. In contrast to our expectation, the measurements
indicate that the compiler does not optimize (even if it could)
invocations to the SVML library—the expression pow(2) can
be strength-reduced at compile time to vec.mul (vec).

Among the evaluated benchmarks, streamcluster suffers
the most from performance degradation when using the pow
operation. We note also that Mayx, and Mayx do not support
hardware vector instructions for pow, which is supported
only by Mayx;,,. This explains the moderate speedup of pow
on Mayx, w.r.t. the significant speedup of pow on Mayx;,,
for the blackscholes benchmark (2.10x and 5.25X, respec-
tively). The average mul speedup is 3.68X on Mayx,,,, 3.29%
on Mayy,, and 1.37X on Mayx, while the average pow speedup
is 0.54x on Mayxs,,, 0.79% on Mayy,, and 0.27X on Muyx.

Our experimental results suggest to use transcendental
and trigonometric lane-wise operations with care. Moreover,
our findings suggest a potential lack of compile-time opti-
mizations of vector operations. We plan to open an issue
on this matter and analyze more in-depth potential missed
optimizations as part of our future work.

5.4 Xor Operation

The VectorMask class, i.e., the abstraction of the Java Vec-
tor API representing hardware vector masks, offers sev-
eral instance methods to manipulate masks, including not (),
and(..), andNot(..), or(..), and eq(..). However,
VectorMask does not provide any public xor (. .) method that
is compiled directly to the corresponding hardware vector
instruction, even though such a hardware vector instruction
is supported by some architectures.

To implement an xor operation between two masks, the
programmer can combine other existing operations to per-
form a semantically equivalent computation yielding the
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Figure 6. Evaluation of the vec.mul(vec) and vec.pow(2) patterns.

public Float512Mask not() {
return xor (maskAll(true));
3}

public Float512Mask eq(VectorMask<Float> mask) {
Objects.requireNonNull (mask);
Double512Mask m = (Double512Mask)mask;
return xor(m.not());

3}

o R . I TR RN

Figure 7. Java implementation of the not and eq Java Vector
API operations on masks in OpenJDK.

same result. For example, given mask1 and mask2, two in-
stances of VectorMask of the same generic type, mask1 xor
mask2 is equivalent to the logical expression

mask1.or(mask2).andNot (mask1.and(mask2));

and also to the expression

maskl.not().eq(mask2);

However, by inspecting the source code of Open]DK, we
note that eq(..) and not() (and hence also andNot(..), in-
ternally implemented as mask1.and(mask2.not())) rely on a
package-visible method xor(..), as shown in Figure 7. This
xor(..) method, which cannot be referenced by application
code, is efficiently compiled to the corresponding hardware
vector instruction if the underlying architecture supports it.

Among the benchmarks of our suite, particlefilter requires
a binary xor(..) operation on two masks. For this reason,
we evaluate three implementations of the xor(..) operation.
The first and the second implementations named logical-
xor and neg-xor rely on the first and second patterns pre-
sented in the previous paragraph, respectively. The third
implementation simply named xor uses the aforementioned
package-private xor(..) method. To do so, we compile and
execute the xor implementation using a custom JDK build
that defines the xor(..) method as public.

Figure 8 shows the experimental results of the xor patterns
on Mayx;,,. We do not report a plot for Mayx and Muyx,, since
particlefilter (i.e., the only evaluated benchmark for these
patterns) yields poor performance on Mayy and Mayy, even
using the most efficient pattern (as shown in Sec. 4.2). As
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Figure 8. Evaluation of the xor pattern on Mayx;,,.

expected, our results show that the public xor method yields
better performance than neg-xor, which in turns yields better
performance than logical-xor. The speedup of xor, neg-xor,
and logical-xor is 3.25X%, 2.83X%, and 1.99X, respectively.

To summarize, defining the xor(..) method as public
would greatly benefit users, who currently have to use al-
ternatives. We suggest the developers of the Java Vector
API to consider the inclusion of the xor(..) operation in
the specification of the Java Vector API. We will open an
issue on this matter. Among the alternatives, users can im-
plement the xor operation between two masks using the
mask1.not().eq(mask2) pattern.

5.5 Fused Multiply-Add (FMA) Operation

Nowadays, many processors support fused multiply-add
(FMA) instructions for both floating-point scalar and SIMD
operations. An fma(a, b, c) operation, where a, b, and c can
be either floating-point numbers or vectors, is semantically
equivalent to the expression a * b + c. However, while
the expression a * b + c involves the execution of two
instructions and hence two rounding errors (one for the mul-
tiplication and one for the addition), a single FMA instruction
evaluates the result rounding only once after the addition.
For this reason, an FMA instruction yields a result that is
typically closer to the true mathematical result w.r.t. its corre-
sponding expression. The Java Vector API allows exploiting
FMA instructions operating on both float and double num-
bers via instance methods defined in the classes FloatVector
and DoubleVector, respectively. In this section, to simplify
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code and explanation, we focus on FloatVector. However,
we note that the evaluated benchmarks use both FloatVector
and DoubleVector. The two FMA instance methods operating
on FloatVectors are reported below:

fma(float b,
fma(Vector<Float> b,

float c¢);
Vector<Float> c);

Values b and c are provided as parameters, while a is the
instance of FloatVector on which the method is called.

To test the performance of the fma operations, we evalu-
ate four different implementations of the benchmarks axpy,
lavaMD, and somier. In contrast to the previous sections,
we evaluate two vector implementations, namely fma and
mul-add, and two scalar implementations, namely scalar-
fma and scalar-mul-add. fma uses the aforementioned meth-
ods, i.e., benchmarks perform a.fma(b, c), while mul-add
uses the corresponding a.mul(b).add(c) expression. The
scalar implementations scalar-fma and scalar-mul-add use
Math.fma(a, b, c) and the expressiona * b + c, respectively.
Experimental results are reported in Figure 9. In particular,
we compare fma with scalar-fma (scalar-fma/fma column)
and mul-add with scalar-mul-add (scalar-mul-add/mul-add
column) to analyze the performance of the Java Vector API
w.r.t. a corresponding scalar implementation, i.e., a scalar
implementation that maintains the same rounding error (and
hence accuracy). In case the different accuracy in the com-
parison between the two implementations is not a concern,
comparing fma with mul-add (fma/mul-add column) allows
determining the most efficient vector implementation.

On Mayx,,, and Mayx,, versions fma and mul-add intro-
duce a significant speedup w.r.t. their corresponding scalar
versions (except for benchmark axpy whose speedups are
close to 1). In particular, fima introduces a maximum speedup
of 14.52x (lavaMD on Mayx,,,) while mul-add introduces a
maximum speedup of 11.96X (lavaMD on Mayy;,,). More-
over, fma is slightly faster than mul-add on all the evaluated
benchmarks (except axpy on Mayx, ).

However, experimental results on Mayy significantly differ
from the ones obtained on both Mayx,,, and Myx,. Due to
the limited maximum vector size, version mul-add introduces

a moderate speedup w.r.t. its corresponding scalar version
(1.03%, 1.11X, and 2.56X on axpy, lavaMD, and somier, respec-
tively). Surprisingly, version fma introduces a slowdown for
all the evaluated benchmarks, indicating that scalar code us-
ing Math. fma is faster than the corresponding vector version.
The slowdown ranges from 0.65% (lavaMD) to 0.96X (somier)
and is motivated by the fact that Mayx does not support the
fma hardware instructions (fma CPU flag). The vector fma
version executes a Java implementation that loops over the
elements of the Java vectors and invokes that scalar Math. fma
for each element, resulting in additional runtime computa-
tion w.r.t. the corresponding scalar version. The mul-add
version is 230.31X, 941.49X%, and 134.69X faster than fma on
axpy, lavaMD, and somier, respectively. Results suggest to
avoid both scalar and vector fma APIs on platforms that do
not properly support them.

To summarize, when floating-point calculation accuracy
is a concern, users may exploit the Java Vector API only if
the executing platform supports the frma CPU flag. If the
executing platform does not support the fma CPU flag, de-
pending on the input size and execution frequency of the fma
operation, a scalar implementation may be preferable. When
floating-point calculation accuracy is not a concern, the pro-
grammer may consider implementing vector computations
using the a.mul(b).add(c) pattern. In this way, application
code leads to performance speedups regardless of the exe-
cuting architecture. We suggest to the developers of the API
to include performance notes in the documentation.

6 Related Work

To the best of our knowledge, no benchmark suite for the
JVM focuses on data parallelization and uses the Java Vec-
tor APL SPECjvm2008 [39] exercises computationally inten-
sive workloads. SPECjbb2015 [40] simulates an IT infrastruc-
ture of an online supermarket. DaCapo [6] offers complex
Java applications with non-trivial memory loads and Scal-
aBench [38] focuses on Scala programs. Renaissance [34]
focuses on data parallelization, contains diversified modern
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concurrency and parallelism workloads, and is mainly de-
signed for testing JIT compilers. None of these benchmark
suites exercises the Java Vector API.

Other languages offer benchmark suites specifically de-
signed to evaluate vectorization. As already detailed in Sec. 3,
our benchmark suite is based on the RISC-V Vectorized
Benchmark Suite proposed by Ramirez et al. [36], which
in turn contains workloads taken from Rodinia [9], Poly-
Bench [42], and ParVec [8] (a vectorized version of the PAR-
SEC [5, 43] suite). VectorBench [27, 37] is a C++ benchmark
suite that uses intrinsics for vector instructions. The suite
consists of both a scalar and a vectorized version of the
benchmarks. Finally, the Test Suite for Vectorizing Compil-
ers (TVSC) [7] is collection of 100 Fortran loops used to test
the effectiveness of an automatic vectorizing compiler.

To the best of our knowledge, no related work presents a
detailed performance analysis of the Java Vector APL. Mar-
neni [25] explores the possibility to add distributed function-
alities to ScalaTion [28] and the possibility of using the Java
Vector API to write computational intensive applications in
Java. Unfortunately, the work does not present an evaluation
of the Java Vector API on several architectures, using bench-
marks that cover most of the API features, and presenting
patterns and anti-patterns. Similarly, Ertl [17] describes the
Java Vector API without performing any evaluation.

In managed languages, one prominent approach to de-
velop highly optimized code that exploits explicit vectoriza-
tion consists in the definition and implementation of low-
level native functions. In the case of Java, these native func-
tions are invoked via the Java Native Interface (JNI). Halli
et al. [21] report a performance comparison between Java
code and optimized native functions, showing how Java can
benefit from JNI calls. Stojanov et al. [41] propose an au-
tomated and systematic approach to let developers access
vector instructions using an embedded domain-specific lan-
guage (EDSL). Vector instructions are mapped to optimized
C kernels invoked via JNI. Our evaluation shows that the
Java Vector API enables implementing vectorized code di-
rectly in Java without sacrificing the benefits of managed
languages. We leave a performance comparison of the Java
Vector API with the above approaches as future work.

The most relevant approach to explicit vectorization in
Java is the implementation of the Java Vector Interface
(JVI) [30] in the JIT baseline compiler Jitrino [20]. Similar
to the Java Vector API, JVI enables using vector operations
through Java methods that are compiled by Jitrino to hard-
ware vector instructions. Unfortunately, JVI can be used only
with the Jitrino compiler and the Apache Harmony VM [19],
an Apache project that has reached its end of life.

Other work offers APIs and strategies that allow using vec-
tor instructions in both managed and unmanaged languages.
In particular, Eidt and Gooding [16] introduces SIMD sup-
port for .NET via a high-level library that exploits intrinsics,
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similar to the Java Vector API. Mono.SIMD [33] is a work-in-
progress explicit SIMD API for the Mono C# compiler. Mc-
Cutchan et al. [26] introduce explicit vector instructions in
Dart and Javascript VMs. Boost.SIMD [18] and Intel’s Array
Building Blocks [29] simplify the usage of SIMD hardware
within a standard C++ programming model. Finally, Nuzman
et al. [31] propose a split vectorization framework to facili-
tate portable auto-vectorization across diverse SIMD targets.

7 Concluding Remarks

Limitations. Our analysis focuses on an incubating API
of the JDK. This implies that the API may substantially evolve
between JDK versions. As detailed in Sec. 4, all experiments
were executed on JDK19 (the latest release at time of writing)
to take into account the most up-to-date version of the API.
We believe that our benchmark suite, analysis and pattern
identification may help the developers of the Java Vector API
identify performance issues and improve the implementation
before the final release.

JVBench includes benchmarks using a wide spectrum of
vector types, masks, and API methods, exercising most of the
features offered by the API on workloads that are recognized
to be representative of vector operations. However, JVBench
does not exercise all the features defined in the specification
of the Java Vector APL For instance, no benchmark exercises
less frequently used vector types, Shifts/Rotates operations,
and shape-changing operations. We plan to expand JVBench
to reach full API coverage as part of our future work.

Conclusions and Future Work. In this paper, we ana-
lyze performance and portability of the Java Vector APL a
new JDK module that allows expressing explicit vector op-
erations through an object-oriented interface. We present
JVBench, to the best of our knowledge, the first open-source
benchmark suite for the Java Vector API, which features a
high API coverage. We use JVBench to evaluate the perfor-
mance of the Java Vector API, showing that the explicit vec-
torization enabled by the API greatly improves performance
w.r.t. auto-vectorization and scalar code. Moreover, we re-
ported several patterns and anti-patterns that significantly
influence runtime performance w.r.t. the executing machine
architecture, suggesting API usages and improvements.

As part of our future work, in addition to expanding our
suite as mentioned above, we plan to use JVBench to evaluate
the performance of the Java Vector API on ARM AArch64
architectures. Moreover, we plan to report our findings to
the developer of the Java Vector APL

Data Availability Statement

We provide an artifact that consists of a Docker [22] image
embedding JVBench together with a set of tools that can be
used to collect, process, and plot performance measurements
[4]. The artifact also contains the performance measurements
used to generate the figures of the paper.
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