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A B S T R A C T

Optimal power flow (OPF) problems are ubiquitous for daily power grid operations and planning. These
optimal control problems are nonlinear, non-convex, and computationally demanding for large power networks
especially for OPF problems defined over a large number of time periods, which are commonly intertemporally
coupled due to constraints associated with energy storage devices. A robust interior point optimization
library BELTISTOS is proposed, which allows fast and accurate solutions to single-period OPF problems
and significantly accelerates the solution of multi-period OPF problems via the aid of structure-exploiting
algorithms. Adhering to high reporting standards for replicable and reliable analysis, BELTISTOS is compared
with interior point optimizers within the software package MATPOWER and evaluated using large scale power
networks with up to 193,000 buses and problems spanning up to 4800 time periods.
1. Introduction

Since the formulation of alternating current (AC) optimal power
flow (OPF) by Carpentier [1] as a continuous nonlinear programming
(NLP) problem, OPF has become one of the most important and widely
studied constrained nonlinear optimal control problems. It is concerned
with optimization of an electric power network operation subject to
physical constraints imposed by electrical laws and various engineering
limits. Modern power grids increasingly adopt energy storage devices to
address new challenges in the operation of the power grid associated
with the adaptation of renewable energy sources [2,3]. Modeling of
storage devices, however, introduces intertemporal couplings of the
associated single-period OPF problems defined at each time period.
The resulting multi-period OPF (MPOPF) problems [4], e.g., storage
sizing and placement [5], become intractable for the general purpose
NLP optimization methods due to the extensive memory and time
requirements [6,7], thus limiting the effective use of optimization
packages.

Interior point (IP) methods [8,9] are one of the solution methods
for nonlinear and non-convex OPF problems. IP methods were ap-
plied to OPF problems by Quintana et al. [10], and recently studied
by Capitanescu [11,12]. Various approaches and reformulations of
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the non-convex OPF problem have been proposed in order to reduce
the computational complexity. Semi-definite programming has gained
considerable interest in the literature of the last decade, where sev-
eral extensions of these algorithmic approaches are reported in recent
studies. The conditions necessary to recover a feasible solution of
the AC OPF model from the optimal solution of the convex second-
order cone are reported in [13]. An alternative to Ybus admittance
matrix is proposed in [14], allowing for engineering-based convex
relaxations. Finally, [15] proposes strengthening of AC OPF relaxations
via analyzing cliques in the network graph. The resulting convex re-
laxation has a tight gap, yet the computing efficiency is much higher
than the standard relaxation techniques. Modern trends in power grid
operations and modeling, however, render approximation-based opti-
mization techniques less attractive for coping with stressed operating
conditions. Consequently, such relaxations do not aim at replacing
non-convex solvers commonly converging to local minima, but rather
complementing them providing estimates of appropriate metrics such
as the optimality, the duality gap, and an infeasibility certificate at the
converged solution.

Commonly proposed OPF solution algorithms are often presented
and evaluated on a limited variety of power systems, neglecting the
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effect of NLP solvers or sparse linear algebra kernels adopted in the
optimization method; see, e.g., [16,17]. A study presented in [17] per-
forms benchmarks on three different OPF formulations (polar-power,
rectangular-power, and rectangular-current) and seven test power net-
works (ranging from 118 to 3120 buses), considering also various
initializations. The performance is reported using performance profiles
for five NLP solvers, IPOPT, KNITRO and other active set methods with
Hessian approximations, which are not well-suited for the large-scale
nonlinear OPF problems. Default settings for the optimizers are se-
lected, acknowledging the fact that customizing the optimizers options
instead of using the default parameters could result in a very different
outcome. The authors conclude that IPOPT is faster overall than the
ther NLP solvers. However, this study neglects the significance of
parse linear algebra kernels that are of extreme importance for the IP
ethods, especially for large-scale realistic power networks where the

ssociated linear systems may be significantly more ill-conditioned due
o different scales of modeling and equipment characteristic values.

IP methods demonstrate polynomial time asymptotic complexity
nd speed of convergence, which often exhibits superlinear and quad-
atic asymptotic rates [18]. Another advantage of IP methods is that
hey allow for a variety of different direct sparse or iterative solution
trategies for the underlying linear systems obtained from the lineariza-
ion of the optimality conditions at each iteration. The linear system
olution is the most computationally expensive task of an interior point
teration, especially for large power networks or MPOPF problems.
dditionally, robust sparse linear algebra kernels are of extreme impor-

ance for obtaining accurate search directions, especially for realistic
ower networks, where the associated linear systems may be highly ill-
onditioned due to different scales of model parameters and equipment
haracteristic values. The overall efficacy of the IP algorithm thus relies
n fast and reliable linear system solvers.

In this work, a robust solution strategy for the linear systems
temming from IP algorithms is introduced. The method is based on
ulti-level inverse-based factorization combined with Krylov subspace
ethod. The reliability of the proposed method, implemented within

he BELTISTOS library [19], is demonstrated for a variety of bench-
ark scenarios including (i) various OPF formulations, (ii) different

nitializations of the IP method, and (iii) comparison with open source
nd commercial NLP solvers. Furthermore, (iv) additional emphasis
s given on the influence of sparse linear algebra components to the
verall convergence and performance of the IP method. Finally, (v)
ll these aspects are studied on networks of increasing complexity and
izes. Another integral part of BELTISTOS are structure-exploiting algo-
ithms applicable to coupled MPOPF problems. BELTISTOS is integrated
nto general purpose power system software, such as MATLAB-based

MATPOWER [20,21], or it can be easily used in Julia-based Power-
Models.jl [16]. This provides researchers and educators a platform for
solving an extensible collection of OPF problem formulations directly
applicable to power networks of increasing complexity.

The rest of this paper is organized as follows. Section 2 summa-
rizes the mathematical formulation of OPF and MPOPF problems. In
Section 3, IP methods are the underlying computational strategies for
the linear systems are introduced. Section 4 presents the experimental
setup, while numerical results for the OPF problems are summarized in
Section 5. The results for the MPOPF benchmarks are summarized in
Section 6, while the final remarks are presented in Section 7.

2. OPF problems

The AC OPF [20,21], formulated as a NLP problem (1), aims to find
the optimal settings of generator powers and bus voltages in order to
minimize a nonlinear function 𝑓 (𝑥) representing the power generation
costs. The feasible region is defined by equality constraints 𝑐𝐸 (𝑥) rep-
resenting nodal power balance equations, inequality constraints 𝑐𝐼 (𝑥)
2

representing the transmission line power flow limits, and rectangular
bounds on 𝑥min, 𝑥max on the control variables including voltage magni-
tudes 𝑉𝑚, and active and reactive generator injections 𝑃𝑔 and 𝑄𝑔 . The
NLP problem reads

minimize
𝑥

𝑓 (𝑥) (1a)

subject to 𝑐𝐸 (𝑥) = 0, (1b)

𝑐𝐼 (𝑥) ≤ 0, (1c)

𝑥min ≤ 𝑥 ≤ 𝑥max. (1d)

In the following discussion, 𝑛𝑏, 𝑛𝑔 and 𝑛𝑙 denote the number of buses,
generators and transmission lines, respectively. The optimization vari-
ables 𝑥 ∈ R𝑁𝑥 for the standard AC OPF problem consists of the
𝑛𝑏 × 1 vectors of voltage angles 𝛩 and magnitudes 𝑉𝑚 and the 𝑛𝑔 × 1
vectors of generator real and reactive power injections 𝑃𝑔 and 𝑄𝑔 . The
complex voltage in polar coordinates is defined as 𝑉 = 𝑉𝑚𝑒𝑗𝛩. Equality
constraints, (1b), involve complex power balance equations which are
split into a set of 2𝑛𝑏 nonlinear and nonconvex equations for its real and
reactive parts. The inequality constraints (1c) consist of two sets of 𝑛𝑙
branch flow limits expressed as nonlinear functions of the bus voltage
angles and magnitudes, one for the each end of the branch.

The AC OPF problem takes different forms based on the different
representations of the complex bus voltages 𝑉 , which can be repre-
sented either in rectangular or polar coordinates. The optimization
vector 𝑥, considering the rectangular coordinates 𝑉 = 𝑈 + 𝑗𝑊 , takes
he form 𝑥 =

[

𝑈 𝑊 𝑃𝑔 𝑄𝑔
]

. Another variation of the standard
AC OPF problem uses current balance constraints in place of the power
balance constraints (1b). Further details, comprehensive explanation
of the variables, nodal balance equations and discussion regarding the
modeling aspects, are described in the MATPOWER OPF model [20,21].

2.1. Multi-period OPF problems

Multi-period OPF problems couple the individual single-period AC
OPF problems (1) over multiple time periods 𝑛 = 1, 2,… , 𝑁 . The

PF constraints (1b)–(1d) must hold at each time period 𝑛 and are
ndependent of each other. The inter-temporal coupling is introduced
y the equations modeling the storage energy levels over the planning
ime horizon. The variables 𝑃𝑔 are extended by the power output of the
torage devices 𝑃 𝑆

𝑔 =
[

𝑃 𝑆𝑑
𝑔 𝑃 𝑆𝑐

𝑔

]

∈ R2𝑁S𝑁 including discharging and
harging powers, respectively. The evolution of the vector of storage
nergy levels 𝜖𝑛 ∈ R𝑁S , where 𝑁S represents the number of storage
evices, follows the update equation

𝑛 = 𝜖𝑛−1 + 𝐵S
(

𝑃 𝑆
𝑔

)

𝑛
, 𝑛 = 1,… , 𝑁. (2)

The energy level at each period needs to honor minimum and
aximum storage capacity levels 𝜖min and 𝜖max. The initial storage

evel is denoted 𝜖0 and the constant matrix 𝐵S ∈ R𝑁S×2𝑁S models the
ischarging and charging efficiencies 𝜂d and 𝜂c of the storage device.
he resulting linear inequality constraints extend the constraint set of
he coupled single-period OPF problems, reading

minimize
𝑥1 ,…,𝑥𝑁

𝑁
∑

𝑛=1
𝑓 (𝑥𝑛) (3a)

ubject to ∀𝑛 = 1, 2,… , 𝑁 ∶

𝑐𝐸 (𝑥𝑛) = 0, (3b)

𝑐𝐼 (𝑥𝑛) ≤ 0, (3c)

𝜖min ≤ 𝜖𝑛 ≤ 𝜖max, (3d)

𝑥min ≤ 𝑥𝑛 ≤ 𝑥max. (3e)

Comprehensive MPOPF model description used in this work, together
with the model source code, is available online [19,22].
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Standard solutions strategies for the MPOPF problems adopt gen-
eral purpose NLP methods. However, the problem size grows linearly
with increasing length of the time horizon while the computational
complexity for factorizing and solving the underlying linear systems
at each IP iteration is cubic and quadratic, respectively. The overall
problem thus becomes computationally intractable for large power
networks spanning long time horizons. A wide-spread solution heuristic
to solve the MPOPF problems is to adopt a decomposition strategy
based on splitting the long time horizon into smaller intervals using
receding horizon control strategies [23]. Such solutions, however, be-
come suboptimal compared to the fully coupled solution. An algorithm
for solving the fully coupled AC MPOPF problems was first presented
in the previous work [4,24].

3. Interior point methods

Primal–dual IP methods [25,26] approach the NLP problem (1)
by first transforming the inequality constraints to the equalities using
additional slack variables 𝑠 ∈ R𝑁𝑠 in addition to the unknowns 𝑥 ∈
R𝑁𝑥 . Subsequently, they solve a sequence of barrier 𝜇-subproblems,
which are obtained by adding logarithmic barrier terms to the objective
function to ensure their non-negativity. Each 𝜇-subproblem is solved
only approximately, decreasing the barrier parameter 𝜇 during the
iterations, reaching the value close to zero as the optimal point of the
original problem is approached. The solution of each 𝜇-subproblem
is a critical point of the Lagrangian 𝐿(𝑥, 𝑠, 𝜆𝐸 , 𝜆𝐼 ) where 𝜆𝐸 , 𝜆𝐼 are
the vectors representing the Lagrange multipliers for the equality and
inequality constraints. The Lagrangian is formulated as

𝐿 ∶= 𝑓 (𝑥) − 𝜇
𝑁𝑥
∑

𝑖=1
ln(𝑥𝑖) − 𝜇

𝑁𝑠
∑

𝑖=1
ln(𝑠𝑖)

+ 𝜆⊺𝐸𝑐𝐸 (𝑥) + 𝜆⊺𝐼 (𝑐𝐼 (𝑥) − 𝑠). (4)

The solutions satisfy the perturbed Karush–Kuhn–Tucker (KKT) opti-
mality conditions. Primal–dual interior point methods define the dual
variables 𝑦 ≡ 𝜇

𝑠 and 𝑧 ≡ 𝜇
𝑥 augmenting the optimality conditions

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∇𝑥𝐿
∇𝑠𝐿
∇𝜆𝐸𝐿
∇𝜆𝐼𝐿
∇𝑧𝐿
∇𝑦𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∇𝑥𝑓 (𝑥) + 𝐽 ⊺
𝐸𝜆𝐸 + 𝐽 ⊺

𝐼 𝜆𝐼 − 𝑧
𝑦 + 𝜆𝐼
𝑐𝐸 (𝑥)

𝑐𝐼 (𝑥) − 𝑠
𝑍𝑥 − 𝜇𝑒
𝑌 𝑠 − 𝜇𝑒

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (5)

here 𝑋 = diag(𝑥), 𝑆 = diag(𝑠), 𝑌 = diag(𝑦), 𝑍 = diag(𝑧) and 𝑒 is
an unit vector of appropriate size. 𝐽𝐸 = ∇𝑥𝑐𝐸 (𝑥) and 𝐽𝐼 = ∇𝑥𝑐𝐼 (𝑥) are
Jacobians of the equality and inequality constraints, respectively. The
primal–dual update is obtained from the linearization of the perturbed
KKT conditions. Commonly, equations related to the perturbed dual
variables are first eliminated to form a reduced symmetric linear system
𝐾𝛥𝑢 = 𝑏 solved at each IP iteration, where 𝐾 ∈ R𝑛𝑘 ,𝑛𝑘 is a sparse
indefinite matrix, 𝛥𝑢 is the unknown Newton direction, and 𝑏 is the
associated right hand side,

𝐾 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐻̃ 0 𝐽 ⊺
𝐸 𝐽 ⊺

𝐼
0 𝐿𝑠 0 −𝐼
𝐽𝐸 0 0 0
𝐽𝐼 −𝐼 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝛥𝑢 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝑥
𝛥𝑠
𝛥𝜆𝐸
𝛥𝜆𝐼

⎤

⎥

⎥

⎥

⎥

⎦

, (6)

where 𝐻̃ = ∇2
𝑥𝑥𝐿 + 𝑋−1𝑍, 𝐿𝑠 = 𝑆−1𝑌 . For additional details on

the IP algorithm, the interested reader is referred to [25,26] and the
classical textbook [27]. The performance of the IP method for large
scale problems relies on accurate, fast and memory efficient sparse
linear solvers, since the resulting linear systems are commonly sparse,
3

large and ill-conditioned [6].
3.1. Single-period OPF solution strategy

A widespread approach for solving KKT systems of form (6) consists
of employing general purpose direct sparse multifrontal methods. The
direct sparse solvers, such as PARDISO [28] or MA57 [29], obtain
the solution of the linear system by LDL𝑇 factorization and subse-
quent forward–backward substitutions [30]. However, a straightfor-
ward application of these techniques to highly ill-conditioned KKT
systems can result in insufficient accuracy of the solution or infeasible
computational times due to more expensive pivoting schemes [31].

An alternative approach adopts a modern and robust sparse elimina-
tion methodology for large-scale OPF problems based on inverse-based
pivoting strategy [31–33]. A key component of this inverse-based pivot-
ing approach is driven by a preprocessing phase based on combinatorial
algorithms which improve diagonal dominance, reduce fill-in and in-
crease concurrency to allow for parallel treatment. Moreover, these
inverse-based pivoting methods also allow the detection of dense sub-
matrices, which can utilize optimized dense linear algebra kernels
provided by the Intel Math Kernel library (MKL) [34]. The permutation
strategy is based on maximum weighted matchings in a bipartite graph
associated with the KKT matrix. The matching associated with the
permutation is sought, such that the diagonal dominance of the per-
muted matrix is maximized. The second objective for the matching is
to preserve the symmetry of the matrix, which is achieved by following
the cycles in the permutation matrix associated with the non-symmetric
maximum weighted matching. After the system 𝐾 ∈ R𝑛𝑘 ,𝑛𝑘 is reordered
𝑃 𝑇
𝑆 𝐷𝐾𝐷𝑃𝑆 = 𝐾̄, where 𝐷,𝑃𝑆 ∈ R𝑛𝑘 ,𝑛𝑘 are diagonal and permutation

matrices, respectively, the system 𝐾̄ will have many well-conditioned
diagonal blocks of size 1 × 1 and 2 × 2. Subsequently, the associated
block graph of 𝐾̄ is reordered by a symmetric reordering, such that

𝑇 𝐾̄𝛱 = 𝐾̃, with the symmetric block permutation 𝛱 ∈ R𝑛𝑘 ,𝑛𝑘 , and
he block structure

̃ =
[

𝐺 𝐹 𝑇

𝐹 𝐶

]

, (7)

here the blocks are 𝐺 ∈ R𝑘,𝑘, 𝐹 ∈ R𝑛𝑘−𝑘,𝑘 and 𝐶 ∈ R𝑛𝑘−𝑘,𝑛𝑘−𝑘 such
that 𝑘 ≤ 𝑛𝑘. During the factorization, the pivots might still be too
small, therefore such update is postponed and the corresponding rows
and columns are symmetrically permuted to the end, forming a Schur
complement block. The inverse based pivoting strategy computes an
incomplete factorization 𝐾̃ ≈ 𝐿𝐷𝐿𝑇 , such that

̃ ≈
[

𝐿𝐺 0
𝐿𝐹 𝐼

]

⏟⏞⏞⏟⏞⏞⏟
𝐿

[

𝐷𝐺 0
0 𝑆𝐶

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐷

[

𝐿𝑇
𝐺 𝐿𝑇

𝐹
0 𝐼

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐿𝑇

, (8)

here 𝐿𝐺 , 𝐷𝐺 ∈ R𝑘,𝑘 are lower triangular with unit diagonal and
lock diagonal with blocks of sizes 1 × 1 and 2 × 2, respectively. 𝐿𝐹
s a factor of size R𝑛𝑘−𝑘,𝑘, 𝑆𝐶 ∈ R𝑛𝑘−𝑘,𝑛𝑛−𝑘 is the Schur complement
𝐶 = 𝐶 − 𝐿𝐹𝐷𝐺𝐿𝑇

𝐹 , and 𝐼 is an identity matrix. The delayed pivots in
he Schur complement block will be computed explicitly using direct
actorization techniques, such as the method implemented in PARDISO
r the multilevel inverse based strategy can be applied recursively.
he Schur complement blocks are visualized in Fig. 1 illustrating the
KT matrix and the three-level 𝐿𝐷𝐿⊺ factors for the IEEE 300 bus test
ystem. The key advantage of these methods is that small pivots will be
etected during the elimination phase. As a result the linear systems are
eordered so that the largest entries in magnitude appear near the main
iagonal of the matrix and the pivots are postponed whenever the norm
f the factor ‖𝐿−1

‖ exceeds a prescribed bound.
Finally, in order to further improve accuracy and robustness, a

strategy based on symmetric quasi-minimal residual Krylov subspace
method [35,36] is used where the full multilevel incomplete LDL𝑇
factors are used as a preconditioner. Further algorithmic details are

provided in the Refs. [31,32,37].
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Fig. 1. Matrix structure. Left: KKT matrix for IEEE 300 bus system, Right: Three-level
inverse based matrix factor.

3.2. Structure exploiting algorithm for MPOPF

The factorization or large KKT systems is a computationally ex-
pensive operation introducing significant fill-in, which may quickly
exhaust the memory installed on shared memory machines for large-
scale MPOPF problems. Furthermore, the general-purpose factorization
codes are not aware of the underlying structural properties of the
particular KKT systems associated with MPOPF problems [4,38] The ap-
propriate structure of the KKT system for the MPOPF problem emerges
from the fact that each of the variables in the optimization vector
𝛥𝑢 =

[

𝛥𝑥, 𝛥𝑠, 𝛥𝜆𝐸 , 𝛥𝜆𝐼
]

corresponds to some time period 𝑛 = 1, 2,… , 𝑁
of the MPOPF problem. The primal variables can be partitioned as
𝛥𝑥 =

[

𝛥𝑥1, 𝛥𝑥2,… , 𝛥𝑥𝑁
]

. For example, consider the polar-based OPF
formulations. The vector of primal variables for each time period 𝛥𝑥𝑛
consists of the bus voltage angles and magnitudes and active and
reactive power injections from the conventional generator and storage
devices, i.e. 𝛥𝑥𝑛 = 𝛥

[

𝛩, 𝑉𝑚, 𝑃𝑔 , 𝑃 𝑆
𝑔 , 𝑄𝑔 , 𝑄𝑆

𝑔

]

𝑛
, describing the power

grid state in the 𝑛th time period. The equality constraints and the
corresponding Lagrange multipliers can be partitioned in a similar
fashion 𝛥𝜆𝐸 =

[

𝛥𝜆𝐸1, 𝛥𝜆𝐸2,… , 𝛥𝜆𝐸𝑁
]

. Inequality constraints 𝛥𝜆𝐼 and
he associated slack variables 𝛥𝑠 follow a similar ordering. In order

to reveal the scenario-local structure of the KKT system (6), the vari-
ables corresponding to the same time period 𝑛 are grouped together,
i.e., 𝛥𝑢̂𝑛 =

[

𝛥𝑥𝑛, 𝛥𝜆𝐸𝑛, 𝛥𝜆𝐼 𝑛, 𝛥𝑠𝑛
]

. Thus, the global ordering will be
𝛥𝑢̂ =

[

𝛥𝑢̂1,… , 𝛥𝑢̂𝑁 , 𝛥𝑢̂𝑐
]

, where the coupling variables 𝛥𝑢̂𝑐 = 𝛥𝜆𝐴 ⊂
𝛥𝜆𝐼 , representing the Lagrange multipliers corresponding to the linear
constraints (3d), are placed at the end of the new optimization vector
𝛥𝑢̂. The permutation matrix 𝑃 can be introduced, such that 𝛥𝑢̂ = 𝑃𝛥𝑢
Under the new permutation 𝑃 , the KKT matrix from (6) obtains an
arrowhead structure
⎡

⎢

⎢

⎢

⎢

⎣

𝐴1 𝐵⊺
1

⋱ ⋮
𝐴𝑁 𝐵⊺

𝑁
𝐵1 ⋯ 𝐵𝑁 0

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐾̂=𝑃 ⊺𝐾𝑃

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝑢̂1
⋮

𝛥𝑢̂𝑁
𝛥𝑢̂𝑐

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝛥𝑢̂

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑏1
⋮
𝑏𝑁
𝑏𝑐

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝑏̂

. (9)

The arrowhead system (9) can be solved more efficiently using
decomposition algorithms based on Schur complement [4,6], shown in
Algorithm 1, compared to the direct sparse solvers applied to the KKT
system (6) in black-box fashion. The BELTISTOS algorithm solves the
arrowhead system by factorizing the diagonal blocks 𝐴𝑛 (line 5) and
subsequently uses the factors to evaluate the contribution 𝑆𝑛 to the
Schur complement 𝑆𝑐 of time period 𝑛 (line 6). The factors are also
used during the solve for the vector 𝑦𝑛 (line 8) that contributes to the
RHS 𝑟𝐶 (line 9) of the dense solve (line 12). Finally, the vector 𝛥𝑢̂𝐶
is used to form the RHS 𝑟𝑛 (line 14) for the final solve (line 15) with
the diagonal blocks 𝐴𝑛 and their factors to obtain the desired solution
vector 𝛥𝑢̂.

Additionally, the solution of the dense Schur complement systems
𝑆𝑐 arising in the MPOPF problems can be further accelerated by ex-
4

ploiting their particular structure [4]. p
Algorithm 1: BELTISTOS Algorithm.

1: function SchurSolve(𝐾̂, 𝑏̂)
2: 𝑆𝑐 ∶= 𝟎
3: 𝑟𝑐 ∶= 𝑏𝑐
4: for 𝑛 = 1 ∶ 𝑁 do
5: [𝐿𝑛, 𝐷𝑛] ∶= SparseFactorize(𝐴𝑛)
6: 𝑆𝑛 ∶= −𝐵𝑛𝐴−1

𝑛 𝐵⊺
𝑛

7: 𝑆𝑐 ∶= 𝑆𝑐 + 𝑆𝑛
8: 𝑦𝑛 ∶= SparseSolve(𝐿𝑛, 𝐷𝑛, 𝑏𝑛)
9: 𝑟𝑐 ∶= 𝑟𝑐 − 𝐵𝑛𝑦𝑛
0: end for
1: [𝐿𝑐 , 𝐷𝑐 ] ∶= DenseFactorize(𝑆𝑐 )
2: 𝛥𝑢̂𝑐 ∶= DenseSolve(𝐿𝑐 , 𝐷𝑐 , 𝑟𝑐 )
3: for 𝑛 = 1 ∶ 𝑁 do
4: 𝑟𝑛 ∶= 𝑏𝑛 − 𝐵⊺

𝑛𝛥𝑢𝑐
5: 𝛥𝑢̂𝑛 ∶= SparseSolve(𝐿𝑛, 𝐷𝑛, 𝑟𝑛)
6: end for
7: return 𝛥𝑢̂
8: end function

In case when the memory is bottleneck, e.g. when 𝑁 is large,
he memory requirements can become prohibitive. Algorithm 1 stores
parse factorizations 𝐿𝑛, 𝐷𝑛 of all 𝑁 diagonal blocks 𝐴𝑛 in the memory.
owever, the memory requirements can be reduced by storing the

actorization of the diagonal blocks 𝐴𝑛 at line 5 only temporarily,
eeping one set of the factorizations at a time in the memory. This
eans that the factorization of 𝐴𝑛 blocks needs to be computed twice.

irst, as shown at line 5 and the second time before the evaluation of
𝑢̂𝑛 in the second for loop at line 15.

.3. Optimization software

In what follows, several different primal–dual IP optimization soft-
are tools are introduced. These are used by power grid practitioners

or OPF problems as they are supported by the modeling tools such
s MATPOWER of PowerModels.jl. The optimization software is sum-
arized in Table 1, where the commercial solvers are highlighted.

NITRO [39] implements the IP algorithm with direct step computation
esigned for solving large-scale mathematical NLP problems. However,
NITRO may automatically switch to the iterative conjugate gradient
CG) algorithm if the direct step is suspected to be of poor quality.
POPT [25,26] implements a primal–dual IP method for large-scale
onlinear optimization. Benchmarks have shown that MA57 [29] and
KL-PARDISO [28] are often the most reliable direct sparse linear

olvers within IPOPT. The former is used in the single period OPF
tudy, while the latter is used for the MPOPF problems. MIPS [40,41]
s a primal–dual interior point solver for OPF problems. It is entirely
mplemented in MATLAB code and distributed with MATPOWER. FMIN-
ON [42] is a part of the MATLAB optimization toolbox, providing an
P method and applies the projected conjugate gradient (PCG) method
o solve the KKT system in an iterative fashion. BELTISTOS [19] is a
uite of high-performance NLP solution methods for OPF algorithms [4,
,24] including extremely scalable and low memory MPOPF. BELTISTOS
dopts selected algorithms implemented in IPOPT, adjusted specifically
or the nature of the OPF problems, including techniques introduced in
ection 3.1. BELTISTOS also implements structure exploiting and data
ompression algorithms designed for the particular structure of the
POPF problems introduced in Section 3.2.

. Benchmarks setup

Various characteristics of benchmark cases used in the following
umerical experiments are listed in an accompanying technical re-

ort [22]. These are the cases distributed with MATPOWER, including
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Table 1
Open source and commercial (highlighted) optimizers.

Optimizer Version Solver License Reference

BELTISTOS 1.0 PARDISO Free academic use [4,7,19,24]
KNITRO 12.2.0 MA57, CG Artelys [39]
IPOPT 3.12.10 MA57, MKL-PARDISO Open source (EPL) [25,26]
MIPS 1.3.1 ‘\’ (MA57) Open source (BSD) [40,41]

FMINCON 2018b PCG MATLAB [42]
Fig. 2. Statistics for the standard benchmark cases (each line corresponds to one particular case listed in [22]).
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napshots of the full French very high-voltage and high-voltage grid
case labels suffixed with ‘‘rte’’) and pan-European fictitious data set
labeled as ‘‘PEGASE’’) [43,44]. A set of entirely synthetic cases (la-
eled as ‘‘ACTIVS’’) is geographically situated in US Northeast and
id-Atlantic regions. The case is designed with a transmission net-
ork to serve a load that roughly mimics the actual population of

ts geographic footprint. The synthetic transmission system was de-
igned by algorithms described in [45] to be statistically similar to
ctual transmission system models. The Polish networks during the
inter/summer peak/off-peak conditions are represented by cases such
s 2746wop and case3120sp [21] (the suffix representing the season
nd peak/off-peak conditions). In addition, there are four large-scale
ases, case21k–case193k, built from the Polish system winter 2007–08
vening peak power flow data (case3012wp), considering the largest
enerator outage and line contingencies.1 The benchmark cases were
elected based on the system size and the number of variables involved
n the OPF problem. Specifically, the OPF problem has to consist of
t least 5,000 primal variables. The benchmark software suite along
ith all data sets and detailed instructions can be found in [22] and
nline [19]. Simulations are performed on a workstation equipped
ith an Intel Xeon CPU E7-4880 v2 at 2.50 GHz and 1 TB RAM
sing the MATPOWER version 7.0 [21]. The common factors influencing
he performance were kept fixed. The fixed factors include: (i) the
onvergence tolerance of the optimization solvers, (ii) the initial point,
nd (iii) explicit sequential (single-core) execution. For all the NLP
olvers the optimality, feasibility and complementarity tolerances were
ixed at 10−6 and no more than 500 iterations where allowed while also
nforcing a maximum time limit of 5 h.

.1. Convergence tolerance

Before proceeding with the benchmarks, the selection of the conver-
ence tolerance is analyzed. First of all, the convergence tests imple-
ented by optimizers vary in some aspects, e.g. scaling of the residual

rrors or type of the norms, making the user specified tolerance not

1 Data available at http://www.beltistos.com/.
5

i

necessarily equivalent amongst the optimizers. Second, various stop-
ping tolerances were used in previous OPF studies, ranging from 10−3

o 10−8 [46]. The selection of the convergence criteria has to consider
ultiple factors, including required optimality and feasibility errors, as
ell as account for numerical issues associated with tight tolerances
ue to the ill-conditioning leading to inaccurate search directions and
hus stagnating convergence. For the experiments in this section, the
‘acceptable’’ termination criteria was disabled. This does not allow
he algorithm to terminate before the desired convergence tolerance is
et (e.g. in case there is no improvement in the objective function or

easibility over some specified number of iterations). It can be observed
hat there is no significant improvement of the objective function value
or the tight tolerances. The absolute and relative errors of the objective
unction value between tolerances 10−4 and 10−9 are less than order
f 10−3 and 10−9, respectively. In several cases, the objective function
lightly increased for tighter tolerances, in similar orders of magnitude.
he constraint violations (feasibility error) and number of iterations
or different tolerances using BELTISTOS and KNITRO are shown in
ig. 2. The figure illustrates that even for a modest tolerance of 10−4

he constraint violations are usually much smaller and in most cases
ightening the tolerance further will result in only a few additional
terations. For tight tolerances below 10−9, convergence stagnates and
he number of iterations starts to significantly grow (e.g. KNITRO) or
ptimizers terminate with an error message. Some optimizers were not
ble to reach the tight tolerances, e.g. IPOPT and MIPS failed to solve
ost of the benchmarks for tolerances below 10−9, while FMINCON

erminated with feasibility errors larger than the specified tolerance. A
olerance value 10−6 is thus used in order to focus on the performance
f the optimizer, and isolate issues related to the numerical errors.

.2. Initial point

Selection of a high-quality initial point is crucial for gradient-based
ptimization methods, especially when applied to nonconvex AC OPF
roblems. In this study, the solution of the power flow equations is
sed for initialization, as opposed to other heuristically chosen mid
oints (average of upper and lower bounds). Up to 10-fold performance
mprovement was observed, while the solution success rate improved
y up to 20% for such initial points. An extended discussion is available

n the technical report [22].

http://www.beltistos.com/
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Table 2
Number of solved benchmarks out of twenty-five test cases for different OPF
formulations.

Optimizer Polar Power Rect. Power Polar Curr. Rect. Curr. Total

BELTISTOS 25 25 25 25 100
KNITRO 25 25 25 24 99
FMINCON 20 24 20 24 88
IPOPT 21 21 23 21 86
MIPS 22 19 21 17 79

Table 3
Overall time (s) for large-scale benchmarks (dash represents failure or time limit).
Polar-Power formulation.

Benchmark BELTISTOS KNITRO MIPS IPOPT FMINCON

ACTIVSg25k 43.04 45.79 108.18 50.06 183.57
ACTIVSg70k 152.38 187.65 — 152.56 644.30
case21k 65.27 47.05 241.20 — 1,548.28
case42k 220.83 161.59 1,957.95 — —
case99k 1,231.90 753.07 — — 17,325.98
case193k 4,360.57 1,889.51 — — —

4.3. Performance profiles

Performance profiles [47,48] are used for a compact comparison
and evaluation of different methods such as optimization methods
or OPF problems formulations on a set of benchmark problems. The
profiles are generated by running the set of methods  on a set of
problems  and recording information of interest, e.g., time to solution
or memory consumption. Consider that the method 𝑚 ∈  reports a
statistic 𝜃𝑚𝑝 ≥ 0 for the problem 𝑝 ∈  , where the smaller statistics 𝜃𝑚𝑝
ndicate better solution strategies. The best statistic for a given problem
is defined as 𝜃∗𝑝 = min𝑚∈{ 𝜃𝑚𝑝}. Then for 𝛼 ≥ 1 and each 𝑚 ∈  and
∈  the indicator 𝑘 is defined

(𝜃𝑚𝑝, 𝜃∗𝑝 , 𝛼) =

{

1 𝜃𝑚𝑝 ≤ 𝛼 ⋅ 𝜃∗𝑝 ,
0 𝜃𝑚𝑝 > 𝛼 ⋅ 𝜃∗𝑝 .

(10)

The performance profile 𝑝𝑚(𝛼) of the method 𝑚 is then defined by

𝑚(𝛼) =

∑

𝑝∈ 𝑘(𝜃𝑚𝑝, 𝜃∗𝑝 , 𝛼)

||

. (11)

Thus, the value of 𝑝𝑚(𝛼) indicates the fraction of all examples which
can be solved within a factor of 𝛼 of the best solver time. The fraction
of problems on which optimizer 𝑚 is the most effective is given by 𝑝𝑚(1)
and 𝑝∗𝑚 ∶= lim𝛼→∞ 𝑝𝑚(𝛼) indicates the fraction for which the optimizer
successfully found the solution.

5. Numerical results - OPF

5.1. OPF formulations

As introduced in Section 2, different representations of the voltage
variables or the nodal equations can be used to formulate the OPF
problem, which results in constraints with different nonlinearities and
feasible regions. Thus, the constraint Jacobians as well as their sparsity
structures and condition numbers will vary, accelerating or delaying
the convergence.

Table 2 provides a summary of the optimizer success rates for solv-
ing different OPF formulations. The table shows that robust optimizers
such as BELTISTOS or KNITRO are marginally influenced by the choice
of the formulation. Similar holds for IPOPT, but it fails to solve most
of the large-scale cases. FMINCON solves more cases with rectangular-
based voltage formulations, while MIPS provides better success rate
for the polar voltages. The optimizers converged to the same solution
for all OPF formulations, up to the maximum relative error 10−5. The
performance profiles for the OPF formulations for various optimizers
are shown in Fig. 3.
6

Fig. 3. Overall time profiles for various OPF formulations.

BELTISTOS, solves the polar-based voltage formulations slightly eas-
ier than other formulations, resulting in up to four times improvements
in terms of the overall time, with similar improvement in the iteration
count. The memory requirements are slightly increased for Rectangu-
lar formulations, requiring up to 20% more memory (9.4 GB for the
largest benchmark). Similar results are observed for KNITRO. In aver-
age, the overall time of Rectangular-Current formulation was increased
up to 30% compared to the other formulations, which performed
very similarly. The memory usage of KNITRO was increased compared
to BELTISTOS, requiring up to 10 GB. FMINCON converges faster, in
general, using power-based formulations.

5.2. Performance evaluation

Robustness, performance, and memory efficiency of all optimization
software packages is the main focus in this section.

Table 3 shows the summary of overall solution times for the large-
scale test cases and all optimizers using the default Polar-Power for-
mulation (an extensive list of all results can be found in the technical
report [22]).

The performance profiles for all optimization packages considering
all benchmarks cases are shown in Figs. 4(a)–4(d). The performance
profiles clearly indicate that BELTISTOS and KNITRO converged to the
optimal solution for the majority of the benchmark cases, with slight
advantage of BELTISTOS in terms of robustness. BELTISTOS was faster for
34% of the benchmark cases, KNITRO being slower by up to a factor or
50.9 and 5.3 in the two extreme cases. BELTISTOS was no more than
50% slower in 86% of the benchmark cases. In the two worst cases,
BELTISTOS was slower by a factor of 3.2 and 2.3, respectively. IPOPT
optimizer was not competitive for the solution of the large-scale cases,
both in terms of robustness and performance, failing for the 58% of the
large-scale cases, not being able to solve the four largest cases as can be
seen in Table 3. The performance and success rate of MIPS and FMINCON
behaves differently depending on the OPF formulation. Considering the
FMINCON’s top performing Rectangular-Power OPF formulation, it is
still in average slower by a factor of 4–5 compared to KNITRO and
BELTISTOS, with the maximum slowdown up to a factor of 12.5.

In terms of memory efficiency, the best results are achieved by
MIPS and KNITRO, closely followed by BELTISTOS. The difference in the
memory usage between these three optimization packages varies by up
to a factor of 2.2.

5.3. BELTISTOS OPF solution strategy

BELTISTOS utilizes the robust multilevel inverse-based factorization
solver introduced in Section 3.1. The accuracy of the multilevel solution
strategy for the KKT system at each iteration of the IP method is
illustrated in Fig. 5, comparing it to a standard direct sparse solver
MKL-PARDISO used in IPOPT. Three benchmark cases of increasing
size are illustrated, providing insight into the numerical error for the
solution of the KKT system in each IP iteration.

The multilevel strategy implemented in BELTISTOS consistently
solves the KKT systems with numerical error close to the machine
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Fig. 4. Overall time performance profiles for OPF formulations considering all benchmarks.
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Fig. 5. Residuals for BELTISTOS multilevel strategy (solid) and IPOPT (dotted).

recision, which is an improvement by up to 5–6 orders of magnitude
ompared to IPOPT. Note that BELTISTOS converged within 20–40
terations for the three benchmarks, while IPOPT required up to 70
terations to converge to the desired tolerance. It is evident that
ore accurate search directions, obtained with the multilevel strategy,

educe the overall number of iterations needed until convergence, and
hus the overall solution time of the IP algorithm, as well as improve
ts robustness and numerical stability.

BELTISTOS and KNITRO demonstrate superior performance, both in
erms of solution time and iteration counts, compared to the other
ptimizers. Additionally, KNITRO performs better than BELTISTOS for
out of 6 large-scale testbeds in the polar-power formulation for the

ingle period benchmarks. However, the clear advantage of BELTISTOS
or solving the multi-period problems is detailed in the next section.

. Numerical results - MPOPF

The computational complexity of the MPOPF problems grows quickly
ith the increasing number of time periods. In this section, the value
f a structure exploiting algorithm is demonstrated compared to a gen-
ral purpose optimization methods such as IPOPT (with MKL-PARDISO

linear solver) or KNITRO. The benchmarks in this section focus on
performance related to the factorization and backsolve phases, since
these represent the bottleneck of the IP method for large-scale MPOPF
problems. Common factors for both IP methods are not included in
the measurements, including computations such as evaluation of the
Jacobian or Hessian matrices. The benchmark cases include one small
(IEEE 118) and two medium sized (PEGASE 1,354 and 2,869 [44])
power networks, considering up to 𝑁𝑠 = 100 storage devices and

=4800 time periods. The largest problem size contains 32 million
ariables and 72 million nonlinear constraints.

.1. Number of time periods and storage devices

Performance of the optimizers is investigated for increasing problem
izes by changing the number of time periods and storage devices. The
verage time of the KKT system solution is shown in Fig. 6. It is evident
hat BELTISTOS outperforms the general purpose solution approach, pro-
iding orders of magnitude faster solution times. A comparison of the
actorization and forward–backward substitution phases is also shown,
llustrated by the horizontal line inside the bars (note the logarithmic
cale on the y-axis). The factorization phase clearly dominates for IPOPT
7

nd KNITRO, therefore the forward–backward substitution phase is not
isible in the figure. The factorization and the backsubstitution phases
re comparable for BELTISTOS, with the backsubstitution phase taking
ore time for the memory efficient version, since some portion of the

omputation needs to be recomputed in order to keep the memory
equirements as low as possible. However, the overall performance
enefit is still significant, compared to structure unaware solution
ethods. The performance gap between BELTISTOS and other optimiz-

ers increases with increasing values of 𝑁 . For 𝑁 = 4800 IPOPT failed
due to exceeding the memory limit during the symbolic factorization
of matrix for the smallest benchmark, with similar behavior also for
KNITRO. With the increasing benchmark size, the failure was observed
also for 𝑁 = 2400 or 𝑁 = 1200 due to exceeding the available memory
r the time limit. BELTISTOS requires approximately 1% of the time
eeded by the best competitor for the smallest problem, with increasing
erformance benefit for larger problems.

Furthermore, the performance of BELTISTOS is analyzed for increas-
ng number of storage devices. Such problems arise in storage sizing
nd placement problems, where the optimal sizes and locations of the
torage devices are sought. The number of storage devices increases
he number of coupling variables and thus the size of the Schur com-
lement, therefore also posing a bottleneck for large problems. Fig. 7
hows the average solution time of the KKT system for increasing
umber of storage devices 𝑁𝑠 for different power grids, considering
= 600 time periods. In case of the PEGASE 1,354 bus benchmark,

en-fold increase in the storage device number resulted in 81 times
onger computation for IPOPT, compared to a 3.7 times increase for the
omputation time of BELTISTOS.

.2. Memory resources

Fig. 8 illustrates the memory requirements of each solver on the
ame set of MPOPF benchmarks as in Fig. 6. Clearly, the general
urpose approach relying on a direct sparse solver requires prohibitive
emory resources due to excessive fill in. The structure-exploiting ap-
roach implemented in BELTISTOS reduces the memory requirements by
ore than one order of magnitude by usage of efficient linear algebra

omponents adapted to the particular structure of the KKT system. In
ase of the memory efficient algorithm, BELTISTOS, the memory usage
s further reduced by releasing the memory required to store the 𝐿
actors of the diagonal blocks, and recomputing the factorization during
ifferent phases of the algorithm. Obviously, the repeated factorizations
n the memory efficient algorithm are reflected in increased execution
ime. However, the execution time is still orders of magnitude faster
han general purpose approaches.

.3. Complexity analysis

The factorization and backsolve phases, constituting the main build-
ng blocks of the direct sparse algorithms for the solution of KKT
ystems, are analyzed separately in this section, focusing on scaling
ith respect to the number of time periods 𝑁 . For the MPOPF prob-

ems, the size of the KKT system linearly grows with the number
f time periods, thus the complexity of the KKT solution algorithms
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Fig. 6. Average numerical factorization and forward–backward substitutions time (𝑁𝑠 = 10).
Fig. 7. Average numerical factorization and forward–backward substitutions time (𝑁 = 600).
Fig. 8. Memory requirements for the optimizer (𝑁𝑠 = 10).
Fig. 9. Regression analysis for the factorization and solution phases using IEEE 118
bus benchmark.

needs to be analyzed in these terms. The complexity of BELTISTOS for
solution of the MPOPF problems can be estimated by examining the
complexity of the individual factorization and solution steps in Alg. 1,
since they represent the most computationally expensive components
of the algorithm. For the black box approach, represented by IPOPT,
the factorization and solution phases are analyzed separately as well.
Fig. 9 shows such complexity study of the factorization and solution
phases. The tests are run using a standard power grid IEEE 118 bus
benchmark in order to be able to demonstrate the algorithm also for
larger number of time periods. As expected, the complexity for IPOPT
is cubic for the factorization phase and quadratic for the solution phase.
On the other hand, the scaling of BELTISTOS is almost by an order
of magnitude better due to the decomposition of the KKT system and
the block structure aware factorization. The figure also illustrates the
fact that for increasing number of time periods, the performance gap
between the standard and the structure exploiting approach becomes
even more pronounced.
8

7. Concluding remarks

This work proposed a reliable IP optimization library BELTISTOS
for solution of AC OPF problems. The computational and numerical
performance was evaluated on four different AC OPF formulations, con-
sidering various aspects such as initializations, convergence tolerance
and power grid networks of increasing complexity. It was demonstrated
that BELTISTOS accelerates convergence of OPF problems by providing
consistently accurate search directions regardless of OPF variable for-
mulation, initialization, or network characteristics, even for severely
ill-conditioned KKT systems. Similar performance for single period OPF
problems was observed for KNITRO, while the performance of the other
IP libraries considered in this study was inferior and varied based on
the network complexity or the OPF formulation.

Furthermore, it was demonstrated that BELTISTOS achieves signifi-
cant acceleration of the solution time via the aid of structure-exploiting
algorithms for MPOPF problems. Additionally, these can also be con-
figured for a significantly lower memory footprint. The solution times
are orders of magnitude smaller compared to the best competitors, with
the performance gap increasing for larger networks or longer time hori-
zons. The adoption of these solution strategies, enables the solution of
previously intractable time-coupled MPOPF problems, without relying
on simplifications, or approximations, receding horizon approaches,
or other decoupling techniques. In the future work, application cases
spanning a full year horizon on hourly basis (with 𝑁 =8760 time
periods) will be investigated. This could enable transmission system
operators to better plan their operations and reduce the risks arising
from approximation errors.
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