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Abstract

Internal interfaces in a domain could exist as a material defect or they can appear due to propagations of cracks.
iscretization of such geometries and solution of the contact problem on the internal interfaces can be computationally

hallenging. We employ an unfitted Finite Element (FE) framework for the discretization of the domains and develop a tailored,
lobally convergent, and efficient multigrid method for solving contact problems on the internal interfaces. In the unfitted FE
ethods, structured background meshes are used and only the underlying finite element spaces are modified to incorporate the

iscontinuities. The non-penetration conditions on the embedded interfaces of the domains are discretized using the method
f Lagrange multipliers. We reformulate the arising variational inequality problem as a quadratic minimization problem with
inear inequality constraints. Our multigrid method can solve such problems by employing a tailored multilevel hierarchy of
he FE spaces and a novel approach for tackling the discretized non-penetration conditions. We employ pseudo-L2 projection-

based transfer operators to construct a hierarchy of nested FE spaces from the hierarchy of non-nested meshes. The essential
component of our multigrid method is a technique that decouples the linear constraints using an orthogonal transformation.
The decoupled constraints are handled by a modified variant of the projected Gauss–Seidel method, which we employ as a
smoother in the multigrid method. These components of the multigrid method allow us to enforce linear constraints locally
and ensure the global convergence. We will demonstrate the robustness, efficiency, and level independent convergence property
of the proposed method for Signorini’s problem and two-body contact problems.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Contact problems are virtually ubiquitous in the field of mechanics and engineering. An accurate and reliable
imulation of the contact problem is important in many engineering applications. From the numerical modeling
erspective, contact problems are challenging to solve as the contact boundary is unknown a priori. Hence, a special
ype of iterative scheme is needed to solve such problems, as the contact zone has to be identified during the solution
rocess. In this work, we present contact problems in the unfitted finite element (FE) framework and introduce the
roblem in terms of a variational inequality. Here, we consider frictionless contact problems, where we neglect
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the tangential forces on the contact interfaces. The main contribution of this work is a novel generalized multigrid
method that is developed for solving the arising quadratic minimization problem with linear inequality constraints.

In the last two decades, unfitted FE methods have seen a rise in popularity and multiple frameworks for handling
nfitted geometries have emerged. Unlike traditional FE methods, these unfitted FE methods do not require a
tted mesh that describes the computational domain explicitly. The unfitted FE methods, generally, require a
ackground mesh that encapsulates the computational domain, and the FE spaces associated with the background
eshes are modified to capture the information of the domain. These methods are ideal for solving problems
ith complex computational domains, interface problems with discontinuous coefficients, or moving interfaces.
s the background mesh and the computational domain are created independently, the interfaces/boundaries of the
omain are, generally, embedded in the background mesh. For this reason, it becomes essential to enforce boundary
onditions or interface conditions in a weak sense. To this end, the penalty method, the method of Lagrange
ultipliers, and Nitsche’s method are used to impose the interface/boundary conditions. In practice, Nitsche’s
ethod is significantly more popular than the method of Lagrange multipliers and the penalty method. This is

ue to the fact that the penalty method is variationally inconsistent and it does not produce optimal convergence
ates of the discretization error in absence of a sufficiently large penalty parameter. Nitsche’s method can be regarded
s a variationally consistent penalty method and due to its robustness, it is widely used in the unfitted FE methods.
itsche’s method also requires a penalty/stabilization parameter, where the parameter has to be chosen such that the

oercivity of the bilinear form is ensured. The Lagrange multipliers give rise to mixed FE formulations, the linear
ystems of equations stemming from this discretization scheme have a saddle point structure and the method is
ot stable if the FE spaces do not satisfy discrete inf–sup condition. The eXtended finite element method (XFEM)
as introduced as a partition of unity method to enrich the underlying FE spaces to tackle the problems in fracture
echanics with crack propagation [1,2]. A similar unfitted method, which utilized Nitsche’s method for enforcing

he interface condition, was introduced in [3,4]. This method evolved into CutFEM [5], where Nitsche’s method is
sed to enforce the boundary/interface conditions and a ghost penalty type term is used for stabilization [6].

The modeling of contact problems in the context of fitted FE methods has been studied from both numerical and
heoretical points of view in detail, for example, in [7–9]. In the unfitted FE framework, the initial work regarding
he contact problem was carried out by Dolbow et al. in the context of XFEM to tackle the frictional sliding
ontact on the crack faces [10]. In the work [10], the frictional contact constraints on the crack faces were handled
sing the Large Time Increment (LaTIn) method [11]. In order to solve the contact problems in the unfitted FE
ramework, multiple approaches have been considered. The penalty formulation for solving the contact between
he open crack faces was utilized in a few works [12–14]. A formal theoretical framework of Nitsche’s method
or solving the contact problem was later given by several authors in fitted FE framework [15–18] and unfitted
E framework for fictitious domain methods [19]. Recently, Nitsche-based contact problems in an unfitted FE
ramework have been considered in the context of large deformation [20]. Nitsche’s method for enforcing the contact
onditions gives rise to a non-smooth energy functional and to solve such problems, the generalized Newton’s
ethod was used as a solution strategy in [21]. In the context of the CutFEM solver, a LaTIn-based solution

cheme was proposed for solving the contact problems, where the contact conditions are handled with Nitsche’s
ethod [22,23]. Lagrange multiplier based approaches for contact problems in unfitted methods have also been

ursued in several works [24–26]. In these approaches, multiple techniques for constructing a stable multiplier
pace have been considered.

As noted earlier, the method of Lagrange multipliers gives rise to mixed FE formulations, and the stability of
he mixed formulation is ensured only if the discrete inf–sup condition is satisfied. In the unfitted FE framework, it
s shown that the most convenient approaches to construct the multiplier spaces give rise to instabilities [27,28]. To
ircumvent the strict requirement of satisfying the inf–sup condition, a different approach was introduced by Barbosa
nd Hughes [29]. In the Barbosa–Hughes approach, the restriction over the choices for FE spaces is dropped and the
tability of the formulation is ensured using a stabilization term, which penalizes the jump between the multiplier and
ts physical interpretation. This approach was extended by Haslinger and Renard to the fictitious domain method in
he unfitted FE framework [30], where an additional ghost penalty type stabilization was also used for cut elements.

different type of stabilization method was introduced by Burman and Hansbo, where the multiplier is chosen as
piecewise constant function and the stability of the saddle-point formulation is achieved by penalizing the jump

f the multiplier over the element faces [31]. Alternatively, different augmented Lagrangian methods have also

een considered, where Nitsche’s method is derived by explicitly interpreting the multiplier in terms of primal
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variable [32]. Several other approaches are also considered in the literature to create FE spaces that satisfy the
discrete inf–sup condition, where a primal space with bubble-stabilized basis functions is considered [33,34]. Béchet
t al. developed a stable Lagrange multiplier space based on a vital vertex algorithm [24], which was later extended
y Hautefeuille et al. [35]. This method does not require any stabilization terms or modification of the primal
pace, only the multiplier space is designed carefully such that it satisfies the inf–sup condition and ensures optimal
onvergence of discretization error.

In the unfitted FE framework, the background mesh and the computational domains are independent entities,
ence the elements associated with the background mesh are allowed to intersect arbitrarily. Due to this reason, the
inear system of equations arising from the unfitted FE discretization can be highly ill-conditioned. Recently, many
fforts have been made to develop multigrid solution strategies in context of the unfitted finite element methods
36–39]. For example, in [37], a multigrid method is developed for solving an elliptic interface problem with
igh contrast coefficients. While in [38], a parallel geometric multigrid method is developed for solving elliptic
roblems in the Finite Cell framework. Additionally, the system of equations arising from the discretization of
ontact conditions using the method of Lagrange multipliers can be formulated as a quadratic minimization problem
ith linear inequality constraints. Due to this reason, the standard multigrid methods cannot be employed to solve

he contact problems. In context of fitted FE methods, the geometric multigrid methods for solving contact problems
ave been developed in [40–42] and the algebraic multigrid methods have been proposed in [43,44].

In our work, contrary to the more popular Nitsche’s method, the method of Lagrange multipliers is used to
nforce the non-penetration condition on the interface. We employ the vital vertex algorithm for constructing a stable
agrange multiplier space. In addition, the ghost penalty stabilization term is used to control the gradients of the

unction on the cut elements, which in turn provides an upper bound on the condition number of the system matrix.
ere, as we have a mixed FE formulation, we need to solve a primal–dual constrained optimization problem. We
ave circumvented this by developing a tailored multigrid method, which solves a constrained quadratic optimization
roblem with linear inequality constraints, where we are required to solve the problem using the primal formulation.
ur generalized multigrid method utilizes the pseudo-L2-projection to compute the transfer operator which was
riginally proposed in [39] and utilized in [45]. The generalized multigrid method is motivated by the monotone
ultigrid method proposed in [46], which was developed for solving a quadratic minimization problem with point-
ise constraints arising from the variational inequalities. In the monotone multigrid method, the energy functional

s minimized successively such that each iterate satisfies the constraints. An important component of the monotone
ultigrid is projected Gauss–Seidel (PGS) smoother, which can simultaneously minimize the energy functional and

roject the current iterate onto a feasible set in each local iteration. For the linear constraints, which are represented
y a linear combination of several variables, the traditional PGS method is unusable. To overcome this difficulty,
e introduce an orthogonal transformation of the linear constraints and propose a novel variant of the PGS method

hat can handle such constraints. The overall methodology proposed in our work, the particular combination of the
iscretization and the multigrid method, is computationally less expensive than employing a variant of Nitsche’s
ethod.
In the context of the contact problems in the unfitted methods, similar to our discretization scheme, Nitsche’s

ethod also employs the ghost penalty stabilization term [19,22]. Additionally, in the context of fitted FE methods
or solving the contact problems, it has been shown that coercivity of the symmetric variant of bilinear form can only
e ensured if a sufficiently large stabilization method is used [15]. While for the non-symmetric variant the coercivity
f the bilinear form is ensured for any non-zero stabilization parameter [16]. The ghost penalty term added to the
ilinear form of a symmetric variant of Nitsche’s method provides additional coercivity, however, the stabilization
arameter has to be chosen carefully to ensure the coercivity. One can employ generalized eigenvalue problems
o estimate the stabilization parameter or a lifting operator scheme to remove the dependence of the stabilization
arameter on the coercivity [45]. Thus, (symmetric) Nitsche’s method also requires the ghost penalty term, and then
arameter selection for the stabilization parameter has to be carried out. Additionally, the non-penetration constraints
ave to be replaced with an approximate nonlinear function which has to be penalized/enforced in Nitsche’s
ethod [47]. Due to this reason, Nitsche’s method remains in the primal formulation but it loses consistency as

mall penetration may occur if the penalty parameter is not chosen carefully. A larger value of the penalty parameter
mproves the approximation of non-penetration conditions, but it can cause the resulting linear system of the equation
o become severely ill-conditioned. The addition of such a term to the underlying Nitsche’s formulation causes it to

ecome nonlinear, and variants of the Newton method have to be employed to solve such problems [21]. At each
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Newton iteration, we have to reassemble the tangent system of Nitsche’s formulation corresponding to the current
active set. Therefore, by employing the proposed combination of the discretization and solution method, we have
to solve a system with n-unknowns only one time with a multigrid method, while for Nitsche’s method we would
need to solve a system with n-unknowns several times and during each iteration, we have to reassemble the bilinear
and linear forms.

The outline of this paper is given as follows. We introduce the two-body contact problem and discuss the unfitted
FE discretization in detail in Section 2. In Section 3, we introduce our generalized multigrid method and explain
each component of the multigrid method in detail. We discuss an orthogonalization strategy to decouple the linear
constraints and introduce a modified PGS method to tackle the decoupled constraints. Lastly, we present the results
of numerical experiments in Section 4. We study the discretization error and the performance of the multigrid
method with respect to several parameters. We show the robustness of the proposed generalized multigrid method
for Signorini’s problem and the two-body contact problem and also compare the performance of our multigrid
method with other solution strategies.

2. Two-body contact problem in an unfitted FE framework

In this section, we introduce the two-body contact problem within the unfitted finite element framework. Here,
we assume that the contact between the two bodies takes place on an embedded interface. The Dirichlet boundary
and Neumann boundaries can also be assumed to be embedded, but in order to simplify the presentation of the
problem, these boundaries are assumed to be fitted with the background mesh.

2.1. Problem description

We assume two elastic bodies Ω1,Ω2
∈ Rd , d ∈ {2, 3}, with Lipschitz continuous boundaries Γ 1,Γ 2. The bodies

re assumed to be subjected to volume forces f i
: Ω i
→ Rd and traction/surface forces on the Neumann boundary

t i
N : Γ

i
N → Rd . Both bodies undergo deformation due to the influence of these external forces. A material point

X ∈ Ω in the undeformed state moves to the location X+u after the deformation. Here, the vector-valued quantity
u : Ω → Rd denotes the displacement field of the material point X , denoted as u := u(X). The boundary Γ is
decomposed into three parts: the Dirichlet boundary ΓD , the Neumann boundary ΓN , and apriori unknown contact
boundary Γc.

In elastostatics, the displacement field u := (u1, u2) can be given as a solution of the following boundary value
problem:

−∇ · σ i (ui ) = f i in Ω i ,

ui
= ui

D on Γ i
D,

σ i (ui ) · ni
= t i

N on Γ i
N ,

(1)

where ni denotes the outward normal on the Neumann boundary Γ i
N . We note that unlike Dirichlet and Neumann

boundaries the contact boundary is shared between both bodies, Γc = Γ 1
c = Γ 2

c . These parts of the boundaries are
assumed to be disjoint and the contact boundary is assumed to have a positive measure, i.e., measd−1(Γc) > 0. In
(1), we denote the Cauchy stress tensor as σ := σ (u). Here, we assume the bodies Ω1,Ω2 to be linear elastic,
where the constitutive law is provided by Hooke’s law

σ i (ui ) = 2µiε(ui )+ λi tr(ε(ui ))I for i ∈ {1, 2},

where λi and µi are the Lamé parameters, tr(·) denotes the trace operator, I is second order identity tensor, and
the linearized strain tensor ε := ε(u) is defined as ε(u) := 1

2

(
∇u + (∇u)T

)
.

We assume that a gap function gc : Γc → R+ is given between two bodies in the direction of outward normal
n, where the outward normal is defined as n = n1

= −n2. The point-wise gap in the displacement fields for both
omains is defined as

Ju · nK := u1
· n1
+ u2

· n2
= (u1

− u2) · n1.

he non-penetration condition on the possible contact boundary Γc is given as in (2a). The contact pressure or
tress developed in the normal direction on Γ is compressive (2b). We also decompose the traction vector at the
c
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contact boundary into the normal and tangential components, given as σ n = σn · n+ σ t , where σn = n · σ n. The
third contact condition is given as complementarity condition, as in (2c), which ensures that the gap between two
bodies is zero in presence of non-zero contact pressure and the contact pressure is zero in absence of contact. As
we are considering the frictionless contact problem, the body is allowed to move freely in the tangential direction
and the induced tangential stresses are given as in (2d). The frictionless linearized contact conditions are given as
follows:

Ju · nK− gc ⩽ 0 on Γc, (2a)

σn ⩽ 0 on Γc, (2b)

(Ju · nK− gc)σn = 0 on Γc, (2c)

σ t = 0 on Γc. (2d)

In contact mechanics these conditions are known as Hertz–Signorini–Moreau conditions for frictionless contact,
while in optimization literature they are known as Karush–Kuhn–Tucker (KKT) conditions of the constraints.

Remark. In this work, we also consider Signorini’s contact problem in the unfitted FE framework. In Signorini’s
problem, a contact between a linear elastic body and a rigid foundation is considered and the gap function is
computed as a distance from apriori unknown contact boundary to the rigid foundation. The non-penetration
condition for this problem is given as, u · n− gc ⩽ 0 on Γc.

2.2. An unfitted FE discretization

In this section, we discuss the discretization of the two-body contact problem. For simplicity, we assume that
only the contact boundary is not fitted with the mesh, while Dirichlet and Neumann boundaries are fitted.

We assume a shape regular, quasi-uniform, conforming quadrilateral mesh T̃h of a polygonal domain Ω̃ . The
polygonal domain Ω̃ is define as Ω̃ ⊇ Ω = Ω1

∪Ω2. The contact boundary Γc is assumed to be resolved sufficiently
ell by the mesh T̃h and the curvature of the boundary is assumed to be bounded. Let hK be the diameter of the

lement K , and mesh size is defined as h = maxK∈T̃h
hK . We define an active mesh, which is strictly intersected

y the domains Ω1,Ω2 as

T i
h = {K ∈ T̃h : K ∩ Ω i

̸= ∅}, for i ∈ {1, 2}.

or simplicity, we define a domain Ω i
h = ∪K∈T i

h
K , where Ω i

⊂ Ω i
h for i ∈ {1, 2}. The active meshes exclude all

lements that are neither intersected by the boundary Γc nor are in the interior of the domain. We define a set of
lements that are intersected by the contact boundary Γc as

Th,Γc = {K ∈ T̃h : K ∩ Γc ̸= ∅}.

or all elements K ∈ Th,Γc , let KΩ := K ∩Ω be part of K in domain Ω . The elements K ∈ Th \ Th,Γc are strictly
n the interior of domain Ω . For all K ∈ Th,Γc , let ΓK := Γc ∩ K be part of Γc in K .

We define a continuous FE space over the mesh T̃h as

Ṽh = {v ∈ [H 1(T̃h)]d
: v|K ∈ Q1(K ), v|(∂ T̃h )D

= 0,∀K ∈ T̃h}, (3)

here Q1 denotes the space of piecewise bilinear functions. Following the original XFEM literature [2], we define
characteristic function of a computational domain Ω i for i ∈ {1, 2}, as

χΩ i : Rd
→ R, χΩ i (X) =

{
1 ∀X ∈ Ω i ,

0 otherwise.
(4)

he function space Ṽh is spanned by nodal basis functions Φ̃h = {φ̃
p
h }p∈Ñh

, where Ñh denotes the set of nodes of
he background mesh T̃h . The characteristic function is used to restrict the support of the finite element space Ṽh to
he respective domain Ω i thus V i

h = χΩ i (X)Ṽh . We seek the approximation uh = (u1
h⊕u2

h) in space Vh = V1
h⊕V2

h .
e define a set of nodes on an active mesh T i

h associated with a domain Ω i as
i ˜ ˜p i
Nh := {p ∈ Nh : supp(φh ) ∩ Ω ̸= ∅} for i ∈ {1, 2}.
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Fig. 1. An example of a domain Ω with a background mesh T̃h .

We now define a “cut” basis function associated with a node p as

φ
p
h = χΩ i (X)φ̃ p

h ∀p ∈ N i
h , i ∈ {1, 2}.

The function space V i
h is spanned by nodal basis functions Φi

h = {φ
p
h }p∈N i

h
. We define the FE space Vh = span{Φh},

where Φh = Φ1
h ∪ Φ

2
h , and the set of nodes associated with the mesh Th is given by Nh = N 1

h ∪N 2
h .

Remark. For Signorini’s problem, the characteristic function (4) is defined only on the domain Ω1. An example
of a domain Ω embedded in the background mesh T̃h , the active mesh Th , the interior mesh, and the cut mesh are
shown in Fig. 1.

2.3. Variational formulation

The variational formulation of the two-body contact problem using the principle of virtual work is given as:

find uh ∈ Kh such that, a(uh, vh − uh) ⩾ F(vh − uh) ∀vh ∈ Kh, (5)

here a(·, ·) : Vh × Vh → R is a symmetric, continuous and coercive bilinear form, and F(·) : Vh → R denotes
ontinuous and bounded linear form. The bilinear and the linear forms are defined as

a(uh, vh) =
2∑

i=1

∫
Ω i

σ i (ui
h) : ε(vi

h)dΩ =
2∑

i=1

(∫
Ω i

2µiε(ui
h) : ε(vi

h)dΩ +
∫
Ω i
λi tr(ε(ui

h))tr(ε(vi
h))dΩ

)
,

F(vh) =
2∑

i=1

(∫
Ω i

f ivi
hdΩ +

∫
ΓN

t i
N vi

hdΓ
)
.

(6)

ere, we employ the method of Lagrange multipliers to enforce the non-penetration contact conditions (2a), where
he multiplier space is constructed by employing the vital vertex algorithm [24,35]. This is due to the fact that the
agrange multiplier formulation does not require modification of the primal formulation, and the contact condition
an be handled by the multipliers implicitly. Whereas, Nitsche’s formulation for the contact problem is more
omplex as we have to handle the non-penetration conditions in the primal formulation.

We introduce the multiplier space Mh ⊆ H−
1
2 (Γc) and define the bilinear form b(·, ·) :Mh × Vh → R, given

as

b(µh, uh) :=
∑

K∈Th,Γc

∫
ΓK

µhJuh · nK dΓ ∀µh ∈Mh,∀uh ∈ Vh, (7)

and the linear form G(·) :Mh → R, given as

G(µh) :=
∑

K∈Th,Γc

∫
ΓK

µh gc dΓ ∀µh ∈Mh .

Finally, we can define a space of admissible displacements that satisfy the contact conditions as

K := {v ∈ V : b(µ , v ) ⩽ G(µ ),∀µ ∈M }. (8)
h h h h h h h h

6
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The space of admissible displacements Kh is a closed convex subset of the FE space Vh . Due to the inequality
condition in (5), the contact problem is inherently nonlinear.

2.3.1. Ghost penalty stabilization
In unfitted FE methods, a background mesh can intersect with a boundary/interface of the computational domain

of arbitrary shape, hence the elements are allowed to be cut arbitrarily by the boundary/interface. In general, this
flexibility can result in disproportionally cut elements, which might not be shape regular anymore. For this reason,
the bound on the gradient of a function can become arbitrarily weak for the unfortunately cut elements. By adding
a ghost penalty term [6], we regain control over the gradients of the function on cut elements with very small
support, and by extension, we can overcome the issue of ill-conditioning. This stabilization term has to be chosen
in such a way that it provides sufficient stability and stays weakly consistent with the original formulation for
smooth functions. We define a set of faces G i

h,Γc
for each subdomain Ω i as

G i
h,Γc
= {G ⊂ ∂K | K ∈ T i

h,Γc
, ∂K ∩ ∂T i

h = ∅} for i ∈ {1, 2}.

An example of the set of faces Gh,Γc in the context of Signorini’s problem can be seen in Fig. 1(d). The ghost
penalty term is enforced on the faces G ∈ Gh,Γc , and it is defined as

j(uh, vh) =
∑

i={1,2}

∑
G∈Gi

h,Γc

∫
G
ϵGhG(2µi

+ λi )J∇Eh uh · nGKJ∇Ehvh · nGK dG, (9)

here hG is the diameter of the face G, nG denotes a unit normal to face G, ϵG is a positive constant and λi , µi

enote the Lamé parameters associated with the either domain [48]. Here, Eh denotes the canonical extension of
he function from the domain to the background mesh, which is defined as Eh : Vh |KΩ → Ṽh |K . This ghost penalty
erm is enforced in the normal derivatives of the displacement field. A different approach is also considered in [22],
here the ghost penalty term is enforced in the normal derivatives of the stress field.
Now, we modify the variational formulation of the two-body contact problem by adding the ghost penalty

tabilization term. The updated variational problem is defined as:

find uh ∈ Kh such that a j (uh, vh − uh) ⩾ F(vh − uh) ∀v ∈ Kh, (10)

ith the bilinear form a j (uh, vh) := a(uh, vh)+ j(uh, vh).

.3.2. Discretization of non-penetration condition
We have used the method of Lagrange multipliers to discretize and enforce the non-penetration contact condition.

o achieve optimal convergence rates of the discretization method, the choice of the FE spaces for primal variable
uh ∈ Vh and the dual variable λh ∈Mh is crucial. In the unfitted FE framework, the most convenient options for

h and Mh are very rarely stable. As, the method of multipliers is stable only if the following discrete inf–sup
ondition is satisfied

inf
µh∈Mh

sup
vh∈Vh

b(µh, vh)
∥µh∥

H−
1
2 (Γh ),h

|||vh |||a
⩾ β > 0, (11)

where the constant β does not dependent on mesh-size h. Also, the mesh dependent interface norm is defined as
∥µh∥

2

H−
1
2 (Γh ),h

:=
∑

K∈Th,Γ
h∥µh∥

2
L2(ΓK )

and |||vh |||
2
a := a(vh, vh)+ j(vh, vh) denotes a broken energy-norm. If the

inf–sup condition (11) is not satisfied, it can give rise to spurious modes in the discrete Lagrange multiplier space.
The effect of the spurious modes in the solution can be observed as locking phenomena on the interface. In the
unfitted FE framework, it is not trivial to create an optimal multiplier space, as the interface is not resolved by the
background mesh.

We employ the vital vertex algorithm to create a stable multiplier space, where the primal space is kept the
same and a coarser multiplier space is chosen. Such an approach of constructing a coarser multiplier space can be
found in several works in the context of unfitted FE framework [24,49]. Béchet et al. developed a stable multiplier
space based on a vital vertex algorithm [24]. This method does not require any stabilization term for the Lagrange
multiplier and the primal space Vh does not require any modification. Only the multiplier space Mh is designed

carefully such that it satisfies the inf–sup condition.

7
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We define a skeleton associated with the mesh Th,Γc , as Sh,Γc := ∪K∈Th,Γc
∂K . The set of vertices is defined

by points that result from the intersection interface Γc with the skeleton Sh,Γc , given as Vh,Γc := Sh,Γc ∩ Γc. The
et of vertices Vh,Γc is later decomposed into a set of vital vertices V V

h,Γc
and a set of non-vital vertices V N

h,Γc
.

his decomposition is carried out based on two main rules: a vertex is declared to be vital if it is not connected
o another vital vertex; a non-vital vertex has to be connected to at least one vital vertex. The dimension of the

ultiplier space Mh is given as |V V
h,Γc
|. A set of nodes Nh,Γc includes all nodes that are endpoints of the cut-edges,

iven as Nh,Γc := {q ∈ Nh : φ
q
h |Γc ̸= 0}. The set Nh,Γc is later divided into a set of active nodes N A

h,Γc
and inactive

nodes N I
h,Γc

. Here, the set of active nodes N A
h,Γc

are defined as the endpoints of the edges on which the vital vertices
are located and the inactive nodes are given as N I

h,Γc
= Nh,Γc \N

A
h,Γc

. For each vital vertex p ∈ V V
h,Γc

, we define an
ssociated basis function ψ p

h . These basis functions are defined as linear combination of trace of higher dimensional
asis function φq

h on interface Γc, where q ∈ Nh,Γc , given as

ψ
p
h :=

∑
q∈Nh,Γc

wpqφ
q
h |Γc ,

here wpq are coefficients of the linear combination chosen such that ψ p
h (q) = δpq for all q ∈ V V

h,Γc
.

In Fig. 2, we can see a set of all vertices (Fig. 2(a)), a set of vital vertices Vh,Γc (Fig. 2(b)), a set of all nodes
associated with the cut elements Nh,Γc (Fig. 2(c)), and an identified set of active nodes N A

h,Γc
and inactive nodes

N I
h,Γc

(Fig. 2(d)) for Signorini’s problem.

2.4. Local basis transformation

The non-penetration constraints in the contact problem are given by the relative displacement of the bodies in
the normal direction. Thus, the constraint at any node is given by the coupling of the degrees of freedom (DoFs)
on the node. To create the constraint matrix such that the non-penetration condition is enforced only on one DoF
per node, we transform the system into a new basis.

Let {Ei }i=1,...,d be the Euclidean basis of Rd and np be the outward unit normal on the node p. On each node
p ∈ Nh,Γc , we define a new basis e1(p) = np and also change {ei }i=2,...,d such that this redefined basis is also
orthonormal, while for all q ∈ Nh \Nh,Γc the definition of the Euclidean basis remains the same. This approach was
introduced for Signorini’s problems [50] and has been effectively applied to multi-body contact problems [41,42,51].
The transformed basis is constructed using a local Householder transformation on Rd , given as

O pp = I − 2(w p ⊗ w p) ∀p ∈ Nh,Γc ,

where the vector w p is computed by w p = (np − E1)/∥np − E1∥2. Now, due to the Householder transformation
for all p ∈ Nh,Γc we can uniquely define local unit vectors as ei (p) = O pp Ei (p). While, we define Oqq = I
for all q ∈ Nh \Nh,Γc , which ensure that the basis system on those nodes remain unchanged, i.e., ei (q) = Ei (q).
Thus, by using these local transformation matrices, we can construct a global matrix O ∈ Rnd×nd where nd =
|Nh | · d and O = ⊕p∈Nh O pp, which is an orthonormal matrix with the properties, O OT

= OT O = I and
O = OT.

This transformation decouples and locally modifies the constraints and it is only applicable in the normal
direction. The bilinear form (7) for the two-body contact problem can be reformulated as

b(µh, uh) :=
∑

K∈Th,Γc

∫
ΓK

µhJuh · E1K dΓK ∀µh ∈Mh,∀uh ∈ Vh . (12)

In the next section, we discuss the algebraic formulation of the contact problem (10) and also discuss the effect
f the local basis transformation algebraically.

emark. In unfitted methods, the interface Γc is defined as the zero-isoline of level set of a function Λ(X).
The gradient of such level set function Λ is used to define unit normal at any point in the domain Ω , given as
n = ∇Λ

|∇Λ|
[52]. Thus, even if a node p ∈ Nh,Γc is not on the interface Γc, we can compute unit normals on any

nodes in N using the above formula.
h,Γc

8
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Fig. 2. Different type of nodes characterized by the vital-vertex algorithm.

2.5. Algebraic formulation

The abstract variational problem for the contact problem can be reformulated as an optimization problem with
inequality constraints, given as

min
uh∈Vh

J (u) =
1
2

a j (uh, uh)− F(uh)

subject to b(µh, uh) ⩽ G(µh) ∀µh ∈Mh .

(13)

The above minimization problem can be written in an algebraic formulation using the local basis transformation
introduced in the previous section. We denote local entries of the stiffness matrix and the right-hand side as

Apq = (a j (φ
p
h Ei , φ

q
h Ek))i,k=1,...,d , bp = (F(φ p

h Ei ))i=1,...,d . (14)

The global stiffness matrix and the right-hand side vector can be assembled as

A = (Apq )p,q∈Nh , b = (bp)p∈Nh .

The bilinear form b(·, ·) can be decomposed into two parts, b1(·, ·) :Mh × V1
h → R and b2(·, ·) :Mh × V2

h → R
ssociated with domain Ω1 and Ω2, respectively, written as

b(µh, uh) = b1(µh, u1
h)− b2(µh, u2

h),

here

b1(µh, u1
h) =

∑
K∈Th,Γc

∫
ΓK

µh(u1
h · n) dΓ and b2(µh, u2

h) =
∑

K∈Th,Γc

∫
ΓK

µh(u2
h · n) dΓK .

his decomposition allows us to write the local entries of the constraint matrices as

B1
rk = (b1(ψr

h , φ
k
h Ei ))i=1,...,d , B2

rl = (b2(ψr
h , φ

l
h Ei ))i=1,...,d , gr = G(ψr

h ), (15)

here ψr
h , φ

k
h and φl

h denote the basis functions associated with nodes r, k, l in the FE spaces Mh , V1
h and V2

h ,
espectively. Thus, the entries of the constraint matrix B and the gap vector g are given as

B1
= (B1

rk)r∈Vh,Γc ,k∈N
1

h
, B2

= (B2
rl)r∈Vh,Γc ,l∈N

2
h
, g = (gr )r∈Vh,Γc

,

here N 1
h and N 2

h denote the set of nodes of the active meshes associated with each body, respectively, and Vh,Γc

enotes the set of vital vertices. The matrix B can be constructed as B = B1
−B2. Now, we can write the algebraic

ormulation of the constraint minimization problem (13) as

min
x∈Rnd

J (x) =
1
2

xT Ax − xTb

subject to Bx ⩽ g,
(16)

here x, b ∈ Rnd , A ∈ Rnd×nd , B ∈ Rm×nd , g ∈ Rm,m ≪ nd and rank(B) = m. Here, x denotes the unknown
displacements, and g denotes the gap between two bodies on the contact boundary.

As we have changed the definition of the Euclidean basis (in Section 2.4), we have to also modify the problem
lgebraically. The (symmetric) matrix O can be used to transform the variables into the new basis as x = Ox and
9
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x = Ox. Similarly, the stiffness matrix A and the right hand side b in the new basis are given as A = O AO
nd b = Ob. The constraint matrix can be written in the new basis as B = B O, the matrix B is obtained by

discretization of (7) and the matrix B is constructed by discretization of (12). The algebraic formulation of the
contact problem (16) in the new basis system is given as following minimization problem:

min
x∈Rnd

J (x) =
1
2

xT Ax − xTb

subject to Bx ⩽ g.
(17)

emark. The local basis transformation for this problem can be carried out directly during the assembly process.
e can compute the stiffness matrix, constraint matrix and the right-hand side with locally transformed basis by

irectly utilizing the new basis ei instead of the Euclidean basis Ei in (14) and (15).

. A generalized multigrid method

In this section, we introduce a new generalized multigrid method for solving a quadratic minimization problem
ith linear constraints (17). This multigrid method is motivated by the monotone multigrid method [46,53], which
as originally developed to solve a quadratic minimization problem with point-wise inequality constraints. Here, we
resent an extension of this method for solving a quadratic minimization problem with linear inequality constraints.

The monotone multigrid method is an iterative method, where within each iteration the energy functional
s minimized successively such that the current iterate satisfies the constraints. This task is carried out using
he projected Gauss–Seidel (PGS) method, which simultaneously minimizes the energy functional and projects
he current iterate onto a feasible set. The traditional PGS method is unable to tackle the linearly constrained

inimization problem, which represents a linear combination of several variables. To overcome this difficulty, we
ntroduce an orthogonal transformation and a variant of the PGS method that can handle the linear inequality
onstraints. In addition, in this multigrid method, we employ the transfer operators constructed using the pseudo-L2-
rojections. Here, we introduce the necessary ingredients used in our generalized multigrid method. The multigrid
ethod is an ideal iterative method for solving many large-scale linear systems of equations that arise from the

iscretization of elliptic differential equations [54]. This method obtains optimal convergence rates by exploiting
iscretizations with different mesh sizes. The multigrid method is considered to have optimal complexity as its
onvergence rate is bounded from above and it does not depend on the size of the problem. Even though the
onvergence rate of the multigrid method does not depend on the problem size, the number of arithmetic operations
rows proportionally with the problem size. Hence, the complexity of the multigrid method is given as O(n). The
obustness of the multigrid method depends on a sophisticated combination of smoothing iterations and coarse-
evel corrections. These components are complementary to each other and reduce the error in a different part of the
pectrum. We define levels as ℓ ∈ {0, . . . , L}, where ℓ = 0 denote the coarsest level and ℓ = L denotes the finest
evel. The standard multigrid method to solve a linear system AL xL = bL is described in Algorithm 1, where ν1, ν2
re the number of pre-smoothing and post-smoothing steps, respectively. The values of γ = 1 and γ = 2, in the
ultigrid algorithm transform the method to a V (ν1, ν2)-cycle and W (ν1, ν2)-cycle, respectively. The matrix T ℓ

ℓ−1
enotes a prolongation operator, and its adjoint denotes a restriction operator.

.1. Transfer operators for unfitted FEM

It is well-known that the efficiency of the multigrid method depends heavily on the underlying hierarchy of
eshes and FE spaces. In the multigrid method, the multilevel decomposition of the FE space is performed in such
way that the FE spaces associated with coarser levels are subspaces of the FE space associated with the finest

evel. This does not necessarily hold for a hierarchy of FE spaces in the unfitted FE framework. Here, we briefly
resent a strategy for constructing a nested hierarchy of FE spaces from a hierarchy of non-nested meshes.

We define a sequence of quadrilateral meshes of polygonal domain Ω̃ , denoted as {T̃ℓ}ℓ=0,...,L . We associate the
riginal background mesh on which the problem is defined as the mesh on the finest level, give as, T̃L := T̃h .
he sequence of meshes is created by choosing a mesh on the coarsest level T̃0 and uniformly refining this mesh.
ow, we can associate FE spaces Ṽℓ to the meshes on each level, in the same way as given in (3). If the meshes˜
Tℓ}ℓ=0,...,L are nested then the associate FE spaces are also subspaces of the FE space on finest level, given as

10
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Algorithm 1: Standard multigrid cycle

Input : (Aℓ)ℓ=0,...,L , bL , xL , L , ν1, ν2, (T ℓ
ℓ−1)ℓ=1,...,L , γ

Output: xL

1 Function: MG(Aℓ, bℓ, xℓ, ℓ, ν1, ν2, T ℓ
ℓ−1,γ )

2 if ℓ ̸= 0 then
3 xℓ← [ xℓ+ Smoother(Aℓ, bℓ, xℓ, ν1); ▷ pre-smoothing

4 rℓ−1 ← [ (T ℓ
ℓ−1)T(bℓ − Aℓxℓ); ▷ restriction

5 Aℓ−1 ← [ (T ℓ
ℓ−1)T AℓT ℓ

ℓ−1; ▷ Galerkin projection

6 cℓ−1 ← [ 0 ; ▷ initialize coarse level correction

7 for i = 1, . . . , γ do
8 cℓ−1 ← [ cℓ−1+ MG(Aℓ−1, rℓ−1, ℓ− 1, ν1, ν2, T ℓ−1

ℓ−2, γ ); ▷ coarse level cycle

9 xℓ← [ xℓ + T ℓ
ℓ−1cℓ−1; ▷ prolongation

10 xℓ← [ xℓ+ Smoother(Aℓ, bℓ, xℓ, ν2); ▷ post-smoothing

11 else
12 c0 ← [ A−1

0 r0; ▷ direct solver

Ṽℓ−1 ⊂ Ṽℓ, for all ℓ ∈ {1, . . . , L}. In order to create a hierarchy of meshes for unfitted FEM, the background
eshes are enriched, decomposed and they are associated with either of the domains.
In Fig. 3, we can see that even though the background meshes are nested, the active meshes are not necessarily

ested. The nestedness of the active meshes depends heavily on the embedded interfaces. Now, utilizing the
haracteristic function (4), we restrict the support of the FE spaces Ṽℓ to the domains, given as V1

ℓ and V2
ℓ ,

espectively. Hence, enriched FE spaces associated with the domain Ω are also not nested, i.e., V i
ℓ−1 ̸⊂ V i

ℓ, for
∈ {1, 2} and ℓ ∈ {1, . . . , L}. To create a hierarchy of nested FE spaces from the hierarchy of non-nested meshes, we

adopt the variational transfer approach introduced for the unfitted FEM [39,55]. We define a prolongation operator
which projects quantities from a FE space associated with a coarse level to a FE space associated with a fine level,
thus as

Πℓ
ℓ−1,i : V i

ℓ−1 → V i
ℓ, ∀ ℓ ∈ {1, . . . , L}, i ∈ {1, 2},

such that Πℓ
ℓ−1,iV i

ℓ−1 ⊂ V i
ℓ. By employing this prolongation operator, a FE space associated with an active mesh

T i
ℓ is constructed by the composition of a sequence of prolongation operators,

X i
ℓ := ΠL

L−1,i · · ·Π
ℓ+1
ℓ,i V i

ℓ, ∀ ℓ ∈ {1, . . . , L − 1}, i ∈ {1, 2}.

e borrow the definition of the FE space on the finest level as X i
L := V i

L . The nested FE spaces are given as

X i
0 ⊂ X i

1 ⊂ · · · ⊂ X i
ℓ−1 ⊂ X i

ℓ ⊂ X i
ℓ+1 ⊂ · · · ⊂ X i

L−1 ⊂ X i
L , for i ∈ {1, 2}.

Following the previous section, we can construct the prolongation operator for the domain Ω as a direct sum of the
prolongation operators on each domain, i.e., Πℓ

ℓ−1 := Πℓ
ℓ−1,1 ⊕Πℓ

ℓ−1,2, for all ℓ ∈ {1, . . . , L}. Thus, we can create
enriched FE spaces Xℓ := X 1

ℓ ⊕X 2
ℓ associated with each level ℓ. In addition, we can create a hierarchy of nested

FE spaces {Xℓ}ℓ=0,...,L for the domain Ω by using the prolongation operator Πℓ
ℓ−1.

We compute the algebraic representation T ℓ
ℓ−1 of the prolongation operator Πℓ

ℓ−1 using the pseudo-L2-
projection [39,56]. We define the projection operator Πℓ

ℓ−1 : Vℓ−1 → Vℓ, given by∫
Ω

Πℓ
ℓ−1vℓ−1µℓ dΩ =

∫
Ω

vℓ−1µℓ dΩ ∀µℓ ∈Wℓ, (18)

where Wℓ is a space of Lagrange multipliers. To construct the algebraic form of the transfer operator, we enforce
weak equality condition (18) in a discrete framework, using wℓ = Πℓ

ℓ−1vℓ−1. We rewrite the weak equality condition
as ∫

wℓµℓ dΩ =
∫

vℓ−1µℓ dΩ ∀µ ∈Wℓ.

Ω Ω

11
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Fig. 3. 2D Quadrilateral meshes on different levels encapsulating the domain Ω i , (domain Ω i is shaded in gray).

e define basis of FE spaces Vℓ and Vℓ−1 as {φi
ℓ}i∈Nℓ

and {φi
ℓ−1}i∈Nℓ−1 , respectively. The basis of multiplier space

ℓ is given as {θ k
ℓ }k∈Nµ . The set of nodes of the FE spaces Vℓ−1, Vℓ and Wℓ are defined as Nℓ−1, Nℓ and Nµ

espectively. Now, we introduce the definition of the basis functions of the respective FE space in above equation∑
i∈Nℓ

wi
ℓ

∫
Ω

φi
ℓθ

k
ℓ dΩ =

∑
j∈Nℓ−1

v
j
ℓ−1

∫
Ω

φ
j
ℓ−1θ

k
ℓ dΩ ∀k ∈ Nµ. (19)

he formulation (19) in matrix–vector form is given as Mwℓ = Nvℓ−1. Here, matrix M is a square matrix which
s defined on a fine level with entries Mik =

∫
Ω φ

i
ℓθ

k
ℓ dΩ . While, the matrix N is a rectangular matrix, defined

etween a fine and a coarse space, with entries N jk =
∫
Ω φ

j
ℓ−1θ

k
ℓ dΩ . Hence, the formula to compute the discrete

ransfer operator T ℓ
ℓ−1 can be expressed as

wℓ = M−1 Nvℓ−1 = T ℓ
ℓ−1vℓ−1. (20)

f the multiplier space Wh is considered to be the same as the FE space Vℓ, it gives rise to a mass matrix
Mik =

∫
Ω φ

i
ℓφ

k
ℓ dΩ . In this case, we would need to invert a matrix that is of the same size as the stiffness matrix.

dditionally, the inverse of such matrix M would be dense, and using such mass matrix would result in a dense
ransfer operator.

In order to avoid inverting the mass matrix M and to create a sparse representation of the transfer operator, we
mploy a different definition of the multiplier space [56–58]. To this end, we choose discontinuous piecewise linear
r bilinear basis functions ψℓ such that Wℓ := span{ψ i

ℓ}i∈Nµ . The basis functions ψℓ are defined to be biorthogonal
o the standard Lagrange basis with respect to L2-inner product, given by∫

Ω

φ
p
ℓ ψ

q
ℓ dΩ = δpq

∫
Ω

φ
p
ℓ dΩ ∀p ∈ Nℓ, q ∈ Nµ, (21)

here δpq denotes the Kronecker delta. The transfer operator constructed using this definition of the multiplier space
s termed as a pseudo-L2-projection operator. Now, we can compute the entries of the matrix M and matrix N are
omputed as Mik = δik

∫
Ω φ

i
ℓ dΩ and N jk =

∫
Ω φ

j
ℓ−1ψ

k
ℓ dΩ , respectively. As we can notice, due to the definition

f the biorthogonal basis the matrix M becomes a diagonal matrix, which is trivial to invert. Also the inverse of
he matrix M is a sparse matrix and the transfer operator T ℓ

ℓ−1 also has a sparse structure. We employ transfer
perators computed using the pseudo-L2-projection in our multigrid method.

emark. In practice, we need to compute the pseudo-L2-projection only on cut-elements. As for the elements that
re not intersected by the interfaces, we can employ the standard interpolation operator as the meshes are nested
n the interior of the domain. This can be efficiently carried out by constructing interpolation operators associated
ith each subdomain and then replacing the entries (in the operator) associated with the cut-elements by appropriate

ntries of the pseudo-L2-projection operator.

.2. Orthogonal transformation

In this section, we introduce the orthogonal transformation for the contact problem (17). This transformation is
ecessary to decouple the linear constraints, which in turn allows us to utilize the modified PGS method. In order
o decouple the constraints, we perform a QR decomposition of the constraint matrix BT

BT
= Q R and B = RT QT,
12
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where Q ∈ Rnd×nd is an orthonormal matrix. Thus, we have Q QT
= QT Q = I , where I ∈ Rnd×nd , represents

the identity matrix. The decomposition of the matrix R ∈ Rnd×m is given by R = [R1 O1]T, where R1 ∈ Rm×m

is an upper triangular matrix and O1 ∈ R(nd−m)×m is a matrix with all zero entries. The matrix Q simply provides
a change of basis, and on this new basis system, the representation of the constraint is modified. It is clear from
the structure of the new constraint matrix R1 that in the modified basis system the constraints are sequentially
dependent on the previous linear constraint. The matrix Q is used to define the variables in the new basis system,
given as x̂ = QTx and x = Qx̂. Moreover, we can observe that QT BT

= R and B Q = RT. By incorporating the
transformed matrices and vectors, we can reformulate the constrained minimization problem (17) as follows:

min
x̂∈Rnd

J (̂x) =
1
2

x̂T Âx̂ − x̂T b̂

subject to RT x̂ ⩽ g,
(22)

here Â = QT A Q and b̂ = QTb. The constraints of the above optimization problem can be written algebraically
as,

⎛⎜⎜⎜⎜⎜⎝
R11 0 0 · · · 0 0 · · · 0
R11 R22 0 · · · 0 0 · · · 0
R13 R23 R33 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

R1m R2m R3m · · · Rmm 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂1
x̂2
x̂3
...

x̂m

x̂m+1
...

x̂nd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⩽

⎛⎜⎜⎜⎜⎜⎝
g1
g2
g3
...

gm

⎞⎟⎟⎟⎟⎟⎠ . (23)

As Q is an orthonormal matrix, the spectral properties of the Â and A are equivalent. But, the sparsity pattern
of the original matrix A and its rotated variant Â are quite different. In practice, the matrix Â is denser than the

riginal matrix, which in turn increases the computational cost of the matrix–vector products in the algorithm. The
ew constraint matrix RT has a lower triangular structure, which can be handled easily by forward substitution.
t is important to note that, this type of constraint can be handled easily by the PGS method, due to its inherent
equential nature.

Now, we define a constrained subspace or a feasible set as

K̂ = {̂x ∈ Rnd
: RT x̂ ⩽ g}.

We pose our problem as an energy minimization problem in the following algebraic formulation:

find x̂ ∈ K̂ such that J (̂x) ⩽ J (̂ y) ∀ ŷ ∈ K̂. (24)

3.3. Modified projected Gauss–Seidel method

Here, we introduce a modified PGS method for solving the problem (24). The Gauss–Seidel method minimizes
the energy functional J (·) in each local iteration step. The energy minimization takes place in the direction of the
nodal basis functions that span the FE space. The Gauss–Seidel method can be written as a subspace correction
method, where the subspace decomposition is achieved by a direct splitting of the underlying FE space into one-
dimensional subspaces spanned by the nodal basis functions. The PGS method is used widely to solve various
forms of obstacle problems, and it is globally convergent [40,46]. We remark that decoupling of the constraints
with respect to the nodal basis function is essential for the global convergence of the PGS method [46,59]. The
original linear contact condition, Bx ⩽ g, does not satisfy this property, as the constraints are represented by the
linear combination of basis functions. The QR decomposition allows us to decouple the constraints by expressing
them in new basis as RT x̂ ⩽ g. In order to discuss this method in generic way, we introduce abstract upper bound
ub ∈ Rm and lower bound l b ∈ Rm . In the context of the contact problem, the lower bound and upper bound are
defined as l b = {−∞} and ub = g, respectively. In addition, we define an active set as a set of all DoFs where
the constraints are binding, thus as

A := {p : (RT x̂) = g }.
p p

13
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Algorithm 2: Modified Projected Gauss-Seidel method

Input : Â, b̂, R, x̂(0), l b, ub, ν∗
Output: x̂(ν∗),A

1 Function: Projected GS( Â, b̂, R, x̂(0), l b, ub, ν∗)
2 for k = 1, 2, . . . , ν∗ do
3 A ←[ ∅ ; ▷ initialize empty active set

4 for i = 1, 2, . . . , n do

5 x̂(k)
i =

1
Â i i

(̂bi −
∑

j<i Âi j x̂(k)
j −

∑
j>i Âi j x(k−1)

j ) ; ▷ update the iterate

6 if i ⩽ m then

7 lbt =
1

Ri i

(
l bi −

∑i−1
j=1 R j i x̂(k)

j
)
; ubt =

1
Ri i

(
ubi −

∑i−1
j=1 R j i x̂(k)

j
)

; ▷ updated local bounds

8 if x̂(k)
i < lbt or ubt < x̂(k)

i then
9 x̂(k)

i = max(lbt ,min(̂x(k)
i , ubt )) ; ▷ project onto feasible set

10 A ←[ A ∪ {i} ; ▷ add current index to the active set

The matrix RT is a lower triangular matrix, which allows us to write the constraints as a linear combination of the
current nodal basis function and previously constrained basis. This key idea allows us to use the PGS method to
solve the problem (24).

The iterative process is given as follows. For a given kth iterate x̂(k)
∈ K̂, we compute a sequence of local

ntermediate iterates, z(0), z(1), . . . , z(nd). We begin with the first local iterate z(0)
:= x̂(k), and the next local iterates

re given by z(i)
= z(i−1)

+ c(i), for i = 1, . . . , nd. Once all local intermediate iterates are computed, a new global
terate of the Gauss–Seidel step is given by x̂(k+1)

:= z(n). The corrections c(i) are obtained as the unique solution
f the following local subproblems, given as,

find c(i)
∈ D(i) such that J (z(i−1)

+ c(i)) ⩽ J (z(i−1)
+ y) ∀ y ∈ D(i),

ith closed, convex set D(i), defined for abstract upper bound ub and lower bound l b as

D(i)
= {c(i)

∈ Rn
: l b− RTz(i−1) ⩽ RTc(i) ⩽ ub− RTz(i−1)

}. (25)

ach intermediate step ensures that the iterate does not violate constraints. If the current iterate violates the
onstraints, it is projected to the admissible space. The PGS method for a generic linear inequality constrained
inimization problem is summarized in Algorithm 2.
Thus, we have a globally convergent PGS method that can be used to solve the problem (24). But the convergence

ate of the Gauss–Seidel method deteriorates as the size of the problem increases. Hence, we employ the modified
GS method as a smoother in our multigrid method.

emark. In Algorithm 2, we have assumed that the values of diagonal entries of the matrix R1 (where R =
R1 O1]T) are positive, which does not hold in general. It is necessary to pay attention to the sign of diagonal
ntries of the matrix R1, as the sign of the diagonal values may change the inequality bounds.

.4. Multigrid method

In this section, we summarize the generalized multigrid method, which includes all the components introduced
n the previous section. In particular, we have a sequence of non-nested finite element spaces {Vℓ}ℓ=0,...,L associated
ith the hierarchy of meshes {Tℓ}ℓ=0,...,L . Following Section 3.1, we have the transfer operators {Πℓ

ℓ−1}ℓ=1,...,L which
re computed using the pseudo-L2-projections. By means of these transfer operators, we create a hierarchy of nested
nite element spaces {Xℓ}ℓ=0,...,L from the hierarchy of background meshes. The prolongation matrices associated
ith the transfer operators are given as {T ℓ

ℓ−1}ℓ=1,...,L .
The orthogonal transformation of the matrix BT plays a vital role in our multigrid method. We recall, on the

nest level the definition of the FE space is kept the same, as X = V , and hence also the nodal basis functions
L L

14
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Algorithm 3: Generalized Multigrid algorithm

Input : AL , bL , xL , L , ν1, ν2, (Tℓ
ℓ−1)ℓ=1,...,L , B, O, l b, ub, γ

Output: xL ←[ OxL ,xL ←[ Qx̂L

1 Function: GMG(AL , bL , xL , L , ν1, ν2, (Tℓ
ℓ−1)ℓ=1,...,L , B, O, l b, ub, γ )

2 T L
L−1 ←[ OT L

L−1; AL ←[ O AL O; bL ← [ ObL ; xL ←[ OxL ; B←[ B O; ▷ local basis transformation

3 Q, R←[ QR Transformation(BT); ▷ QR decomposition

4 T̂ L
L−1 ←[ QTT L

L−1; ÂL ←[ QT AL Q; b̂L ←[ QTbL ; x̂L ←[ QTxL ; ▷ orthogonal rotation

5 while not converged do
6 x̂L ,AL ←[ x̂L+ Projected GS( ÂL , b̂L , RT, x̂L , l b, ub, ν1); ▷ ν1 pre-smoothing steps

7 r̂ L ←[ b̂L − ÂL x̂L ; ▷ residual

8 r̂ trc ←[ trc(̂r L ,AL ); Âtrc ←[ trc( ÂL ,AL ); ▷ truncation

9 r L−1 ←[ (T̂ L
L−1)T r̂ trc ; ▷ restriction

10 AL−1 ←[ (T̂ L
L−1)T Âtrc T̂ L

L−1; ▷ Galerkin projection

11 cL−1 ←[ 0 ; ▷ initialize coarse level correction

12 for i = 1, . . . , γ do
13 cL−1 ←[ cL−1+ MG(AL−1, r L−1, L − 1, ν1, ν2, T L−1

L−2, γ ); ▷ coarse level cycle

14 ĉL ←[ T̂ L
L−1cL−1; ▷ prolongation

15 ĉtrc ← [ trc(̂cL ,AL ); ▷ truncation

16 x̂L ←[ x̂L + ĉtrc; ▷ update iterate

17 x̂L ,AL ←[ x̂L+ Projected GS( ÂL , b̂L , RT, x̂L , l b, ub, ν2); ▷ ν2 post-smoothing steps

defined on these FE spaces are given as ζ p
L = φ

p
L , for all p ∈ NL . These nodal basis functions are modified or

rotated after the orthogonal transformation, which can be written as

ζ̂
q
L ei (q) :=

∑
p∈NL

Q pqζ
p
L ei (p) ∀q ∈ NL .

he transfer operators are computed using the nodal basis functions that span the FE space on a coarse level and a
ne level. With the modified nodal basis functions on the finest level, it becomes essential to compute the transfer
perator associated with the finest level such that the vector and the matrix quantities are projected on a FE space
panned by the modified basis system. Thus, the prolongation matrix T L

L−1 is also modified in two stages. The
rst stage is necessary because of the local basis transformation, which is carried out locally to modify the basis
ystem by means of the Householder rotation matrix O such that contact conditions are only applicable in the
ormal direction. The second transformation is carried out using the orthogonal transformation matrix Q, which is
omputed to decouple the linear contact constraints. The updated transfer operator is defined as

T̂ L
L−1 = QTT L

L−1 = QT OT L
L−1.

ow, the nodal basis function associated with the FE space XL−1 are given as

ζ̂
q
L−1ei (q) :=

∑
p∈NL

(T̂ L
L−1)pqζ

p
L ei (p) =

∑
p∈NL

( QTT L
L−1)pqζ

p
L ei (p), ∀q ∈ NL−1.

This modification of the transfer operator is only required on the finest level, while all other transfer operators on
the coarser levels {T ℓ

ℓ−1}ℓ=0,...,L−1 remain the same.
The modified PGS method is employed as a smoother in the generalized multigrid method only on the finest

level. It minimizes the energy functional in each local iteration in each smoothing step. At the end of the smoothing
iterations, we obtain an active set where the constraints are binding. The most crucial feature of this multigrid
method is that the coarse level corrections do not violate the fine level constraints. As a consequence, we solve the
constrained optimization problem only on the finest level, while on the coarse levels, we solve the unconstrained
linear problem. This is also very convenient, as in this algorithm the representation of the contact constraints is
only required on the finest level.
15
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To ensure that the coarse level corrections do not violate the constraint on the finest level, we modify the
estriction of the residual and the stiffness matrix, and the prolongation of the coarse level correction. Following
he discussion in Section 3.1, the nodal basis functions associated with the coarse level FE space are computed as
linear combination of the nodal basis function defined on the FE space on the finest level. If the value of a nodal

asis function on the finest level is set to zero, the basis function constructed on the coarse levels is represented by
runcated basis functions. For all DoFs that are in the active set, we set the corresponding entries of the residual or
he prolongated correction to zero. While for the stiffness matrix, we set the rows and columns associated with the
ctive set to be zero. This is equivalent to removing the nodal basis function associated with all DoFs in the active
et.

As we are employing transfer operators constructed by the pseudo-L2-projection, this multigrid method including
he truncation process can be carried out algebraically. In comparison with the standard multigrid method used
or solving linear systems, this algorithm is computationally more expensive. This can be attributed to the cost of
omputing the orthogonal transformation of the matrix BT and then projecting the problem onto a new basis system.
ven though the generalized multigrid method is computationally more expensive, it has optimal convergence
roperties. Additionally, it is significantly cheaper in comparison with the other iterative methods, e.g., interior-point
ethod or semi-smooth Newton method. If we are solving an optimization problem with inequality constraints, the

ctive set changes in a few initial multigrid iterations. However, once the active set of the solution is identified, the
lgorithm converges linearly.

In Algorithm 3, we can see the detailed generalized multigrid algorithm with the modified PGS method as a
moother. On the coarse levels, we employ the standard MG methods as described in Algorithm 1, with any regular
moothers. Here, we note that Algorithm 3 is given in an abstract setting for inequality constraints with upper
ounds and lower bounds, assuming that the active set may change in each multigrid iteration.

. Numerical results

In this section, we evaluate the performance of the discretization method and the generalized multigrid method for
olving Signorini’s problem and the two-body contact problem. We utilize Givens rotation to perform the orthogonal
ransformation of the matrix BT, as this method produces a sparser matrix Q than the other orthogonalization

ethods. As an exact solution of the considered problem is not available, we choose correction in the energy norm
s a termination criterion, given by

∥x(k+1)
− x(k)

∥A < 10−10. (26)

his termination criterion can be interpreted as a preconditioned residual norm and it provides a good estimation for
he algebraic error. Such termination criteria have been used as posterior error estimates for the cascadic multigrid

ethods and the adaptive multigrid methods [60,61]. Also, we define the convergence rate of an iterative solution
cheme as

ρk+1
:=
∥x(k+1)

− x(k)
∥A

∥x(k) − x(k−1)∥A
.

e denote the asymptotic convergence rate as ρ∗, where the iterate x(k+1) satisfies the termination criterion (26).
he initial guess x(0) for all solution schemes is chosen as a zero vector.

The implementation and analysis of the discretization schemes and the solution methods are performed using
ATLAB R2020a. The experiments have been carried out on a system with an Intel Xeon E5-2650 v3 processor

nd 32 GB memory.

.1. Benchmark problems

.1.1. Signorini’s problem
In this section, we describe the problem setup for Signorini’s problem for two different types of rigid obstacles.

ll experiments in this section are carried out on a structured background mesh with the quadrilateral elements.
n the coarsest level, the mesh T̃0 is given on a rectangular domain Ω̃ = (−1.09, 1.09) × (0, 1.09), with 100

lements in x-direction and 50 in y-direction, which we denoted as mesh on level L0. By uniformly refining˜ ˜
he mesh T0, we obtain a hierarchy of meshes {Tℓ}ℓ=1,...,5 associated with levels L1, L2, . . . , L5. The Dirichlet

16
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Fig. 4. Setup of for experiments: the objects in the gray scale are rigid obstacles. We can see active meshes and the resulting displacement
field for Signorini’s problem.

boundary condition is defined as u = (0, 0) on x ∈ [−1.09, 1.09] and y = 0. The body force for this example is
onsidered to be zero, i.e., f = (0, 0). In these experiments, the material parameters are chosen as Young’s modulus

E = 10 MPa and Poisson’s ratio ν = 0.3. We can compute Lamé parameters λ and µ using the following relation:
=

Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) .

Example 1-SC. We consider a rigid foundation, defined by a line y = 0.12. The body Ω is defined in such a way
that it violates the non-penetration contact condition in a stress-free configuration. In this experiment, we consider a
semicircular domain, where the contact boundary of the domain is defined by the zero-isoline of a level set function
Λs1 (X) := r2

s1
−∥X − c1∥

2
2 with radius rs1 = 0.9, and c1 = (0, 1) denotes the center of the circle. The domain Ω is

efined by the region where the value of the level set is positive, Λs1 > 0. The setup of this example is depicted in
ig. 4(a), where we see the resulting magnitude of the displacement field due to the contact with a rigid foundation.

xample 2-SC. This example considers a non-symmetric obstacle and possible multiple contact regions. The body
is considered as a semicircular domain with wavy boundaries, given as Λs2 (X) := r2

−0.5(x̃2
+ ỹ2)(5+0.3 sin( π36+

1 arctan( ỹ
x̃ ))) where, x̃ = X x − cy and ỹ = X y − cy . Here, the radius is defined as r = 1.31111 and the center is

given as c = (10−5, 1+10−5). The center c is shifted in the x-direction by 10−5 in order to avoid the intersection of
he zero-isoline of a level set function Λs2 with the nodes of background meshes. The domain Ω is defined as the
egion where the level set function Λs2 has positive values. The rigid foundation is defined as a line which passes
hrough the points (−1, 0.7) and (0.2, 0). In Fig. 4(b), we can observe the setup and magnitude of the displacement

field due to contact with the rigid foundation.

4.1.2. Two-body contact problem
Two bodies are considered to be in contact with each other in the absence of external forces. The mesh {T̃ℓ}ℓ=0,...,5

s given in square domain Ω̃ = Ω = (0, 1)2. On the coarsest level, i.e., L0, we start with 50 elements in each
irection, this mesh is denoted by T̃0. We create a hierarchy of meshes by uniformly refining this mesh until we
ave 1600 elements in each direction, this mesh is defined as T̃5. The Dirichlet boundary condition is defined as

u = (0, 0) on x ∈ [0, 1] and y = 0, while the Neumann boundary condition is defined as σ n = (0, 5) on x ∈ [0, 1]
nd y = 1. The body force for this example is considered to be zero.

xample 1-TC. For this example, we consider a circular contact interface denoted as Γc. The circular interface is
efined as the zero-isoline of a level set function Λc(X) := r2

t1
−∥X−ct∥

2
2, with r2

t1
= 3−2 ·21/2, and ct is the center

f the circle, chosen as (0.5, 0.5). The circular interface decomposes the domain Ω into Ω1, where Λc(X) > 0 and
2 where Λc(X) < 0. For this example, we consider two different sets of material parameters. We choose Young’s
odulus as E1 = 10 MPa and E2 ∈ {10 MPa, 50 MPa} and the Poisson’s ratio is chosen as ν1 = ν2 = 0.3.

xample 2-TC. This example considers an elliptical contact interface denoted as Γe. The interface is defined as the
ero-isoline of level set function

Λe(X) := r2
−

⏐⏐⏐ X x − cx
⏐⏐⏐2
−

⏐⏐⏐ X y − cy
⏐⏐⏐2
.
t2 a b
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Fig. 5. Resulting displacement field and stress field of Example 1-SC.

Here, rt2 denotes the radius of the ellipse, chosen as r2
t2
= 2(3−2 ·21/2). The symbols a and b denote the major and

inor axis of the ellipse, chosen as a = 1, b = 0.8. Here the center of the circle is chosen as (0.5, 0.5). The elliptical
nterface decomposes the domain Ω into Ω1, where Λe(X) > 0 and Ω2, where Λe(X) < 0. For this example, we

consider the same set of material parameters, as used in the previous example. Thus, Young’s modulus is chosen
as E1 = 10 MPa, E2 ∈ {10 MPa, 50 MPa} and the Poisson’s ratio ν1 = ν2 = 0.3.

.2. Convergence and stability of discretization method

In this section, we evaluate the performance of the unfitted discretization method introduced in Section 2 against
ll proposed benchmark contact problems. We use the same mesh hierarchy defined on levels L0, L1, . . . , L5. The
olution computed on the mesh on the finest level L5 is taken as the reference solution and it is compared against
he solutions on different discretization levels from L0, L1, . . . , L4. Also, we are employing the ghost penalty
tabilization term in the bilinear form with the parameter ϵG = 10−2. The resulting components of the displacement
eld, Cauchy stresses, and von Mises stress for Example 1-SC are shown in Fig. 5. In Fig. 6, we can observe the
esulting displacement field and the stress fields for the two-body problem with circular interface Example 1-TC
ith E1 = E2 = 10 MPa. Similarly, the result of the two-body contact problem with an elliptic interface Example
-TC with E1 = 10 MPa and E2 = 50 MPa can be seen in Fig. 7. We can observe that the circle and the ellipse
re in contact with the surrounding block on the top and bottom. In Fig. 8, we can observe the resulting normal
tresses computed on the whole domain for all examples. From Fig. 8, it is clear that the resultant normal stresses
n the embedded interfaces are continuous and they are negative where the two bodies are in contact with each
ther.

.2.1. Analysis of discretization error
The discretization error of the displacement field is computed in two different norms, given as the energy norm
· ∥E(Ω) defined as

∥e(uℓ)∥E(Ω) := ∥uref − uℓ∥E(Ω) =

( ∑
K∈Tℓ

∫
K

σ (uref − uℓ) : ε(uref − uℓ) dΩ
) 1

2

and the H1-norm given as

∥e(uℓ)∥H1(Ω) := ∥uref − uℓ∥H1(Ω) =

( ∑ ∫
K

(uref − uℓ)2
+ (∇uref −∇uℓ)2 dΩ

) 1
2

.

K∈Tℓ
18
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Fig. 6. Resulting displacement field and stress field, as a solution of the two-body contact problem, Example 1-TC, with Young’s modulus
E1 = E2 = 10 MPa, where the domain Ω2 is a circle.

Fig. 7. Resulting displacement field and stress field, as a solution of the two-body contact problem, Example 2-TC, with Young’s modulus
E1 = 10 MPa and E2 = 50 MPa, where the domain Ω2 is an ellipse.

Additionally, the discretization error in the normal stresses on the contact boundary is given in a mesh dependent
norm on the interface as

∥e((σn)ℓ)∥
H−

1
2 (Γc),h

:= ∥(σn)ref − (σn)ℓ∥
H−

1
2 (Γc),h

=

( ∑
K∈Tℓ,Γc

∫
ΓK

hK
(
(σn)ref − (σn)ℓ

)2 dΓ
) 1

2

.
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Fig. 8. Resulting nodal normal stresses (σn) for two-body contact problems in reference configuration.

Table 1
Discretization error in the displacement field at different levels in H1-norm, energy norm and the normal stresses in
mesh dependent norm on contact interface.

hℓ ∥e(uℓ)∥H1(Ω) EOCℓ ∥e(uℓ)∥E(Ω) EOCℓ ∥e((σn)ℓ)∥
H−

1
2 (Γc ),h

EOCℓ

2.18 · 10−2 1.28662 · 10−3 – 6.38102 · 10−3 – 3.38268 · 10−3 –
1.09 · 10−2 6.51964 · 10−4 0.981 3.24611 · 10−3 0.975 1.20316 · 10−3 1.491
5.45 · 10−3 3.29916 · 10−4 0.983 1.64475 · 10−3 0.981 4.98003 · 10−4 1.273
2.72 · 10−3 1.64492 · 10−4 1.004 8.20526 · 10−4 1.003 2.06753 · 10−4 1.268
1.36 · 10−3 7.37150 · 10−5 1.158 3.68012 · 10−4 1.157 7.20550 · 10−5 1.521

(a) Example 1-SC.

hℓ ∥e(uℓ)∥H1(Ω) EOCℓ ∥e(uℓ)∥E(Ω) EOCℓ ∥e((σn)ℓ)∥
H−

1
2 (Γc ),h

EOCℓ

2.18 · 10−2 7.94344 · 10−3 – 4.11494 · 10−2 – 3.85899 · 10−2 –
1.09 · 10−2 4.12698 · 10−3 0.945 2.14838 · 10−2 0.938 1.34525 · 10−2 1.520
5.45 · 10−3 2.08019 · 10−3 0.988 1.09024 · 10−2 0.979 4.34291 · 10−3 1.631
2.72 · 10−3 1.02215 · 10−3 1.025 5.36743 · 10−3 1.022 1.46408 · 10−3 1.569
1.36 · 10−3 4.57430 · 10−4 1.160 2.40582 · 10−3 1.158 3.86884 · 10−4 1.920

(b) Example 2-SC.

hℓ ∥e(uℓ)∥H1(Ω) EOCℓ ∥e(uℓ)∥E(Ω) EOCℓ ∥e((σn)ℓ)∥
H−

1
2 (Γc ),h

EOCℓ

2.18 · 10−2 7.72191 · 10−3 – 3.83188 · 10−2 – 5.28718 · 10−3 –
1.09 · 10−2 3.38210 · 10−3 1.191 1.74086 · 10−2 1.138 1.89146 · 10−3 1.483
5.45 · 10−3 1.50492 · 10−3 1.168 7.68281 · 10−3 1.180 7.30774 · 10−4 1.372
2.72 · 10−3 7.37569 · 10−4 1.029 3.72548 · 10−3 1.044 2.69526 · 10−4 1.439

(c) Example 1-TC, E1 = E2 = 10 MPa.

hℓ ∥e(uℓ)∥H1(Ω) EOCℓ ∥e(uℓ)∥E(Ω) EOCℓ ∥e((σn)ℓ)∥
H−

1
2 (Γc ),h

EOCℓ

2.18 · 10−2 1.01254 · 10−3 – 5.28718 · 10−3 – 5.58060 · 10−2 –
1.09 · 10−2 4.65540 · 10−4 1.121 2.49406 · 10−3 1.084 2.24610 · 10−2 1.313
5.45 · 10−3 2.29725 · 10−4 1.019 1.23670 · 10−3 1.012 8.09678 · 10−3 1.472
2.72 · 10−3 1.15982 · 10−4 0.986 6.27417 · 10−4 0.979 3.43033 · 10−3 1.239

(d) Example 2-TC, E1 = 10 MPa, E2 = 50 MPa.

Signorini’s problem. In Tables 1a and 1b, we show the discretization error for Example 1-SC and Example
-SC in the three different norms and also compute the experimental order of convergence (EOC), EOCℓ =
og

(
∥e(uℓ−1)∥
∥e(uℓ)∥

)
/ log

( hℓ−1
hℓ

)
. From Table 1, we can see that the EOC in the energy-norm and the H 1-norm have

ptimal rates, as the error reduces by order O(h). While for the normal stresses on the contact interfaces, we
xpect the convergence rate in the discretization error to be of order O(h

3
2 ). We can see from Table 1, Example

1-SC demonstrates the optimal EOC for the normal stresses. For Example 2-SC we can see a better convergence
rate than the optimal, this behavior can be attributed to the complex geometry, as the geometry is captured more

accurately as the mesh is refined and due to this reason the rate of convergence of the normal stresses accelerates.
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Fig. 9. The induced normal contact stress on the contact boundary.

In Fig. 9, we can see the resultant induced normal stresses on the contact boundary for Example 1-SC and
xample 2-SC. The resultant contact stresses also agree with the Hertzian contact theory. As for Example 1-SC,

he contact stress exists only in the contact boundary and it is zero everywhere else, and the contact stress also has
parabolic shape. For Example 2-SC, we can also observe three distinct zones where the contact stresses can be

een. Additionally, as the rigid foundation is non-symmetric, the resultant normal stresses are also non-symmetric.

wo body contact problem. The discretization error for Example 1-TC with Young’s modulus E1 = 10 MPa
E2 = 10 MPa and Example 2-TC with Young’s modulus E1 = 10 MPa and E2 = 50 MPa are shown in Tables 1c
nd 1d. We can observe from Table 1 that the error in H 1-norm and energy-norm reduces with the optimal rates,
s the EOC for both norms is close to order O(h). As mentioned earlier, the discretization error of normal contact
tresses on the interface should reduce with order O(h

3
2 ). Here, we can observe that for the normal stresses on the

contact the EOC remains close to the optimal rates.

4.2.2. Analysis of inf–sup condition
In this section, we verify if the inf–sup condition (11) is satisfied for our discretization method. We utilize the

numerical inf–sup test proposed in [62]. The inf–sup condition (11) in an equivalent algebraic form can be given
as

inf
µ∈Rm

sup
v∈Rnd

(µT Bv)2

hµT MµvT Av
⩾ β2 > 0. (27)

he mesh dependent interface norm ∥µh∥
2

H−
1
2 (Γh )

is represented by hµT Mµ, where matrix M denotes the mass

matrix on the multiplier space Mh . The matrix A corresponds to the stiffness matrix which also consists the ghost
penalty stabilization and vT Av is equivalent to the energy-norm |||vh |||

2
a .

The inf–sup test is motivated from the algebraic inf–sup condition (27). By reformulating the algebraic inf–
sup condition, we can write two variants of generalized eigenvalue problems. We utilize following variant of the
generalized eigenvalue problem

1
h

(BT A−1 B)µ = λMµ.

he first non-zero eigenvalue of the generalized eigenvalue problem corresponds to the constant in the inf–sup
ondition, β =

√
λmin.

Fig. 10 shows the numerically computed value of the inf–sup constant for reducing mesh size and for different
alues of the ghost penalty parameter.

The first set of numerical tests are carried out to evaluate the dependence of the ghost penalty term on the
onstant β. To this end, we consider Example 1-SC and solve the generalized eigenvalue problem with decreasing
21
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Fig. 10. Value of inf–sup constant computed using the generalized eigenvalue problem. Here, the symbol A denotes the Young’s modulus
E1 = E2 = 10 MPa and the symbol B denotes E1 = 10 MPa, E2 = 50 MPa.

mesh size. As we can see in Fig. 10(a), the value of the parameter ϵG in the ghost penalty term does not affect
the inf–sup constant significantly. We can see that for ϵG = 0, i.e., without ghost penalty stabilization, the value
of β varies the least with the mesh size and this value is the smallest compared to all other considered values of
ϵG . As the value of ϵG is changed, we observe that the value of β increases for fixed mesh size. But the effect
of the ghost penalty parameter on the value of β is minimal with respect to decreasing mesh size. For the second
set of experiments, we consider the proposed contact problems for a fixed value of the ghost penalty parameter
ϵG = 10−2 and decreasing mesh size for all benchmark problems. In Fig. 10(b), we can observe that the value of
β varies mildly with decreasing mesh size, but we do not observe any drastic changes in the value of the constant.
Hence, we can claim that the discretization scheme is stable, as the value of constant β does not degenerate with
decreasing mesh size.

4.3. Effect of the ghost penalty term

In Section 2.3.1, we discussed the ghost penalty term which is used to overcome the issue of ill-conditioning. In
this section, we evaluate the robustness of this term by comparing the effect of different values of the ghost penalty
parameter (ϵG). Additionally, we also evaluate the performance of the proposed multigrid method with respect to
various values of the parameter ϵG .

In this experiment, we consider Example 1-SC on the predefined domain with the discussed boundary conditions.
hile the domain is kept fixed, we move the background mesh T̃h in the x-direction. We generate a set of

background meshes {T̃ k
h }k=0,...,10. Here, we consider the problem defined on level L2, with 400 and 200 elements in

x-direction and y-direction, respectively. We recall that the T̃h is defined on a rectangle of dimension [−1.09, 1.09]×
[0, 1.09]. The meshes T̃ k

h are given as T̃ k
h = T̃h + δk(hℓ/2, 0), where δk = 0.1k and hℓ = 5.45 · 10−3. A sketch of

ranslated mesh configuration can be seen in Fig. 11. For this experiment, the multigrid method utilizes V (5, 5)-cycle
ith the modified PGS method as a smoother on the finest level, while the symmetric Gauss–Seidel method is used

s a smoother on coarser levels. On the coarsest level, we use a direct solver. The multigrid hierarchy is equipped
ith 3 levels, where L0 denotes the coarsest level and L2 denotes the finest level.
First, we compare the condition number of the stiffness matrix κ(A) with respect to the different values of the

host penalty parameter. We can see in Fig. 12 that the condition number of the system matrix is highly unstable if
he ghost penalty term is not employed i.e., ϵG = 0. In the unfitted FE framework, the elements of the background

esh intersect the interface arbitrarily and on the elements with the small cuts, the gradients of the function are
ot bounded. If we employ the stabilization term, the condition number of the system matrix becomes stable, and
22
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Fig. 11. Moving the background mesh, while keeping the domain Ω fixed. The solid mesh is background mesh configuration for Example
1-SC, while the mesh denoted with dashed line is the mesh moved in x-direction with δk (hℓ/2) distance.

Fig. 12. Comparing the condition number of the system matrix, number of total MG iterations and the asymptotic convergence rate of the
MG method for different values of ghost penalty parameter, for Example 1-SC.

also it does not vary with respect to various cut configurations while translating the mesh. We can observe that
if smaller values of ϵG is chosen, e.g., ϵG ∈ {10−4, 10−3, 10−2, 10−1

}, the condition number of the system matrix
becomes stable. In the next part, we compare the number of iterations of the MG method to reach the predefined
tolerance criterion and compare also the asymptotic convergence rate. We can see that, for ϵG ∈ {0, 10−4

}, the
umber iteration is not stable and varies with respect to different values of δk . But still, the number of iterations
or ϵG = 10−4 is smaller than the case without the ghost penalty term. Similar behavior can also be witnessed in
erms of the asymptotic convergence rate, as the asymptotic convergence rate ρ∗ is smaller for ϵG = 10−4 than for
ϵG = 0. For ϵG = 10−3, the number of iterations is quite stable but the asymptotic convergence rate still oscillates
with respect to moving mesh. Interestingly, the number of iterations and the asymptotic convergence rate (ρ∗) is
stable for ϵG = 1, but these values are still considerably higher than those for the smaller values of the ghost penalty
parameter. The number of iterations and the asymptotic convergence rate are most stable for ϵG ∈ {10−2, 10−1

}.
But with close observation, we can claim that for ϵG = 10−2, the condition number of the system matrix is the
mallest and this also reflects in the performance of the multigrid method. Due to this reason, the default value of
he ghost penalty parameter in the previous and the next experiments is chosen as ϵG = 10−2.

.4. Performance of the multigrid method

In this section, the performance of the multigrid method is evaluated for increasing problem size and increasing
he number of levels in the multigrid hierarchy. Here, all the experiments are carried out on successively finer
efinement levels L1, L2, . . . , L5. We employ V (5, 5)-cycle and W (5, 5)-cycle in the multigrid method, with the
odified PGS method on the finest level and symmetric Gauss–Seidel method on the coarser levels as smoothers.
e increase the number of levels in the multigrid hierarchy with the refinement levels, i.e., MG employs 2 levels

or discretization level L1 while 6 levels are employed for discretization level L5.
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Table 2
The number of iterations of the generalized multigrid method to reach a predefined tolerance for solving
Signorini’s problem.

# levels Example 1-SC Example 2-SC

V (5, 5) W (5, 5) V (5, 5) W (5, 5)

# iter (ρ∗) # iter (ρ∗) # iter (ρ∗) # iter (ρ∗)

L1 2 10 (0.072) 10 (0.072) 11 (0.092) 11 (0.092)
L2 3 11 (0.061) 10 (0.049) 12 (0.083) 11 (0.062)
L3 4 11 (0.069) 10 (0.054) 14 (0.138) 12 (0.097)
L4 5 12 (0.086) 11 (0.046) 15 (0.132) 13 (0.086)
L5 6 15 (0.136) 13 (0.095) 17 (0.182) 13 (0.094)

Fig. 13. The history of the correction in the energy norm, dimension of the active set, the convergence rate (ρ) at each iteration of the MG
method with W (5, 5)-cycle for solving Example 2-SC.

Signorini’s problem. Table 2 illustrates the number of iterations of the generalized multigrid method to reach the
termination criterion (26) and the asymptotic convergence rate for Signorini’s problem. It is evident from Table 2,
that the number of iterations does not vary significantly with the increasing problem size and an increasing number
of levels in the hierarchy. As expected, the MG method with the W -cycle outperforms the V -cycle. While using
the V -cycle the asymptotic convergence rate increases slightly with increasing problem size, but if we employ the
W -cycle the asymptotic convergence rate becomes stable (ρ∗ < 0.1). In Fig. 13, we compare the convergence
history of the correction, the size of the active set, and the convergence rate at each iteration for L1, L3, L5, while
using the MG method with W -cycle. From Fig. 13, we can see that a few initial iterations are spent for identifying
the active set. Due to this reason, we can see the convergence rate is quite high and correction in the energy norm is
also reducing slowly for a few initial iterations. But once the active set is identified, the norm of correction reduces
at the same rate and the convergence rate also becomes stable. As we increase the problem size, the size of the
active set also increases, and a few more iterations are required to identify the exact active set. Due to this reason,
we observe a small increase in the number of iterations with increasing problem size.

Two-body contact problem. We employ the multigrid method with W (5, 5)-cycle with the modified PGS method
on the finest level and symmetric Gauss–Seidel method on coarse levels as smoothers. Table 3 shows the number
of iterations of the generalized multigrid method to reach the termination criterion (26). We can conclude from
the table, that the number of iterations does not change significantly with an increasing number of levels in the
multigrid hierarchy. Also, in Table 2, we can observe the asymptotic convergence rate of the multigrid method.
We can see the difference in the asymptotic convergence rates, despite the number of iterations required to reach
the termination criterion is almost the same. For the case with a homogeneous value of Young’s modulus, the
asymptotic convergence rate is quite low (ρ∗ < 0.1). While, for the case with different values of Young’s modulus,
the asymptotic convergence rate is much larger (ρ∗ < 0.55) for the circular interface, whereas this value, is much
smaller for the elliptical interface (ρ∗ < 0.15). Even though the asymptotic convergence rate is higher for the
circular interface with different Young’s modulus, the number of iterations and the asymptotic convergence rate do
24
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Table 3
The number of iterations of the generalized multigrid method (W (5, 5)-cycle) to reach a predefined tolerance for
solving two-body contact problems.

# levels Example 1-TC Example 2-TC

E1 = 10, E2 = 10 E1 = 10, E2 = 50 E1 = 10, E2 = 10 E1 = 10, E2 = 50

# iter (ρ∗) # iter (ρ∗) # iter (ρ∗) # iter (ρ∗)

L1 2 11 (0.060) 16 (0.526) 10 (0.078) 13 (0.142)
L2 3 11 (0.055) 19 (0.488) 11 (0.075) 14 (0.134)
L3 4 12 (0.064) 13 (0.165) 11 (0.065) 14 (0.120)
L4 5 13 (0.057) 18 (0.533) 13 (0.059) 13 (0.087)
L5 6 14 (0.073) 16 (0.533) 13 (0.109) 13 (0.088)

Table 4
The number of iterations of the generalized multigrid (GMG) method, semi-smooth Newton (SSN) method and
interior-point (IP) method to reach predefined tolerance.

Example 1-SC Example 2-SC Example 1-TC Example 2-TC

E = 10 E = 10 E1 = 10, E2 = 50 E1 = 10, E2 = 50

GMG SSN IP GMG SSN IP GMG SSN IP GMG SSN IP

L1 10 9 17 11 8 17 16 8 11 13 8 11
L2 10 9 17 11 9 18 19 8 11 14 7 12
L3 10 11 18 12 11 18 13 11 11 14 9 11
L4 11 13 18 13 16 19 18 11 11 13 10 11
L5 13 14 18 13 15 19 16 12 10 13 12 11

not increase with increasing problem size. Thus, we can conclude that the proposed generalized multigrid method
is robust with respect to the number of levels, the material parameters, the type of obstacle, or the shape of the
interface.

4.5. Comparison with other solution methods

In this section, we compare the performance of the generalized MG method with the other solution strategies such
s the semi-smooth Newton (SSN) method [63] and interior-point (IP) method [64]. For this comparison, we use
he MG method with W (5, 5)-cycle and increasing number of levels in the multigrid hierarchy as discussed earlier.
or the IP method and the SSN method, we employ a direct solver on each iteration. We use a predictor–corrector
ariant of the IP method [65], for each iteration the system matrix is factorized only once in the predictor step and
he same factorization is reused for the corrector step. The IP method is used in its reduced form, hence at each
teration, a linear system with nd unknowns has to be solved. The SSN method cannot be formulated in a reduced

form for the linear inequality constraints. Hence, we have to solve an enhanced KKT-system in each SSN iteration,
where the linear system is formed with a non-symmetric matrix with nd + m unknowns.

From Table 4, we can see that the multigrid method requires between 10 and 20 iterations to reach the termination
criterion. For the SSN method, the number of iterations required to reach the termination criterion is smaller than
for the IP method. It is not trivial to make a direct comparison between the IP method and the SSN method, as
arising linear system of equations has a different structure. But we can safely claim that the multigrid method is
computationally cheaper than the IP method and the SSN method. This is due to the reason that, the IP method and
the SSN method require a solution of a linear system at each iteration, whereas the multigrid method needs only a
few smoothing steps and a factorization of a linear system on the coarsest level. The computational complexity for
Cholesky factorization of the symmetric positive definite FE matrices in 2D have been claim to be O(n

3
2 ) and the

number of non-zeros in the factorization is O(n log n)) [66], while the computational complexity of the multigrid
method is O(n). Thus, the computational cost per iteration for the multigrid method compared to the other methods
is significantly low.

In order to do a quantitative study of these three methods, we compare the execution time and the memory
requirements of the solution process for all methods for Example 1-SC. In Fig. 14, we can observe the execution
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Fig. 14. Comparing the execution time and memory for difference solution schemes.

time for each of these methods in seconds and the memory required during the solution process in MB in the left
column. In the right column of Fig. 14, we can observe the execution time and the memory usage per DoFs. It
is clear from Fig. 14 that, the execution time and the memory requirements for all methods are comparable for
smaller problem sizes. But as the problem size increases, the execution time and the memory requirements for the
SSN method and the IP methods grow at a significantly higher rate than for the multigrid method. For the problem
on the finest level L5, the memory requirement for the SSN method, the IP method, and the multigrid method is
around 23.8 GB, 24.5 GB and 3.7 GB, respectively, and the execution time is around 108 min, 130 min, and 8.5 min.
We can observe from Fig. 14, the time complexity of the IP method and the SSN method is lower than O(n

3
2 ) but

higher than O(n log n). In contrast, the computational complexity of the multigrid method appears to be lower than
theoretical complexity O(n). This can be attributed to the many implementation-related optimizations in MATLAB.

Thus, we can claim that the multigrid method is computationally cheaper in comparison with the SSN method
and the IP method.

5. Conclusion

In this paper, we introduced an unfitted FE discretization for Signorini’s and two-body contact problem. We
utilized the vital vertex algorithm to create a stable Lagrange multiplier space which we used for discretizing
the non-penetration condition. In the numerical section, we evaluated the convergence of discretization error on
two different examples of Signorini’s problem, which demonstrated optimal convergence properties of the unfitted
FE discretization method. Later, we introduced a generalized multigrid method as an extension of the monotone
26
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multigrid method, which can handle linear inequality constraints. We demonstrated the robustness and the efficiency
of the multigrid method for solving Signorini’s problem and two-body contact problems.

The generalized multigrid method introduced in this work can be used to solve quadratic constraint minimization
roblems where the number of constraints is significantly smaller than the number of unknowns. We aim to extend
his multigrid method to solve the contact problem with higher-order discretization schemes in fitted and/or unfitted
E frameworks. Additionally, the extension of this method for the hyperelastic material models would also be a
uite interesting pursuit.
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