DOI: 10.1111/cgf. 14579

COMPUTER GRAPHICS forum
Volume 41 (2022), number 6 pp. 394—417

Non-Isometric Shape Matching via Functional Maps on
Landmark-Adapted Bases

Mikhail Panine,"?

Maxime Kirgo*?

and Maks Ovsjanikov?

I'Universita della Svizzera italiana, Lugano, Switzerland
mikhail.panine @usi.ch
2LIX, Ecole Polytechnique, IP Paris, Palaiseau, France
maximekirgo @gmail.com, maks @lix.polytechnique.fr
3EDF R&D, Palaiseau Cedex, France

Abstract

We propose a principled approach for non-isometric landmark-preserving non-rigid shape matching. Our method is based on
the functional map framework, but rather than promoting isometries we focus on near-conformal maps that preserve landmarks
exactly. We achieve this, first, by introducing a novel landmark-adapted basis using an intrinsic Dirichlet-Steklov eigenprob-
lem. Second, we establish the functional decomposition of conformal maps expressed in this basis. Finally, we formulate a
conformally-invariant energy that promotes high-quality landmark-preserving maps, and show how it can be optimized via a
variant of the recently proposed ZoomOut method that we extend to our setting. Our method is descriptor-free, efficient and ro-
bust to significant mesh variability. We evaluate our approach on a range of benchmark datasets and demonstrate state-of-the-art
performance on non-isometric benchmarks and near state-of-the-art performance on isometric ones.

Keywords: functional maps, landmark-based correspondence, shape matching
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1. Introduction

A common scenario in shape matching is that of very sparse user-
provided landmark correspondences that need to be extended to a
full map between the considered shapes. The landmarks in question
are often of a semantic nature, and thus are very sensitive to exact
placement. Consider, for instance the position of the eyes or the nose
on a human face (see Figure 1) that are matched by an artist, for
example in a texture transfer scenario. In such cases, it is crucial
to preserve the landmark correspondences exactly when extending
the map. Furthermore, it is desirable for the extension process to
be time-efficient and applicable to general, possibly non-isometric
shape pairs.

Functional map methods [OCB*17] constitute a highly effective
shape matching framework, especially when coupled with power-
ful recent post-processing tools such as ZoomOut and its variants
[MRR*19, HRWO20]. The existing methods, however, suffer from
two major limitations: first, they heavily rely upon the assumption of
near-isometry, and second, they typically formulate landmark cor-
respondence via descriptor preservation objectives, combined with

other regularizers in the least squares sense. Unfortunately, this im-
plies that the final map is not guaranteed to preserve user-provided
landmark correspondences.

In this paper, we propose a novel approach that maintains the
efficiency and flexibility of the functional map pipeline, while
overcoming these drawbacks. We organize our proposal in three
major stages. First, we introduce a novel functional basis in which
to express our map. Crucially, our basis is explicitly adapted to
the landmark correspondences, unlike the commonly-used general
Laplace-Beltrami eigenbasis. Intuitively speaking, this allows us
to enforce landmark preservation by only considering functional
maps with a particular (block-diagonal) structure. The design of this
landmark-adapted basis is the most technically involved part of our
proposal, and relies on solving the intrinsic Dirichlet-Steklov and
Dirichlet Laplacian eigenproblems. Specifically, we first construct
new boundaries at the landmarks, and then formulate and solve the
associated boundary value problems.

Second, we remove the assumption of near-isometry by structur-
ing shape matching as a search for bijective near-conformal maps,
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Figure 1: [llustration of our method on a texture transfer problem between two surfaces with significantly different mesh structure. The source
model and its texture were produced by [McG17] (LPS Head) and the target model was extracted from the FAUST dataset [BRLB14]. The
user-specified landmark placement is shown in green, whereas the transferred landmarks are shown in blue. The state-of-the-art functional
map-based method ‘FMapZO’ [MRR*19] fails to preserve landmarks exactly, whereas the hyperbolic orbifolds [AL15] (‘HyperOrb’) approach
leads to a map with higher distortion compared to our method. The ‘reference’ transfer was obtained using the commercial registration tool

R3DS Wrap [Wra2l] and 33 user-defined landmarks.

which are significantly more general than isometries. Following the
functional map pipeline, we express this as a carefully designed en-
ergy to be minimized.

Third, we propose an iterative minimization strategy for our en-
ergy by following in the footsteps of ZoomOut [MRR*19]. In par-
ticular, we demonstrate how landmark correspondences can be pro-
moted throughout this iterative refinement. Furthermore, we exploit
the landmark-awareness of our basis to provide a simple initial guess
of the correspondence.

We test our approach on various benchmark datasets, both iso-
metric and non-isometric. We compare our results to both state-
of-the-art functional maps approaches, as well as recent methods
that exactly preserve landmark correspondences. We report state-
of-the-art accuracy on non-isometric datasets and near state-of-the-
art on isometric ones. Meanwhile, the computation time of our ap-
proach is significantly lower than that of the competing landmark-
preserving methods.

Contributions. To summarize:

1. We introduce a novel landmark-dependent functional basis by
solving an intrinsic Dirichlet-Steklov eigenproblem.

2. We formulate a functional map-based approach to near-
conformal shape matching that preserves given landmarks ex-
actly without restrictions on the topology of the shapes.

3. We propose an efficient way to both compute the basis and to
solve the shape matching problem and report state-of-the-art re-
sults on difficult non-isometric benchmarks.

2. Related Work

Non-rigid shape matching is a well-established research area with a
rich history of solutions. Below we review the works that are most
closely related to ours, focusing on functional maps and landmark-
preserving methods, and refer the interested readers to recent sur-
veys [VKZHC11, Sah20] for a more in-depth discussion.

2.1. Functional maps

Our approach fits within the functional map framework that was
originally introduced in [OBS*12] and extended in many follow-
up works, including [KBB*13, ADK16, RCB*17, EB17, BDK17,
NO17, MRR*19, RMOW20] to name a few. An early overview
of many functional map-based techniques is given in [OCB*17].
The key idea exploited in all of these techniques is to represent
correspondences as linear transformations across functional spaces,
which can be compactly encoded as small-sized matrices given a
choice of basis. This leads to simple optimization problems that
can accommodate a range of geometric objectives such as isome-
try [OBS*12], accurate descriptor preservation [NO17], bijectivity
[ERGB16], orientation preservation [RPWO18] or even partiality
[RCB*17] among others. Typically, such objectives are formulated
as soft penalties on the functional map and are optimized for in the
least squares sense.

2.2. Landmarks in functional maps

Landmark constraints are commonly used in functional map-based
approaches, especially in an attempt to resolve symmetry ambigu-
ity, present, for example when mapping between human shapes.
Starting from the segment correspondences advocated in the origi-
nal approach [OBS*12], and exploited in follow-up works, for ex-
ample [KO19], several techniques also used pointwise landmarks,
that were either user-specified [NO17], automatically computed
[MMRC18], or even extended to curve constraints [GBKS18]. All
of these techniques, however, formulate landmark correspondences
via functional descriptor preservation, for example based on the
heat kernel [SOG09, OMMG10] or wave kernel maps [ASCI11],
which are enforced during optimization only in a least squares sense,
alongside other descriptors and regularizers. Therefore, there is no
guarantee that the final recovered point-to-point map will satisfy
these user-constraints. In contrast, our approach is geared towards
preserving the landmark correspondences exactly, while computing
a smooth overall map.
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2.3. Landmark-based matching

Landmark-preserving shape correspondence has also been studied
in other matching frameworks. Early methods relied on extrinsic
shape alignment, under given constraints, for example using thin
plate splines [Boo89, CR00] or by extending non-rigid ICP, as done
in [SP04] among others. Such approaches, however, rely strongly
on the shape embedding and often require a significant number of
landmarks to work well in practice.

Another successful class of approaches have aimed to compute
correspondences by embedding shapes to a common parametriza-
tion domain. This includes powerful approaches based on mapping
surfaces to the planar domain, [APL14, WZ14], Euclidean orb-
ifolds [AL15] general flat cone manifolds [APL15] or, more re-
cently, the hyperbolic plane [AL16], which can accommodate an
arbitrary number of landmarks.

Finally, recent techniques have also allowed landmark-preserving
shape correspondence by cross-parametrizing the surfaces directly.
This includes exploiting direct and inverse averages on surfaces
[PBDS13] or finding maps that minimize various notions of distor-
tion, for example harmonicity and reversibility (using, first a surro-
gate high-dimensional embedding) [ESB19] or a related symmetric
Dirichlet energy [SCBK?20] (via direct optimization on the surface).
These recent techniques can lead to accurate results, but are often
computationally expensive, and typically place restrictions on the
topology of the shape pair, such as having the same genus. In con-
trast, our method does not suffer from this limitation, as topological
stability is one of the features of functional map methods, which is
also inherited by our technique.

2.4. Basis selection for functional maps

Finally, we remark that our construction of landmark-adapted func-
tional bases also fits within the functional map framework, aimed at
developing flexibile and effective basis functions. The original arti-
cle and most follow-up works [OCB*17] have advocated using the
eigenfunctions of the Laplace-Beltrami operator (LBO), which are
optimal for representing smooth functions with bounded variation
[ABK15]. However, the Laplace-Beltrami basis has global support
and may not be fully adapted to non-isometric shape changes.

The compressed manifold modes [NVT*14, OLCO13, KGB16]
have been introduced to offset the global nature of the LBO by
promoting sparsity and locality in the basis construction. In a re-
lated effort, Choukroun et al. [CSBK18] have proposed to modify
the LBO through a potential function, thus defining a Hamiltonian
operator, whose eigenfunctions have better localization properties.
In [MRCB18], a similar approach was introduced to obtain a ba-
sis that is also orthogonal to a given set of functions. The ‘Coor-
dinate Manifold Harmonics’ used in [MMM#*20], complement the
LBO eigenfunctions with the coordinates of the 3D embedding, al-
lowing to capture both extrinsic and intrinsic information. Finally,
a rich family of diffusion and harmonic bases have been proposed
in [Pat18], by exploiting the properties of the heat kernel.

While these basis constructions offer more flexibility and have
been shown to improve the functional map pipeline in certain cases,
for example [NVT*14, MMM?#*20], they nevertheless are typically
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Figure 2: Diagram illustrating the main steps involved in our
method to map a source shape (orange) to a target shape (blue)
as described in Section 3.

still geared towards approximate isometries, and only enable ap-
proximate constraint satisfaction. In contrast our basis is geared to-
wards landmark-preserving maps during functional map optimiza-
tion, as well as during refinement.

2.5. Dirichlet-Steklov basis

Finally, we note that Steklov eigenproblems have been considered
within geometry processing [WBPS18] as tool for extrinsic shape
analysis. This is achieved by considering the (two-dimensional)
surface as the Steklov boundary of its (three-dimensional) inte-
rior. In contrast, we consider a fully intrinsic problem by using
(one-dimensional) boundaries of small disks centred around the
landmarks as the boundary of the remainder of the surface.

3. Method Overview

In this section, we provide a high-level overview of our approach.
Our method takes as input a pair of shapes M, N represented as tri-
angle meshes along with two sets of k landmark vertices {y}*_, C
M, {yM Y, C V. We then aim to compute a high-quality vertex-to-
vertex correspondence ¢ : ' — M that preserves the given land-
marks exactly. That is, (y) = y/* for all i.

Our overall strategy, illustrated in Figure 2, consists of the fol-
lowing major steps:

1. Remove small disks from the mesh surface, centred at each land-
mark point y;,i = 1...k. This creates k circular boundary com-
ponents {I';}*_,, which are fully contained in the one-ring neigh-
borhood of each landmark.

2. Compute the set of the first N g Laplace-Beltrami eigenfunc-
tions { w_,-}yi‘? with Dirichlet boundary conditions at the bound-
aries of landmark circles. That is, ¥;|r, = O for all i, j.

3. Add to this basis another k sets of Npg basis functions {u;i)}yi’?,
i=1...k, one for each landmark circle, consisting of eigen-
functions of the intrinsic Dirichlet-Steklov eigenproblem. Each
of these basis sets is well-suited to describing smooth func-
tions in the vicinity of its corresponding landmark circle.

Intuitively, these functions complement the Laplace-Beltrami
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eigenbasis are harmonic on the interior of the shapes, and are
zero at all but one disk boundary: u(,.i) Ir, =0for/ #iandall j.

4. Compute an optimal functional map by minimizing an energy
that promotes near-conformal maps, via an iterative refinement
strategy. We split the functional map into k + 1 parts, and sepa-
rately align the Laplacian eigenbasis and each set of Dirichlet-
Steklov ones.

5. Convert the computed functional map to a vertex-to-vertex map
between the shapes with the disks cut out.

6. Reinsert the landmark correspondences to obtain a landmark-
preserving vertex-to-vertex map between the original meshes.

Our general strategy follows the standard functional map
pipeline, especially in its recent variants based on iterative refine-
ment [MRR*19, PRM*21, XLLZ21], with several crucial changes.

First, our main motivation for introducing disks to represent land-
marks in Step 1 is to associate to each landmark a well-defined func-
tional space. In this, we are inspired by techniques that represent
landmarks or seed points on a surface via associated harmonic func-
tions [ZRKSO05, Pat18] on a mesh. Unlike such harmonic functions,
however, our construction is fully justified in the smooth setting.
This is because it is impossible to impose boundary conditions on
isolated points on a smooth surface. Furthermore, as we show below,
the Dirichlet-Steklov eigenfunctions that we compute in Step 3. are
orthogonal to the Dirichlet Laplacian eigenbasis and jointly form a
complete basis for the underlying functional space.

Secondly, instead of computing a single functional map across
Laplace-Beltrami eigenfunctions, we estimate a block-diagonal
functional map that aligns each of the k 4+ 1 components of the func-
tional space separately. This both improves efficiency and promotes
desirable structural map properties. Indeed, we prove that this split-
ting must hold for conformal maps in the smooth setting, and we
observe that it promotes preservation of landmark neighborhoods
across a wide range of shape deformations in practice.

Finally, rather than focusing on near-isometries, we build a func-
tional map energy that aims at computing near-conformal maps,
and fully avoids the use of descriptor functions. Furthermore, we
propose an efficient initialization and an iterative strategy for opti-
mizing this energy, while promoting desirable map properties. This
ensures high-quality correspondences even in challenging cases, in
which existing functional map-based methods tend to fail.

In the following sections, we discuss each step of this pipeline in
detail. Throughout our discussion related to the basis construction
and the structure of pointwise and functional maps, we focus mainly
on derivations in the smooth setting, to highlight the theoretically
justified nature of our approach.

4. Functional Basis

Central to our proposal is a careful choice of the functional basis for
a convenient functional space over the considered shapes. Our basis
is built as the union of the solutions to the Dirichlet Laplacian and
Dirichlet-Steklov eigenproblems, which we describe in Sections 4.1
and 4.2, respectively. In Section 4.3 we define the functional space
that we use in the rest of the proposal. The constructions described in
these sections pertain to manifolds with boundaries and are not yet

397
111107 A

Figure 3: Several Dirichlet Laplacian eigenfunctions of the annu-
lus in 2D with external radius 1 and internal radius 1/2. Notice that
the eigenfunctions concentrate away from the boundary.

1

specialized to our shape matching method, which can be used both
for shapes with and without boundaries. The specialization to our
case is carried out in Section 4.4. There, we describe how to create
a landmark adapted functional basis by, roughly speaking, treating
the landmarks as boundaries. All the constructions discussed in this
section are carried out in the smooth setting. Their discretization is
discussed in Appendix B.

4.1. Dirichlet Laplacian eigenproblem

Let M be a smooth, connected, oriented compact Riemannian man-
ifold with metric g and a boundary d M. The Dirichlet Laplacian
eigenproblem is:

Ay = A

M

Vi |aM =0,
where A denotes the non-negative Laplace-Beltrami operator. De-
spite the vanishing boundary condition, it can be shown (see
[Cha84]) that the eigenfunctions {;}7°, can be chosen to form an
orthonormal basis for L,(M) (square integrable functions of M).
Moreover, the eigenvalues and eigenfunctions can be ordered such

that0<A1§Az§—>oo

In Figure 3, we illustrate the first few Dirichlet Laplacian eigen-
functions for an annulus in the plane with external radius 1 and in-
ternal radius 1/2. We will return to this example of the annulus in
our discussion to compare the properties of different bases that we
consider. We very briefly discuss the discretization of the Dirichlet
Laplacian problem on triangle meshes in Appendix B.

4.2. Dirichlet-Steklov eigenproblem

Let M be a smooth, connected, oriented compact Riemannian man-
ifold with metric g and a Lipschitz continuous boundary d M. Sup-
pose that, up to sets of measure 0, dM consists of two disjoint
nonempty open sets, denoted D and S. The (mixed) Dirichlet-
Steklov eigenproblem is posed as follows:

AM,' =0
uil, =0 ®))
3nui|$ = Oillj,

where 0, denotes the exterior normal derivative. The second and
third line of the above are, respectively, known as the Dirichlet
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and Steklov boundary conditions, explaining the name Dirichlet-
Steklov.

As hinted at in Section 3 and explained in detail in Section 4.4,
in our approach, S will be the boundary corresponding to a given
landmark, while D will be the union of all other landmark bound-
aries.

The general theory of the Dirichlet-Steklov and many other sim-
ilar problems can be found in [Nec¢12]. For a gentle introduction to
Steklov eigenproblems, see [Lab17] (in French).

The eigenvalues {0;}7°, can be ordered such that 0 < 0y < 0, <

-+ — 00. Unlike the eigenfunctions of the Laplacian eigenprob-
lem, the Dirichlet-Steklov eigenfunctions do not form an orthonor-
mal basis for L,(M). Instead, the restriction of {u;}7°, to the bound-

ary S form such a basis for L,(S) (see [Nec12]).

We emphasize that, in contrast to previous uses of the Steklov
eigenproblem in [WBPS18], we consider a purely intrinsic problem
on the shape surface. That is, as described in detail in Section 4.4
our boundaries are one-dimensional, being the boundaries of disks
centred at the landmarks.

As it is written above, the Dirichlet-Steklov problem may seem a
bit mysterious. However, it becomes much more approachable when
written in weak form:

/ Vf-Vu; dM:a,-/fu,- d(OM). 3)
M s

In this form, it can be compared to the standard Laplacian eigen-
problem: [\, Vf-Vy; dM = A; [, fu; d M. Intuitively, and as we
demonstrate in practice, the Dirichlet-Steklov eigenfunctions ‘fo-
cus’ on the boundary S and provide detailed information in the
vicinity of this boundary. As discussed below, in our method we
establish one set of Dirichlet-Steklov eigenfunctions for each land-
mark, and align those functional spaces across the pair of shapes.

A derivation of the weak form of the Dirichlet-Steklov problem is
provided in Appendix A. The discretization of the resulting problem
on triangle meshes is discussed in Appendix B.

We illustrate some Dirichlet-Steklov eigenfunctions for the an-
nulus in Figure 4. Notice that the eigenfunctions concentrate on the
boundary on which the Steklov boundary condition is imposed.

4.3. Functional space W (M)

In this section, we specify the functional space used for the remain-
der of our proposal. Recall that our goal is to obtain a variant of the
functional maps method suitable for non-isometric shape matching.
We propose to search for near-conformal maps.

We thus need to translate the search for near-conformality to the
functional maps setting. We do so by building upon the founda-
tions laid in the context of conformal shape differences [ROA*13,
CSB*17]. Given a pair of surfaces M and A/, in [ROA*13], it is
observed that to study the deviation from conformality of a map

Q000!
0000

Figure 4: Some Dirichlet-Steklov eigenfunctions of the same an-
nulus from Figure 3. The Steklov boundary condition is imposed in
turn on the external (top row) and internal (bottom row) boundaries.
Notice that the eigenfunctions concentrate on the Steklov boundary.

¢ : N — M, it is useful to consider its pullback Fyy as a map
between spaces of functions equipped with the Dirichlet form:

(f, wwo = /M Vf-VudM. )

The Dirichlet form becomes an inner product on the space of
smooth functions modulo constant functions. A Hilbert space is then
obtained by taking the completion of the space in the induced topol-
ogy. We denote the space thus obtained by W (AM). We remark that
this space is different from the standard L, space of square inte-
grable functions, due to the additional smoothness conditions. Be-
low we describe both the properties and the utility of this space in
the context of our landmark-based shape matching approach.

4.4. Landmark-adapted basis for W (M)

As highlighted above, a key aspect of our approach is the construc-
tion of a novel functional basis that is adapted to the landmarks.

Our main idea is to treat the landmarks as boundaries at which
the functional bases satisfy certain boundary conditions. For this, we
first slightly modify the shapes under study. Indeed, while advocated
in several prior works [ZRKSO0S5, Pat18] in geometry processing, it
is not strictly speaking possible to impose boundary conditions at
isolated points in the smooth setting.

Let M and AV be compact, connected, oriented Riemannian sur-
faces. For simplicity, we also temporarily assume them to be with-
out boundary. This last assumption is removed later. Let {y;}¥_, C
M and {y"}*., C NV be k landmarks in one-to-one correspon-
dence. That is, we will be looking for maps ¢ : N” — M such that
o(y¥)=yMforalli =1---k. Such ¢ are said to be landmark pre-
serving. The functional map representation of ¢, that is its pullback
on functions, will be denoted F),y/, as before.

Our first step is to convert the landmarks into proper boundaries.
We do so by removing small disks centred at the landmarks and
treat the boundaries of these disks as boundaries of the shapes. We
make sure that none of the disks intersect. Thus, we end up with a
new shape that has k£ boundary components, one for each landmark.
We denote the boundary corresponding to the landmark y;* by I'.
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By abuse of notation, we denote the shapes thus modified by M and
N, same as their original versions. On triangle meshes, we create
boundaries that are fully contained in a one-ring neighborhood of
each landmark. This operation is described in detail in Appendix C.

We now use the newly created boundaries to split W (M) into
convenient subspaces. These subspaces will be composed of func-
tions satisfying carefully chosen eigenvalue problems and bound-
ary conditions.

We begin by considering the span of Laplace-Beltrami eigenfunc-
tions satisfying Dirichlet boundary conditions on the {I';};:

Ay = M,

. ©)
1//,-|Fj =0,Vi, j.

Recall that the eigenfunctions {v;}°, form a orthonormal basis
for L,(M). They remain mutually orthogonal in W (M), but inter-
estingly fail to form a full basis for that space. This counter-intuitive
behaviour is due to the change of topology from L,(M) to W (M)
and the infinite dimensionality of the functional spaces under con-
sideration.

Let the W (M) closure of the subspace spanned by the {1/,}7°, be
denoted by G(M).

Naturally, our next step is to find functions that span the remain-
der of W(M). This is where the Dirichlet-Steklov eigenfunctions
of Section 4.2 come in. We pose k Dirichlet-Steklov problems, with
the j problem being:

Au =0
Wi, =0, g% j 6)
3, u(})l (/) (J)

This results in k Dirichlet-Steklov eigenbases and spectra denoted
{u)2, and {o,”'},, respectively. Recall that the {u”}2°, form an
orthonormal basis for L, (I";). These functions remain mutually or-
thogonal in W(M). This follows directly from the weak form of
the Dirichlet-Steklov problem (Equations 3). We denote the W (M)
closed span of the {u\”’}2, by H,;(M).

Our key result is that, once put together, the Dirichlet Laplacian
eigenfunctions and the & sets of Dirichlet-Steklov eigenfunctions
span all of W(M).

Lemma 1. The function space W (M) admits the following decom-
position:

k
W(M)=GM)o | PH,M) |. ™

j=1

where @ denotes direct sums and @ denotes orthogonal direct sums,
and the overline denotes the W(M) closure of the spanned func-
tional space.

Proof. See Appendix D. |

Hl 7‘[2 H:g H.t H,’) H(i

Figure 5: W-inner products for the first 20 Dirichlet-Steklov eigen-
functions corresponding to six landmark circles on a sphere mesh
(left). The first three landmarks are on the top left and the remaining
three are on the bottom right. Notice that the different H; subspaces
are almost orthogonal.

ri=0.8 ri=0.5 ri=0.1

Figure 6: W-inner products for the first 30 Dirichlet-Steklov eigen-
functions corresponding to the two boundaries of the annulus. The
external radius of the annulus is 1, while different values of the inter-
nal radius r; are considered. H, and H, correspond to the internal
and external boundaries of the annulus, respectively. In this case,
approximation of orthogonality of H, and H, fails for a large r;,
but becomes more and more valid as r; decreases.

Intuitively, the above lemma says that W (M) can be split into a
non-harmonic part and k& harmonic landmark-associated subspaces,
with each landmark getting its own subspace of harmonic func-
tions that are non-vanishing on it. In practice, we always W (M)-
normalize all of the considered eigenfunctions by dividing each
function by its W norm. In all of the following, we use W (M)-
normalized bases.

The resultant basis is thus normalized. However, it is not quite
W (M)-orthogonal, as suggested by the notation used Lemma 1.
Specifically, the problem lies in the mutual non-orthogonality of the
subspaces H j(M). This is discussed in Appendix D.

In principle, the energy that we are to minimize (see Section 5)
can be expressed in any basis, even if it is not orthogonal. For our
purposes, however, the non-orthogonality of our basis poses a few
challenges, which will be detailed later. Fortunately, in practice,
our basis can be accurately approximated as orthonormal. A typi-
cal matrix of W (M) inner products is shown in Figure 5 (see Ap-
pendix H.3 for an extended evaluation of this approximation). In
Figure 6, we evaluate the orthonormality in the case of the 2D an-
nulus and observe that it becomes more and more valid as the radius
of the inner disk becomes smaller. We will call attention to this ap-
proximation when we use it in the implementation of our proposal.
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1 30

Figure 7: Dirichlet-Steklov (top row) and Dirichlet Laplacian (bot-
tom row) eigenfunctions on an annulus with three landmark cir-
cles and Neumann conditions on inner and outer boundaries. The
Dirichlet-Steklov eigenfunctions correspond to the landmark on the
right. Notice that as the eigenvalues increase, the Dirichlet-Steklov
eigenfunctions quickly concentrate around the corresponding land-
mark, unlike the Dirichlet Laplacian eigenfunctions that remain dis-
tributed in the bulk of the annulus.

Before proceeding further, we note briefly that on shapes with
pre-existing boundaries we impose Neumann boundary conditions
(vanishing normal derivatives). The above discussion remains un-
changed. Note that imposing Neumann boundary conditions re-
quires no special effort in the discrete setting.

We now illustrate our functional basis using the landmark cir-
cles and Neumann boundary conditions on both the inner and outer
boundary of the annulus in Figure 7. Notice that as their eigenvalue
increases, the Dirichlet-Steklov eigenfunctions rapidly concentrate
on the landmark circles. In fact, the eigenfunctions of the closely
related Steklov eigenproblem (i.e. without the Dirichlet boundary)
are known to decay exponentially with distance from the Steklov
boundary, the rate of decay being proportional to the correspond-
ing eigenvalue [PST19]. In contrast, the Dirichlet-Laplacian eigen-
functions remain evenly spread in the bulk of the shape. Thus, high
eigenvalue Dirichlet-Steklov eigenfunctions are uninformative re-
garding the bulk of the manifold. Meanwhile, the high eigenvalue
Dirichlet Laplacian eigenfunctions remain informative in the bulk
even at high eigenvalues.

So far, we assumed that the considered shapes were connected.
Our discussion remains unchanged on general shapes, as long as
each connected component has at least two landmarks on it, as this
is necessary to impose both boundary conditions of the Dirichlet-
Steklov eigenproblem. If this is not satisfied for some connected
component, at least some of the considered eigenproblems will have
eigenfunctions that are piecewise constant per component and cor-
respond to eigenvalue 0. These should not be included in a basis
for W(M), as they have vanishing W —norm. We avoid this issue
by rejecting eigenfunctions with eigenvalues below a certain small
threshold. Note that for components with one landmark we only im-
pose the Steklov condition on the corresponding circle, omitting the
second line of Equation (2).

4.5. Structure of the functional map

Recall that our ultimate goal is to compute a near-conformal diffeo-
morphism ¢ : N' — M that preserves the landmarks. Recall also
that we propose to use functional map methods to find it. In this
section, we translate the structural properties of ¢ into properties of
its pullback Fyx. This helps us to restrict the space of admissible
functional maps, which is crucial for our approach.

We begin on a technical note. Since we have replaced landmark
points with landmark circles, the notion of landmark preservation
has to be slightly adjusted. We no longer can claim something as
simple as (") = y;™ foralli, as the landmark points are no longer
part of the considered shapes. Instead we impose that ¢ restricts to
a diffeomorphism on corresponding landmark circles. That is, ¢ :
N — M is a diffeomorphism and for each i, ¢ : T — '™ is
also a diffeomorphism. '

Now, suppose that ¢ is indeed a conformal map. Then, Fu s sat-
isfies the following lemma.

Lemma 2 (Structure of Fy ). Let Fy: W(M) — W(N) be the
pullback of a conformal diffeomorphism that preserves the land-
mark circles in the sense described above. Then, Fyx maps

1. GM)to GN),
2. H](M) l‘O’Hj(N)fOFdllj.

Proof. See Appendix E. g

The above lemma provides necessary, but not sufficient condi-
tions for Fyy to be the pullback of a diffeomorphism preserving
the landmark circles. Nonetheless, we will use properties 1. and 2.
of Lemma 2 to structure our search for Fy .

From now on, we only consider functional maps that satisfy state-
ments 1. and 2. of Lemma 2. This can be seen as k + 1 separate
maps, one for each landmark subspace H; and one for the orthogonal
complement G, assembled into one block-diagonal functional map.
Intuitively, this keeps the overall map tethered to the landmarks.

4.6. Landmark preservation

At this point, it is worth explaining what we mean when we say
that our method preserves the landmark correspondences in the
discrete setting. Indeed, the challenge of landmark preservation is
to not merely enforce the condition ¢(y") = y/, but to also ob-
tain a smooth (or at least continuous) map in the neighborhood
of the landmarks (notice that we required ¢ to be a diffeomor-
phism when discussing the smooth setting). Our method achieves
this by using a functional basis whose elements are well suited
to describe smooth functions near the landmarks (recall the de-
cay of the Dirichlet-Steklov eigenfunctions away from the Steklov
boundary depicted in Figure 7). By enforcing the functional map
structure of Lemma 2 during the entire solution process, we pro-
mote vertex-to-vertex maps that smoothly map the neighborhoods
of the landmarks of A to the corresponding neighborhoods on M,
the smoothness of the map reflecting the smoothness of the func-
tional basis. Furthermore, we reinsert the original pointwise land-
marks at the end of the solution process to preserve the initial
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landmarks exactly. Recall that the landmark vertices are excluded
from the meshes the moment the landmark circles are introduced.

5. Functional Map Energy

The previous section describes our landmark adapted basis con-
struction, and the block-diagonal structure of landmark-preserving
conformal maps when expressed in this basis. In this section we
specify the optimization problem that we will solve in order to ob-
tain landmark-preserving maps between triangle meshes.

Recall that we propose to look for conformal maps, which can be
characterized in terms of the Dirichlet form (W (M) inner product).

Theorem 1. Let ¢ : N'— M be a diffeomorphism between ori-
ented Riemannian surfaces with pullback Fy : W(M) — W(N).
Then, ¢ is conformal if and only if

(u, VIwmy = (Fmnit, Funv)wo, Y, v € W(M). (8)
Proof. See [ROA*13]. 0

In practice we do not expect to obtain an exact equality of the
inner products as described in the previous theorem. Instead, we
will search for ¢ and Fyy by relaxing the above equality to a min-
imization problem. Let ®* and ®~ denote reduced (finite dimen-
sional) functional bases for W (M) and W (), respectively. These
bases consist of the eigenfunctions of the Dirichlet Laplacian and
Dirichlet-Steklov eigenproblems corresponding to small eigenval-
ues. The precise size of the bases is discussed in Appendix H.4.

From now on, we concentrate our attention on the discrete case.
Namely, M and A will now denote oriented manifold triangle
meshes. Letting (&M, ®M)y ) be the matrix of all inner products
of the normalized basis vectors of ®M, we relax the equality of The-
orem 1 to the minimization of the following energy term:

E(Fax) = (@4, 040
) ©

— (Fan @M, Fun M) wov o

We call this the conformal term of the energy. Here, as well as ev-
erywhere else in this text, || - || denotes the Frobenius norm.

Having covered the conformality of the map, it remains to
rephrase the restriction of Fy to pullbacks of landmark-preserving
diffeomorphisms. This assumption cannot be exactly imposed in the
discrete case. Still, we would like Fyy to exhibit the properties of
such a map. In order to do so, we complete our energy by specifying
two structural terms. Specifically, the first term promotes Fy be-
ing a proper functional map (i.e. the pullback of a vertex-to-vertex
map), as recently defined in [RMWO?21], and the second promotes
the invertibility of Fyyx [ERGB16].

Let Ty denote the vertex-to-vertex map from N to M ex-
pressed as a matrix (i.e. a binary matrix that contains exactly one
1 per row). Then, Fr should satisfy:

Fuy = (V) TIym @M, (10)

where (®V)T denotes the pseudoinverse of ®V, or in other words,
the W () projection onto the reduced basis @~ . As before, we relax
the equality into an energy to be optimized:

Ey(Fuxs Tva) = (@) Ty @ — Fae3. (1)

We call this the properness term of the energy. Notice that we have
expressed the energy as a function of both F and I1. We do so as
we will have to consider these two objects as independent variables
when minimizing the energy. The exact meaning of this is discussed
in Section 6.

In addition to Fy arising from a point-to-point map, we would
also like for it to be invertible. For this, we consider two maps Fx :
W(M) - WWN) and Fypg : WN) — W(M), the latter arising
from a vertex-to-vertex map Iy : M — N. Thus, in what fol-
lows, we will be simultaneously optimizing for maps going in both
directions between the shapes. With / being the identity matrix, the
invertibility condition is, of course:

FymFuy =1,
(12)
FunFvm = 1.

Once again, we convert the above into minimization form. The in-
vertibility term corresponding to the first line above is:

Ep jun (Fan, Fva) = IEvnvcFyvm — Il (13)

The invertibility term E; -y is defined analogously.

In sum, our search for the correspondence between M and A
will involve the joint minimization of the energy:

Emy = acE. (Fyy)
+apE, (Fpns Tvam) (14)
+ ar Er mn (Fpun s Fym)

and an analogously defined energy E,,,,. Here, ac, ap and a; are
nonnegative tunable weights controlling the relative strength of the
conformality, properness and invertibility terms, respectively. Dif-
ferent values of these parameters are explored in Appendix H.1.

The above energy is conformally invariant in the following sense.

Lemma 3 (Energy Invariance). The conformality, properness and
invertibility terms of the energy (Equations (9), (11) and (13)), as
well as the energy (their weighted sum, Equation (14)) are invariant
under (combinations of) the following transformations:

1. Conformal transformations of the meshes keeping the reduced
bases fixed.
2. Orthogonal transformations of the reduced bases.

Proof. Let the functional and vertex-to-vertex maps be fixed.
Since conformal transformations leave the W inner product invari-
ant, the energy terms are conformally invariant for a fixed choice
of functional basis. Statement 1. is now proven. Statement 2. Fol-
lows from the fact the Frobenius norm is invariant under orthogonal
transformations. O
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Note that, in the lemma above, conformal transformations and
changes of basis are treated as independent. In practice, they are
not, as reduced bases are usually mesh-dependent. Thus, the change
of basis induced by a conformal transformation may fail to be or-
thogonal and then Lemma 3 will not apply. As long as one works
with reduced rather than full bases (i.e. spanning all functions of
the mesh), the invariance of the energy under conformal transfor-
mations is therefore only approximately guaranteed.

The conformal invariance of the energy can be violated in another
way. Suppose that the recipe for constructing the reduced bases pro-
duces non-orthogonal bases. Then, the change of basis induced by a
conformal transformation may fail to be orthogonal even when full
bases are used.

Of course, we raise the previous two issues precisely because our
method uses non-orthogonal reduced bases. Thus, Lemma 3 does
not offer a full guarantee of conformal invariance for our energy.
Still, the bases that we use turn out to be very nearly orthogonal and
thus the energy that we employ remains approximately conformally
invariant. Obtaining a truly conformally invariant energy (at least up
to basis truncation) is a subject for future work.

6. Solving the Problem

In this section, we propose an efficient approach for the optimiza-
tion problem posed in Equation (14). Our approach is inspired by
a discrete optimization strategy, first suggested in [MRR*19] and
recently extended to other general energies [RMWO21]. The gen-
eral idea is to recast the problem in a way that makes every iteration
of the optimization into a nearest neighbor search. The overall pro-
cess then consists of two qualitatively different parts. First, an initial
guess of the correspondence is obtained. Then, the correspondence
is refined via the iterative process mentioned above. These steps are
explained in Sections 6.1 and 6.2, respectively.

6.1. Initial correspondence

In this section we explain how we obtain an initial guess of the
functional maps Fun and Fyn. A common way to initialize func-
tional maps with landmarks is via descriptor preservation [OBS*12,
RPWOI18]. However, common descriptors such as HKS or WKS
[SOG09, ASCI11] strongly rely on the isometry assumption and
moreover the initial functional map is not guaranteed to respect
landmark correspondences exactly. To overcome this, we propose
a simple and lightweight initialization scheme.

Recall that our approach upgrades landmark correspondence to
landmark circle correspondence. Moreover, in the smooth setting,
we require this correspondence to be a diffeomorphism. We now
make the assumption that the correspondence between landmark cir-
cles can be seen as a rotation of one circle to match the other.

Specifically, we label the vertices of each landmark circle in
counter-clockwise order using the outward-facing normal orienta-
tion. We can then assign each vertex in a landmark circle coordi-
nates in [0,1). All that remains is to ensure that the origin of this
coordinate system is placed consistently on both shapes. In other

@

Figure 8: Harmonic function satisfying Equation (15) correspond-
ing to the top landmark on a disk with three landmark circles. Notice
that the gradient of the function roughly points towards the top land-
mark. Hence, its normal derivatives at the bottom landmark circles
can be seen as specifying the direction towards the top landmark.

words, the matching of two corresponding landmark circles reduces
to finding an appropriate shift of one of the parametrizations.

We propose to align the parametrizations of the boundary circles
such that the landmark circles are consistently oriented relative to
the other landmarks. In order to do so, we construct functions on the
landmark circles that have maxima in directions roughly pointing
towards other landmarks. Consider the following problem:

Ah;=0,i=1---k,

15
]’l,‘ |I,j - 5,‘ e ( )
This results in k£ harmonic functions, one for each landmark, where
each function /; equals 1 on the boundary of landmark circle i, and
zeros on the boundaries of other circles. As they stand, these func-
tions are constant on each landmark circle. Their normal derivatives,
however, are not. In essence, we use 9,|r,/1; as an indication of the
direction one should take from I'; to reach I';. See Figure 8 for an
illustration. This is similar in spirit to the Geodesics in Heat con-
struction [CWW13], where gradients of solutions to the heat trans-
fer problem are used to construct approximate geodesics.

Denoting the landmark circle coordinates on I';}* by 6;, we select
the optimal shift «; by solving:

o; = arg mina<z ‘
J#

On

A
(16)
— an

Y (mod(6; — a, 1))
;o

2
L)

In this problem, we consider each landmark i and examine direc-
tions to all other landmarks (via normal derivatives). We then align
the coordinates of landmarks on M and N so that these directions
align in the best possible way. This problem can be solved simply
by directly examining all possible shifts and taking the optimum. In
order to gain robustness to changes in triangulation, we first project
the normal derivatives (as circular functions 8,1|F;M h}?" (0)) onto the
reduced basis in order to remove spurious high frequency compo-
nents. Recall that this makes sense as the Dirichlet-Steklov eigen-
functions belonging to landmark I'; form a basis for L,(T';).
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Converting the optimal shifts ¢; into vertex-to-vertex correspon-
dences on the landmark circles is a matter of a nearest neighbor
search between the circular coordinates of the vertices of I';* and
the o;-shifted coordinates of the vertices of F;.V.

It remains to convert the resulting vertex-to-vertex map into a
functional map. Once again, recall that our reduced basis contains
an L, basis for each landmark circle. Thus, by using an expres-
sion of the form of Equation (10) we can construct functional maps
between H;(M) and H;(N). Assembling the resulting maps into
block-diagonal matrices gives our initial guesses of Fyn and Fy .
Notice that, at this stage, these functional maps do not act on the
subspaces G(M) and G(N). The extension of the functional maps
to these subspaces is carried out in the next section.

In Appendix G.1, we compare this approach to two alternative
initialization strategies, and demonstrate its relative advantages.

6.2. Energy minimization via nearest neighbor search

The procedure described in Section 6.1 provides a descriptor-free
initial guess for the functional map. In this section we describe a
refinement method that significantly improves this map.

Recall that we are looking for a vertex-to-vertex map by minimiz-
ing an energy that depends on both the point-to-point and the asso-
ciated functional map (pullback). In [MRR*19] it is observed that a
particular case of such problems can be efficiently solved by consid-
ering the two maps as being independent variables. This observation
was recently extended to a wide range of energies in [RMWO21].
Following this line of work we will move all of the difficult op-
timization on the side of the vertex-to-vertex map and use Equa-
tion (10) to restore the relationship between the maps.

Our main tool is the following result, standard in functional maps
literature [EB17, RMWO21], which allows one to reduce optimiza-
tion problems of a certain form to nearest neighbor searches.

Lemma 4. Let A be a symmetric positive-definite matrix inducing
the matrix norm ||MH/24 = Tr(MTAM). Let ® be a reduced basis or-
thogonal with respect to A, that is OTAD = I. Then, given n pairs
of matrices X; and Y;, the following two expressions are equal:

1. 327 (I9TATIX; — Yl + | ( — ST A)IIXi[13)
2. Y |0X; — oY

Moreover; if A is diagonal, minimizing the above expressions over
matrices I1 that reflect point-to-point maps (i.e. binary matrices that
contain exactly one 1 per row) is equivalent to

n

min ) I1X; — ®¥[7. (17)

This problem can be solved via nearest neighbor search between the
rows of the concatenated matrices [X, - - - X,] and [DY, - - - DY, ].

Proof. See [EB17] for a proof of a special case and [RMWO21]
(Lemma 4.1) for the general statement. ]

We first convert the energy of Equation (14) into the form used
in the above lemma. For brevity’s sake, we will only develop the
expression for Fjqxr and ITy . The expression for the pair Fyr ¢ and
IT v is analogous. As mentioned in Section 4.4, we approximate
the functional bases &M and ®+ to be orthonormal with respect to
the Dirichlet form. Then, the energy minimized by the desired Fj
and Iy becomes:

2
F

Eymy = ac|[l = (Faun)" Faaw
+ ay | (@) WA Ty M — P (18)

+ ay | FrpnFavm — 1”?

Here, we used the approximation of basis orthonormality in two
ways. First, we used it to evaluate the inner products in the con-
formality term (first line of the above equation). Second, we used it
to express (ON )t = (&N )W, where WA is the so-called cotan-
gent Laplacian on A/, which also corresponds to the piecewise linear
finite element discretization of the Dirichlet form. We are still a few
modifications away from being able to apply Lemma 4 to this prob-
lem.

‘We obtain the desired form for the expression by replacing cer-
tain instances of Fpy with its expression in terms of the vertex-
to-vertex map Iy pe: (DN ) WA Ty o @M. By using the fact that
|I — FTF||%2 = |[FFT — I||* and making this replacement, we ob-
tain:

Epn = ac[[ (@) WA Ty s @M (Fun)' — I”i

+ @[ (@) WV Ty @M — Fuun (19)

2
F
+ g (@) WV Ty @M Fyag — 1|

Now, all of the terms of the above are of the form || ®TAILX; — Y;||%,
with WV playing the role of the matrix A. Our energy is thus of
the form of line 1. of Lemma 4, up to three terms of the form
(I — ®DTA)IIX;||>. Notice that (I — DT A) is the orthogonal pro-
jection onto the orthogonal complement of the reduced (approxi-
mately) orthonormal basis ®. Thus, this term can be seen as a regu-
larizer penalizing solutions lying outside of the considered reduced
basis. Indeed, this is how this term is was originally introduced
in [EB17]. Consequently, by implicitly introducing the appropriate
regularizers we can use the first part of Lemma 4 to obtain the fol-
lowing expression for the energy:

112
Eny = ae [Tl @M (Fpap )™ — O |
+ @, | Ty @M — O Fpg [} i (20)
+ @Iy ®M Fpops — DY -

At this point we are forced to make an approximation. Namely, we
assume that the second part of the lemma applies, which would nor-
mally require WV to be diagonal. In other words, we convert the
problem into a nearest neighbor search without having the guaran-
tee of the equivalence of solutions. Despite this approximation, we
have observed that the resulting approach works remarkably well
in practice.

This finally brings us to the procedure that we use to minimize
the energy. As mentioned above, we will consider the functional and
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vertex-to-vertex maps as independent variables. Thus, given func-
tional maps Fyy and Fjn, the point-to-point map [Ty can be
found by solving the nearest neighbor search problem:

My = NNS ([@@WFMN)T Ja, oM \/CTICDMFNM] :
@1

[ﬁ@/\ﬂ \/a»pquFM/V’ J[Z¢A’]) .
Here NNS(A, B) denotes a set of nearest neighbor problems: for
each row of B among the rows of A. The vertex-to-vertex map IT vy
can be obtained analogously. In sum, minimizing the energy with
respect to the vertex-to-vertex maps is also a recipe for converting
functional maps into vertex-to-vertex maps, while taking into ac-
count the original functional map energy.

We are now ready to formulate the optimization algorithm. Fol-
lowing [MRR*19], the overall procedure is based on an iterative
spectral upsampling of the functional map. Specifically, we itera-
tively convert the functional map into a vertex-to-vertex map while
increasing the size of the reduced basis. As explained earlier (see
Figure 7), the Dirichlet-Steklov eigenfunctions are concentrated
near the landmark circles. Thus, increasing their number does not
provide much additional information about the map in the bulk of
the shapes. Therefore, we only increase the number of Dirichlet
Laplacian eigenfunctions. Note that the method proposed in Sec-
tion 6.1 uses Ny = 0 such eigenfunctions. We therefore start with
Npp = 0 and increase this number gradually throughout our map op-
timization process.

Beginning from the initial functional maps Fyy and Fyug ob-
tained in Section 6.1, we proceed as follows.

1. Convert Fyy and Fjrpq into T ng and [Ty via Equation (21).

2. Increase the reduced bases ®M and ®~ by including k., addi-
tional Dirichlet Laplacian eigenfunctions.

3. Update the functional maps to the new basis size via Fy v =
(@V) Ty @M and Fyag = (PM) Ty @Y.

4. TIterate steps 1. to 3. until the desired basis size is reached.

5. Repeat step 1. using only the original non-landmark vertices.
This produces a vertex-to-vertex map between the original
meshes, landmarks excluded.

6. Insert the landmark correspondence into the vertex-to-vertex
map.

A Fast Approximation. We conclude this section by proposing
an acceleration strategy to perform the nearest neighbor search.
The method proposed here is unprincipled, but is validated by both
the overall quality of our results and explicit tests found in Ap-
pendix G.2. The method proposed below is the only one used in
the main text of this paper.

In the language of Lemma 4, we propose to replace the nearest
neighbor search between the concatenated matrices [X - - - X,,] and
[®Y, - - - PY,] by a nearest neighbor search between the summed
matrices X; + - - - + X, and ®Y; + - -- 4+ @Y. This corresponds to
solving the following problem:

n 2
ZI'IX,-—CDY,-

(22)

min
m

F

This reformulation helps to decrease the dimensionality of the
nearest neighbor searches. Essentially, we assume that the different
energy terms will not cancel each other. The payoff for this ap-
proximation is that the matrices involved in the nearest neighbor
search become n times smaller. In our case, there are n = 3 energy
terms. The experiments in Appendix G.2 show that this reduction
in matrix size results in a slightly more than threefold speed-up.

7. Evaluation

We evaluate our method' on standard shape matching datasets,
which we describe in Section 7.1. We first analyse the parameters
involved in our computations (Section 7.2). Second, we conduct an
in-depth evaluation to compare our method to state-of-the-art ap-
proaches on shape matching benchmarks (Section 7.3).

For our quantitative evaluation in Figure 12 (right), Figure 14,
Figure 16 and Figure 18, we follow the commonly-used protocol, in-
troduced in [KLF11] by plotting the percentage of correspondences
below a certain geodesic distance threshold from the ground truth.

7.1. Datasets

We perform all our experiments on the following datasets.

FAUST [BRLB14]

This dataset contains models of ten different humans in ten poses
each. Despite the variability in the body types of said humans, this
dataset is typically considered as near-isometric. We remesh the
shapes of the dataset to shapes with approximately SK vertices
and use 300 shape pairs following the procedure of the authors
of [RPWOI18]. Note that the shapes in question are remeshed
independently and do not share the same connectivity.

TOSCA [BBKO8]

This dataset consists of meshes of humans and animals. Fol-
lowing [RPWOI18], we split this dataset into isometric and
non-isometric shape pairs. We call the resulting datasets TOSCA
isometric (284 shape pairs) and TOSCA non-isometric (95 shape
pairs), respectively. The shapes of these datasets are remeshed
independently to count around 5K vertices per shape. Once again,
the remeshed shapes have distinct connectivity.

SHREC’19 [MMR*19a]

This challenging dataset is composed of human shapes with high
variability in pose, vertex count (ranging from 5K to 200K vertices)
and topology (some shapes are watertight manifold meshes whereas
others have holes and other surface noise sources).

FAUST ‘Wild’ [SACO20]

This dataset is a variant of FAUST in which challenging differences
in connectivity are introduced via remeshing. We use the following

'0Our code is available at https:/github.com/mpanine/DirichletSteklov
LandmarkMatching
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Figure 9: Impact of the ry parameter on the shape matching qual-
ity. The mean geodesic error is averaged on the 95 shape pairs of
the TOSCA non-isometric dataset (remeshed to 5K vertices). Notice
how stable our method remains, even for extreme values of ry.

types of remeshing of the dataset: a uniform isotropic remeshing
(iso), a remeshing where randomly sampled regions are refined
(dense), and the remeshing proposed in [GH97] (ges). Finally, we
consider correspondences across the 20 template models of the
dataset instead of solely considering the initial template shape as
the source shape.

SHREC’20 [DLR*20]

This dataset proposes a collection of 14 animal shapes with a set of
landmarks determined by experts. The animal pairs contain parts in
correspondence with highly non-isometric deformations. We only
consider the correspondences between full shapes for our experi-
ments (test sets 1 to 4).

7.2. Parameter study

We present here the main results concerning the parameters of our
method. Other minor experiments on this topic are presented in Ap-
pendix H (influence of the weights in the energy, qualitative illus-
tration of the impact of landmark placement, near-orthogonality as-
sessment for our basis and study of the effect of basis size).

7.2.1. Radius ry¢

The construction of the landmark boundaries I'; explained in Ap-
pendix C relies on the user-defined scalar parameter s € (0, 1). In
Figure 9, we study the influence of r; on the geodesic matching er-
ror averaged on the TOSCA non-isometric dataset, with seven land-
mark correspondences at their standard locations (see Appendix I).
It demonstrates empirically that this parameter has no significant
impact on the matching performance. We therefore set ry = 0.5 in
all our other experiments.

7.2.2. Landmark placement

In order to study the influence of landmark placement on our
method, we conduct the following experiment on 10 shapes of the
TOSCA Isometric dataset (cat category). We consider an increas-
ing number of landmark correspondences, ranging from 3 to 100,
placed according to four standard surface sampling strategies: (i)
random, (ii) Euclidean farthest point, (iii) geodesic distance farthest
point, and (iv) Poisson disk (as implemented in [Jac*18]). The out-

Figure 10: Error summary when increasing the number of land-
marks k for different surface sampling strategies. The mean geodesic
error on 10 cat shapes of the TOSCA Isometric dataset is reported.
‘FPS’ stands for Farthest Point Sampling.

1072
T

§20 | 1 Random (std dev.)
5| 1 Euclidean FPS (std dev.)
2 == Random (mean)
%;10 ====: Euclidean FPS (mean)
(50 S saaeTETETY

0 | \ \

3579 13 23 33 43 53

Figure 11: Error summary when increasing the number of land-
marks k for two surface sampling strategies. The mean geodesic
error on 95 shape pairs of the TOSCA non-isomatric dataset with
three different seed initializations for each pair is displayed. ‘FPS’
and ‘std dev.’ respectively stand for Farthest Point Sampling and
standard deviation.

come of these experiments is illustrated in Figure 10. The farthest
point sampling strategies result in the fastest decrease of the error,
Poisson disk is slightly slower and random placement is predictably
the slowest. This indicates that our method performs best when the
extremities of the shapes are prioritized for landmark placement.
The landmark placement used in the benchmarks of Section 7.3
makes use of this observation (see Appendix I for details).

To complement the above experiment, we show the variance of
our method when initializing two sampling strategies with three dif-
ferent seeds in Figure 11 on the full TOSCA non-isomtric dataset.

7.2.3. Remeshing invariance

In order to show that our method remains applicable on shapes with
different triangulations, we remesh independently the target pair of
each FAUST shape pair and compute the mean geodesic error in Fig-
ure 12 (left). We additionally experiment with the FAUST ‘Wild’
dataset created in [SACO20] to assess invariance to the remesh-
ing proposed by the authors. Figure 12 (right) and Table 1 present
the outcome of this experiment. We observe marginal difference
when considering the various remeshing approaches tested, which
highlights the insensitivity of the proposed approach to the shape
connectivity. Figure 13 illustrates qualitatively the median transfer
obtained on this dataset.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

519017 SUOLULLIOD SAITERID (D! (dde L Ag pauLA0b 3k SBDILE YO ‘88N JO S3IN1 10} ARRIq 1T BUIIUO AB|IM UO (SUONIPUOD-PUR-SLLLBICO™AB | 1MALe.q] 1 BU1|UO//SANY) SUORIPUOD PLEE SLLLB L 3L} 89S *[2202/TT/0E] Uo Afiqi8uluo A3]1M ‘0uebn Ip elEISBAILNBIRI0NA!E Ad 67T IBO/TTTT OT/I0p/W00 A8 | 1M Aleq | BUI|UO//SANY LWOJ) PAPEO|UMOQ ‘9 ‘220 ‘6598297 T



406 M. Panine et al. / Non-Isometric Shape Matching via Functional Maps
10~2 8 100 100 100
g g ,
51‘8 '?g 28 i — vtzsk || € 80 € 80
1.6 garg e dense 60 E 60
2 » S 20 g = = qges g a
14 < O ‘ » g 8 — WA
0.25 0.5 075 0 2 4 6 8 10 £ 40 5 40
r Geodesic Error 1072 Q 3 == HyperOrb
@) O
xe 20 xe 20 FMap ZO
. . . , . m— Qurs
Figure 12: Left: remeshing stability when varying the triangle re- 0 0
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duction factor r of the target shape. The geodesic error, averaged
over 300 test pairs of the FAUST dataset, slightly increases when
the target mesh becomes coarse (low value of r). Right: stability
of our method when performing resmeshings on the FAUST dataset
(Remeshed to 5K vertices and FAUST ‘Wild’ (see Section 7.1) ). The
geodesic error is measured in mean geodesic distance x100 after
normalizing by the geodesic diameter. The mean values, mean exe-
cution times and vertex counts for each remeshing are presented in
Table 1.

Table 1: Stability of our method when performing resmeshings on the
FAUST dataset. The geodesic error (geo. err.) is measured in mean geodesic
distance x 100 after normalizing by the geodesic diameter. The correspond-
ing error curves are displayed in Figure 12 (right). The execution time (exec.
t.) is also reported, along with the mean number of vertices for each remesh-

ing type (ny).

vitx5k iso dense qes
Geo. Err. 13.7 14.3 14.1 142
y 5001 7117 13399 14002
Exec. t. (s) 7.3 8.35 13.75 14.1

d &/ E &/
Source  Target  Source $Target
Figure 13: Qualitative illustration of the median map quality ob-
tained with our method on three types of remeshing in the FAUST
‘Wild’ dataset (see Section 7.1). Despite the great disparity of the
underlying meshes, our method provides smooth transfers.

7.3. Benchmarks

In this section, we describe the competing state-of-the-art methods
that we employ (Section 7.3.1) and present our main results for
shape matching (Section 7.3.2).

7.3.1. Setup

We compare our method against three competitors that leverage
landmark information to compute correspondences between shapes.
The detailed setup for each method, including the landmark place-
ment is provided in Appendix I. The competing methods are:

Geodesic Error 1072 Geodesic Error 1072

Figure 14: Error summary on the FAUST (left) and TOSCA Isomet-
ric dataset (right). The geodesic error is measured in mean geodesic
distance x 100 after normalizing by the geodesic diameter:

Table 2: Quantitative evaluation results on the remeshed FAUST and
TOSCA Isometric (TOSCA Iso.) datasets. The average geodesic error (Av.
Geo. Err.) and average execution time (Av. Time) on both datasets are dis-
played for our method and competing approaches.

Method Dataset Av. Geo. Err. Av. Time (s)
FMap ZO FAUST 1.23 x 102 593
TOSCA TIso. 1.95 x 1072 6.27
HyperOrb FAUST 2.19 x 1072 26.8
TOSCA Iso. 2.10 x 1072 10.5
WA FAUST 4.08 x 1072 59.3
TOSCA Iso. 5.26 x 1072 81.0
Ours FAUST 1.40 x 1072 8.83
TOSCA Iso. 1.90 x 102 11.3

Hyperbolic Orbifold Tutte Embeddings (hyperOrb) [AL16]
constructs a parameterization of each surface by embedding the
points to the hyperbolic plane. The surfaces are cut along the input
correspondences, which are de facto preserved.

Weighted Averages (WA) [PBDS13] also defines a parameteri-
zation of the input surfaces that preserves landmarks exactly: each
point at the surface is expressed as a weighted average of its distance
to a set of landmarks.

Functional Maps With ZoomOQOut Refinement (FMap
70) [MRR*19] computes correspondences between shapes
by leveraging a functional basis defined on the source and target
shapes. While the method does not allow to retrieve exact cor-
respondence between user-specified landmarks, it constitutes the
current state-of-the-art method for isometric shape matching.

7.3.2. Results

In this section, we present our main results on shape matching.

Isometric shape matching

The evaluation on FAUST and TOSCA Isometric are illustrated in
Figure 14, with averaged errors and runtimes displayed in Table 2.
On the FAUST dataset, our approach remains competitive with a
mean geodesic error of 1.40 x 1072 and a mean computation time
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Figure 15: Qualitative evaluation of our method and competing ap-
proaches on isometric shapes. The first row corresponds to shapes
from the FAUST dataset. The bottom row consists of shapes from the
TOSCA isometric dataset. The shape pair is selected such that the
geodesic error of our method is median over the dataset. The best
and worst cases are illustrated in Appendix G.4.
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Figure 16: Error summary on the TOSCA non-isometric (left) and
on the SHREC’20 lores dataset (right).

of 8.83 s. On the TOSCA isometric dataset, we obtain a slightly
better average geodesic error score than competitors. Qualitatively,
our method produces smooth texture transfers on both datasets, as
highlighted in Figure 15.

Non-isometric shape matching

We run an evaluation of our method on the TOSCA non-isometric
and the SHREC’20 datasets (Figure 16). The mean error values and
timings are shown in Table 3. In this challenging setup, our method
has the best results in terms of mean geodesic error, while being
the second best in terms of computation time. Figure 17 presents a
qualitative evaluation using a texture transfer on a pair of shapes for
each dataset.

SHREC’19 benchmark

The quantitative evaluation is reported in Figure 18, with the as-
sociated averaged geodesic errors on the right of the figure. Our
method obtains the best mean geodesic error score for this difficult
benchmark. In addition, a qualitative evaluation via texture transfer
is depicted in Figure 19. Our method’s strong performance on this
dataset is indicative of its stability and applicability across diverse

Table 3: Quantitative evaluation results on the TOSCA non-isometric (n-
i.) and the SHREC’20 lores (without partial shapes) datasets. The average
geodesic error (Av. Geo. Err.) and average execution time (Av. Time) on both
datasets are displayed for competing approaches and our method.

Method Dataset Av. Geo. Err. Av. Time (s)
FMap ZO TOSCA n-i. 1.10 x 107! 7.78
SHREC’20 7.86 x 1072 279
HyperOrb TOSCA n-i. 4.33 x 1072 17.8
SHREC’20 5.78 x 1072 270
WA TOSCA n-i. 6.50 x 1072 79.7
SHREC’20 7.62 x 1072 140
Ours TOSCA n-i. 4.11 x 1072 13.5
SHREC’20 5.09 x 1072 63.8

changes in shape topology, such as the introduction of small holes.
This is a general feature of the functional maps methods, which our
approach inherits.

8. Conclusion, Limitations and Outlook

We have proposed an efficient functional map-based shape match-
ing approach that promotes conformal maps and exactly preserves
landmark correspondences. This was achieved via the introduction
of a novel functional basis and an energy promoting bijective
conformal maps. The efficiency of our solution comes from an
adaptation of the ZoomOut procedure [MRR*19, RMWO21]
using our energy and novel basis. The resulting method exhibits
state-of-the-art performance on non-isometric benchmark datasets
and near state-of-the-art performance on isometric ones.

Recall, however, that our use of the ZoomOut procedure was
not fully principled. Indeed, we needed to make some approxima-
tions in order to use Lemma 4, which converts certain optimiza-
tion problems into nearest neighbor searches. The quality of our
results indicates that our approximations were justified, suggesting
that Lemma 4 could likely be rigorously extended to suit our needs.
In fact, extending Lemma 4 would be of general interest to the func-
tional maps community, as it would enable the efficient minimiza-
tion of various other energies.

The construction of our landmark-adapted basis required us to
upgrade the landmarks to proper boundaries. We did so by cut-
ting out small disks centred at the landmarks, resulting in the intro-
duction of landmark circles. The landmark circles offer an intrigu-
ing possibility that we have not explored here. Namely, one could
augment landmark correspondence to include a user-specified
matching of the landmark circles. This could allow for greater se-
mantic or artistic control of the resulting map. Our initialization pro-
cedure of Section 6.1 can be seen as an automated implementation
of a similar idea.

Furthermore, since our present work has demonstrated the
fruitfulness of landmark-adapted bases, it is natural to ask whether
better performance can be achieved by improving upon basis
construction. In particular, we have noted that the Dirichlet-Steklov
eigenfunctions have their amplitude intensely concentrated near
the landmark circle equipped with the Steklov boundary condition
(see Figure 7). It seems likely that an analogous basis with less
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Figure 17: Qualitative evaluation of our method and competing approaches on non-isometric shapes. The first row corresponds to shapes
from the TOSCA non-isometric dataset. The bottom row consists of shapes from the SHREC’20 lores dataset. Each shape pair is selected such
that the geodesic error of our method is median over the dataset. The best and worst cases are illustrated in Appendix G.4.
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Figure 18: Error summary on 165 shapes of the SHREC’19
dataset. The average geodesic error (Av. Geo. Err.) is displayed for
our method and competing approaches.

Source HyperOrb FMap ZO Ours

Figure 19: Qualitative evaluation of our method and competing ap-
proaches on a shape pair from the SHREC’ 19 dataset, selected such
that the geodesic error of our method is median over the dataset.
The best and worst cases are illustrated in Appendix G.4.

concentrated functions could be better suited to describe the be-
haviour of the functional map near the landmarks. Notice that this
dovetails with the idea of user-specified landmark circle correspon-
dence, as the user-provided information would have impact further
away from the landmarks.
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Appendix A: Weak Form of the Dirichlet-Steklov
Eigenproblem

In this appendix, we derive the weak form of the Dirichlet-Steklov
eigenproblem (Equation 3), in which it becomes very similar to the
weak form of the more familiar Laplacian eigenproblem. For suffi-
ciently smooth functions f and u, Stokes’ theorem implies that

/f(Au)d/\/l:f Vf-VudM
M M AD)

oM

Applying this to a u; satisfying the Dirichlet-Steklov eigenproblem
(Equation 2) and a smooth test function f vanishing on D yields

0
/ VS Vi dM =M
M M

+ | fQuu)d(dM)

™ (A2)
. .
+/f(3nui)d(8M)a
S

where the first cancellation arises from the harmonicity of u; and
the second one from f vanishing on D. Finally, using the third line
of Equation (2) results in the weak form of the Dirichlet-Steklov
problem:

f Vf-Vu dM zo,-/fu,- d(OM). (A3)
M N

This can be readily discretized on triangle meshes, as discussed in
Appendix B.

Appendix B: Discretization of the Eigenproblems

In this appendix, we briefly discuss the discretization on triangle
meshes of the eigenproblems used in our approach.

Discretization of the Dirichlet Laplacian eigenproblem. We
begin with the familiar Dirichlet Laplacian eigenproblem (Equa-

tion 5). We discretize this problem using the well-known cotan-
gent scheme (piecewise-linear finite elements). The problem then
becomes

WM = AAMY;,
llji!a/\/l =0,

where WM denotes the so-called cotangent Laplacian and AM de-
notes the lumped mass matrix. See [BHKB20], among many others,
for a definition of these objects.

(B.1)

Discretization of the Dirichlet-Steklov eigenproblem. We use
piecewise linear finite elements to discretize the weak form of the
Dirichlet-Steklov eigenproblem (Equation 25). The left-hand side
of the expression becomes the familiar cotangent Laplacian, de-
noted by WM. The discretization of the integral on the right-hand
side requires a mass matrix defined strictly on the boundary. Simi-
larly to the mass matrix used in the Laplacian eigenproblem, it can
be discretized either according to a piecewise-linear finite element
scheme, or as a lumped mass matrix. Regardless of the chosen dis-
cretization, we call this mass matrix S™. Note that SM is of the same
size as WM.

We begin by the lumped discretization. The boundary is one-
dimensional. Thus, a vertex p € .M, has (at most) two neighbors
that are also in M, which we denote p — 1 and p + 1. The length
of the edges (p — 1, p) and (p, p+ 1) are denoted r,_; and 7,4,
respectively. The lumped Steklov mass matrix is given by

5rp1+7rp01) .p=gqandp,q €M

M —
b 0 , elsewhere.

(B.2)

The non-lumped mass matrix is computed from a piecewise lin-
ear finite element discretization on the boundary. This discretization
corresponds to the restriction of the piecewise linear finite elements
of the mesh to the boundary edges. Whenever vertices p and g are
distinct endpoints of the same edge, we write p ~ g. The length of
the edge connecting p and g is denoted r,,. After a straightforward
computation which we omit, the non-lumped Steklov mass matrix
is given by

$0rp1+7p01) Sp=gandp,gedM

Spa = %rpq ,p~qand p,qg e oM (B.3)

0 , elsewhere.

In sum, no matter the version of SM chosen, the discretization of the
Dirichlet-Steklov problem becomes

W‘Vlu,' = O’,‘S'M u;,
(B.4)
”f|D =0,

which is quite similar to the more familiar Laplacian eigenvalue
problem with Dirichlet boundary conditions (Equation 26).

A Word of Warning. As a final note on the discretization of the
considered eigenproblems, we would like to warn the reader of a
small issue one may encounter when numerically solving them. Re-
call that we want the Dirichlet-Steklov eigenfunctions to be nor-
malized with respect to the boundary mass matrix SM. Solvers for
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Output

Input Step 1

Figure C.1: lllustration of the creation of a landmark boundary.
The landmark position is indicated by a green dot. The triangles
composing the landmark disk are shown in light red. The boundary
circle is highlighted as a red line. Note that a gap of connectivity
appears when creating the boundary around the landmark. This gap
is closed when the process finishes producing the boundary.

generalized eigenvalue problems, such as Matlab’s eigs routine,
which we use in our implementation, will typically do so automati-
cally. However, according to our observations, sometimes this auto-
mated process will not happen. This seems to be related to the fact
that SM is a positive semi-definite matrix rather than a positive defi-
nite one. Thus, one needs to explicitly normalize the solutions with
respect to SM. In fact, we suggest explicitly normalizing even the
Laplacian eigenfunctions, despite the fact that there the mass matrix
AM is positive definite on (good quality) triangle meshes. Indeed,
AM can fail to be positive-definite on pathological inputs. Consider
for instance an otherwise good mesh with an isolated vertex belong-
ing to no triangle. Functions vanishing everywhere except on said
vertex have norm 0 with respect to AM, despite being nonzero.

Appendix C: Boundary Circles on Triangle Meshes

In Section 4.4, small disks centred at the landmarks are removed
in order to create new boundaries for the shapes under study. Here,
we describe in detail how this is achieved on triangle meshes. Cru-
cially, we do not want to unduly disturb the geometry of the shapes.
In order to achieve this we construct the new boundaries entirely
within the triangles adjacent to the landmarks.

Let’s say that we are constructing the boundary circle for the land-
mark y;. We begin by determining the radius r; of the disk to be
removed. This is done by finding the length s; of the shortest edge
connected to y;. The minimum is taken over both shapes, which are
scaled to be of identical surface area and thus of comparable size.
Then, we set r; = ry - 5;, where ry € (0, 1) is a user-set parameter.
The (surprisingly low) impact of this parameter is studied in Sec-
tion 7.2.1.

We are now ready to construct the boundary I';. This process is
best understood by looking at its illustration in Figure C.1. First,
we split each triangle adjacent to the landmark into n; wedges of
equal angle, which introduces n;, — 1 new vertices at the opposite
edge of the original triangle, as well as edges connecting them to
the landmark. Then, we introduce n; 4+ 1 new vertices situated on
the new edges at a distance r; away from the landmark y;. We then
connect these vertices in a way that creates an approximation of a

sector of a disk of radius r;. Doing so produces n, quadrilaterals in
the part of the original triangle far from the landmark. We split those
quadrilaterals into triangles along their diagonals. This concludes
the refinement of the triangles adjacent to the landmark. It remains
to refine the triangles adjacent to them across the edges opposite
to the landmark. There, the common edges between the triangles
contains n;, — 1 new vertices. On each triangle, we connect these
new vertices to the original vertex not on the common edge. This
concludes the refinement process. Note that all of the new triangles
are contained within the original ones. An example of a mesh with
landmark circles constructed in this manner is shown in Figure 5.

The construction of the boundaries associated to different land-
marks is done sequentially over the landmarks. This requires some
additional care if the landmarks are placed too close to each other.
Indeed, during the construction of I';, new faces are created in what
was originally the 2—ring neighborhood of the landmark y;. Thus,
if a different landmark y; is closer than 4 rings away from y;, there
will be overlap between the newly created mesh faces. The resulting
mesh will then be dependent upon the order in which the boundary
circles I'; and I'; are created. In the present paper, we avoid this
issue by disallowing such landmark placement. If such landmark
placement becomes necessary in a given application, we suggest lo-
cally refining the mesh via, say, ~/3—subdivision [Kob00] such that
the landmarks are no longer closer than 4 triangle rings from one
another. We do not pursue this here.

Appendix D: Proof of Lemma 1 and Discussion on its Meaning

Lemma 1. The function space W (M) admits the following decom-
position:

k
WM) =gM)o | PH;M) |, (D.1)

j=1

where @ denotes direct sums and © denotes orthogonal direct sums.

Proof. Recall that, by construction, W(M) is the completion
of smooth functions modulo constants with respect to the Dirich-
let form. Thus, we begin our analysis on smooth functions.

Let u be smooth and W (M)-orthogonal to all of the Dirichlet-
Laplacian eigenfunctions {v;}:°,. Then, by Stokes’ theorem,

0:/ Vi - VudM
M
o (D2

- / Vi(Au) dM + W
M 07

where the cancellation results from ; vanishing at the boundary.
Since the {y/;}7°, form an orthogonal basis for L, (M), this implies
that Au = 0. Thus, smooth functions can be W (M )-orthogonally
decomposed into a part that lies in G (M) (the closed span of {1/,}7°,)
and a harmonic part.

Recall that each H (M) spans harmonic functions that vanish
on all landmark boundaries, but the j* one. Since harmonic func-
tions are uniquely determined by their values at the boundaries,
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the harmonic part of u can be naturally expressed as an element in
®f_ H;(M).

Since W (M) is complete by construction and smooth functions
are dense in W (M), the desired result is achieved by taking the clo-
sure of the subspaces. (]

Notice that in the above lemma, the subspaces H ;(M) are not
marked as W(M)-orthogonal. Indeed, by Stokes’ theorem,

) (@ (P) (9)
W, u Yo :/ vu” - Vu,? dM
M

— [ W (ad*Yam
(p) (q)
+ [M WP (8,”) dOM) (D3

-y

n=1 r

- /r ,, u?” (8,u”) d@M)

The above expression yields different results depending on whether
p and ¢ coincide or not. We begin by considering p = g.

H u? () d@M)

w1 Ywowmy Z/ uﬁp)(“)"u;p)) dOM)

r,

— o / WU doM) (D4
r,

= O‘l(p)S,'].

Here §; denotes the Kronecker delta. Thus, for every p,
the Dirichlet-Steklov basis {uf" )}iﬁl is composed of W(M)-
orthogonal functions. Notice that said eigenfunctions can be
W (M)-normalized by dividing them by the square root of the cor-
responding eigenvalue.

Now, consider p # ¢g. In that case, Equation (D.3) can no longer
be evaluated by substituting the Dirichlet-Steklov eigenvalue for the
normal derivative, as it is evaluated on the wrong boundary compo-
nent. Moreover, the normal derivative 8,1145") has no reason to vanish
on ', which implies that the subspaces spanned by {u\”’}°, and
{u®}2, are not W (M )-orthogonal.

Appendix E: Proof of Lemma 2

Lemma 2 (Structure of Fyy). Let Fyn: W(M) — W(N) be the
pullback of a conformal diffeomorphism that preserves the land-
mark circles. Then, Fyn maps

1. GM)toGWN),
2. Hj(M) to H;(N) forall j.

Proof. Since ¢ : N'— M is a diffeomorphism, we can express
everything on the surface \. Thus, instead of thinking of M as sep-
arate manifold, we treat A" as being equipped with two Riemannian
metrics: its original metric gV and the pullback metric gM. In this
representation, the pullback acts as the identity. In particular, this
means that Fyy : W(M) — W(N) is a bounded operator.

Since ¢ is conformal, there exists a positive function w such
that gM = wgV and AM = (1/w)A~. Let u be a harmonic func-
tion on M. Then, AV Fyjpu = o AMu = 0. Thus, Fyy maps har-
monic functions to harmonic functions. Furthermore, since Fy is
the pullback of a map that preserves the landmark circles, it maps
smooth functions that vanish on all landmark circles of M but F}M
to smooth functions that vanish on all landmark circles of A/ but Fj\
and so for any fixed j. Statement 2. then follows from the complete-
ness of W(M) and W(N) and the boundedness of Fyy by taking
the closure of the relevant subspaces.

Now consider f € G(M). By Lemma 1, for all harmonic u,

{(u, NHlwy = 0. (E.1)

By Theorem 1, the conformality of ¢ allows us to replace the inner
product on W (M) with that on W (A) up to the introduction of two
functional maps:

(Epnte, Epan flwony = 0. (E.2)

Since Fyy maps harmonic functions to harmonic functions and
is invertible, Fyyu can be any desired harmonic function of N.
Thus, Fy f is W(N)-orthogonal to harmonic functions of A/, that
is Fya f € G(N). This concludes the proof of statement 1. O

Appendix F: Definition of the Dirichlet Energy

Consider a smooth map ¢ : M — A between two smooth Rie-
mannian manifolds. The Dirichlet energy of the map is

1
Dip) =3 /M ldgll* M, ED

where dg is the differential of ¢. Informally speaking, the Dirichlet
energy measures the oscillation of the map ¢. The larger the energy,
the more oscillatory the map. Maps minimizing the Dirichlet energy
are known as harmonic maps. Such maps are a simultaneous gener-
alization of geodesics and harmonic functions. See [Jos08] for the
relevant theory.

In the discrete setting, we use the same method as in [ESB19] to
compute the Dirichlet energy. Namely, the expression becomes
1
Dip)=7 Y wiDi(pw), W), (F2)
(u,v)eE(M)

where £(M) denotes the edges of the mesh M, w) denotes the
cotangent weight of the edge (u, v) and va(-, -) is the matrix of
square geodesic distances on N
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Table G.1: Quantitative evaluation results on the SHREC’20 lores (with-
out partial shapes) datasets. The average geodesic error (Av. Geo. Err.),
the Dirichlet energy (Dir. E.) and average execution time (Av. Time) on both
datasets are displayed for the three initialization methods that we tried: Triv-
ial, Conformal Energy (‘Conf. En.’) and Normal Derivatives (‘Norm. De.’).
Normal Derivatives is the method used in the rest of the paper.
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Figure G.1: Left: comparison of initializations for our method,
where ‘Norm. De.’ and ‘Conf. En.’, respectively stand for ‘Normal
Derivative’ and ‘Conformal Energy’. Right: comparison of the ‘fast’
and ‘principled’ energy formulations of our method. Both experi-
ments are performed on the SHREC’20 lores dataset (partial shapes
excluded).

Appendix G: Additional Experiments

G.1. Analysis of alternative initialization methods

The iterative optimization procedure detailed in Section 6.2 requires
as an input an initial guess of the functional map. In Section 6.1,
we thus introduce an initialization procedure for this initial guess
based on the landmark correspondence and the normal derivatives of
certain landmark-dependent harmonic functions. In this section we
compare this approach to two alternatives.

For the purposes of this discussion, the approach of Section 6.1
shall be referred to as the ‘normal derivatives’ method. The two al-
ternatives described below will be termed ‘trivial’ and the ‘confor-
mal energy’, for reasons that should soon become apparent.

The landmark circles can be seen as lists of vertices ordered
counter-clockwise as seen from outside the shape. The choice of
the first element of this list carries no particular meaning and is left
to the whims of the indexing of the faces of the mesh. Thus, the first
elements of two corresponding boundary circles need not match.
The ‘trivial” approach consists in assuming that the first elements of
the boundary circles do indeed match. This correspondence is then
proportionally extended to the rest of the landmark circle.

The ‘conformal energy’ approach stems from the observation that
mapping the landmark circles '’V — T’ induces a restricted func-
tional map H;(M) — H;(N). The conformal term of the energy
(Equation 9) can be easily evaluated on these subspaces. The ‘con-
formal energy’ approach consists in choosing the shifts {o;}%_, (see
Section 6.1) such that they minimize the conformal energy of the
resulting H;(M) — H;(N') map.

Figure G.1 (left) depicts the performance of the three initializa-
tions in terms of geodesic error on the SHREC’20 dataset (lores),
using seven landmarks. Table G.1 provides quantitative evaluations
for the same experiment in terms of averaged geodesic error and
Dirichlet energy. The ‘normal derivatives’ approach slightly outper-
forms the other two on all metrics, which is why it is the one used
in the main text.

Method Av. Geo. Err. Dir. E. Av. Time (s)
Trivial 6.36 x 1072 16.8 414
Conf. En. 6.36 x 1072 16.7 53.2
Norm. De. 6.26 x 102 16.2 40.4

Table G.2: Average geodesic error (Av. Geo. Err.) and average execution
time (Av. Time) associated to the comparison of the ‘principled’ and ‘fast’
computation methods.

Method Av. Geo. Err. Av. Time (s)
Principled 4.96 x 1072 184
Fast 5.13 x 1072 487

G.2. Comparison of the ‘Principled’ and ‘Fast’ energy
optimization

At the end of Section 6.2, we introduced an unprincipled way to ac-
celerate the nearest neighbor search used in the solution of our prob-
lem. In this section, we quantitatively compare this ‘fast’ method to
the ‘principled’ one on the SHREC’20 dataset (partial shapes ex-
cluded). The output of this evaluation is displayed in Figure G.1
(right) and Table G.2. While very similar in terms of matching per-
formance, the ‘fast’ method is more than three times faster to com-
pute. We therefore employ it instead of the “principled’ approach.
Note that the more than threefold speedup is consistent with the fact
that the matrices used in the ‘fast’ method are three times smaller.

G.3. Complementary benchmark on SHREC’20 lores

As a complement to our main evaluation on SHREC’20 lores, we
conducted an evaluation using only eight pairs from the initial
benchmark to compare against the method proposed in [SCBK20]
(InterSurf). InterSurf, WA, HyperOrb FMap ZO and our approach
obtain a geodesic error (scaled by a factor x100) of, respectively,
11.9, 5.41, 5.99, 8.69 and 5.2. The restricted number of shapes on
which we evaluate is due to the fact that InterSurf does not han-
dle shapes with complex topologies well. In particular, the method
assumes that the meshes are watertight and share the same genus,
in strong contrast to our approach that does not make such assump-
tions. However, we note that this method was not primarily designed
for shape matching.

G.4. Additional qualitative evaluations

We provide additional qualitative evaluations on isometric and non-
isometric shape pairs in order to show best- and worst-case shape
matching scenarios for our method.
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FMap 2O Ours

Source HyperOrb ~ WA

FAUST

Figure G.2: Qualitative evaluation of our method and competi-
tors on isometric shapes from the FAUST dataset (top row) and
the TOSCA isometric dataset (bottom row). The shape pair is se-
lected such that the geodesic error of our method is the best over
the dataset.

Source  HyperOrb WA  FMap ZO Ours

TOSCA

Figure G.3: Qualitative evaluation of our method and competi-
tors on isometric shapes from the FAUST dataset (top row) and the
TOSCA isometric dataset (bottom row). The shape pair is selected
such that the geodesic error of our method is the worst over the
dataset.

For isometric shapes, the best pairs are depicted in Figure G.2 and
the worst pairs in Figure G.3.

For non-isometric shapes, the best pairs are illustrated in Fig-
ure G.4 and the worst pairs in Figure G.5.

Finally, in Figure G.6, we show the best and worst pairs for the
SHREC’ 19 benchmark.

Appendix H: Additional Parameter Study

H.1. Study of the weights in the energy

We define three weights to compute a point-to-point map between
two shapes based on the energy (Equation 14): the conformal, the
properness and the invertibility weights, denoted, respectively, ac,
ap and g;. Since we normalize the weights, their absolute value
is unimportant.

Source HyperOrb WA FMap Z0O

TOSCA

SHREC’20 @7

Figure G.4: Qualitative evaluation of our method and competi-
tors on non-isometric shapes. The first row corresponds to shapes
from the TOSCA non-isometric dataset. The bottom row consists
of shapes from the SHREC’20 lores dataset. The shape pair is se-
lected such that the geodesic error of our method is the best over
the dataset.

Source HyperOrb WA

=

FMap ZO Ours

TOSCA

Figure G.5: Qualitative evaluation of our method and competi-
tors on non-isometric shapes. The first row corresponds to shapes
from the TOSCA non-isometric dataset. The bottom row consists of
shapes from the SHREC 20 lores dataset. The shape pair is selected
such that the geodesic error of our method is the worst over the
dataset.

SHREC’20

Source HyperOrb FMap 70 Ours

Figure G.6: Qualitative evaluation of our method and competitors
on the SHREC’19 dataset. The first row corresponds to the best
shape pair, while the bottom row corresponds to the worst shape
pair on this dataset.

To study how their relative value influences the quality of the
output map we conduct a dedicated experiment on the SHREC’20
dataset, with shapes remeshed to count 1K vertices and excluding
partial shapes. Eight landmarks in ground-truth correspondence are
placed on each shape, in the locations described in Appendix I. For
each set of weight values, the geodesic error and the Dirichlet energy
(see Appendix F), averaged over all shape pairs (in both directions)
in the dataset, are computed.
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Figure H.1: Weight study on the SHREC 20 dataset (full shapes
remeshed to 1K vertices). The error measure is the mean geodesic
error, averaged on the dataset. ac, ap and a; are the Conformality,
Properness and Invertibility weights. On the left, we fix the confor-
mality weight ac and vary the properness and invertibility weights
ap and a;. On the right, we vary one weight ac,p; and fix the re-
maining weights either to 0 or to 1.
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Figure H.2: Weight study on the SHREC’20 dataset (full shapes
remeshed to 1K vertices). The error measure is the Dirichlet en-
ergy, averaged on the dataset. ac, ap and a; are the Conformality,
Properness and Invertibility weights. On the left, we fix the confor-
mality weight ac and vary the properness and invertibility weights
ap and a;. On the right, we vary one weight ac/p;; and fix the re-
maining weights either to 0 or to 1.

Table H.1: Quantitative evaluation results on the SHREC 20 dataset (full
shapes remeshed to 1K vertices) when fixing one weight to 1 (Non-Zero
Weight) and setting the remaining weights to 0. The average geodesic er-
ror (Av. Geo. Err.) and Dirichlet Energy (Dir. E.) is given for each.

Non-Zero Weight Av. Geo. Err. Dir. E.
Conformality (ac) 5.91 x 1072 6.82
Properness (ap) 7.06 x 1072 7.82
Invertibility (a;) 5.42 x 1072 11.4

We first fix the conformality weight to 1 and vary the two re-
maining weights within a range of energy values in Figure H.1 left
(geodesic error) and Figure H.2 left (Dirichlet energy). Second, we
let one weight vary and fix the two remaining values either to O or to
1, as illustrated in Figure H.1 right (geodesic error) and Figure H.2
right (Dirichlet energy). Finally, we report in Table H.1 the average
geodesic error and Dirichlet energy on the dataset, obtained when
fixing one weight to 1 and setting the two others to 0. This experi-
ment allows to measure which term carries the greatest influence on
the final map quality.

These quantitative evaluations highlight the existence of a trade-
off between the accuracy of the map (minimization of the geodesic
error) and the smoothness of the map (minimizing the Dirichlet en-
ergy) when choosing the weight configuration. Roughly speaking,
the invertibility and properness terms promote accuracy, while the
conformality term promotes smoothness.

Source Reference

Bl | et ATHEINGE ) el

HyperOrb

e SHES RS s el SO

Figure H.3: Qualitative comparison of our method to competitors
when increasing the number of landmarks on the same shape pair as
for our teaser (Figure 1). The ground truth landmark locations are
denoted by green dots. In the case of FMapZO (no exact landmark
preservation), the blue dots indicate the location of the mapped
landmarks.

Since this trade-off is application-dependent, we leave the fine-
tuning of the energy weights to the end-user and set all weights to
1 in the remaining of our experiments as it provides a satisfactory
balance in practice.

H.2. Landmark sampling qualitative illustration

We visualize qualitatively the interest of introducing more landmark
correspondences in Figure H.3. In this visualisation, since ‘Hyper-
Orb’ does not support less than five landmark correspondences, no
map for three and four landmark correspondences can be computed
for this method.

Note how the regions around the mouth and the eyes are accu-
rately mapped with our approach compared to the two other ap-
proaches.

H.3. Basis near-orthogonality

For each shape M of the SHREC’ 19 dataset [MMR*19b], we com-
pute the matrix with entries m; ; = [(P}, ¢>§4)W(M)|, where @V
designates the i-th basis vector. We use 7 landmarks, 10 Dirichlet-
Steklov eigenfunctions, leading to a Dirichlet-Steklov block of size
70 x 70, and 120 Dirichlet Laplacian eigenfunctions. Since we are
only interested in the computation of the basis itself in this setup,
the landmarks were placed at random locations to maximize the
diversity of situations encountered. The average of all matrices is
displayed in Figure H.4. Note the clear diagonal behaviour, that is
in agreement with our observations on a simple sphere shape (Fig-
ure 5).

H.4. Number of basis functions

To select the number of basis functions for G(M) and each H ;(M)
(see Section 4.4), we study their respective size N g and Npg sepa-
rately, as illustrated in Figure H.5.
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Figure H.4: Average of the absolute values of the inner product
matrix of each shape in the SHREC’ 19 dataset. Except for the first
few Dirichlet-Steklov eigenfunctions, the off-diagonal inner prod-
ucts are negligible. This validates the approximation of orthogo-
nality. We highlight that this computation also sheds light on the
robustness of our basis computation to complex triangulation and
partiality setups.
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Figure H.5: Effect of varying the size of our basis on the G(M)
space (left) and on the H (M) space (right). Both figures are an
average over all pairs of the TOSCA non-isometric dataset.

Increasing the size of G(M) slightly increases the matching per-
formance up to N g = 120. In contrast, varying Nps above 10 de-
creases the quality of the maps. Hence, we fix the following basis
sizes throughout the rest of the article: N g = 120 and Nps = 10.

Appendix I: Evaluation Setup Details

I.1. Landmark positions

The benchmark datasets that we use contain either humanoid shapes
(humans and gorillas) or four-legged animals. Depending on the

type of creature, we place our landmarks at either seven or eight
semantically compatible locations:

Top of the head

Bottom of the right (hind) leg

Bottom of the left (hind) leg

Bottom of the right front leg/extremity of the third finger on the

right hand

5. Bottom of the left front leg/extremity of the third finger on the
left hand

6. Middle of the belly/umbilicus

Middle of the back

8. Tip of the tail (Four-legged animals only)

bl o

=~

The last landmark is only used on the TOSCA and SHREC’20
datasets. Notice that our landmark placement is reminiscent of far-
thest point sampling. The landmark placement is common to all con-
sidered methods. The other parameters depend on the method used.

1.2. Method configuration

Hyperbolic Orbifold Tutte Embeddings (hyperOrb) and
Weighted Averages (WA) These methods do not require any
additional parameters.

Functional Maps With ZoomOut Refinement (FMap ZO) A
20 x 20 functional map is computed for each source-target pair in
setup 1 and 2, following the setup of [MRR*19]. In particular, we
use wave kernel signature and wave kernel map functions as de-
scriptors. The descriptor functions are computed at the same ground
truth landmark positions used for the other methods. At each land-
mark location, 12 wave kernel map functions are computed using a
basis of 120 LB-eigenfunctions.

The energy employed to compute the functional map lever-
ages the descriptor preservation, descriptor commutativity and LB-
commutativity terms. Contrary to [MRR*19], we did not employ the
orientation term in the energy. Indeed, with a high number of land-
marks as in our setup, the symmetry ambiguities are easily solved
by the functional map pipeline.

Ours. We use the provided landmark locations together with the
settings specified previously. We summarize them here for conve-
nience.

¢ Energy weights: ac = ap = a; = 1.

e Number of Dirichlet-Steklov eigenfunctions per landmark:
Nps = 10.

e Number of Dirichlet Laplacian eigenfunctions: N g = 120.

* Landmark circle size factor: ry = 0.5.

Moreover, recall that we use the acceleration strategy described at
the end of Section 6.2.
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