
Scaling Strongly Consistent Replicated Systems

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Leandro Pacheco de Sousa

under the supervision of

Fernando Pedone

February 2023

Dissertation Committee

Cesare Pautasso Università della Svizzera italiana
Patrick Eugster Università della Svizzera italiana
Pascal Felber Université de Neuchâtel
Rüdiger Kapitza Technische Universität Braunschweig
Tony Cortes Universitat Politécnica de Catalunya

Dissertation accepted on 8 February 2023

Research Advisor PhD Program Director

Fernando Pedone Walter Binder and Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Leandro Pacheco de Sousa
Lugano, 8 February 2023

ii

To my family and friends

iii

iv

It is looking at things for a long
time that ripens you and gives you
a deeper meaning.

Vincent Van Gogh

v

vi

Abstract

With the recent rise of cloud infrastructure, geographically distributed applica-
tions have become a reality. Application developers can easily place servers close
to end users, even if those users are spread around the globe. Still, designing ap-
plications that work correctly and perform well at such a large scale is a difficult
endeavor, involving many tradeoffs. One such tradeoff is that between consis-
tency and availability. While relaxing application guarantees might allow for
better performance and availability, deciding which and how guarantees should
be relaxed is a complex task, subject to application semantics and user expecta-
tions. On the other hand, strong consistency allows for developers to focus on
core business logic and end users to interact with a more transparent system.

Reliability in a distributed application is achieved through replication. Full
replication, where each server stores the whole application state, does not scale,
as every server needs to apply every update. By partitioning the application state
and letting only a subset of servers store it, performance can scale if the workload
allows. Atomic multicast is a communication abstraction that can serve as a
fundamental building block for partitioned applications. It allows for requests
to be reliably sent to one or more groups of destinations, and ensures a partial
ordering of deliveries, a property fundamental to consistent and scalable systems.

In this thesis, we focus on exploiting the atomic multicast abstraction to build
strongly consistent geographically distributed applications. To that end, we first
explore the design of a geographically scalable file system, GlobalFS. We then
focus on the design of a latency efficient atomic multicast protocol, PrimCast.
Finally, we propose linearizable atomic multicast, a stronger version of atomic
multicast.

GlobalFS is a POSIX-like distributed file system that provides strong consis-
tency guarantees and scales geographically by allowing for fast local operations
while still providing consistent operations over the whole system. GlobalFS
builds upon atomic multicast, providing four execution modes which are then
used to execute each file system operation. We describe and implement a proto-
type of GlobalFS which we then use to validate the approach in a global deploy-

vii

viii

ment on Amazon’s EC2.
PrimCast is an atomic multicast protocol that allows for message delivery

in three communication steps at any destination. PrimCast is genuine, that is,
only sender and destinations take steps to deliver a message, a critical property
in large scale deployments. We present the complete algorithm and proof of
correctness for PrimCast. We also show how loosely synchronized clocks can be
used to reduce the convoy effect that further delays messages under high system
load. We implement a prototype of PrimCast and evaluate its performance under
various scenarios.

Linearizable atomic multicast is an atomic multicast that provides lineariz-
ability for applications without the need for extra coordination among replicas.
We show why classic atomic multicast by itself is not enough to ensure lineariz-
ability, describe a stronger ordering property that fixes the issue and show how
a classic atomic multicast protocol can be modified to provide the stronger prop-
erty.

Acknowledgements

I hereby express my gratitude to everyone who in any way supported me in the
long journey of writing this thesis. Many people have contributed, directly or
indirectly, to the work here presented.

I would like to, first of all, thank my advisor, Fernando Pedone, for the guid-
ance and patience throughout the years it took me to complete my PhD. This the-
sis would definitely not exist without his support, encouragement and insights.
I also would like to thank professors Cesare Pautasso, Patrick Eugster, Pascal Fel-
ber, Rüdiger Kapitza and Tony Cortes for the time dedicated to reviewing this
thesis and for their invaluable feedback.

I’m extremely grateful to all the people who have been part of the Distributed
Systems group at USI during my time there. In particular, to Daniele, Eduardo,
Paulo, Sam and Enrique, with whom I’ve spent the most time with, my genuine
thanks: your help and friendship were fundamental to me. To all the others (in
a tentative chronological order): Amir, Alex, Parisa, Ricardo, Daniel, Tu, Long,
Odorico, Edson, Tarcisio, Pietro, Mojtaba, Theo; Thank you for all our conversa-
tions over coffee, lunch or beer, I won’t forget you.

I would like to thank my parents, Valdete and Antonio Carlos, for all their
love and support. I simply would not be here if not for them.

Last but not least, to all the friends I’ve made during my years at Lugano:
thank you for all the time we spent together.

ix

x

Publications

L. Pacheco, D. Sciascia, F. Pedone. Parallel Deferred Update Replication. In
2014 IEEE 13th International Symposium on Network Computing and Applications,
NCA ’14, pages 205–212. IEEE, 2014.

L. Pacheco, R. Halalai, V. Schiavoni, F. Pedone, E. Rivière, P. Felber. GlobalFS:
A Strongly Consistent Multi-Site File System. In 2016 IEEE 35th Symposium on
Reliable Distributed Systems, SRDS ’16, pages 147–156. IEEE, 2016.

S. Benz, L. Pacheco, F. Pedone. Stretching Multi-Ring Paxos. In Proceedings of the
31st Annual ACM Symposium on Applied Computing, SAC ’16, pages 492–499.
2016.

T. Jepsen, L. Pacheco, M. Moshref, F. Pedone, R. Soulé. Infinite Resources for
Optimistic Concurrency Control. In Proceedings of the 2018 Morning Workshop
on In-Network Computing, NetCompute ’18, pages 26–32. 2018.

L. Pacheco, F. Dotti, F. Pedone. Strengthening Atomic Multicast for Partitioned
State Machine Replication. In 11th Latin-American Symposium on Dependable
Computing, LADC ’22. 2022.

xi

xii

Contents

Contents xi

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 The tradeoff between strong and weak consistency 1
1.2 Abstractions for scalable replicated applications 2
1.3 Research contributions . 2
1.4 Thesis outline . 4

2 System Model and Definitions 5
2.1 System model . 5

2.1.1 Processes and communication 5
2.1.2 Synchrony assumptions . 5

2.2 Definitions . 6
2.2.1 Multicast abstractions . 6
2.2.2 Consistency criteria . 8
2.2.3 State-machine replication . 10
2.2.4 Primary-based replication . 10

3 GlobalFS 11
3.1 Motivation . 11
3.2 General idea . 13
3.3 System architecture . 14

3.3.1 Components . 14
3.3.2 Partitioning and replication 15
3.3.3 Use of atomic multicast . 16
3.3.4 Example deployment . 17

xiii

xiv Contents

3.4 Protocol design . 17
3.4.1 Execution modes . 17
3.4.2 The life of some file system operations 20
3.4.3 Failure handling . 21

3.5 Implementation . 22
3.5.1 Clients . 22
3.5.2 Atomic multicast . 23
3.5.3 Metadata replicas . 23
3.5.4 Data store . 24

3.6 Evaluation . 25
3.6.1 Microbenchmarks . 25
3.6.2 Compilation benchmarks . 30

3.7 Related work . 32
3.7.1 File systems with strong consistency 32
3.7.2 File systems with weak consistency 33
3.7.3 Peer-to-peer file systems . 34
3.7.4 Overview . 35

3.8 Discussion . 35

4 PrimCast 39
4.1 Background . 40

4.1.1 Timestamp-based message ordering 41
4.1.2 Collision-free and failure-free latency 42

4.2 PrimCast . 43
4.2.1 Basic ideas . 44
4.2.2 Algorithm . 45

4.3 PrimCast correctness . 52
4.4 PrimCast extensions . 60

4.4.1 Exploiting loosely synchronized clocks 61
4.4.2 Timestamped atomic multicast 62
4.4.3 Exploiting commutativity . 63

4.5 Performance evaluation . 63
4.5.1 Implementation . 63
4.5.2 Setup and scenarios . 64
4.5.3 LAN performance . 64
4.5.4 WAN performance with colocated leaders 65
4.5.5 WAN performance with distributed leaders 66

4.6 Related work . 67
4.6.1 FastCast . 68

xv Contents

4.6.2 White-Box multicast . 68
4.6.3 Other protocols . 70

4.7 Discussion . 71

5 Linearizable Atomic Multicast 73
5.1 Background . 74

5.1.1 Partitioned state machine replication 74
5.2 Atomic Global Order . 76

5.2.1 Atomic multicast alone is not enough 76
5.2.2 Linearizable atomic multicast 77
5.2.3 Proof of correctness . 79

5.3 Implementing Atomic Global Order 80
5.3.1 Skeen’s atomic multicast . 80
5.3.2 Extending Skeen’s algorithm to ensure atomic global order 82

5.4 Related work . 84
5.4.1 Atomic multicast properties 84
5.4.2 Atomic multicast algorithms 84
5.4.3 Existing algorithms and atomic global order 86
5.4.4 Partitioned SMR . 87

5.5 Discussion . 88

6 Conclusion 91
6.1 Research assessment . 91
6.2 Future directions . 92

6.2.1 GlobalFS . 93
6.2.2 PrimCast . 93
6.2.3 Linearizable Atomic Multicast 94

Bibliography 95

xvi Contents

Figures

3.1 Overall architecture of GlobalFS. 14

3.2 Illustrative deployment of GlobalFS with 4 partitions. Partition P0

is replicated in all regions and each other partition is replicated in
one different region. 17

3.3 Components and interactions in GlobalFS. 23

3.4 Maximum throughput for different GlobalFS operations with the
baseline deployment of 3 partitions. 27

3.5 Latency distribution for different GlobalFS operations with the
baseline deployment of 3 partitions. Latencies measured at 50%
of maximum throughput. 28

3.6 Geographical scalability and 95th percentile latencies for differ-
ent GlobalFS operations, with increasing system size. Latencies
measured at around 50% of maximum throughput. 29

4.1 Example execution of PrimCast, only showing the messages needed
for process p2 to a-deliver a message a-multicast by process p5. . . 51

4.2 Throughput and 95th-percentile latency in a LAN, with all messages mul-
ticast to two groups. 65

4.3 Throughput and 95th latency in a WAN with no cross-group latency (i.e.,
collocated leaders). 66

4.4 Throughput and 95th latency in a WAN with high cross-group latency. . 67

4.5 Latency CDFs at two different load levels, corresponding to the 2nd and
8th points from the curves in Figure 4.4a 68

5.1 State machine replication. 75

5.2 An execution that violates linearizability (top) and a linearizable
execution from S-SMR [13] (bottom). For simplicity, we assume
that each partition contains a single replica. 78

xvii

xviii Figures

5.3 An execution showing that Skeen’s atomic multicast violates atomic
global order (top) and the extended algorithm that guarantees
atomic global order (bottom). 83

Tables

3.1 Partitions in GlobalFS. 16
3.2 Operations in GlobalFS. 20
3.3 Execution times for several compilation workloads on GlobalFS

with operations executed over global and local partitions. Exe-
cution times are given in seconds for NFS, and as relative times
w.r.t. NFS for GlobalFS, GlusterFS and CephFS. ∗Note that Glus-
terFS does not support deployments with both global and local
partitions; thus, we report results from two separate deployments. 31

3.4 Survey of distributed file systems along several criteria: consis-
tency level (Strong=S, Weak=W, Eventual=E, Cache=CH, Close-
To-Open=CTO, Read-after-Write=RaW), support of the POSIX stan-
dard, code availability, client type (user-space=User, kernel-space=Kernel),
scaling potential (Works-on-LAN=WoL, Works-on-WAN=WoW, Scale-
on-WAN=SoW). Some properties are unknown (–) or not by de-
fault (∗). 37

4.1 Deployment scenarios . 64

xix

xx Tables

Chapter 1

Introduction

Over the last few years, the ubiquity of cloud infrastructure has made the deploy-
ment of distributed systems commonplace. Large cloud providers such as Google
and Amazon allow for users to distribute their computing resources all over the
world. The motivation for doing so is clear: disasters might cause entire datacen-
ters to go down and placing data close to end users is fundamental to achieving
a responsive service. Deploying computing resources across multiple continents
has never been easier, yet, designing systems that work well when deployed at
such a global scale remains a challenge.

1.1 The tradeoff between strong and weak consistency

The design of distributed systems in general, and global distribution in special,
involves many tradeoffs. One such tradeoff is between consistency and availabil-
ity [42]. A system with strong consistency properties is more general and easier
to reason about, providing clear semantics and guarantees to the user. On the
other hand, weakening the guarantees provided by the system might allow for
more performance and availability; as an example, a server temporarily parti-
tioned from the system (e.g., due to a latency spike) might be allowed to pro-
duce inconsistent results instead of simply being unavailable. Deciding which
and how guarantees should be relaxed can be a complex task, subject to ap-
plication semantics and user expectations. Thus, in many situations, providing
strong consistency can simplify the life of both application developers and end
users. Developers can focus on the core logic of their business while end users
can interact with a system with simpler semantics. In this thesis, we focus on the
problem of providing strong consistency at a global scale.

1

2 1.2 Abstractions for scalable replicated applications

1.2 Abstractions for scalable replicated applications

In order to tolerate failures, the components of a distributed system need to be
replicated. For a replicated system to scale, the workload needs to be distributed
among the replicas in the system. One common approach for such distribution
is state partitioning, also known as sharding. In partitioned systems, each data
item is stored by only a subset of the servers in the system. If an operation only
accesses data in a single partition, servers from other partitions do not need to
participate in its execution. For operations that read or write data from multi-
ple partitions, some form of synchronization is needed to ensure that concurrent
operations execute correctly. One way to ensure correctness consists in estab-
lishing a total order of execution among operations; the issue with this is that,
with increasing load, totally ordering operations becomes a bottleneck. A more
scalable alternative relies in establishing a partial order among operations; this
is typically achieved by some form of ad hoc two-phase commit protocol. In this
thesis, we instead focus on the atomic multicast abstraction. Atomic multicast
is a communication protocol that allows a process to send a message to only a
subset of the processes in the system. Atomic multicast ensures a partial ordering
of message deliveries in the system, proving scalable strong ordering guarantees.

Distributed applications, instead of implementing ad hoc protocols to achieve
replication, synchronization and scalability, typically rely on some form of dis-
tributed storage that provides the interface and guarantees needed by the appli-
cation. Given the different needs of distributed applications, distributed storage
can take many forms: relational and non-relational databases, key-value storage,
coordination systems, distributed caches and many others. One such storage ab-
straction is that of the file system. File systems provide a familiar interface to
both end users and application developers, and can greatly simplify the task of
integrating existing applications into a distributed environment. In this thesis,
we explore the design of a strongly consistent, geographically distributed file
system, exploiting the partial ordering of atomic multicast for scalability.

1.3 Research contributions

This thesis provides three major contributions:

GlobalFS. We show how atomic multicast can be used as the fundamental
building block for a geographically distributed file system. GlobalFS is a POSIX-
like file system that can provide low latency for single-region local commands

3 1.3 Research contributions

while allowing for consistent global operations across regions. File system op-
erations are executed in one of four execution modes: (1) single-partition oper-
ations, (2) multi-partition uncoordinated operations, (3) multi-partition coordi-
nated operations, and (4) read-only operations. We describe the implementation
of GlobalFS and validate its design in a global deployment over Amazon’s EC2.
This contribution has been published in the 35th Symposium on Reliable Dis-
tributed Systems (SRDS ’16). [77]

PrimCast. The design and implementation of GlobalFS relies on a non-genuine
atomic multicast protocol, Multi-Ring Paxos [68]. A protocol is genuine if only
sender and destination take steps to deliver a message. Genuineness is a fun-
damental property for scalability and low latency in global deployments. Even
though Multi-Ring Paxos can be made to work at a global scale [12], it was
originally designed for maximizing throughput inside a cluster. In a wide-area
network, Multi-Ring Paxos requires complex tuning and exhibits higher latency
than necessary by virtue of its communication patterns and non-genuineness. In
this work, we propose PrimCast, a genuine atomic multicast protocol that can
deliver messages at every destination in three communication steps in the ab-
sence of concurrent messages, and five otherwise. This is an improvement of
one communication step over the state-of-the-art. We present the complete al-
gorithm for PrimCast and its proof of correctness. We then show how loosely
synchronized clocks can be used to reduce the convoy effect that further delays
messages under high system load. We also describe a couple of other extensions
to PrimCast that may provide benefits to practical applications. Finally, we eval-
uate a prototype implementation of PrimCast against two other state-of-the-art
protocols and show that it achieves lower delivery latencies while still providing
higher throughput.

Linearizable Atomic Multicast. State-machine replication (SMR) is a funda-
mental approach to rendering applications fault-tolerant while providing the
strongest level of consistency, linearizability. In SMR, each command is executed
by every replica, in the same order. This total ordering of requests is sufficient
to ensure linearizability, and no other coordination is required of the replicas. In
classic SMR, throughput is limited by the slowest replica, and state partitioning
has been proposed as a solution to the scalability problem. Perhaps unintuitively,
partially ordering requests with atomic multicast is not enough to ensure lineariz-
ability in partitioned systems. We thus propose a stronger version of atomic mul-
ticast that allows for partitioned applications to provide linearizability without

4 1.4 Thesis outline

additional coordination. We first show why the ordering guarantees of atomic
multicast are not enough to ensure linearizable applications and then describe
a stronger ordering property, atomic global order, that fixes the issue. Finally,
we show how a classic atomic multicast protocol can be modified to provide
the stronger property. This contribution has been published in the 11th Latin-
American Symposium on Dependable Computing (LADC ’22). [78]

1.4 Thesis outline

This thesis is organized as follows. Chapter 2 describes the system model and
provides definitions used in the rest of the thesis. Chapter 3 presents the de-
sign, implementation and evaluation of GlobalFS. Chapter 4 presents PrimCast,
a latency efficient genuine atomic multicast protocol. Chapter 5 shows how to
strengthen atomic multicast to allow for linearizable applications without extra
coordination. Chapter 6 concludes this thesis and discusses possible directions
for future work.

Chapter 2

System Model and Definitions

2.1 System model

2.1.1 Processes and communication

We assume a distributed system composed of a finite set of interconnected pro-
cesses. There is an unbounded set of client processes and a bounded set of server
processes Π. Processes may fail by crashing, but do not experience arbitrary or
malicious behavior (i.e., no Byzantine failures). A process that crashes is said
to be faulty, otherwise it is correct. Processes communicate by message passing
through pairwise communication channels. Communication channels are quasi-
reliable. Channels do not create, corrupt or duplicate messages, and given two
correct processes p and q, if p sends m to q, q eventually receives m.

We define Γ = {g1, g2, ..., gm} as the set of process groups in the system. Pro-
cess groups are disjoint [46], and

⋃

Γ = Π. Associated with each group g, there
is a set of quorums Q g . Each quorum q in Q g is a set of processes, such that q ⊂ g.
The intersection between any two quorums in Q g cannot be empty, and at least
one of the quorums in Q g must contain no faulty processes.

2.1.2 Synchrony assumptions

The FLP impossibility [39] says that a consensus protocol cannot ensure both
liveness and safety in an asynchronous system. We thus consider a system that
is partially synchronous [32]: it is initially asynchronous and eventually becomes
synchronous. The time when the system becomes synchronous is called the global
stabilization time (GST) and is unknown to the processes. Before the GST, there
are no bounds on the time it takes for messages to be transmitted and actions

5

6 2.2 Definitions

to be executed. After the GST, such bounds exist but are unknown, and remain
in effect forever. In practice, for the purposes of this work, “forever” means long
enough for atomic multicast to make progress, that is, deliver messages.

We also assume that processes in group g have access to a weak leader election
oracle, Ωg . At each process in the group, Ωg outputs a single process contained
in g and has the following property: there is a time after which, at every correct
pi ∈ g, Ωg outputs the same correct process pl ∈ g.

2.2 Definitions

2.2.1 Multicast abstractions

A multicast abstraction allows a process to send a message m to multiple des-
tinations. In this thesis, we only consider groups in Γ as destinations, and use
m.dest to refer to the set of destinations for m. When |m.dest| = 1 we say that
m is a local message, otherwise, when m has multiple destinations, we say it’s a
global message.

Relying on the properties of a fault-tolerant multicast abstraction [48] greatly
simplifies reasoning about the correctness of algorithms. In the following, we
describe the properties of the different types of multicast used in this work.

Non-uniform FIFO reliable multicast

FIFO non-uniform reliable multicast provides two primitives to processes in the
system: R-MULTICAST(m) and R-DELIVER(m). The former is used by processes to
send a message to m.dest, and the latter signals its delivery at destinations.

The properties of non-uniform FIFO reliable multicast are:

• Validity: If a correct process executes R-MULTICAST(m) then, eventually, all
correct processes in

⋃

m.dest execute R-DELIVER(m).

• Integrity: For any message m and process p, p may only do R-DELIVER(m)
once, and only if R-MULTICAST(m) was previously issued by some process.

• Non-uniform agreement: If a correct process executes R-DELIVER(m) then,
eventually, every correct process in

⋃

m.dest executes R-DELIVER(m).

• FIFO order: If a process executes R-MULTICAST(m) before executing R-MULTICAST(m′)
then, every process that executes R-DELIVER(m′)must first execute R-DELIVER(m).

7 2.2 Definitions

FIFO non-uniform reliable multicast implementations allow for a message to
be delivered in one communication step, from origin to destinations [48].

Consensus

Consensus allows for processes in a group to propose values and then agree on
a single proposed value. It provides two primitives to processes in group g:
PROPOSEg(i, v) is used by a process to propose a value v for instance i, and
DECIDEg(i) returns the value decided for instance i. It ensures the following
properties:

• Uniform integrity: If DECIDEg(i) = v at some process then PROPOSEg(i, v)
was previously executed by some process.

• Termination: If a correct process executes PROPOSEg(i, v) then, eventually,
DECIDEg(i) = v′ at every correct process.

• Uniform agreement: If DECIDEg(i) = v at some process and DECIDEg(i) = v′

at another process then v = v′.

Atomic multicast and broadcast

Atomic multicast allows processes in the system to send a message m to the set
of destination groups m.dest. It provides two primitives to processes in the sys-
tem: A-MULTICAST(m) to send messages and A-DELIVER(m) to signal deliveries.
It ensures the following properties:

• Validity: If a correct process executes A-MULTICAST(m) then, eventually, all
correct processes in

⋃

m.dest execute A-DELIVER(m).

• Integrity: For any message m and process p, p may only execute A-DELIVER(m)
once, and only if A-MULTICAST(m) was previously issued by some process.

• Uniform agreement: If any process executes A-DELIVER(m) then, eventually,
every correct process in

⋃

m.dest executes A-DELIVER(m).

• Global total order: Let≺ be a relation on the set of messages that processes
A-DELIVER, such that m≺ m′ iff some process executes A-DELIVER(m) before
it executes A-DELIVER(m′). The ≺ relation is acyclic.

Global total order avoids cycles in the delivery sequence of messages. For
example, suppose there are three processes, p, q, and r, each one in a different

8 2.2 Definitions

group, and messages m1, m2 and m3. Global total order prevents a situation
where p a-delivers m1 and then m2 (m1 ≺ m2), q a-delivers m2 and then m3

(m2 ≺ m3), r a-delivers m3 and then m1 (m3 ≺ m1).
But global total order by itself allows faulty processes to a-deliver undesired

sequences of messages. Indeed, it allows “holes" to appear in the message de-
livery sequence of faulty processes. For example, consider an execution where
messages m1 and m2 are a-multicast to group g. A process p ∈ g a-delivers m1

and then m2, and a faulty process q ∈ g a-delivers m2, then fails, and never
a-delivers m1 (i.e., m1 leaves a hole in the delivery sequence of q). This execu-
tion satisfies all atomic multicast properties above, but it is undesired because
processes p and q may produce different results if those messages were applica-
tion requests to be executed. To prevent such executions, we also require atomic
multicast to satisfy uniform prefix order [89].

• Uniform prefix order: Let m and m′ be messages and p and q processes
such that {p, q} ⊆

⋃

(m.dest ∩ m′.dest). If p executes A-DELIVER(m) and
q executes A-DELIVER(m′) then either p executes A-DELIVER(m′) before A-
DELIVER(m) or q executes A-DELIVER(m) before A-DELIVER(m′).

Atomic broadcast is a special case of atomic multicast, where every message
is addressed to a single group.

Genuineness

A multicast protocol is genuine [46] when only the sender and destinations of a
message m need to take steps for m to be delivered. Intuitively, a genuine proto-
col scales with the number of groups in the system, as long as most messages are
local or destined to only a subset of the groups. We formally define genuineness
as follows:

• Genuineness: for any admissible runR of the algorithm and for any process
p, if p sends or receives a message in R then m is a-multicast in R and
either p ∈
⋃

m.dest or p does the a-multicast of m.

2.2.2 Consistency criteria

Servers in a distributed application typically coordinate to provide clients with an
interface that behaves as similarly as possible to the same application executing
in a single machine. An execution is a finite sequence describing an interleav-
ing of requests and respective responses, from one or more clients accessing the

9 2.2 Definitions

application. Consistency criteria restrict the set of valid executions. Some appli-
cations can afford to relax its consistency guarantees to allow for lower latency
or lower coordination overhead. In this work, we consider the following consis-
tency criteria:

Linearizability

An application is linearizable [7, 49] if, for any execution σ, there is a total order
π on application requests that:

(i) respects the semantics of the requests, as defined in their sequential speci-
fications, and

(ii) respects the real-time precedence of requests, where a request precedes
another request in real time if the first request finishes before the second
request starts.

Linearizability is a composable property [49]: a system solely composed of lin-
earizable applications is also linearizable.

Sequential consistency

An application is sequentially consistent [7] if, for any execution σ, there is a total
order π on application requests that:

(i) respects the semantics of the requests, as defined in their sequential speci-
fication, and

(ii) respects the partial ordering of commands defined by each client.

Differently from linearizability, sequential consistency is not a composable prop-
erty.

Causal consistency

Let e and f be requests in some execution of a given application. We define the
happens-before relation [57], here denoted→, as follows:

• e→ f if both e and f are requests from the same client, and e ends before
f begins.

• e→ f if the execution of request f observes any state update caused by e.

10 2.2 Definitions

• the→ relation is transitive.

An application is causally consistent if, for any execution σ and application
requests e and f , if e → f then the execution of f observes all state updates
caused by e. Under causal consistency, two clients may see unrelated updates in
different orders [66].

2.2.3 State-machine replication

State-machine replication [22, 93], or active replication, is an approach to ren-
dering applications fault-tolerant that provides linearizability. The application
state is fully replicated by every server, and every server executes every applica-
tion request, in the same order. Since each server independently executes each
request, request execution must be deterministic, only depending on application
state. Thus, replicas go through the same sequence of state changes, and produce
the same output for each request executed.

2.2.4 Primary-based replication

Primary-based replication [17, 52, 64, 108], also known as passive or primary-
backup replication, is an approach to fault-tolerance in which one server, the pri-
mary, executes every application request. The resulting state changes are then
propagated from the primary to the other replicas, commonly referred to as fol-
lowers or backups. Hence, in primary-based replication, request execution does
not need to be deterministic.

Chapter 3

A Strongly Consistent Multi-Site File
System

This chapter presents GlobalFS, a strongly consistent, geographically distributed
file system providing a POSIX-like interface. GlobalFS handles file data and meta-
data separately and builds on two fundamental building blocks: group communi-
cation in the form of atomic multicast and multiple instances of a single-site data
store. Instead of executing every file system operation the same way, GlobalFS
takes into account the individual requirements of each operation and places it
into one of four execution modes. We define each execution mode and show how
all file system operations can be implemented with these modes, while ensuring
strong consistency and tolerating failures. We describe our prototype implemen-
tation of GlobalFS in detail and provide an in-depth study of its performance.
In particular, GlobalFS has been deployed on Amazon’s EC2 platform, across all
nine available regions at the time, and we show that it scales geographically, with
performance comparable to other distributed file systems for commands local to
a region, while providing strongly consistent operations over the whole system.

3.1 Motivation

Cloud infrastructures, composed of multiple interconnected datacenters, have
become an essential part of modern computing systems. They provide an effi-
cient and cost-effective solution to hosting web-accessible services, storing and
processing data, or performing compute-intensive tasks. Large companies like
Amazon or Google do not only use such architectures for their own needs, but
they also rent them to external clients in a variety of options, e.g., infrastructure
(IaaS), platform (PaaS), software (SaaS), or data (DaaS) as a service. Such global

11

12 3.1 Motivation

infrastructures rely on geographically distributed datacenters for fault-tolerance,
scalability, and performance reasons.

Almost every distributed application has some need for data storage. Given
the diverse requirements of these applications, distributed data storage comes in
many flavors: file systems, SQL databases, key-value stores, persistent logs and
many others. Out of these, distributed file systems provide a simple and familiar
interface for applications to take advantage of data replication and availability.
Providing access through a standard API such as POSIX may allow for existing
applications to be migrated with little to no modifications.

In this chapter, we focus on the design of a geographically distributed file sys-
tem, accessible via a POSIX-like interface. Most previous designs for geographi-
cally distributed file systems [54, 70] have provided weak consistency guarantees
(e.g., eventual consistency [29]) to work around the limitations formalized by
the CAP theorem [42], which states that distributed applications can fully sup-
port at most two of the following three properties simultaneously: consistency,
availability, and tolerance to partitions. Our goal is to ensure strongly consis-
tent file system operations despite node failures, at the price of possibly reduced
availability in the event of a network partition. Weak consistency is suitable for
domain-specific applications where programmers can anticipate and provide res-
olution methods for conflicts, or work with last-writer-wins resolution methods.
Our rationale is that for general-purpose services such as a file system, strong
consistency is more appropriate as it is both more intuitive for the users and
does not require human intervention in case of conflicts.

Strong consistency requires ordering commands across replicas, which needs
coordination among nodes at geographically distributed sites (i.e., regions). De-
signing strongly consistent distributed systems that provide good performance
requires careful tradeoffs. One such tradeoff happens between the latency of
operations touching data in a single region and operations touching data across
regions. We capture this compromise with the notion of geographical scalability:
having some region be part of a given deployment should not negatively impact
the performance of operations not touching that region.

Geographical scalability is motivated by geo-distributed applications that wish
to exploit the locality of data access without compromising consistency or reduc-
ing the scope of operations to a single region. This trend is becoming increasingly
more important with the wide range of applications that are deployed over mul-
tiple datacenters spanning several regions on cloud platforms such as Amazon’s
EC2. 1 Yet, achieving geographical scalability is notoriously difficult. As of the

1https://aws.amazon.com/ec2/

13 3.2 General idea

writing of this thesis, Amazon’s own solution for distributed file systems, Elas-
tic File System (EFS), does not support cross-region deployments. As another
example, among the few existing file systems with explicit support for geograph-
ical distribution, CalvinFS [105] totally orders requests. As a consequence, end
users with applications spanning multiple geographic regions are left with one
of two options: (1) ad hoc solutions for synchronizing data across regions or (2)
increased latency for cross-region deployments, even for operations that access
objects in a single region.

The rest of this chapter is organized as follows. Section 3.3 introduces GlobalFS’s
architecture. Section 3.4 presents the protocol design. Section 3.5 describes the
implementation of our prototype. Section 3.6 discusses the results of our exper-
imental evaluation. Section 3.7 reviews related work. Section 3.8 concludes the
chapter with some discussion on the limitations of and possible improvements to
GlobalFS.

3.2 General idea

We consider a global deployment environment, with server processes placed in
datacenters that are geographically distributed around the world. Datacenters
are grouped into regions by their proximity; datacenters in the same region can
typically communicate with low latency, while still providing independent failure
scenarios. Thus, data can be replicated to multiple datacenters in a single region
to ensure some level of disaster tolerance. Still, some applications have clients
distributed around the globe and need to be deployed to multiple regions, so that
their clients can access them with lower latency. Since the latency of communi-
cation between regions is in general much higher than communication within a
region, such applications need to use protocols that are geographically scalable.

GlobalFS is a distributed file system that achieves geographical scalability by
exploiting two abstractions. First, it relies on data stores located in geographically
distributed datacenters. File data is stored and replicated as immutable blocks in
these data stores, which are organized as distributed hash tables (DHTs). Second,
GlobalFS uses an atomic multicast abstraction to maintain mutable file metadata
and orchestrate multi-site operations. Atomic multicast provides strong order
guarantees by partially ordering operations (Section 2.2.1).

GlobalFS notably differs from other distributed file systems by defining a par-
tition model in which files and folders can be placed according to access patterns
(e.g., in the same region as their most frequent users), as well as four execu-
tion modes corresponding to the operations that can be performed in the file

14 3.3 System architecture

Atomic multicast

Client interface (FUSE)
Applications

Metadata management
Data store

Network

Figure 3.1. Overall architecture of GlobalFS.

system: (1) single-partition operations, (2) multi-partition uncoordinated oper-
ations, (3) multi-partition coordinated operations, and (4) read-only operations.
While single-partition and read-only operations can be implemented efficiently
by accessing each region independently, the other two operations require syn-
chronization between multiple regions. By leveraging atomic multicast and dis-
tinguishing between these four modes of execution, GlobalFS can exploit geo-
graphical locality, providing low latency for single-region commands while al-
lowing for consistent operations across the whole file system. GlobalFS ensures
sequential consistency for update operations and causal consistency for reads.

3.3 System architecture

This section presents in detail the architecture and design of GlobalFS and how
the file system can be partitioned and replicated.

3.3.1 Components

The architecture of GlobalFS consists of four components: the client interface,
the data store, metadata management, and atomic multicast (see Figure 3.1).

The client interface provides a file system API supporting a subset of POSIX
1-2001 [1]. GlobalFS implements file system operations sufficient to manipu-
late files and directories. Some file system calls change the structure of the file
system tree (i.e., the files and directories within each directory). Each file de-
scriptor seen by a client when opening a file is mapped to a local file descrip-
tor at each GlobalFS server. We support file-specific operations: mknod, unlink,
open, read, write, truncate, symlink, readlink; directory-specific operations:
mkdir, rmdir, opendir, readdir; and general-purpose operations: stat, chmod,
chown, rename, and utime. We support symbolic links, but not hard links.

Like most contemporary distributed file systems (e.g., [19, 41, 94, 98]), GlobalFS
decouples metadata from data storage. Metadata in GlobalFS is handled by the
metadata management layer. Each file has an associated inode block (iblock)

15 3.3 System architecture

containing the metadata information about the file (e.g., its size, owner, and ac-
cess rights) and pointers for its data blocks. The actual content of a file is stored
in data blocks (dblocks). The two types of blocks are handled differently and
stored separately: dblocks are immutable and stored directly by the clients in the
storage servers; iblocks are mutable and maintained by the metadata servers.

GlobalFS distinguishes updates (i.e., operations that modify the state of a
file or directory) from read-only operations. Updates are sequentially consistent
while reads are causally consistent (Section 2.2.2). Every update operation is
ordered by atomic multicast. Partially ordering messages, as defined by atomic
multicast, is a fundamental requirement for achieving scalable distributed sys-
tems.

The data store provides a key-value store with primitives to read (get) and
create (put) data items. It is implemented as a collection of distributed hash
tables (DHTs), with one instance of the data store per datacenter. The get

and put operations on each instance of the data store are linearizable (see Sec-
tion 2.2.2). Maintenance of the data in the DHT is simple and efficient given
that data blocks are immutable. DHT-based data stores scale remarkably well
horizontally [27, 29, 56, 85]. The design of the data store itself is orthogonal to
this work.

3.3.2 Partitioning and replication

Data partitioning and replication have an important impact on the performance
and reliability of a data management system. Horizontal partitioning (shard-
ing) is commonly used to scale distributed file systems. For example, hashing
the pathname of each file is a straightforward way to distribute files across the
system [105]. Hashing provides good load distribution of files but its lack of sup-
port for locality might place files far away from their most frequent or likely users.
Even though the design of GlobalFS could support any partitioning scheme, in-
cluding hashing, we explore a different approach to partitioning and replication,
which takes locality into consideration, as we now explain.

Clients and metadata replicas have access to the partitioning function map-
ping a given path to the partition replicating it. The file system is partitioned
and replicated according to the expected client access patterns and the degree
of fault tolerance desired. Files that are mostly read and rarely modified (e.g.,
system and application programs) are placed in a single “global” partition, repli-
cated across regions; files that experience locality of access (e.g., temporary files
related to a client) are placed in “local” partitions, replicated in datacenters in-
side a single region, close to the clients most likely to access them. In this setup,

16 3.3 System architecture

Partition Replication Performance Fault tolerance

Global across regions best for reads disaster
Local within region best for reads & writes datacenter crash

Table 3.1. Partitions in GlobalFS.

a file in the global partition can be read locally from any region, resulting in high
throughput and low latency for read operations. Updating a file in the global
partition, however, is an expensive operation involving all regions. Local parti-
tions, on the other hand, can provide high throughput and low latency for both
reads and updates, as long as the client is close to the file’s location. Both local
and global partitions can tolerate the failure of an entire datacenter. Moreover,
the global partition can tolerate the failure of all datacenters in a region (i.e., a
disaster). Table 3.1 summarizes the two partition types in GlobalFS.

To allow for a flexible system deployment, GlobalFS decouples data from
metadata. Although data and metadata for a given file are likely to be stored in
the same region, the system can cope with the case in which the metadata of a
file is stored in a region and the file data is stored in a different region.

3.3.3 Use of atomic multicast

In order to allow operations to be consistently propagated to the replicas, one
multicast group is associated with each partition. Servers subscribe to two multi-
cast groups: one, gall , associated with all the servers in the system, and another
associated with servers in the datacenters in the same region. This particular
characteristic of having a global gall group comes from our choice of atomic
multicast protocol, Multi-Ring Paxos [68]. Multi-Ring Paxos provides a slightly
different interface than the classic atomic multicast described in Section 2.2.1.
In Multi-Ring Paxos, messages can only be sent to a single group, but each server
can subscribe to multiple groups. Commands that update files in the global par-
tition or update files in multiple local partitions are multicast to gall; commands
that update files in a local partition are multicast to the group associated with
the partition. When a server receives a command it is not interested in, it simply
ignores it. The use of atomic multicast allows for independent local partitions
while still providing consistent operations across them. GlobalFS exploits this
flexibility through its different execution modes, detailed in Section 3.4.1.

17 3.4 Protocol design

… … …… …
P0 P3P2P1

…

/

1 2 3bin etc …

Figure 3.2. Illustrative deployment of GlobalFS with 4 partitions. Partition P0

is replicated in all regions and each other partition is replicated in one different
region.

3.3.4 Example deployment

Consider a deployment involving three regions, R1, R2, and R3, each with three
datacenters. The file system is partitioned in four partitions, P0, ..., P3 (see Fig-
ure 3.2), such that P0 is replicated in datacenters in all regions and partition Pi,
1 ≤ i ≤ 3, is replicated in datacenters in region Ri. In this scenario, we have
clients and servers (metadata and data store) distributed across the regions, that
is, in addition to the metadata associated with the region’s partition, each data-
center also hosts an instance of the data store. More precisely, the metadata and
data for the directory /1 and all its contents (recursively) are stored in servers in
P1. In the same manner, /2 and /3 are respectively mapped to P2 and P3. Files
not contained in any of these directories (e.g., /, /bin, /etc) are in partition P0.

3.4 Protocol design

GlobalFS differentiates between four classes of operations and defines for each
one a different execution mode. GlobalFS’s execution modes provide the basis
for the implementation of each file system operation. We start by going through
the details of each execution mode. We then describe the execution of open,
read and write operations, from start to finish. Finally, we discuss how failures
are handled in GlobalFS.

3.4.1 Execution modes

Each operation in GlobalFS follows one of the following execution modes. Ex-
cept for read and write operations, all file system operations access only the
metadata servers.

18 3.4 Protocol design

Single-partition operations. A single-partition operation modifies metadata stored
in a single partition. As a consequence, operations in this class are multicast
to the group associated with the concerned partition and, when delivered, exe-
cuted locally by the replicas. The execution of a single-partition operation follows
state-machine replication 2.2.3: each replica delivers a command and executes
it deterministically. One of the replicas replies to the client.

The following operations are single-partition in GlobalFS, where the terms
child and parent are used to refer to an object and the directory that contains it,
respectively.

• chmod, chown, truncate, open, and write;

• mknod, unlink, symlink, and mkdir when the parent and child are in the
same partition; and

• rename, when the origin, origin’s parent, destination, and destination’s par-
ent are in the same partition.

Note that while a single-partition operation in a local partition involves only
servers in one region, a single-partition operation in the global partition (multi-
cast to group gall) involves servers in all regions of the system.

Uncoordinated multi-partition operations. An uncoordinated multi-partition
operation accesses metadata in more than one partition, but the operation’s ex-
ecution at each partition can complete without any input from the other parti-
tions involved. This is similar to the notions of independent transactions in Gra-
nola [26] or one-shot transactions in H-Store [53]. In GlobalFS, these commands
are those involving only a parent directory and child, where each is mapped to a
different partition. Since the parent’s partition knows whether the child already
exists or not, the partial ordering of atomic multicast is sufficient to guarantee
consistency: both partitions will independently reach the same decision in re-
gards to success or failure.

To execute an operation that concerns multiple partitions P1, P2, ..., Pn, the
operation is atomically multicast to all replicas of all involved partitions. Upon
delivery, each replica Pi executes the operation and one of the replicas replies to
the client. To reach replicas in multiple partitions, the operation is multicast to
group gall; if a replica delivers an operation it is not concerned about, the replica
just ignores the operation.

The following file system commands are implemented as uncoordinated multi-
partition operations:

19 3.4 Protocol design

• mknod, unlink, symlink, mkdir, rmdir when the parent and child are in
different partitions.

Coordinated multi-partition operations. The execution of some operations re-
quires the involved partitions to exchange information. In GlobalFS, this may
happen in the case of a rename (i.e., moving the location of a file or directory).
In this case, file metadata has to be moved from the origin’s partition to the desti-
nation’s partition. As a result, a rename may involve up to four partitions, given
by the placement of the origin, origin’s parent, destination, and destination’s par-
ent. Consequently, a rename operation might fail in one of the partitions (e.g.,
origin does not exist) but not in another.

To execute a coordinated multi-partition operation, the client multicasts the
operation to all concerned partitions (i.e., multicast group gall). Upon delivery of
the operation, the involved partitions exchange information about the command
and whether it can or cannot be locally executed. In the case of a rename, the
file’s attributes and list of block identifiers need to be sent to the destination
partition. Similarly to a two-phase commit protocol, the command only executes
if all involved partitions agree that it can be executed successfully.

Read-only operations. Read-only operations are executed by a single metadata
replica and data store server.2 For read-only operations, GlobalFS provides causal
consistency. This is not obvious to ensure since a client may submit a write oper-
ation against a server and later issue a read operation against a different server
or even read from two separate servers. When the second server is contacted, it
may not have applied the required updates yet. GlobalFS provides causal consis-
tency for read operations by carefully synchronizing clients and replicas, as we
explain in the following.

We use an approach inspired by vector clocks [37, 83] where clients and
replicas keep a vector of counters, with one counter per system partition. In
the example described in Section 3.3.4, clients and replicas keep a vector with
four entries, associated with partitions P0, ..., P4. Every request sent by a client
contains vc, the client’s current vector, and each reply from a replica includes
the replica’s vector, vr . A read is executed by a replica only when v[i]r ≥ v[i]c,
i being the object’s partition. The idea is that the replica knows whether it is
running late, in which case it must wait to catch up before executing the request.

2GlobalFS does not implement atime (i.e., time of last access), as recording the time of the last
access would essentially turn every read into a write operation to update the file’s access time.

20 3.4 Protocol design

Operation Partitions Multicast Performance

Read-only one not multicast 1st (best)
Single-partition one gall or gi 2nd

Uncoord. multi-partition two or more gall 3rd

Coord. multi-partition two or more gall 4th (worst)

Table 3.2. Operations in GlobalFS.

When a replica receives an update operation from a client, the client’s vector
vc is atomically multicast together with the operation. Upon delivery of the com-
mand by a replica of Pi, entry v[i]r is incremented. Every other entry j in the
replica’s vector is updated according to the delivered vc, whenever v[j]c > v[j]r .
Clients update their vector on every reply, updating v[i]c if v[i]r > v[i]c, for each
entry i.

The following file system commands are implemented as read-only opera-
tions: read, getdir, readlink, open (read-only), and stat.

Table 3.2 summarizes GlobalFS operations. Single-partition and read-only
operations access a single partition. While a single-partition operation is mul-
ticast to the group associated with the partition, a read-only operation is not
multicast but is executed by a single metadata replica (and a data store server).
For example, according to the illustrative deployment described in Section 3.3.4,
a write operation for partition P0 is multicast to gall and a write operation for
any of the other partitions Pi is multicast to gi. Uncoordinated multi-partition
and coordinated multi-partition operations access multiple partitions. Such op-
erations are multicast to group gall . Since read-only operations only involve a
single metadata server and are not multicast, we expect such operations to out-
perform any other operations in GlobalFS. Single-partition operations involve
all replicas within a single partition, and therefore should perform better than
the multi-partition operations. Finally, because uncoordinated multi-partition
operations do not require servers in different partitions to interact during the
execution of a command, they are expected to perform better than coordinated
multi-partition operations.

3.4.2 The life of some file system operations

To open a file, the client uses the partitioning function to discover the set of
partitions replicating the provided path. The client then issues an open RPC to
the closest replica from any of the involved partitions. The response for this RPC
is a file handle that the client uses to issue subsequent read and write operations.

21 3.4 Protocol design

Upon receiving an open RPC from the client, a replica checks whether the file is
being opened for reading or writing. If the file is open for reading, the replica
creates a local file handle, valid only at this replica, and returns it to the client.
If the file is open for writing, the file handle needs to be opened in all replicas
as writes are replicated. The open command is multicast to the associated group
(given by the partitioning function) and executed by all responsible replicas.
Once a replica has finally delivered and executed the command, it directly replies
to the client.

For a read operation, the client needs to execute two steps. First, it issues a
read RPC to the replica holding the file handle. The replica, upon receiving the
read, finds the requested file’s metadata and looks for the blocks that match the
offset and number of bytes requested. The reply from the RPC is a list of block
identifiers and pointers. With the block identifiers, the client contacts the closest
data store replicating the file to get the actual data for the blocks. Multiple blocks
can be requested in parallel from different data store nodes. After that, the client
can build the sequence of bytes that need to be returned by the read operation.

For a write operation, the client first creates one or more data blocks from
the bytes that need to be written to the file. The client then contacts all the
data stores that need to replicate the file (given the partitioning function), and
inserts the blocks there, with unique identifiers generated at random. Insertion
of multiple blocks can be done in parallel. If all inserts are successful, the client
uses the partitioning function to get the partition replicating the file, chooses the
closest replica and issues a write RPC with the block identifiers as parameters.
The replica, upon receiving the write RPC, multicasts the command to the re-
sponsible group. Upon delivery of the command, a replica finds the metadata for
this file and inserts the new blocks. The replica that received the initial RPC from
the client replies. On success, the write returns the number of bytes written.

3.4.3 Failure handling

Metadata replicas use state-machine replication to handle metadata within par-
titions. A replica only executes a command that has been successfully delivered
by multicast. Thus, if a replica executes a command, other correct replicas in the
same partition will eventually deliver and also execute the command. GlobalFS
uses Multi-Ring Paxos as its atomic multicast implementation (see Section 3.5.2).
As long as one metadata replica in each partition and a quorum of acceptors in
each communication group are available, metadata in the whole file system is
available for writing and reading.

The recovery of a metadata replica is handled by installing a replica check-

22 3.5 Implementation

point and replaying missing commands [11]. Coordinated multi-partition com-
mands require one extra step. For coordinated multi-partition commands, repli-
cas in the involved partitions need to exchange information before deciding
whether the command can execute or not. A recovering replica, upon replaying a
coordinated multi-partition command, requests this information from replicas in
the other partitions. To allow for recovery, whenever a replica sends information
out regarding a coordinated command, it also stores this information locally.

Each key-value pair in the data store of a given partition is replicated in f +
1 storage nodes. Hence, up to f storage nodes can fail concurrently without
affecting data block availability.

To account for datacenter failures and disasters, metadata replicas and stor-
age nodes can be placed in different datacenters inside a region.

Client failures during a write or a file delete operation can leave “dangling”
dblocks inside the data store. dblocks without pointers in any iblock are un-
reachable and can be removed from the data store (the implementation of a
garbage collector is left as future work).

3.5 Implementation

In this section, we discuss the implementation of GlobalFS main components, as
depicted in Figure 3.3.

3.5.1 Clients

Files are accessed through a file system in user space (FUSE) implementation [38].
FUSE is a loadable kernel module that provides a file system API to user space
programs, letting non-privileged users create and mount a file system without
writing kernel code. According to [104], FUSE is a viable option in terms of
performance for implementing distributed file systems. Clients know the parti-
tioning function used by the system (currently hard-coded in the client) and use
Zookeeper [50] to find the set of available replicas. When using FUSE, every
system call directed at the file system is translated to one or more callbacks to
the client implementation. In GlobalFS, most FUSE callbacks have an equivalent
RPC (remote procedure call) available in the metadata servers. By using the par-
titioning function, a client can discover to which metadata replica or data store it
needs to direct a given operation. Whenever a client has the option of directing a
command to more than one destination, it chooses the closest one (the one with
the lowest latency).

23 3.5 Implementation

Datacenter
Data (replicated)

Storage node

DHT

Metadata (replicated)

Global ring

Multi-Ring Paxos node

Local ringFUSE API

Data
Metadata

Clients

Figure 3.3. Components and interactions in GlobalFS.

3.5.2 Atomic multicast

We use URingPaxos,3 a unicast implementation of Multi-Ring Paxos [68], which
implements atomic multicast by composing multiple instances of Paxos to pro-
vide scalable performance. Each multicast group is mapped to one instance of
Paxos. A message is multicast to one group only. Processes that subscribe to mul-
tiple groups use a deterministic merge procedure to define the delivery order of
the messages such that processes deliver common messages in the same relative
order.

For each Paxos instance, Multi-Ring Paxos disposes proposers, learners, and
a majority-quorum of acceptors in a logical directed ring in order to achieve high
throughput. Processes in the ring can assume multiple roles and there is no
restriction on the relative position of these processes in the ring, regardless of
their roles. Each ring has a Paxos coordinator, typically the first acceptor in the
ring.

In our setup we keep a global ring that includes all metadata replicas in the
system, as illustrated in Figure 3.3. This ring implements the gall group discussed
in Section 3.3.3. Each other group is implemented by a ring that includes replicas
in the same region.

3.5.3 Metadata replicas

Metadata in GlobalFS is kept by replicated servers, using state machine replica-
tion [93]. Replicas can be part of multiple multicast groups. In our prototype,
each replica is a Multi-Ring Paxos learner. When a replica delivers a command,
the replica checks whether it should execute the command by using the parti-
tioning function. The file system metadata is kept in memory by the replica and

3https://github.com/sambenz/URingPaxos

https://github.com/sambenz/URingPaxos

24 3.5 Implementation

the sequence of commands is stored by Multi-Ring Paxos acceptors. Replicas can
be configured to keep their state in memory or on disk, with asynchronous or
synchronous disk writes.

The file system is represented as a tree of nodes. There are three node types:
directory, file, and symbolic link. A directory node stores the directory properties
(e.g., owner, permissions, times) and a hash table of its children nodes, stored
by name. A file node keeps the file properties and a list of blocks representing
its contents. Symbolic link nodes only need to store the node properties and the
target path of the link.

The metadata replicas are implemented in Java and expose a remote interface
to the clients via Thrift [6].

3.5.4 Data store

GlobalFS is designed to support any back-end data store that exposes a typical
key-value store API and provides linearizability. Our data store is implemented
in Go and uses LevelDB [61] as its storage backend. Depending on the applica-
tion requirements and fault model, data may be stored persistently on disk or
maintained in memory.

The data store is organized as a ring-based DHT and uses consistent hashing
for data placement. Each server maintains a full membership of other servers on
the ring, allowing one-hop lookups. This design, similar to Cassandra [56] or
Dynamo [29], provides good horizontal scalability and stable performance.

Each block is assigned to the first server whose logical identifier follows the
block identifier on the ring. A block is replicated as r copies, by copying it onto
the r − 1 successors (i.e., servers that immediately follow this first server on
the ring). This ensures data availability with up to r − 1 simultaneous failures.
Servers periodically check for the availability of copies of their blocks onto their
successors and create additional copies when necessary. Similarly, servers peri-
odically check for their predecessor availability and take over the responsibility
for their ranges upon failure, also creating additional copies. Since blocks are
written only once to the DHT, there is no need for coordination to ensure consis-
tency.

Clients contact the DHT via any of its proxy servers. The client picks one of
the servers and sends the block only once: the server will then create the r copies
of the block.

25 3.6 Evaluation

3.6 Evaluation

We evaluate GlobalFS using Amazon’s EC2 platform. We deploy VMs in all nine
EC2 regions available at the time of our experiments. For each region, we dis-
tribute servers and clients in three separate availability zones to tolerate datacen-
ter failures. More specifically, inside a single region, we place one server (meta-
data colocated with storage) and one client machine in each availability zone
(six VMs per region). In regions where only two availability zones are present
(e.g., eu-central-1) we compromise by placing two servers and clients in the
same zone. We used r3.large (memory optimized) and c3.large (compute
optimized) instance types, with 2 virtual CPUs, 32 GB SSD storage, and respec-
tively 15.25 and 3.75 GiB memory [5]. We use r3.large instances for servers
and c3.large instances for clients.

We configure the atomic multicast layer based on Multi-Ring Paxos to use in-
memory storage. The data store nodes use LevelDB with asynchronous writes to
persistent storage.

Our evaluation starts by assessing that the data store implementation in Go
using LevelDB [61] can sustain enough throughput not to constitute a bottleneck
in our GlobalFS microbenchmarks. We deploy five storage nodes inside a single
region with a replication factor of 2 (i.e., each block has 2 copies). For block
sizes of 1 KB, the data store achieves more than 8,000 put operations per second,
i.e., around 0.06 Gb/s of aggregate traffic. With larger block sizes (32 KB), the
same set-up could sustain around 6,500 get operations per second, or around
1.58 Gb/s. For the rest of our experiments, we use blocks of 1 KB.

3.6.1 Microbenchmarks

We use a custom microbenchmark to evaluate the performance and scalability of
GlobalFS for the following types of operations:
▷ read 1 KB: each client reads sequentially from a small file (10 KB), in 1 KB
chunks. Upon reaching the end of the file, a client wraps and continues reading
from the beginning. We disable caching on the client side so that all reads go
through the complete protocol.
▷ write 1 KB: each client writes sequentially to a file in 1 KB chunks.
▷ create: each client repeatedly creates empty files. This operation accesses only
the metadata servers.
▷ create 1 KB: each client repeatedly creates a file and writes 1 KB to it. Each
operation requires 3 sequential metadata operations: mknod, open, and write.

26 3.6 Evaluation

Each operation type is further divided into two categories: local operations
target files located in the client’s local partition and global operations target files
located in the global partition.

Performance with 3 regions

For these experiments, we use 3 different geographically distributed regions:
us-west-2, us-east-1, and eu-west-1. We deploy 1 local partition in each
region. Each partition features 3 servers, each in a different datacenter (avail-
ability zone). Metadata and storage are co-located: each server holds a metadata
replica and a storage node. Each datacenter also holds one client machine, thus
there are 3 clients per region. Each client machine has one GlobalFS FUSE mount
point. We then run multiple instances of our benchmark application on top of
each client machine.

For comparison, we also show values reported by HDFS in [98] and CalvinFS
in [105]. HDFS uses a centralized non-replicated metadata server. The values
reported for HDFS consider only metadata performance, and thus represent an
upper bound for the actual performance of HDFS. For CalvinFS, we report the
approximate values with 9 servers. As the exact values for CalvinFS with 9 servers
are not provided in [105], we approximate them by interpolating the values for 6
and 18 servers (we contacted the authors but could not obtain the source code).
Due to the linear behavior exhibited by CalvinFS, our approximation should be
fairly accurate.

Throughput. Figure 3.4 shows the maximum throughput achieved for each op-
eration. For read operations, GlobalFS achieved around 60% higher throughput
than CalvinFS, for both local and global operations. HDFS achieves higher per-
formance for reads, but it takes only metadata performance into account. Reads
in GlobalFS scale linearly with the number of replicas (a single replica needs to
be contacted).

For writes, GlobalFS was able to surpass the throughput of HDFS for local
operations, even though HDFS considers only metadata. GlobalFS was able to
achieve 6 times the throughput of CalvinFS for local writes. For global writes,
CalvinFS’s throughput was 1.7 times higher. In our setup for GlobalFS, the global
partition is replicated by all servers in the system (thus it cannot scale).

For creating a file with content, by not complying to the POSIX interface, Calv-
inFS is able to execute the operation using a single metadata access (by means of
a custom transaction). Adhering to POSIX requires a sequence of three metadata
operations: create the file, open, and write. The close is omitted as the write is

27 3.6 Evaluation

GlobalFS throughput

 0

 10000

 20000

 30000

 40000

 50000

 60000

glob. read 1KB

read 1KB

create
create 1KB

write 1KB

HDFS read at 126000
O

pe
ra

tio
ns

/s
ec

HDFS write
CalvinFS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

glob. create

glob. create 1KB

glob. write 1KB

Figure 3.4. Maximum throughput for different GlobalFS operations with the
baseline deployment of 3 partitions.

synchronous. Even though GlobalFS needs the three operations in the same sce-
nario, it can achieve throughput 14.5 times higher than CalvinFS using the faster
local partitions. Considering global creates, CalvinFS achieves 1.5 times higher
throughput. On the other hand, creating an empty file requires a single metadata
operation. In this case, GlobalFS was able to surpass even the performance of
HDFS when using the local partitions (3.5 times the throughput). Values for this
operation are not reported in the paper that presents CalvinFS [105].

These results show the benefit of exploiting data locality. CalvinFS, while
scaling throughput with the number of replicas within a datacenter, does not
benefit from local, fast operations. In CalvinFS, all write operations need to go
through the global log, thus introducing an overhead on latency. This problem
is exacerbated in WAN deployments: either the log is disaster tolerant and all
operations pay the cost, or the log is local to a region and clients in other regions
need to pay the round-trip latency. GlobalFS, on the other hand, allows for files
to be either locally or globally replicated, thus providing the option for users to
choose between availability (disaster tolerance) and performance (throughput
and latency). Note that operations across the whole system are still strongly
consistent in GlobalFS. The results also show that GlobalFS can deliver good
performance while still providing a POSIX interface, thus allowing for existing
applications to be used without modification.

28 3.6 Evaluation

GlobalFS latency distribution

0

20

40

60

80

100

local create
local create 1KB

local write 1KB
global read 1KB

local read 1KB

0

20

40

60

80

100

 1 10 100 1000 10000

C
D

F
 (

%
)

Operation time (milliseconds, log-scale)

global create
global create 1KB

global write 1KB

Figure 3.5. Latency distribution for different GlobalFS operations with the
baseline deployment of 3 partitions. Latencies measured at 50% of maximum
throughput.

Latency. Figure 3.5 shows the latency distribution for the different types of
operations. We measure latency with the system supporting around 50% of its
maximum throughput. The results show that operations can be divided roughly
in 3 groups in regards to latency: reads, local writes, and global writes (we
group creates with writes). Read operations, global and local, observe the lowest
latency values, an average of 3.5 ms. This is due to reads being executed by a
single metadata replica and not having to go through atomic multicast. Clients
can also obtain dblocks from the local data store. Local writes, which need to be
multicast to servers in a single region, can achieve the second lowest latency, with
averages around 20–40 ms. Finally, global writes observe the highest latency
values. In our setup, global writes need to be multicast to all servers in the
system, across all regions. Clients also need to insert dblocks in all data stores.
Even so, latency values for writes and creating empty files on the global partition
had an average of around 300 ms.

Geographical scalability

We use the notion of geographical scalability to assess the impact of geographical
deployments on performance. As a metric for geographical scalability, we use
the ratio between the maximum throughput of local commands in a region in

29 3.6 Evaluation

a system that spans multiple regions and the throughput of the region when
deployed alone. A geographical scalability of 1 is ideal. Intuitively, it means that
the throughput achieved in a single region is not affected by the system being
deployed to other regions.

We compute geographical scalability as follows. We first measure the through-
put achieved with GlobalFS in a single EC2 region, eu-west-2. Then, we con-
sider multi-region deployments with 3, 6, and 9 regions:
▷ 3 regions: us-west-2, us-east-1, eu-west-1.
▷ 6 regions: + us-west-1, eu-central-1, ap-northeast-1.
▷ 9 regions: + ap-southeast-1, ap-southeast-2, sa-east-1.

The reported value is the ratio between the multi-region and the single-region
configurations.

GlobalFS geographical scalability

 0.2
 0.4
 0.6
 0.8

 1

G
e
o
g
ra

p
h
ic

a
l

s
c
a
la

b
ili

ty

1 Region 3 Regions 6 Regions 9 Regions

16081 ops

16094 ops

6882 ops

2421 ops

3072 ops

 1

 10

 100

read 1KB

glob. read 1KB

create

create 1KB

write 1KB

L
a
te

n
c
y
 (

m
s
)

Figure 3.6. Geographical scalability and 95th percentile latencies for differ-
ent GlobalFS operations, with increasing system size. Latencies measured at
around 50% of maximum throughput.

Figure 3.6 (top) shows that GlobalFS scales almost perfectly for all local op-
erations. For create operations, we see a drop in performance as regions are
added, down to around 0.8 when all available regions are used. Maximum ab-
solute throughput is shown above the single-region configuration. Figure 3.6
(bottom) shows the 95th-percentile of latency in each deployment, measured at
around 50% of maximum load. Read commands suffer no impact in latency as
they can be executed by a single replica (note that both lines are superimposed).

30 3.6 Evaluation

For local writes and creates, the largest increase in latency happens when the sys-
tem grows from 1 to 3 regions. While commands are executed by replicas inside
a single region, Multi-Ring Paxos still needs to synchronize groups. Therefore,
latency variations in the global ring can affect the performance of local com-
mands [68].

3.6.2 Compilation benchmarks

We now present results of an experimental evaluation conducted with a more
practical workload. In particular, we chose as workload the compilation process
of two well-known open-source projects: the bc numeric processing language
(v1.06), and the Apache httpd web-server (v2.4.12). These two projects differ
in size of the compressed archives (278 kB and 6 MB), number of shipped files (94
and 2,452) and lines of ansi-C code to compile (8,510 and 157,575). They expose
different workloads to the underlying file system and are often used as bench-
marks [103]. We evaluate the performance of these workloads when executed
on global and local partitions of GlobalFS. We compare the results against three
widely used distributed file systems: NFS (v4.1) [102], GlusterFS (v3.7) [28] and
CephFS (v0.94) [111]. Our objective is to assess that, while providing stronger
guarantees, GlobalFS compares favorably to de-facto industry implementations.

We configure NFS with one single shared directory mounted remotely by
the same clients. The NFS server runs in the us-west-2 region. We disable
all caching features on GlobalFS, and the NFS clients mount the remote direc-
tory with lookupcache=none,noac,sync options. Note that NFS lacks native
support for replication,4 while GlobalFS is configured to always guarantee two
copies per dblock. We use FUSE-based bindings for GlobalFS, GlusterFS, and
CephFS.

Table 3.3 embeds the operations breakdown of the system calls issued by the
different commands (decompress, configure, and compile) used for these exper-
iments. We evaluate GlobalFS either within a global or a local partition, and
compute the average over 3 distinct executions. All file systems are mounted
by 9 clients spread equally across 3 regions, but the workload is executed on a
single client. We use equivalent settings for GlusterFS,5 and CephFS. For NFS,
all clients mount a shared directory, and a client co-located with the service ex-
ecutes the commands. For GlusterFS we evaluate two different deployments,

4The replicas mount option of NFS is a client-side fail-over feature, but the replication of
the shared data has to be handled independently from the NFS protocol.

5GlusterFS experiments over the global partition are executed only once due to the required
AWS budget.

31 3.6 Evaluation

local (one region) and global (three regions). Each deployment consists of a
distributed/replicated volume on top of regular storage bricks, one on each of
the availability zones for the given EC2 regions. We deployed CephFS only at
a single region (3 storage daemons, 1 metadata server, and 3 clients) as cross
regions deployments were not well supported [33]. We set the replication factor
of GlusterFS, and CephFS to 3.

access open read write lstat lseek closefstat
GlobalFS GlusterFS CephFS

Command Operations breakdown NFS global local global∗ local local
tar xzvf bc-1.06.tgz ta

r
bc

1.94s 47.09× 1.36× 149.05× 1.63× 0.17×
configure co

nf
ig
ur
e
bc

5.32s 44.66× 2.02× 45.67× 0.96× 0.56×
make -j 10 ma

ke
 b
c

5.9s 29.90× 2.38× 49.34× 1.17× 0.63×
make (same as above) 13.14s 20.73× 1.16× 55.20× 0.92× 0.30×

gzip -d httpd-2.4.12.tgz gz
ip
 h
tt
pd

3.87s 117.12× 2.47× 284.75× 0.37× 0.11×
tar xvf httpd-2.4.12.tar ta

r
ht
tp
d

60.01s 41.46× 1.08× 99.17× 0.12× 0.14×
configure -prefix=/tmp co

nf
ig

ur
e

29.32s 49.35× 2.04× 56.53× 1.34× 0.33×
make -j 10 ma

ke
 h
tt
pd

714.37s 2.74× 0.52× 139.68× 0.87× 0.48×
make (same as above) 3432.72s 1.82× 0.36× 83.72× 0.50× 0.64×

Table 3.3. Execution times for several compilation workloads on GlobalFS
with operations executed over global and local partitions. Execution times
are given in seconds for NFS, and as relative times w.r.t. NFS for GlobalFS,
GlusterFS and CephFS. ∗Note that GlusterFS does not support deployments
with both global and local partitions; thus, we report results from two separate
deployments.

Table 3.3 presents our results. We observe that GlobalFS performs consis-
tently better than GlusterFS when operating across regions. GlobalFS performs
competitively against the other file systems across the whole suite of bench-
marks. Indeed, GlobalFS is up to 50.9× faster that GlusterFS in compiling Apache
httpd over the global partition. Note that for the same benchmark on a local
partition, GlobalFS is actually faster than NFS. When evaluating GlusterFS and
CephFS we use their default, out-of-the-box configuration. Both are heavily opti-
mized systems and some optimizations are on by default (e.g., clients in CephFS
use write-back caching, which improves write performance by batching small
writes). As expected, the performance penalty for accessing the global partition
is higher for write-dominated workloads (extracting an archive, configuring the
software package). For read-dominated or compute-intensive (make) operations,
this overhead decreases because read operations can be completed locally. For
comparison purposes, we also tested HDFS (v2.6) with FUSE bindings on a local
partition with some of the benchmarks and observed performance in the order as
GlobalFS and GlusterFS (e.g., 2.12× slower for the first command as compared
to 1.36× and 1.63×, respectively).

32 3.7 Related work

Our results demonstrate that GlobalFS performs on par with widely adopted
distributed file systems, it ensures a stronger consistency model, it supports repli-
cation, and allows users to benefit from locality thanks to its partitioning model.

3.7 Related work

3.7.1 File systems with strong consistency

CalvinFS [105] is a multi-site distributed file system built on top of Calvin [106],
a transactional database. Metadata is stored in main memory across a shared-
nothing cluster of machines. File operations that modify multiple metadata ele-
ments execute as distributed transactions. CalvinFS supports linearizable writes
and reads using a single log service to totally order transactions, a mechanism
known to scale throughput with the number of nodes within three regions [106].
Using more regions penalize all operations, implying lack of data locality support
for CalvinFS. We note that CalvinFS relies on “custom transactions” that group
multiple commands into a single operation to boost performance. For example,
creating and writing a file, which in POSIX would require three sequential calls
(i.e., create, open and write), can be executed as a single transaction in Calv-
inFS. As a consequence, the POSIX file system API cannot benefit from these
optimizations.

CephFS [111] is a file system implementation atop the distributed Ceph block
storage [20]. It uses independent servers to manage metadata and link files and
directories to blocks stored in the block storage. CephFS is able to scale meta-
data servers and change the file system partitioning at runtime for load balanc-
ing, through its CRUSH [112] extension. Although CephFS supports geograph-
ical distribution, WAN deployment over Amazon’s EC2 was discouraged by the
CephFS developers [33].

The Google File System (GoogleFS) [41] stores data on a swarm of slave
servers. It maintains metadata on a logically centralized master, replicated on
several servers using state machine replication and total ordering of commands
using Paxos. GoogleFS is a flat storage system. It does not consider the case of
a file system spread over multiple datacenters and the associated partitioning.
MooseFS [69] is designed around a similar architecture and has the same limita-
tions. Colossus [25], GoogleFS successor, provides the same strong consistency
guarantees, but many of its internal details remain undisclosed.

FhGFS/BeeGFS [9] is distributed file system for high-performance computing
clusters that targets read-dominated workloads.

33 3.7 Related work

GeoFS [65] is a POSIX-compliant file system for WAN deployments. It ex-
ploits user-defined timeouts to invalidate cache entries. Clients pick the desired
consistency for files and metadata, as in WheelFS’s semantic cues [101].

Farsite [2] is a distributed file system designed to run over a set of desktop
workstations. In Farsite, a file system tree is maintained by a group of replicas
through byzantine fault-tolerant state-machine replication. Each group can fur-
ther delegate parts of its namespace (i.e., sub-trees) to other replica groups. File
data is replicated separately from metadata: replica groups only keep a list of
file replicas and a checksum of the file contents.

Red Hat’s GFS/GFS2 [82] and GlusterFS [28] support strong consistency by
enforcing quorums for writes, which are fully synchronous. GlusterFS can be
deployed across WAN links, but it scales poorly with the number of geographical
locations, as it suffers from high-latency links for all write operations.

HDFS [98] is the distributed file system of the Hadoop framework. It is op-
timized for read-dominated workloads. Data is replicated and sharded across
multiple data nodes. A name node is in charge of storing and handling metadata.
As for GoogleFS, this node is replicated for availability. The HDFS interface is not
POSIX-compliant and it only implements a subset of the specification via a FUSE
interface. QuantcastFS [76] is a replacement for HDFS that adopts the same in-
ternal architecture. Instead of three-way replication, it exploits Reed-Solomon
erasure coding to reduce space requirements while improving fault tolerance.
HopsFS [72] is an extension for HDFS that stores metadata in a sharded NewSQL
database. Operations become distributed transactions.

SeaweedFS [95] is a distributed file system that follows the design of Haystack [8].
It supports multiple master nodes and multiple metadata managers to locate files.
It is optimized for (small) multimedia files.

XtreemFS [51] is a POSIX-compliant system that offers per-object strong-
consistency guarantees on top of a set of independent volumes managed by a
metadata server (MRC). To best of our understanding, it does not provide a global
integrated file system. Furthermore, it does not offer consistency guarantees for
inter-volume operations.

PVFS [19] and HDFS can be adapted to support linearizability guarantees for
metadata [99] by delegating the storage of the file system’s metadata to Berkeley
DB [74], which uses Paxos to totally order updates to its replicas.

3.7.2 File systems with weak consistency

There are several distributed file systems for high-performance computing clus-
ters, such as PVFS, PVFS2/OrangeFS [75], Lustre [94], and FhGFS/BeeGFS [9].

34 3.7 Related work

These systems have specific (e.g., MPI-based) interfaces and target read-dominated
workloads. GIGA+ [80] implements eventual consistency and focus on the main-
tenance of very large directories. It complements the OrangeFS cluster-based file
system.

ObjectiveFS [73] relies on a backing object store (typically Amazon S3) to
provide a POSIX-compliant file system with read-after-write consistency guaran-
tees. If deployed on a WAN, ObjectiveFS suffers from long round-trip times for
operations such as fsync that need to wait until data has been safely committed
to S3.

Close-to-open consistency (CTO) was introduced along with client-side caching
mechanisms for the Andrew file system and implemented in its open-source im-
plementation OpenAFS [87]. This was a response to previous distributed file
systems designs such as LOCUS [110], which offered strict POSIX semantics but
with poor performance. Close-to-open semantics are also used by NFS [102],
HDFS [98], and WheelFS [101].

Oracle OCFS [97] is a distributed file system optimized for the Oracle ecosys-
tem (e.g., database, application-server). It provides a cache consistency guaran-
tee by exploiting Linux’s O_DIRECT. Its successor OCFS2 [97] supports the POSIX
standard while guaranteeing the same level of cache consistency.

3.7.3 Peer-to-peer file systems

Peer-to-peer file systems target deployments over a large number of independent
servers rather than a collection of datacenters. We do not list these systems in
Table 3.4 as they are less directly linked to our work, but discuss them below.

A common aspect of peer-to-peer file systems is that they store both meta-
data and data in the same storage substrate, unlike previously listed approaches
and GlobalFS. This storage is typically a DHT. CFS [27] and PAST [85] are early
examples of single-writer peer-to-peer file systems, using the Chord [100] and
Pastry [86] DHTs. Ivy [70] is an evolution of CFS for multiple writers. The set of
writers is static and each writer maintains its own log of modifications to the file
system. A reader must causally parse through all writers’ logs. Ivy supports even-
tual but read-your-write consistency. CFS and Ivy use immutable blocks, similarly
to GlobalFS. Pastis [18] similarly extends PAST for multiple writers. It supports
read-your-write semantics and close-to-open consistency. OceanStore [54] is a
DHT-based file system that offers both eventual and strong consistency. It lever-
ages the eventually serializable data storage [36]: weak operations may execute
at any replica, while strong operations are totally ordered between writers.

35 3.8 Discussion

3.7.4 Overview

The characteristics of all surveyed systems are provided in Table 3.4. We catego-
rize file systems by their geographical scaling potential and identify three possible
scenarios: file systems that work on LAN (WoL) mainly intended for cluster de-
ployments; file systems that support but perform poorly in wide-area network
deployments (WoW); and file systems that scale in WAN (SoW). GlobalFS is the
only system to support data locality while at the same time providing strong
consistency and geographical scalability.

3.8 Discussion

This chapter introduces GlobalFS, a geographically distributed file system that
accommodates locality of access, scalable performance, and resiliency to fail-
ures without sacrificing strong consistency. GlobalFS builds on two abstractions:
single-site linearizable data stores and an atomic multicast based on Multi-Ring
Paxos. This modular design was crucial to handle the complexity of the develop-
ment, testing, and assessment of GlobalFS. Our evaluation reveals that GlobalFS
outperforms other geographically distributed file systems that offer comparable
guarantees and delivers performance comparable to single-site networked file
systems. We credit GlobalFS performance to its flexible partition model and four
execution modes, which allow us to exploit common access patterns and opti-
mize for the most frequent file system operations. These original features dis-
tinguish GlobalFS from other distributed file systems and are key to providing
geographical scalability without compromising consistency.

In the following, we discuss some limitations and directions for improving
the design of GlobalFS:

• Hard link support: GlobalFS does not support hard links (i.e., the same
file referenced by multiple paths). It could support them in one of two
ways: (1) replicate the file in each partition holding a hard link, allowing
for expensive writes but fast local reads, or (2) keep a single copy of the
file with a reference count and have hard links pointing to it, allowing for
faster writes but possibly remote reads.

• Dynamic partitioning: The partitioning scheme of GlobalFS could be made
dynamic using a mechanism close to the one described in [59]. In a nut-
shell, the change of partitioning function and related metadata movements
would be ordered through atomic multicast, and executed as coordinated
multi-partition commands.

36 3.8 Discussion

• Asynchronous data movement: While metadata can be quickly moved be-
tween partitions, the data for large files might be slow or expensive to
move. Since data blocks in GlobalFS are immutable, it should be possible
to move or copy data blocks from remote partitions either on demand by
clients or in the background by servers.

• Caching and pre-fetching: clients could pre-fetch and locally cache data
blocks to speed up sequential reads and frequently accessed files.

• Small blocks optimization: Small data blocks could be stored together with
metadata. This would allow for very fast access to small files. These inline
blocks could later be merged into larger data blocks in the background.

• Garbage collection: currently, GlobalFS does not have any mechanism for
garbage collection of orphaned data blocks. Since data blocks are not cur-
rently shared by multiple files, block references from deleted files could be
kept by metadata servers and later erased in the background. The same
mechanism could be used for data blocks that are completely overwritten.

37 3.8 Discussion

Name
Consistency

level
POSIX

interface
Code

available
Client type

Scaling
potential

GlobalFS S
p p

User SoW
AFS [87] W,CTO ×

p
User WoW

CalvinFS [105] S × × User SoW
CephFS [111] S

p p
Kernel,User WoL

CodaFS [88] E
p p

Kernel WoL
Colossus [25] S – × – SoW
BeeGFS [9] S∗

p p
User WoL

Farsite [2] S,CTO
p

× Kernel WoL
GeoFS [65] S∗,CTO

p
× User WoW

GFS/GFS2 [82] –
p p

Kernel WoL
GIGA+ [80] E

p
× User WoL

GlusterFS [28] S
p p

User WoW
GoogleFS [41] S

p
× – SoW

HDFS [98] S, CTO ×
p

User SoW
HopsFS [72] S ×

p
User SoW

LOCUS [110] S
p

× Kernel WoL
Lustre [94] CH

p p
Kernel WoL

MooseFS [69] S∗
p p

User WoL
NFS/pNFS [102] CTO

p p
Kernel WoW

ObjectiveFS [73] RaW
p p

User WoW
OCFS [97] CH ×

p
Kernel WoL

OCFS2 [97] CH
p p

Kernel WoL
PVFS [19] RaW ×

p
User WoL

OrangeFS [75] RaW ×
p

User WoL
QuantcastFS [76] E ×

p
User WoL

SeaweedFS [95] S ×
p

Kernel WoL
XtreemFS [51] S∗

p p
User WoW

WheelFS [101] S,CTO
p p

User WoW

Table 3.4. Survey of distributed file systems along several criteria: consistency
level (Strong=S, Weak=W, Eventual=E, Cache=CH, Close-To-Open=CTO,
Read-after-Write=RaW), support of the POSIX standard, code availability,
client type (user-space=User, kernel-space=Kernel), scaling potential (Works-
on-LAN=WoL, Works-on-WAN=WoW, Scale-on-WAN=SoW). Some proper-
ties are unknown (–) or not by default (∗).

38 3.8 Discussion

Chapter 4

A Latency Efficient Atomic Multicast

Distributed systems use replication to tolerate the failure of system components.
A fully replicated system, in which every server has a complete copy of the appli-
cation data, has inherent scalability limits since every server needs to eventually
apply every data update. Thus, data partitioning, also known as sharding, is the
typical approach used to scale writes in replicated systems. Commonly, in parti-
tioned systems, servers are divided into groups with each group being responsible
for storing only a subset of the application data.

Building distributed applications is already a complex endeavor, and data par-
titioning introduces another issue: coordinating operations across server groups.
Atomic multicast is a primitive which greatly simplifies building and reasoning
about partitioned systems. It allows for messages to be partially ordered and reli-
ably delivered to only a subset of the system groups. Given a favorable workload,
where commands are evenly distributed across partitions and most commands
access one or a few partitions, system throughput should scale with the number
of partitions. This places the same restriction on the underlying atomic multicast
protocol. For atomic multicast to scale, only the sender and destinations of a mes-
sage can be involved in its ordering. A protocol satisfying this property is said
to be genuine. Another crucial aspect of a communication protocol is latency,
particularly in geographically distributed systems. Ideally, messages should be
delivered at their destinations in as few communication steps as possible from
the message being sent.

In this chapter we present PrimCast, the first genuine atomic multicast pro-
tocol able to deliver messages to every destination in three communication steps.
PrimCast uses a primary-based consensus protocol for deciding on local times-
tamps at each group, but, differently from previous work, does not rely on con-
sensus for advancing and maintaining logical clocks. PrimCast introduces a novel

39

40 4.1 Background

approach, relying on simple quorum intersection, to decide when a given times-
tamp is safe for delivery. We present the complete algorithm for PrimCast and
its proof of correctness. We then show how loosely synchronized clocks can be
used to reduce the convoy effect that further delays messages under high system
load. We also describe a couple of other extensions to PrimCast that may pro-
vide benefits to practical applications. We implemented a prototype of PrimCast
and evaluated its performance under various scenarios. Our results show that
PrimCast achieves lower latency than state-of-the-art approaches while provid-
ing higher or comparable throughput.

The rest of this chapter is organized as follows. Section 4.1 provides the
necessary background. Section 4.2 describes PrimCast and presents the complete
algorithm. Section 4.3 presents proof for the properties of PrimCast. Section 4.4
describes how to exploit loosely synchronized clocks and presents a couple of
other extensions to PrimCast that may benefit practical applications. Section 4.5
presents the results of our experimental evaluation. Section 4.6 reviews related
work and Section 4.7 concludes the chapter.

4.1 Background

Users of modern distributed applications typically expect reliability, availability
and performance. These properties are often at odds, and system designers must
choose the right tradeoff for each application. Some form of replication is gen-
erally used to provide fault-tolerance. In a fully replicated system, where every
server stores a complete view of the application, write performance is inherently
limited by what a single server can do. To circumvent this problem, applica-
tions that need to scale must employ partial replication. In partially replicated
systems, the whole state of the system is partitioned, and each partition is repli-
cated by only a subset of the servers. We refer to such a subset as a process
group, and the system as a whole is fault-tolerant only if every group is inde-
pendently fault-tolerant. In a partitioned system, operations may touch one or
multiple partitions at once, and ensuring that replicas remain consistent can be a
complex effort. Operations or state changes should be reliably propagated to the
relevant servers, and concurrent operations must be handled properly so replicas
do not diverge.

One particular way of preventing inconsistencies in replicated systems in-
volves totally ordering messages. Atomic broadcast is a communication protocol
that allows messages to be reliably sent to every replica in the system, and a
strict total order is imposed on the order of their delivery. It is a convenient

41 4.1 Background

primitive for fully replicated systems, greatly simplifying reasoning about their
correctness. For partially replicated systems, though, in which application data is
partitioned and each process stores only a subset of the application data, atomic
broadcast is a scalability bottleneck. Atomic multicast is a primitive that allows
messages to be delivered by only a subset of the groups of the system. A trivial
implementation of atomic multicast consists of using atomic broadcast to send
messages and then simply discarding the messages a process is not interested in.
That obviously is not a big improvement over atomic broadcast, as totally order-
ing messages is inherently not scalable. For any given message, if a process is
neither multicasting nor delivering it, the process should not have to take steps
for the message to be delivered. An atomic multicast protocol that satisfies this
property is said to be genuine [46]. Such protocols are of particular interest to ge-
ographically distributed applications. A genuine protocol allows for throughput
to scale with the number of groups, if the workload allows for it. Furthermore, if
the workload exhibits locality of access, servers in a group can be placed close to
clients and each other, allowing for low latency of local operations, as discussed
in Section 3.1.

4.1.1 Timestamp-based message ordering

Most protocols for atomic multicast achieve a partial ordering of messages by as-
signing them timestamps, and then having processes deliver messages in times-
tamp order. The basic idea was first proposed in what is known as Skeen’s proto-
col [15], as a solution for atomic multicast between individual non fault-tolerant
processes. It works as follows:

1. Each process in the system has its own logical clock.

2. A message m, destined to processes in m.dest, is sent to each one of these
processes.

3. A process that receives m increments its logical clock and then assigns m
a local timestamp from its clock. The local timestamp is then sent to other
processes in m.dest

4. Once a process gets a local timestamp from each process in m.dest, the
maximum of the local timestamps is chosen as m’s final timestamp. The
process then updates its clock to m’s final timestamp, if not already past it.

5. Message m can then be delivered by process p once no pending message
(i.e., those assigned a local timestamp by p but not yet delivered) has a

42 4.1 Background

possibly smaller final timestamp than m.

Skeen’s protocol is genuine, as only the sender and processes in m.dest take steps
to deliver m. The complete protocol is shown in Algorithm 4 (ignoring the parts
in gray).

In [40], Fritzke et al. propose a solution for fault-tolerant atomic multicast.
This solution is further refined in [90]. The core idea is to replace individual pro-
cesses in Skeen’s protocol with fault-tolerant process groups. Inside each group,
atomic broadcast (i.e., consensus) is used to both maintain the group’s logical
clock and to timestamp messages. In essence, steps 2, 3 and 4 in Skeen’s al-
gorithm are modified. In step 2, message m must be independently atomically
broadcast to each group in m.dest. In step 3, using the delivery order of atomic
broadcast, each group decides on its next clock value and m’s local timestamp.
Finally, in step 4, once a group knows all local timestamps for m, the final times-
tamp for m is atomically broadcast locally to update the group’s logical clock and
allow for m to be delivered. We refer to protocols that rely on assigning message
timestamps as timestamp-based.

4.1.2 Collision-free and failure-free latency

In [43], Gotsman et al. propose two metrics for describing the delivery latency
in atomic multicast protocols: failure-free and collision-free latency. We consider
the delivery latency of a message as the time between its a-multicast and its last
a-delivery, that is, the time for it to be a-delivered at every correct destination. 1

Both collision-free and failure-free latencies set bounds on the delivery latency
of messages in periods of system stability. More precisely, we consider the system
stable after some unknown time t, past GST (Section 2.1.2), when there are no
process failures, message delay is bounded, group leaders are stable and there is
no ongoing or future reconfiguration due to previous leader changes. For simplic-
ity, we assume that local computation takes no time and message delay between
any two processes is fixed after t (a communication step). Collision-free latency
is the maximum delivery latency for delivering a message when there are no con-
flicting concurrent messages. A message m is concurrent with another message m′

if m is a-multicast before m′ is first a-delivered, and m′ is a-multicast before m is
first a-delivered. Two messages m and m′ are conflicting iff m.dest∩m′.dest ̸= ;.
In the presence of concurrent messages, message delivery may be subject to a
convoy effect [4, 16], where the delivery of a message needs to wait for other
messages to be delivered. Failure-free latency is the maximum delivery latency

1This differs from the definition in [43], which considers the first a-delivery of a message.

43 4.2 PrimCast

for delivering a message in the presence of concurrent messages. In practice,
in periods of system stability, the failure-free and collision-free latencies can be
seen as the worst and best case delivery latencies of an atomic multicast protocol,
respectively.

Still in [43], a method is proposed to calculate the collision-free and failure-
free latency values in timestamp-based atomic multicast protocols. First, two
values must be obtained from the algorithm: the clock update latency C and the
commit latency D. Let m be a message that is multicast at time t (as defined
in the previous paragraph). The clock update latency C is the maximum delay
after which no other message can be assigned a local timestamp higher than m’s
final timestamp. Essentially, the clock update latency limits the interval in which
conflicting concurrent messages can be a-multicast. The commit latency D of m
is the maximum delay after which a destination knows the final timestamp of m
and has its group’s logical clock value equal to or higher than m’s final timestamp.
In the absence of conflicting concurrent messages, m can be delivered after t+D,
and the collision-free latency is thus equal to D. The earliest another conflicting
message can be multicast before m is t + C (otherwise it would have a larger
final timestamp). Thus, after t + C + D, every final timestamp smaller than m’s
must be known, and the respective messages can be delivered together with m.
Hence, the failure-free latency is equal to C + D.

We now analyze the latency values for the classic protocols of [40, 90], as-
suming that some Paxos [58] based protocol is used as the consensus protocol
inside each group. For every destination to know the final timestamp ts of a mes-
sage m, four communication steps are needed: one for the timestamp proposal
to reach the consensus leader, two for the consensus decision, and one more for
groups to exchange local timestamps. Then, once the final timestamp is known
at the group’s consensus leader, two more communication steps are needed for
consensus to update the logical clock to ts at the group members. Thus, the
commit latency D of these protocols is six. Since local timestamps smaller than
ts can be proposed by destinations with a logical clock value smaller than ts, the
clock update latency C is also six. The collision-free and failure-free latencies
values are thus six and twelve communication steps, respectively.

4.2 PrimCast

PrimCast is a genuine atomic multicast protocol that achieves collision-free and
failure-free latency of three and five communication steps, respectively, at every
destination. Previous work achieved these latency values only at group lead-

44 4.2 PrimCast

ers [43]. In this section, we discuss PrimCast’s basic ideas and then present the
algorithm in detail.

4.2.1 Basic ideas

PrimCast is based on the following ideas:

• Primary-based consensus at each group: Each group in PrimCast employs a
primary-based consensus protocol. Similarly to other primary-based pro-
tocols [52, 64], PrimCast is epoch based. Each epoch is owned by a single
process in the group. Inside a group, each process tracks its current epoch,
and only accepts proposals from the primary of that epoch. In the absence
of failures, when processes in a group follow the same epoch, advancing
the logical clock of the primary to a given value is enough to ensure new
messages are assigned a larger local timestamp. Hence, for any given mes-
sage m, after two communication steps (i.e., the time for group primaries
to exchange their timestamp proposals), no other message can be assigned
a local timestamp smaller than the final timestamp of m. The clock update
latency C is thus two communication steps.

• Quorum-based logical clocks: One of the requirements for a message m to
be safely delivered at a given destination is that no new message targeting
that same destination should be assigned a smaller final timestamp than
m’s. Updating the logical clock of primaries is enough to prevent this situa-
tion in the failure-free case, but when primaries change, this is not enough.
To ensure safety in the presence of failures, previous approaches rely on
consensus to agree on the group’s logical clock, and delivery of a message
m can only happen at a given process after its group’s logical clock is larger
than or equal to m’s final timestamp. In PrimCast, instead of relying on
consensus for logical clock agreement, a quorum-based approach is used.
Inside each group, processes track each other’s clock values. On an epoch
change, the new primary must pick a clock value larger than all values
seen in some quorum of clocks from previous epochs. When a message m
is multicast, by carefully exchanging and tracking clock values, every desti-
nation can have its group’s logical clock advanced past m’s final timestamp
in three communication steps.

• Cross-group quorum tracking: Instead of exchanging local timestamps after
consensus is reached inside each group, PrimCast replicas directly send
acknowledgment messages to other destination groups. Each destination

45 4.2 PrimCast

process individually tracks when the quorum a for local timestamp from
another group is reached. Every local timestamp for a given message is thus
learned in three communication steps at every destination. This, together
with quorum-based logical clocks, ensures the commit latency D is three
communication steps at every destination.

4.2.2 Algorithm

PrimCast is presented in Algorithm 1 (initialization and predicates), Algorithm 2
(main logic), and Algorithm 3 (primary change logic). Processes communi-
cate through the r-multicast and r-deliver primitives of FIFO non-uniform reliable
broadcast (see Section 2.2.1), which can deliver messages in one communication
step. In the following, we give an overview of the algorithm and provide some
insight into how it achieves safety.

A note on epochs

PrimCast employs a primary-based protocol inside each group to assign local
timestamps to messages. The protocol proceeds in epochs, a given epoch E being
owned by a single process p, the epoch leader. If a quorum of processes accept
E as their current epoch (Ecur = E), p may become the effective primary. Epochs
from different groups are not related: each group has its own set of epochs, and
advances epochs independently of other groups.

Assigning timestamps

To a-multicast a message m, the sender r-multicasts 〈START, m〉 to each destina-
tion in
⋃

m.dest (line 31). When r-delivered, the tuple is added to theM set.
The primary for each group in m.dest will eventually update its clock, pick a
timestamp for m, append the proposal to T and send the respective ACK to every
destination in m.dest (line 35).

When a process p ∈ g r-delivers an ACK for m coming from a process in its own
group g (line 40), p first stores the tuple inM . Then, if the ACK is coming from
the primary of its current epoch, p accepts the timestamp proposal by appending
it to T , updates its clock if needed, and then also r-multicasts its own ACK to
every destination in m.dest. When p instead r-delivers an ACK for m coming
from a process in a remote group h (i.e., p /∈ h), p simply stores the tuple inM
(line 46).

46 4.2 PrimCast

Algorithm 1 PrimCast initialization and definitions at process p ∈ g.
1: initialization:
2: M ←; ▷ set of r-delivered START, ACK and BUMP tuples
3: D ← ; ▷ set of a-delivered messages
4: T ← ; ▷ sequence of tuples for timestamps proposed in g (in the format 〈E , m, ts〉)
5: clock← 0 ▷ p’s clock value
6: Ecur ← initial epoch ▷ current epoch
7: Eprom← initial epoch ▷ promised epoch (always ≥ Ecur)
8: state← PRIMARY if leader(Ecur) = p else FOLLOWER

9: local-ts(m, h) ≡ ▷ local timestamp for m in h if known, otherwise ⊥
10: if ∃ts,E ′, quorum ∈Qh : ∀q ∈ quorum : 〈ACK, m, h,E ′, ts, q〉 ∈M then ts
11: else ⊥

12: final-ts(m) ≡ ▷ max of all local-ts in m.dest if all are decided, otherwise ⊥
13: if ∀h ∈ m.dest : local-ts(m, h) ̸=⊥ then maxh∈m.dest(local-ts(m, h))
14: else ⊥

15: min-clock(q) ≡ ▷ highest ts seen in messages from q in epoch Ecur or earlier
16: max({0} ∪ {ts | ∃E ′ ≤ Ecur : 〈ACK, _, g,E ′, ts, q〉 ∈M or 〈BUMP,E ′, ts, q〉 ∈M})

17: quorum-clock() ≡ ▷ lower bound for clock of the primary of epochs higher than Ecur

18: max({ts | ∃quorum ∈Q g : ∀q ∈ quorum : min-clock(q)≥ ts})

19: min-ts(m) ≡ ▷ minimum possible value for final-ts(m)
20: max(if ∃h : local-ts(m, h) ̸=⊥ then maxh∈m.dest(local-ts(m, h)) else 0,
21: min(if ∃E , ts : 〈E , m, ts〉 ∈ T then ts else∞, ▷ any local-ts is a lower bound, so
22: 1 + min-clock(leader(Ecur)), ▷ is the minimum possible proposal for m in g
23: 1 + quorum-clock()))

24: proposable(m) ≡ ▷ m is not decided or proposed in g
25: 〈START, m〉 ∈M and local-ts(m, g) =⊥ and 〈_, m, _〉 /∈ T

26: deliverable(m) ≡
27: m /∈ D and final-ts(m) ̸=⊥ and ▷ m has not been delivered and has a final timestamp
28: final-ts(m)≤ min-clock(leader(Ecur)) and ▷ smaller than new proposals in Ecur

29: final-ts(m)≤ quorum-clock() and ▷ and smaller than proposals in newer epochs
30: ∀m′ : 〈_, m′, _〉 ∈ T , m′ /∈ D, m′ ̸= m : 〈final-ts(m), m.id〉< 〈min-ts(m′), m′.id〉

▷ and smaller than the possible timestamp of any other pending m′

47 4.2 PrimCast

Algorithm 2 PrimCast algorithm at process p ∈ g.
31: a-multicast(m): ▷ process p wants to atomically multicast m to m.dest
32: r-multicast(〈START, m〉) to m.dest

33: when r-deliver(〈START, m〉):
34: M ←M ∪{〈START, m〉}

35: when ∃m : proposable(m) and state = PRIMARY: ▷ primary proposes local timestamp in g
36: for each m : proposable(m)
37: clock← clock+ 1
38: T ← T • 〈Ecur , m, clock〉
39: r-multicast(〈ACK, m, g,Ecur , clock, p〉) to m.dest

40: when r-deliver(〈ACK, m, h,E , ts, q〉) and g = h: ▷ on ACK from our group
41: M ←M ∪{〈ACK, m, h,E , ts, q〉}
42: if q = leader(E) and E = Ecur and state = FOLLOWER then ▷ if ACK from primary
43: T ← T • 〈Ecur , m, ts〉 ▷ send our own ack
44: clock← max(clock, ts)
45: r-multicast(〈ACK, m, g,Ecur , ts, p〉) to m.dest

46: when r-deliver(〈ACK, m, h,E , ts, q〉) and g ̸= h: ▷ on ACK from remote group
47: M ←M ∪{〈ACK, m, h,E , ts, q〉, 〈START, m〉}
48: if ts > clock then ▷ on a remote ACK with ts higher than our clock
49: clock← ts ▷ update clock and inform our group
50: r-multicast(〈BUMP,Eprom, clock, p〉) to g

51: when r-deliver(〈BUMP,E , ts, q〉):
52: M ←M ∪{〈BUMP,E , ts, q〉}

53: when ∃m : deliverable(m) and state ∈ {PRIMARY, FOLLOWER}:
54: for each m : deliverable(m)
55: D ←D ∪ {m}
56: a-deliver(m) ▷ deliver m to the application

48 4.2 PrimCast

Algorithm 3 PrimCast primary change algorithm at process p ∈ g.
57: when Ωg = p and state /∈ {PRIMARY, CANDIDATE}:
58: state← CANDIDATE

59: Eprom← next epoch higher than Eprom for which p is the leader
60: r-multicast(〈NEW-EPOCH,Eprom〉) to g

61: when r-deliver(〈NEW-EPOCH,E〉) and E ≥ Eprom:
62: if p ̸= leader(E) then state← PROMISED

63: Eprom←E
64: r-multicast(〈PROMISE,E , p, clock,Ecur ,T 〉) to p

65: when state = CANDIDATE and PROMISEs for Eprom from a quorum ∈Q g were r-delivered:
66: Emax ← highest epoch in promises
67: Tmax ← longest state from promises with Emax ▷ get T from most up-to-date replica
68: ts← maximum clock from promises ▷ see predicate quorum-clock
69: r-multicast(〈NEW-STATE,Eprom,Tmax , ts〉)

70: when r-deliver(〈NEW-STATE,E ,T ′, ts〉) and E = Eprom:
71: T ← T ′

72: Ecur ←E ▷ move p to Ecur

73: clock← max(clock, ts)
74: r-multicast(〈ACCEPT,Ecur , p〉) to g ▷ inform other replicas we’re at Ecur

75: when state ∈ {PROMISED, CANDIDATE} and Ecur = Eprom and ▷ when p is at Ecur and
76: ACCEPTs for Ecur from some quorum ∈Q g were r-delivered: ▷ so is a quorum ∈Q g

77: if state = PROMISED then state← FOLLOWER

78: if state = CANDIDATE then state← PRIMARY

79: for each 〈E , m, ts〉 in T
80: if 〈ACK, m, g,E , ts, p〉 /∈M then ▷ send ACKs we have not yet sent (in T ’s order)
81: r-multicast(〈ACK, m, g,E , ts, p〉 /∈M) to m.dest

49 4.2 PrimCast

The local timestamp of m for h is tracked by local-ts(m, h) (line 9). The value
is decided when, inM , there are ACKs for m from a quorum of processes in h,
all coming from the same epoch. The final-ts(m) is decided once local-ts(m, g)
is decided for every g ∈ m.dest. When primaries are stable, after three commu-
nication steps, every correct destination in

⋃

m.dest will have received an ACK

for m from every other correct destination, ensuring final-ts(m) is decided.

Delivering a message

A message m can only be safely delivered when (1) the process knows final-ts(m),
(2) every message with a smaller final timestamp has been delivered, and (3) no
message may yet be assigned a smaller final timestamp. At a given process p ∈
g, these conditions are tracked by the deliverable(m) predicate (line 26), with
message ids being used to break ties. This predicate depends on the following
definitions:

• final-ts(m) (line 12): the final timestamp of m is known once the local-ts(m, h)
(i.e., the local timestamp) for all h ∈ m.dest are known.

• min-clock(q) (line 15): the maximum clock value seen in messages from
process q, from epochs smaller or equal to Ecur .

• quorum-clock() (line 17): lower bound for the starting clock of primaries
for epochs higher than Ecur in the process’s group. For a process p to be-
come the primary for its group g, it must first obtain a quorum of promises
for the new epoch from processes in g (line 65). The largest clock value
seen in the set of received promises is chosen as the starting clock value
of the new epoch (line 68). As an example, consider a group g of 5 pro-
cesses with simple majority quorums (i.e., any 3 processes is a quorum).
Suppose a new leader p starts an epoch E , gets a promise from each pro-
cess in g (including itself), and the set of clock values gathered from the
promises is {1,2, 3,4, 5}. The minimum clock value that can be picked by p
for the new epoch is 3, which comes from the quorum of promises with val-
ues {1, 2,3}. From quorum intersection, there is a quorum of promises for
which all clock values ({3,4, 5}) are higher than or equal to 3. Thus, pro-
cesses rely on quorum-clock() to know when a given timestamp is safe for
delivery in epochs higher than Ecur . For this reason, min-clock(q) ignores
tuples coming from epochs higher than Ecur .

• min-ts(m) (line 19): lower bound for the final timestamp of message m.
Any known local timestamp for m is a lower bound. At process p ∈ g,

50 4.2 PrimCast

when local-ts(m, g) is not yet known, a lower bound can be inferred for
its future value. The value of local-ts(m, g) will come either from the
current primary (i.e., equal to the proposal in T or higher than 1+min-
clock(leader(Ecur))) or from the primary of some future epoch (i.e., higher
than quorum-clock()).

Propagating clock values inside a group

Instead of relying on consensus to maintain a group’s logical clock, PrimCast
instead carefully tracks the clock values from processes in the group, and uses
quorum intersection to ensure safety during epoch changes (see the explanation
for quorum-clock() in the previous section). Clock values are propagated in two
ways: implicitly through ACK messages or through BUMP messages. Whenever
p receives an ACK from q, it will update its own clock if needed. The ACK also
updates what p knows about q’s clock value. Processes in g will exchange ACKs
for the local timestamp of m in g among themselves. This exchange is enough
to both (1) move the clocks of processes in g past the local timestamp for m in g
and (2) inform processes about the updated clock values. For a message m to be
delivered, a process must know that a quorum of clocks in its group is past the
final timestamp of m. When the local timestamp for some remote group is the
largest for m, the ACKs alone are not enough to ensure delivery. Thus, when an
ACK from a remote group is received, a process updates its clock if needed and
sends a BUMP message to its group (line 50). Note that BUMP messages carry the
sender’s promised epoch, Eprom: once a process is promised to epoch E it cannot
influence the quorum-clock() calculation for epochs lower than E .

Example execution

Figure 4.1 shows some of the messages sent during an example execution of the
protocol. In the example we have two groups, g = {p1, p2, p3} and h= {p4, p5, p6},
and we consider simple majority quorums for each. Processes p1 and p4 are
the primaries of Eg and Eh respectively. Process p5 does a-multicast(m), where
m.dest = {g, h}. The diagram only shows the messages needed for process p2 to
a-deliver m. As it can be seen, in the absence of concurrent messages, m can be
a-delivered by p2 in three communication steps. The example also shows why
BUMP messages are needed. Without the BUMP messages in M , the value of
quorum-clock() at p2 would be equal to 1, preventing m from being delivered
since final-ts(m) = 2.

51 4.2 PrimCast

Figure 4.1. Example execution of PrimCast, only showing the messages needed
for process p2 to a-deliver a message a-multicast by process p5.

Changing a group’s primary

When a process p ∈ g has Ωg = p, if p is not already the leader (line 57), p starts
an epoch change. The new leader p starts by picking an epoch E higher than the
one it is promised to (Eprom). It then becomes a CANDIDATE, sending a NEW-EPOCH

message to processes in g. Any process that receives the NEW-EPOCH, if E is larger
than its promised epoch, becomes PROMISED to E (line 61) and then sends its
current state (Ecur , T and clock) to p. Once p gets a quorum of promises for E
(line 65), it must pick the most up-to-date state from the promises received: out
of all the promises with the highest current epoch, it picks the longest T . Then,
p picks the highest clock value out every promise as the starting clock value of
the new epoch E . Before p becomes the primary, it must ensure that the new
epoch state is safe in a quorum of processes in g. Thus, p sends a NEW-STATE

message to all processes in g (line 69). When a process receives the NEW-STATE

for the epoch it is promised to (line 70), it installs the state by setting T and
Ecur , updates its clock, and then sends an ACCEPT message to every process in g.
Once a process has Ecur = E and receives a quorum of ACCEPTs for E (line 76), it

52 4.3 PrimCast correctness

either becomes the PRIMARY (in case of p) or a FOLLOWER. Finally, for each tuple
present in T , in order, if the process has not yet sent the respective ACK (i.e., the
ack is not present inM), it sends it to the relevant destinations (line 80).

On liveness

Eventually, from the properties of the leader election oracle Ωg and our model
assumptions (Section 2.1), at each group g, the same correct process p ∈ g is
forever output by Ωg at every process in g. If p is not the primary of g then, from
the algorithm (line 57), it will start a new epoch and eventually become the
primary. Any message m destined to g that is a-multicast by a correct processes,
if not yet proposed or delivered in g (lines 24 and 35), will eventually be present
in p’sM set and be proposed by p. Since no other process in g starts a new epoch,
and p is correct, m is eventually assigned a local timestamp in g. The same is
true for each other group in m.dest and for messages with a smaller timestamp
than m in g, thus m is eventually assigned a final timestamp and delivered at g.
In practice, it is enough that primaries at each group are stable for periods long
enough for local timestamps to be decided and propagated to other groups.

4.3 PrimCast correctness

Definition 1. Global and local messages: we say a message m is global if |m.dest| ≥ 2,
otherwise, m is a local message (destined to a single group).

Definition 2. Final timestamp: Let m be a message that is a-delivered by some
process p. We refer to the value of final-ts(m) at the time m is delivered as m’s final
timestamp.

Lemma 1. Stable epoch and primary: Every group g has an epoch El with leader l
such that, eventually:

• perpetually, at every correct process in g, Ecur = Eprom = El

• process l ∈ g, leader of El , is correct

• perpetually, at l, state = PRIMARY. At every other correct process in g,
state = FOLLOWER

We call El the stable epoch and l the stable primary.

53 4.3 PrimCast correctness

Proof. From the properties of the Ωg failure detector (Section 2.1.2), there is a
time t ′ after which Ωg outputs the same correct process l at every correct process
in g. Let t be some time after t ′ where only correct processes may send messages
(t >GST). After t, no other NEW-EPOCH messages will be r-multicast by processes
other than l, since Ωg = l (line 60). Let E be the highest epoch for which a
NEW-EPOCH message is r-multicast before t and is eventually r-delivered by some
correct process (in case no such message exists, let E be the initial epoch in g).
There are two cases to consider:

• l is the leader of E : If E is the initial epoch, correct processes already satisfy
the conditions in the lemma. Otherwise, since no NEW-EPOCH for a higher
epoch can be r-multicast, every correct process in g (other than l) will set
Eprom = E and state = PROMISED (line 61) upon r-delivering the message.
Eventually, l will get a quorum of promises for E (line 65) and r-multicast
the NEW-STATE for E . Processes that r-deliver the NEW-STATE will set Ecur =
E and then r-multicast an ACCEPT for E to processes in g (line 74). Once
a process gets a quorum of ACCEPT messages for its Ecur , it will move its
state to FOLLOWER (or PRIMARY in the case of l) (line 76).

• l is not the leader of E : When l r-delivers the NEW-EPOCH for E , it sets
Eprom = E and becomes PROMISED (line 61). Thus, after time t, since
Ωg = l, process l will eventually propose an epoch E ′ that is higher than
E (line 57). Every correct process in g will eventually r-deliver the NEW-
EPOCH for E ′ and, by the same argument of the previous case, every correct
process in g eventually has Ecur = Eprim = E ′ and is either a FOLLOWER or
the PRIMARY (in the case of l), satisfying the conditions in the lemma.

Proposition 1. Genuineness: for any admissible run R of the algorithm and for
any process p, if p sends or receives a message in R , then some message m is a-
multicast and either p does a-multicast(m) or p ∈

⋃

m.dest.

Proof. For the purposes of this proof, we ignore messages sent due to a group’s
epoch changing (in Algorithm 3). These are only exchanged internally in each
group g, and only whenΩg changes output at some process in g. As per Lemma 1,
epoch changes eventually stop happening. We note that the algorithm could be
modified so that an epoch change in g is only triggered when the new leader
has messages inM not yet delivered, but we chose not to so as to simplify the
algorithm and proofs. There are only 3 kinds of messages that are sent or received
in Algorithm 2:

54 4.3 PrimCast correctness

• 〈START, m〉: Only sent by the process that a-multicasts a message m (line 32),
to processes in

⋃

m.dest.

• 〈ACK, m, g,E , clock, p〉: An ACK message for m is either sent by the primary
of a group in g ∈ m.dest (line 39), or by a follower in g that receives the
ACK from its primary (line 45). In both cases, an ACK for m is sent only to
processes in
⋃

m.dest.

• 〈BUMP,E , clock, p〉: A BUMP message is only sent by a processes in g that
receives an ACK for some message m from a group other than g (line 50),
hence, g ∈
⋃

m.dest. The BUMP is only sent to processes in g.

Proposition 2. The collision-free and failure-free delivery latencies of PrimCast, at
any destination, are 3 and 5 communication steps, respectively.

Proof. A message m that is a-multicast after t can be a-delivered by a process
p ∈
⋃

m.dest as soon as deliverable(m) is true at p. Consider a time t after GST
where, at each correct process in each group g, Ecur is equal to g ’s stable epoch,
and state ∈ {PRIMARY, FOLLOWER} (Lemma 1). The deliverable(m) predicate is
a conjunction of the following clauses:

1. m /∈ D and final-ts(m) ̸= ⊥ (line 27): The final-ts(m) is known once the
local-ts(m, g) for each g ∈ m.dest is known. local-ts(m, g) is known once
p receives ACKs from the same epoch from a quorum of processes in g
(line 9). The primary of g sends its ACK for m to every destination once it
receives 〈START, m〉 (line 39). The followers in g send their own ACKs to
every destination after receiving the ACK from the primary (line 45). Thus,
after 3 communication steps, p will have received a quorum of ACKs for m
from g, and local-ts(g, m) is known.

2. final-ts(m)≤min-clock(leader(Ecur)) (line 28): Let g be a group such that
local-ts(m, g) = final-ts(m) at p. If p ∈ g, then the clause is true once p
receives the ACK from its primary, in 2 communication steps. Otherwise,
the primary of p’s group will receive the ACK from g ’s primary in 2 com-
munication steps, and then send a BUMP message to p (line 50), ensuring
the clause holds in at most 3 communication steps.

3. final-ts(m) ≤ quorum-clock() (line 29): After 3 communication steps, p
will have received, from a quorum of processes in its group, an ACK or
BUMP message with a clock value larger or equal to final-ts(m).

55 4.3 PrimCast correctness

4. ∀m′ : 〈_, m′, _〉 ∈ T , m′ /∈ D, m′ ̸= m : 〈final-ts(m), m.id〉< 〈min-ts(m′), m′.id〉
(line 30): If there are no concurrent conflicting messages, the clause is
true. Otherwise, let t be the time of the a-multicast(m), let ts be the final
timestamp of m, and let p be a process such that p ∈ g and g ∈ m.dest.
After 2 communication steps from t, the primary of g has received all ACKs
from other primaries, and its clock must be at least as high as ts. Thus,
any message m′ with a final timestamp ts′ smaller or equal to ts must have
been a-multicast before that. Since it takes 3 communication steps from
the a-multicast for the final timestamp to be known at a destination, p
knows final-ts(m′) = ts′ after at most 5 communication steps from t. Now,
consider each message m′′ such that 〈_, m′′, ts′′〉 ∈ T at p after 5 commu-
nication steps from t:

• if ts′′ > ts, then min-ts(m′′) is larger than ts and it can’t falsify the
clause

• if ts′′ <= ts, then final-ts(m′′) must be known at p

Thus, after 5 communication steps from the a-multicast of m, every mes-
sage with a final timestamp smaller than or equal to m’s, starting with the
lowest, can be delivered and added to D at p.

Since clauses 1, 2 and 3 always are true after 3 communication steps, and clause
4 is true when there are no pending messages at p, the collision-free latency of
PrimCast is 3 communication steps. Finally, since clause 4 is true after 5 commu-
nication steps, the failure-free latency of PrimCast is 5 communication steps.

Proposition 3. Uniform integrity: For any process p and any message m, p a-
delivers m at most once, and only if p ∈ m.dest and m was previously a-multicast.

Proof. For a message to be delivered it must first be assigned a timestamp, and
that only happens if a 〈START, m〉 is present inM (line 24), which means it must
have been a-multicast. Furthermore, when a message is a-delivered, it is added
to D (line 55), ensuring it is never deliverable again (line 26).

Lemma 2. Let p and q be two processes in group g, and let Tp and Tq be their
respective T values. If Ecur is the same value at p and q, then one of Tp or Tq must
be a prefix of the other.

Proof. From the algorithm, processes can only update Ecur when r-delivering a
NEW-STATE message (line 70). When they do so, both Ecur and T are set to the
values in the NEW-STATE message. For any given epoch, a NEW-STATE message

56 4.3 PrimCast correctness

is r-multicast only once, by that epoch’s leader. While Ecur doesn’t change, the
value of T can only be modified by appending tuples proposed by the leader of
Ecur (lines 38 and 43). From the FIFO properties of r-multicast, it follows that
processes with a given Ecur value append tuples to T in the same order.

Lemma 3. Let g be a group, E an epoch in g, and m a message. If ∃quorum ∈Q g

such that ∀q ∈ quorum a tuple 〈ACK, m, g,E , ts, q〉 is r-multicast by some process,
then, at any other process in g where state ∈ 〈FOLLOWER, PRIMARY〉 and Ecur > E ,
〈E , m, ts〉 ∈ T .

Proof. There are only two possible cases where an ACK is r-multicast in the algo-
rithm:

1. quorum ACKs are r-multicast by processes with Ecur = E (line 45): We’ll prove
this case by induction.

• base case: Let E ′ be the next epoch higher than E that gets a quorum of
promises in g. The leader of E ′ must pick the longest value of T from
the promises (line 65). From the algorithm, a process only sends an
ACK when 〈E , m, ts〉 ∈ T . From Lemma 2 and quorum intersection,
the chosen T must contain 〈E , m, ts〉.

• induction step: Let E ′ be an epoch higher than E , such that, for every
process in g with a value of Ecur in between E and E ′, 〈E , m, ts〉 ∈ T .
If E ′ gets a quorum of promises in g, from quorum intersection, the
most up-to-date promise will come from a process with 〈E , m, ts〉 ∈ T
(line 65).

2. some ACK is r-multicast by processes with Ecur > E (line 80): Let E ′ be the
smallest epoch such an ACK was r-multicast by a process with Ecur = E ′.
From the algorithm, the ACK can only be sent if 〈E , m, ts〉 ∈ T (line 80).
From line 76, a quorum of ACCEPTs must have been seen for E ′. Thus, from
the same argument in case 1, if a process in g has Ecur ≥ E ′ then 〈E , m, ts〉 ∈
T . Now, assume for a contradiction that the same doesn’t hold for some E ′′

in between E and E ′. If a process has state ∈ 〈FOLLOWER, PRIMARY〉 and
Ecur = E ′′ then a quorum of processes also moved to Ecur = E ′′ (line 76).
From quorum intersection, the next epoch higher than E ′′ that gets a quo-
rum will chose a T that does not contain 〈E , m, ts〉. A tuple of 〈E , m, ts〉
can only be appended to T if Ecur = E . Thus, from the same argument in
case 1, at a process with Ecur > E ′′, T will not contain 〈E , m, ts〉. Since
E ′ > E ′′ and a process with Ecur = E ′ has 〈E , m, ts〉 ∈ T (an ACK was sent),
we get a contradiction.

57 4.3 PrimCast correctness

Lemma 4. Let p be a process, g a group and m a message. If local-ts(m, g) = ts at
p and ts ̸=⊥:

1. Perpetually, local-ts(m, g) = ts.

2. At every process, local-ts(m, g) ∈ {⊥, ts}.

3. Eventually, at every correct process in
⋃

m.dest, local-ts(m, g) = ts.

Proof. From its definition, if local-ts(m, g) = ts at p, there is a quorum of acks
for m from the same epoch E in M . From the algorithm, the leader of E will
propose m only once. From Lemma 3, the leaders of epochs higher than E must
have 〈E , m, ts〉 in T and can’t propose m (line 24). By the same argument, there
can’t be a quorum for m in some epoch smaller than E , otherwise m would not
be proposed by the leader of E . Thus, the value of local-ts(m, g) at any process
can only be either ⊥ or ts. Since no tuple is ever removed fromM , once local-
ts(m, g) = ts holds at some process, it holds forever. From Lemma 3, 〈E , m, ts〉 ∈
T at every primary or follower of the stable epoch. From line 80, if a process
did not r-multicast an ack for m in previous epochs, it will do so at El . Thus,
eventually, a quorum of correct processes must r-multicast an ack for m, and from
the validity property of r-multicast, every correct process eventually r-delivers a
quorum of acks and has local-ts(m, g) = ts

Lemma 5. Let p be a process, g a group and m a message. If final-ts(m, g) = ts at
p and ts ̸=⊥:

1. Perpetually, final-ts(m, g) = ts.

2. At every process, final-ts(m, g) ∈ {⊥, ts}.

3. Eventually, at every correct process in
⋃

m.dest, final-ts(m, g) = ts.

Proof. Follows directly from the definition of final-ts (line 12) and Lemma 4.

Lemma 6. Let p be a process that eventually a-delivers a message m, and let ts be
m’s final timestamp. At any time, at p, min-ts(m)≤ ts.

Proof. Let’s consider each line from the definition of min-ts (line 19). For line 20,
from the definition of final-ts(m), for any g, local-ts(m, g) ≤ final-ts(m). Thus,
we must show that at least one of the values from lines 21, 22 and 23 is smaller
than or equal to ts. Since p a-delivers m, g ∈ m.dest. Let local-ts(m, g) = ts′

and let E be the epoch in g of the quorum of ACKs for m. There are then three
cases to consider:

58 4.3 PrimCast correctness

• Ecur < E : From the definition of quorum-clock() and line 68, since the
proposal for ts′ comes at a later epoch, and ts′ ≤ ts, quorum-clock() must
be smaller or equal to ts (line 23).

• Ecur > E : From Lemma 3, 〈E , m, ts′〉 ∈ T , and ts′ ≤ ts (line 21).

• Ecur = E : If 〈E , m, ts′〉 ∈ T , then the value from line 21 is smaller than ts.
Otherwise, from the FIFO properties of r-multicast, since we haven’t yet
received the proposal for ts′ from leader(E), min-clock(leader(E)) < ts′

(line 22).

Lemma 7. Timestamp order delivery: let m and m′ be two messages and ts and ts′

their respective final timestamps. If a process p a-delivers m before a-delivering m′,
then 〈ts, m.id〉< 〈ts′, m′.id〉.

Proof. Assume for a contradiction that m is a-delivered before m′ by p, but in-
stead 〈ts′, m′.id〉< 〈ts, m.id〉. From Lemma 6 and our assumption, min-ts(m′)≤
ts′ ≤ ts. Thus, at the time m is delivered, the comparison at line 30 would be
false and prevent m from being delivered, a contradiction.

Lemma 8. Let m be a message and p a correct process. If 〈START, m〉 ∈ M at p
then, eventually, final-ts(m) ̸=⊥ at every correct process in

⋃

m.dest.

Proof. Let g be any of the groups in m.dest, and let l be the leader of the stable
epoch El in g. When l eventually becomes the primary, there are two cases to
consider:

1. ∃E , ts : 〈E , m, ts〉 ∈ T : From the algorithm and the definition of the stable
epoch, a quorum of correct processes will eventually get to El and send an
ack for E , m, ts (line 80). Thus, every correct destination will eventually
r-deliver a quorum of ACK’s and have local-ts(m, g) = ts

2. 〈_, m, _〉 /∈ T : Since both p and l are correct, from the agreement property
of r-multicast, l will eventually r-deliver 〈START, m〉 and add it toM . Thus,
l will eventually propose m by r-multicasting an ACK to m.dest (line 39).
Since l is correct, every correct destination eventually r-delivers the ACK.
From the FIFO properties of r-multicast, any process in g that r-delivers the
ACK will have Ecur = El , since it must r-deliver the NEW-STATE coming from
l first, and will then r-multicast their own ACK for m (line 45). Thus, a
quorum of correct processes will eventually r-multicast an ACK for m in El ,
and every correct destination will eventually r-deliver a quorum of these
ACKs and have local-ts(m, g) = ts.

59 4.3 PrimCast correctness

Thus, eventually, at every correct process in
⋃

m.dest, local-ts is defined (̸= ⊥)
for every group in m.dest, ensuring final-ts(m) ̸=⊥.

Lemma 9. Let p be a correct process in group g and m a message. If final-ts(m) ̸=⊥
at p, then p eventually a-delivers m.

Proof. Assume p reaches the stable epoch (Ecur = El) without having a-delivered
m yet. Let q be any correct process in g. We’ll first show that eventually min-
clock(q) at p is greater than or equal to final-ts(m). From Lemma 8, q eventually
also has final-ts(m) ̸= ⊥. If the largest local-ts for m comes from a group other
than g, q will r-multicast the respective BUMP if needed when r-delivering an ACK

for m from that group. If the largest local-ts for m comes from g, since q is correct,
it will either r-multicast an ACK for m when reaching the stable epoch El (line 80)
or will r-multicast its ACK when receiving the proposal from the leader of El . In
any case, eventually, min-clock(q) ≥ final-ts(m) at p, for every correct process
q ∈ g. Now, consider each of the conditions necessary for m to be delivered
(from the definition of deliverable(m) 26):

1. final-ts(m)≤min-clock(leader(Ecur)): From the above, it eventually holds.

2. final-ts(m) ≤ quorum-clock(): Since a quorum of processes in g are cor-
rect, from the above and the definition of quorum-clock(), it will eventually
hold.

3. ∀m′ /∈ D, m′ ̸= m : 〈final-ts(m), m.id〉 < 〈min-ts(m′), m′.id〉: From the
algorithm (line 45), since a quorum of processes are correct and reach the
stable epoch, every tuple in T from epochs smaller than El will eventually
be acknowledged by a quorum of correct processes. Thus, from line 47
and Lemma 8, all these messages in T from previous epochs eventually
get a final-ts. Since the leader of El is correct, any messages it proposes
will also eventually get a final-ts (Lemma 8). Once final-ts(m) ≤ min-
clock(leader(Ecur)), no new messages can be proposed in g with a smaller
timestamp than final-ts(m). Thus, eventually, every message present in T
with a smaller final-ts than final-ts(m) will be known to p.

From the above, eventually, every message with timestamp up to and including
final-ts(m) can be a-delivered by p, in final-ts order (with message id breaking
ties).

Proposition 4. Uniform agreement: If a process p a-delivers m, then eventually all
correct processes q ∈

⋃

m.dest a-deliver m.

60 4.4 PrimCast extensions

Proof. Since p a-delivers m, it must have final-ts(m) ̸=⊥. From Lemma 5, every
correct process eventually also does, and from Lemma 9 eventually a-delivers
m.

Proposition 5. Uniform prefix order: Let m and m′ be messages and p and q
processes such that {p, q} ⊆

⋃

(m.dest∩m′.dest). If p a-delivers m and q a-delivers
m′, then either p a-delivers m′ before m or q a-delivers m before m′.

Proof. From Lemma 7, messages are delivered in timestamp and message id or-
der. Assume for a contradiction that 〈final-ts(m), m.id〉 < 〈final-ts(m′), m′.id〉,
but q delivers m′ without first delivery m. Let g be q’s group. Since p a-delivers
m, from Lemma 4, q must eventually have local-ts(m, g) ̸=⊥. Now, consider the
time at which m′ is delivered at process q:

1. If m is present in T : from Lemma 6, min-ts(m) ≤ final-ts(m), and from
line 30 m’ would not be deliverable (a contradiction).

2. If m is not present in T : The proposal for local-ts(m, g) can’t come from
a previous epoch than Ecur , otherwise from Lemma 3 it would be present
in T . Since min-clock(leader(Ecur)) ≥ final-ts(m′) ≥ local-ts(m, g), the
proposal for local-ts(m, g) also can’t come from the leader of Ecur . Finally,
since quorum-clock() ≥ final-ts(m′), the proposal for local-ts(m, g) also
can’t come from a higher epoch than Ecur . From Lemma 4, q must see the
proposal for m, causing a contradiction.

Proposition 6. Global total order: Let ≺ be a relation on the set of messages that
processes a-deliver such that m≺ m′ iff some process a-delivers m before m′. The ≺
relation is acyclic.

Proof. Messages are delivered in timestamp and message id order (Lemma 7).

Proposition 7. Validity (liveness): If a correct process p a-multicasts m, then even-
tually all correct processes q ∈

⋃

m.dest a-deliver m.

Proof. Since p is correct, every correct process eventually has 〈star t, m〉 ∈ M ,
and from Lemmas 8 and 9, m eventually gets a-delivered.

4.4 PrimCast extensions

In the following, we describe a few modifications to PrimCast that may benefit
practical applications of the protocol.

61 4.4 PrimCast extensions

4.4.1 Exploiting loosely synchronized clocks

Many datacenters today provide loosely synchronized clocks through the use of
satellite and atomic clocks [25, 96]. When synchronized clocks are available,
we propose the following modification to PrimCast, inspired by hybrid logical
clocks [55]. Assuming that real-clock() returns the server’s hardware clock value,
we modify line 37 in the following way:

clock← max(clock+ 1, real-clock())

Assume a period of system stability (as defined in Section 4.1.2) where ∆ is
the communication step latency, and that clocks are synchronized with a maxi-
mum skew of ε from real time (i.e., 2ε from each other). By having the primary
update its clock before proposing a message’s local timestamp, the failure-free
delivery latency changes from 5∆ to min(5∆, 4∆+ 2ε). The argument is as fol-
lows. Let m be a message delivered at process p ∈ g with final timestamp ts, and
let t be the time at which m is a-multicast. The time it takes for m to arrive at any
primary in m.dest from t is ∆, thus the maximum timestamp possibly assigned
to m is t +∆+ ε. Let m′ be any message such that m.dest ∩m′.dest ̸= ;. The
latest time at which m′ can be a-multicast and still be ordered before m by some
primary in m.dest is the minimum of:

• t +2∆: the time for primaries in m.dest to exchange timestamp proposals
for m and update their clocks to ts.

• t +∆+ 2ε: the time for m to reach primaries is t +∆, and 2ε comes from
the worst case of ts being assigned a value ε in the future and ts′ a value
ε in the past.

Let p be some process in m.dest ∩ m′.dest. Since the collision-free latency of
PrimCast is 3∆, the final timestamp of m′ is known at p, at the latest, by time
t + min(2∆,∆ + 2ε) + 3∆, allowing for m to be delivered. Assuming 2ε is
smaller than ∆, this effectively reduces the worst case convoy effect by the dif-
ference between the two. We expect this technique to be particularly effective in
a geographically distributed deployment where, considering the values reported
in [25], 2ε can be roughly an order of magnitude smaller than ∆. We note that
this modification does not impact the correctness of the algorithm, and also can-
not increase the worst case convoy effect, even if clocks are not synchronized.

62 4.4 PrimCast extensions

4.4.2 Timestamped atomic multicast

In the classic atomic multicast interface (Section 2.2.1), message timestamps
are hidden from the application. We propose to extend atomic multicast by (1)
providing a message’s final timestamp upon message delivery, (2) allowing for
senders to propose a lower bound timestamp when a-multicasting a message,
and (3) exposing a safe timestamp that is ensured to be lower than any new de-
liveries. More precisely, the timestamped atomic multicast abstraction provides
the following three primitives:

• A-MULTICAST(m, ts): message m is a-multicast to m.dest and must be as-
signed a final timestamp larger than ts.

• A-DELIVER(m, ts): signals the delivery of m with final timestamp ts.

• SAFE-TS(): timestamp value for which all messages with a lower timestamp
have been a-delivered.

The updated A-MULTICAST and A-DELIVER primitives can be trivially implemented
in PrimCast by having primaries update their clock if needed in line 37, and by
exposing final-ts(m) upon the delivery of m. The SAFE-TS() primitive can be
implemented in the following way:

safe-ts() ≡
min(min-clock(leader(Ecur)), ▷ min new proposal in current epoch

quorum-clock(), ▷ min new proposal in next epoch
min(ts | 〈_, m, ts〉 ∈ T and m /∈ D)) ▷min proposed and not delivered

These modifications allow for clients to capture causal dependencies by in-
cluding their highest seen timestamp in each application request. Causal reads
could be fulfilled by a single replica by simply waiting for SAFE-TS() to be equal
to or larger than the timestamp provided by the client, once all earlier updates
have been applied. Another benefit of exposing timestamps is that of identifying
global snapshots [71]. Each timestamp ts identifies a single consistent global
snapshot, composed of the state at each group after applying every request with
a timestamp smaller than or equal to ts. A server can check SAFE-TS() to know
up to which timestamp it has delivered all requests. This technique could be
particularly useful in practice when combined with real-time based timestamps
(Section 4.4.1), allowing for meaningful snapshot identifiers.

63 4.5 Performance evaluation

4.4.3 Exploiting commutativity

In some applications, there are pairs of requests that do not conflict with each
other, that is, their relative execution order does not affect their result. This is the
case of two read-only requests, for example. When the application can provide
this pairwise CONFLICTS predicate, the ordering property of atomic multicast can
be relaxed in the following way [4]:

• Generalized prefix order: Let m and m′ be messages and p and q processes
such that {p, q} ⊆

⋃

(m.dest ∩m′.dest). If p executes A-DELIVER(m) and q
executes A-DELIVER(m′), and CONFLICTS(m, m′) is true, then either p exe-
cutes A-DELIVER(m′) before A-DELIVER(m) or q executes A-DELIVER(m) be-
fore A-DELIVER(m′).

To account for the commutativity of requests, we can modify PrimCast’s deliver-
able predicate (line 26) in the following way (addition in gray):

deliverable(m) ≡
m /∈ D and final-ts(m) ̸=⊥ and
final-ts(m)≤ min-clock(leader(Ecur)) and
final-ts(m)≤ quorum-clock() and
∀m′ : 〈_, m′, _〉 ∈ T , m′ /∈ D, m′ ̸= m, conflicts(m, m′) :

〈final-ts(m), m.id〉< 〈min-ts(m′), m′.id〉

In practice, this modification prevents two requests that commute from block-
ing each other’s delivery, eliminating the convoy effect in such cases.

4.5 Performance evaluation

In this section, we begin by presenting the different protocol implementations
evaluated in our experiments. We then describe the different experiment scenar-
ios, and for each scenario we present our results and discuss our findings.

4.5.1 Implementation

We implemented a prototype of PrimCast in Rust using Tokio [107], an asyn-
chronous runtime for building network applications.2 Our implementation is
not specifically designed for multi-thread execution, but Tokio’s executor can ex-
ploit the parallelism and we run PrimCast with 2 threads. In our experiments,

2In the final version of this thesis we will make the code available as open source. We have
not done it yet due to a concurrent double-blind paper submission.

64 4.5 Performance evaluation

Scenario Cross-group RTT Intra-group RTT Description
(between leaders)

LAN 0.09ms 0.09ms 8 groups deployed inside a cluster.
WAN - colocated leaders 0.09ms 60ms, 76ms, 3 regions, 8 groups.

130ms Each group deployed across all regions.
WAN - distributed leaders 90ms 30ms 8 regions with 3 datacenters each.

Each of 8 groups deployed in its own region.

Table 4.1. Deployment scenarios

we compare PrimCast against two state-of-the-art atomic multicast protocols,
FastCast and White-Box (see Section 4.6 for details). For both FastCast and
White-Box, we use the open-source implementations provided by the authors
in [35] and [113] respectively, both implemented in C using libevent [63]. We
use in-memory storage for all implementations. We also run PrimCast using the
hybrid clock approach described in Section 4.4.1 (PrimCast HC in the figures).

4.5.2 Setup and scenarios

We run all experiments in a cluster, each machine consisting of an eight-core
Intel Xeon L5420 2.5GHz processor, 8GB of memory, and 1Gbps ethernet card.
The RTT (round-trip time) inside the cluster is around 0.09ms. Besides the de-
ployment inside a LAN, we consider two different emulated wide-area network
(WAN) scenarios. To emulate WAN latencies, we used Linux traffic control tools.
In all scenarios we deploy 8 groups, each group consisting of 3 replicas. Table 4.1
summarizes the deployment scenarios.

We collocate one client with each replica in the system. For each message,
a client chooses the destination groups at random, except for the group of the
replica it is connected to, which is always included. To increase the load in the
system we uniformly increase the number of outstanding messages from each
client. Latency is measured at the client as the time from the message being sent
to it being delivered and returned to the client by its replica. We report latency
values gathered from all clients in the system.

4.5.3 LAN performance

Figure 4.2 compares the performance of the four protocols in a cluster deploy-
ment, as load increases, with every message multicast to 2 destinations. Our
results show that both versions of PrimCast have better performance than both
FastCast and White-Box, at every load level measured. FastCast reaches satu-
ration earlier, as it needs to run a slow and a fast path in parallel for message

65 4.5 Performance evaluation

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400 450 500

95
-t

h
pe

rc
en

til
e

L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

Figure 4.2. Throughput and 95th-percentile latency in a LAN, with all messages
multicast to two groups.

delivery (Section 4.6.1). When compared to White-Box, even though PrimCast
needs extra information to be exchanged between groups and replicas, most of
it consists of small acknowledgment information that can, with careful design,
be piggybacked on or inferred from other protocol messages, allowing for an ef-
ficient implementation, as our results show. We also note that the hybrid clock
approach does not have any particular impact on performance when leaders are
colocated, as the convoy effect is mostly a function of cross-group latency. Even
tough none of the protocols were designed with a LAN deployment in mind, these
results show that PrimCast can be a reasonable alternative in a LAN.

4.5.4 WAN performance with colocated leaders

This scenario evaluates the performance of the protocols in a WAN deployment
when group leaders are colocated in the same datacenter. We emulate 3 ge-
ographic regions, each with one datacenter, and deploy one replica from each
group in each datacenter. We use the latency values reported in [43], the RTT
between region pairs being 60ms, 76ms and 130ms, with a standard deviation
of 5%.

Figure 4.3 shows how the three protocols behave under increasing load, with
messages multicast to 1, 2, 4 or 8 destination groups. Both PrimCast and FastCast
exhibit the same latency behavior until close to saturation. In the common setup
of 3 replicas per group, FastCast can also quickly deliver messages at non-leader
replicas. Even then, PrimCast can deliver from 1.6x (1 destination) to 5x (2
destinations) the throughput of FastCast. While some of this difference can be
be accounted for by the use of 2 threads in PrimCast’s asynchronous execution
library, FastCast performance degrades faster with increasing destinations due

66 4.5 Performance evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100 1000

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(a) Messages destined to a single group.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100 1000

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(b) Messages destined to 2 groups.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100 1000

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(c) Messages destined to 4 groups.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100 1000
9

5
-t

h
 p

er
ce

n
ti

le
 L

at
en

cy
 (

m
s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(d) Messages destined to all 8 groups.

Figure 4.3. Throughput and 95th latency in a WAN with no cross-group latency
(i.e., collocated leaders).

to the fast and slow paths that need to be executed by the protocol. White-Box
on the other hand, needs one extra communication step from leaders, where
a message is initially delivered, to the other replicas. This extra latency shows
in the 95th percentile latency over the whole system. Similarly to the results
in a LAN, the convoy effect in this deployment is almost non-existent, as it is
a function of cross-group latency. Hence, using hybrid clocks has no effect on
latency.

4.5.5 WAN performance with distributed leaders

Under high load, timestamp based atomic multicast protocol can exhibit a con-
voy effect [4], where a message needs to wait for other messages, with smaller
final timestamps, to be delivered first. This extra latency induced by the convoy
effect is mostly a function of the latency between replica groups, being almost
imperceptible in a deployment with no latency between groups, as seen in Sec-
tion 4.5.4. To evaluate the convoy effect in the different protocols, we emulate
a WAN deployment distributed leaders. Each of the 8 groups is deployed to its
own geographic region, the RTT being 90ms between regions and 30ms inside a
region, with a standard deviation of 5%.

67 4.6 Related work

Figure 4.4 shows the behavior of the three protocols with messages multicast
to 2 and 4 destination groups, as load increases. Differently from the previous
deployment, the convoy effect is now clearly visible. From the latency curves, it
can be seen that the convoy effect kicks in at different load levels in each protocol,
but all are affected by it. As with the previous deployment, White-Box shows
worse 95th latency due to extra delay needed to deliver messages at non-leader
replicas. Furthermore, in this deployment PrimCast is able to deliver messages
at every destination earlier than any of the two other protocols: one intra-group
communication step earlier, around 15ms in this deployment. More interestingly
though, in this deployment, using hybrid clocks greatly reduces and delays the
onset of the convoy effect.

Figure 4.5 shows the latency distribution for all clients in the system, for each
protocol, at two different system loads: one with low load and thus low convoy
(left), and one with high load (right). Figure 4.5a demonstrates how PrimCast
consistently delivers lower latencies at every replica in the system. Figure 4.5b,
on the other hand, clearly shows how the convoy effect impacts most messages
in the system once it takes effect, and also shows how using hybrid clocks can
almost eliminate the effects of convoy in this particular workload.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(a) Messages destined to 2 groups.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(b) Messages destined to 4 groups.

Figure 4.4. Throughput and 95th latency in a WAN with high cross-group latency.

4.6 Related work

Most proposals for genuine atomic multicast are derived from the timestamping
scheme of Skeen’s protocol [15]. In this section, we give a detailed account of
FastCast and White-Box atomic multicast protocols as they are the most relevant
to PrimCast. We conclude with an overview of other related proposals.

68 4.6 Related work

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 120 140 160 180 200 220 240

C
D

F

Latency (ms)

White-Box

FastCast

PrimCast

PrimCast HC

(a) 2 destination groups, 2 outstanding msgs
per client (low convoy)

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 120 140 160 180 200 220 240

C
D

F

Latency (ms)

White-Box

FastCast

PrimCast

PrimCast HC

(b) 2 destination groups, 128 outstanding
msgs per client (high convoy)

Figure 4.5. Latency CDFs at two different load levels, corresponding to the 2nd and
8th points from the curves in Figure 4.4a

4.6.1 FastCast

In [24], Coelho et al. propose FastCast, a genuine atomic multicast protocol that
has collision-free and failure-free latency values of 4 and 8 communication steps,
respectively. FastCast achieves faster delivery times than the classic protocols
through an optimistic execution path that works as follows:

1. Each group has an elected leader, responsible for proposing local times-
tamps at its group.

2. Once a message m needs to be timestamped, a leader sends its proposal to
the leaders of every other group in m.dest, before proposing the timestamp
through consensus.

3. Once a leader gets the proposals from all leaders in m.dest, it sends the
maximum of all proposals as an optimistic final timestamp through its
group’s consensus.

If the final timestamp matches the optimistic timestamp, the message can be
delivered before the second sequential round of consensus. The optimistic path
can be understood as a mechanism for updating a group’s logical clock before the
final timestamp is decided. In FastCast, both the commit latency and the clock
update latency are equal to four communication steps. Hence, collision-free and
failure-free latency values are four and eight communication steps respectively.

4.6.2 White-Box multicast

In [43], Gotsman et al. propose White-Box, an atomic multicast protocol that
improves the collision-free and failure-free latency values to four and six com-

69 4.6 Related work

munication steps, respectively. Furthermore, at group leaders, delivery happens
one step earlier, in three and five communication steps. Differently from pre-
vious approaches, White-Box does not use a consensus protocol as a black-box,
opting instead for an integrated protocol at group and global level. Another in-
sight from White-Box is the use of a primary-based approach (i.e., passive repli-
cation) [52, 64]. Instead of having every replica execute the same sequence of
operations after those are ordered (i.e., state-machine replication), the primary
decides on the order of operations and then ensures the other replicas follow that
same order.

The White-Box protocol works roughly as follows:

1. A process a-multicasts m by sending a message to the primaries of each
group in m.dest.

2. Each primary then picks a local timestamp for m for its group, based on
its own clock value. It then sends that proposal to every process in every
group in m.dest, as an ACCEPT message.

3. Once a process receives the ACCEPT from every primary in m.dest, it will
store the proposal for its group and update its clock to the highest local
timestamp received, if needed. It then sends back an ACK to each of the
primaries.

4. Once a primary receives all the ACCEPTs and a quorum of ACKs from each
group in m.dest, it will pick the final timestamp for m as the largest lo-
cal timestamp. The primary then carefully tracks pending messages to a-
deliver messages in final timestamp order. At a primary, the a-delivery of
a message m can happen as early as three communication steps after it
is a-multicast. Once the primary a-delivers a message, it sends a DELIVER

message to its group.

5. Followers a-deliver messages in the order of the DELIVER messages sent by
the primary, in as early as four communication steps from the respective
a-multicast.

From the above, we get to the collision-free latency of four communication steps,
or three communication steps when only considering the delivery at group pri-
maries. By having local timestamps be proposed only by the primary of a group,
the clock update latency (Section 4.1.2) of the protocol is shortened, when com-
pared to previous timestamp-based protocols. Once a message m is a-multicast,

70 4.6 Related work

after two communication steps (enough for primaries in m.dest to exchange lo-
cal timestamp proposals and update their clocks), no new conflicting message
can be assigned a local timestamp smaller than the final timestamp of m, as long
as primaries remain stable. Hence, the failure-free latency of White-Box is six
communication steps, or five when considering delivery at primaries only.

4.6.3 Other protocols

The use of multiple instances of a consensus protocol, one per group, to solve
atomic multicast when processes may fail was proposed in [40] and [46]. These
protocols can deliver a message in six communication steps in the collision-free
case, that is, when there are no concurrent messages. In the presence of con-
currency, atomic multicast protocols may suffer from a convoy effect [4]. These
two protocols have a failure-free delivery latency (i.e., latency in the presence of
concurrency) of twelve communication steps.

In [90], Schiper et al. propose improvements to [40] that reduce the collision-
free delivery latency at some of the destination groups, those that assign a local
timestamp equal to the final timestamp of the message, to four communication
delays.

In MTO [45] and Scalatom [84], instead of running multiple consensus in-
stances per message (one per group), a single instance of consensus is run among
all destination groups. These protocols achieve a collision-free and failure-free
latency values of five and nine, respectively.

Tempo [34] is a partitioned state-machine replication protocol that is built
over a protocol that is essentially a genuine atomic multicast implementation.
Instead of relying on a primary at each destination group, each message has a
designated leader in each group (the closest replica) that communicates with
other processes in the group to assign the message a local timestamp. To de-
cide when messages are safe for execution, Tempo uses a notion of timestamp
stability that works in parallel with the timestamping of messages, similar to
how PrimCast exchanges bump messages to update quorum-clock() values. Even
though there are similarities between the two approaches, PrimCast and Tempo
have been developed in parallel.

Many non-genuine solutions to atomic multicast have also been proposed in
the literature. In [91], Schiper et al. propose a round based protocol which
can deliver messages in four communication steps. An unbounded sequence of
rounds is executed, and each group chooses a set of messages to be delivered at
each round. Proposals in each round are exchanged and then deterministically
ordered and delivered by the destinations. ByzCast [23] is a byzantine fault-

71 4.7 Discussion

tolerant atomic multicast that organizes process groups in a tree. Each message
is first ordered by the lowest common ancestor of its destinations, and then pro-
ceeds down the tree being ordered by each group until it is ordered at each des-
tination. Partial order is ensured by having each group respect the ordering of its
ancestors. In Multi-Ring Paxos [68], Ridge [14] and Elastic Paxos [10], processes
subscribe to the groups they are interested in receiving messages from, and then
a deterministic merge procedure is used to ensure a partial ordering of messages.
These protocols have a slightly different interface: a message is addressed to a
single group, but groups do not have to be disjoint: sending a message to mul-
tiple groups is possible by having a group that is a superset of those destination
groups. We refer to the survey by Défago et al. [30] for an overview of total and
partial order communication abstractions.

PrimCast relies on a primary-based approach (i.e., passive replication) for
deciding on timestamps inside each group [52, 64]. Since the primary orders
all operations in a group, it can optimistically update its state before having the
rest of the group agree on it. This property can be exploited for faster logical
clock updates inside groups, reducing the impact of the convoy effect. We refer
to [109] for a discussion of the differences between state-machine replication
(i.e., active replication) and primary-based replication.

4.7 Discussion

This chapter presents PrimCast, a genuine atomic multicast protocol that can de-
liver messages, from sender to any destination process, in three communication
steps. In the presence of conflicting messages, delivery happens at every destina-
tion in at most five communication steps. This is an improvement over previous
work, which needed at least four (or six in the presence of concurrency) com-
munication steps for delivery at some of the destinations. PrimCast achieves a
lower latency through the usage of a primary-based replication mechanism and
a novel way of tracking logical clocks through simple quorum intersection. A
formal proof of correctness is provided for the properties of the algorithm. We
further show how to extend the protocol to (1) lower the convoy effect using
loosely synchronized clocks, (2) expose timestamps to the application to track
causal dependencies and (3) exploit the commutativity of requests. Our exper-
imental evaluation of PrimCast shows that it consistently delivers lower latency
than the alternatives while still providing higher throughput. The results also
show that, in some cases, using loosely synchronized clocks can almost elimi-
nate the effects of convoy on delivery latency.

72 4.7 Discussion

Chapter 5

Linearizable Atomic Multicast

Partitioned state machine replication is a technique that extends classical state
machine replication with state partitioning (or sharding) to provide both fault
tolerance and performance scalability. The crux of the technique is ordering
client requests within a partition, among the replicas that implement the parti-
tion, and across partitions, involving all the replicas accessed by the request. To
cope with the complexity of ordering requests, partitioned state machine repli-
cation can use atomic multicast, a communication abstraction. Atomic multicast
provides the means for requests to be propagated reliably and consistently to
one or more sets of groups of replicas, where each replica group implements
one partition. In this chapter we revisit atomic multicast from the perspective
of partitioned state machine replication. More specifically, we relate the notions
of strong consistency, in the form of linearizability (Section 2.2.2), and atomic
multicast in the context of partitioned state machine replication. This chapter
makes the following contributions: First, we show that if one implements par-
titioned state machine replication using an atomic multicast with global total
order, a strong order property, then replicas would need to further coordinate as
part of the execution of requests to ensure correctness. Second, we introduce
a stronger version of atomic multicast that accounts for real-time dependencies
between requests. Our proposed atomic multicast can be used to order requests
within and across partitions so that replicas do not need to further coordinate to
ensure linearizability. Third, we extend a well-known implementation of atomic
multicast to ensure the stronger order property.

The rest of this chapter is organized as follows. Section 5.1 provides the
necessary background information needed to follow the rest of the chapter. In
Section 5.2, we prove that partitioned state machine replication with an atomic
multicast primitive that ensures global total order requires additional replica co-

73

74 5.1 Background

ordination to implement linearizable applications. We then propose an atomic
multicast, based on atomic global order, and prove that when equipped with
such an atomic multicast, replicas do not need this additional coordination. Sec-
tion 5.3 shows that the well-known atomic multicast protocol proposed by Skeen
does not ensure atomic global order and present modifications to the original
protocol to guarantee the stronger property. Section 5.4 reviews related work.
Section 5.5 concludes the chapter.

5.1 Background

State machine replication (SMR) and primary-backup replication, the two most
fundamental techniques for fault tolerance [44], do not scale performance as
replicas are added to the system. In state machine replication (Section 2.2.3),
client requests are executed by all the replicas in the same order. As long as ex-
ecution is deterministic, replicas will transition through the same state changes
and produce the same results. Since each replica executes every request, addi-
tional replicas will not result in any performance improvements. On the contrary,
a larger number of replicas may lead to a degradation in performance. This hap-
pens because replicas need to coordinate to totally order requests, and the more
replicas involved, the more messages need to be exchanged, reducing the number
of requests that can be ordered in the system [47]. In primary-backup replication
(Section 2.2.4), the primary replica receives and executes all requests, and then
sends state changes to the backup replicas. The backups simply apply the state
changes. As in state machine replication, increasing the number of replicas may
degrade performance as it increases communication between the primary and
the backups.

5.1.1 Partitioned state machine replication

To improve the scalability of classic SMR, some approaches have proposed to
partition the application state, a technique also known as sharding, and imple-
ment each partition with an instance of SMR (e.g., [25]). The idea is to divide
the application state into partitions and store each partition in a different set
of servers. Therefore, requests that access different partitions can be executed
in parallel. If the partitioning is such that requests fall within one partition only
(i.e., the objects read and written by the request belong to a single partition) and
requests are evenly distributed among partitions, then we can scale performance
with the number of partitions in the system. Moreover, since linearizability is a

75 5.1 Background

State Machine Replication (SMR)

Atomic broadcast

Partially synchronous network

Partitioned State Machine
Replication

Atomic multicast

Partially synchronous network

Linearizable Application Linearizable Application

Figure 5.1. State machine replication.

composable property [49], such a scheme will result in a linearizable application.
If the application state cannot be perfectly partitioned, as described above, then
one must account for requests that involve multiple partitions (i.e., a request that
reads and writes objects that belong to more than one partition). There are two
aspects concerning multi-partition requests: how to consistently order requests
that span multiple partitions, and how to execute them.

Ordering requests within and across partitions is complex (e.g., it may in-
volve solving multiple instances of consensus [21], one consensus instance per
partition). One way to cope with this complexity is to encapsulate the ordering
of requests in a group communication primitive: atomic multicast (Figure 5.1).
Toueg and Hadzilacos [48] define three types of atomic multicast that differ by
the strength of their guarantees. We consider the strongest type of atomic multi-
cast, defined by the properties in Section 2.2.1. More precisely, we consider the
uniform version of the atomic multicast properties defined in [48].

Executing requests that involve multiple partitions can also be challenging
since partitions may lack the state needed to execute the request. For example,
assume a request r that swaps the contents of state variables x and y , which
reside in partitions Px and Py , respectively. Replicas in Px (resp. Py) need the
value of y (resp. x) in order to update x (resp. y). In S-SMR [13], after deliver-
ing a request, replicas exchange the state needed to execute the request. In the
example above, replicas in Px (resp. Py) send to replicas in Py (resp. Px) vari-
able x (resp. y). After exchanging the needed variables, replicas in all involved
partitions execute r. Updates on variables not part of a partition are kept by the
partition momentarily, during the execution of the request, and then discarded.
In DynaStar [59], all variables read and written by a multi-partition request are
moved to one of the partitions involved in the request. Only replicas in this par-
tition execute the request.

The details of how to execute multi-partition requests are orthogonal to our
contributions in this work. Hence, for simplicity, we assume that multi-partition
requests can be executed at each involved partition without exchange of data. A

76 5.2 Atomic Global Order

request finishes execution once the issuing client gets a reply from each involved
partition. This simplified execution model does not allow a request to swap the
contents of variables x and y if they reside in different partitions. But our model
can still capture interesting applications. For illustrative purposes, hereafter, we
consider a key-value store service that supports two types requests: inserts and
range queries. Key-value pairs are partitioned in two partitions, P0 being respon-
sible for even-numbered keys and P1 for odd-numbered keys. An insert w(k, v)
inserts the pair (k, v) and is a single-partition request, multicast only to the par-
tition in charge of the key. A range query r(kstar t , kend) returns all previously
inserted pairs for keys from kstar t up to and including kend . Range queries are
multicast to both partitions, assuming ranges that span multiple keys.

5.2 Atomic Global Order

In this section, we argue that atomic multicast as the sole means of communi-
cation among replicas in partitioned state machine replication is not enough to
ensure linearizability. We then extend the atomic multicast properties to achieve
linearizable executions and prove their correctness.

5.2.1 Atomic multicast alone is not enough

State machine replication can be easily implemented with atomic broadcast [44].
It suffices for client requests to be atomically broadcast to all replicas, which
execute the requests following the order in which the requests are delivered. One
would expect that partitioned state machine replication could be implemented
using a similar approach, namely, by atomically multicasting requests to all the
groups involved in the request. Upon delivering the request, a replica executes
the request and sends the results to the client. The request finishes at the client
after the client receives a response from at least one server in each group involved
in the request. As we show next, however, this simple execution model and
the multicast properties as described in Section 2.2.1 are not enough to ensure
linearizability.

Consider an execution of the key-value store service described in Section 5.1.1,
involving partitions P0 and P1, as depicted in Figure 5.2 (top). The two com-
mands w(0, v0) and w(1, v1) insert key-value pairs for keys 0 and 1, respectively.
Moreover, w(0, v0) precedes w(1, v1) in real-time, that is, w(0, v0) finishes at client
b before w(1, v1) starts at client c. Now consider a concurrent range query r(0,1)
that tries to read previously inserted pairs for keys 0 and 1. The range query ac-

77 5.2 Atomic Global Order

cesses both partitions and is delivered and ends at P0 before w(0, v0) is delivered,
and is delivered at P1 after w(1, v1) ends. The prefix order property of atomic
multicast is not violated since all processes that deliver the same messages, do
it in the same order. The atomic multicast acyclic order property is not violated
either: w(0, v0) and w(1, v1) are not directly related since they are delivered at
different partitions, and thus, r(0,1) ≺ w(0, v0) at P0 and w(1, v1) ≺ r(0, 1) at
P1. Although the ≺ relation is acyclic, w(1, v1) ≺ r(0,1) ≺ w(0, v0), it does not
account for the real time order in which w(0, v0) precedes w(1, v1). Even though
(0, v0) is inserted before (1, v1) in the key-value store, the range query only re-
turns the pair (1, v1), violating linearizability.

The problem above stems from the fact that atomic multicast properties do
not capture real-time dependencies between requests. Consequently, a system
that implements partitioned state machine replication with the atomic multicast
properties described in Section 2.2.1 would need to introduce additional coor-
dination across partitions to ensure linearizability. For example, in S-SMR[13],
after multi-partition request r(0, 1) is delivered and before it is executed by the
replicas, partitions P0 and P1, involved in r(0,1), exchange “signal messages" to
avoid the problem described above, as depicted in Figure 5.2 (bottom). Intu-
itively, if partitions P0 and P1 exchange messages during the execution of r(0, 1),
it is not possible for one partition to finish executing r(0, 1) before the other
starts. Thus, in between the execution of r(0,1) at the partitions involved, we
cannot have other commands being executed at same partitions.

5.2.2 Linearizable atomic multicast

The discussion in the previous section shows that differently than atomic broad-
cast in state machine replication, atomic multicast is not sufficient as a communi-
cation abstraction to ensure linearizability in partitioned state machine replica-
tion without additional coordination among replicas. We now strengthen atomic
multicast so that replicas can execute the request after delivering it without fur-
ther coordination.

Our strategy is to enlarge the scope of the ordering guarantees of atomic
multicast. We achieve this by replacing the global total order property of atomic
multicast with the following property, which accounts for the real time relation
of messages.

• Atomic global order: Define relation ≺ on the set of messages processes
deliver as follows: m ≺ m′ iff (i) there exists a process that delivers m

78 5.2 Atomic Global Order

partition P0

r(0,1)

w(1,v1)

client a

client b

client c

partition P1

w(0,v0)

timemulticast deliveratomic multicast events:

partition P0

r(0,1)

w(1,v1)

client a

client b

client c

partition P1

w(0,v0)

time

signal messages

multicast deliveratomic multicast events:

Figure 5.2. An execution that violates linearizability (top) and a linearizable
execution from S-SMR [13] (bottom). For simplicity, we assume that each
partition contains a single replica.

79 5.2 Atomic Global Order

before m′; or (ii) m′ is multicast after m is delivered at some destination,
in real time. The relation ≺ is acyclic.

The atomic global order property introduces two aspects: it relates atomic
multicast primitives in real time and it relates messages multicast to possibly
disjoint destinations. Capturing these real-time dependencies is fundamental to
linearizability. For example, the execution in Figure 5.2 (top) does not satisfy
atomic multicast extended with atomic global order: (a) since w(1, v1) is multi-
cast (by client c) after r(0,1) is delivered by the replica at partition P0, it follows
from atomic global order that r(0,1)≺ w(1, v1); and (b) from the delivery order
of requests at P1, w(1, v1) ≺ r(0,1), which leads to a cycle and violates atomic
multicast’s global total order.

5.2.3 Proof of correctness

In the following, we show that atomic multicast extended with the atomic global
order property ensures that partitioned state machine replication executions are
linearizable.

Let σ be an execution of partitioned state machine replication where (a) a
client starts a request by multicasting the request to all the partitions involved
in the request (i.e., partitions containing data read and written as part of the
request), (b) when the request is delivered by a replica, the replica immediately
executes the request and responds to the client, and (c) the client considers the
request as finished after it receives a response from at least one replica in each
partition involved in the request.

Let π be a total order of requests in σ that respects ≺, the order induced on
requests by atomic multicast extended with atomic global order.

To argue that π respects the semantics of requests, let Ci be the i-th request in
π and p a process in partition x that executes Ci. We claim that when p executes
Ci, all read operations issued by p as part of Ci result in values that reflect all
requests that precede Ci and no value created by a request that succeeds Ci.
This follows from (i) the fact that replicas execute requests sequentially, in the
order in which they are delivered, and (ii) the assumption that when executing
a multi-partition request, a replica does not read data stored at other partitions
(see Section 5.1.1).

We now argue that π respects the real-time precedence of requests in σ.
Assume that Ci ends at a client before C j starts at a client. We must show that
either (a) Ci ≺ C j; or (b) neither Ci ≺ C j nor C j ≺ Ci. In case (a), Ci precedes C j

80 5.3 Implementing Atomic Global Order

in π; in case (b), since Ci and C j are not related, we can choose a total order π
where Ci appears before C j.

For a contradiction, assume that C j ≺ Ci. Since Ci ends in real time before C j

starts (from our initial assumption), the client issuing Ci has received a response
from a replica p in each of the partitions involved in the execution of Ci. And
from the algorithm, p has delivered Ci before executing it and responding to the
client. We conclude that C j is multicast after p delivers Ci. From the atomic
order property of atomic multicast, we have that Ci ≺ C j, which leads to a cy-
cle and violates the global total order property of atomic multicast, reaching a
contradiction.

5.3 Implementing Atomic Global Order

In this section, we present an early atomic multicast algorithm attributed to
Skeen [15] and show that it does not guarantee the atomic global order prop-
erty. We then extend this algorithm to ensure the property and argue about the
correctness of the extended algorithm.

5.3.1 Skeen’s atomic multicast

In Skeen’s algorithm, each process assigns unique timestamps to multicast mes-
sages based on a logical clock [57]. The correctness of the algorithm stems from
two basic properties: (i) processes in the destination of a multicast message first
assign tentative timestamps to the message and eventually agree on the mes-
sage’s final timestamp; and (ii) processes deliver messages according to their
final timestamp. These properties are implemented as follows. (We recall that
Skeen’s atomic multicast algorithm does not tolerate failures.)

(i) To multicast a message m to a set of processes, p sends m to the destina-
tions. Upon receiving m, each destination updates its logical clock, assigns
a local timestamp to m (a tuple of clock value and partition id for breaking
ties), stores it, and sends its local timestamp for m to all destinations in
m.dest. Upon receiving local timestamps from all destinations in m.dest,
a process computes m’s final timestamp ts as the maximum among all re-
ceived local timestamps for m. The process then ensures its logical clock is
higher than or equal to ts.

(ii) Messages are delivered respecting the order of their final timestamp. A pro-
cess p delivers m when it can ascertain that m’s final timestamp is smaller

81 5.3 Implementing Atomic Global Order

Algorithm 4 Skeen’s protocol at partition Px . Additions to satisfy atomic global
order in gray.
1: clock← 0 ▷ p’s logical clock
2: local[]← ; ▷ map from message to local timestamp at p
3: f inal[]← ; ▷ map from message to decided final timestamp
4: acked ← ; ▷ set of messages ACKed by all their destinations
5: del ← ; ▷ set of delivered messages

6: multicast(m):
7: send 〈START, m〉 to m.dest

8: when receive 〈START, m〉:
9: clock← clock+ 1

10: local[m]← 〈clock, Px〉
11: send 〈LOCAL-TS, m, local[m]〉 to m.dest

12: when receive 〈LOCAL-TS, m, ts〉 from all partitions m.dest:
13: f inal[m]← maximum ts received for m
14: clock← max(clock, f inal[m])
15: tryDeliver()
16: send 〈ACK, m〉 to m.dest

17: when receive 〈ACK, m〉 from all partitions in m.dest:
18: acked ← acked ∪ {m}
19: tryDeliver()

20: tryDeliver():
21: for each m ∈ f inal \ del : m ∈ acked in f inal[m] order
22: if ∀m′ ∈ local \ del :
23: (m′ ∈ f inal ∧ f inal[m]< f inal[m′]) ∨
24: (f inal[m]< local[m′]) then
25: del ← del ∪ {m}
26: deliver(m)

82 5.3 Implementing Atomic Global Order

than the final timestamp of any messages p will deliver after m (intuitively,
this holds because logical clocks are monotonically increasing).

The complete protocol is shown in Algorithm 4 (ignoring the extensions in
gray). Figure 5.3 (top) shows an example execution of the algorithm, where two
clients a and b multicast messages m and m′ respectively, with m.dest = {Px , Py}
and m′.dest = {Px , Pz}. Initially, message m is sent to its destinations and is
assigned the local timestamps 1 (from Px) and 5 (from Py). As soon as Py receives
the local timestamp from Px , it knows the final timestamp of m is 5. Py updates
its logical clock to 5 and can immediately deliver m: any new messages will be
assigned a higher local timestamp at Py . Px , on the other hand, cannot deliver
m immediately after it receives the local timestamp from Py : in the mean time it
assigned a local timestamp of 2 to m′, and must wait for the final timestamp of
m′ before it knows which of the two messages must be delivered first.

5.3.2 Extending Skeen’s algorithm to ensure atomic global order

The execution in Figure 5.3 (top) demonstrates that Skeen’s algorithm does not
ensure atomic global order. Even though m′ is multicast after m is delivered at
partition Py , in real-time, we have m′ ≺ m at Px .

We modify Skeen’s algorithm to ensure atomic global order by including one
extra property that needs to be satisfied: (iii) a process can only deliver a message
with final timestamp ts once it knows that every destination in m.dest will not
assign a local timestamp smaller than or equal to ts. If (iii) is satisfied, once m
is delivered with final timestamp ts by some process, no new message m′ such
that m.dest∩m′.dest ̸= ; can be assigned a final timestamp smaller than ts. The
property is ensured by adding one extra message exchange between destinations.
Once a process decides on the final timestamp of message m, after updating its
clock if needed, it sends an acknowledgment to each other process in m.dest.
A process can only deliver m once it receives an acknowledgment from every
other process in m.dest. The additions to the protocol are shown in gray in
Algorithm 4.

Figure 5.3 (bottom) shows a similar execution to the one in Figure 5.3 (top),
but with the extended protocol. Partition Py cannot deliver m at the moment it
decides on the final timestamp: it must wait for Px to acknowledge it. Since Px

timestamps m′ before it acknowledges m, the delivery of m at Py is delayed to a
point after the multicast of m′. Thus, m′ ≺ m does not create a cycle.

We now argue that the extended Skeen’s protocol satisfies atomic global or-
der. Let m and m′ be two messages such that m′ is multicast after m is delivered

83 5.3 Implementing Atomic Global Order

partition Px

client a

client b

partition Py

timemulticast deliveratomic multicast events:

partition Pz

m

t(m)=1

t(m)=5 m

m’

t(m’)=2

t(m’)=3 m’

m’ m

Figure 5.3. An execution showing that Skeen’s atomic multicast violates atomic
global order (top) and the extended algorithm that guarantees atomic global
order (bottom).

84 5.4 Related work

at some destination P. Furthermore, assume for a contradiction that there is
some destination in common, P ′, that delivers m′ before it delivers m. When m
is delivered at P, from the algorithm, it must have received an ACK for m from
P ′. Thus, P ′ must know the final timestamp ts of m, and must have advanced
its logical clock past ts. Since the 〈START, m′〉 message arrives at P ′ after that
point, it follows that the local timestamp assigned to m′ at P ′, and consequently
its final timestamp ts′, must be larger than ts. But since P ′ delivers m before m′,
we have that ts < ts′, a contradiction.

5.4 Related work

We organize the related work from different perspectives. First we briefly com-
ment on the existing atomic multicast properties and the here proposed atomic
global order. We then examine existing atomic multicast protocols and discuss
whether they satisfy atomic global order or not. Finally, we survey existing par-
titioned SMR protocols.

5.4.1 Atomic multicast properties

The functionality and semantics of an atomic broadcast or multicast protocol
is defined by a set of properties (i.e., validity, agreement, integrity and order)
that establish relations on the occurrence of its primitives in any given run of
the protocol. Different applications may have different requirements, and these
properties can be made stronger or weaker depending on the need of the appli-
cation. Many protocols have been proposed in the literature, relying on different
assumptions and satisfying different sets of properties [30]. Atomic global order
differs from previously proposed ordering properties in that (i) it relates delivery
and multicast events and (ii) it relates them in real-time. As previously shown,
atomic global order allows partitioned systems to provide linearizability without
further coordination among processes.

5.4.2 Atomic multicast algorithms

We focus on atomic multicast protocols based on destination agreement [30].
This is the class of protocols in which the order of messages results from agree-
ment between the destination processes. We further divide these protocols in
three classes: timestamp based, overlay based and deterministic merge based.

85 5.4 Related work

Timestamp based. In these algorithms, processes first agree on the assignment
of message timestamps and then deliver messages in timestamp order. Every
protocol discussed here is genuine, and employs a timestamping scheme similar
to Skeen’s, discussed in detail in Section 5.3.1.

The first protocol extending Skeen’s protocol to be fault-tolerant by using
consensus inside each destination group was presented in [40]. Each group acts
as a process from Skeen’s protocol, and relies on consensus to decide on times-
tamp proposals and advance the logical clock. Messages can be delivered in six
communication steps. In [91], a similar protocol is proposed with optimizations
to speed up delivery in specific circumstances.

In Scalatom [84], instead of using consensus inside each destination group to
decide on timestamp proposals, a single consensus instance is executed among
all destination processes. It can deliver messages in six communication steps.
Scalatom also proposes and satisfies the additional property of message size min-
imality: protocol messages should have size proportional to the number of des-
tination groups. We note that all algorithms discussed here also satisfy the min-
imality property.

FastCast [24] proposes the use of stable leaders and an optimistic execution
path that can deliver messages in four communication steps, in the best case.

Instead of using consensus as a black-box, White-Box Atomic Multicast [43]
weaves Skeen’s timestamping scheme and Paxos into a unified protocol. The pro-
tocol is primary-based, and can deliver messages in three communication steps
at group leaders, in the best case. Each group leader is responsible for assigning
the local timestamp for its group, and decides when a message is safe for delivery.

RamCast [60] is a primary-based protocol that achieves high throughput and
low latency through its use of Remote Direct Memory Access (RDMA). It com-
bines ideas from Skeen and Protected Memory Paxos [3].

Overlay based. These algorithms rely on a predefined topology to propagate
messages and to ensure atomic multicast properties.

In [31], a genuine atomic multicast protocol is proposed that uses a total
order of groups as an overlay. A message m that needs to be multicast is initially
sent to one group in m.dest. When the group receives m, consensus is used to
order and deliver m inside the group, then m is forwarded to the next group in
m.dest (according to the total order of groups). A group that delivers m can
only order the next message once it knows m is ordered in all of m.dest, after it
receives an END message from the last group in m.dest.

Byzcast [23] is a byzantine fault-tolerant atomic multicast that arranges groups

86 5.4 Related work

in a tree overlay. A message m enters the overlay in the lowest common ancestor
of groups in m.dest. A group that receives m orders it and then propagates it
down the tree, until all groups in m.dest are reached. Byzcast may be consid-
ered partially genuine: delivering a message addressed to multiple groups may
involve intermediary groups not part of the destination set.

Deterministic merge based. In these algorithms, each destination process ap-
plies a deterministic merge procedure to decide on the delivery order of received
messages.

In [91], processes execute an unbounded sequence of rounds. Consensus is
used inside each group to determine the set of messages proposed by the group
in a given round. At the end of each round, processes gather messages from
all groups and then deliver them in some deterministic order. The protocol is
non-genuine.

Multi-Ring Paxos [68] builds on multiple instances of Ring Paxos [67], a ring-
based consensus protocol. It provides guarantees akin to atomic multicast, but
with a slightly different interface. Messages can only be sent to a single group,
but receivers can subscribe to more than one group. Each group totally orders its
messages and receivers use a deterministic merge to ensure a partial ordering of
deliveries from the groups it subscribes to. Ridge [14] improves on Multi-Ring
Paxos by reducing the latency inside each group and utilizing a timestamp-based
merge procedure. Both protocols are non-genuine.

5.4.3 Existing algorithms and atomic global order

In the following, we discuss why, out of all surveyed protocols, only the round-
based protocol described in [91] satisfies atomic global order.

Timestamp based. As shown in Section 5.3.1, Skeen’s algorithm does not sat-
isfy atomic global order. By the same argument, all of the algorithms that more
closely match its execution (i.e., [24, 40, 91]) do not satisfy the property either.

In Scalatom [84], while a single instance of consensus is executed among
groups in m.dest, a group’s clock is only updated after it handles the decision
for m’s timestamp. It is possible for a group in m.dest to propose a smaller
timestamp even after some other group in m.dest delivers m.

In the primary-based algorithms (i.e., [43, 60]), at the time a group leader
delivers a message m with final timestamp ts, other group leaders in m.dest may

87 5.4 Related work

still propose local timestamps smaller than ts. This also holds for PrimCast, our
proposed protocol from Chapter 4.

Overlay based. In the protocols relying on an overlay for partial order, messages
may be ordered by groups in sequence, either following a total order [31] or
down a tree [23]. Consider two messages m and m′ and groups g and h such
that g ∈ m.dest and h ∈ m.dest ∩m′.dest, and g is earlier than h in the overlay.
If m′ is multicast after m is delivered by g, but before m its propagated to h, h
may deliver m′ before m, violating atomic global order.

Deterministic merge based. For Multi-Ring Paxos [68] and Ridge [14], consider
the following case. Two messages m and m′ are ordered by groups g and h
respectively. A receiver subscribing only to g delivers m, and only then m′ is
multicast to h. The proposed merge procedures do not prevent another receiver,
subscribing to both g and h, from delivering m′ before m, violating atomic global
order.

Out of all surveyed protocols, only the non-genuine, round-based protocol
described in [91] satisfies atomic global order. If some process delivers a mes-
sage m, it follows that the round to which m belongs is closed in all groups.
Any message multicast after that must belong to some later round, ensuring it is
delivered after m.

5.4.4 Partitioned SMR

The quest for scalable SMR very often involves partitioning techniques, where
handling multi-partition operations (MPOs) efficiently is one of the main chal-
lenges.

Scalable State Machine Replication (S-SMR) [13] is an approach that achieves
scalable throughput and linearizability without constraining service commands
or adding additional complexity to their implementation. S-SMR partitions the
service state and relies on an atomic multicast primitive to consistently order
commands within and across partitions. It is shown that simply ordering com-
mands consistently across partitions is not enough to ensure linearizability in
partitioned state machine replication. To ensure linearizability, S-SMR imple-
ments execution atomicity, a property that prevents invalid command interleav-
ings. Partitions involved in the same operation signal each other such that all of
them finish the operation before signaling the client (see also Figure 5.2).

88 5.5 Discussion

In [62], the authors propose a genuine protocol based on Skeen’s total or-
der multicast [15] to order MPOs. The inter-partition coordination for MPOs is
removed from the critical execution path of operations. This is achieved by post-
poning the execution of MPOs to a future time when their ordering has already
been agreed across the partitions involved. For this, a new consensus interface
and properties are proposed. Operations are executed in rounds. The proposal
primitive allows to propose operations with the rounds intended to execute them.
While single partition operations can be ordered quickly and execute soon, MPOs
have to go through an inter-partition procedure. Scheduling MPOs for future
rounds allows other operations to execute while the MPOs are being ordered.
To ensure linearizability, when a process starts executing an MPO, it notifies all
involved partitions. A process only replies to the client after having received this
notification from all involved partitions. This solution is similar to the one pre-
sented in [13] and ensures that the reply externalized to the client is consistent
with linearizability.

DynaStar [59] is a partitioned SMR solution that provides dynamic state par-
titioning to handle workloads with varying access patterns. Data can be moved
between partitions, and a location oracle is used to monitor the workload and
to re-calculate an optimized partitioning on demand. In DynaStar there is no
multi-partition execution of commands. If a command accesses multiple parti-
tions, all data is temporarily moved to a single partition that is then responsible
for executing the command.

Tempo [34] is a leaderless partitioned SMR protocol that relies on a times-
tamping scheme similar to Skeen’s. Each command has a coordinator replica
that communicates with the destination replicas to replicate the command and
to decide on its timestamp. To ensure linearizability, replicas exchange informa-
tion about each timestamp they assign and will only execute a command once
every command with a lower timestamp is known.

5.5 Discussion

Partitioned state machine replication extends classic state machine replication
(SMR) with the notion of state partitioning (or sharding). In both approaches,
clients propagate requests to the replicas, which execute the requests sequentially
in a consistent order. In the case of SMR, every request concerns all replicas, as
each replica stores the full application state. In partitioned SMR, the application
state is divided into partitions, and each request accesses data in one or more
partitions. Clients must propagate requests to the partitions concerned by the

89 5.5 Discussion

data accessed in the request.
Many proposals that adopt the SMR model use an atomic broadcast primitive

to order requests (e.g., [79, 81]). In the case of partitioned SMR, atomic multi-
cast is more appropriate than atomic broadcast to propagate requests to replicas
consistently (e.g., [92]) since propagating all requests to all replicas defeats the
purpose of data partitioning. One can observe that as partitioned SMR gener-
alizes classic SMR, atomic multicast generalizes atomic broadcast. Despite this
analogy, there is an “asymmetry" in how the ordering abstractions are used in the
replication approaches. In SMR, after delivering a request, replicas execute the
request and reply to the client. No coordination between replicas is needed as
part of the execution of a request. In partitioned SMR, as part of the execution of
a multi-partition request, replicas in the involved partitions must coordinate to
ensure linearizability. We show that this coordination is needed because atomic
multicast with global total order does not capture real-time dependencies be-
tween requests. When equipped with atomic multicast that ensures atomic global
order, replica coordination is not necessary.

90 5.5 Discussion

Chapter 6

Conclusion

With the emergence of cloud infrastructure providers in the last few years, dis-
tributing servers around the globe has never been easier. Still, designing appli-
cations for such large scale deployments remains a challenge. One of the many
tradeoffs involved is that between consistency and availability. Relaxing consis-
tency guarantees can be a way of achieving better performance and availability,
but it may place a burden on application developers and end users by increasing
complexity and breaking expected application semantics. In contrast, a strongly
consistent system typically provides a simpler more transparent interface.

Replication is the fundamental technique used to achieve reliability in dis-
tributed systems. However, full replication, an approach where every server ex-
ecutes every request, does not scale. A common solution to solving this problem
is to instead rely on partial replication. In a partially replicated system, applica-
tion data is split into partitions, each partition replicated by only a subset of the
servers. Atomic multicast is a core abstraction for building strongly consistent
partitioned systems. It provides a way for requests to be reliably sent to one or
more groups of servers, and ensures a partial ordering of deliveries.

In this thesis, we explore the design of strongly consistent and geographically
distributed applications relying on the atomic multicast abstraction.

6.1 Research assessment

This thesis presents 3 contributions: (1) the design and evaluation of GlobalFS,
a strongly consistent geographically distributed file system; (2) PrimCast, a gen-
uine atomic multicast protocol that can deliver messages in three communication
steps at every destination; and (3) linearizable atomic multicast, a stronger ver-
sion of atomic multicast that allows for linearizable applications without further

91

92 6.2 Future directions

coordination.

GlobalFS. With GlobalFS we propose a design for a geographically distributed
file system providing a familiar POSIX-like interface. GlobalFS handles data and
metadata separately, the latter being handled by a custom protocol built upon
atomic multicast. Each file system operation is implemented using one of four
execution modes, based on the requirements of the operation. GlobalFS provides
low latency for single-region local commands while allowing for consistent global
operations across regions. We validate our design with a global deployment of
our prototype in Amazon EC2.

PrimCast. An atomic multicast protocol is genuine if only senders and desti-
nations take steps to deliver a message. A genuine protocol can scale with the
number of groups, given the right workload, and should also allow for fast deliv-
ery of messages when sender and destinations are close together. PrimCast is a
genuine atomic multicast protocol that can deliver messages at every destination
in three communication steps in the absence of conflicting messages, and five
otherwise. We provide the complete algorithm for PrimCast and its proof of cor-
rectness. We also show how loosely synchronized clocks can be used to reduce
the impact of the convoy effect under high load. Our experimental evaluation
shows that that PrimCast achieves lower latency than state-of-the-art approaches
while providing higher or comparable throughput.

Linearizable Atomic Multicast. We formalize a stronger version of atomic mul-
ticast that allows for building linearizable applications without the need for fur-
ther coordination. We show why the guarantees of atomic multicast are insuffi-
cient and propose a stronger ordering property, atomic global order, that fixes the
issue. We also describe how a classic atomic multicast protocol can be modified
to provide the stronger property.

6.2 Future directions

In the following, we discuss some possible directions for continuing the work
presented in this thesis.

93 6.2 Future directions

6.2.1 GlobalFS

While Multi-Ring Paxos can be tuned to work in a global deployment [12], it was
originally designed to maximize throughput in a local network. GlobalFS’ usage
of Multi-Ring Paxos only provides geographical scalability for single-partition op-
erations: multi-partition operations need to go through the global ring. Using
a genuine protocol designed for WAN environments, such as PrimCast, might
allow for a more flexible and transparent partitioning scheme.

More execution modes could be devised to improve performance in specific
situations. These execution modes could be enabled automatically given some
predefined policy or by means of cues given by the application (e.g., as done
in [101]). Some examples:

• Clients could opt to cache data writes until a file is closed, relaxing the
consistency of a given file to close-to-open.

• A client could fetch a complete snapshot of a file’s metadata upon opening
the file for reading only, if the client is not interested in new modifications
until reopening the file.

• A lease mechanism could be used to allow for modifications to remote files
to be temporarily stored in the closest partition until the file is closed, shift-
ing the cost of synchronization to readers.

Access to application specific workloads could help identify such optimization
opportunities.

6.2.2 PrimCast

The protocol could be extended to support the crash-recovery model and group
membership reconfiguration. Also, as is typical with these kinds of protocols,
practical applications of PrimCast may raise interesting engineering issues. While
loosely synchronized clocks proved to be effective in reducing the convoy effect in
the evaluated scenario, it would be interesting to see how it performs with more
complex scenarios and workloads. Finally, it is also worthwhile to investigate the
possibility of modifying PrimCast (in particular its quorum clock mechanism) to
provide linearizable atomic multicast while still allowing for message delivery in
three communication steps.

94 6.2 Future directions

6.2.3 Linearizable Atomic Multicast

The proposed atomic global order property is not minimal, in that it rules out ex-
ecutions that do ensure linearizability. One example is the execution depicted in
Figure 5.2 (bottom), which is linearizable but is not allowed by atomic global or-
der. To see why, notice that since request r(0, 1) is delivered at P0 before w(1, v1)
is multicast by client c, from atomic global order, r(0,1) ≺ w(1, v1). Therefore,
at P1, w(1, v1) cannot be delivered before r(0, 1) (i.e., w(1, v1) ≺ r(0, 1)) since
this would create a cycle. Thus, one open question is whether one can come up
with a property stronger than global total order but weaker than atomic global
order that still allows for linearizable applications without further coordination.

Bibliography

[1] IEEE Std 1003.1-2001 Standard for Information Technology – Portable Op-
erating System Interface (POSIX) Base Definitions, Issue 6. IEEE, 2001.
ISBN 1-85912-247-7 (UK), 1-931624-07-0 (US), 0-7381-3047-8 (print),
0-7381-3010-9 (PDF), 0-7381-3129-6 (CD-ROM).

[2] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie
Chaiken, John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer,
and Roger P Wattenhofer. FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In 5th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI, 2002.

[3] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J.
Marathe, and Igor Zablotchi. The impact of RDMA on agreement. Proceed-
ings of the 2019 ACM Symposium on Principles of Distributed Computing,
2019.

[4] Tarek Ahmed-Nacer, Pierre Sutra, and Denis Conan. The convoy effect in
atomic multicast. In 2016 IEEE 35th Symposium on Reliable Distributed
Systems Workshops (SRDSW), pages 67–72. IEEE, 2016.

[5] Amazon EC2 instances types. https://aws.amazon.com/ec2/

instance-types/. [Internet Archive: https://web.archive.org/web/
20171230055211/https://aws.amazon.com/ec2/instance-types/].

[6] Apache Thrift. https://thrift.apache.org. [Accessed: 2022-12-18].

[7] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamen-
tals, Simulations and Advanced Topics. John Wiley & Sons, 2004. ISBN
0471453242.

[8] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel.
Finding a needle in Haystack: Facebook’s photo storage. In 9th USENIX
Symposium on Operating Systems Design and Implementation, OSDI, 2010.

95

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://web.archive.org/web/20171230055211/https://aws.amazon.com/ec2/instance-types/
https://web.archive.org/web/20171230055211/https://aws.amazon.com/ec2/instance-types/
https://thrift.apache.org

96 Bibliography

[9] BeeGFS. https://www.beegfs.io. [Accessed: 2022-12-18].

[10] Samuel Benz and Fernando Pedone. Elastic paxos: A dynamic atomic mul-
ticast protocol. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 2157–2164. IEEE, 2017.

[11] Samuel Benz, Parisa Jalili Marandi, Fernando Pedone, and Benoît
Garbinato. Building global and scalable systems with atomic multicast.
In 15th ACM/IFIP/USENIX International Middleware Conference, Middle-
ware, 2014.

[12] Samuel Benz, Leandro Pacheco de Sousa, and Fernando Pedone. Stretch-
ing multi-ring paxos. In Proceedings of the 31st Annual ACM Symposium
on Applied Computing, pages 492–499, 2016.

[13] Carlos Eduardo Bezerra, Fernando Pedone, and Robbert Van Renesse.
Scalable state-machine replication. In 2014 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, pages 331–342.
IEEE, 2014.

[14] Carlos Eduardo Bezerra, Daniel Cason, and Fernando Pedone. Ridge:
high-throughput, low-latency atomic multicast. In 2015 IEEE 34th Sympo-
sium on Reliable Distributed Systems (SRDS), pages 256–265. IEEE, 2015.

[15] Kenneth P Birman and Thomas A Joseph. Reliable communication in the
presence of failures. ACM Transactions on Computer Systems (TOCS), 5
(1):47–76, 1987.

[16] Mike Blasgen, Jim Gray, Mike Mitoma, and Tom Price. The convoy phe-
nomenon. ACM SIGOPS Operating Systems Review, 13(2):20–25, 1979.

[17] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg. The
primary-backup approach. Distributed systems, 2:199–216, 1993.

[18] Jean-Michel Busca, Fabio Picconi, and Pierre Sens. Pastis: a highly-
scalable multi-user peer-to-peer file system. In Euro-Par, 2005.

[19] Philip H. Carns, W. B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:
A parallel file system for linux clusters. In 4th Annual Linux Showcase and
Conference, ALS, 2000.

[20] Ceph block storage. https://ceph.com/en/discover/technology/

#block. [Accessed: 2022-12-18].

https://www.beegfs.io
https://ceph.com/en/discover/technology/#block
https://ceph.com/en/discover/technology/#block

97 Bibliography

[21] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM (JACM), 43(2):225–267,
1996.

[22] Bernadette Charron-Bost, Fernando Pedone, and Andre Schiper. Replica-
tion: Theory and Practice, volume 5959. Springer, 2010.

[23] Paulo Coelho, Tarcisio Ceolin Junior, Alysson Bessani, Fernando Dotti, and
Fernando Pedone. Byzantine fault-tolerant atomic multicast. In 2018
48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 39–50. IEEE, 2018.

[24] Paulo R Coelho, Nicolas Schiper, and Fernando Pedone. Fast atomic mul-
ticast. In Dependable Systems and Networks (DSN), 2017 47th Annual
IEEE/IFIP International Conference on, pages 37–48. IEEE, 2017.

[25] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer Systems (TOCS), 31
(3):8, 2013.

[26] James Cowling and Barbara Liskov. Granola: Low-overhead distributed
transaction coordination. In 2012 USENIX Annual Technical Conference
(USENIX ATC 12), pages 223–235, Boston, MA, June 2012. USENIX Asso-
ciation.

[27] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Wide-area cooperative storage with CFS. In 18th ACM Symposium
on Operating Systems Principles, SOSP, 2001.

[28] Alex Davies and Alessandro Orsaria. Scale out with GlusterFS. Linux
Journal, 2013(235), November 2013. ISSN 1075-3583.

[29] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubrama-
nian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly avail-
able key-value store. In 21st ACM SIGOPS Symposium on Operating Sys-
tems Principles, SOSP, 2007.

[30] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM Computing Surveys
(CSUR), 36(4):372–421, 2004.

98 Bibliography

[31] Carole Delporte-Gallet and Hugues Fauconnier. Fault-tolerant genuine
atomic multicast to multiple groups. In Proceedings of the 12th Inter-
national Conference on Principles of Distributed Systems (OPODIS), pages
107–122, 2000.

[32] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM, 35(2):288–323, 1988.

[33] Email exchange on CephFS mailing list. https://www.mail-archive.

com/ceph-users@lists.ceph.com/msg23788.html. [Accessed: 2022-
12-18].

[34] Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. Efficient
replication via timestamp stability. In Proceedings of the Sixteenth European
Conference on Computer Systems, EuroSys ’21, page 178–193, New York,
NY, USA, 2021. ACM.

[35] FastCast implementation. https://bitbucket.org/paulo_coelho/

libmcast. [Accessed: 2022-12-18].

[36] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex
Shvartsman. Eventually-serializable data services. Theoretical Computer
Science, 220, 1999.

[37] Colin J. Fidge. Timestamps in message-passing systems that preserve the
partial ordering. In 11th Australian Computer Science Conference, pages
55–66, University of Queensland, Australia, 1988.

[38] File System in User Space (FUSE). https://github.com/libfuse/

libfuse. [Accessed: 2022-12-18].

[39] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with one faulty processor. Journal of the ACM,
32(2):374–382, 1985.

[40] Udo Fritzke, Philippe Ingels, Achour Mostéfaoui, and Michel Raynal.
Fault-tolerant total order multicast to asynchronous groups. In Proceed-
ings of International Symposium on Reliable Distributed Systems (SRDS),
pages 578–585, 1998.

[41] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file
system. In 19th ACM Symposium on Operating Systems Principles, SOSP,
2003.

https://www.mail-archive.com/ceph-users@lists.ceph.com/msg23788.html
https://www.mail-archive.com/ceph-users@lists.ceph.com/msg23788.html
https://bitbucket.org/paulo_coelho/libmcast
https://bitbucket.org/paulo_coelho/libmcast
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse

99 Bibliography

[42] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News, 33
(2):51–59, jun 2002.

[43] Alexey Gotsman, Anatole Lefort, and Gregory Chockler. White-Box atomic
multicast. In 2019 49th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 176–187. IEEE, 2019.

[44] Rachid Guerraoui and André Schiper. Software-based replication for fault
tolerance. Computer, 30(4):68–74, 1997.

[45] Rachid Guerraoui and André Schiper. Total order multicast to multiple
groups. In Proceedings of 17th International Conference on Distributed Com-
puting Systems, pages 578–585. IEEE, 1997.

[46] Rachid Guerraoui and André Schiper. Genuine atomic multicast in asyn-
chronous distributed systems. Theoretical Computer Science, 254(1-2):
297–316, 2001.

[47] Rachid Guerraoui, Jad Hamza, Dragos-Adrian Seredinschi, and Marko
Vukolic. Can 100 machines agree? CoRR, abs/1911.07966, 2019. URL
http://arxiv.org/abs/1911.07966.

[48] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical report, Cornell University,
Ithaca, NY, USA, 1994.

[49] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 12(3):463–492, 1990.

[50] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In USENIX
Annual Technical Conference, ATC, 2010.

[51] Felix Hupfeld, Toni Cortes, Björn Kolbeck, Jan Stender, Erich Focht,
Matthias Hess, Jesus Malo, Jonathan Marti, and Eugenio Cesario. The
XtreemFS architecture – a case for object-based file systems in grids. Con-
currency and Computation: Practice and Experience, 20(17):2049–2060,
2008.

http://arxiv.org/abs/1911.07966

100 Bibliography

[52] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-
performance broadcast for primary-backup systems. In 2011 IEEE/IFIP
41st International Conference on Dependable Systems & Networks (DSN),
pages 245–256. IEEE, 2011.

[53] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden,
Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi.
H-Store: a high-performance, distributed main memory transaction pro-
cessing system. Proc. VLDB Endow., 1(2):1496–1499, 2008.

[54] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westley Weimer, et al. OceanStore: An architecture for global-
scale persistent storage. ACM SIGPLAN Notices, 35(11):190–201, 2000.

[55] Sandeep S. Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj
Avva, and Marcelo Leone. Logical physical clocks. In International Con-
ference on Principles of Distributed Systems, pages 17–32. Springer, 2014.

[56] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review, 44(2), April
2010.

[57] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[58] Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems (TOCS), 16(2):133–169, 1998.

[59] Long Hoang Le, Enrique Fynn, Mojtaba Eslahi-Kelorazi, Robert Soulé, and
Fernando Pedone. Dynastar: Optimized dynamic partitioning for scalable
state machine replication. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), pages 1453–1465. IEEE, 2019.

[60] Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo Coelho, and Fernando Pe-
done. RamCast: RDMA-based atomic multicast. In Proceedings of the 22nd
International Middleware Conference, pages 172–184, 2021.

[61] LevelDB. https://github.com/google/leveldb. [Accessed: 2022-12-
18].

https://github.com/google/leveldb

101 Bibliography

[62] Zhongmiao Li, Peter Van Roy, and Paolo Romano. Enhancing through-
put of partially replicated state machines via multi-partition operation
scheduling. In 2017 IEEE 16th International Symposium on Network Com-
puting and Applications (NCA), pages 1–10, 2017.

[63] LibEvent. https://libevent.org. [Accessed: 2022-12-18].

[64] Barbara Liskov and James Cowling. Viewstamped replication revisited.
Technical report, Technical Report MIT-CSAIL-TR-2012-021, MIT, July
2012.

[65] Guoliang Liu, Liuying Ma, Pengfei Yan, Shuai Zhang, and Liu Liu. De-
sign and implementation of GeoFS: A wide-area file system. In 9th IEEE
International Conference on Networking, Architecture, and Storage, NAS,
2014.

[66] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability,
and convergence. Technical report, TR-11-22, Computer Science Depart-
ment, UT Austin, May 2011.

[67] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and Fernando Pedone.
Ring Paxos: A high-throughput atomic broadcast protocol. In IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN, 2010.

[68] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. Multi-ring
paxos. In Dependable Systems and Networks (DSN), 2012 42nd Annual
IEEE/IFIP International Conference on, pages 1–12. IEEE, 2012.

[69] MooseFS. https://www.moosefs.org. [Accessed: 2022-12-18].

[70] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen.
Ivy: a read/write peer-to-peer file system. In 5th USENIX Symposium on
Operating Systems Design and Implementation, OSDI, 2002.

[71] Robert HB Netzer and Jian Xu. Necessary and sufficient conditions for
consistent global snapshots. IEEE Transactions on Parallel and distributed
Systems, 6(2):165–169, 1995.

[72] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohss-
chmiedt, and Mikael Ronström. HopsFS: Scaling hierarchical file system
metadata using NewSQL databases. In 15th USENIX Conference on File
and Storage Technologies (FAST 17), pages 89–104, 2017.

https://libevent.org
https://www.moosefs.org

102 Bibliography

[73] ObjectiveFS. https://objectivefs.com. [Accessed: 2022-12-18].

[74] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley DB. In USENIX
Annual Technical Conference, ATC, 1999.

[75] OrangeFS. https://www.orangefs.org. [Accessed: 2022-12-18].

[76] Michael Ovsiannikov, Silvius Rus, Damian Reeves, Paul Sutter, Sriram Rao,
and Jim Kelly. The Quantcast file system. Proc. of the VLDB Endowment, 6
(11):1092–1101, 2013.

[77] Leandro Pacheco, Raluca Halalai, Valerio Schiavoni, Fernando Pedone,
Etienne Riviere, and Pascal Felber. Globalfs: A strongly consistent multi-
site file system. In Reliable Distributed Systems (SRDS), 2016 IEEE 35th
Symposium on, pages 147–156. IEEE, 2016.

[78] Leandro Pacheco, Fernando Dotti, and Fernando Pedone. Strengthening
atomic multicast for partitioned state machine replication. In Proceedings
of the 11th Latin-American Symposium on Dependable Computing, pages
51–60, 2022.

[79] Marta Patiño Martinez, Ricardo Jiménez-Peris, Bettina Kemme, and Gus-
tavo Alonso. Middle-r: Consistent database replication at the middleware
level. ACM Trans. Comput. Syst., 23(4):375–423, nov 2005.

[80] Swapnil Patil and Garth Gibson. Scale and concurrency of GIGA+: File
system directories with millions of files. In 9th USENIX Conference on File
and Storage Technologies, FAST, 2011.

[81] Fernando Pedone, Rachid Guerraoui, and André Schiper. The database
state machine approach. Distributed and Parallel Databases, 14(1):71–98,
2003.

[82] Kenneth W Preslan, Andrew P Barry, Jonathan E Brassow, Grant M Erick-
son, Erling Nygaard, Christopher J Sabol, Steven R Soltis, David C Tei-
gland, and Matthew T O’Keefe. A 64-bit, shared disk file system for linux.
In 16th IEEE Symposium on Mass Storage Systems, 1999.

[83] Michel Raynal, André Schiper, and Sam Toueg. The causal ordering ab-
straction and a simple way to implement it. Inf. Process. Lett., 39(6):343–
350, October 1991.

https://objectivefs.com
https://www.orangefs.org

103 Bibliography

[84] Luis Rodrigues, Rachid Guerraoui, and André Schiper. Scalable atomic
multicast. In International Conference on Computer Communications and
Networks, pages 840–847, 1998.

[85] Antony Rowstron and Peter Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In 18th ACM
Symposium on Operating Systems Principles, SOSP, 2001.

[86] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Middleware Conference, Middleware, 2001.

[87] Mahadev Satyanarayanan. Scalable, secure, and highly available dis-
tributed file access. Computer, 23(5):9–18, 1990.

[88] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A highly available file
system for a distributed workstation environment. IEEE Trans. Comput.,
39(4):447–459, April 1990.

[89] Nicolas Schiper. On multicast primitives in large networks and partial repli-
cation protocols. PhD thesis, Università della Svizzera italiana, 2009.

[90] Nicolas Schiper and Fernando Pedone. Optimal atomic broadcast and mul-
ticast algorithms for wide area networks. In Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing, pages 384–
385. ACM, 2007.

[91] Nicolas Schiper and Fernando Pedone. On the inherent cost of atomic
broadcast and multicast in wide area networks. In International conference
on Distributed computing and networking (ICDCN), pages 147–157, 2008.

[92] Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-store: Genuine
partial replication in wide area networks. In Symposium on Reliable Dis-
tributed Systems (SRDS), 2010.

[93] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):
299–319, 1990.

[94] Philip Schwan. Lustre: Building a file system for 1000-node clusters. In
Linux Symposium, 2003.

104 Bibliography

[95] SeaweedFS. https://github.com/seaweedfs/seaweedfs. [Accessed:
2022-12-18].

[96] Amazon Time Sync Service. https://aws.

amazon.com/about-aws/whats-new/2017/11/

introducing-the-amazon-time-sync-service/. [Accessed: 2022-12-
18].

[97] John Shaw and Julian Dyke. Oracle Cluster File System (OCFS). In Pro
Oracle Database 10g RAC on Linux, pages 171–200. Apress, 2006. ISBN
978-1-59059-524-4.

[98] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In 26th IEEE Symposium on Mass Stor-
age Systems and Technologies, MSST, 2010.

[99] Dimokritos Stamatakis, Nikos Tsikoudis, Ourania Smyrnaki, and Kostas
Magoutis. Scalability of replicated metadata services in distributed file
systems. In 12th IFIP WG 6.1 International Conference on Distributed Ap-
plications and Interoperable Systems, DAIS, 2012.

[100] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A scalable peer-
to-peer lookup protocol for internet applications. IEEE/ACM Transactions
on Networking, 11(1):17–32, February 2003.

[101] Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid Pretzer, Jinyang Li,
M Frans Kaashoek, and Robert Morris. Flexible, wide-area storage for dis-
tributed systems with WheelFS. In 6th USENIX Symposium on Networked
Systems Design and Implementation, NSDI, 2009.

[102] Sun Microsystems, Inc. NFS: Network file system protocol specification.
RFC 1094, Network Information Center, SRI International, March 1989.

[103] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and Margo Seltzer. Bench-
marking file system benchmarking: It *is* rocket science. In 13th USENIX
Workshop on Hot Topics in Operating Systems, HotOS, 2011.

[104] Vasily Tarasov, Abhishek Gupta, Kumar Sourav, Sagar Trehan, and Erez
Zadok. Terra incognita: On the practicality of user-space file systems. In
7th USENIX Workshop on Hot Topics in Storage and File Systems, HotStor-
age, 2015.

https://github.com/seaweedfs/seaweedfs
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-the-amazon-time-sync-service/
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-the-amazon-time-sync-service/
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-the-amazon-time-sync-service/

105 Bibliography

[105] Alexander Thomson and Daniel J. Abadi. CalvinFS: Consistent WAN repli-
cation and scalable metadata management for distributed file systems. In
13th USENIX Conference on File and Storage Technologies, FAST, 2015.

[106] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J Abadi. Calvin: Fast distributed transactions for
partitioned database systems. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 1–12. ACM, 2012.

[107] Tokio asynchronous runtime. https://tokio.rs. [Accessed: 2022-12-
18].

[108] Robbert Van Renesse and Fred B. Schneider. Chain replication for support-
ing high throughput and availability. In OSDI, volume 4, pages 91–104,
2004.

[109] Robbert Van Renesse, Nicolas Schiper, and Fred B Schneider. Vive la dif-
férence: Paxos vs. viewstamped replication vs. zab. IEEE Transactions on
Dependable and Secure Computing, 12(4):472–484, 2014.

[110] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg
Thiel. The LOCUS distributed operating system. In 9th ACM Symposium
on Operating Systems Principles, SOSP, 1983.

[111] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Car-
los Maltzahn. Ceph: A scalable, high-performance distributed file system.
In 7th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI, 2006.

[112] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn.
CRUSH: Controlled, scalable, decentralized placement of replicated data.
In ACM/IEEE conference on Supercomputing, SC, 2006.

[113] White-Box Atomic Multicast implementation. https://github.com/

imdea-software/atomic-multicast. [Accessed: 2022-12-18].

https://tokio.rs
https://github.com/imdea-software/atomic-multicast
https://github.com/imdea-software/atomic-multicast

106 Bibliography

	Contents
	List of Figures
	List of Tables
	Introduction
	The tradeoff between strong and weak consistency
	Abstractions for scalable replicated applications
	Research contributions
	Thesis outline

	System Model and Definitions
	System model
	Processes and communication
	Synchrony assumptions

	Definitions
	Multicast abstractions
	Consistency criteria
	State-machine replication
	Primary-based replication

	GlobalFS
	Motivation
	General idea
	System architecture
	Components
	Partitioning and replication
	Use of atomic multicast
	Example deployment

	Protocol design
	Execution modes
	The life of some file system operations
	Failure handling

	Implementation
	Clients
	Atomic multicast
	Metadata replicas
	Data store

	Evaluation
	Microbenchmarks
	Compilation benchmarks

	Related work
	File systems with strong consistency
	File systems with weak consistency
	Peer-to-peer file systems
	Overview

	Discussion

	PrimCast
	Background
	Timestamp-based message ordering
	Collision-free and failure-free latency

	PrimCast
	Basic ideas
	Algorithm

	PrimCast correctness
	PrimCast extensions
	Exploiting loosely synchronized clocks
	Timestamped atomic multicast
	Exploiting commutativity

	Performance evaluation
	Implementation
	Setup and scenarios
	LAN performance
	WAN performance with colocated leaders
	WAN performance with distributed leaders

	Related work
	FastCast
	White-Box multicast
	Other protocols

	Discussion

	Linearizable Atomic Multicast
	Background
	Partitioned state machine replication

	Atomic Global Order
	Atomic multicast alone is not enough
	Linearizable atomic multicast
	Proof of correctness

	Implementing Atomic Global Order
	Skeen's atomic multicast
	Extending Skeen's algorithm to ensure atomic global order

	Related work
	Atomic multicast properties
	Atomic multicast algorithms
	Existing algorithms and atomic global order
	Partitioned SMR

	Discussion

	Conclusion
	Research assessment
	Future directions
	GlobalFS
	PrimCast
	Linearizable Atomic Multicast

	Bibliography

