Developing Complex Data Structures over
Partitioned State Machine Replication

Mojtaba Eslahi-Kelorazi, Long Hoang Le, Fernando Pedone
Universita della Svizzera italiana (USI)
Lugano, Swtizerland

Abstract—Modern applications require replication for avail-
ability. State machine replication (SMR) is a standard way
to replicate applications over a number of servers. In SMR,
increasing the number of servers improves fault tolerance, but it
does not increase performance, since each replica executes all the
requests. Partitioned state machine replication seeks to increase
performance by partitioning the application state. In this paper,
we discuss challenges involved in developing complex applications
over partitioned state machine replication. In particular, we
develop a distributed B+tree whose nodes are distributed over a
set of partitions, and each partition is replicated. B+tree is an
important data structure employed in a number of well-known
applications and database systems. Moreover, the techniques used
in the paper can be easily extended to other data structures and
applications.

Index Terms—replication, sharding, distributed b+tree

I. INTRODUCTION

State machine replication (SMR) is a classic approach to
fault tolerance [1]. In this method, the application is replicated
in a number of servers and each replica deterministically
executes client requests in the same order. In SMR, increasing
the number of replicas improves fault tolerance because the
system can withstand additional failures. However, it does
not increase performance since each replica executes all the
requests. Several works have extended classic SMR in order
to scale performance (e.g., [2]-[5]). One prominent idea is
to partition (or shard) the application state and replicate each
partition in a number of replicas (e.g., [S]-[11]). Partitioned
state machine replication shares the basic characteristics of
classic SMR, namely, requests are ordered and then determin-
istically executed. In order to achieve good performance, only
the partitions involved in a request must order and execute the
request. Consequently, the partitions involved in the execution
of a request must be known before the request is ordered and
executed. Prior work has considered classes of applications
in which this information is readily available (e.g., key-value
stores, file systems). In this paper, we share our experiences
with developing complex applications with partitioned state
machine replication. By complex we mean applications in
which the partitions involved in a request cannot be easily
identified a priori.

This paper presents DynaTree, a scalable and highly avail-
able B+tree over partitioned state machine replication. B+tree
is a self-balancing tree data structure that preserves sort-
ing order and guarantees lower bounds for accessing data.
DynaTree employs the partitioned state machine replication

model proposed by Le et al. [7]. This model partitions the
application state and replicates each partition. Client requests
are atomically multicast to the partitions involved in the
request, and then executed. Atomic multicast ensures that
requests are properly ordered across partitions [12]. This
model provides scalability and fault tolerance at the cost of
additional requirements: clients must identify the data and
partitions accessed in a request before the request is executed.
This poses some challenges in the case of complex data
structures, such as B+trees. For example, to insert a key in
the tree, a client must know in advance whether the insert
will lead to a split and the nodes and partitions involved in
the insert. To satisfy this requirement, clients in DynaTree
lazily cache inner nodes of the tree. Therefore, clients first
traverse the cached tree to find the appropriate nodes and then
issue the request to the involved partitions for execution. This
scheme, however, introduces additional complications. Since
the client cache may be stale, partitions must verify the validity
of the cached information before executing a request. In case
a partition finds that the client cache is stale, it informs the
client to update the cache and re-try the request.

The paper makes the following contributions: It discusses
the challenges involved in designing a distributed data struc-
ture in partitioned state machine replication. It introduces a
scalable and fault-tolerant distributed B+tree key-value store
that scales update operations with the number of partitions.
We implemented DynaTree and assessed its performance ex-
tensively. Our results show that DynaTree scales read and
update requests with the number of partitions, and outperforms
a well-established database that relies on a B-tree, deployed
in high-availability mode. DynaTree’s source code is publicly
available.

The reminder of the paper is structured as follows. Section
II presents the system model. Section III introduces DynaTree
and explains the challenges involved. Section IV discusses im-
plementation details and presents experimental results. Section
V reviews related works and Section VI concludes the paper.

II. SYSTEM MODEL

We consider a distributed system composed of a set of client
and server processes, where servers are divided into groups.
Clients submit requests to one or more server groups. Client
and server processes are either correct, if they do not fail, or
faulty, otherwise. In either case, processes do not experience
arbitrary behavior (i.e., no Byzantine failures). We assume that
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Fig. 1: The client cache, the oracle map, and the distributed tree nodes in DynaTree

there are enough correct server processes in a group so that
each group is always operational, despite the failure of some
of its members.

The system is partially synchronous [13]: it is initially
asynchronous and eventually becomes synchronous. When the
system is asynchronous, there are no bounds on the time
it takes for messages to be transmitted and actions to be
executed; when the system is synchronous, such bounds exist
but are unknown to the processes. The partially synchronous
assumption allows consensus, a fundamental problem at the
core of replication [1], [14], and atomic multicast [12] to be
implemented under realistic conditions [1], [15].

III. DYNATREE

DynaTree implements a distributed B+tree. In a B+tree, leaf
nodes store key-value pairs and inner nodes store key-pointers.
When a node is full, it is split into two half-size nodes. With
the exception of the root node, which may contain a single
key, all other nodes contain k£ < n < 2k — 1 keys, where n is
the node size and k is the minimum size of a node [16].

DynaTree is composed of three main components: the client
process, the server process, and the oracle process. Figure 1
shows different components and how they are connected.

The client provides an interface with search, update and
insert operations. Clients cache internal B+tree nodes. Whether
a client searches for a key or inserts a new key in the
tree, it traverses the tree in its cache from the root down to
the appropriate leaf. After finding the leaf, the client issues
a request to the partitions to execute the request. While
traversing the tree, the client either has the node in its cache
or reads the required nodes from the partitions.

Each server process contains a subset of tree nodes. A
partition receives client requests if it is in the destination of
the request. A partition is in the destination of a request when
the request involves nodes of the tree from that partition. The
partitions deliver and execute requests respecting their realtime
order so they contain the most updated version of the objects

for each request execution to guarantee strong consistency
(i.e., linearizability).

The oracle is responsible for storing a location map from
tree nodes to partitions. The oracle plays the role of a directory
to guide clients to find nodes in partitions. This allows clients
to forward requests to the partitions that are involved in the
execution of the request.

In the following, we first discuss client caches and their
importance in the execution of requests. Then we discuss tree
operations and explain the corresponding tree algorithms.

A. Client cache

In DynaTree, clients store internal tree nodes and thus are
able to traverse the tree locally rather than reading nodes from
the partitions each time. This cache becomes invalid when the
structure of the tree changes (e.g., when a node splits). Upon
executing a request, the partition notifies the client to invalidate
its cache and try again when the client’s cache is not valid.

We use fence keys to validate client requests at partitions
[17]. Fence keys are essentially two integers determining the
range of the keys a node is responsible for, even though the
node may not contain all keys in the range (i.e. key never
inserted). Fence keys optimize the cache invalidation by de-
creasing the number of unnecessary invalidations. While split-
ting nodes, their fence keys are changed. DynaTree guarantees
continuous, non-overlapping ranges for the nodes in each tree
level in the presence of concurrent node split requests.

A client reads the inner nodes from the partitions and stores
them for traversing the tree. The lazy replicated nodes in the
client cache may become stale. For example, when a client
traverses its stale cache to find a key, it finds a leaf called T’
is the leaf that should be looked up for the key. So, the client
issues a request for looking up in node 7'. The partition that
receives the request will first check if the request is valid. The
request is valid if the key is in the fence keys of node T'. If
node T has split and the key is not in the range of its fence



TABLE I: Tree node fields and methods

Fields/Methods Description

nid Node ID

size Node size

keys Keys stored in the node

values Values associated with the keys

children Pointer to child nodes (if any)

isLeaf() Returns true if the node is leaf

isRoot() Returns true if the node is root

lookup(key) Looks up the key in node

update(key, value) Updates the value of a key

insert(key, value) Inserts the key/value pair

split(parent, node) Splits and move half of keys into node;
updates the parent node

isInFenceKeys(key) true if key is in node’s fence keys

TABLE II: Objects and methods in the algorithms

Object Description

rootld The root node of the tree

MAX-SIZE Maximum size of a node

cache Client cache of internal nodes

storage List of tree nodes that a partition owns

childParent A map of nodes to their parents

ancestorlist List of ancestors of the node

numReservedObjlds | Number of requested object Ids asked by request

reservedObjlds The oracle reserves a number of object Ids declared
in numReservedObjlds and append to the request

result Result of looking up a key in node; the object
contains value if the key is available

RootSplit() Splits the root of the tree

NodeSplit() Splits a tree node

keys anymore, the request is not valid. The partition then asks
the client to invalidate its cache and try again.

Cache invalidation is optimized by invalidating one node
at a time. When a request performing an operation on node
T is asked to retry, the algorithm invalidates node 71”s parent,
called T". The retry asked by the partition implies that the node
T’ has changed. By reading the parent node again, the client
will likely find the correct child next time. In case reading the
parent node also results in a retry, the invalidation proceeds
one level up. This can go up to the root node where the client
clears its cache and starts reading the root node again.

Alg. 1 illustrates the steps executed by clients to read a tree
node. The GetNode method starts by searching the client’s
cache for a node. In case the client does not contain a node,
it issues a request to read the node from the partitions. We
invoke a DynaStar command by specifying the operation and
the arguments passed to the command (line 3). The request
is later processed by the server-side logic in the destination
partition (18-20). Here, the partition simply returns the node
asked by the request. The client checks if the node is valid.
Otherwise, the client invalidates its cache and tries again (5-
12). Tables I and Il summarize the variables and methods
employed in the algorithms.

B. Search and update

Alg. 2 illustrates the steps to search for a key. Updating
the value of a node follows a similar execution path, where
the client provides the new value for the node. The client
starts searching for a key by reading the root node (Line 13)

Algorithm 1 Reading a node from cache or partitions

GetNode(nid, parentid, key)
if cache.contains(nid) then
return cache.get(nid)
<nid, node> < command(READ, nid)

1: {Client side}
2

3

4:

5:  if node.isInFenceKeys(key) then

6.

7

8

9

{read node from local cache}
cache.add(nid, node)

childParent.add(nid, parentid)
return node

{add node to client’s cache}

: else
10: parent <— childParent.get(nid)
11: InvalidateNode(parent.nid) {cache invalidation}
12: return null

13: InvalidateNode(nid)

14:  node < cache.get(nid)

15:  for child in node.children do
16: InvalidateNode(child)

17:  cache.remove(node)

{Client side}

18: Read(nid)
19:  node < storage.get(nid)
20:  returns node

{Server side}

Algorithm 2 Searching for a key

{Client Side}
{find the appropriate leaf}
<RESPONSE,value> < command(SEARCH, node.nid, key)
if RESPONSE = SEARCHFOUND then

return value {key is available in the tree}

1: Search(key)
2:

3

4

5

6: else if RESPONSE = SEARCHNOTFOUND then
7.

8

9

0

1

node <— SearchUtil(key)

return null

else if RESPONSE = SEARCHRETRY then
parent < childParent.get(node.nid)
InvalidateNode(parent)
return Search(key)

{key is not available}

{invalidate parent node}

12: SearchUtil(key)
13:  node < GetNode(rootId, null, key)
14:  while !'node.isLeaf() do

{Client Side}
{read the root node}

15: <nid, result, childid> < node.lookup(key)
16: node < GetNode(childid, nid, key)
17: if node = null then {retry traversing the tree}

18: return SearchUtil(key)
19:  return node

20: Search(nid, key)

21:  node < storage.get(nid)

22:  if 'node.isInFenceKeys(key) then
23: return <SEARCHRETRY >

24:  result < node.lookup(key)

25: if result.isAvailable() then

{Server Side}

{check fence keys}

26: return <SEARCHFOUND, result.value>
27:  else
28: return <SEARCHNOTFOUND>

and looks up this node to find the next node to read (15). It

continues reading nodes and looking them up down to the leaf
(14-18).

After finding the appropriate leaf, the client asks the cor-
responding partition to search for the key (3). The partition
validates the request before execution (22-23). The validation
is necessary since the client cache may be stale. The partition
uses the leaf’s fence keys to find out if the request is valid. If
s0, the partition is able to search the leaf and return the result
to the client (25-28).



Algorithm 3 Inserting a key-value pair

Algorithm 4 Splitting a node

. Insert(key, value)
node < SearchUtil(key)
<RESPONSE, nid, key, value, ancestorlist> <+
command(INSERT, node.nid, key, value)

1 {Client side}
2
3
4.
5:  InsertRespone(RESPONSE,nid,key,value,ancestorlist)
6
7
8

: Insert(nid, key, value)
node < storage.get(nid)
if Inode.isInFenceKeys(key) then
9: return <INSERTRETRY >
10:  result < node.lookup(key)
11:  if result.isAvailable() then

{Server side}

{update the value}

12: node.update(key, value)

13: return <UPDATED>

14:  else if node.size < MAX-SIZE then {insert new key}
15: node.insert(key, value)

16: return <INSERTED>

17:  else if node.size = MAX-SIZE then {split needed}
18: return <RETRYSPLIT,nid,key,value,null>

19: InsertResponse(RESPONSE, nid, key, value, ancestorlist)

20:  if RESPONSE € {INSERTED,UPDATED} then {Client side}

21: return true {success}
22:  else if RESPONSE = INSERTRETRY then {stale cache}
23: parent <— childParent.get(nid)

24: InvalidateNode(parent)

25: return Insert(key, value)

26:  else if RESPONSE = RETRYSPLIT then {split needed}
27: if ancestorlist.isEmpty() then

28: parent < childParent.get(nid)

29: ancestorlist.add(parent)

30: numReservedObjlds + 1

31: else if !ancestorlist.last().isRoot() then

32: ancestor < childParent.get(ancestorlist.last())

33: ancestorlist.add(ancestor)

34: numReservedObjlds «+ 1

35: else

36: numReservedObjlds < 2

37: command.allocate(num ReservedObjIds)

38: <RESPONSE, nid, key, value, ancestorlist> <

39: command(INSERTSPLIT,nid,key,value,ancestorlist)

40: InsertRespone(RESPONSE,nid, key,value,ancestorlist)

C. Insert

Alg. 3 illustrates the insert operation. The client starts the
insert request by traversing the tree in its cache. This leads
to a leaf which is the node for inserting the key. Next, the
client issues a request for inserting the key (lines 4-5). When
a partition delivers the request, it checks if the insertion is
valid. In case the request is not valid due to stale client cache,
the client is asked to invalidate its cache and try again (9-10).
The client cache is stale when it asks to insert a key in a node
out of the node’s fence keys.

In case the insert operation is valid, the node is looked up
to see if it already contains the key. In this case, the algorithm
only needs to update the value of the key (12-14). If the node
does not contain the key and the node is not full, the partition
inserts the key in the tree (15-17). In the last case where
the node is full, the partition needs to split the node before
inserting the key. Therefore, the partition notifies the client
that the node is full (18-19). This case involves additional
communication steps and is discussed in the next section.

Split (nid, key, value, ancestorlist) {Server side}

node < storage.get(nid)

1:
2
3 if !node.isInFenceKeys(key) then

4 invalidNode < node.nid

5: return <SPLITRETRY, invalidN ode>
6

7

8

result <— node.lookup(key)

if result.isAvailable() then
node.update(key, value)
return <UPDATED >

{update the value}

10:  if node.size < MAX-SIZE then

11: node.insert(key, value) {insert the new key-value pair}
12: return <INSERTED>

13:  for :=ancestorlist.size—1; 1 >=0; i—— do

14: ancestor < ancestorlistli]

15: if lancestor.isInFenceKeys(key) then

16: tnvalidNode <+ ancestor {return the invalid node}
17: return <SPLITRETRY, invalid N ode>

18:  for i=0; ¢ <ancestorlist.size; i++ do

19: ancestor + ancestorlist|i] {check if ancestors need split}
20: if ancestor.size <MAX-SIZE then

21: for j =ancestorlist.size—1; j>1i; j—— do

22: ancestorlist.remove(y)

23:  reservedObjlds < command.getReservedObjlds()

24:  lastNode < nodes.get(ancestorlist.last())
25:  if last Node.size < MAX-SIZE or last N ode.isRoot() then

26: if last N ode.isRoot then

27: RootSplit(last Node, reservedObjlds)

28: pos < ancestorlist.size—1

29: for pos; pos >=0; pos—— do

30: NodeSplit(pos, node, ancestorlist, reservedObjlds)

31: node.insert(key, value) {insert the new key-value}
32: return <INSERTED>

33:  else {upmost parent is full}
34: return <RETRYSPLIT,nid,key,value,ancestorlist>

D. Splitting nodes

In the B+tree algorithm, a tree node splits when its size hits
node’s maximum size. While splitting, the node is divided into
two nodes, each containing half of the key-value pairs. To split
a node, the request needs to involve the node and its parent.
The parent node is necessary because a separator key for the
new node is inserted in the parent node.

Splitting a node is a more complex operation than the other
operations. There are three main reasons for this complexity.
First, splitting a node involves creating a new node. The oracle
has to be aware of all objects in the system. So, the oracle
has to be involved in the request. Second, the split operation
can lead to further splits. When a node needs to split while
its parent node is full, the operation needs to cascade the
split up to the parent node. Third, clients may try to split a
node concurrently. The algorithm needs to check if concurrent
requests have changed the node before applying changes. In
the following, we explain how we deal with these cases.

The split operation starts when a client receives RETRY S-
PLIT as the result of an insert request (lines 39-40 in Alg.
3). The client starts a new request by adding the node id, the
key and the value. There is one more field appended to the
arguments list called ancestorlist, which contains the ancestors



of the node. Ancestor nodes are added to the list one at a time.
When a partition asks the client to retry an insertion with split,
the client adds its parent node to the list. If the parent node
is also full and needs to split, the client retries by adding
the parent of the parent node to the list. The list contains all
ancestors of the leaf when the root needs to split. DynaStar
ensures that all those nodes are gathered in one partition before
the execution of the request.

The Split operation is shown in Alg. 4. The algorithm starts
by checking whether the request is valid (lines 3-5). Next, it
checks whether the key has been inserted concurrently. In this
case, it is enough to update the key’s value (6-9). The node
has split concurrently with a split request from another client.
In this case, the key can be inserted into the node without an
additional split (10-12).

For the other cases, we ensure that modifications to the tree
deal with concurrent requests to maintain a consistent tree.
Starting from line 13, the algorithm verifies that the insertion
is valid. Next, the algorithm verifies whether ancestor nodes
need to split. We clarify this verification with an example.
Assume that there are two splits needed before insertion, which
means that there are two items in the ancestorlist. However,
it is possible that the immediate parent of the node has split
with concurrent requests from a different client. In this case,
we avoid splitting the parent node again.

In the last step, the algorithm splits the nodes. The invoca-
tion of the split method finishes by moving half of the key-
value pairs to the new node and by adding the first element of
the new node to the parent node. Now, the algorithm is able
to insert the key in the leaf node (31-32).

IV. EVALUATION

In this section, we evaluate the performance of DynaTree. In
particular, we investigate the scalability of tree operations with
the growing number of partitions. Our prototype is written in
Java. The source code is publicly available!.

Experimental environment: We conducted all experi-
ments on a cluster with two types of nodes: (a) Forty nodes
(HP SE1102), equipped with two Intel Xeon L5420 processors
running at 2.5 GHz and with 8 GB of main memory, and
(b) Forty eight nodes (Dell SC1435), equipped with two
AMD Opteron 2212 processors running at 2.0 GHz and with
4 GB of main memory. The HP nodes were connected to
an HP ProCurve 2920-48G gigabit network switch, and the
Dell nodes were connected to another, identical switch. Those
switches were interconnected by a 20 Gbps link. All nodes
ran CentOS Linux 7.1 with kernel 3.10 and had the OpenJDK
Runtime Environment 8§ with the 64-Bit Server VM.

A. BerkeleyDB High Availability

BerkeleyDB is a well-known embedded key-value store
that provides high performance data management service
to applications. BerkeleyDB Java Edition is a native Java
implementation that we use in our evaluation as a baseline.

Thttps://github.com/meslahik/dynatree

BerkeleyDB JE uses a B-tree as its underlying data structure.
We use BerkeleyDB with high availability mode enabled. High
availability mode adds replication with master-slave model.
It provides fault-tolerance and increases the performance of
BerkeleyDB under certain workloads. All changes in data
have to be performed by the single read-write replica and
then propagated to the read-only replicas. We configure the
read-write replica to wait for acknowledgements from all read-
only replicas to ensure strong consistency (i.e., linearizability)
and make it comparable to the strong properties offered by
DynaTree.

B. Workloads

In all experiments, unless stated otherwise, the tree is
populated with 100K key-values. Tree node’s minimum size
is 100 key-value pairs. This results in a tree of height 4.
The tree is configured to maintain three replicas per partition.
Keys and values are 4-byte integers and taken from integer’s
positive range, chosen randomly from a uniform distribution.
Each experiment lasts two minutes; we ignore the first and
last 15 seconds. We report peak throughput, achieved by
increasing the number of clients to saturate the system, and
contention-free latency, by configuring the experiments with a
single client. In both setups, DynaTree and BerkeleyDB, we
configured the system so that there is enough memory to keep
all data in memory.

C. Search scalability

In this experiment we investigate the ability of DynaTree to
scale with the increasing number of partitions. Fig. 2 shows
the throughput and latency of DynaTree and the BerkeleyDB-
HA for 1 to 16 partitions, the maximum number of partitions
we can accommodate in our experimental environment.

Since BerkeleyDB is fully replicated, for a workload with
only search requests, replicas can individually respond the
requests. Therefore, BerkeleyDB scales almost linearly with
the number of replicas for search requests. DynaTree also
scales linearly for search requests, though it incurs higher
overhead than BerkeleyDB, due to coordination introduced
by DynaStar which explains its lower peak throughput than
BerkeleyDB. Moreover, since BerkeleyDB replicas have a full
copy of the data, the execution of a search in BerkeleyDB
is local to a replica, which results in lower latency than
DynaTree.

These performance advantages come with a cost though.
In the BerkeleyDB setup, each replica must contain the
entire data. In particular, for the configuration with 16
partitions, BerkeleyDB demands 16 times memory in each
partition/replica in comparison to DynaTree. In case servers
do not have enough resources to keep all data in memory, they
will rely on expensive I/O to read data from disk. DynaTree
does not suffer from this drawback as it partitions the data.

D. Update scalability

We now examine the throughput under an update-intensive
workload. In the beginning of each experiment, 100K keys,
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chosen randomly from a uniform distribution, have been
inserted in the tree. Then, clients in a closed loop choose a key
from the inserted keys and update their value. The number of
keys show the system behavior in the presence of contention.

BerkeleyDB scales poorly with updates as each update
involves all replicas. In DynaTree, however, updates scale
linearly with the number of partitions. This is due to the fact
that updates do not change the structure of the tree. Thus,
updates are single-partition requests to update the key’s value.

Latency graph in Fig. 2 shows how the two systems be-
have when the number of partitions increases. The difference
between the latency of requests in one partition/replica con-
figuration is due to the fact that in DynaTree, the requests
pass the ordering process. This implies some delays even
for requests submitted to one partition. However the latency
does not increase with the number of partitions since update
operation is a single-partition request. In BerkeleyDB, the
latency increases when there are more replicas. The master
replica has to wait for acknowledgements from all replicas.
Therefore, the more the replicas in the system, the more it has
to wait for the completion of updates.

TABLE III: Peak throughput versus tree node size

1000
15866

200
20108

10
7858

50
19077

100
31443

Node min size

Throughput (cps)

E. Insert scalability

In order to show how DynaTree scales out for the 100%
insert workload, we conducted experiments where we insert
keys randomly, chosen from a uniform distribution. Fig. 2
shows the peak throughput and contention-free latency of both
DynaTree and BerkeleyDB as we vary the number of partitions
and replicas, respectively.

Insertions scale well up to four partitions in DynaTree.
Performance stops growing when the oracle is saturated with
the high number of node creations. Each node, when it is full,
does not accept a new key and asks the client to retry the
request by splitting the node. Each split request involves the
oracle for the creation of the new node. When the oracle gets
saturated, it cannot handle more requests and the throughput
stops growing. However, performance does not decrease with
the number of partitions.

BerkeleyDB has good performance with one partition but
loses performance with the growing number of partitions. Each
replica added to the system has to receive all insertions, and
the read-write replica waits for acknowledgements from all
other replicas before responding to the client. This explains
why the throughput for insertion decreases with the number
of replicas.

F. Mixed workload

In this experiment, we assess the performance of DynaTree
and BerkeleyDB with a mixed workload consisting of 80%
of search requests, 15% of update requests, and 5% of insert
requests.



In the mixed workload, BerkeleyDB’s performance in-
creases from one to two partitions, then remains stable up
to eight partitions, after which it decreases. The expensive
updates and inserts affect the mixed workload even with 5
percent of inserts. DynaTree scales well up to 16 partitions.
The reason is that, from the previous experiments, DynaTree
scales linearly with searches and updates, and the rate of
inserts in the mixed workload is within the range that the
oracle can handle. Both BerkeleyDB and DynaTree experience
little variation in latency with the number of replicas and
partitions, respectively.

G. Client cache impact

The client cache plays an important role in DynaTree.
Thanks to the cached data, clients can identify the partitions
involved in the execution of a request before the request is
executed by the servers. However, requests based on outdated
cached data may lead to expensive retries. One question that
arises is whether the client cache indeed improves perfor-
mance.

When the tree structure changes, cached data must be in-
validated and clients may need to retry requests based on stale
data. Retries are expensive since clients need to interactively
rebuild their cached tree, starting from an up-to-date tree node,
or the tree root, in the worst case. Notice that while the client
cache reduces the probability of retrying a request, it does not
eliminate retries due to concurrent accesses to common parts
of the tree.

Finally, we try to mitigate the effect of cache invalidation
by invalidating the client cache step-by-step rather than in-
validating the whole cache. Since the changes in the tree are
propagated bottom-up, it is probable that only a small part of
a branch has been changed.

Fig. 3 shows the performance of DynaTree with and without
the client cache. We conducted experiments with search-
only and insert-only requests in deployments with 4 and
8 partitions. When the clients do not have a tree node in
their cache, they ask for that from the partitions. This de-
creases the performance of both search and insert requests
considerably, with direct implications on performance. The
insertion workloads, which expects high frequency of cache
invalidation, gain performance improvement from client cache.
The improvement is more significant in search workloads due
to no cache invalidation.

H. Node size variation

We assess the effect of tree node size on the peak through-
put. There is a performance tradeoff involving the tree node
size. A large node results in fewer splits, which can improve
the throughput of insertions. However, a large node leads to
expensive marshaling and unmarshaling costs when nodes are
moved from one partition to another. The nodes are moved
between partitions while splitting a node or when a client
asks for an inner nodes to traverse the tree. The results reveal
the tradeoff between the node size and the throughput. Table
IIT shows the peak throughput for 8 partitions versus tree

node minimum size with insert workload. Motivated by these
results, we have configured all other experiments in the paper
with a tree node minimum size equal to 100.

V. RELATED WORK

The organization and maintenance of large ordered indexes
based on B-tree date back to the 70s. [16]. This was later
followed by efforts to introduce concurrency in the execution
of B-tree operations. Investigation into the performance of
concurrent tree algorithms [18], [19] showed that B-link trees
[17] provide the best performance for most operations. In a
B-link tree, nodes own a pointer to their right sibling. The
algorithm follows the links to find the correct tree node when
the node has changed concurrently. This limits the number of
locks for any operation to one. A distributed dictionary based
on a distributed B-link tree was introduced later in [20]. An
extension of B+Tree in P2P approaches for multi-dimensional
information is proposed in [21].

Designing linearizable systems that scale has been consid-
ered in the past (e.g., [5]-[8], [22], [23]). S-SMR [5] ensures
strong consistency for multi-partition requests by synchroniz-
ing partitions. It relies on a static partitioning of state to par-
titions. DynaStar [7] improves on S-SMR by migrating state
variables across partitions in order to execute multi-partition
requests. DynaStar employs well-known graph partitioning
techniques [24] to decide where each object should be. As a
result, it reduces the number of multi-partition requests. Scatter
[22] introduces a distributed hash table in a P2P environment
and provides linearizable consistency semantics but for op-
erations on a single key/value pair. Calvin [25] is a transac-
tion scheduling layer over non-transactional storage systems
that provides strong consistency and ACID transactions. Its
deterministic locking order allows high throughput for multi-
partition requests. Sarek [26] provides parallel ordering in
byzantine fault tolerant environments. It partitions data in
a number of partitions and uses predictions to learn which
partition is involved in the execution of a request. It provides
mechanisms to handle mis-predictions and therefore avoid
rollbacks. Consistent hashing [27] is an approach to partition
data through mapping keys to partitions. It is particularly
useful when the number of partitions may change. While
the mapping of keys to partitions is intended not to change,
unless machines are added or removed, DynaTree benefits
from dynamic partitioning that adapts to workload changes
over time. Dynamic partitioning minimizes the number of
state moves and results in a higher number of single-partition
requests.

There are several studies investigating a distributed B-tree.
Boxwood [28] studies the possibility of having a high-level
scalable data structure as the fundamental storage infrastruc-
ture. It is shown that there is no universal abstraction that fits
all needs. Spanner [8] uses Paxos to support replication for
its global-scale distributed database. Spanner ensures strong
consistency across partitions with synchronized clocks in each
partition. Mitchel et al. [29] introduced a cell distributed B-
tree store. Their model explores the possibility of using the



potential network capabilities when the processor becomes the
bottleneck. HyperDex [30] is another distributed data store
that provides a new search primitive for retrieving objects
by secondary attributes. It deterministically maps objects to
servers according to object values. Objects are duplicated
to increase the performance of searching for an index with
the cost of slower update operations. Aguilera et al. [31]
implemented a distributed B-tree using Sinfonia [32], a dis-
tributed data sharing service. They use distributed transactions
to make changes to B-tree nodes. The overall throughput of
the proposed system is limited due to large number of aborts
in their model. Sowell et al. [33] extended the previous work
to unify operational and analytics systems. Their model is a
multi-version tree with snapshots to increase the performance
at the cost of weaker consistency guarantees. Aguilera et al.
[34] introduced a distributed balanced tree in the core of their
storage engine for Yesquel. A balanced tree differs from a B-
tree to some extent, for example, by providing load balance
rather than size balance. Yesquel does not scale for insert
operations. Even though Yesquel’s design supports replication,
the available implementation does not include replication.
Thus, we do not experimentally compare Yesquel to DynaTree.

VI. CONCLUSION

In this paper, we presented DynaTree, a distributed B+tree
that is both scalable and fault-tolerant. DynaTree provides an
architectural design for a B+tree whose nodes are distributed
among a number of partitions in a partitioned state machine
replication system. It is shown that building a complex data
structure such as a B+tree in partitioned state machine repli-
cation system implies a number of challenges. We discussed
those challenges and presented distributed algorithms for tree
operations which deal with concurrent tree modifications while
ensuring strong consistency. The results show that both read
and update operations scale linearly with the number of
partitions. Moreover, insert operations do not lose performance
with the growing number of partitions.
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