
RamCast: RDMA-based Atomic Multicast

Long Hoang Le
Università della Svizzera italiana (USI)

Switzerland

Mojtaba Eslahi-Kelorazi
Università della Svizzera italiana (USI)

Switzerland

Paulo Coelho
Federal University of Uberlândia

Brazil

Fernando Pedone
Università della Svizzera italiana (USI)

Switzerland

ABSTRACT

Atomicmulticast is a group communication abstraction useful in the
design of highly available and scalable systems. It allows messages
to be addressed to a subset of the processes in the system reliably
and consistently. Many atomic multicast algorithms have been
designed for the message-passing systemmodel. The paper presents
RamCast, the �rst atomic multicast protocol for the shared-memory
system model. We design RamCast by leveraging Remote Direct
Memory Access (RDMA) technology and by carefully combining
techniques from message-passing and shared-memory systems. We
show experimentally that RamCast outperforms current state-of-
the-art atomic multicast protocols, increasing throughput by up to
3.7× and reducing latency by up to 28×.

CCS CONCEPTS

• Computer systems organization→ Distributed architectures; •
Computing methodologies→ Distributed algorithms.

KEYWORDS

group communication, atomic multicast, RDMA

ACM Reference Format:

Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo Coelho, and Fernando Pe-
done. 2018. RamCast: RDMA-based Atomic Multicast. In Middleware ’21:

ACM/IFIP Middleware conference, December 06–10, 2021, Quebec, Canada.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Today’s online services are expected to operate uninterruptedly
despite server failures. Many such services must also handle ever-
increasing demand without performance hiccups. Services that
match these expectations are deemed highly available and scalable.
Many years of research in dependable distributed systems have
deepened the understanding of how to design systems that can
tolerate failures. A golden rule is that abstractions can signi�cantly
reduce complexity, and avoid design and programming errors. For
example, state machine replication, a de facto standard for fault
tolerance, requires replicas to order requests. But ordering requests

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware ’21, December 06–10, 2021, Quebec, Canada

© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

in a distributed system prone to failures is di�cult [22]. By relying
on atomic broadcast, an abstraction equivalent to consensus [11,
25], system designers can decompose ordering from execution in
state machine replication, as atomic broadcast provides reliable and
ordered delivery of requests.

In order to both scale performance and tolerate failures, ser-
vice state is typically sharded and each shard is replicated (e.g.,
[4, 13, 26]). Atomic multicast is a group communication abstrac-
tion that generalizes atomic broadcast by allowing requests to be
propagated to groups of processes (in this case shards) with reli-
ability and order guarantees. Intuitively, all non-faulty processes
addressed by a request must deliver the request and processes must
agree on the order of delivered requests. Atomic multicast o�ers
strong communication guarantees and should not be confused with
network-level communication primitives (e.g., IP-multicast), which
o�er “best-e�ort” guarantees.

Since messages can be multicast to di�erent sets of destinations
and interleave in non-obvious ways, implementing message order
in a distributed setting is challenging. Some atomic multicast pro-
tocols address this challenge by ordering all messages using a �xed
group of processes, regardless of the destination of the messages.
To be e�cient, however, an atomic multicast algorithm must be
genuine: only the message sender and destination processes should
communicate to propagate and order a multicast message [24]. A
genuine atomic multicast is the foundation of scalable and fault-
tolerant systems, since it does not depend on a �xed group of
processes, and ensures reliable communication [12].

Many atomic multicast algorithms have been designed for the
message-passing systemmodel (e.g., [7, 9, 12, 17, 23, 39]). This paper
presents RamCast, the �rst atomic multicast protocol tailor-made
for the shared-memory model. Our motivation is practical: recent
years have seen widespread development and adoption of Remote
Direct Memory Access (RDMA) technology. RDMA extends the tra-
ditional send and receive communication primitives with read and
write operations on shared memory. Essentially, RDMA provides a
node with the capability to read and write the memory of another
node, without involving its processor. In addition, RDMA o�ers
the possibility for a process to safeguard its memory by specifying
which processes can read or write which regions of its memory.
This guarantee is quite powerful. In particular, if every process
revokes the write permission of other processes before writing to
shared memory, then a process that writes successfully knows that
it executed in isolation, without having to take additional steps
(e.g., reading the memory). Protocols can leverage this property to
optimize performance [1].

Middleware ’21, December 06–10, 2021, �ebec, Canada Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo Coelho, and Fernando Pedone

Designing an e�cient RDMA-based atomic multicast protocol
is not trivial, since RDMA’s communication primitives vary sub-
stantially in performance [32, 40]. Figure 1 compares the latency of
TCP/IP to RDMA’s send/receive and read/write operations (setup
details are presented in §5.2). RDMA primitives largely outperform
TCP/IP communication because they bypass the network stack.
RDMA shared-memory primitives deliver performance superior
to message-passing primitives, although the advantage depends
on the message size. In our environment, RDMA read and write
operations have similar performance, unless the write operation
can “inline” data (i.e., with 64-byte messages in our case) [40]. This
happens because the interface adapter has the data available and
does not need to retrieve data from the memory. RamCast uses
remote writes only and avoids remote reads. There are two reasons
for this design. First, most writes are small (e.g., acknowledgments)
and can be inlined. Second, a process detects a write in shared
memory with busy-polling reads, and reading from a process’s
own memory is faster than reading from the memory of another
process. Consequently, process p can read process q’s write more
e�ciently when q issues a (remote) write on p’s memory and p

issues busy-polling reads on its own memory.

 1

 2

 4

 8

 16

 32

 64

 128

 256

64B 512B 1KB 2KB 4KB 8KB 16KB 32KB

L
at

en
cy

 (
u

s)

Message size

TCP/IP

RDMA send/receive

RDMA read

RDMA write

Figure 1: Performance comparison between communication

primitives.

In order to deliver performance that largely outperforms themost
e�cient message-passing atomicmulticast protocols, RamCast com-
bines ideas from Skeen’s genuine atomic multicast algorithm [10], a
blocking algorithm that has been used as the basis for fault-tolerant
atomic multicast protocols (e.g., [12, 23]), the leader-follower repli-
cation model, explored by atomic multicast and broadcast protocols
(e.g., [2, 5, 23, 31]), and RDMA technology, recently used to boost the
performance of distributed systems (e.g., [1, 32, 33, 40]). RamCast
is the �rst shared-memory genuine atomic multicast algorithm
that fully exploits RDMA capabilities. RamCast can order messages
multicast to a single group after 2 RDMA write delays, at the leader
process, and order messages multicast to multiple groups after 3
RDMA write delays, at both the leader and followers. As a refer-
ence, the most delay-e�cient message-passing atomic multicast
algorithm orders messages after 3 communication delays at the

leader process and after 4 communication delays at the followers
[23]. We have implemented and evaluated RamCast under various
conditions. We show that RamCast outperforms current state-of-
the-art atomic multicast protocols, increasing throughput by up to
3.7× and reducing latency by up to 28×.

The remainder of the paper is structured as follows. Section 2
presents the system model, a formal de�nition of the atomic mul-
ticast problem, and the basics of Remote Direct Memory Access.
Section 3 details the RamCast protocol. We start with a short de-
scription of the ideas that have inspired RamCast, then describe
its normal behavior, in the absence of failures, and how it handles
failures. Section 4 presents our prototype, and Section 5 details its
performance. Section 6 surveys related work and Section 7 con-
cludes the paper.

2 BACKGROUND

In this section, we present the systemmodel (§2.1), de�ne the atomic
multicast communication problem (§2.2), and overview RDMA, the
key technology used by RamCast (§2.3).

2.1 System model

We assume a hybrid distributed system model in which processes
can use both message-passing and shared-memory [1]. The system
is composed of a set of client and server processes. Processes com-
municate by exchanging messages or accessing portions of each
other’s memory. Processes are correct, if they do not fail, or faulty,
otherwise. In either case, processes do not experience arbitrary
behavior (i.e., no Byzantine failures). Our protocols ensure safety
under both asynchronous and synchronous execution periods. To
ensure liveness, we assume the system is partially synchronous [20],
that is, it is initially asynchronous and eventually becomes synchro-
nous. The time when the system becomes synchronous is called the
Global Stabilization Time (GST), and it is unknown to the processes.
Before GST, there are no bounds on communication and processing
delays; after GST, such bounds exist but are unknown.

A process can share memory regions with other processes and
de�ne permissions for those shared memory regions. Process q can
read and write a registerv inp’s memory regionmr with operations
read(p,v) and write(p,v,value), respectively. A permission asso-
ciated with memory regionmr de�nes disjoint sets of processes,
Rmr ,Wmr , and RWmr , that can read, write, and read-write the reg-
isters in regionmr . Process q has permission to read (respectively,
write and read-write) v in p’smr if q ∈ Rmr (resp.,Wmr ,RWmr).
A process can initially assign permissions for its shared memory
regions and later change these permissions.

Processes can also communicate by exchanging messages over
a set of directed links using primitives send(p,m) and receive(m),
where p is the addressee of messagem. We assume messages are
unique. Communication links are reliable in that everymessage sent
by a process p to another process q is guaranteed to be eventually
delivered by q if both p and q are correct. Moreover, a message is
received at most once, and only if it was previously sent.

2.2 Problem statement

Let Π be the set of server processes in the system and Γ ∈ 2Π the set
of process groups in the system, where |Γ | = k . Groups are disjoint

RamCast: RDMA-based Atomic Multicast Middleware ’21, December 06–10, 2021, �ebec, Canada

and each group contains n = 2f + 1 processes, where f is the
maximum number of faulty processes per group. The assumption
about disjoint groups has little practical implication since it does not
prevent collocating processes that are members of di�erent groups
on the same machine. Yet, it is important since atomic multicast
requires stronger assumptions when groups intersect [24]. A set of
f + 1 processes in group д is a quorum in д.

A process atomically multicasts a messagem to groups inm.dst
by invoking primitive multicast(m), wherem.dst is a special �eld
in m with m’s destinations; a process delivers m with primitive
deliver(m).We de�ne the relation < on the set of messages processes
deliver as follows:m < m′ i� there exists a process that deliversm
beforem′.

Atomic multicast ensures the following properties:

• Validity: if a correct process p multicasts a messagem, then
eventually all correct processes q ∈ д, where д ∈ m.dst,
deliverm.
• Integrity: for any process p and any messagem, p delivers
m at most once, and only if p ∈ д, д ∈ m.dst, and m was
previously multicast.
• Uniform agreement: if a process p delivers a messagem, then
eventually all correct processes q ∈ д, where д ∈ m.dst,
deliverm.
• Uniform pre�x order: for any two messagesm andm′ and
any two processes p and q such that p ∈ д, q ∈ h and {д,h} ⊆
m.dst ∩m′.dst, if p deliversm and q deliversm′, then either
p deliversm′ beforem or q deliversm beforem′.
• Uniform acyclic order : the relation < is acyclic.

Atomic broadcast is a special case of atomic multicast in which
there is a single group (i.e., Γ is a singleton).

We require atomic multicast protocols to be genuine [24]: an
atomic multicast algorithm is genuine if in any run in which a
messagem is multicast, then for every process p that participates
in ordering m, p is the process that multicasts m or p ∈ д and
д ∈m.dst .

2.3 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a protocol that enables
direct data access to the memory of a remote machine without in-
volving the operating system and processor of the remote machine.
RDMA implements the network stack in hardware, and provides
both low latency and high bandwidth by bypassing the kernel and
supporting zero-copy communication. RDMA provides two-sided
operations (e.g., send, receive), one-sided operations (e.g., read,
write), and atomic operations (e.g., compare-and-swap, fetch-and-
increment). The two-sided operations involve the CPU of the remote
host and rely on user-space memory copies. Thus, they introduce
overhead when compared to one-sided RDMA verbs [18]. Besides,
previous studies have established that remote write operations pro-
vide performance superior to remote reads, and send and receive
operations, and much better performance than atomic operations
[32, 33, 40]. In RamCast’s normal operation, processes communi-
cate using remote write operations only. We refrain from using
remote read operations, and resort to send and receive operations
when handling failures, since they lead to simpler logic.

RDMA provides three transport modes: Reliable Connection
(RC), Unreliable Connection (UC) and Unreliable Datagram (UD).
While RC and UC are connection-oriented and support only one-
to-one data transmission, UD supports both one-to-one and one-to-
many transmission without establishing connections. RC ensures
data transmission is reliable and correct in the network layer, while
UC does not have such a guarantee. In this work, we use RC to
provide in-order reliable delivery. To establish a connection between
two remote hosts, the RDMA-enabled network card (RNIC) on each
host creates a logical RDMA endpoint known as a Queue Pair (QP),
including a send queue and a receive queue for storing data transfer
requests. Operations are posted to QPs as Work Requests (WRs) to
be consumed and executed by the RNIC. When an RDMA operation
is completed, a completion event is pushed to a Completion Queue
(CQ). Operations can bemade unsignaled by setting a �ag in theWR;
these verbs do not generate a completion event, and the application
detects completion using application-speci�c methods. Each host
makes local memory regions (MR) available for remote access by
asking its OS to pin the memory pages that would be used by the
RNIC. Both QPs and MRs can have di�erent access modes (i.e.,
read-only or read-write). The hosts specify the access mode when
initializing the QP or registering the MR, but the access mode can be
dynamically updated later. The host can register the same memory
for di�erent MRs. Each MR then has its own access mode. In this
way, di�erent remote machines can have di�erent access rights to
the same memory region.

3 RAMCAST: RDMA-BASED ATOMIC
MULTICAST

In this section, we recall the building blocks that inspired RamCast
(§3.1) and present its design and algorithms. We start with an
overview of RamCast (§3.2), then detail its data structures (§3.3)
and algorithms in the absence of failures (§3.4) and in the presence
of failures (§3.5). We argue for the correctness of RamCast (§3.6)
and conclude with a few extensions to the protocol (§3.7).

3.1 Building blocks

RamCast leverages two ideas, Skeen’s atomic multicast algorithm
[10] and Protected Memory Paxos [1]. Skeen’s algorithm orders
messages multicast to multiple processes consistently but it does
not tolerate failures. Protected Memory Paxos takes advantage of
RDMA permissions to improve the e�ciency of Paxos [35]. Like
Paxos, it implements atomic broadcast (i.e., it assumes a single
group of processes).

3.1.1 Skeen’s atomic multicast. In Skeen’s algorithm, each process
assigns unique timestamps to multicast messages based on a logical
clock [34]. The correctness of the algorithm stems from two basic
properties: (i) processes in the destination of a multicast message
�rst assign tentative timestamps to the message and eventually
agree on the message’s �nal timestamp; and (ii) processes deliver
messages according to their �nal timestamp. These properties are
implemented as follows.

(i) To multicast a messagem to a set of processes, p sendsm to
the destinations. Upon receivingm, each destination updates
its logical clock, assigns a tentative timestamp tom, stores

Middleware ’21, December 06–10, 2021, �ebec, Canada Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo Coelho, and Fernando Pedone

Algorithm 2 Normal case (stable leader)

1: Client c multicasts messagem to groups inm .dst as follows:

2: for each h inm .dst , for each q in h {Task 1}
3: cptr [q]← cptr [q] + 1
4: Relay (c,m,m .dst, cptr)

5: Server p in group д executes as follows:

6: when ∃c, i :M[c, i].stat =mcast and p=Leader [д] {Task 2}
7: clock ← clock + 1
8: for each follower q in д and each leader q in M[c, i].dst
9: j ← M[c, i].ptr [q]
10: write(q, T [c, j].tmp[д], 〈clock, p〉)
11: write(q, T [c, j].rnd[д], round)
12: if write denied then end task

13: when ∃c, i :M[c, i].stat =mcast and
T [c, i].rnd[д] = Round[д] {Task 3}

14: clock ←max (clock, t ime (T [c, i].tmp[д]))
15: for each h in M[c, i].dst , for each q in h
16: j ← M[c, i].ptr [q]
17: write(q, M[c, j].ack[p], Round[д])

18: when ∃c, i, h :M[c, i].stat = mcast and
T [c, i].rnd[h] = Round[h] and h , д {Task 4}

19: clock ←max (clock, t ime (T [c, i].tmp[д]))
20: for each follower q in д
21: j ← M[c, i].ptr [q]
22: write(q, T [c, j].tmp[h], T [c, i].tmp[h])
23: if write denied then end task

24: when ∃c, i, h :M[c, i].stat = mcast and ∃quorum Q in h:
for each q in Q : M[c, i].ack[q] = Round[h] {Task 5}

25: M[c, i].tmp ←max (M[c, i].tmp, T [c, i].tmp[h])
26: if for each group h in M[c, i].dst : ∃quorum Q in h:

for each q in Q : M[c, i].ack[q] = Round[h] then
27: M[c, i].stat ← ordered

28: when ∃c, i :M[c, i].stat = ordered and
∄d, j :M[d, j].stat ∈ {ordered, mcast} and
M[d, j].tmp < M[c, i].tmp {Task 6}

29: deliverm
30: M[c, i].stat ← done

31: procedure Relay (c,msд, dst, ptr)
32: for each h in dst : for each q in h
33: write(q, M[c, ptr [q]].msд,msд)
34: write(q, M[c, ptr [q]].dst, dst)
35: write(q, M[c, ptr [q]].ptr, ptr)
36: write(q, M[c, ptr [q]].stat, mcast)

will be bigger, and writes the read timestamp in the memory
of each one of its followers. This task is executed by the
leader of a group only, since only the leader is updated with
timestamps from the leader of another group (see Task 2).
The reason why only the leader of a group is updated is
to ensure that any timestamps assigned by the leader are
consistent with any other timestamps assigned by the group.
• Task 5. When a message has a timestamp proposed by a
leader from each destination group of the message, and a
quorum of processes in each destination group agrees with
the proposed timestamp, the message becomes ordered.
• Task 6. A process delivers an ordered message when it can
assert that no other messages can be assigned a smaller
timestamp.

In the normal case, a message multicast by a client to multiple
groups is delivered by the leaders and the followers of the addressed
groups after three RDMA write delays (see Figure 3). In Section 3.7,
we discuss how messages addressed to a single group can be deliv-
ered by the group’s leader after two RDMA write delays.

3.5 Handling failures

RamCast handles the failure of a leader using a mechanism similar
to Paxos. As a consequence, it can tolerate multiple processes that
believe to be leader in a group without violating safety. In order
to ensure progress, however, eventually there should be only one
operational leader process per group. When a process becomes
leader, it needs to catch upwith the previous leader. In the following,
we describe how the newly elected leader does this. The procedure
uses both shared memory and message passing for communication.
In RDMA, message passing is less e�cient than shared memory,
but it reduces complexity, as we do not have to handle concurrent
accesses to shared memory. Since failures are hopefully rare, we
consider that trading performance for simplicity is acceptable.

• Task 7.When a process that will become the next leader of
the group suspects the current leader, it determines its �rst
undecided slot (FUS) per client in its shared bu�ers. A slot
is undecided if its state is equal to mcast. Then, the new
leader chooses a round and sends a catch-up message to
every server process in the system. Since slot i in the new
leader’s bu�er may correspond to a di�erent slot at another
process, the new leader must convert its FUS into one that
is meaningful for the contacted process (line 7).
• Task 8. A process p will consider a catch-up message from
new leader q in group h if q has picked a round bigger than
the current round for h at p. This is a requirement from
Paxos, to ensure that a new leader will not decide on a value
di�erent than a previously decided value. If the catch-up
message can be considered, then p revokes permissions to
the previous leader, grants permission to the shared bu�er
T to q, collects all information requested by q, and sends it
to q. Finally, p updates h’s round and leader.
• Task 9. When the new leader receives responses for a catch-
up request from a quorum of processes in a group, it handles
each entry i for every client c received as follows. First, the
process selects the response with the largest round. From
Paxos, this ensures that if a timestamp has been chosen, it can
only be the onewith the largest round. The next steps depend
on whether the process received the responses from its own
group or not. If the process received the responses from
its own group, then it picks the timestamp in the selected
response, if any, or picks a timestamp using its own clock.
In either case, the process proposes the picked timestamp to
all other members of its group and the leaders of the other
involved groups. If the process received the responses from
another group, then it forwards the timestamp in the selected
response to the followers in its group.

We also consider the case of faulty clients, whomay fail to update
all destinations of a multicast message.

• Task 10. When a process detects the failure of a client, it
relays all the messages multicast by the faulty client that
have not been ordered yet. This means that only messages
in the mcast state need to be relayed.

RamCast: RDMA-based Atomic Multicast Middleware ’21, December 06–10, 2021, �ebec, Canada

Algorithm 3 Handling failures and suspicions

1: when suspect Leader [д] and p is д’s next leader {Task 7}
2: for each c do
3: FUS[c]← i , where M[c, i] is the �rst undecided entry
4: round ← 〈t ime (round) + 1, p〉
5: for each h in Γ
6: for each q in h
7: for each c : xFUS[c]← M[c, FUS[c]].ptr [h, q]
8: send (catch_up, xFUS, round) to q

9: when receive (catch_up, FUS, round) from q in h and
round > Round[h] {Task 8}

10: revoke previous permissions and grant permission to q
11: pend ← ∅
12: for each c do
13: let j be the last entry in M such that M[c, j] ,⊥
14: for i in FUS[c]..j do
15: if h ∈ M[c, i].dst then
16: pend ← pend ∪ (c, i, M[c, i].msд, M[c, i].dst,

M[c, i].ptr, T [c, i].tmp[д], T [c, i].rnd[д])
17: send (my_state, pend) to q
18: Round[h]← round
19: Leader [h]← q

20: when receive (my_state, pend) from quorum Q in h,
including p’s response if д = h {Task 9}

21: baд ← union of all received pend from h
22: letmaxts be the largest timestamp tmp in baд
23: clock ←max (clock, t ime (maxts))
24: for each (c, i, −, −, −, −, −) in baд
25: let (c, i,msд, dst, ptr, tmp, rnd) in baд be such that

∄(c, i, −, −, −, −, rnd ′) in baд and rnd ′ > rnd
26: if д = h then
27: if rnd > 0 then
28: t ← tmp
29: else
30: clock ← clock + 1
31: t ← 〈clock, д〉
32: for each q in д and each leader q in dst
33: write(q, T [c, ptr [q]].tmp[д], t)
34: write(q, T [c, ptr [q]].rnd[д], round)
35: if write denied then end task
36: else
37: for each q in д
38: write(q, T [c, ptr [q]].tmp[h], tmp)
39: if write denied then end task

40: when suspect client c {Task 10}
41: for each i such that M[c, i].stat = mcast

42: Relay (c, M[c, i].msд, M[c, i].dst, M[c, i].ptr)

3.6 Correctness

In this section, we argue that RamCast implements atomic multicast,
as de�ned in §2.2.

Proposition 1. (Uniform integrity) For any message m, every

process p deliversm at most once, and only if p is a destination ofm

andm was previously multicast.

Proof: Process p deliversm at Task 6 ifm’s state is ordered. Af-
ter deliveringm, p setsm’s state to done, and thusm cannot be
delivered more than once.

Let c be the client that multicastsm to groups in dst , and let p be
in group д. From Task 6, p only deliversm if it is in p’sM bu�er and
m’s state is ordered. Messagem’s state is set to ordered in Task
5 if its current state is mcast. A message’s state is set to mcast in
procedure Relay, which is invoked in two cases: (a) by client c upon
multicastingm (Task 1) to groups in dst , in which case д ∈ dst ; or
(b) by some process q that suspects c (Task 10), hasm in its bu�er in

state mcast, andд is a destination ofm. In case (b),m was written in
q’s bu�er either (b.1) directly by c or (b.2) indirectly by some other
process. In any case, there is some process r such thatm is included
in r ’s bu�er by c . It follows from Task 1 that p is a destination ofm
andm was multicast by client c . �

Lemma 1. If all correct processes in the destination of an atomically

multicast message m have m in their M bu�er in the mcast state,

then they eventually setm to the ordered state.

Proof: Let m be addressed to groups in dst and q be a correct
process addressed bym. We claim that for each h ∈ dst , q will have
a timestamp for h that is acknowledged by a quorum of processes
in h. By the leader election oracle and the fact that each group has
a majority of correct processes, group h eventually has a stable
correct leader l . Either (a) l executes Task 2 and proposes its clock
value ash’s timestamp or (b) l executes Task 7 to replace a suspected
leader. In (b), l sends a catch_up message to all processes and will
receive for each group д ∈ dst the timestamp proposed in д, if
any, and the corresponding acknowledgements from processes in
д (Task 8). For the case where h = д, l will pick the timestamp
decided by a previous leader or choose one if no timestamp has
been decided (Task 9). Thus, in both cases (a) and (b), the leader
writes the chosen timestamp in theM bu�er of each process inh and
in the leaders of other groups in dst . From Task 3, every follower
in h will acknowledge this timestamp in the bu�er of each process
in the destination ofm. From Task 4, when l has a timestamp from
д , h, l writes the timestamp in the bu�er of its followers, which
concludes the claim. Therefore, eventually q has a timestamp for
every group in dst , can computem’s �nal timestamp, and setm’s
state as ordered.

Lemma 2. If a correct process p has an atomically multicast mes-

sagem in itsM bu�er in the ordered state, p eventually deliversm.

Proof: Assume for a contradiction that q does not deliverm. Thus,
there is some message m′ in the bu�er such that m , m′, m′’s
timestamp is smaller than m’s timestamp, and m′’s state is not
done.

We �rst show that any message added in the bu�er after m
becomes ordered has a timestamp bigger than m’s timestamp.
Messagem only becomes ordered after it has timestamps from all
groups inm’s destinations dst . When q reads a timestamp x form
from some group in dst , q updates its clock such that it contains
the maximum between its current value and x . Since the next event
that q handles for a messagem′′ will increment its clock, it follows
thatm′′ will have a timestamp bigger than x .

We now show that every message that contains a timestamp
smaller than m’s �nal timestamp ts is eventually delivered and
its state set to done. To see why, letm′ be the message with the
smallest timestamp in the bu�er. Thus, such a message is eventually
delivered and its state set to ordered. Eventually,m will be the
message in the bu�er with smallest timestamp and therefore deliv-
ered, a contradiction. We conclude then that q eventually delivers
m. �

Middleware ’21, December 06–10, 2021, �ebec, Canada Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo Coelho, and Fernando Pedone

Proposition 2. (Validity) If a correct client c multicasts a message

m, then eventually every correct process p in m’s destination dst

deliversm.

Proof: Upon multicastingm, c relaysm to groups in dst (see Task
1). The Relay procedure then copies m to the M bu�er of every
correct process p in groups in dst and sets its state to mcast. From
Lemma 1, it follows that every correct process p setm’s state to
ordered. From Lemma 2, p eventually deliversm. �

Proposition 3. (Uniform agreement) If a process p delivers a

messagem, then eventually all correct processes q inm’s destination

dst deliverm.

Proof: For process p to deliverm, from Task 6, p has a timestamp
for every group h in dst in theM bu�er such that ts is the largest
among these timestamps. Moreover, there is no messagem′ in the
bu�er such thatm ,m′, ts < y, where y is a timestamp assigned
tom′, andm′ is not ordered.

We �rst show by contradiction that q eventually hasm in itsM
bu�er. Let c be the client that multicastsm. If c is correct then, c
writesm in q’s bu�er, so consider that c fails before it can writem
in q’s bu�er. Since p deliversm, it has a quorum of acknowledges
from each group in dst . Any quorum includes at least one correct
process, which from Task 10, eventually suspects c and relaysm to
all processes in dst , including q, a contradiction.

It follows from Lemma 1 that q eventually sets the state ofm to
ordered in its bu�er, and from Lemma 2 that q eventually delivers
m. �

Proposition 4. (Uniform pre�x order) For any two messagesm

andm′ and any two processes p and q such that {p,q} ⊆ dst ∩ dst ′,

wheredst anddst ′ are the groups addressed bym andm′, respectively,

if p deliversm and q deliversm′, then either p deliversm′ beforem

or q deliversm beforem′.

Proof: The proposition trivially holds if p and q are in the same
group, so assume p is in group д and q is in group h and suppose,
by way of contradiction, that p does not deliverm′ beforem nor
does q deliverm beforem′. Without loss of generality, suppose that
m’s timestamp ts is smaller thanm′’s timestamp ts ′.

We claim that q insertsm into theM bu�er before deliveringm′.
In order form (respectively,m′) to be delivered by p (resp., q), p’s
(resp., q’s)M bu�er must contain a timestamp tsд from group д and
tsh from group h (resp., ts ′д from group д and ts ′

h
from group h).

From Task 2 (or Task 9 if some process has suspected the leader),
the leader l in group д must have included the timestamp tsд for
messagem and ts ′д for messagem′ in p’sM bu�er and both times-
tamps have been acknowledged by a quorum of processes in group
д. Assume that the leader l has written tsд before ts ′д to theM bu�er
of every follower in group д and the leader lh in group h. From
Task 2, we have tsд < ts ′д . Therefore, from Task 4, lh will write to
theM bu�er of every follower in group h, including q, both tsд for
messagem and ts ′д for messagem′.

Consequently, from the claim, q delivers m before m′ since
m.ts < m′.ts , a contradiction that concludes the proof. �

Proposition 5. (Uniform acyclic order) Let relation < be de�ned

such thatm < m′ i� there exists a process that deliversm beforem′.

The relation < is acyclic.

Proof: Suppose, by way of contradiction, that there exist messages
m1, ...,mk such that m1 < m2 < ... < mk < m1. From Task
6, processes deliver messages following the order of their �nal
timestamps. Thus, there must be processes p and q such that the
�nal timestamps they assign tom1, tsp and tsq , satisfy tsp < tsq ,
a contradiction since both p and q have the same timestamps for
each group in dst in Task 6. �

Theorem 1. RamCast implements atomic multicast.

Proof: This follows directly from Propositions 1 through 5. �

3.7 Extensions

We now discuss how to speed up the execution of messages multi-
cast to a single group of processes and how to reuse entries in the
client bu�ers (i.e., essentially, how to turn the data structures into
circular bu�ers).

Since only one process at a time can hold permission to write in
the timestamp bu�er of processes, if a leader manages to write its
proposed timestamp for a multicast message (Task 2) in a quorum of
processes, it knows that the timestamp proposed has been accepted
by the followers and can change the message’s state to ordered.
Thus, at the leader the message is ready to be delivered without the
acknowledgements from the followers. We use this optimization to
speed up the delivery of single-group messages at the leader.

A client can recycle a bu�er slot when the slot will not be needed
by any processes. This is the case when all message destinations
have delivered the message (i.e., message state is done). Therefore,
periodically, all message destinations inform the client about the
slot with their Last Delivered Message (LDM). The client then com-
putes the Last Stable Group Message (LSGM) as the lowest LDM
received in the group. The client can safely update the pointer to
the tail of its bu�er to the LSGM. This procedure, although simple,
requires feedback from all processes in a group. To tolerate failures,
processes must checkpoint their state. When f + 1 processes in a
group have checkpointed a state that includes the i-th slot, then
the group’s LSGM can be updated to i .

4 IMPLEMENTATION

We implemented a prototype of RamCast in Java using jVerbs
(DiSNI library) version 2.1,1 an open-source user-level networking
library developed by IBM that supports RDMA communication [45].
jVerbs o�ers low latencies to applications running inside a Java
Virtual Machine by exposing RDMA network hardware resources
directly to the JVM. The source code of RamCast is publicly avail-
able.2

In RamCast, we applied a number of optimizations to further
decrease latency and improve performance. When establishing the
connections between hosts, we use two-sided operations (e.g., send
and receive) to exchange memory addresses, and use the one-sided

1https://github.com/zrlio/disni
2https://github.com/longle255/libRamcastV3

RamCast: RDMA-based Atomic Multicast Middleware ’21, December 06–10, 2021, �ebec, Canada

writes for data transfer. As the two-sided operation is only used for
control information at the start up and in the case of failures, this
procedure does not a�ect performance of normal execution. The
one-sided operation for the actual transfer makes the overall data
transfer e�cient. In RDMA, writes and sends with payloads below
a limit speci�ed by devices may be written to the work request
(WR) as inlined data, thus the RNIC does not need to fetch that
payload via a DMA read. In RamCast, we inline all writes whose
payload is lower than the inline limit (i.e., 64 bytes) [40].

Normally, the RNICs actively poll a completion event (CE) from
the CQ to ensure a write resides in remote memory. Polling CE is
time consuming as it involves synchronization between the RNICs
on both sides of a CQ [46]. Thus, for multi-group messages, we
employ selective signaling [32] to reduce this overhead by only
checking for a CE after pushing a number of writes. When using
selectively signaled writes with requests of size n, up to n − 1

consecutive operations can be unsignaled, i.e., a CE will not be
pushed for these operations. Note that if an operation ended with
an error (e.g., a leader’s write permission is revoked), it will generate
a CE even if it was supposed to use unsignaled completion.

In a sharedmemory context, when a process reads entries that are
updated by another process, it is important that the reader process
does not read incomplete data that has not been fully updated by the
writer process, (e.g., processes in RamCast continuallymonitor their
shared bu�er for new messages and may be reading an incomplete
entry). We resolve this issue by adding an extra canary value at
the end of each entry, as used in previous works [2, 18, 28, 32, 46].
Before writing a message to a remote host, a process in RamCast
adds the checksum of the entry to the end of the entry. A remote
process always �rst checks the checksum value and waits for the
checksum to match the entry.

5 EXPERIMENTAL EVALUATION

In this section, we discuss the evaluation rationale (§5.1), describe
the experimental environment (§5.2), and present the three sets of
experiments we conducted (§5.3–5.5).

5.1 Evaluation rationale

We conducted three sets of experiments. In the �rst set (§5.3), we
seek to understand the e�ects of message size on RamCast’s perfor-
mance. In the second set (§5.4), we compare RamCast’s performance
to WBCast’s, an e�cient message-passing atomic multicast proto-
col. As we will see, RamCast largely outperforms WBCast in both
throughput and latency. Even though both protocols are assessed
in the same environment, one may wonder whether RamCast’s
advantage is a result of RDMA’s e�cient write operations (used
by RamCast) when compared to message-passing operations (used
by WBCast). In the third set of experiments (§5.5), we compare
RamCast’s “inherent performance” (i.e., in the absence of contention
and queueing e�ects) to high-performance atomic broadcast proto-
cols that rely on RDMA technology (APUS and Mu) or bypass the
network stack (Kernel Paxos).

In the following, we brie�y comment on these protocols and
their con�guration in the experimental study. We provide more
details about each protocol in Section 6.

White-Box Atomic Multicast (WBCast) [23] is a genuine atomic
multicast protocol that delivers exceptional performance, thanks to
some algorithmic optimizations. WBCast provides a C-language im-
plementation that uses libevent for communication.3 We extended
the code to include additional statistics information.We includeWB-
Cast in our evaluation because it is currently the best-performing
message-passing atomic multicast protocol.

APUS is a general-purpose atomic broadcast protocol that imple-
ments Paxos. As part of the execution, nodes store orderedmessages
on stable storage (e.g., SSD). In order to ensure a fair comparison
among the various protocols, which store messages in main mem-
ory only, we con�gured APUS with a RAM disk storage instead.

Mu [1] implements Protected Memory Paxos. It was designed
to replicate micro services and optimizes atomic broadcast in one
important aspect: by co-locating clients and the Paxos’s leader
on the same host. As a consequence, a broadcast message can be
ordered after one RDMA write delay (i.e., done by the leader to
place the message in the memory of the followers). As described in
Section 3.1.2, this is enough to ensure that the message is ordered.
Unfortunately, co-locating clients and leaders on the same host is
not possible in atomic multicast: the motivation and scalability of
atomic multicast stem from the fact that one can create multiple
groups, each one operating independently. We consider Mu in our
evaluation since it is the best-performing RDMA-based atomic
broadcast protocol.

Kernel Paxos [21] is a Multi-Paxos implementation that improves
the performance of the original libpaxos library.4 The main idea is
to reduce system calls by running Paxos logic in the Linux kernel,
bypassing the network stack, and avoiding the TCP/IP stack. We
used the original code5 and deployed a single group with three repli-
cas. We compare RamCast to Kernel Paxos because both systems
avoid the overhead of the communication stack.

5.2 Environment and con�guration

We conducted all experiments in CloudLab [19] with two sets of
nodes: (a) R320 nodes, equipped with one eight-core Xeon E5-2450
processor running at 2.1GHz, 16 GB of main memory, and a Mel-
lanox FDR CX3 NIC; and (b) XL170 nodes, equipped with one
ten-core Intel E5-2640v4 processor running at 2.4GHz, 64 GB of
main memory, and a Mellanox ConnectX-4 NIC. A 10 Gbps network
link with around 0.1ms round-trip time connects all nodes running
Ubuntu Linux 18.04 with kernel 4.15 an Oracle Java SE Runtime
Environment 11. In all experiments, clients and servers are inde-
pendent processes. Clients submit requests in a closed-loop, that is,
a client multicasts a message to servers and waits for a response
before multicasting the next message. In all RamCast experiments,
clients measure latency as the interval between the multicast of
a message and the response received from the �rst server in each
group addressed by the message. In all protocols, each group has 3
processes with in-memory storage.

3https://github.com/imdea-software/atomic-multicast
4https://bitbucket.org/sciasciad/libpaxos
5https://github.com/esposem/Kernel_Paxos

Middleware ’21, December 06–10, 2021, �ebec, Canada Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo Coelho, and Fernando Pedone

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

L
at

en
cy

 (
u

s)

Throughput (Kmps)

64B

512B

1KB

2KB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Latency (us)

64B

512B

1KB

2KB

 0

 25

 50

 75

 100

 125

 150

 0 50 100 150 200 250

L
at

en
cy

 (
u

s)

Throughput (Kmps)

4KB

8KB

16KB

32KB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60

Latency (us)

4KB

8KB

16KB

32KB

Figure 4: RamCast performance with di�erent message sizes: 64B to 2 KB (top) and 4 KB to 32 KB (bottom), throughput versus

latency (left) and latency cumulative distribution function for a single client (right).

5.3 The impact of message size

In this experiment, conducted onXL170 nodes, wemeasure RamCast
throughput and latency for di�erent message sizes. For each mes-
sage size, we increase the number of clients until the system is
saturated (i.e., throughput increases minimally with the number of
clients). Figure 4 (left) shows that up to 4KB messages, the impact
of message size on the system throughput is negligible, with nearly
250 thousand messages delivered per second. As the message size
increases past 4KB, the maximum throughput decreases with 70
thousand messages per second for 32KB messages. The latency
cumulative distribution function (CDF) in Figure 4 (right) exhibits
minimum latency variation for messages with up to 2KB, around
8 microseconds at 95th percentile. At 4KB messages, the latency
slightly goes up to around 10 microseconds.

5.4 The performance of atomic multicast

The next set of experiments assess RamCast behavior in scenarios
with up to 8 groups of 3 replicas each, deployed on XL170 nodes.
The �rst experiment comprises executions in which clients mul-
ticast single-group 64-byte messages in setups with 1, 2, 4, and 8
groups. Figure 5 (top left) shows the aggregated throughput results
when the system is saturated. The results show that the throughput
of both RamCast and WBCast grow linearly with the number of
groups for single-group messages. RamCast outperforms WBCast,
however, by a factor of 3.6× in all con�gurations. Since groups
do not exchange any information when dealing with single-group
messages, the latency CDF is similar for all con�gurations, no mat-
ter the number of groups in the system, as depicted in Figure 5
(middle and bottom left). RamCast’s e�cient single-group multicast
(see §3.7) together with RDMA’s high-performance writes grant

RamCast a 28× median latency advantage to WBCast (i.e., ∼7 us
against ∼200 us).

The next experiment evaluates the protocols with multi-group
messages of 64 bytes addressed to all the groups. This is the most
stressful case for a genuine atomic multicast protocol, since to order
a multicast message, all groups addressed by the message must
interact. Therefore, the more groups addressed by a message, the
lower the expected performance. RamCast’s maximum throughput
is greater than WBCast’s in every con�guration with 233, 145, 80,
and 40 thousand messages per second for 1, 2, 4, and 8 destination
groups against 63, 50, 35, and 27 thousand for WBCast, as shown
in Figure 5 (top right). The values correspond to improvements of
3.7×, 2.9×, 2.3× and 1.5×, respectively.

The di�erence is more expressive when we consider the latency
for a single client, i.e., when both protocols are contention-free.
Figure 5 (middle right) shows that the latency CDF for RamCast
with values of 8, 46, 78 and 150 microseconds for 1, 2, 4, and 8 des-
tination groups if we consider the 95th percentile. The equivalent
values for WBCast, as depicted in Figure 5 (bottom right), are 214,
445, 673, and 1055 microseconds, representing 20× to 7× slower
delivery times when compared to RamCast’s.

5.5 RamCast’s inherent performance

We now compare RamCast to atomic broadcast protocols using a
single group of three replicas, and 64-byte and 1-kilobyte messages,
on R320 nodes. Figure 6 shows a similar trend for both message
sizes. Mu’s co-location of clients and leader on the same host (with
the resulting single RDMA write delay) signi�cantly pays o�: 4.8×
and 3.1× reduction in the median latency with respect to RamCast

RamCast: RDMA-based Atomic Multicast Middleware ’21, December 06–10, 2021, �ebec, Canada

 0

 300

 600

 900

 1200

 1500

 1800

1 2 4 8

T
h
ro

u
g
h
p
u
t

(K
m

p
s)

Number of groups

RamCast

WBCast

 0

 50

 100

 150

 200

 250

1 2 4 8

T
h

ro
u

g
h

p
u

t
(K

m
p

s)

Number of groups

RamCast

WBCast

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 6 7 8 9 10

RamCast Latency (us)

1 group

2 groups

4 groups

8 groups

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

RamCast Latency (us)

1 group

2 groups

4 groups

8 groups

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450

WBCast Latency (us)

1 group

2 groups

4 groups

8 groups

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 150 300 450 600 750 900 1050 1200 1350 1500

WBCast Latency (us)

1 group

2 groups

4 groups

8 groups

Figure 5: Performance of atomic multicast whenmessages are multicast to a single group (graphs on the left) and to all groups

(graphs on the right). In each case, we show: throughput (top) and latency cumulative distribution function with one client

for RamCast (middle) and WBCast (bottom).

for 64-byte and 1-kilobyte messages, respectively. However, co-
locating the clients and the leaders on the same host hampers atomic
multicast scalability (see §5.1). When compared to APUS, RamCast
reduces themedian latency by 4.7× and 5.6×, withmessages with 64-
byte and 1-kilobyte messages, respectively. Compared to to Kernel
Paxos, the improvements are in the range of 4.4× and 4.7×.

6 RELATED WORK

RamCast is at the intersection of atomic multicast protocols (§6.1),
RDMA-based systems (§6.2), and RDMA-based consensus protocols
(§6.3).

6.1 Atomic multicast

Atomic multicast is a well-studied problem. Skeen’s algorithm (de-
scribed in §3.1) is possibly the �rst atomic multicast algorithm.
Even though it is not fault-tolerant, it is genuine: processes only
communicate if they are in the destinations of the messages. Later
timestamp-based genuine atomicmulticast algorithms implemented
fault-tolerant versions of Skeen’s protocol. FastCast [12] speeds up

the delivery of messages by overleaping some parts of the protocol
(i.e., the order proposed by the leader and the consensus needed
to decide on the proposed order). In good runs, FastCast deliv-
ers multi-group messages in 4 communication steps. White-Box
Atomic Multicast [23] further improves latency with a protocol
that combines Paxos and a fault-tolerant version of Skeen’s proto-
col. White-Box Atomic Multicast delivers multi-group messages
in 3 communication steps at the leaders of the involved groups
and 4 communication steps at the followers. RamCast improves on
White-Box Atomic Multicast in that both leaders and followers can
deliver a multi-group message in 3 communication steps.

Ring-based protocols [7, 17, 39] proposed a di�erent approach
to high throughput by propagating messages along a prede�ned
ring overlay and ensuring atomic multicast properties by relying
on this topology. However, ring-based algorithms are non-genuine:
involved processes communicate with processes outside the desti-
nation groups to deliver messages. The time complexity of these
algorithms is proportional to the number of destination groups.

Middleware ’21, December 06–10, 2021, �ebec, Canada Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo Coelho, and Fernando Pedone

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

Latency (us)

RamCast

Kernel Paxos

Mu

APUS

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

Latency (us)

RamCast

Kernel Paxos

Mu

APUS

Figure 6: Latency cumulative distribution function for

RamCast and atomic broadcast protocolswith a single client:

64-byte messages (top) and 1K-byte messages (bottom).

6.2 RDMA systems

Remote Direct Memory Access (RDMA) [33] is an interface that
allows servers to read and write the memory of a remote server
directly. Over the years, RDMA has become an active area of re-
search for its high throughput, low latency, and low CPU overhead.
RDMA techniques have been implemented in various architectures,
including In�niband [41], RoCE [6], and iWRAP [44]. RDMA has
already been explored and applied in a variety of applications,
from key/value stores [18, 32, 40, 47], to databases [8, 27], and
distributed �le systems [28, 36, 48]. Pilaf [40] is a distributed in-
memory key-value store that implements client-lookup operations
with one-sided RDMA reads. In contrast, in HERD [32], clients use
one-sided RDMAwrites to send requests to servers which poll their
receive RDMA bu�ers to process requests. FaRM [18] proposes a
distributed computing platform, which provides the transactional
interface for applications to access the shared memory. NVFS [28]
provides a novel design of HDFS with byte-addressable NVM and
RDMA network. Octopus [38] is a distributed, shared persistent
memory �le system that combines RDMA and NVM’s new features
by redesigning the software. Besides, many optimization guidelines
were proposed by Kalia et al. [33] to enhance performance of RDMA
system. We have applied many of the mentioned best practices in
the implementation of RamCast.

6.3 RDMA-based consensus

RDMA has received limited attention in the context of consensus
protocols, and only a few crash-tolerant replication protocols based
on RDMA have been proposed. DARE [42] aims to optimize for low
latency in replica communication. The consensus leader in DARE

replicates requests to its follower with RDMA one-sided read/write
operations, and makes use of permissions when changing leaders.
APUS [46] improves upon DARE. APUS combines RDMA with
Paxos and focuses on scalability with the number of connections
and replicas. APUS is based on intercepting inbound socket calls, so
it does not require modifying applications for integration. Derecho
is a library for structuring applications into subgroups and shards
with support for SMR within them. Updates occur with a variation
of Paxos, while queries exploit a new form o snapshot isolation.
The dynamic membership tracking uses virtual synchrony. Even
though Derecho organizes processes into subgroups and shards,
there is no abstraction that provides total order for update oper-
ations involving multiple subgroups and shards. Mu [2] exploits
Protected Memory Paxos and colocates the client with the leader
of Paxos to reach low latency. Similarly to Mu, RamCast also relies
on RDMA’s protected memory to order single-group messages e�-
ciently. However, RamCast cannot colocate clients and leaders since
it implements atomic multicast. This happens because clients may
multicast a message to di�erent groups and colocating all leaders
in the same host defeats the purpose of atomic multicast.

6.4 Hardware-accelerated consensus

In addition to RDMA, consensus and atomic broadcast have been
also accelerated using other hardware artifacts, such as FPGAs
and programmable switches (e.g., [14–16, 29, 30, 37, 43]). RamCast
implements atomic multicast, a more general abstraction than
atomic broadcast (§2.2). An interesting open question is whether
atomic multicast could also bene�t from FPGAs and programmable
switches.

7 CONCLUSION

Atomic multicast is a fundamental communication abstraction in
the design of scalable and highly available strongly consistent
distributed systems. This paper presents RamCast, the �rst gen-
uine atomic multicast protocol tailor-made for the shared-memory
model. In addition to introducing a novel algorithm that leverages
the permission mechanism of RDMA’s write operations to reduce
the number of communication steps, we also have implemented
and evaluated the protocol under a large range of parameters. The
results show that RamCast outperforms a state-of-the-art message-
passing genuine atomic multicast protocol and atomic broadcast
protocols that optimize communication and rely on comparable
assumptions.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for the constructive
feedback. This work was partially supported by the Swiss National
Science Foundation (project number 175717).

REFERENCES
[1] M. K. Aguilera, N. Ben-David, R. Guerraoui, V. Marathe, and I. Zablotchi. 2019.

The Impact of RDMA on Agreement. In PODC.
[2] M. K. Aguilera, N. Ben-David, R. Guerraoui, V. J. Marathe, A. Xygkis, and I.

Zablotchi. 2020. Microsecond Consensus for Microsecond Applications. In OSDI.
[3] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. 2001. Stable

Leader Election. In DISC.
[4] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis. 2007.

Sinfonia: A New Paradigm for Building Scalable Distributed Systems. In SOSP.

RamCast: RDMA-based Atomic Multicast Middleware ’21, December 06–10, 2021, �ebec, Canada

[5] P. A. Barret, A. M. Hilborne, P. G. Bond, D. T. Seaton, P. Verissimo, L. Rodrigues,
and N. A. Speirs. 1990. The Delta-4 extra performance architecture (XPA). In
FTCS.

[6] M. Beck and M. Kagan. 2011. Performance evaluation of the RDMA over ethernet
(RoCE) standard in enterprise data centers infrastructure. In DC-CaVES.

[7] C. E. Bezerra, D. Cason, and F. Pedone. 2015. Ridge: high-throughput, low-latency
atomic multicast. In SRDS. IEEE, 256–265.

[8] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian. 2015. The end of
slow networks: It’s time for a redesign. arXiv preprint arXiv:1504.01048 (2015).

[9] K. P. Birman and T. A. Joseph. 1987. Reliable communication in the presence of
failures. ACM Transactions on Computer Systems (TOCS) 5, 1 (1987), 47–76.

[10] K. P. Birman and T. A. Joseph. 1987. Reliable Communication in the Presence of
Failures. ACM Transactions on Computer Systems 5, 1 (Feb. 1987), 47–76.

[11] T. D. Chandra and S. Toueg. 1996. Unreliable failure detectors for reliable dis-
tributed systems. J. ACM 43, 2 (1996), 225–267.

[12] P. R. Coelho, N. Schiper, and F. Pedone. 2017. Fast Atomic Multicast. In DSN.
[13] J. C. Corbett, J. Dean, and M. et al Epstein. 2012. Spanner: Google’s globally

distributed database. In OSDI.
[14] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilberman, H. Weatherspoon, M.

Canini, F. Pedone, and R. Soulé. 2020. P4xos: Consensus as a Network Service.
IEEE/ACM Trans. Netw. 28, 4 (Aug. 2020), 1726âĂŞ1738.

[15] H. T. Dang, M. Canini, F. Pedone, and R. Soulé. 2016. Paxos Made Switch-y. 46, 2
(May 2016), 18–24.

[16] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé. 2015. NetPaxos:
Consensus at Network Speed. 1–7.

[17] C. Delporte-Gallet and H. Fauconnier. 2000. Fault-Tolerant Genuine Atomic
Multicast to Multiple Groups.. In OPODIS. Citeseer.

[18] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. 2014. FaRM: Fast Remote
Memory. In NSDI.

[19] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller, M. Hibler,
D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart, L. Landweber, C. Elliott,
M. Zink, E. Cecchet, S. Kar, and P. Mishra. 2019. The Design and Operation of
CloudLab. In USENIX-ATC.

[20] C. Dwork, N. Lynch, and L. Stockmeyer. 1988. Consensus in the presence of
partial synchrony. J. ACM 35, 2 (1988), 288–323.

[21] E. Giuseppe Esposito, P. R. Coelho, and F. Pedone. 2018. Kernel paxos. In SRDS.
IEEE.

[22] M. J. Fischer, N. A. Lynch, and M. S. Patterson. 1985. Impossibility of Distributed
Consensus with one Faulty Process. J. ACM 32, 2 (1985), 374–382.

[23] A. Gotsman, A. Lefort, and G. Chockler. 2019. White-Box Atomic Multicast. In
DSN.

[24] R. Guerraoui and A. Schiper. 2001. Genuine atomic multicast in asynchronous
distributed systems. Theor. Comput. Sci. 254, 1-2 (2001), 297–316.

[25] V. Hadzilacos and S. Toueg. 1993. Fault-tolerant broadcasts and related problems.
In Distributed Systems, Sape J. Mullender (Ed.). Addison-Wesley, Chapter 5, 97–
145.

[26] L. Hoang Le, E. Fynn, M. Eslahi-Kelorazi, R. Soulé, and F. Pedone. 2019. DynaS-
tar: Optimized Dynamic Partitioning for Scalable State Machine Replication. In
ICDCS.

[27] B. Huang, L. Jin, Z. Lu, M. Yan, J. Wu, P. CK Hung, and Q. Tang. 2019. RDMA-
driven MongoDB: An approach of RDMA enhanced NoSQL paradigm for large-
Scale data processing. Information Sciences 502 (2019), 376–393.

[28] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni,
C. Murthy, and D. K. Panda. 2012. High performance RDMA-based design of
HDFS over In�niBand. In SC. IEEE.

[29] Z. István, D. Sidler, G. Alonso, and M. Vukolic. 2016. Consensus in a Box: Inex-
pensive Coordination in Hardware. 425–438.

[30] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica. 2018.
NetChain: Scale-Free Sub-RTT Coordination. 35–49.

[31] F. P. Junqueira, B. C. Reed, andM. Sera�ni. 2011. Zab: High-performance broadcast
for primary-backup systems. In DSN.

[32] A. Kalia, M. Kaminsky, and D. G. Andersen. 2014. Using RDMA e�ciently for
key-value services. In SIGCOMM.

[33] A. Kalia, M. Kaminsky, and D. G. Andersen. 2016. Design Guidelines for High
Performance {RDMA} Systems. In USENIX-ATC.

[34] L. Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565.

[35] L. Lamport. 1998. The Part-Time Parliament. ACM Transactions on Computer
Systems 16, 2 (1998), 133–169.

[36] B. Li, P. Zhang, Z. Huo, and D. Meng. 2009. Early experiences with write-write
design of NFS over RDMA. In NAS. IEEE.

[37] J. Li, E. Michael, N. Kr. Sharma, A. Szekeres, and D. R. K. Ports. 2016. Just Say No
to Paxos Overhead: Replacing Consensus with Network Ordering. 467–483.

[38] Y. Lu, J. Shu, Y. Chen, and T. Li. 2017. Octopus: an rdma-enabled distributed
persistent memory �le system. In USENIX-ATC.

[39] P. J. Marandi, M. Primi, and F. Pedone. 2012. Multi-ring paxos. In DSN. IEEE.
[40] C. Mitchell, Y. Geng, and J. Li. 2013. Using One-Sided {RDMA} Reads to Build a

Fast, CPU-E�cient Key-Value Store. In USENIX-ATC.

[41] G. F. P�ster. 2001. An introduction to the in�niband architecture. High perfor-
mance mass storage and parallel I/O 42, 617-632 (2001), 102.

[42] M. Poke and T. Hoe�er. 2015. DARE: High-Performance StateMachine Replication
on RDMA Networks. In HPDC.

[43] D. R. K. Ports, J. Li, V. Liu, N. Kr. Sharma, and A. Krishnamurthy. 2015. Designing
Distributed Systems Using Approximate Synchrony in Data Center Networks.
43–57.

[44] M. J. Rashti and A. Afsahi. 2007. 10-Gigabit iWARP Ethernet: comparative
performance analysis with In�niBand and Myrinet-10G. In IPDPS. IEEE, 1–8.

[45] P. Stuedi, B. Metzler, and A. Trivedi. 2013. jVerbs: ultra-low latency for data
center applications. In SoCC.

[46] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui. 2017. APUS: Fast and Scalable Paxos
on RDMA. In SoCC.

[47] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. 2015. Fast in-memory transaction
processing using RDMA and HTM. In SOSP.

[48] J. Wu, P. Wycko�, and D. Panda. 2003. PVFS over In�niBand: Design and perfor-
mance evaluation. In ICPP. IEEE.

