
The design, architecture and performance of the
Tendermint Blockchain Network

Daniel Cason
Faculty of Informatics

Università della Svizzera italiana
Lugano, Switzerland

Enrique Fynn
Faculty of Informatics

Università della Svizzera italiana
Lugano, Switzerland

Nenad Milosevic
Faculty of Informatics

Università della Svizzera italiana
Lugano, Switzerland

Zarko Milosevic
Informal Systems
Toronto, Canada

Ethan Buchman
Informal Systems
Toronto, Canada

Fernando Pedone
Faculty of Informatics

Università della Svizzera italiana
Lugano, Switzerland

Abstract—Tendermint is the replication engine at the core
of Cosmos, a network of proof-of-stake blockchains. In the
lifespan of blockchains, Cosmos and Tendermint are mature
technologies, currently used by more than a hundred businesses
and deployed by hundreds of nodes. The system was designed to
provide flexible deployment despite heterogeneous environments,
scale performance with the number of nodes, and tolerate
misbehaving participants. In this practical experience report, we
overview Tendermint’s main design goals and architecture, and
present a detailed performance evaluation of the system in a
realistic environment. We report results from a geographically
distributed environment with up to 128 nodes, including failure-
free executions and fail-prone scenarios, with both crash and
byzantine failures.

Index Terms—Blockchain, Distributed consensus, Byzantine
fault-tolerance, Performance and dependability evaluation

I. INTRODUCTION

Tendermint is a state machine replication (SMR) [1] en-
gine that tolerates Byzantine faults. It was among the first
systems to adapt classical Byzantine Fault Tolerant (BFT)
consensus protocols to the blockchain paradigm, whereby
consensus is performed on cryptographic hash-linked batches
of transactions (i.e., blocks) in a public, open-membership
network [2]. Tendermint functions as a blockchain middle-
ware that supports the replication of arbitrary applications,
written in any programming language. Tendermint forms a
core component of Cosmos [3], a network of independent
proof-of-stake blockchains. To date, there are numerous public
cryptocurrency networks in production using Tendermint, and
more than 200 projects using Cosmos and Tendermint.1

Prior to Tendermint, most blockchain systems used the so-
called Nakamoto Consensus [4], where blocks are produced by
a probabilistic process parameterized by an economic cost. In
its original form, cost was measured as the proof-of-work (i.e.,
partial hash collisions) performed by consensus participants
known as miners. Due to the high energy cost of proof-of-
work [5], a variant known as proof-of-stake emerged, where
economic cost took the form of stake in the network (i.e.,

1https://airtable.com/shrapBPVHSLsfhKzk/tblhXmOhbIClTJfL9/
viw7FWJKmkIjnaM7w

account balances), held by consensus participants known as
validators. Early concerns about the safety properties of proof-
of-stake designs [6] were resolved by the introduction of
validator deposits that could be destroyed, or slashed, upon
evidence of Byzantine behavior [7].

Tendermint is the first system to implement the slashing
style of proof-of-stake. Rather than using Nakamoto Con-
sensus, Tendermint’s consensus algorithm [8] is a variant of
PBFT [9] and of DLS for Byzantine faults with authentica-
tion [10], built on top of an efficient gossip layer. Since Ten-
dermint supports open-membership peer-to-peer networking,
where it is unlikely that every pair of nodes can communi-
cate directly and nodes may join and leave as they please,
gossip [11] plays an essential role in propagating messages
through the network. While it was designed for use in public
cryptocurrency settings, with validators determined by eco-
nomic stake, Tendermint can also be used in more private or
permissioned settings as a general purpose, production-grade
software for BFT state machine replication, where validators
are determined according to the application requirements.

In this practical experience report, we overview Tender-
mint’s main design goals and architecture, and present a
detailed performance evaluation of the system in a realistic
environment, considering failure-free scenarios and scenarios
subject to crash failures and Byzantine failures. We highlight
below the main conclusions from our performance evaluation.

• Tendermint builds a well-connected communication over-
lay, used by the gossip layer. While conservative, this
setup withstood all faulty scenarios we considered. More-
over, the network swiftly recovered from crashed nodes.

• Tendermint’s performance degraded smoothly as the sys-
tem size increased. In particular, an 8× increase in
the system size led to 18% reduction in throughput,
better than previously reported on the scalability of SMR
systems [12].

• The crash of one third of validators turned out quite
harmful to performance, although we did not observe any
violations of safety or liveness.

• Inducing Tendermint to misbehave under equivoca-

https://airtable.com/shrapBPVHSLsfhKzk/tblhXmOhbIClTJfL9/viw7FWJKmkIjnaM7w
https://airtable.com/shrapBPVHSLsfhKzk/tblhXmOhbIClTJfL9/viw7FWJKmkIjnaM7w

tion [13], [14], where Byzantine nodes can send conflict-
ing messages to different processes, with an increasing
number of Byzantine validators proved difficult.

• This last observation suggests that the overlay nature
of peer-to-peer communication provides additional re-
silience, when compared to a fully connected network.

The remainder of the paper is structured as follows. Sec-
tion II discusses the system assumptions. Section III presents
Tendermint’s design goals and summarizes its architecture.
Sections IV to VI overview Tendermint’s main components.
Section VII presents the performance evaluation. Section VIII
surveys related work, and Section IX concludes the paper.

II. SYSTEM MODEL

Tendermint is a distributed message-passing system com-
posed of a dynamic set of processes or nodes. The set of nodes
can vary over time as nodes join and leave the network. Nodes
interact by exchanging messages via encrypted point-to-point
communication channels. A node is not assumed to know
the entire set of nodes in the system. A node communicates
directly with only a restricted subset of nodes, which are called
the node’s neighbors or peers. To send a message to nodes
that are not its peers, a node relies on other nodes to relay the
message to its destinations. In this case, communication takes
place via gossip [11], [15].

A node is expected to maintain a long-term persistent
identity in the form of a public key, from which the node’s
unique ID is derived. When attempting to connect to a peer, a
node verifies whether the peer is in possession of the private
key corresponding to its ID, thus preventing man-in-the-middle
attacks. A node listens on one or multiple network addresses
for connections from peers. The number of connections that
a node accepts is typically bound, and some nodes may not
accept connections at all. A node also establishes connections
with a number of peers, to ensure a minimal connectivity
with the rest of the network. By requesting and accepting
connections from peers, nodes construct an overlay network
that eventually, with high probability, is connected.

Tendermint considers the Byzantine failure model. It tol-
erates both benign faults, where nodes crash and may later
recover, and Byzantine faults, including arbitrary and poten-
tially malicious behavior. A subset of nodes play the role
of validadors. The set of validators is dynamic and known
by all the nodes. Validators execute Tendermint’s consensus
algorithm [8]. Tendermint assumes that at most one third of
the validators are Byzantine. For progress, Tendermint relies
on partial synchrony [10]: the system is initially asynchronous
and eventually becomes synchronous. The time when the
system becomes synchronous, the Global Stabilization Time
(GST), is unknown to the nodes.

III. DESIGN AND ARCHITECTURE

Tendermint was designed to support the development of
open, public, and general-purpose blockchain applications,

deployed in large-scale, geographically distributed, and hos-
tile environments. Tendermint’s design was motivated by the
following goals.

a) Deployment flexibility: Tendermint should support
deployment of blockchain applications with nodes distributed
among multiple administrative domains. Administrators should
be allowed to decide whether to expose nodes to the public
network. As a consequence, Tendermint should not enforce
a network setup, not assuming, in particular, that every pair
of nodes can communicate directly. The adoption of gossip
as communication means, and the design of the peer-to-peer
layer (Section IV) derives from this assumption.

b) Scalability: Tendermint should enable applications to
be replicated among hundreds (possibly thousands) of nodes.
Tendermint adopts strategies to avoid substantial performance
degradation with increasing number of participants, in spite of
the performance degradation of consensus-based state machine
replication at scale [12], [16], [17].

c) Byzantine fault tolerance: Tendermint is expected to
operate in hostile environments. In addition to a consensus
protocol that tolerates Byzantine validators (Section V-B), all
auxiliary protocols should also consider malicious behavior.
Moreover, a specific protocol (Section V-C) was implemented
for nodes to exchange evidences of misbehaviour, which may
lead Byzantine validators to have their deposits slashed.

d) Language independence: Tendermint should support
the replication of applications written in any programming
language. For this, the interaction of the Tendermint with the
replicated application should be via a standardized, language-
agnostic protocol, using the Application BlockChain Interface
(ABCI), briefly summarized in Section VI.

e) Light clients: Tendermint must support resource-
constrained nodes (light clients [18]) that cannot download
the entire blockchain. Yet, light clients must be able to verify
hashes, signatures, and membership changes, detect and react
to Byzantine behavior, among other activities. Due to space
constraints, we do not consider light clients in this paper.

Figure 1 presents Tendermint’s architecture. A peer-to-peer
substrate provides communication for the main blockchain
modules. A client interacts with the system via RPC by
submitting transactions that are added to the mempool module,
and receiving a response generated by the consensus module.
The consensus module is in charge of ordering and intermedi-
ating the execution of transactions, by means of the application
interface. In the following sections, we comment on each one
of these modules.

IV. PEER-TO-PEER COMMUNICATION

A Tendermint node is not expected to establish direct
connections to all other nodes in the network, but only to
a subset of them, called its peers. It is up to the peer-to-
peer communication layer to maintain an overlay network that
allows all nodes to exchange messages through gossip. More
specifically, the peer-to-peer communication layer has the
following responsibilities: (a) the peer discovery service; (b)

Application

ABCI

Client Mempool Consensus State
Sync

Peer-to-Peer Communication

Fast
SyncEvidence

Fig. 1. Tendermint’s architecture.

the management of an address book of peers and peer’s quality
statuses; and (c) connection establishment and management.

Tendermint provides several options for peer discovery: (i)
using a bootstrap service, implemented by seed nodes, who
continuously explore the network in order to maintain a com-
prehensive list of active nodes, and provide random sample to
nodes upon request; (ii) a persistent peers mechanism, where
a node to join the Tendermint network is configured with the
IDs and network addresses of a number of peers with which
it tries to maintain connections; and (iii) the Peer Exchange
(PEX) protocol, by which nodes periodically exchange lists of
potential peers with nodes they are connected to.

The set of peers a node knows about is stored in the node’s
address book, which maintains peer ID, associated network
addresses, and parameters representing the quality of a peer.
The node’s address book is fed with potential peers by the
peer discovery service, and records all peers with which it
has established connections. A node can define quality metrics
of its peers based on its behavior in the multiple Tendermint
protocols (Section V), where receiving relevant messages from
the consensus protocol is the most important criteria. A peer
can be removed from the node’s address book and blacklisted
when it does not follow the protocol, for instance, by sending
unsolicited messages, or sending messages in a higher rate or
in shorter intervals than the configured ones.

A node in Tendermint establishes persistent, encrypted
connections with its peers. The connection manager routine
has the goal of maintaining a target number of outbound
connections with peers (10 by default), which includes the
configured persistent peers. While this target is not reached,
or when outbound connections are dropped for any reason,
the node retrieves potential peers from the address book
and tries to establish connections with them. In addition, a
node accepts a maximum number of inbound connections (40
by default) from peers. Once this limit is reached, further
connection requests are rejected. To enable nodes to exchange
messages from multiple protocols using the same connection,
Tendermint defines the abstraction of channels. Channels have
configured priorities, and maximum sending and receiving
rates. In short, the priority of a channel defines which messages
will be sent first through a connection, when there are pending
messages from multiple channels.

V. TENDERMINT CORE

Tendermint comprises a number of modules (see Figure 1),
and a node may participate in all or in only some of them.
This section describes the main modules.

A. Mempool

The mempool, or transactions pool protocol is an entry point
of Tendermint. It receives, validates, stores, and broadcasts
transactions submitted by clients. These transactions, provided
that they are considered valid by the application, are eventually
included in blocks committed by the consensus protocol.

Nodes expose an interface to receive transactions submitted
by clients, via RPC calls. Transactions received by a node are
sent to the application to be validated. This is done through
the mempool ABCI connection, presented in Section VI. Once
a transaction is validated, the node appends the transaction to
the mempool, which is actually a list of valid transactions.
For each peer of a node that also participates in the mempool
protocol, the node maintains a send routine. Each send routine
iterates through the list of transactions and sends them to the
peer, in the same order in which they were validated.

Transactions received from peers go through the same pro-
cess as transactions received from clients: if they are validated
by the application, they are appended to the mempool. The
only difference is that received transactions are first checked
against the cache of recent transactions, to prevent a transac-
tion from being validated multiple times by the application.
The cache of recent transactions has a fixed size and only
stores transaction hashes, associated to a map of peers from
which a transaction was received. This cache is also accessed
by send routines, to prevent sending a transaction to a peer
from which the same transaction was recently received.

Transactions submitted by clients are therefore broadcast to
all nodes, and are eventually received by the validator node
that is responsible for proposing the next block for consensus.
This node, or more specifically its consensus module, retrieves
a list of pending transactions from the mempool to build the
proposed block. This functionality is exposed via a method
call that returns the longest prefix of the transactions list
that respects the limits established by the caller, typically
maximum number, size in bytes, and required gas (fee).

When a block is committed by the consensus protocol
and all transactions included in the block are executed, the
mempool is contacted to update the list of pending trans-
actions. More specifically, the committed transactions are
then removed from the mempool, since they are not pending
anymore. Their hashes, however, are not removed from the
cache of recent transactions, as they can be still be received
from peers and should not be added again to the mempool.

The commit of a block updates the state of the application,
as a result of the execution of the transactions it included.
To prevent inconsistent behavior when validating new transac-
tions, the mempool is locked while transactions are executed.
Moreover, after removing the committed transactions from the
mempool, the remaining transactions are sent to the application
for a new validation. The rationale behind this procedure is

that a transaction previously considered valid might become
invalid when considering the updated application state.

B. Consensus

The consensus protocol is responsible for deciding the
next block of transactions to be appended to the blockchain.
Tendermint’s consensus algorithm is described and proved
correct in [8], [19], [20]. In this section, we present system
aspects not discussed in the algorithm’s original description.

a) Consensus protocol: Tendermint’s consensus protocol
runs a sequence of instances of consensus, where each instance
decides on a single block of transactions. Each instance or
height of consensus is typically composed of one or more
rounds of consensus. Each round of consensus is led by a
validator, the round’s proposer, and is composed of three round
steps: propose, prevote, and precommit. The execution of a
round of consensus in Tendermint is similar to the failure-free
execution of PBFT [9], also composed of three communication
steps.2

A round starts with the propose step, where the round’s
proposer signs and broadcasts a block of transactions. Upon
receiving a block from the proposer of the current round, and
provided that the block can be accepted, a validator signs
and broadcasts a prevote message for the proposed block id
(prevote step). The acceptance of a block is defined by a set
of consensus-specific rules [8], and by an application-specific
predicate that indicates whether a block is valid [21], [22].
Upon receiving prevote messages for the proposed block id
from a quorum of validators, a validator signs and broadcasts
a precommit message for the proposed block id (precommit
step). Upon receiving precommit messages for the same block
id from a quorum of validators, a validator commits the block,
and appends it to the blockchain. The transactions included in
the committed block are then delivered to the application, and
the validator proceeds to the next height of consensus.

A distinctive aspect of Tendermint’s consensus protocol is
that the role of proposer rotates. So, while in PBFT [9] the
proposer is only replaced when it is suspected to be faulty,
in Tendermint all validators take turns as proposers in the
first round of successive heights of consensus—when they
are free to propose any block. If a round of consensus does
not succeed, due to asynchrony or failures, a new round led
by a different validator is started. Starting new rounds in
Tendermint’s consensus does not require view-change phases,
like in PBFT and other BFT consensus algorithms. Instead, a
set of locking/unlocking rules define whether a proposer must
re-propose a block accepted in a previous round, and whether
a validator should accept the block proposed in a round [8].

Tendermint’s consensus protocol allows validators to have
distinct voting powers, a form of weighted voting consensus
protocol [23]. This means that the vote of a validator, both
in prevote and precommit steps of the protocol, may count
more than the vote of another validator. This is in line with
the proof-of-stake concept adopted by Tendermint, where the

2In PBFT those steps are called pre-prepare, prepare, and commit.

more stake (funds) a validator binds to the network, the higher
its voting power is. A quorum is then defined as a subset
of validators whose aggregated voting power is larger than
2/3 of the voting power of all validators. If the voting power
is equally distributed, a quorum consists of any subset with
more than 2/3 of the validators—like in other BFT consensus
algorithms. The voting power also influences the function that
assigns proposers to heights and rounds of consensus. While
all validators will be selected as the proposer, the frequency
with which a validator is assigned as the initial proposer of a
height of consensus is proportional to its voting power.

b) Validators set: Each height of consensus is run by
a given set of validators, which is known by all nodes. A
validator is a Tendermint node that holds a cryptographic key
pair. The validator’s private key is used to sign the consensus
messages it broadcasts, while the validator’s public key allows
to verify the authenticity of its messages. The validators set
of a height of consensus is then the set of public keys of all
active validators, plus their associated voting powers.

The initial validators set is retrieved from the genesis state,
shared by all nodes in a Tendermint blockchain. This set
can be updated through special commands produced by the
application when processing a block of transactions. The new,
updated validators set is included in the next block proposed
for consensus and, once accepted by a quorum of validators
and committed, is adopted from the next height of consensus
(the proposer-selection function is updated as well). In other
words, the validators set is dynamic, and all changes in the
validators set are stored in the blockchain.

c) Gossip: The communication substrate supporting the
consensus protocol does not relay messages in a best-effort
manner, like in mempool and in other Tendermint modules.
Instead, messages are selectively forwarded to peers based
on the information that a node has about the state of each
peer in the consensus protocol. A node keeps track of the
height, round, and round step at which each peer is, from
which it infers which messages a peer potentially needs at
any given moment. For instance, if a peer is known to be at
the precommit step of a round of consensus, there is no point
in sending to the peer messages from the prevote step of the
round that it has already concluded. The node will rather send
to the peer messages from the precommit step of the round
that it assumes the peer has not yet received.

The same applies to a node with peers that are not in the
same height and round of consensus. If a peer is behind, it
should be provided with messages that allow it to reach the
current height and round of consensus. After which the node
can relay to the peer the latest consensus messages. At the
same time, if a peer is ahead in the consensus protocol, there
is no point in relaying messages that the peer will discard.
In other words, the consensus gossip substrate tries to align
nodes with their peers in the consensus protocol, so that they
are in the same height, round, and round step of consensus.

C. Evidence

A crucial element of proof-of-stake blockchain networks is
the ability to punish misbehaving (Byzantine) validators. This
feature is implemented in Tendermint by the evidence module,
which is responsible for collecting, verifying, and propagating
evidence of a node’s misbehavior. There are essentially two
scenarios that represent a misbehavior for a Tendermint node:
(i) publishing to clients blocks that were not committed by the
consensus protocol, and (ii) when acting as validator, casting
votes for two distinct blocks in the same round of consensus.

When light clients detect scenario (i), as discussed in [18],
or (ii) when a Tendermint node detects that a validator voted
for distinct values in a round of consensus, they report the
misbehavior to the evidence module. The report must include
evidence that would prove the misbehavior. We focus here on
scenario (ii), where two conflicting votes in the same round of
consensus are the evidence of misbehavior, signed by the same
validator, for distinct blocks. This is detectable, in particular,
because votes are disseminated via gossip.

When the consensus protocol receives conflicting votes from
the same validator in a round, the node reports the two votes
to the evidence module. The two distinct votes, signed by
the same validator, are evidence enough to prove that the
validator is misbehaving. In other cases, like in scenario (i),
more information must be attached to the report of evidence
of misbehavior. Upon receiving a report, the evidence module
verifies whether the attached proofs are valid, according to the
node’s local state. If so, the node adds the evidence, together
with its proofs, to an evidence pool. The contents of this pool
are then gossiped to the Tendermint network.

When a node receives a misbehavior report from a peer, it
first verifies the attached proofs against its local state. If it is
deemed a valid evidence of misbehavior, it is added to the local
evidence pool, whose content is forwarded to the node’s peers.
As it occurs with submitted transactions, evidence from the
evidence pool are included in blocks proposed for consensus.
When a block is committed, evidence of misbehavior included
in the block are delivered to the application. It is up to the ap-
plication to apply the necessary measures against misbehaving
nodes, in particular when they are validator nodes. The typical
approach, adopted in Cosmos in-production blockchains, is
to slash the fundings (stake) bound by that validator, while
removing it from the validators set.

D. Fast Sync

The Fast Sync protocol allows nodes to exchange committed
blocks. It is used by nodes (re)joining the network to catch up
with its peers, by downloading committed blocks from them,
ideally in parallel. This is an alternative to learning the blocks
decided in every instance of consensus, from the last height
on which the node participated (if any) to the current one.

Fast Sync is a peer-to-peer protocol that distinguishes the
roles of client and server. Clients are nodes that recently joined
the network, or recovered from a period of inactivity. Servers
are nodes that have blocks requested by clients, i.e., blocks
already learned, executed, and committed.

A client node in the Fast Sync protocol periodically broad-
casts StatusRequest messages to all peers. A node, regardless
of its role, responds with a StatusResponse message containing
the range of contiguous available blocks. The upper limit of
this range is the node’s current height, the last block it has
committed and executed. Based on this information, a client
node selects peers to which it sends BlockRequest messages,
referring to a specific height. A node responds to it with
the requested block, in a BlockResponse message, or with a
NoBlockResponse message, when the requested block is not
available. It is worth nothing that all these messages are sent
in a best-effort manner, to avoid flooding the peer.

Blocks retrieved via Fast Sync are stored in a buffer, as they
are not necessarily received in order. They are executed and
committed in order, however, following the same procedure
adopted for blocks decided by the consensus protocol. When
a client catches up with their peers (i.e., it has received
and applied all blocks its peers have already committed), the
procedure is concluded and the node switches to the regular
operation, using the consensus protocol.

Fast Sync is sensitive to attacks from malicious nodes, since
it transfers a considerable amount of data between peers. At
the same time, it is useful as long as several peers are willing to
collaborate in the state transfer. The protocol tries to mitigate
the damage from attacks by limiting the send rate on channels,
and by assuming that correct nodes equally distribute requests
among peers. However, besides disconnecting from peers that
take too long to respond, no protection mechanism is devised.

E. State Sync

The State Sync protocol allows nodes to rapidly bootstrap
and join the network in a relatively updated state, by discov-
ering, fetching, and restoring application-level snapshots. The
protocol is an alternative to joining consensus at the genesis
state and replaying all historical blocks, either via consensus
or via Fast Sync, until the node catches up with its peers. By
relying on State Sync, however, a node will have a truncated
history, lacking the ability to audit the blockchain.

State Sync is also a peer-to-peer protocol with clear roles
of client and server. A client is a node joining the network
and looking for an application snapshot, taken on the greatest
possible height. A server is any node in regular operation,
whose associated application instance has taken snapshots.
The protocol is initiated by a node in client mode that sends
snapshot request messages to each new peer with which it
establishes a connection—since the client node is starting up,
it is trying to connect to an initial set of peers.

Upon receiving a snapshot request message, a node in server
mode contacts the application, namely the instance of the
replicated application it hosts, to retrieve a list of available
snapshots. The interaction of a node with the application
is done via the snapshot ABCI connection, presented in
Section VI. The application should return a list of snapshot
descriptors that are sent back to the peer. Upon receiving a
snapshot response from a peer, a node in client mode adds the
reported snapshot descriptor to a pool of candidate snapshots.

This pool is periodically consulted by the node, which selects
the best candidate, essentially the one from the greatest height.

Once a client node has a candidate snapshot, it sends its
descriptor to the application, which may accept or reject the
snapshot. In particular, the snapshot root hash should match
the application hash stored in the block at the height in
which the snapshot was taken. If it is accepted, the node
requests the multiple snapshot chunks in parallel, possibly
from different peers. Note that multiple peers may have offered
the same snapshot, i.e., reported the same snapshot descriptor,
potentially improving the snapshot retrieval speed. The node
requests a snapshot chunk from a peer by sending it a chunk
request message, specifying the snapshot height and chunk
index. Upon receiving a chunk request message, a node in
server mode retrieves the requested snapshot chunk from the
application, and provides it in a chunk response message.

Snapshot chunks are not necessarily received in order by
a client, but they are offered to the application following the
order established by their indexes. Once a full snapshot is
retrieved and installed by the application, the node will be at
height of the blockchain when the snapshot was taken, and
can switch to the Fast Sync or to the consensus protocol.

VI. APPLICATION INTERFACE

ABCI is the interface between Tendermint and the replicated
application. A node maintains four ABCI connections with
the replicated application. The consensus connection is used
for the execution of blocks, and also allows the application
to submit commands to reconfigure the set of validators
(Section V-B) and to configure other consensus-related node
parameters. The mempool connection is used by the transaction
pool protocol (Section V-A) to validate transactions submitted
by clients against the application state. It is up to the ap-
plication to define whether a transaction is valid or not, and
the validation is optional. The snapshot connection is used
by the State Sync protocol (Section V-E) to serve and restore
snapshots of the application state. The application is expected
to periodically take snapshots of its state and to persist them
to disk. The query connection allows retrieving information
from the local instance of the application, used by several
Tendermint modules (e.g., peer filtering).

VII. EVALUATION

We conducted experiments in a geographically distributed
environment, with validator nodes evenly spread among 16
AWS regions in all continents. An additional AWS instance
hosted a non-validator node, operating in seed mode, and all
clients. This additional node had two roles: First, it provided
to the validators lists of potential peers to which they can es-
tablish connections, forming the network. Second, it delivered
to clients the sequence of blocks committed by Tendermint,
so that clients can compute latencies and throughput. We co-
locate all clients in a single AWS server to centralize all
measurements in a single location. Clients submitted 1KB
transactions to the validators evenly, in closed-loop. This
means that a client submits a transaction to a given validator,

waits until the transaction was included in a block committed
by Tendermint, and then submit a new transaction to the same
validator.

We used Tendermint version 0.33.8 and Go version 1.15,
with default configurations. The mempool can store up to
5000 transactions, with maximum byte size of 1GB, and the
block size is 20MB. These default limits are enough to cope
with the maximum number of outstanding transactions. Both
connection’s maximum send and receive rates are 5000 KB/s,
and the intervals that govern gossip are 100ms.

A. Network setup

We evaluated the characteristics of the network generated by
Tendermint when relying on a seed node. Figure 2 depicts the
distributions of two metrics of the generated overlay network
with 128 nodes. On the left, the number of neighbors a node
has in the overlay network, that is, the number of connections
it establishes with peers. On the right, the distance between
two nodes in the overlay network, that is, the minimal number
of communication steps (hops) between them. The cumulative
distributions are represented by the green lines, while the bars
represents the portion of values in each x-axis interval.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

Number of neighbors

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

Distance (hops)

Fig. 2. Distributions of the number of neighbors per node (left) and the
distance between two nodes (right) in a Tendermint network with 128 nodes.

Figure 3 presents the distribution of measured latencies
between the 16 AWS regions hosting validator nodes (left)
and the approximate distribution of latencies between nodes
(right), computed as the shortest-path between each pair of
nodes in the overlay network and the inter-region latencies.
The two distributions would match if we had a fully con-
nected overlay. Tendermint’s overlay introduces delays in the
communication (e.g., while ∼76% of the regions have a delay
below 100ms, only 40% of the nodes are below 100ms).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400

Latency between regions (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400

Latency between nodes (ms)

Fig. 3. Distributions of measured latencies between the 16 regions (left), and
of expected latencies between the 128 nodes in the overlay network (right).

B. Baseline performance

We evaluated the performance of Tendermint in a network
with 128 validator nodes. In the experiments, we start the
clients after the network is generated and stable. Clients
are evenly distributed among the validators, to which they
submit 1KB transactions until 30 blocks of transactions are
committed. We subjected Tendermint to increasing workloads
by varying the number of clients. We found that a workload
with 1536 clients, 12 per validator, provides the best balance
between throughput and average latency, while saturating the
system. It is hereafter referred to as reference workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Block latency (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Transaction latency (s)

Fig. 4. Distributions of latencies of committed blocks (left) and of submitted
transactions (right) with 128 validators.

Figure 4 depicts the distribution of latencies for Tendermint
with 128 validators under the reference workload. On the left,
the time required for committing a block of transactions, that
is, the difference of timestamps of successive blocks. On the
right, the time it takes for a client transaction to be ordered,
from its submission to the delivery of the block that includes
it. New blocks are committed at regular intervals: it takes a
block on average 2.53s to commit, with 96% of them between
2.3s and 2.7s. The latencies of submitted transactions present
more variability, 3.45 ± 0.99s on average, concentrated in two
intervals. About 40% of the latencies were between 2s and 3s,
in line with the typical block latency, while a similar portion
were around 4.5s, which is closer to the average duration of
two blocks. This indicates that while some transactions are
included in the first block following their submission, other
transactions are shifted to the subsequent block.

It is worth noting that block latencies include an artificial
delay of 1s, the timeout commit, intended to collect as many
votes as possible endorsing the committed block. The goal is
to record all validators that contributed to the commit of each
block, which might then be rewarded by the application. The
remainder of the block latencies (around 1.5s) encompass the
three communication steps of the consensus algorithm (see
Section V-B).

Figure 5 presents the throughput achieved by Tendermint
with 128 validators under the reference workload. On the left,
we present the instantaneous throughput when every block
is delivered (line with points) and every two blocks (green
line). The former presents a lot of variation between blocks,
which is attenuated in the second representation, around the
overall throughput of 438 transactions per second (tps). On the
right of Figure 5, we present the distribution of the number
of transactions included in each block. As block latencies are

 0

 200

 400

 600

 800

 0 10 20 30 40 50 60 70

T
h
ro

u
g
h

p
u

t
(t

p
s
)

Time (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 750 1000 1250 1500

Transactions per block

Fig. 5. Instant throughput every block and every two blocks (left), and
distribution of the number of transactions committed in each block (right).

similar, the zigzag variation in the instantaneous throughput is
due to the number of transactions committed in each block.

C. Scalability

We compare the performance of Tendermint at scale, with
16, 32, 64, and 128 validators. We do not expect performance
improvements by increasing the number of validators, since
the message complexity and the cost of consensus increase
with the number of processes. The reference workload for 128
validators was used in this comparison, by evenly distributing
1536 clients among the validators in the experiment. The same
experimental setup considered in Section VII-B was adopted.

 0

 200

 400

 600

 800

16 32 64 128

T
h

ro
u

g
h

p
u

t
(t

p
s
)

Number of nodes

535 520 477 438

0.0

1.0

2.0

3.0

4.0

5.0

16 32 64 128

L
a

te
n

c
y
 (

s
)

Number of nodes

2.72 2.83 3.07
3.45

Fig. 6. Performance summary when varying the number of validators under
the same workload: overall throughput (left) and average latency (right).

Figure 6 compares overall throughput and average latency
of Tendermint as we vary the number of validators. Under the
same workload, throughput degrades gracefully as we double
the number of validators. From N = 16 to N = 32, 64, and 128,
throughput drops, respectively, by 3%, 11%, and 18%. From
both N = 32 to 64 and N = 64 to 128, throughput drops by
8%. As the number of transactions submitted is the same for
all system sizes, the throughput degradation is directly linked
to increased block latencies. In fact, while the average block
latency with N = 16 was 2.14s, it increased to 2.20s (+3%),
2.38s (+11%), and 2.53s (+18%) with N = 32, 64, and 128.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Block latency (s)

16
32
64

128
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Transaction latency (s)

16
32
64

128

Fig. 7. Distributions of latencies of committed blocks (left) and of submitted
transactions (right), when varying the number of validators.

Figure 7 compares the distributions of block latencies (left)
and transaction latencies (right) as we doubled the number of
validators. The already mentioned increase in block latencies
is somewhat expected, as the message complexity of consensus
is quadratic on the number of participants. This, however,
does not fully explain the degradation of transaction latencies,
that from N = 16 to N = 32, 64, and 128 had averages
increased by, respectively, 4%, 13%, and 27%. As observed
in Figure 7 (right) for all system sizes, a portion of the
transactions were not received in time to be included in the
next block, a behavior discussed in Section VII-B. As we
increased N , more transactions presented this behavior and,
in general, more variable were the latencies. We attribute this
to increased delays to propagate transactions to all validators
via the mempool protocol with increasing network sizes.

D. Crash faults

We evaluated Tendermint under crash faults, considering
the setup used in Section VII-B, with 128 validators and
1536 clients, but doubling the experiment duration, from 30
to 60 blocks. After committing 12 blocks, at instant 33s of
the experiment, we killed 42 validators. This is the maximum
number of crashed validators that would still allow the system
to progress. Clients assigned to crashed validators are, after a
timeout, re-routed to another validator chosen at random. We
first analyze the impact of crashed validators on the network,
in terms of connectivity, then on the overall performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

 0 10 20 30 40

Number of neighbors

 0 10 20 30 40

Fig. 8. Evolution of distributions of the number of neighbors per node: before
crashes (left), after crashes (center), and when the network re-healed (right).

Figure 8 presents the evolution in the number of neighbors
per node at system startup (left), after 42 nodes have crashed
(center), and when connections were reestablished (right). A
first observation is that the Tendermint network, due its high
connectivity, remains connected with the removal of almost
1/3 of the nodes. We considered several methods to select the
nodes to crash, and adopted the one with the highest impact
on connectivity. From the 1423 connections at startup (22.2
per node), 688 connections remained after the crashes (16.0
per node, with 86 nodes), a 52% reduction. It took around 6s
for nodes to detect the failure of all peers, when this second
distribution, on the center of Figure 8, was built. Meanwhile,
nodes that lost connections tried to establish new ones: 199
new connections were established within 137s, increasing the
average number of neighbors per node to 20.7, as depicted
on the right of Figure 8. This shows the ability of the PEX
protocol to reestablish the network connectivity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Block latency (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Transaction latency (s)

Fig. 9. Distributions of latencies of committed blocks (left) and submitted
transactions (right) with 128 validators, from which 42 nodes have crashed.

Figure 9 presents the distributions of block latencies (left)
and transaction latencies (right) in the crash-fault experiment.
The main impact of having almost 1/3 of the validators crashed
is that latencies are not concentrated in a short interval, as in
Figure 4, but grouped into six time ranges. The first range,
accounting for about 64% of blocks, contains latencies similar
to the ones observed in the fault-free scenario, around 2.65s.
This means that the consensus instances that decided those
blocks were not affected by the crashes. To understand the
behavior of the other blocks, we recall that in the Tendermint
consensus algorithm [8], the proposer role rotates. That is,
each instance (height) or round of consensus is assigned to a
different validator. If the proposer assigned to the first round
of an instance is crashed, an additional round of consensus is
required, being assigned to another validator. If it also fails to
propose a block, a further round is required, and so on.

The consequence of this procedure is observed in Figure 9:
about 17% of the blocks required 2 rounds to be committed,
with latencies around 8.4s; 10% required 3 rounds, latencies
around 15s; 5% required 4 rounds, latencies around 22s; and
4% required 5 and 6 rounds, latencies around 30s and 39s.
Notice that the duration of unsuccessful rounds increases:
second rounds had duration around 5.8s, third rounds around
6.6s, and so on. This happens because both faulty proposers
and failed rounds are detected via adaptive timeouts, whose
durations increase when they are trigged within a consensus
instance. Considering that the initial timeouts are of 3s and
1s, we realize that the latencies of blocks assigned to crashed
validators are essentially dominated by timeouts.

 0

 200

 400

 600

 800

 0 30 60 90 120 150 180 210 240 270 300 330 360 390

T
h
ro

u
g
h
p
u
t
(t

p
s
)

Time (s)

Fig. 10. Instantaneous throughput per block and every two blocks in a network
with 128 nodes, 42 of which crashed at the time marked by the dashed line.

The impact of having crashed validators in the Tendermint
network is more clearly observed in Figure 10, which depicts
the instantaneous throughput before and after the failures.
Blocks that required multiple rounds of consensus to be
committed, as they were assigned to crashed validators, have

higher latencies and notably bring down throughput. Since
almost 1/3 of the nodes crashed, sequences of instances and
rounds of consensus assigned to faulty proposers are observed
(e.g., from 180s to 250s). At the same time, blocks assigned
to correct validators are essentially not affected: they present
regular latencies and produce peaks of throughput that can
last for several blocks (e.g., from 385s to 405s). The overall
throughput, however, is severely impacted: 164 tps, 63% lower
than in the fault-free experiments (438 tps). The average
latency was 9.17 ± 8.13s, 2.7x higher than in the baseline
experiments (3.45 ± 0.99s), and more disperse. In fact, almost
30% of transactions presented latencies above 10s, and about
12% above 20s.

E. Byzantine faults

To evaluate Tendermint under malicious validators, we used
the setup considered in Section VII-B, with 128 validator
nodes and 1536 clients. The experiment duration was doubled,
from 30 to 60 blocks. The Byzantine behavior was introduced
by configuring pairs of nodes to use the same validator key.
Validators are identified by their public keys, used to select
the proposer for each height and round of consensus, and to
verify blocks proposed and votes for blocks. It is thus assumed
that validator keys are uniquely associated to a node. When
nodes share the same validator’s private key, distinct blocks
can be proposed in the same height and round of consensus. In
addition, conflicting votes signed with the same validator key
can be issued by different nodes, which may generate forks
in the blockchain if one third or more keys are compromised.
This misbehavior is a type of equivocation attack [13], [14].

To improve the effectiveness of the attack, validator keys
were shared by pairs of nodes that are far from each other in
the overlay network. This increases the likelihood of having
distinct blocks proposed in the same instance of consensus,
as nodes sharing the same validator key should have different
sets of transactions in their mempools. In addition, as they
should not have (many) peers in common, it is more likely
to partition the network among conflicting proposals. This be-
havior was observed in the experiments, where some instances
of consensus did not succeed at the first round, as none of the
conflicting proposals received enough votes to be committed.
Despite the extension of the attack, however, the blockchain
neither halted nor forked in any experiment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Transaction latency (s)

 0

 200

 400

 600

 800

 0 30 60 90 120 150

T
h

ro
u

g
h

p
u

t
(t

p
s
)

Time (s)

Fig. 11. Distributions of latencies for transactions (left) and instant throughput
(right) under Byzantine behavior, with 128 nodes sharing 64 validator keys.

Figure 11 summarizes the performance of Tendermint under
Byzantine behavior, with 128 nodes sharing 64 validator keys,

each key being shared by two nodes from the system startup.
(We also ran experiments with fewer than one-third compro-
mised keys and did not observe any anomalous behavior.) On
the left of Figure 11, we present the distribution of latencies
for submitted transactions. For about 86% of the transactions,
latencies are in line with the results obtained in the fault-free
scenario with 64 validators (up to 5s) with average latency
of 3.32s (versus 3.07s). In fact, 90% of the blocks were not
affected by the Byzantine behavior, being committed in a
single round of consensus, with average block latency 2.36s
(versus 2.38s). The remaining blocks (10%) were affected by
the Byzantine behavior, requiring two rounds of consensus
to be committed, with average block latency 5.57s. Observe
that the block latency with two rounds is lower than the ones
observed in Section VII-D (8.4s), as timeouts were not trigged.

The right part of Figure 11 presents the instant throughput
of Tendermint under the considered Byzantine behavior. The
troughs are directly related to blocks that required more than
one round of consensus to be committed (instants 10, 56, 83,
105, 120, and 137s). The overall throughput in the experiment
was 388 tps, 19% lower than in the faulty-free experiments
(477 tps). The average latency increased from 3.07s to 3.84s
under Byzantine behavior, a 25% degradation. Observe that all
comparisons are against the faulty-free scenario with 64 val-
idators, since although we have 128 nodes acting as validators,
there are only 64 validators (keys) in the network.

Finally, although this form of Byzantine behavior may
seem artificial, it was observed in production Tendermint net-
works [24]. The reported incident affected a small number of
validators, and it resulted from a combination of misconfigured
nodes and a software bug. But as an attack vector, cloning keys
from legit nodes has potential to be harmful at scale [14],
in particular because it does not require coding incorrect
behavior.

VIII. RELATED WORK

Many blockchain protocols have been proposed in the
last few years (e.g, [21], [25]–[30]). Surveying all existing
approaches is out of the scope of this paper (and its page
limits). Instead, in this section, we overview the blockchain
landscape and place Tendermint in this context.

Blockchain systems can be broadly divided into two cate-
gories, permissionless and permissioned. Permissionless pro-
tocols do not depend on a well-defined set of nodes to
execute consensus. In principle, any node can participate in
the execution of consensus. Proof-of-work (PoW) blockchain
systems, such as Bitcoin [4] and Ethereum [31], are the
most prominent representatives of this category of protocols,
although many other protocols rely on PoW (e.g., [26], [32]).

The substantial amount of energy consumed by PoW proto-
cols [5], their probabilistic safety guarantees, and their low
throughput (i.e, a few transactions per second) and high
latency boosted the quest for alternative solutions. In proof-
of-stake (PoS) blockchain systems, like Tendermint, nodes are
accountable for their acts, which discourages misbehavior.

While Bitcoin maintains a distributed ledger of UTXO
transactions that essentially transfer assets, Ethereum provides
a Turing complete virtual machine, the Ethereum Virtual
Machine (EVM). Users are then allowed to upload code to
the EVM in the form of smart contracts that are executed
by committed transactions. Tendermint also supports arbitrary
operations, but it substantially differs from Ethereum not only
for the adoption of proof-of-stake, but also for the decision
of running a specific application on each Tendermint network.
This design can be aligned with the performance and costs
requirements of each application.

Permissioned protocols rely on a precise knowledge of the
nodes that execute consensus (i.e., validators) and are based
on Byzantine agreement [33]. Many agreement protocols have
been proposed that can tolerate Byzantine behavior (e.g., [34]–
[36]), PBFT [9] being a well-known representative. Permis-
sioned blockchain protocols, like Tendermint and many others
(e.g., [27], [28], [37]), perform better than and do not require
the computational power of permissionless protocols. As dis-
cussed in Section V-B, Tendermint’s consensus protocol shares
some of PBFT characteristics, without relying on PBFT’s
complex view change mechanism.

Many blockchain systems have been proposed in the last
few years, typically to improve the performance limitations of
early designs. PBFT-like protocols rely on 2/3-majority quo-
rums and quadratic communication among peers to reach con-
sensus. To improve performance, some protocols use smaller
quorums [25], [37] or reduce communication from quadratic
to linear [28], [29]. Moreover, most protocols rely on a leader
to reach consensus decisions (e.g., [9], [26], [38]). In large
settings, reaching agreement without a leader can help scale
performance [25].

IX. CONCLUSION

This paper presents the design and architecture of Ten-
dermint, a mature system, in the lifespan of blockchains.
Besides overviewing Tendermint’s main components, we also
assessed its performance under different conditions. We draw
the following main conclusions from our evaluation. (i) Nodes
in the Tendermint network are well-connected (i.e., 60% of
the nodes have between 10 and 20 peers, 80% of the nodes
are within two hops). (ii) Throughput and latency degraded
gracefully with the number of validators (e.g., an 8× increase
in system size resulted in an 18% reduction in throughput).
(iii) Tendermint’s tightly connected network is resilient to
crash failures and a type of equivocation attack, in which
malicious nodes try to induce honest nodes to misbehave
by sending conflicting messages. We attribute this resiliency
to the overlay nature of peer-to-peer communication, where
malicious nodes cannot easily deceive honest nodes, as in a
fully connected network.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for the con-
structive feedback. This work was partially supported by the

Swiss National Science Foundation (project number 175717),
the Interchain Foundation, and the Hasler Foundation.

REFERENCES

[1] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: a tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, Dec. 1990.

[2] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Master’s thesis, University of Guelph, Canada, Jun. 2016.
[Online]. Available: http://hdl.handle.net/10214/9769

[3] E. Buchman and J. Kwon, “Cosmos whitepaper: a network of
distributed ledgers,” 2016. [Online]. Available: https://cosmos.network/
resources/whitepaper

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” White
paper, 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[5] H. Vranken, “Sustainability of bitcoin and blockchains,” Current Opin-
ion in Environmental Sustainability, vol. 28, pp. 1–9, Oct. 2017.

[6] A. Poelstra, “Distributed consensus from proof of stake is impossible,”
Self-published Paper, May 2014. [Online]. Available: https://download.
wpsoftware.net/bitcoin/old-pos.pdf

[7] V. Buterin, “Slasher: A punitive proof-of-stake algorithm,”
Jan. 2014. [Online]. Available: https://blog.ethereum.org/2014/01/15/
slasher-a-punitive-proof-of-stake-algorithm

[8] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT
consensus,” arXiv:1807.04938 [cs.DC], Jul. 2018. [Online]. Available:
https://arxiv.org/abs/1807.04938

[9] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems, vol. 20,
no. 4, p. 398461, Nov. 2002.

[10] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–323,
Apr. 1988.

[11] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson, “Epidemic
algorithms for replicated database maintenance,” in 6th annual ACM
Symposium on Principles of Distributed Computing, ser. PODC’87.
ACM Press, 1987.

[12] R. Guerraoui, J. Hamza, D. Seredinschi, and M. Vukolic, “Can 100
machines agree?” arXiv:1911.07966 [cs.DC], Nov. 2019. [Online].
Available: http://arxiv.org/abs/1911.07966

[13] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues, “On the (limited)
power of non-equivocation,” in PODC, 2012.

[14] S. Bano, A. Sonnino, A. Chursin, D. Perelman, and D. Malkhi, “Twins:
White-glove approach for BFT testing,” arXiv:2004.10617 [cs.DC],
Apr. 2020. [Online]. Available: https://arxiv.org/abs/2004.10617

[15] M. Jelasity, “Gossip,” in Self-organising Software, ser. Natural Comput-
ing Series. Springer Berlin Heidelberg, 2011, pp. 139–162.

[16] C. E. Bezerra, F. Pedone, and R. V. Renesse, “Scalable state-machine
replication,” in 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, ser. DSN’14. IEEE, Jun. 2014.

[17] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication,” in Open Problems in Network Security, ser. iNetSec
2015. Springer International Publishing, May 2016, pp. 112–125.

[18] S. Braithwaite, E. Buchman, I. Khoffi, I. Konnov, Z. Milosevic,
R. Ruetschi, and J. Widder, “A Tendermint light client,”
arXiv:2010.07031 [cs.DC], Oct. 2020. [Online]. Available:
https://arxiv.org/abs/2010.07031

[19] Y. Amoussou-Guenou, A. D. Pozzo, M. Potop-Butucaru, and S. Tucci-
Piergiovanni, “Dissecting tendermint,” in Networked Systems. Springer,
Sep. 2019, pp. 166–182.

[20] Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-
Piergiovanni, “Correctness of tendermint-core blockchains,” in 22nd
International Conference on Principles of Distributed Systems, vol. 125,
2018, pp. 16:1–16:16.

[21] T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “Dbft: Efficient
byzantine consensus with a weak coordinator and its application
to consortium blockchains,” arXiv:1702.03068 [cs.DC], Feb. 2017.
[Online]. Available: https://arxiv.org/abs/1702.03068

[22] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in Advances in Cryptology, ser.
CRYPTO 2001. Springer Berlin Heidelberg, Aug. 2001, pp. 524–541.

http://hdl.handle.net/10214/9769
https://cosmos.network/resources/whitepaper
https://cosmos.network/resources/whitepaper
https://bitcoin.org/bitcoin.pdf
https://download.wpsoftware.net/bitcoin/old-pos.pdf
https://download.wpsoftware.net/bitcoin/old-pos.pdf
https://blog. ethereum. org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://blog. ethereum. org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1911.07966
https://arxiv.org/abs/2004.10617
https://arxiv.org/abs/2010.07031
https://arxiv.org/abs/1702.03068

[23] D. K. Gifford, “Weighted voting for replicated data,” in 7th ACM
Symposium on Operating Systems Principles, ser. SOSP ’79. New
York, NY, USA: Association for Computing Machinery, Dec. 1979, p.
150162.

[24] Iqlusion, “Tendermint KMS-related cosmos hub validator
incident,” Aug. 2019. [Online]. Available: https://iqlusion.blog/
postmortem-2019-08-08-tendermint-kms-related-cosmos-hub-validator-incident

[25] T. Crain, C. Natoli, and V. Gramoli, “Red belly: A secure, fair and
scalable open blockchain,” in 42nd IEEE Symposium on Security and
Privacy, ser. IEEE SP 2021, May 2021.

[26] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-
NG: A scalable blockchain protocol,” in 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), Mar. 2016,
pp. 45–59.

[27] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D.
Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Mu-
ralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in 13th EuroSys Conference. ACM, apr 2018.

[28] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: BFT consensus with linearity and responsiveness,” in 2019
ACM Symposium on Principles of Distributed Computing, ser. PODC’19.
ACM, Jul. 2019.

[29] ——, “Hotstuff: BFT consensus in the lens of blockchain,”
arXiv:1803.05069 [cs.DC], Jul. 2019. [Online]. Available: https:
//arxiv.org/abs/1803.05069

[30] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in 26th Symposium
on Operating Systems Principles. ACM, Oct. 2017, pp. 51–68.

[31] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151, 2014.
[Online]. Available: http://ethereum.github.io/yellowpaper/paper.pdf

[32] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction
processing. fast money grows on trees, not chains,” Cryptology
ePrint Archive, Report 2013/881, Dec. 2013. [Online]. Available:
https://eprint.iacr.org/2013/881

[33] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, Jul. 1982.

[34] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.
Wylie, “Fault-scalable byzantine fault-tolerant services,” ACM SIGOPS
Operating Systems Review, vol. 39, no. 5, pp. 59–74, Oct. 2005.

[35] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” in 21st ACM SIGOPS symposium
on Operating systems principles (SOSP ’07), Oct. 2007, pp. 45–58.

[36] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “Hq repli-
cation: A hybrid quorum protocol for byzantine fault tolerance,” in 7th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’06), vol. 7, Nov. 2006.

[37] R. Guerraoui, F. Huc, and A.-M. Kermarrec, “Highly dynamic dis-
tributed computing with byzantine failures,” in 2013 ACM symposium
on Principles of distributed computing (PODC ’13), Jul. 2013.

[38] R. Pass and E. Shi, “Thunderella: Blockchains with optimistic instant
confirmation,” in EUROCRYPT, Mar. 2018, pp. 3–33.

https://iqlusion.blog/postmortem-2019-08-08-tendermint-kms-related-cosmos-hub-validator-incident
https://iqlusion.blog/postmortem-2019-08-08-tendermint-kms-related-cosmos-hub-validator-incident
https://arxiv.org/abs/1803.05069
https://arxiv.org/abs/1803.05069
http://ethereum.github.io/yellowpaper/paper.pdf
https://eprint.iacr.org/2013/881

	Introduction
	System Model
	Design and architecture
	Peer-to-Peer Communication
	Tendermint Core
	Mempool
	Consensus
	Evidence
	Fast Sync
	State Sync

	Application interface
	Evaluation
	Network setup
	Baseline performance
	Scalability
	Crash faults
	Byzantine faults

	Related work
	Conclusion
	References

