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Abstract—Code smells have been defined as symptoms of poor
design and implementation choices. Empirical studies showed
that code smells can have a negative impact on the maintainability
of code. For this reason, tools have been developed to auto-
matically detect design flaws and, in some cases, to recommend
developers how to remove them via refactoring. However, these
tools are not able to prevent the introduction of design flaws.
This means that the code has to experience a quality decay
before state-of-the-art tools can be applied. In addition, existing
tools recommend refactoring operations that mostly target the
improvement of quality metrics (e.g., cohesion) rather than
the generation of refactorings that are meaningful from the
developers’ perspective. Our goal is to develop techniques serving
as the basis for a new generation of refactoring recommenders
able to (i) predict code components likely to be affected by code
smells in the near future, to refactor them before they experience
a quality decay and (ii) recommend meaningful refactorings
emulating the ones that developers would perform, rather than
the ones targeting the improvement of metrics. We refer to such
a perspective on refactoring as just-in-time rational refactoring.

Index Terms—Code quality metrics, maintenance, refactoring

I. INTRODUCTION

Empirical studies have shown that software complexity
tends to increase over time due to continuous maintenance and
evolution activities. To tackle complexity and maintenance,
high software quality must be ensured. Design flaws, anti-
patterns, and code smells are terms used in the literature to
indicate poor design choices made by developers during cod-
ing activities, which may trigger refactoring operations aimed
at removing them [3]. To detect design flaws and recommend
possible refactorings, tools and techniques have been devel-
oped in industry and academia. For example, Marinescu [5],
in his work on design flaws detection, uses static code analysis
to compute the “detection strategies” – metric-based rules
that capture deviations from good design principles. Detection
based on static code analysis has been then used by many
other researchers [6] as well as in tools (PMD, iPasma [4]).
Other authors used change-history information mined from the
versioning systems to identify specific types of design flaws
[7]. Finally, Palomba et al. [8] proposed a technique exploiting
textual analysis to detect code smells.

While there is a wide variety of techniques to identify design
flaws, none of them is able to prevent the introduction of such
design flaws, neither to recommend refactorings emulating
the ones that developers would perform, rather than the ones
targeting the improvement of quality metrics. To address these
limitations we aim to develop techniques serving as the basis
for a new generation of refactoring recommenders.

II. CURRENT STATUS OF RESEARCH AND FUTURE PLANS

Towards our objective we defined two research goals.

Goal 1. Predicting Code Quality Decay. We aim to
develop techniques able to alert the developer when a code
component is deviating from good design principles, before
design flaws are introduced. As a first step, we have proposed
an approach named COSP (Code Smell Predictor) [9], that
is able to predict whether a given class will be affected by a
specific type of code smell within t days. In our preliminary
work, we used COSP to predict classes that will become
God and Complex Classes within t = 90 days. We trained
the machine learner using the Weka implementation of the
Random Forest [2] with the goal of identifying a series of
rules which would discriminate classes likely to be affected by
a specific smell type within t days. As predictor variables we
used 42 metrics capturing object-oriented quality aspects of a
class C including complexity, cohesion, coupling, data hiding,
and inheritance. Random Forest classifies previously unseen
classes providing as output the probability that a class belongs
to each of the possible categories of the dependent variable i.e.,
will become smelly or not. We exploit this indication as a
confidence level for COSP. In particular, given a scenario
in which the developer uses COSP to prioritize classes for
refactoring, she can start by only inspecting the ones predicted
by COSP as becoming smelly with a probability of 90%.

The results show that with the maximum confidence level
(1.0), COSP discriminates classes likely to be affected by God
Class or Complex class smell types within 90 days with a
precision of ∼75%, but with recall not higher than ∼13%
[9]. COSP represents the very first solution paving the way
to more research in predicting classes that will hinder code
maintainability. We are working on improving the prediction
accuracy of COSP investigating the usage of other types of
predictor variables, such as process metrics (e.g., the class
change- and fault-proneness, the developers experience).

Given the ability to identify code components that are likely
to become maintainability issues in the future, the next step
is to recommend refactoring operations to developers. The ex-
isting state-of-the-art refactoring recommenders exploit quality
metrics as “fitness function” with the goal of maximizing code
quality as assessed by these metrics. Thus, they imply a strong
assumption: Quality metrics are able to assess code quality
as perceived by developers. Indeed, refactoring recommenders
should be able to suggest refactorings that are meaningful from
the developers’ point-of-view.



While such an assumption might look reasonable, there is
limited empirical evidence supporting it, mostly based on stud-
ies that investigated this phenomenon by surveying developers
[1], [11]. To validate this assumption we analyzed real changes
(commits) implemented by developers with the stated purpose
of improving a specific quality attribute. Then, we used seven
state-of-the-art quality metrics to assess the change brought
by each of those commits to the specific quality attribute
it targets. The goal was to investigate whether the quality
improvement expected by the developer is also reflected in
the metrics’ values. Our results show that, more often than
not, the studied quality metrics are not able to capture the
quality improvements as perceived by the developers [10].

Our findings highlight the possible limitations of software
engineering applications built on top of quality metrics (e.g.,
recommender systems aimed at identifying code smells and
suggest refactorings). Indeed, while a refactoring could make
sense from the quality metrics’ point of view, it might be
meaningless for developers (or vice versa). This finding mo-
tivates our second research goal: Learn refactoring operations
from developer’ activities, rather than recommending refactor-
ings maximizing some quality metrics.

Goal 2. Learning Refactoring Transformations. Our goal
is to investigate the possibility to apply deep learning models
to learn code changes performed by software developers. We
will use an approach similar to the one proposed by Tufano et
al. [14] to automatically fix bugs. The authors used Neural Ma-
chine Translation (NMT) models to automatically “translate”
buggy code into fixed code. They mined bug-fixing commits
from GitHub and extracted method-level AST edit operations
applied by developers to the buggy code to implement the
patch. This process resulted in pairs of code components
(before and after the fix). Using this data, the authors trained
an Encoder-Decoder Recurrent Neural Network to learn the
code transformations performed by developers during bug
fixing activities. We applied the same approach investigating
whether a NMT model can replicate the code transformations
performed by the developers in the pull requests [13].

In future, we plan to narrow the scope of code transforma-
tions to only refactorings with the goal to investigate whether
a NMT model can replicate refactoring operations performed
by software developers. This can be accomplished by mining
a large set of refactoring operations using existing tools [12],
and using this data to train the NMT model on pairs of code
components before and after the application of refactoring.

III. SUMMARY

Towards our envisioned just-in-time rational refactoring
recommender, we started by developing COSP (COdel Smell
Predictor)—an approach able to predict code components that
will represent maintainability issues in the near future. Our
first prototype can identify problematic components with a
precision of ∼75%, but still suffers of low recall (∼13%),
thus requiring more research. For the envisioned refactoring
recommender, we studied whether quality metrics can capture
improvements in code quality as perceived by developers.

We found that, in most of the cases, there is no alignment
between the quality improvement as perceived by developers
and how assessed by metrics. This justifies the need for explor-
ing novel refactoring recommenders. Thus, we plan to employ
a NMT model to learn code transformations performed by
developers in commits implementing refactoring operations.
Starting from a previously unseen code component given as
input, the NMT model should be able to replicate refactoring
operations as implemented by developers.
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