
PYREF: Refactoring Detection in Python Projects
Hassan Atwi∗, Bin Lin∗, Nikolaos Tsantalis†, Yutaro Kashiwa‡

Yasutaka Kamei‡, Naoyasu Ubayashi‡, Gabriele Bavota∗, Michele Lanza∗
∗Software Institute – USI, Lugano, Switzerland — †Concordia University, Canada — ‡Kyushu University, Japan

Abstract—Refactoring, the process of improving the internal
code structure of a software system without altering its external
behavior, is widely applied during software development. Un-
derstanding how developers refactor source code can help gain
better understanding of the software development process and
the relationship between various versions of a system. Refactoring
detection tools have been developed for many popular program-
ming languages, such as Java (e.g., REFACTORINGMINER and
REF-FINDER) but, quite surprisingly, this is not the case for
Python, a widely used programming language.

Inspired by REFACTORING MINER, we present PYREF, a tool
that automatically detects method-level refactoring operations in
Python projects. We evaluated PYREF against a manually built
oracle and compared it with a PYTHON-ADAPTED REFACTOR-
INGMINER, which converts Python program to Java and detects
refactoring operations with REFACTORING MINER. Our results
indicate that PYREF can achieve satisfactory precision and detect
more refactorings than the current state-of-the-art.

Index Terms—refactoring detection, Python, software mainte-
nance

I. INTRODUCTION

Refactoring, the process of improving the internal structure
of a software system without changing its external behavior
[1], has received significant attention by the software engi-
neering research community. Understanding how refactoring
is applied in software systems can help to gain insights into
software maintenance and evolution, learning good software
design practices and improve code comprehension. However,
detecting refactoring is not a trivial task due to the fact
that developers rarely document the refactoring operations
they perform [2]. Besides, refactoring operations are often
performed together with –or as a consequence of– other
changes [3], which makes it even harder to distill them out
of tangled code changes.

Several refactoring detection tools such as REFACTORING-
MINER [4] and REFDIFF [5] have been proposed to mine
refactoring operations from software projects. Most of these
tools mainly focus on the Java programming language [4], [6],
[7], while REFDIFF [5] also detects refactoring for projects
written in JavaScript and C. None of these tools can be used
to extract refactorings performed in Python. Given the fact
that Python is currently one of the most popular programming
languages1, a refactoring detection tool specifically designed
for Python might unlock many new research opportunities.
For example, Python is the dominant language in the fields of
scientific computing, data science, and machine learning [8].

1https://www.tiobe.com/tiobe-index/

Therefore, detecting refactoring in Python can allow to gain
specific insights in these domains.

Dilhara and Dig [9] have taken the first step to address
this issue and developed PYTHON-ADAPTED REFACTORING-
MINER2, which converts Python programs into Java and uses
REFACTORINGMINER [4] to detect refactorings. However,
there are considerable differences between these two lan-
guages, let alone the language grammar. For example, Python
checks types at runtime while Java is a statically typed
language. Moreover, Java is class-based and object-oriented,
while Python projects can also follow other programming
styles such as functional and imperative programming.

Inspired by REFACTORINGMINER [4], we present PYREF,
a tool that automatically detects mainly method-level refac-
toring operations from Python projects. To evaluate the per-
formance of PYREF, we ran it on three real-world Python
projects, and manually validated the refactoring detection. We
also compared PYREF with the only publicly available refac-
toring detection tool for Python, namely PYTHON-ADAPTED
REFACTORING MINER. On average, PYREF achieves a preci-
sion of 89.6% and a recall of 76.1%, which are both higher
than the current state-of-the-art. This results show the potential
of PYREF for refactoring detection in Python projects.

The remainder of the paper is structured as follows. Sec-
tion II introduces current refactoring detection tools. The
detailed techniques behind PYREF are described in Section III.
Section IV reports the design and results of the study we per-
formed to assess the performance of PYREF. The limitations
of our tool are discussed in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

The last two decades have seen a rapid growth of refactoring
detection tools.

REFACTORINGCRAWLER, developed by Dig et al. [7],
is one of these modern tools for refactoring detection. It
uses a fast syntactic analysis based on Shingles encoding,
a technique from the information retrieval field, to detect
refactoring candidates. After locating the possible refactorings,
it adopts a more expensive semantic analysis to refine the
results. The performance of this tool was tested on three
different projects (i.e., EclipseUI, Struts, and JHotDraw) with
manually extracted refactoring operations documented in these
projects.

2https://github.com/maldil/RefactoringMiner



JDEVAN (Java Design Evolution Analysis), a tool de-
veloped by Xing and Stroulia [10], detects refactorings by
applying a set of predefined queries on the design changes
retrieved by UMLDIFF [11]. The evaluation of this tool was
done on two software systems, and all of the documented
refactorings were detected.

Prete et al. proposed REF-FINDER [12], another refactoring
detection tool, which converts the target source code into logic
predicates that describe the structure and elements of the code.
The tool uses the Tyruba logic programming engine [13] to
infer concrete refactoring instances with the help of a set
of logical queries which identify the patterns of refactoring
operations among the structural differences. It can detect 63
types of complex refactoring operations. The tool was tested
on manually collected refactorings and it showed that its
overall precision and recall are 79% and 95%, respectively.

Developed by Silva and Valente [14], REFDIFF detects 13
refactoring types through static analysis and code similarity
comparison. REFDIFF first parses two versions of source code
and transforms them into high level models that represent the
code elements; it then analyzes both models to detect the
relationships between the identical entities. TF-IDF is then use
to compute the similarity between the code elements, and the
similarity threshold is determined through a calibration process
on a set of randomly selected systems. The tool was evaluated
with an oracle of refactorings applied by qualified students.
Silva et al. [5] extended the tool to other two languages (i.e.,
C and JavaScript) with the same core approach. The precision
of the tool for C and JavaScript projects was evaluated by
manually validating the detected refactorings, while the recall
was calculated based on refactorings documented in commit
messages.

REFACTORINGMINER [4], developed by Tsantalis et al.,
can detect over 80 different types of refactoring operation.
REFACTORINGMINER differs from other tools as it does not
require any similarity threshold. The tool detects the possible
refactorings based on pre-defined detection rules. To evaluate
REFACTORINGMINER, the authors used a dataset containing
7,226 true instances for 40 different refactoring types, which
are validated by experts. The results indicate that it can achieve
high average precision (99.6%) and recall (94%).

The most relevant work to ours is PYTHON-ADAPTED
REFACTORING MINER developed by Dilhara and Dig [9]. This
tool first converts Python code to Java and then feeds it into
REFACTORINGMINER [4]. In theory, it supports the detection
of all the refactoring types covered by REFACTORINGMINER.
An early version of this tool has been released. However, as
the authors are still improving the tool, currently no evaluation
results have been published. While inspired by REFACTOR-
INGMINER [4], unlike PYTHON-ADAPTED REFACTORING
MINER, PYREF is a native refactoring detection tool for
Python projects and it does not rely on program language
translation or third party refactoring detectors.

III. PYREF

PYREF is a tool designed to mine refactoring operations
in Python projects. As the tool is inspired by REFACTORING-
MINER [4], the core approaches used in these tools are similar,
with some adaptions due to the language differences. PYREF
takes as input a Git repository of a Python project, and returns
a list of refactoring operations performed in the project.

Currently PYREF supports the detection of 9 types of
method-level refactoring operations: RENAME METHOD, ADD
PARAMETER, REMOVE PARAMETER, CHANGE/RENAME PA-
RAMETER, EXTRACT METHOD, INLINE METHOD, MOVE
METHOD, PULL UP METHOD, and PUSH DOWN METHOD.3

PYREF follows five steps to detect refactoring operations:
1) extracting code changes, 2) modeling code elements, 3)
matching code elements, 4) applying refactoring heuristics,
and 5) sorting candidates.

A. Extracting Code Changes

PYREF iterates the commits in the history of a Python
repository and takes two adjacent revisions (current commit
and its parent) for refactoring detection. Merge commits are
excluded to avoid redundant refactorings. Like REFACTOR-
INGMINER [4], PYREF only analyzes changed files (i.e.,
added, deleted, and modified) between two revisions to be
executed more efficiently and reduce the chance of matching
irrelevant code elements between revisions. Therefore, the first
step of PYREF is to extract all the changed Python files.

B. Modeling Code Elements

PYREF then transforms the source code of each modified
Python file into an abstract syntax tree (AST) using the built-
in AST module.4 It then converts Python AST instances into
ANYTREE5 instances to make it easier to navigate between
AST nodes (e.g., visiting the parent node). From each AST,
PYREF extracts the needed code elements from each tree
and represents them with a predefined model. We followed
a similar information modeling approach as the one used by
REFACTORINGMINER, including the following elements:

• Module: A module is defined by its name (same as the
Python filename), contained classes and functions, and
directly affiliated definitions and statements (i.e., those
not defined within a function or a method).

• Class: Classes may contain definitions and statements.
For each class in a module, we assign it with its name,
a list of inherited classes (if any), the defined fields, and
methods.

• Method/Function: For each method/function, we asso-
ciate it with the module and class (if any) it belongs to,
the name of the method, a list of parameters (if any), and
the statements it carries.

3The current version of PYREF also supports the detection of RENAME
CLASS, MOVE CLASS, and EXTRACT VARIABLE. However, these refactoring
types are not thoroughly tested at this moment. Therefore, in this paper, we
focus on method-level refactorings.

4https://docs.python.org/3/library/ast.html
5https://anytree.readthedocs.io/en/latest/



TABLE I
REFACTORING DETECTION RULES.

Refactoring Type Rule

Change Method Signature
m1 to m2

∃(M,U1, U2) = matching(m1,m2) |m1 ∈ m− ∧m2 ∈ m+ ∧m1.c = m2.c

∧((U1 = ∅ ∧ U2 = ∅) ∨ (|M | >= |U1| ∧ |M | >= |U2| ∧ compatibleSignatures(m1,m2))∨
(|M | > |U1| ∧ ∃inline(mx,m2)) ∨ (|M | > |U2| ∧ ∃extract(m1,mx))))

Rename Method : m1.name 6= m2.name

Add Parameter : |m2.p| > |m1.p|
Remove Parameter : |m2.p| < |m1.p|
Change/Rename Parameter : |m2.p| = |m1.p|∧(|set(m2.p)−set(m1.p)| > 0∨|set(m1.p)−set(m2.p)| > 0)

Extract Method
m2 from m1

∃(M,U1, U2) = matching(m1,m2) | (m1,m′1) ∈ m= ∧m2 ∈ m+ ∧m1.c = m2.c∧
¬m1.calls(m2) ∧m′1.calls(m2) ∧ |M | >= |U2|

Inline Method
m2 to m1′

∃(M,U1, U2) = matching(m1,m2) | (m1,m′1) ∈ m= ∧m2 ∈ m− ∧m′1.c = m2.c∧
m1.calls(m2) ∧ ¬m′1.calls(m2) ∧ |M | >= |U2|

Move Method
m1 to m2

∃(M,U1, U2) = matching(m1,m2) |m1 ∈ m− ∧m2 ∈ m+ ∧ |M | > |U1| ∧ |M | > |U2| ∧m1.name = m2.name∧
((mod1,mod′1) ∈ m+ ∨ (c1, c′1) ∈ c=) ∧ (m1 ∈ c1 ∨m1 ∈ mod1))∧
((mod2,mod′2) ∈ mod= ∨ (c2, c′2) ∈ c=) ∧ (m2 ∈ c2 ∨m2 ∈ mod2))

Pull Up Method : m1.c.extends(m2.c)

Push Down Method : m2.c.extends(m1.c)

M : matched statements, Ui: unmatched statements, mi: method, ci: class, modi: module, p: parameters
codeElement′: code element after revision, codeElement=: matched element, codeElement−: removed element, codeElement+: added element
matching(m1,m2) returns a set of matched statements (M ) and two sets of unmatched statements (U1 and U2) between the method bodies of m1 and m2

compatibleSignatures(m1,m2)⇒ m1.p ⊆ m2.p ∨m2.p ⊆ m1.p ∨ |m1.p ∩m2.p| ≥ |m1.p ∪m2.p|\|m1.p ∩m2.p|
m1.calls(m2) returns true if m1 calls m2, m1.c.extends(m2.c) returns true if the class of m1 extends the class of m2

inline(mx,m2) returns true if mx is inlined into m2, extract(m1,mx) returns true if mx is extracted from m1

• Leaf Statement: A leaf statement is a statement that does
not contain nested statements inside. It is associated with
all the elements it contains, its parent method (if any), its
original AST in text representation, as well as its depth
and the index in the AST.

• Composite Statement: A composite statement contains
the same attributes of a leaf statement. However, a
composite statement may contain a body which consists
of other statements (e.g., If statement).

C. Matching Code Elements

These code elements are categorized into three groups: 1)
the common set (i.e., the code element in the current revision
can be matched to its counterpart in the parent revision); 2)
the added set (i.e., the code element is added in the current
revision); and 3) the removed set (i.e., the code element is
removed in the current revision). For modules, classes, and
methods/functions, we use the following heuristics to decide
whether two code elements in two revisions match:

Module : module1.name = module2.name

Class : class1.name = class2.name

∧ class1.module = class2.module

∧ class1.host method = class2.host method

The host method is null if the class is not defined in a method.

Method : method1.name = method2.name

∧method1.module = method2.module

∧method1.class = method2.class

∧method1.params = method2.params

We use the same Statement Matching algorithm applied in
REFACTORINGMINER to determine whether two statements
match. For leaf statements, we consider them matching if they
satisfy one of the following conditions:

1) The statements are identical in textual representation and
have the same depth in their AST.

2) The statements are identical in textual representation.
3) The statements are identical in textual representation

after replacing compatible sub-expressions.

In case of composite statements, passing one of the three
conditions is not enough. They should also have at least
one matched pair of statements within their bodies. Due to
space limitations, we do not elaborate the Statement Matching
algorithm here but we point the reader to the REFACTORING-
MINER paper [4] to get deeper insights into how this algorithm
works.

When one statement is matched to several statements, the
priority order is in line with the order of these three conditions.
When several statements fit into the same condition, we sort
the matched statements in ascending order based on three
different attributes (sort level from high to low): their textual
similarity (represented with Levenshtein distance), depth in the
AST, and index in the body of their method, then we select
the first matched statement.

It is important to note that the matched code elements are
not fixed and are subject to change depending on the outcome
of refactoring detection. For instance, if we detect that class
A is renamed to class B, we will remove them from the added
and removed sets and add them to the common set.



TABLE II
REFACTORING DETECTION PERFORMANCE PER REFACTORING TYPE.

Refactoring Type PYREF PYTHON-ADAPTED REFACTORINGMINER

TP FP FN Precision (%) Recall (%) TP FP FN Precision (%) Recall (%)

RENAME METHOD 109 22 7 83.21% 93.97% 15 1 101 93.75% 12.93%
ADD PARAMETER 104 5 61 95.41% 63.03% 125 1 40 99.21% 75.76%
REMOVE PARAMETER 46 2 5 95.83% 90.20% 21 0 30 100.00% 41.18%
CHANGE/RENAME PARAMETER 74 5 - 93.67% - - - - - -
EXTRACT METHOD 11 0 9 100.00% 55.00% 12 4 8 75.00% 60.00%
INLINE METHOD 4 1 1 - - 1 0 4 - -
MOVE METHOD 13 1 8 92.86% 61.90% 16 66 5 19.51% 76.19%
PULL UP METHOD 5 1 1 - - 2 4 4 - -
PUSH DOWN METHOD 1 2 0 - - 1 0 0 - -

Overall 293 34 92 89.60% 76.10% 193 76 192 71.74% 50.13%

D. Applying Refactoring Heuristics

PYREF uses predefined rules listed in Table I to detect
different types of refactoring. As mentioned in the paper of
REFACTORINGMINER [4], following the order of detection
rules is important. For example, when a RENAME METHOD
and an EXTRACT METHOD refactoring are applied sequen-
tially on the same method, if we do not detect the RENAME
METHOD refactoring first, we will not be able to match the
renamed method with the original method, thus they will not
be used to further check if any method is extracted.

E. Sorting Candidates

After applying detection rules, one code element might
be associated with several potential refactoring instances. In
practice, code elements can undergo only a certain amount of
some refactoring types. For example, a method can be renamed
only once in a commit, but it can be used to extract several
methods. When a method signature is matched to multiple
potential signatures, we take into consideration the similarity
between signatures. The similarity is calculated based on two
values: the sum of the Levenshtein distance between the
statement texts in their method bodies, and the number of
textual-identical statements. In this way, we can eliminate
many invalid refactorings and reduce false positives.

IV. EVALUATION

The goal of this study is to analyze the accuracy of PYREF
for detecting refactorings in Python projects. The context
consists of 573 refactorings reported by PYREF and PYTHON-
ADAPTED REFACTORINGMINER.

A. Research Question

To evaluate the performance of PYREF, we answer the
following research question (RQ):

RQ: What is the accuracy of PYREF and how does it
compare to the state-of-the-art tool?

B. Context Selection and Data Collection

To answer this RQ, we evaluate the performance of PYREF
and the only existing refactoring detection tool for Python,
namely PYTHON-ADAPTED REFACTORINGMINER.

As PYTHON-ADAPTED REFACTORINGMINER is still un-
der development, we obtained the list of all the detected
refactoring cases by an early version of the tool from its
authors. We randomly selected three projects, including DIT6,
TEXAR7, and FFMPEG-PYTHON8. We applied PYREF on these
repositories, and for each project, we removed those reported
refactorings committed after the latest commit containing
refactoring reported by PYTHON-ADAPTED REFACTORING-
MINER to ensure a fair comparison. As a result, PYREF and
PYTHON-ADAPTED REFACTORINGMINER detected 406 and
269 refactorings, respectively, for the refactoring types PYREF
supports. As 102 refactoring cases were reported by both tools,
in total we collected 573 refactoring instances.

We used a web app to manually validate the detected
refactorings. For each refactoring, the web app presented
the information of the refactoring (i.e., refactoring type and
description) and the link to the corresponding GitHub commit
where code before and after changes can be found. Validators
(i.e., authors of this paper) needed to inspect the code changes,
determine whether the reported refactoring is correct and
leave comments if there is anything worth discussing. As the
supported refactorings are well-defined and the validators have
good knowledge of refactoring, when a validator was very
certain whether the refactoring is true/false positive, we did
not require a second validator. When there was any doubt or
the validator wanted the case to be double checked, a second or
even third validator was involve until agreement was reached.
In total, 50 cases required a second/third evaluator.

C. Results

Table II shows the accuracy of PYREF and PYTHON-
ADAPTED REFACTORINGMINER. For each type of refactoring
and each tool, we report true positive (TP), false positive
(FP), false negative (FN), precision, and recall. For refactoring
types containing less than 10 instances, we omit the precision
and recall. Given the fact that it is impractical to extract all
the refactoring operations applied in the projects, we follow
the approach used in the work of REFACTORINGMINER [4].

6https://github.com/dit/dit
7https://github.com/asyml/texar
8https://github.com/kkroening/ffmpeg-python



More specifically, we consider all the refactorings reported
by these two tools as the complete dataset. Therefore, the
recall reported here is an upper bound. Moreover, as PYTHON-
ADAPTED REFACTORINGMINER uses different refactoring
types as PYREF does, and there is no one-to-one or one-
to-many relation between CHANGE/RENAME PARAMETER in
PYREF to refactorings in PYTHON-ADAPTED REFACTORING-
MINER, we only report the result of this refactoring type
for PYREF. Meanwhile, the overall result does not contain
CHANGE/RENAME PARAMETER, either.

Overall, PYREF achieves a precision of 89.6% and a recall
of 76.1%, while PYTHON-ADAPTED REFACTORINGMINER
achieves a precision of 71.74% and 50.13%. The performance
on different refactoring types also varies. For example, the
precision of PYREF on detecting RENAME METHOD (83.21%)
is among the lowest, while PYREF has a low recall (55%)
for EXTRACT METHOD. On the contrary, PYTHON-ADAPTED
REFACTORINGMINER has a low precision (19.51%) for
MOVE METHOD and a low recall (12.93%) for RENAME
METHOD. Given the fact that there are not many instances
detected for some refactoring types (i.e., INLINE METHOD,
PULL UP METHOD, PUSH DOWN METHOD), it is hard to
tell whether the accuracy for these types can be generalized.
This is also due to the fact that these types of refactorings
might be less frequently applied. The result that significant
fewer refactorings were detected for these types is in line with
REFACTORINGMINER. As the overall recall of both tools has
some room for improvement, we can find that while both these
tools are highly relevant to REFACTORINGMINER, they can
still complement each other.

We manually inspected the false positive cases obtained
by these tools to get some insights on how they can be
improved. For PYREF, many false positives of RENAME
METHOD are due to the fact that PYREF does not con-
sider the reserved methods in Python. For example, in
the commit 57abf6e9, PYREF reported that in the class
OutputNode of the file ffmpeg/nodes.py, the method
__init_fromscratch__ (line 306) was renamed to
__init__. While all the statements in these two methods can
be matched and they satisfy the rule of RENAME REFACTOR-
ING, it is not a real renaming operation as __init__ method
is reserved in Python functioning as a constructor. Therefore,
this operation is in fact moving all the statements to the new
method and remove the overridden __init__ method. The
false positive of REMOVE PARAMETER is mainly because we
did not consider the magic variable **kwargs, which allows
users to pass multiple keyword arguments (e.g., arg1=1,
arg2=2) to a method, when retrieving the parameters. We
plan to fix these issues in the next version of PYREF.

For PYTHON-ADAPTED REFACTORINGMINER, we found
that most false refactorings reported for MOVE METHOD
are due to a bug when converting Python code to
Java. For example, in the commit 215319a10, the tool

9https://bit.ly/3rN7iK2
10https://bit.ly/37eCiJu

reported that in the file txtgen/core/layers.py,
the method _common_default_conv_kwargs from
the class PyDummyClass1 is moved to the class
PyDummyClass2. In fact, these two classes do not exist and
the function _common_default_conv_kwargs is not
moved. As the function is not contained in any class, the tool
created a dummy class to feed it into REFACTORINGMINER.
For some reason, different classes were created for the same
function. The authors of the tool acknowledged that they have
noticed this bug, and it has already been fixed in the unreleased
new version. Therefore, we believe this tool can obtain a
higher precision when the new version is released.

D. Threats to Validity

Threats to construct validity concern the relation between
the theory and the observation. In this work, the threats are
mainly due to the measurements we performed. First of all,
the oracle is manually labeled, and human errors might exist
during validation. To mitigate this threat, we have more than
one person to inspect cases in doubt. As most refactoring
instances are clear and uncontroversial, we believe this should
not be a factor which can hugely impacts the results. Besides,
the construction of our oracle is done by incorporating the
output of two different tools; we acknowledge that it might
miss some real refactorings, thus inflating the recall. Given
the fact that refactoring operations are rarely documented, it
is extremely difficult to identify all the refactorings applied in
a project.

Threats to external validity concern the generalization of
our findings. In this evaluation, we only validate the refac-
toring detection results on three real-world Python projects.
We are aware that the precision and recall might vary when
PYREF is applied on different projects. In the future, we
plan to verify the performance on more projects. Moreover, in
this study we focused on method-level refactorings, thus it is
unclear whether the heuristics-based approach also works well
for refactoring types. However, given the good performance
of REFACTORINGMINER, where we get inspiration from, we
believe that PYREF is likely to achieve a reasonable accuracy
for newly added refactoring types in the future.

Threats to internal validity concern internal factors to our
study that could influence our results. The two tools selected
in this study are highly relevant to REFACTORINGMINER:
PYREF is inspired by REFACTORINGMINER and adopts its
core idea for refactoring detection, while PYTHON-ADAPTED
REFACTORINGMINER converts Python code to Java and uses
REFACTORINGMINER to detect refactoring. That is, these
two tools share certain similarities. Tools leveraging other
refactoring detection approaches might produce very different
results, thus impacting the recall calculated in our study.

E. Replication

To facilitate replication and advancement of refactoring
detection for Python, we open source PYREF and release
the dataset used in this study, which can be accessed at
https://github.com/PyRef/PyRef.



V. LIMITATIONS

While PYREF takes a first step to detect refactorings in
Python projects, several limitations exist in this tool.

A. Unsupported Refactorings

Currently, PYREF mainly detects method-level refactorings,
and much more work needs to be done to extend the support
for class-level (e.g., RENAME CLASS) and field-level refac-
torings (e.g., PULL UP FIELD). It has been several years
since the emergence of the first refactoring detection tool
for Java, and the latest version of the state-of-the-art tool
REFACTORINGMINER now supports 80 types of refactorings.
However, efforts to support refactoring detection in Python
projects has just started, thus needing several years’ iteration
to become more mature and robust.

One major difference between Java and Python is that the
latter is dynamically-typed. That is, by simply parsing the
AST, we are not able to know the type of the data. Therefore,
PYREF currently does not support type-related refactorings
(e.g., CHANGE PARAMETER TYPE). One potential solution to
this issue is integrating type inference techniques [15], [16].

Besides, there are many refactoring types which are exclu-
sively applied in Python. For example, as Python supports sev-
eral programming paradigms, investigating how source code
is changed from functional programming to objected oriented
programming is an interesting topic. Moreover, in Python,
some for loops can be converted into list comprehensions,
which is not possible in other languages like Java. The Python-
specific syntax enables new research opportunities.

B. Reliance on Python AST Module

PYREF is written in Python 3 and relies on built-in AST
module to parse the source code. That is, when executing
PYREF with Python 3 on some old projects written in Python
2, sometimes there will be compatibility issues and parsing
errors. While the support of Python 2 has been discontinued
since the first day of 2020, adding an extra parser for Python
2 will be helpful to reduce the chance of code parsing issues
for legacy code.

C. Refactorings Spanning Multiple Revisions

Like most refactoring detection tools, PYREF detects refac-
torings between two adjacent revisions. If a refactoring opera-
tion spans several revisions, namely the new revision does not
contain complete refactoring, PYREF might fail to detect the
refactoring. While using non-adjacent revisions for refactoring
detection might solve this issue, it will significantly increase
the workload of the tool, thus increasing the time needed for
generating the results. A better approach is needed to compare
only relevant revisions.

VI. CONCLUSIONS

We presented PYREF, a tool for detecting refactoring op-
erations in Python projects. PYREF is the first native solution
for Python, and it does not require converting the source
code to another programming language, nor does it rely on

other refactoring detection tools. Our evaluation, which uses
real-world projects and compares our approach and the state-
of-the-art PYTHON-ADAPTED REFACTORINGMINER, showed
that PYREF achieves high precision. The limitations of PYREF
discussed in Section V outlines the roadmap for our future
work.

ACKNOWLEDGMENTS

We thank Malinda Dilhara and Danny Dig for providing in-
formation and refactoring detection results of the early version
of PYTHON-ADAPTED REFACTORINGMINER. We also grate-
fully acknowledge the financial support of JSPS and SNSF for
the project “SENSOR” (No. 183587, JPJSJRP20191502).

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code (2nd
Edition). Addison-Wesley Professional, 2018.

[2] E. A. AlOmar, H. AlRubaye, M. W. Mkaouer, A. Ouni, and M. Kessen-
tini, “Refactoring practices in the context of modern code review: An
industrial case study at Xerox,” in Proceedings of the 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software En-
gineering in Practice (ICSE-SEIP), 2021, pp. 348–357.

[3] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5–18, 2011.

[4] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering, pp. 1–1, 2020.

[5] D. Silva, J. Silva, G. J. De Souza Santos, R. Terra, and M. T. O.
Valente, “RefDiff 2.0: A multi-language refactoring detection tool,”
IEEE Transactions on Software Engineering, pp. 1–1, 2020.

[6] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-Finder: A
refactoring reconstruction tool based on logic query templates,” in
Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE ’10, 2010, p. 371–372.

[7] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in Proceedings of the
Object-Oriented Programming, ser. ECOOP’ 06, 2006, pp. 404–428.

[8] S. Raschka, J. Patterson, and C. Nolet, “Machine learning in Python:
Main developments and technology trends in data science, machine
learning, and artificial intelligence,” Information, vol. 11, no. 4, 2020.

[9] M. Dilhara, “Discovering repetitive code changes in ML systems,”
in 2021 ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering - Student
Research Competition, ser. ESEC/FSE 2021, 2021, p. 1683–1685.

[10] Z. Xing and E. Stroulia, “The JDEvAn tool suite in support of object-
oriented evolutionary development,” in Proceedings of the 30th Interna-
tional Conference on Software Engineering, ser. ICSE Companion ’08,
2008, p. 951–952.

[11] ——, “UmlDiff: An algorithm for object-oriented design differencing,”
in Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’05, 2005, p. 54–65.

[12] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based
reconstruction of complex refactorings,” in 2010 IEEE International
Conference on Software Maintenance, 2010, pp. 1–10.

[13] K. De Volder, “Type-oriented logic meta programming,” Ph.D. disserta-
tion, Citeseer, 1998.

[14] D. Silva and M. T. Valente, “RefDiff: Detecting refactorings in version
histories,” in Proceedings of the IEEE/ACM 14th International Confer-
ence on Mining Software Repositories, ser. MSR ’17, 2017, pp. 269–279.

[15] J. Aycock, “Aggressive type inference,” in the 8th International Python
Conference, 2000, pp. 11—-20.

[16] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python probabilistic type
inference with natural language support,” in the 24th ACM SIGSOFT
International Symposium on Foundations of Software (FSE). ACM,
2016, pp. 607–618.


