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Abstract A recent research showed that mobile apps represent nowadays
75% of the whole usage of mobile devices. This means that the mobile user
experience, while tied to many factors (e.g., hardware device, connection speed,
etc.), strongly depends on the quality of the apps being used. With “quality”
here we do not simply refer to the features offered by the app, but also to its
non-functional characteristics, such as security, reliability, and performance.
This latter is particularly important considering the limited hardware resources
(e.g., memory) mobile apps can exploit. In this paper, we present the largest
study at date investigating performance bugs in mobile apps. In particular, we
(i) define a taxonomy of the types of performance bugs affecting Android and
iOS apps; and (ii) study the survivability of performance bugs (i.e., the number
of days between the bug introduction and its fixing). Our findings aim to help
researchers and apps developers in building performance-bugs detection tools
and focusing their verification and validation activities on the most frequent
types of performance bugs.
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1 Introduction

Over the last decades, research has highlighted the importance of integrating
quality analysis in the software development process [2,26]. Software quality
can be defined as the discipline representing the entire collection of engineering
activities used throughout the software development cycle and directed to
meet quality requirements [37]. Together with others (e.g., reliability, security,
etc.), performance has been recognized as an essential quality attribute of
every software system. Indeed, if performance targets are not met, a variety of
negative consequences (such as damaged customer relations, business failures,
lost income, etc.) can impact on a significant fraction of projects [33,42].

Performance problems have been studied from several decades in litera-
ture, and software performance engineering emerged as the discipline focused
on fostering the specification of performance-related factors [95,8,94] and re-
porting experiences related their management [81,41,78,3]. Performance bugs,
i.e., suboptimal implementation choices that create significant performance
degradation, have been demonstrated to hurt the satisfaction of end-users in
the context of desktop applications [67]. These bugs, that are pervasive and
difficult to understand, can cause delays, failures on deployment, redesigns,
even a new implementation of the system or abandonment of projects, which
lead to significant costs [93,58]. As discussed in [97], a good understanding of
the impact of different types of non-functional bugs (such as performance, but
also security, reliability, etc.) on various project aspects is essential to improve
software quality research and practice.

When talking about mobile applications (apps), performance bugs also
present some additional requirements that distinguish them from traditional
software applications [91,35]. For instance, the design and the development
is affected by the different hosting devices, operating systems, and even by
different versions of the same operating system [14]. Besides this, an app may
inadvertently make extensive use of battery resources, and the excessive power
consumption may prevent the actual usage of the app itself. To prevent this,
it is fundamental to deeply study the non-functional characteristics of mobile
apps [15].

The goal of this paper is to investigate performance bugs occurring in
native mobile apps. These specific bugs are an important non-functional type
of bugs, since they are strictly related with other types. For instance, the
raising of security or reliability requirements usually leads to performance
degradation. Indeed, in previous work [79] we experimented that security
has a direct overhead on performance. This means that the introduction of
security mechanisms inevitably consumes system resources affecting the system
performance, even compromising its full operability. Besides this, it has been
demonstrated that performance bugs are very commonly occurring in real-world
projects [33].

Additional motivation for investigating performance bugs in mobile apps
has also been recently pointed out in the literature [59,55]. In fact, lower-rated
apps resulted to show a relationship with bad programming practices and poor
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performance, suggesting that code quality can actually have an impact on the
success of mobile apps [38]. In [64] future trends in software engineering research
for mobile apps are discussed, and performance problems are recognized to span
in a wide variety requiring the development of tools and approaches looking
more at the client-side [84].

To the best of our knowledge, there are few studies investigating performance
bugs in mobile apps [57,27,9,55]. Hecht et al. [27] study the impact of code
smells on performance metrics, while Cruz and Abreu [9] investigate whether
the usage of performance best-practices help in saving battery life. Linares-
Vásquez et al. [55] surveyed practitioners regarding their practices for detecting
and fixing performance bottlenecks in Android apps. Liu et al. [57] have been
the first to run an empirical study on performance bugs in the specific context
of mobile apps. They studied 70 real-world performance bugs mined from the
issue tracker of eight Android apps. Starting from this data, they manually
classified the 70 bugs into three categories, namely: GUI lagging (53 instances),
Energy leak (10 instances), and Memory bloat (8 instances). They also studied
(i) the way in which the performance bugs manifest, showing that one third
of them require a specific user interaction to manifest, and (ii) the bug-fixing
effort spent to close the subject issues, using proxies such as the number of
days for which the bug was open, the number of comments posted in the
issue discussion, and the patch size. Finally, they identified three common
performance bug patterns (i.e., lengthy operations in main threads, wasted
computation for invisible GUI, and frequently-invoked heavy-weight callbacks)
and implemented a tool to identify two of them.

Our work stems from the seminal paper by Liu et al. [57] and aims at
expanding the empirical knowledge about performance bugs in mobile apps.
Our main contributions, as compared to [57], can be summarized as follows:

1. We present a larger study on the types of performance bugs affecting not only
Android but also iOS apps. We manually analyze 500 commits (250 related
to Android and 250 to iOS apps) aimed at fixing real performance bugs
with the goal of categorizing the type of bug being fixed (e.g., memory leak).
Based on this classification, we created two taxonomies of performance bugs
for Android and iOS apps. As compared to [57] we: (i) analyze a much
larger sample of performance bugs (70 vs 250+250); (ii) investigate the
types of performance bugs affecting both Android and iOS apps; and (iii)
while confirming GUI lagging, Energy leak, and Memory bloat as frequent
types of performance bugs, we identified additional categories of bugs
not covered in [57]. Knowing the types of performance bugs that most
likely affect mobile apps can help to guide (i) apps developers, in focusing
code inspection/reviewing activities toward the identification of the most
frequently reported types of performance bugs, (ii) researchers, in investing
in the development of detection tools targeting the most diffused types of
performance bugs, and (iii) language/API developers, to design/improve
mechanisms for promoting the development of efficient code.
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2. Bug-fixing effort vs survivability of performance bugs. As previously said,
Liu et al. [57] analyzed the bug-fixing effort for the 70 issues representing
performance bugs. Since our work focuses on commits fixing performance
bugs, we have the chance to study the survivability of these bugs (i.e.,
the time going from their introduction to their fixing). We found that,
on average, they survive for at least 90 days in both Android and iOS
apps. Moreover, we observed that, when compared to bugs unrelated to
performance issues, performance-related bugs tend to survive longer in the
apps.

Paper structure. Section 2 presents background information on perfor-
mance problems and discusses the related work mostly focusing on performance
bugs. Section 3 describes the design of the empirical study: data extraction
and analysis are illustrated. Results and main findings are discussed in Section
4, while threats to validity are discussed in Section 5. Section 6 concludes the
paper and provides future research directions.

2 Background and Related work

In this section, we introduce some foundational concepts related to performance
problems and discuss the related literature. Although this paper focuses on
performance bugs of Android and iOS apps, works related to other types of
bugs and apps are also reviewed to provide a wider overview of current research
trends.

2.1 Background: Performance-related concepts

Hereafter we provide the definitions of the most common performance issues
that may arise when evaluating software systems. These specifications are later
used to describe and categorize the performance bugs identified in the mobile
apps subject of our study (see Section 4.1).

The most common performance indicators are listed in the following:

- Service latency, defined as the time interval between a user request of a
service and the response of the software system. It can be measured in
microseconds, seconds, minutes, etc. Usually, upper bounds are defined
as “business” requirements by the end users to denote the maximum time
frame users are supposed to wait before aborting the request [32].

- System throughput, defined as the rate at which requests can be handled by
a software system and measured in requests per unit of time. Throughput
requirements can be both “business” and “system” requirements, depending
on the target domain. This means that such requirements can represent
either an upper or a lower bound, e.g., a hardware machine should serve
at least 10 requests/sec but a web service should not send more than 100
requests/sec otherwise the system becomes congested [32].
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- Resource utilization, defined as the ratio of busy time of a resource (e.g.,
the RAM) and the total elapsed time of the measurement period. Usually,
upper bounds are defined in “system” requirements by system engineers on
the basis of their experience, scalability issues, or constraints introduced by
other concurrent software systems sharing the same resource [32].

- Energy consumption, defined as the amount of energy or power used to
accomplish some tasks; it can be measured as watts per unit of time. This
strongly depends on the types of operations that are executed on a machine.
Similarly to resource utilization, upper bounds are defined to limit the types
of operations and avoid a high energy consumption [19].

- Communication and bandwidth, defined as the communication bit rate and
indicating the maximum throughput of a logical or physical communication
path in a digital communication system. Bandwidth tests are aimed to
measure the computer network by reporting on the maximum rate of data
transfer, typically measured in bits per second (bit/s). Similarly to energy
consumption, upper bounds are defined to report on the channel capacity
and avoid loss of information in the communication [19].

- Compression ratio, defined as the power of reducing the size of data; it
is a measurement of the relative decrease in size of data representation
produced by a compression algorithm. It is typically expressed as the division
of uncompressed size by compressed size. The compression mechanism
supports the efficiency of communications since data itself is not reduced,
there is a diminution on its size only [19].

- Scalability, defined as the property of a system to handle a growing amount
of load by adding resources to the system, so that no performance variation
is perceived by the end-users. To this end, vertical and horizontal scaling are
used: The former varies the resource sharing on each machine, whereas the
latter aims to employ multiple physical/virtual machines. The combination
of these two techniques efficiently manages the load distribution and resulted
to be beneficial in the process of continuously fulfilling performance goals
[31].

- Availability, defined as the probability that a software system works when
required during a certain time frame. The availability of a hardware/software
module can be obtained as the Mean Time Between Failures (MTBF) over
the same metric plus the Mean Time To Repair (MTTR), a.k.a.,Mean Down
Time (MDT). Usually, lower bounds are defined in “system” requirements by
system engineers on the basis of their experience, to denote the expectations
of end-users in completing their requests when required [86].

Note that all of the above-defined performance indicators are relevant for
mobile apps either on the client or on the server side. Indeed, several mobile
apps rely on server-side services (e.g., for online gaming) that are subject to
all classic performance issues of software systems. In the context of this work,
we define performance bugs as all suboptimal implementation choices that
can negatively impact one of the above listed performance indicators. When
discussing the taxonomy of performance bugs we identified in Android and iOS
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apps, we will explicitly link the different types of bugs to the corresponding
performance indicators they impact.

In the next section we discuss the related work dealing with performance
bugs. To better compare the different studies in the literature, we also specify
the performance indicators they are related to (see the last column in Tables 1
and 2).

2.2 Related work on Performance Bugs

Performance bugs have been widely investigated in empirical studies, not only
for desktop applications, but also for mobile apps. In [66] the detection of
performance bugs has been performed by looking at non-intrusive fixes only,
i.e., when a condition becomes true during loop execution, then just break out
of the loop. This technique has been applied to Java and C/C++ applications
and managed to detect previously unreported performance bugs.

Jin et al. [33] provide a starting point for understanding real-world perfor-
mance bugs, in particular roughly one hundred bugs are collected from five
software repositories. This study is aimed to highlight the most promising re-
search directions in this context, that are: (i) guidance for performance testing;
(ii) support for bug detection and avoidance; (iii) comparison with functional
bugs. However, the categorization of root causes of performance bugs is limited
to three types, i.e., uncoordinated and skippable functions, synchronization
issues.

Another example of an empirical study on performance bugs is the work
by Zaman et al.[98]; in this study performance bugs found in Mozilla Firefox
and Google Chrome were analyzed to learn how project members collaborate
to detect and fix these bugs. Four main points are outlined: (i) techniques
should be developed to improve the reproducibility of bugs; (ii) more optimized
means to identify the root cause of performance bugs should be developed;
(iii) collaborative root cause analysis process should be better supported; and
(iv) the impact of changes on performance should be analyzed, e.g., by linking
automated performance test results to commits, thus tracing software changes
and performance characteristics.

Nistor et al. [67] present an empirical study on three popular code bases
(Eclipse JDT, Eclipse SWT, and Mozilla) with the goal of investigating how
performance and non-performance bugs are discovered, reported and fixed by
developers. Three main findings are outlined: (i) fixing performance bugs may
introduce new functional bugs, similarly to fixing non-performance bugs; (ii)
fixing performance bugs is more difficult than fixing non-performance bugs;
(iii) unlike non-performance bugs, many performance bugs are found by code
reasoning and profiling, not through direct observation of the bug’s negative
effects. Olivo et al. [70] also investigate performance bugs, specifically traversal
bugs that arise if a program fragment repeatedly iterates over a data structure,
such as an array or list, that has not been modified between successive traversals.
Such performance bugs are typically easy to fix and often only require the
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Table 1 Summary of related work - Performance bugs.

Bugs
type

Approach Pros Scope Performance
factors

P
er
fo
rm

an
ce

Nistor et
al. [66]

Detection of performance
problems in Java and
C/C++ applications

Limited to non-
intrusive fixes on
conditional loops

service latency

G. Jin et
al. [33]

Diagnosis of performance
bugs and their relationship
with functional correctness

Limited categorization
of root causes of perfor-
mance bugs

communication
and bandwidth

Zaman et
al. [98]

Analysis of the collabora-
tion among project mem-
bers to detect and fix per-
formance bugs

Limited to browsers
(i.e., Mozilla Firefox
and Google Chrome)
performance issues

service latency

Nistor et
al. [67]

Performance bugs are
demonstrated to be more
difficult than functional
bugs

Bugs are found through
code reasoning, not by
the direct observation
of profiling data

system through-
put

Liu et al.
[57]

Empirical study of perfor-
mance bugs from smart-
phone applications

Limited to Android ap-
plications

service latency,
system through-
put, resource
utilization

Hecht et
al. [27]

Empirical study on the im-
pact of code smells for per-
formance metrics

Limited to Android ap-
plications

service latency,
system through-
put

Cruz et al.
[9]

Empirical study on the im-
pact of performance best
practices on the energy con-
suption

Limited to Android ap-
plications

energy con-
sumption

Olivo et
al. [70]

Static detection of perfor-
mance bugs in collection of
redundant traversals

Limited to data struc-
tures wrongly used

compression ra-
tio

Jovic et al.
[36]

Look for causes of long la-
tency performance bugs

Limited to Java appli-
cations

service latency

Killian et
al. [39]

Detection of performance
bugs in distributed systems

Network delays are sim-
ulated and can hide
some software specific
bugs

communication
and bandwidth

Parsons et
al. [72]

Detection of performance
antipatterns in real enter-
prise applications

Limited to parse the
run-time design model
whose accuracy relies
on the monitoring data

system through-
put

Grechanik
et al. [18]

Anticipate performance
bottlenecks by observ-
ing execution traces and
deriving load testing scripts

Limited to running ap-
plications where it is
possible to retrieve exe-
cution traces

service latency,
system through-
put

Wert et al.
[92]

Detection of performance
problems by means of sys-
tematic experiments

Limited to specific
heuristics that target
three tier enterprise
applications only

resource utiliza-
tion

Yang et al.
[96]

Empirical investigation on
performance bugs and fixes
related to GPUs

Limited to a specific
hardware setting

scalability

Selakovic
et al. [82]

Empirical investigation on
performance issues arising
in JavaScript applications

Limited to JavaScript
bugs

service latency

Linares-
Vásquez
et al. [55]

Empirical study on how de-
velopers deal with perfor-
mance bugs in mobile ap-
plications

Limited to Android
apps and no tool sup-
port for detecting per-
formance bottlenecks

energy con-
sumption,
resource utiliza-
tion, system
throughput,
communica-
tions and
bandwith,
service latency
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Table 2 Summary of related work - Performance and other non-functional bugs.

Bugs
type

Approach Pros Scope Performance
factors

P
er
fo
rm

an
ce

an
d
ot
he
r
N
on

-f
un

ct
io
na

l

Carroll et
al. [4]

Analysis of energy usage
and battery lifetime of the
device’s processor for differ-
ent patterns

Limited to a relatively
dated mobile phone and
its specific system archi-
tecture

energy con-
sumption

Linares-
Vásquez
et al. [56]

Analysis of the impact of
micro-optimizations on re-
sources consumption in An-
droid apps

Limited to micro-
optimizations practices
in Android apps

system through-
put, resource
utilization

Cruz et al.
[10]

Catalog of the design pat-
terns related to the energy
efficiency of mobile apps

Impact of applying the
design patterns is nei-
ther automated or as-
sessed

energy con-
sumption

Zaman et
al. [97]

Empirical investigation on
the Firefox project and its
performance and security
bugs

The comparison does
not include the correla-
tions between these two
types of bugs

service latency,
system through-
put

Linares-
Vásquez
et al. [52]

Empirical investigation for
the energy consumption of
mobile applications

Developers typically do
not select the best
energy-efficient options

energy con-
sumption

Gegick et
al. [17]

Analysis of security bugs by
means of a statistical model
recognizing the actual bugs

Limited to bugs that
are expressed as part of
the training for the sta-
tistical model

—

Zhou et al.
[99]

Identification of security is-
sues from commit messages
and bug reports

Affected by the train-
ing dataset since the ap-
proach builds upon ML
techniques

—

Mazuera-
Rozo et
al. [60]

Empirical investigation on
vulnerabilities of android
applications

No support for the de-
tection of security vul-
nerabilities

—

Oliveira
et al. [69]

A study on the energy con-
sumption of Android app
development approaches

Limited support on the
combination of the dif-
ferent approaches for
energy savings

energy con-
sumption

Near et al.
[65]

A catalog of access control
patterns is provided to de-
tect security bugs

The detection of previ-
ously unknown bugs de-
pends from the match-
ing of patterns

—

addition of a parameter to a method, the addition of a field to an object, or
the use of a slightly different data structure.

Jovic et al. [36] recognize performance bugs to be essential in post-deployment
detection approaches since they are particularly sensitive to the context, i.e.,
they may escape detection in a testing lab. A tool is also developed to find the
causes of long latency by means of call stack sampling. This work focuses on
Java applications.

Other types of applications have been also studied. Yang et al. [96] present
an empirical study on general purpose graphics processing units (GPGPU)
programs. This investigation pointed out various performance bugs. For some
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Table 3 Summary of related work - Generic bugs.

Bugs
type

Approach Pros Scope

G
en
er
ic

Gao et al.
[16]

Prevention of JavaScript bugs
through Flow and TypeScript

Limited to JavaScript projects

Wang et al.
[90]

Analysis and characterization
of concurrency bugs in Node.js

Limited to bugs occurring
on Node.js, no portability is
demonstrated for other server
setting

Di Franco
et al. [12]

Study of numerical bug charac-
teristics from well known scien-
tific libraries

The fixing of numerical bugs
can be partially automated
through program analysis tech-
niques

Panichella
et al. [71]

Empirical evaluation on the au-
tomatic derivation of test sum-
maries in JUnit tests

The perceived test comprehen-
sibility relies on perception of
participants

Wan et al.
[89]

Empirical study on bug charac-
teristics of blockchain systems

Limited to classify the bugs, no
support to detect and fix bugs

Lee et al.
[43]

Bug triage system based on
deep learning and word embed-
ding techniques

limited to retrieve the appropri-
ate developer for a bug report,
no characterization of bugs

Linares-
Vásquez et
al. [56]

Analysis of the impact of micro-
optimizations on resources con-
sumption in Android apps

Limited to micro-optimizations
practices in Android apps

Mondal et
al. [63]

Empirical study on bug-
propagation through code
cloning

Limited to Java open source
projects showing code cloning
patterns

of the identified bugs, fixes have been proposed and experimented. However,
both performance bugs and related fixes are specific to the target hardware
environment, i.e., GPU and their portability on different hardware settings
is not considered. Selakovic and Pradel [82] conduct an empirical study on
performance issues arising from popular client and server JavaScript projects.
Root causes of performance issues are identified and inefficient usage of APIs
results to be the most prevalent cause. They report that most of the issues can
be fixed through the modification of few lines of code.

In the particular case of Android apps, there is a previous work analyzing
different performance factors. For instance, Liu et al.[57] conducted an empirical
study on performance bugs from real-world Android applications. This study
has been discussed and compared with our work in Section 1. Hecht et al. [27]
present an empirical study on the performance impact of Android code smells.
By performing series of experiments, authors demonstrated that the correction
of code smells has a significant impact on performance metrics.

Linares-Vásquez et al. [55] focus on understanding actual developers’ prac-
tices for detecting and fixing performance bottlenecks in mobile apps. This
study points out that developers heavily rely on user reviews and manual
execution of the apps for detecting performance bugs. There are some tools
able to detect performance bottlenecks, but these tools are mostly for profil-
ing/debugging and do not support the automatic detection and the refactoring
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of performance issues. Linares-Vásquez et al. [56] also analyze the impact of
micro-optimizations, in particular on the memory and CPU consumption of
Android apps. Their results suggest that (i) implementing micro-optimizations
is not a common practice in Android open source projects; (ii) only one micro-
optimization (removing unused resources) has significant impact on the memory
consumption of Android apps; and (iii) the impact of micro-optimizations is
noticeable under certain load conditions that might appear only on specific
types of apps. In addition, Cruz et al. [9] study whether performance-based
practices for Android apps help in saving energy, finding that energy-aware
practices can save up to one hour of battery life.

In addition to empirical studies, other previous works have been devoted to
the detection of performance bugs. In [39] a technique that finds performance
bugs in distributed systems is proposed. It explores a large number of executions
looking for the ones that perform worse than usual, thus driving the debugging
activity towards the identification of performance issues.

Parsons and Murphy [72] propose an approach for the automatic detection
of performance issues through antipatterns. This approach has been applied to
real enterprise applications and monitoring information has been collected from
the systems under load. An antipattern-based rule engine has been built to
take as input the reconstructed run-time design model and produce as output
the detected antipatterns. More recently, Trubiani et al. [87] detected perfor-
mance antipatterns by exploiting load testing and profiling data. Performance
characteristics from the system under test are collected using a profiler tool
that creates snapshots, thus identifying performance hotspots.

Grechanik et al. [18] present an approach to detect performance bottlenecks
in software systems by means of feedback-directed systematic experimentation.
It analyzes execution traces to generate test scripts which are likely to provoke
computationally intensive executions of the system under test, thus allowing to
proactively anticipate performance bottlenecks of the software. This approach
only works after deployment since rules are extracted from execution traces
describing the relation between input data and workloads.

Systematic experiments have also been used by Wert et al. [92] to detect
performance antipatterns in Java-based three-tier applications. The authors
expose the system under test to varying workloads and observe changes to
specific runtime metrics, thus to detect occurrences of performance antipatterns
using a decision tree. However, the nature of performance problems is specific to
source code or resources, hence the proposed heuristics fail when performance
issues arise over various places in the source code.

Only a few works focused on improving performance of Android apps. Liu
et al. [57] propose a static analysis-based approach for detecting performance
bugs in Android apps, in particular GUI lagging, energy leaks, and memory
bloats. Guo et al. [22] present an Android specific approach for detecting
resource leaks (also using static analysis), but focused on resource leaks related
to operations with hardware-components such as sensors, camera, and speakers.

Lin et al. [51] perform a study on Android apps to investigate threading
issues. This study provides evidence that even though half of the apps use
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AsyncTask, there is a huge number of places where long-running operations
are not encapsulated in AsyncTask.

2.3 Related work on Non-Functional Bugs

In addition to performance bugs, there are other non-functional bugs that
have been investigated. Zaman et al. [97] present an empirical study on how
performance and security bugs differ from each other and from other types
of bugs in the Firefox project. Main findings are: (i) security bugs are fixed
and triaged much faster, but are reopened and tossed more frequently; (ii)
performance bugs require more experienced bug fixers than other bugs and
affect more files than security bugs.

Energy bugs in mobile apps have been widely investigated in the recent
years [10,76,73,74,75,52,23,46,24,47,45,88,50,44,21,80,48]. One of the semi-
nal works in this direction has been presented by Carroll and Heiser [4], who
performed a detailed analysis of the energy consumption of a smartphone.
Specifically, they collected energy measurements of a physical device to demon-
strate how the different components of the device contribute to overall power
consumption. Moreover, they considered different usage scenarios to develop a
model predicting the overall energy consumption and battery life of a mobile
device and its system architecture. Cruz et al. [10] present a catalog of 22
design patterns that contribute to improve the energy efficiency of mobile
apps, but their impact is not assessed. Linares-Vásquez et al. [52] analyze the
energy consumption of APIs used in Android apps. Actual measurements are
collected by using a power meter and API calls and patterns are traced onto
the source code. Moreover, approaches for improving energy consumption of
mobile apps have focused on different aspect such as HTTP requests [48] and
OLED displays [88,49,54,50,53].

Oliveira et al. [69] study the impact of the most popular development
approaches on the energy consumption of Android apps. Experimental results
compare the energy efficiency and performance of the most commonly used
approaches to develop apps on Android. Specifically, JavaScript was reported
as being the more energy-efficient in most of the benchmarks, but both Java
and C++ outperformed JavaScript in some cases. Leveraging a combination of
approaches is indicated as leading to non-negligible improvements in energy-
efficiency and performance.

Security bugs are included in the non-functional bugs list. There are many
works dealing with security bugs and we briefly describe some of them here.
Gegick et al. [17] present an approach to recognize security bugs; based on
text mining of natural-language descriptions of bug reports, a statistical model
(trained on already manually-labeled bugs) is used to identify security bugs
that are manually-mislabeled as not-security bugs.

Zhou and Sharma [99] present an automatic vulnerability identification
system to flag vulnerability-related commits and bug reports using machine
learning techniques. This way, a wide range of security issues can be identified
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from commit messages and bug reports. However, machine learning strongly
depends on the expressiveness of the dataset and precision and recall may
substantially vary.

Near and Jackson [65] present a technique for finding security bugs by
matching extracted access patterns to known safe patterns. An initial catalog
of common access control patterns, based on the analysis of real-world applica-
tions, is provided and used to find previously unknown bugs in open-source
applications.

Recently, Mazuera-Rozo et al. [60] investigate vulnerabilities in the Android
operating system from different perspectives: (i) most common vulnerabilities,
(ii) layers and subsystems impacted by the vulnerabilities, and (iii) survivability
of the vulnerabilities.

Noei et al. [68] present an empirical study aimed at understanding how
Android applications’ characteristics (such as code size and UI complexity) and
devices’ attributes (such as the CPU and the display size) affect the quality
of Android apps, as perceived by users. They found that both app and device
attributes play a significant role in the user-perceived quality. Syer et al. [85]
report an exploratory study to compare mobile and server applications along
two dimensions: the size of the code base, and the time to fix defects. Reported
findings show that: (i) mobile apps are smaller than server ones in terms of
the size of the code base and the development team; (ii) fewer users report
defects and defects are fixed in roughly one month. This study does focus
on performance-related issues. Mcilroy et al. [62] study the characteristics of
user reviews in the Google Play and in the Apple App stores. They found
that downloads and releases of apps are correlated with reviews, whereas app
category is less relevant for users. Authors pointed out that many analytics
tools are mostly sales-oriented rather than software-quality-oriented.

Other non-functional bugs in mobile apps like behavioral consistency are
gaining more attention from researchers [13,34,1]. However, we do not discuss
these papers since not strongly related to our research questions.

2.4 Summary of related work

Tables 1, 2, 3 schematically report the related work dealing with performance,
non-functional and generic bugs, respectively. First column shows the bugs
type, second column lists the different approaches, third and fourth columns
report pros and scope of these approaches, respectively. Tables 1 and 2 addi-
tionally include a fifth column where there is a match of related work with the
performance factors we consider in this paper (see Section 2.1). This literature
review is restricted to the papers we found more relevant when compared to
our approach, and it is far from being exhaustive.

To the best of our knowledge, our study on performance bugs in mobile
apps is (i) the largest conducted in the literature in terms of manually analyzed
performance bugs (500); (ii) the only one providing a detailed taxonomy
of performance bugs affecting both Android and iOS apps; (iii) the first to
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investigate the survivability of apps’ performance bugs, and to compare those
with other types of bugs affecting mobile apps.

3 Study Design

The goal of the study is to investigate performance bugs affecting native mobile
apps, and in particular Android and iOS apps. The purpose is to (i) define a
taxonomy highlighting the types of performance bugs affecting mobile apps,
and (ii) investigate the time needed to fix performance bugs. The context
consists of 500 commits performed by software developers of mobile apps to
fix performance bugs in Android and iOS apps (250 commits per operating
system, coming from 47 Android apps and 31 iOS apps). The data used in the
study are available in our online appendix [61].
The study addresses the following research questions:

RQ1: Which types of performance bugs affect mobile apps?

This research question aims at identifying the types (e.g., inefficient syn-
chronization among threads) of performance bugs affecting mobile apps. We
consider both Android and iOS apps. Knowing the types of performance bugs
affecting mobile apps can help to guide (i) apps developers, in focusing code
inspection/reviewing activities toward the identification of the most frequently
reported types of performance bug, (ii) researchers, in investing in the devel-
opment of detection tools targeting the most diffused types of performance
bugs, and (iii) language/API developers, to design/improve mechanisms for
promoting the development of efficient code.

RQ2: How long does it take to fix performance bugs in mobile apps?

This research question studies the survivability of the performance bugs subject
of our study. In particular, we assess the number of days between the bug
introduction and its fixing. We also compare the survivability of (i) different
types of performance bugs (classified as output of RQ1), and (ii) performance
bugs versus other types of bugs unrelated to performance. RQ2’s findings
support both developers and researchers in assessing the usefulness of detection
tools able to immediately catch an introduced performance bug (i.e., a long
survivability of the bugs would indicate the urge for such tools).

3.1 Study Context

To answer RQ1 and RQ2 we started by collecting a set of open source mobile
apps available at GitHub. The availability of the versioning system was a
needed selection criterion given our goal of (i) investigating bug-fixing commits
to categorize performance bugs affecting mobile apps (RQ1), and (ii) study the
survivability of performance bugs (RQ2).



14 Alejandro Mazuera-Rozo et al.

We started by randomly selecting 100 Android and 100 iOS apps hosted
on GitHub. The 100 Android apps were extracted from the open− source−
android− apps project1, i.e., a collection of open source Android apps, while
the 100 iOS apps were collected from the similar open− source− ios− apps

project2. Once collected these 200 apps, we manually inspected all of them
to verify that they actually were mobile apps. We found 15 repositories of
software projects not related to Android/iOS apps and 1 duplicated app (i.e.,
the same app contained twice in the automatically crawled lists of apps). We
replaced these apps with 16 well-known mobile apps having their code repository
available (e.g., wikipedia, wordpress). The complete list of considered 200 apps
is available in our online appendix [61]. We used a crawler to analyze their
change history and identify commits aimed at fixing performance bugs. To do
that, we used a keywords-matching mechanism on the commit notes/messages,
looking for commit notes/messages reporting one of the following terms:

performance, slow, latency, throughput, lagging, leak, suboptimal, bloat,
utilization, ANR, lag, OOM, bottleneck, hot-spot, hot spot, energy greedy,
drain, optimization, wakelock, lengthy, optimize, consumption

While such a list might be non-comprehensive and also result in the identi-
fication of false positives (i.e., commits having one of the matched terms in the
commit note but not actually fixing a performance bug), this does not represent
a strong limitation for our study since the keywords-matching mechanism is
only used to pre-filter candidate commits, that will then be manually analyzed
(as described later in this section) and discarded if considered false positives.
By using this process, we extracted 1,396 candidate commits: 1,016 related to
Android apps and 380 to iOS apps. In total, these commits have been found
in 78 apps (47 Android apps and 31 iOS apps). Tables 4 and 5 report the
characteristics of the considered Android and iOS apps, respectively. These
apps represent the study context for both RQ1 and RQ2. The only exception
is represented by the 9 apps marked with *, which are not considered in RQ2

since, as explained later, they do not provide data useful for answering it.
For Android, 41 out of the 47 apps (87%) are published at the Google Play

store, while for iOS 18 out of the 31 apps (58%) are published at the iOS app
store. The considered apps cover a set of 13 different categories in Android and
10 in iOS3. Also, the subject projects include apps covering a wide size range
(going from 1,597 to 1,526,886 LOCs, average: 98,718.4), having a different
length of the change history both in terms of time (from 24 to 221 months,
average: 78.1) as well as in commits extracted from their versioning systems
(from 42 to 70,002, average: 5,057.4). We cannot claim that this set of apps is
representative of the whole population of apps developed for the two mobile
platforms, and we acknowledge this as an internal threat to the validity of

1 https://github.com/pcqpcq/open-source-android-apps
2 https://github.com/dkhamsing/open-source-ios-apps
3 For apps not published on the app stores we manually assigned the category by reading

their description.

https://github.com/pcqpcq/open-source-android-apps
https://github.com/dkhamsing/open-source-ios-apps
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our study. However, the heterogeneity of the considered apps may foster the
generalization of our findings.

3.2 RQ1: Data Collection & Analysis

The collected 500 commits were manually analyzed by the four authors with
the goal of assigning to each of them a “tag” describing the reasons behind
the performance bug fixed in the analyzed commit. We targeted the tagging
of 500 commits (250 for each platform), representing a statistically significant
sample with 99% confidence level ± 5%. Note that we targeted 500 manually
tagged commits excluding those that we classified (tagged) as false positives
(i.e., commits not really aimed at fixing performance bugs).

The tagging process was supported by a web application that we developed
to classify the commits and to solve conflicts between the authors. Each author
independently tagged the commits randomly assigned to her/him by the web
application, defining a “tag” describing the cause behind each analyzed bug (e.g.,
object declaration inside a loop). To define such a tag the authors manually
inspected the diff of the commit and the commit note accompanying it.

Every time the authors had to tag a commit, the web application also
showed the list of tags created so far, allowing the tagger to select one of the
already defined tags. In a context like the one encountered in this work, where
the number of possible tags (i.e., cause behind the bug) is extremely high, such
a choice helps using consistent naming while not introducing a substantial bias.

Each commit was assigned to two authors by the web application and,
in cases for which there was no agreement between the two evaluators (i.e.,
different tags assigned by the two authors), the document was automatically
assigned to a third evaluator. If, after the third evaluation, there was still no
majority of the evaluators with the same tag, the conflicts were solved through
an open discussion aimed at defining the most appropriate tag to assign.

To reach our goal of 500 commits tagged, a total of 1,780 manually assigned
tags was required. In particular:

– A total of 1,010 commits were tagged : 510 were classified as false positives.
– Conflicts were arisen for 403 cases (40%): in 240 of these cases, the third

evaluator automatically added by the web application was enough to solve
the conflict and reach a majority (this accounts for 240 × 3 = 720 tags); in
163 cases an open discussion was needed, and this resulted in the addition of
a fourth tag to solve the conflict (accounting for 163 × 4 = 652 tags). Finally,
the 204 commits for which there was immediate agreement accounted for
204 × 2 = 408 tags.

An example of conflict that was solved through the addition of the third eval-
uator concerns the commit 58273a4 from the wordpress-mobile/WordPress-
-Android project. The commit note reports a quite general “date formatting
performance tweaks”. The first evaluator, looking at the code diff, assigned as
tag “Objects instantiation in loop”. Indeed, the creation of a Date and of a
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Table 4 Characteristics of the considered Android apps.
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Table 5 Characteristics of the considered iOS apps.
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SimpleDateFormat objects was moved from inside a for loop to the lines of
code preceding it. The second evaluator, instead, did not notice this change in
the diff, and assigned a more general “GUI-related ” tag to indicate that the
performance issue was affecting the formatting of dates printed in the GUI.
The conflict was solved with the third evaluator using exactly the same tag of
the first evaluator (i.e., “Objects instantiation in loop”).

Another example of conflict that required an open discussion among the
authors is related to commit 313aa46 from the herzbube/littlego iOS app.
The commit note here, is quite self-explanatory: “fix memory leaks (most of
them UIBarButtonItems not autoreleased)”. The tags assigned by the three
evaluators were: “Avoid memory leaks with autorelease”, “Memory leak ”, and
“Memory leaks due to unreleased objects”. While the meaning of the three tags
was basically the same, the authors agreed on adopting the third one since
(i) it was more specific as compared to the second one (i.e., “Memory leak ”),
(ii) as opposed to the first one, describes the problem and not the adopted
solution, and (iii) considers the fact that not all leaks in the commit have been
fixed through the use of autorelease.

We answer RQ1 by presenting a taxonomy of the types of performance
bugs identified in the manual analysis and we complement our discussion with
qualitative examples. To ease the discussion of the performance bugs, we also
link them to the performance criteria described in Section 2.1, indicating the
performance factors on which each type of bug has an impact.

3.3 RQ2: Data Collection & Analysis

To answer RQ2 we need to identify the commit in which each of the 500
performance bugs has been introduced and fixed. As for the commit fixing
each performance bug, we already have such an information, since the com-
mits we manually analyzed were the bug-fixing commits. Concerning the
bug-introducing commit, we used the SZZ algorithm [83] to identify it. The
algorithm relies on the annotation/blame feature of versioning systems. Given
a bug-fixing commit BFk (where k identifies the bug), the approach works as
follows:

1. For each file fi, involved in BFk and fixed in its revision rel-fixi,k, we extract
the file revision just before the bug fixing (rel-fixi−1,k).

2. Starting from the revision rel-fixi−1,k, for each source code line in fi changed
to fix the bug k, the blame feature of Git is used to identify the file revision
where the last change to that line occurred.

In doing that, blank lines are ignored. This produces, for each file fi, a set
of ni,k fix-inducing revisions rel-bugi,j,k, j = 1 . . . ni,k.

Since more than one commit can be indicated by the SZZ algorithm as
responsible for inducing the performance bug-fix, there are time ranges defined
by lower (minimum survivability) and upper bounds (maximum survivability).
Therefore, we answer RQ2 by following a meta analysis-based procedure [28,
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11]: the minimum and the maximum survivability of the bugs (i.e., number of
days between the bug introduction and fixing) are plotted using forest plots
with confidence intervals, and a central tendency measure of the survivability is
computed by using the random effects model [11]. The minimum survivability
is the one observed when considering the most recent commit identified by the
SZZ algorithm as the one that induced the bug-fix. Vice versa, the maximum
survivability is observed when considering the least recent commit identified
by the SZZ algorithm as the one that induced the bug-fix. The forest plots
are depicted by considering a 95% confidence interval. The SZZ algorithm was
able to identify at least one bug-inducing commit for 380 of the 500 bug-fixing
commits. For this reason, the 9 apps marked with * in Tables 4 and 5 have
been excluded from RQ2, since they did not contribute any bug-introducing
commit to our dataset.

The usage of the survivability intervals also helps in dealing with the
intrinsic limitations of the SZZ algorithm. To better understand why, let’s
assume the case of a bug-fixing commit cbf performed in December 2018 and
modifying the files Fi and Fj . Let’s also assume that cbf is a tangled commit
[29], meaning that besides the bug-fixing, it also features some other types of
changes (e.g., refactoring). In particular, Fi has actually been modified to fix
the bug, while Fj has been changed for other reasons. By running the SZZ
algorithm on cbf , two commits are identified: cFi, performed in March 2018,
and cFj performed in August 2018, representing the most recent commits that
modified Fi and Fj , respectively. Clearly, cFj is a false positive, since no bug
was fixed in Fj . Thus, the correct survivability of the bug fixed in cbf is 8
months (from March to December 2018). By considering both the minimum and
the maximum survivability, we provide lower and upper bounds of survivability
that delimit the time period in which a bug has likely been introduced. In
other words, going back to our example, claiming that the bug fixed in cbf
survived from a maximum of 8 to a minimum of 4 months is a correct claim.

We also verified whether different types of performance bugs (as classified
by the taxonomy output of RQ1) have different survivability. In particular,
we compared the distributions of the survivability of the different types of
performance bugs (e.g., resource leak vs. GUI-related) via (i) forest plots, and
(ii) statistical tests. For the latter we used the Mann-Whitney test [7] with
results intended as statistically significant at α = 0.05. To control the impact of
multiple pairwise comparisons (e.g., the survivability of the performance bugs
in the resource leak category is compared against the survivability of those in
the GUI-related and bad practices categories), we adjust p-values using the
Holm’s correction [30]. We also estimate the magnitude of the differences by
using the Cliff’s Delta (d), a non-parametric effect size measure [20] for ordinal
data. We follow well-established guidelines to interpret the effect size: negligible
for |d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and
large for |d| ≥ 0.474 [20].

To ease the interpretation of the achieved results, we also compare the
survivability of the performance bugs with that of other types of bugs, unrelated
to performance issues and extracted from the same repositories in which
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the performance bugs were fixed. In particular, for each performance-bug-
fixing commit, we randomly selected, from the same repository in which
the performance bug was fixed, two bug-fixing commits having their commit
notes matching the regular expression fix(es)(ed) bug(s). Then, knowing the
possible imprecisions introduced by this procedure, two of the authors manually
analyzed all candidate bug-fixing commits discarding the ones that were related
in some way to performance issues or that were not bug-fixing activities. This
left us with 295 valid bug-fixing commits not related to performance issues
that we use to compare the survivability of the bugs they fix to that of the
performance bugs fixed in the 380 performance-bug-fixing commits. Also in
this case, we compute the minimum and the maximum survivability using
the same procedure previously described, and we statistically compare the
survivability of performance bugs with that of other types of bugs by using the
Mann-Whitney test and the Cliff’s Delta.

Finally, we investigate the impact of several co-factors on the survivability
of performance bugs. In particular, given d as the date in which a performance
bug has been fixed, we took into consideration as confounding factors:

– Characteristics of the repository (computed at date d for each performance
bug): the number of releases, the number of total issues, the number of
issues in the state “open”, the number of issues in the state “closed”, the
age of the repository in days, the LOC, and the number of contributors.
This data has been mostly extracted by using the GitHub APIs4. The
most notable exception is the LOC, for which we cloned each repository,
checked-out the snapshot preceding d, and computed the lines of code for
that snapshot using the CLOC tool. Concerning the age of the repository,
rather than computing it as the days elapsed from the repository creation,
we considered the days between the date of the first commit and d. This
choice was done to avoid issues related to the repositories imported from
other versioning systems, that could have a quite recent creation date on
GitHub, but old commits in their change history.

– Code-related factors (computed at date d for each performance bug): the
average and median number of lines of code added and deleted per week.
We included these four factors as proxies for the activity level of the studied
repositories. Also this data was extracted through the GitHub APIs.

– Patch-related factors: the number of lines added and deleted to implement
the patch, as well as the total number of modified lines of code. These
three variables are proxies for the size of the patch needed to fix a certain
performance bug.

We fit a Cox proportional hazards regression model [77] to analyze the impact of
the above-described factors on the performance bugs survivability. To maximize
the statistical power of the model, we consider the whole dataset of bug-fixing
commits (i.e., we merge the ones related to Android and to iOS apps), and
we use the estimated minimum and maximum survivability of each bug as

4 https://developer.github.com/v3/

https://developer.github.com/v3/
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dependent variable to build two models. For each explanatory variable used
to build the model (e.g., the characteristics of the repository), we analyze the
returned hazard ratio (HR) as effect size measure. HR > 1 indicates, for that
variable, a lower survival time for corresponding increases of the variable value.
Vice versa, a HR < 1 indicates a higher survival time for higher values of the
variable. Further details on survival analysis can be found in [40].

Note that, before using all explanatory variables to fit the Cox proportional
hazards model, we use the R varclus function of the Hmisc package [25] to
produce a hierarchical clustering of features based on their correlation, in turn,
computed with a specified correlation measure (we use the Spearman’s ρ rank
correlation). Then, we identify clusters by cutting the tree at a given level of
ρ2 that we set at ρ2 = 0.49, which corresponds to a strong correlation (i.e.,
ρ = 0.7) [6]. We only keep one variable per cluster, by randomly selecting it in
the cluster of correlated metrics. Also, to properly interpret the importance of
each independent variable in the model, we normalize variable values, within
each project, in the interval [0, 1].

4 Results discussion

This section discusses our main findings related to the two research questions
that have been presented in Section 3.

4.1 Which types of performance bugs affect mobile apps?

Figures 1 and 7 show the taxonomy of performance bugs for Android and iOS
apps, respectively, that we found in the 1,510 manually inspected commits.
Note that, as explained in Section 3, the two figures report the classification
for 500 performance bugs (250 each). This is due to the fact that we classified
510 of the inspected commits as false positive during our manual analysis.

One important aspect we must clarify about the two shown taxonomies
is the specialization of the performance bugs into subcategories, e.g., when
moving from resource leak, to memory leak, down to cursor leak in Fig. 1. We
classified each analyzed performance bug in the lowest-level category we were
able to “safely” assign to that bug. For example, we identified 61 performance
bugs as belonging to the memory leak category. Then, for 21 of them, we were
able to further specialize the cause behind the bug into issues because of strong
references (6 bugs), cursor leak (3), unneeded elements (6), activity leaks (7),
view leaks (2), and steam leaks(3). Thus, the hierarchy of classification shown
in Fig. 1 does not imply that all memory leak bugs can be classified into one
of its three sub-categories, since for some bugs we were not able to identify the
exact cause behind the memory leak.

We also notice that the types of bugs presented in Figures 1 and 7 are
not restricted to bug types that do only affect mobile apps. For example,
Inefficient SQL queries can be found in any type of system. The goal of the
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Fig. 1 Types of performance bugs found in Android apps.
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ANDROID SL ST RU EC C&B CR SC AV
Connection-related (6)

Service connection leak (2)
Slow connection (networking issue) (2)

Broadcast receiver leak (2)
Performance bad practices (47)
Missed batching opportunity (3)
Missed caching opportunity (4)

Missed pre-fetching opportunity (1)
Inefficient data representation (6)
Missing rendering optimization (3)

Objects instantiation in loop (2)
String operations (5)

Suboptimal API usage (1)
Compiler settings (1)

Missing stream optimization (not using buffers) (4)
Inefficient operation with buffers (1)

Multithreading-related (11)
Missed multithreading opportunity (7)

Threading optimization (2)
Inefficient synchronization among threads (2)

Data structures related (6)
Using Inefficient collection (4)

Using synchronized collection (1)
Using dynamic collection (1)

GUI-related (33)
Layout files optimization (6)

Suboptimal usage of views (1)
Images operations (4)

GUI lagging (21)
Lagging when scrolling lists (5)

GUI lag because of data loading (3)
GUI lagging (touch events timing) (1)

Animation lagging (3)
Expensive operation in main thread (2)

DB-related (4)
Bulk insert (1)

Eager loading of data from DB (1)
Inefficient usage of SQL (2)

Resource leak (96)
Memory leak (61)

Memory leak because of strong reference (6)
Cursor leak (3)
Stream leak (3)
Activity leak (7)

View leak due to missing dismiss (2)
Unneeded elements (6)

Unneeded object instantiation (2)
Unneeded variable (1)

Unused imports/dependencies (2)
Unneeded activity instances (1)

CPU leak (32)
Unneeded computation (15)

Missing check condition before executing operation (6)
Skippable function: a function call with un-used results (1)

Costly operation (8)
High frequency of repeated operation (1)

Expensive object instantiation (1)
Use of internal getters (1)

Costly date-formatting operation (2)
Energy leak (7)

Excessive logging (2)

Suboptimal CPU usage (32)

Fig. 2 Impact of performance bugs in Android apps to performance-related factors (Sec-
tion 2.1): Service Latency (SL), System Throughput (ST), Resource Utilization (RU), Energy
Consumption (EC), Communication & Bandwidth (C&B), Compression Ratio (CR), Scala-
bility (SC), Availability (AV). A black entry indicates a strong impact, a gray entry a weak
impact, and a white entry no impact.
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two taxonomies is to present performance bugs that we found in mobile apps
through our manual inspection process, despite the fact that they are specific
of mobile apps (e.g., Suboptimal usage of views) or that they can also affect
other types of software (e.g., Excessive logging).

In addition to the two taxonomy figures, we also present in Figures 2 and
8 how the bug types identified in Android and iOS apps, respectively, can
potentially impact the performance factors we defined in Section 2.1. The color
associated to each bug type (i.e., from white to black using different scales
of gray) indicate their level in the respective taxonomy, with black being the
root categories, and white the lowest-level subcategories. A black entry at
the intersection between a bug type and a performance criterion indicates a
strong negative impact of that type of bug on the related criterion (e.g., bugs
in the Connection-related category can potentially have a strong impact on
the Communication & Bandwidth criteria), a gray entry a weak impact, and
a white entry no impact. The impact of each bug type has been defined by
the first author and double-checked and refined by the other authors, and it is
based on the bug instances in each category as well as on the description of
the performance criteria we reported in Section 2.1.

4.1.1 Performance bugs in Android apps

The performance bugs most frequently affecting Android apps are related to
resource leak (96 instances). This category groups all the bugs that are related
to improper handling of device resources, mostly because of bad programming
practices (e.g., missing to close a stream)5. We classified these bugs into two
subcategories: memory leak and suboptimal CPU usage. The former includes
cases in which the app incorrectly manages memory allocations (e.g., it does
not destroy unnecessary objects in memory after their usage).

Activity leaks and strong references are the top causes we were able to
identify for memory leaks. Strong references may prevent the garbage collection
process in both Android and iOS when the references create cyclic dependencies
between objects (e.g., A has a reference to B and B has a reference to A)
and one of the sides in the dependency cycle can not be claimed (in terms of
memory management) because there is still an “active” reference. One specific
case of this is represented by the activity leaks, and in particular when activities
are passed as references to long-term background execution components in
Android such as AsyncTasks, Threads, etc. (e.g., worker threads). When a
worker thread is executed but the GUI moves from one activity to another,
the first activity (i.e., the one that started the service) can not be disposed if
the worker has a reference to the activity and the worker is still running. It
can derive in cases where the activity is allocated multiples times in memory,
because the activity cycle is blocked by the worker execution.

5 Note that there is also a category “performance bad practices” in which we group issues
related to high-level practices, i.e., issues due to the fact that developers do not apply
performance best practices proposed by the platform designers.
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Fig. 3 is an example of strong reference between a AsyncTaskLoader and
an activity. Such reference generates an activity leak when the activity is used
to create a toast (on the GUI thread) to notify the user when the loader
finishes the task. Fig. 3 reports: (i) the GitHub repository name (i.e., cgeo)
and the specific commit in which the bug has been fixed (i.e., 837b8cc); (ii)
the commit note left by the commit author; (iii) the buggy code (red and top
rectangle); and (iv) the fixed code (green and bottom rectangle). Note that in
Fig. 3, as well as in all figures we will use for qualitatively discuss our findings,
we sometimes omit parts of the code and summarize it with comments (see
e.g., the comment used as the [..] more code body in Fig. 3). The fix to
the performance bug consisted of removing the strong reference by converting
it into a weak reference at the AsyncTaskLoader side, by using the Android
WeakReference API.

Commit note: memory leak in cache list loaders

Activity leak | Android | cgeo@837b8cc

public abstract class AbstractSearchLoader extends 
AsyncTaskLoader<SearchResult> implements RecaptchaReceiver {

      //[..] more code
      private final Activity activity;
      //[..] more code
      public AbstractSearchLoader(final Activity activity) {
          super(activity);
          this.activity = activity;
      }
      //[..] more code
      public SearchResult loadInBackground() {
          //[..] more code
         activity.runOnUiThread(new Runnable() {/**more**/});
      } 
 }

public abstract class AbstractSearchLoader extends 
AsyncTaskLoader<SearchResult> implements RecaptchaReceiver {

      //[..] more code
      private final WeakReference<Activity> activityRef;
      //[..] more code
      public AbstractSearchLoader(final Activity activity) {
          super(activity);
          this.activityRef = new WeakReference<>(activity);
      }
           //[..] more code
      public SearchResult loadInBackground() {
          //[..] more code
          final Activity activity = activityRef.get();
          if (activity != null) {
            activity.runOnUiThread(new Runnable() {/**more**/});
          }
      }
 }

Fig. 3 Activity leak issue in Android app when having strong references.

The performance bug summarized in Fig. 4 is a representative example for
a memory leak created when not closing a stream. The involved snippet of
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Commit note: Fix cursor leak when resolving contact photos

Cursor Leak | Android | signalapp@77e846d

if (cursor != null && cursor.moveToFirst()) {
//use the cursor to load the contact photo

} else {
//load the default contact photo

}

try {
if (cursor != null && cursor.moveToFirst()) {

//use the cursor to load the contact photo
} else {

           //load the default contact photo
}

    } finally {
if (cursor != null) cursor.close();

    }

Fig. 4 Cursor leak bug fixed in Android app.

code is in charge of loading the photo of a given contact, and uses a Cursor to
access the result set obtained by querying the database. The Cursor object
in Android implements the Closable interface and, as a consequence, it must
implement the close() method, in charge of releasing all resources that the
object (the Cursor in this case) is holding (thus freeing up the memory). In
the buggy version, the Cursor object was not closed after its usage (see red
and top rectangle in Fig. 4), leading to a memory leak. The problem has been
solved by properly invoking the close() method on the cursor in the finally
block.

Similarly, in commit 376bc22 performed in the Osmand GitHub repository,
a stream leak with a XML serializer is fixed (commit note: Close file streams
to avoid leakage) by closing the previously created FileOutputStream object
in a finally block.

The previous two examples are representative of several performance bugs
we identified in the memory leak category, and highlight as a good number of
such bugs could be simply avoided by invoking the close() method on objects
having a type implementing the Closeable interface. This result might look
surprising considering that modern IDEs usually provide warnings when these
objects are not closed by the developers.

Moving to the suboptimal CPU usage performance bugs, we classified as such
32 bugs resulting in the excessive/unnecessary usage of the CPU (e.g., unneeded
computation, excessive logging, etc.). We were able to identify the causes for
the 32 bugs and we sub-categorized them in unneeded computation(15), energy
leaks(7), excessive logging(2), and costly operations(8).

Fig. 5 summarizes a bug falling in the costly operation category. In the fixing
(green and bottom box) the developer is improving performance by changing the
launchMode for an activity (i.e., AllInOneActivity). In Android, activities
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are defined as “a single, focused thing that the user can do”, and, as explained in
the official Android documentation: “When a new activity is started, it is placed
on the top of the stack and becomes the running activity – the previous activity
always remains below it in the stack, and will not come to the foreground again
until the new activity exits” 6. The number of running activities has an impact
on the consumed CPU cycles. The launchMode allows Android developers to
specify in which situation a new activity instance is created. With the standard
launchMode (i.e., the default one used in the “buggy” version), a new activity
instance is created every time there is a new Intent, while with launchMode

set to singleTop an existing instance of an activity is reused if it is at the top
of the stack when the new Intent is created. This allows to save computational
resources.

Commit note: Fixed AllInOneActivity leak

Unneeded activity instances | Android | Etar-Calendar@2dd566a

<activity
android:name="AllInOneActivity"
android:theme="@style/CalendarTheme.WithActionBar">

</activity>

<activity
android:name="AllInOneActivity"
android:theme="@style/CalendarTheme.WithActionBar"

      android:launchMode="singleTop">
</activity>

Fig. 5 Costly operation fixed in Android app.

The second most occurring category of performance bugs in our Android
taxonomy is performance bad practices (47 instances), grouping bugs due to
the non-application of well-known performance best practices. This includes the
sub-category missed batching opportunity, referring to bugs in which batching
(i.e., a strategy for increasing performance and scalability when interacting
with a database and/or a remote service) has not being used in the first place.
One representative case is the commit 852e513, performed in the K-9 Mail
GitHub repository (an open-source email client for Android). In this commit,
the developer is fixing a performance bug well summarized in the commit note:

Modified fetch() to call fetchEnvelope() which runs recursively, grabbing
message ENVELOPEs 10 at a time rather than attempting all 100
at once. Shows a significant performance increase and a significant
reduction in memory usage.

Another sub-category of the performance bad practices is the missed caching
opportunity, related to all performance bugs due to the missing “storage” of

6 https://developer.android.com/reference/android/app/Activity.html

https://developer.android.com/reference/android/app/Activity.html
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information. Such information is reused multiple times by the app but it is
recomputed (or re-queried) every time is needed. Fig. 6 reports a performance
bug belonging to this category from the WordPress Android app.

Commit note: […] status colors are now cached for performance

Missed caching opportunity | Android | WordPress-Android@941cb8a

private ListView getListView() {
  switch (comment.getStatusEnum()) {
    case SPAM :
      //[..] more code
      txtStatus.setTextColor(Color.parseColor("#FF0000"));
      break;
    case UNAPPROVED:

//[..] more code
      txtStatus.setTextColor(Color.parseColor("#D54E21"));
      break;
    //[..]
}

private ListView getListView() {
  switch (comment.getStatusEnum()) {
    case SPAM :
      //[..] more code
      txtStatus.setTextColor(mStatusColorSpam);
      break;
    case UNAPPROVED:

//[..] more code
      txtStatus.setTextColor(mStatusColorUnapproved);
      break;
    //[..]
}

Fig. 6 Missed caching opportunity bug fixed in Android app.

Due to space constraints, part of the fixing is not reported in the figure,
and concerns the initialization of two variables, namely mStatusColorSpam

and mStatusColorUnapproved, aimed at storing the colors used to highlight
comments marked as spam and unapproved, respectively. These variables have
been introduced to avoid the invocation of the Color.parseColor(String)
every time the two colors are needed when invoking the getListView() method
(see buggy and fixed versions in Fig. 6). While such optimizations might look
minimal in terms of performance gain, it is important to keep in mind the
context in which apps are executed, meaning mobile devices showing limited
resources, especially for what concerns battery. Thus, every “drop of energy”
that can be saved really must be preserved.

The third most frequent category of performance bugs we identified on
Android apps groups is named GUI-related bugs (see Fig. 1). For example,
performance bugs causing animation lagging belong to this category. One of the
bugs in this category is described in the issue #79 of the simplenote-android
app7, that has been fixed in one of the commits we analyzed (i.e., commit
bb9beec). The bug causes a lag when the app’s user navigates from a note back

7 https://github.com/Automattic/simplenote-android/issues/79

https://github.com/Automattic/simplenote-android/issues/79
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to its list of notes. One of the contributors taking part in the issue discussion
noted that the lag was particularly visible when the keyboard was shown on
screen after editing a note. The fixing is described in the commit note:

Moved the keyboard hide code out of onPause of NoteEditorFragment and
into onResume of NoteListFragment to improve the transition animation
performance.

Thus, the hiding of the keyboard is now performed when the user resumes
(i.e., goes back to) the list of notes rather than when pausing the fragment
showing a single node. This resulted in smoother animations, possibly due
to the onPause method in NoteEditorFragment which is also in charge of
performing several other operations (e.g., saving changes made to the note)
that, combined with the hiding of the keyboard, might have resulted in the
GUI lagging.

Other less diffused categories of performance bugs in Android apps are those
related to: (i) connectivity (6 instances), such as broadcast receiver leaks and
network delays; and (ii) database operations (4 instances), such as inefficient
queries and eager data loading.

4.1.2 Performance bugs in iOS apps

Before starting the discussion of the performance bugs we found in iOS apps, it
is important to highlight the introduction of the Swift8 programming language
in 2014, that represents the recommended language for the implementation of
iOS apps. Before 2014, the supported programming language was Objective-C9.
This means that some of the apps we analyzed might have been subject to a
migration from Objective-C towards Swift during the analyzed change history
and, as a consequence, some of the performance bug-fixing commits might
be related to Swift while others to Objective-C. Note also that iOS apps can
contain both Swift and Objective-C code.

As already observed for Android apps, also in iOS apps the performance
bugs most widely diffused are related to resource leak (120 instances) and,
the vast majority of these (110), fall in the memory leak category. Many of
them are related to the missing use of the autorelease, i.e., a mechanism
implemented both in Objective-C and in Swift to manage the deallocation of
objects from the memory.

Fig. 9 depicts an example of unreleased objects performance bug fixed in the
Little Go iOS app. This app implements the game of Go, in which users can
play against a human or against the computer. The fixing of the bug consists
of the simple addition of the autorelease keyword in the return statement.
This allows the developer to “ask” the deallocation of the returned object from
the memory but not immediately (i.e., not before it is returned). This bug is
related to Objective-C code.

8 https://www.apple.com/it/swift/
9 https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/

ProgrammingWithObjectiveC/Introduction/Introduction.html

https://www.apple.com/it/swift/
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
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Fig. 7 Types of performance bugs found in iOS apps.
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iOS SL ST RU EC C&B CR SC AV
Resource leak (120)
Memory leak (110)

Unreleased Objects (53)
Missing use of auto release (39)

Unreleased pointers (14)
Reference cycle related (15)

Memory leak because of strong reference (9)
CPU leak (9)

Suboptimal algorithmic complexity (1)
Unneeded computation (6)

Missing check condition before executing(2)
Costly operation (2)

Costly date-formatting operation (1)
Connection-related (4)

Issues with sockets library (1)
Network latency (1)

Slow connection (networking issue) (2)
Performance bad practices (32)
Missed batching opportunity (4)
Missed caching opportunity (7)

String operations (2)
Inefficient data representation (1)
Objects instantiation in loop (1)

Compiler settings (12)
Multithreading-related (5)

Missed multithreading opportunity (1)
Unneeded threads (2)

Threading optimization (2)
GUI-related (42)

Images operations (4)
Inefficient management of web views (7)
Issues painting graphic components (7)

Suboptimal usage of views (6)
Layout files optimization (3)

GUI lagging (15)
Lagging when scrolling lists(9)

GUI lag because of data loading (2)
Complex graphical effects (2)

Suboptimal CPU usage (32)

Fig. 8 Impact of performance bugs in iOS apps to performance-related factors (Section 2.1):
Service Latency (SL), System Throughput (ST), Resource Utilization (RU), Energy Con-
sumption (EC), Communication & Bandwidth (C&B), Compression Ratio (CR), Scalability
(SC), Availability (AV). A black entry indicates a strong impact, a gray entry a weak impact,
and a white entry no impact.

An example of bug affecting Swift code is instead the one reported in Fig. 10,
and related to the missing use of unowned category (see Fig. 7). The bug
refers to the Firefox iOS app, and specifically to two table view controllers in
the AppSettingsOptions class that were missing the usage of unowned. Swift
provides two ways to resolve strong reference cycles, i.e., weak and unowned
references. Both enable one instance in a reference cycle to refer to the other
instance without keeping a strong hold on it. An unowned reference results
useful when the other instance (that can be deallocated first) has the same
or a longer lifetime. This prevents an excessive usage of the memory. Fig. 11
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Commit note: fix memory leak in ArchiveViewModel […]

Unreleased objects | iOS | littlego@2f46e5e

if (! [self gameWithName:preferredGameName])
    return [preferredGameName copy];

if (! [self gameWithName:preferredGameName])
    return [[preferredGameName copy] autorelease];

Fig. 9 Unreleased objects bug fixed in iOS app.

shows an example of how to avoid a strong reference by declaring a variable as
weak; note that a weak variable can be declared only in classes, therefore the
WeakTabManagerDelegate structure in the example was changed to a class.

Commit note: Bug 1278355 - Memory Leak in AppSetting

Missing use of unowned | iOS | firefox-ios@d1a84ba

let settings: SettingsTableViewController
//[..] more code
let settings: SettingsTableViewController

unowned let settings: SettingsTableViewController
//[..] more code
unowned let settings: SettingsTableViewController

Fig. 10 Missing use of unowned bug fixed in iOS app.

Commit note: Bug 1157843 - Use a weak ref for tabTrayController

Strong reference | iOS | firefox-ios@c4f2ddc 

struct WeakTabManagerDelegate {
    var value : TabManagerDelegate?

class WeakTabManagerDelegate {
    weak var value : TabManagerDelegate?

Fig. 11 Removing strong reference in iOS app.

Concerning the suboptimal CPU usage category we put here, for example,
performance bugs due to unneeded computations, meaning computations that
could be avoided. One of these cases is the bug 0886c86 from the Colloquy
app, i.e., a chat client. As described by the developer in the commit message:

Outline list performance GREATLY improved:
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Fig. 12 Survivability in days of performance bugs in Android and iOS apps. Green (red)
depicts minimum (maximum) estimates at 95% confidence interval. Black shows the results
of the random effect model.

- sizeLastColumnToFit moved into outlineViewDidExpand item, so it
is only called when needed;

- removed called to _refreshSelectionMenu since it wasn’t need since
SelectionDidChange was already implemented to do it.

Now these calls are only done when necessary rather than for every cell.

Basically, the developer removed a number of unneeded method calls, that
had a negative impact on the performance of the corresponding mobile app.
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The second most diffused category of performance bugs in iOS apps are
the GUI-related ones, with 42 instances. This includes issues painting graphic
components (e.g., commit 1365614 from Colloquy: “Improve scroll performance
in the chat room list”), and inefficient management of Web views (e.g., commit
e03050c from Firefox-iOS: Improve performance by adding/removing webviews
instead of layering them).

Finally, further less diffused categories of performance bugs in iOS apps
are those related to the performance bad practices (32 instances), and to
connectivity (4 instances), such as sockets library and network latencies.

4.2 How long does it take to fix performance bugs in mobile apps?

Fig. 12 depicts the forest plots reporting the survivability of performance bugs
in the analyzed mobile apps (i.e., the number of days between the performance
bug introduction and its fixing). As explained in Section 3, we report the
minimum (green) and the maximum (red) survivability intervals as computed
with the SZZ algorithm. In each forest plot the square represents the average
value of the distribution, while the line passing through it depicts the 95%
confidence interval. The black line shown for the overall set of performance
bugs depicts the results of the random effects model [5], used in meta-analysis
to combine the results of different studies in a single result outcome. In our
case, the set of “different studies” includes the survivability estimates when
considering the minimum (study I ) and the maximum (study II ) survivability.

Starting from the top, Fig. 12 shows the survivability intervals when (i)
considering all the analyzed performance bugs together (i.e., “performance
bugs all”); (ii) when grouping them by mobile platform (Android and iOS);
and (iii) considering bugs unrelated to performance issues, for Android (i.e.,
“bugs unrelated to perf. android”) and iOS.

Finally, the bottom part of Fig. 12 compares the survivability intervals for
different types of Android and iOS performance bugs. For this analysis, we
only considered the types of performance bugs for which we had at least 20
instances (i.e., 20 bug-fixing commit with their related bug-inducing commits)
in our dataset. Indeed, computing the survivability intervals for a type of
performance bugs for which we only have a few data points would result in an
almost meaningless statistical analysis of confidence intervals.

One interesting result to highlight from the analysis of Fig. 12 is the long sur-
vivability of all the analyzed performance bugs. Indeed, even when considering
the most conservative results (i.e., the minimum estimated survivability—green
line), the number of days needed to fix an introduced performance bug is, on
average, 98, and it grows to 178 for the random effects model, and to 342 for
the maximum estimated survivability. It is important to note that this is not
the number of days needed to fix a performance bug after it has been reported,
as investigated in the work by Liu et al. [57], but after it has been introduced.
This means that a performance bug could remain unnoticed in the app for
months before being identified and then fixed.
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The analysis of Fig. 12 also shows that performance bugs have a similar
survivability in Android and iOS apps, with no significant difference observed
(p-value=0.91 for minimum and 0.21 for maximum survivability). When com-
pared to bugs unrelated to performance issues, we observed differences in the
maximum survivability intervals. In particular, the maximum survivability of
performance-related bugs is higher as compared to that of bugs unrelated to
performance issues (avg. 357 vs 197 in Android, and 326 vs 283 in iOS), with a
significant difference for Android: p-value<0.01 with a small effect size (0.24).
While we do not have any empirical evidence for explaining such a finding, one
possible reason behind it may be that performance-bugs might manifest only
in specific usage scenarios (e.g., when loading large amount of data), thus only
affecting a minority of the users and requiring more time to be identified as
compared, for example, to functional bugs.

We also discuss differences observed for types of performance bugs, as
shown in the bottom part of Fig. 12. Looking at Android, the only interesting
pattern we observe is that “resource leak” performance bugs tend to survive
more as compared to the other types of bug. This is also the only statistical
comparison for which we observed significant differences. Indeed, as explained in
Section 3, we compare the minimum and maximum survivability of (i) different
types of bugs within the same operating system (e.g., “resource leak” vs “bad
practices”, both in Android apps), and (ii) the same type of bugs in the apps
of the two operating systems (e.g., “resource leak” bugs in Android apps vs
“resource leak” bugs in iOS apps). The only significant difference across these
comparisons is observed for the minimum survivability of resource leak bugs
in Android as compared to bad performance practices in Android (adjusted
p-value=0.016 with a medium effect size d=0.36). This pattern (i.e., the higher
survivability of “resource leak” bugs) is instead not observed in iOS, in which
the survivability of the different performance bug types is very similar (as also
confirmed by the statistical analysis, it does not show any significant difference).
This finding might be explained by the fact that memory leaks, representing
the majority of the resource leaks in iOS, are a well-known issue for iOS
developers. Summarizing, our main finding on the difference in survivability
between different types of performance bugs is that bugs related to resource
leak tend to survive longer than other performance bugs in the context of
Android apps.

Finally, we study the impact of the confounding factors described in Section 3
on the survivability of performance bugs. Table 6 reports the seven clusters
of factors we identified through correlation analysis, and shows the one we
randomly picked from each cluster (marked with 3and emphasized).

The seven selected factors have been used to build two Cox proportional
hazards regression models, one using the minimum survivability as dependent
variable, and one using the maximum survivability. Tables 7 and 8 report the
obtained models for minimum and maximum survivability, respectively. We
focus our discussion on the HR of each factor (see Section 3 for a description of
the HR and its interpretation). The statistically significant HRs are reported
in bold. All null hypothesis (that must be rejected in order to have a significant
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Table 6 Correlation analysis for studied confounding factors. Emphasized the ones used to
build the Cox proportional hazards regression model.

Factor Cluster ID Selected
Number of releases 1 3
Number of issues 2 3
Number of closed issues 2 7
Number of opened issues 2 7
Age of the repository (days) 3 3
Lines of Code 4 3
Number of Contributors 5 3
Code addition (mean per week) 6 3
Code addition (median per week) 6 7
Code deletion (mean per week) 6 7
Code deletion (median per week) 6 7
Patch: Impacted lines 7 3
Patch: Added lines 7 7
Patch: Deleted lines 7 7

Table 7 Minimum survivability: HR of the analyzed confounding factors.

Factor HR p-value
Number of releases 0.38 0.098
Number of issues 0.77 0.449
Age of the repository (days) 0.34 0.005
Lines of Code 0.47 0.021
Number of Contributors 1.19 0.531
Code addition (mean per week) 1.23 0.364
Patch: Impacted lines 3.88 0.009

Cox model [77]) have been rejected in our case (i.e., Likelihood ratio test, Wald
test, and logrank test, all reporting a p-value < 0.001).

Three factors play a significant role on the minimum estimated survivability
of performance bugs (see Table 7). The first, i.e., the age of the repository in
days, shows an expected correlation with the minimum (as well as the maximum
— Table 8) survivability. The HR lower than 1 indicates that higher values for
the factor (i.e., longer history) results in higher survivability. This result is not
surprising, considering that a long history is needed to have bugs with a long
survivability. More interesting are the results observed for the lines of code and
the size of the patch used to fix the bug. A larger size of the repository results
in longer bug survivability. This may be due to the fact that identifying a bug
in a larger repository is likely to take longer. Note that we are not referring
to the bug localization task (as in, the bug has been observed, and should be
localized in the code); larger systems are likely to implement more features
and, thus, the chance of observing issues caused by a performance bug may be
lower (e.g., if the bug does only affect a poorly used feature).

Concerning the size of the patch used to fix the bug, we can see from Table 7
that bugs requiring larger patches have a much lower minimum survivability
(HR=3.88). Our conjecture is that these bugs, requiring a larger fix, are likely
to be easier to catch, since possibly affecting different parts of the code.
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Table 8 Maximum survivability: HR of the analyzed confounding factors.

Factor HR p-value
Number of releases 0.09 0.002
Number of issues 0.85 0.658
Age of the repository (days) 0.04 <0.001
Lines of Code 1.09 0.792
Number of Contributors 1.18 0.578
Code addition (mean per week) 0.72 0.139
Patch: Impacted lines 0.59 0.473

Looking at Table 8 (i.e., maximum survivability), besides the already
discussed age of the repository, we also observe the role played by the number
of releases issued by the project which, also in this case, has a positive correlation
with survivability (the higher the number of releases the longer the survivability).
While this result may be counterintuitive since one would expect that projects
issuing releases more frequently tend to fix bugs quicker as compared to projects
rarely issuing releases, it is important to notice that our number of releases
factor computes the number of releases issued until the date of the fixing, not
the frequency of releases. Thus, it is in some way likely to be related to the
age of a repository (even if it does not correlate with it).

Finally, it is interesting to notice that, while we observed a strong impact
of the patch size on the minimum survivability, this factor does not influence
the maximum survivability. Speculating about this finding is difficult. However,
one possible explanation for it is that the maximum survivability estimates
represent the worst-case scenario in which a bug has affected the system for
very long time without being noticed (e.g., because it does not have a strong
negative effect on the apps’ performance). Thus, it is not susceptible of influence
from any of the investigated factors if not those in some way related to the
longevity of the repository.

5 Threats to Validity

Threats to construct validity concern the relation between the theory and
the observation, and in this work are mainly due to the measurements we
performed. This is the most important kind of threat for our study, and is
related to:

– RQ1: Selection of the considered mobile applications. Our study focuses on
the analysis of 1,396 commits: 1,016 related to Android apps and 380 to
iOS apps. In total, these commits have been found in 78 apps: 47 Android
apps (87% published at the Google Play store) and 31 iOS apps (58%
published at the iOS app store). The selection is motivated to consider
different characteristics (i.e., category, size, history, and commits), but we
are aware that this set of apps is not representative of the whole population
of apps developed for the two mobile platforms.
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– RQ1: Subjectivity in the manual classification. We identified through manual
analysis the types of performance bugs affecting mobile apps. To mitigate
subjectivity bias in such a process, two authors have been assigned to each
performance bug and, in cases for which there was no agreement between the
two authors, the document was automatically assigned to a third evaluator.
In cases in which a majority agreement was not reached even with the third
evaluator, an open discussion was performed to solve the conflict. Note also
that, when the type of the performance bug was unclear, we preferred to
explicitly label it as “unclear” rather than risking to introduce imprecisions.

– RQ2: Approximations due to identifying bug-inducing commits using the
SZZ algorithm [83]. We computed both the minimum and the maximum
survivability estimates on the basis of the SZZ outcome.

– RQ2: Imprecision due to tangled code changes [29]. We cannot exclude that
some bug-fixing commits grouped together tangled code changes, of which
just a subset was focusing on the performance bug fix. This would result in
imprecisions when running the SZZ algorithm on the fixing commit. Again,
by presenting both the minimum and the maximum survivability estimates
such a risk is mitigated.

Threats to internal validity concern external factors we did not consider
that could affect the variables and the relations being investigated. When
possible, we addressed internal validity by qualitatively analyzing interesting
cases.

Threats to conclusion validity concern the relation between the treatment
and the outcome. Although this is mainly an observational study, wherever
possible we used an appropriate support of statistical procedures, integrated
with effect size measures that, besides the significance of the differences found,
highlight the magnitude of such differences.

Threats to external validity concern the generalization of results. In RQ1

we considered a total of 500 performance bugs (250 commits in Android apps,
and 250 in iOS apps), while the RQ2’s findings are based on the analysis of
380 performance bugs due to 120 bugs for which the fixing-commit was not
found anymore in the target repository. This is due to the fact that the manual
analysis for RQ1 has been performed one year before the RQ2’s survivability
analysis. Thus, some repositories have been moved or rebased, do not allowing
to retrieve the bug-fixing commit.

6 Conclusion and future work

In this paper we investigated the most common performance bugs affecting
Android and iOS apps. After classifying them in different categories (i.e.,
resource leak, performance best practices, etc.), we analyzed their survivability
(i.e., the number of days between the bug introduction and its fixing). Our
manual analysis allowed to define a detailed taxonomy of performance bugs that,
to the best of our knowledge, is the one based on the largest set of manually
analyzed performance bugs affecting mobile apps. Such a taxonomy (RQ1)
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can point practitioners to common bad practices that should be avoided; also,
researchers could design and implement approaches focused on the detection
and fixing of different types of performance bugs in both platforms; finally,
API/platform designers can use our taxonomy to implement specific mechanisms
in the languages and IDEs to warn and avoid performance bugs in the source
code.

We also found that performance bugs survive long in the system (RQ2).
While the reasons behind this result may be multiple, one possible explanation
for this finding has been provided in previous work showing that performance
bugs are more difficult to fix as compared to other bugs [67] and require
the involvement of more expert developers [97]. Future work could further
investigate the reasons behind this finding through surveys/interviews with
software developers involved in the fixing of performance bugs. Based on our
RQ2’s findings, highlighting the low survivability of performance bugs, more
effort should be invested in characterize the code idioms causing these bugs,
developing tools to (i) improve the performance testing practices, and (ii)
automatically identify performance bugs.
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